

Accelerating PDE-constrained Optimization with Model Order Reduction (MOR)

Karl Meerbergen Yao Yue

Department of Computer Science, KU Leuven

Optimization of Vibration Systems

Parametric Dynamical Systems

$$\begin{cases} \mathcal{L}(\omega, \gamma) \mathbf{x}(\omega, \gamma) = f, \\ \mathbf{y}(\omega, \gamma) = \ell^* \mathbf{x}(\omega, \gamma). \end{cases} \tag{1}$$

- ▶ Obtained from the discretization of the underlying PDE.
- ▶ ω : frequency; $\gamma \in \mathbb{R}'$: / parameters.
- $\mathcal{L}(\omega, \gamma)$: a parameterized $n \times n$ matrix.

Objective

Minimize the energy norm of the output by choosing γ :

$$\min_{\gamma} g(\gamma) = \int_{\omega_I}^{\omega_H} |y(\omega, \gamma)|^2 d\omega.$$

Algorithm: Damped BFGS.

Example: Footbridge Damper Optimization

Use four dampers to reduce the vibration of a footbridge.

Goal: Minimize the vibration by tuning the stiffnesses and the damping coefficients of the four dampers. (8 design parameters)

Difficulty

PDE discretization ⇒ Large System Order ⇒

The computations of $g(\gamma)$ and $\nabla g(\gamma)$ are very expensive.

The MOR Framework

Model Order Reduction of Second Order Systems

First consider second order systems without design parameters. Algorithm. Two-sided SOAR: build the input and output Krylov subspaces for projection:

$$\begin{cases} (K + i\omega C - \omega^2 M)x = f & \underline{MOR} \\ y = \ell^* x \end{cases} \begin{cases} (\widehat{K} + i\omega \widehat{C} - \omega^2 \widehat{M})\widehat{x} = \widehat{f} \\ \widehat{y} = \widehat{\ell}^* \widehat{x} \end{cases}$$
 order
$$n \gg k$$
 order
$$k$$
 (2)

Moment Matching Properties for two-sided SOAR

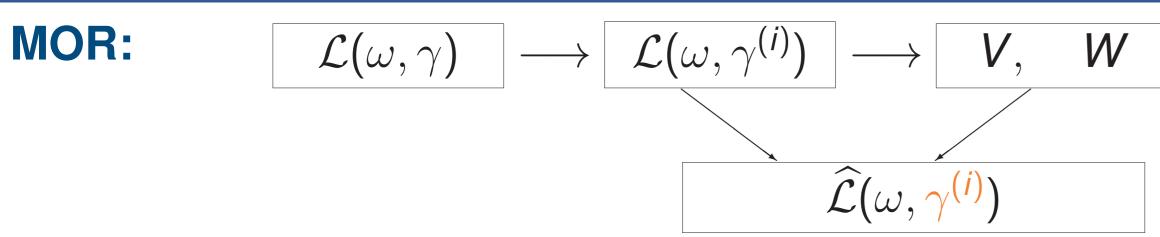
Moments: Coefficients in the Taylor expansion.

- ▶ the first 2k moments of y and \hat{y} w.r.t. ω match at $\gamma = \gamma^{(0)}$;
- ▶ the first 2k 1 moments of $\frac{\partial y}{\partial \omega}$ and $\frac{\partial \hat{y}}{\partial \omega}$ match;
- ▶ in addition, if we get (2) from (1) by fixing $\gamma = \gamma^{(i)}$, the first kmoments $\frac{\partial y}{\partial \gamma_i}$ and $\frac{\partial \hat{y}}{\partial \gamma_i}$ match. (1 \le j \le l)

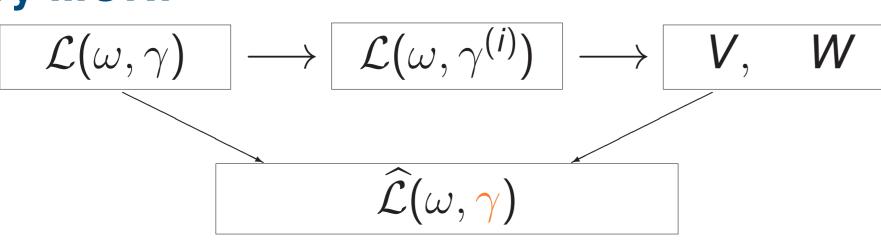
The MOR Framework

- Generate a two-sided SOAR reduced model for each parameter value accessed by optimization.
- ► Can approximate both the function value and the gradient for this parameter value: Quasi-Newton methods are suitable.

