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Optimization of Vibration Systems

Parametric Dynamical Systems{
L(ω, γ)x(ω, γ) = f ,
y(ω, γ) = `∗x(ω, γ). (1)

I Obtained from the discretization of the underlying PDE.
Iω: frequency; γ ∈ Rl: l parameters.
IL(ω, γ): a parameterized n × n matrix.

Objective
Minimize the energy norm of the output by choosing γ:

min
γ

g(γ) =
∫ ωH

ωL

|y(ω, γ)|2 dω.

Algorithm: Damped BFGS.

Example: Footbridge Damper Optimization
Use four dampers to reduce the vibration of a footbridge.

Goal: Minimize the vibration by tuning the stiffnesses and the
damping coefficients of the four dampers. (8 design parameters)

Difficulty
PDE discretization =⇒ Large System Order =⇒
The computations of g(γ) and ∇g(γ) are very expensive.

The MOR Framework
Model Order Reduction of Second Order Systems
First consider second order systems without design parameters.
Algorithm. Two-sided SOAR: build the input and output Krylov

subspaces for projection:{
(K + iωC − ω2M)x = f
y = `∗x

MOR−−−→

{
(K̂ + iωĈ − ω2M̂)x̂ = f̂
ŷ = ̂̀∗x̂

order n n� k order k
(2)

Moment Matching Properties for two-sided SOAR
Moments: Coefficients in the Taylor expansion.

I the first 2k moments of y and ŷ w.r.t. ω match at γ = γ(0);

I the first 2k − 1 moments of
∂y
∂ω

and
∂ŷ
∂ω

match;

I in addition, if we get (2) from (1) by fixing γ = γ(i), the first k

moments
∂y
∂γj

∣∣∣∣
γ=γ(i)

and
∂ŷ
∂γj

∣∣∣∣
γ=γ(i)

match. (1 ≤ j ≤ l)

The MOR Framework
I Generate a two-sided SOAR reduced model for each parameter

value accessed by optimization.
I Can approximate both the function value and the gradient for this

parameter value: Quasi-Newton methods are suitable.

Extrapolatory MORg
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MOR: L(ω, γ) −→ L(ω, γ(i)) −→ V , W

L̂(ω, γ(i))
Extrapolatory MOR:

L(ω, γ) −→ L(ω, γ(i)) −→ V , W

L̂(ω, γ)

Valid for the entire parameter space.
Denote the extrapolatory reduced model extrapolated at γ(i) by ĝ(i).

Exploit extrapolatory reduced modelsg

Motivation
Due to moment matching properties, we have

ĝ(i)(γ(i)) ≈ g(γ(i)), ∇ĝ(i)(γ(i)) ≈ ∇g(γ(i)).
So, ĝ(i) should approximate g well around γ(i). (for smooth functions)

The Relaxed First Order Condition
I To safely exploit an extrapolatory reduced model ĝ(i)(γ), we use:

I a heuristic error bound e(i)(γ) for ĝ(i)(γ). (Based on residual)
I a heuristic error bound e(i)

g for ∇ĝ(i)(γ(i)).
I Good approximation at the extrapolation point: small e(i)(γ(i)) and e(i)

g .
I A reduced model can be refined by enlarging Krylov subspaces.

The basic working procedure for the i-th iteration:
1. Build the i-th reduced model ĝ(i).
2. Formulate the i-th optimization subproblem using ĝ(i) and e(i). P1
3. Solve the subproblem to get a candidate for the next iterate γ(i+1)

cand .
4. Decide whether to accept or update γ

(i+1)
cand by testing the sufficient

decrease condition. P2

P1: Subproblem Formulation g

Two Algorithms
ETR

1

2

Contour value: ε
L

Contour value: β ε
L

Optimization Path
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R
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A, B, C, D

Trust Region

1  R  , R  2 : Trust Region

: Path Names

Stopping Region

min
γ

ĝ(i)(γ) s.t.
e(i)(γ)

ĝ(i)(γ)
≤ εL.

Terminate if close to the boundary.

EP
Contour value: ε

L

1

2

Optimization Path

R

R

A, B, C, D

1  R  , R  2

: Path Names

D

C

A
B

: Unpenalized Regions

Unpenalized Region

µ=2

µ=3
µ>1

min
γ

ĝ(i)(γ) + w

(
e(i)(γ)

ĝ(i)(γ)

)
e(i)(γ).

Terminate if w is active for µ successive
steps. w ∈ [0,1], continuous.

P2: Convergence Theoryg

The approximate generalized Cauchy point γ(i)AGC
When we use a backtracking-Armijo line search on a descent
direction, γ(i)AGC is the first point satisfying both

I the Armijo condition on ĝ(i)(γ);
I the constraint of the subproblem.

Theorem for convergence
Under mild conditions, if we accept γ(i+1)

cand only when it satisfies

ĝ(γ
(i+1)
cand )(γ

(i+1)
cand ) ≤ ĝ(i)(γ

(i)
AGC)

we achieve convergence on g (original model).
I Computationally feasible to check: No evaluation of g.
I When fails, we have several strategies:
1. Backtrack on γ(i)AGC.
2. Shrink the trust/unpenalized region, and solve the subproblem again.
3. Refine ĝ(i).
I Sometimes, we can check the condition without generating ĝ(γ

(i+1)
cand ):

ETR and EP are designed in favor of this case.

Numerical Results for the Footbridge Problemg

Order Optimum CPU Time
The MOR Framework 12 24.77751651 879 s

ETR 20 24.78594112 205 s
EP(1) 20 24.7762798 295 s
EP(2) 20 24.7775166 190 s

A single evaluation of g costs 540 s.
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