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Optimization of Vibration Systems

Parametric Dynamical Systems

[ L(w, 7)x(w,7) =, A)
Y(w, ) = Ox(w, 7).

» Obtained from the discretization of the underlying PDE.

- w: frequency; v € R': | parameters.
» L(w,y): a parameterized n x n matrix.

Objective
Minimize the energy norm of the output by choosing ~:

ming(y) = [
Y Wy

Algorithm: Damped BFGS.

Example: Footbridge Damper Optimization
Use four dampers to reduce the vibration of a footbrldge.
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Y(w, )P dw.

Goal: Minimize the vibration by tuning the stiffnesses and the
damping coefficients of the four dampers. (8 design parameters)

Difficulty
PDE discretization —- Large System Order —-
The computations of g(~v) and Vg(~) are very expensive.

The MOR Framework

Model Order Reduction of Second Order Systems

First consider second order systems without design parameters.

Algorithm. Two-sided SOAR: build the input and output Krylov
subspaces for projection:

(K + iwC — w*M)x = f MOR
{y = "X 7 Y = 0*X (2)
order n n> kK order K

Moment Matching Properties for two-sided SOAR

Moments: Coefficients in the Taylor expansion.
» the first 2k moments of y and y w.r.t. w match at v = ~(9):

{(R +iwC — sz) —f

» the first 2k — 1 moments of — 0y and — Oy match;
Ow Ow
» in addition, if we get (2) from (1) by fixing v = ~), the first k
moments oy and — oy match. (1 <j <)
0 N0 0 N0

The MOR Framework

» Generate a two-sided SOAR reduced model for each parameter
value accessed by optimization.
» Can approximate both the function value and the gradient for this

parameter value: Quasi-Newton methods are suitable.

Extrapolatory MOR

MOR: Lw,y) — LwA) — VvV, W
L(w, ")
Extrapolatory MOR:
Lw,7) — L) — VvV, W

\ ) /
L(w,;7)

Valid for the entire parameter space.
Denote the extrapolatory reduced model extrapolated at ~") by g'’).
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Exploit extrapolatory reduced models

Motivation
Due to moment matching properties, we have

~(

9"\ = g(\"),  vg'(! )
So, g\ should approximate g well around A

The Relaxed First Order Condition

» To safely exploit an extrapolatory reduced model g!')(7), we use:
~ a heuristic error bound e ( )forg )(v). (Based on residual)
- a heuristic error bound e}y for Vg()(y).

- Good approximation at the extrapolation point: small e)(y()) and e},
» A reduced model can be refined by enlarging Krylov subspaces.

va(y")
). (for smooth functions)

The basic working procedure for the /-th iteration:
1. Build the i-th reduced model g!/).
2. Formulate the i-th optimization subproblem using g\ and el’)
3. Solve the subproblem to get a candidate for the next iterate

4. Decide whether to accept or update %'“
decrease condition. @ P2

. @ P1

(/+1 )
/ycand

by testing the sufficient

and

P1: Subproblem Formulation

Two Algorithms
ETR EP

Contour value: ¢ I

Contour value: € I
............... Contour value: ge

o —————-——-o Optimization Path

A, B, C, D : Path Names
R, R, :Unpenalized Regions

L Optimization Path

A, B, C, D :Path Names
R, R, :Trust Region

a")()

Terminate if w is active for ;1 successive
steps. w € [0, 1], continuous.

. (1) (i)
i~ A 1 f _(7) < e - ~ (i) e\ () (/)
in grh) stagoy s min gt() +w | =5 os ) €00

Terminate if close to the boundary.

P2: Convergence Theory

The approximate generalized Cauchy point ng;c

When we use a backtracking-Armijo line search on a descent
direction, %g'gc is the first point satisfying both

~ the Armijo condition on g\)(v);

» the constraint of the subproblem.

Theorem for convergence

Under mild conditions, if we accept vé;;;) only when it satisfies
o~ (I+1) (i+1)

g(%and )(/ycand ) § g(l)(%(éz}C)
we achieve convergence on g (original model).

» Computationally feasible to check: No evaluation of g.
» When fails, we have several strategies:

1. Backtrack on ygz}c.

2. Shrink the trust/unpenalized region, and solve the subproblem again.
3. Refine g\.
(/+1)
):

» Sometimes, we can check the condition without generating gl
ETR and EP are designed in favor of this case.

Numerical Results for the Footbridge Problem

Order Optimum CPU Time
The MOR Framework 12 24.77751651 879s
ETR 20 24.78594112 205s
EP(1) 20 24.7762798 295s
EP(2) 20 247775166 190s

A single evaluation of g costs 540 s.