Extrapolatory MOR



Extrapolatory MOR:



Valid for the entire parameter space.

Denote the extrapolatory reduced model extrapolated at $\gamma^{(i)}$ by $\hat{g}^{(i)}$.

Exploit extrapolatory reduced models

Motivation

Due to moment matching properties, we have

$$\widehat{g}^{(i)}(\gamma^{(i)}) \approx g(\gamma^{(i)}), \qquad \nabla \widehat{g}^{(i)}(\gamma^{(i)}) \approx \nabla g(\gamma^{(i)}).$$

So, $\widehat{g}^{(i)}$ should approximate g well around $\gamma^{(i)}$. (for smooth functions)

The Relaxed First Order Condition

- ▶ To safely exploit an extrapolatory reduced model $\hat{g}^{(i)}(\gamma)$, we use:
 - ▶ a heuristic error bound $e^{(i)}(\gamma)$ for $\hat{g}^{(i)}(\gamma)$. (Based on residual)
- ▶ a heuristic error bound $e_q^{(i)}$ for $\nabla \widehat{g}^{(i)}(\gamma^{(i)})$.
- ▶ Good approximation at the extrapolation point: small $e^{(i)}(\gamma^{(i)})$ and $e_{\alpha}^{(i)}$.
- A reduced model can be refined by enlarging Krylov subspaces.

The basic working procedure for the *i*-th iteration:

- 1. Build the *i*-th reduced model $\widehat{g}^{(i)}$.
- 2. Formulate the *i*-th optimization subproblem using $\hat{g}^{(i)}$ and $e^{(i)}$. P1
- 3. Solve the subproblem to get a candidate for the next iterate $\gamma_{\rm cand}^{(l+1)}$.
- 4. Decide whether to accept or update $\gamma_{\rm cand}^{(i+1)}$ by testing the sufficient decrease condition. P2

P1: Subproblem Formulation

Two Algorithms ETR EP Contour value: ε_I Contour value: ε_I Contour value: $\beta \varepsilon_{I}$ ------ Optimization Path ---- Optimization Path A, B, C, D: Path Names A, B, C, D: Path Names R_1 , R_2 : Unpenalized Regions R_1, R_2 : Trust Region -Unpenalized Region Trust Region -

$$\min_{\gamma} \ \widehat{g}^{(i)}(\gamma) \quad \text{s.t. } \frac{e^{(i)}(\gamma)}{\widehat{g}^{(i)}(\gamma)} \leq \epsilon_L.$$

Terminate if close to the boundary.

 $\min_{\gamma} \ \widehat{g}^{(i)}(\gamma) \quad \text{s.t.} \ \frac{e^{(i)}(\gamma)}{\widehat{g}^{(i)}(\gamma)} \leq \epsilon_L. \qquad \min_{\gamma} \ \ \widehat{g}^{(i)}(\gamma) + w \left(\frac{e^{(i)}(\gamma)}{\widehat{g}^{(i)}(\gamma)}\right) e^{(i)}(\gamma).$

Terminate if w is active for μ successive

steps. $w \in [0, 1]$, continuous.

P2: Convergence Theory

The approximate generalized Cauchy point $\gamma_{AGC}^{(\prime)}$ When we use a backtracking-Armijo line search on a descent

direction, $\gamma_{AGC}^{(i)}$ is the first point satisfying both

▶ the Armijo condition on $\widehat{g}^{(i)}(\gamma)$;

the constraint of the subproblem.

Theorem for convergence

Under mild conditions, if we accept $\gamma_{\rm cand}^{(i+1)}$ only when it satisfies

$$\widehat{g}^{(\gamma_{\mathrm{cand}}^{(i+1)})}(\gamma_{\mathrm{cand}}^{(i+1)}) \leq \widehat{g}^{(i)}(\gamma_{\mathrm{AGC}}^{(i)})$$

we achieve convergence on g (original model).

- ► Computationally feasible to check: No evaluation of *g*.
- When fails, we have several strategies:
- 1. Backtrack on $\gamma_{AGC}^{(\prime)}$.
- 2. Shrink the trust/unpenalized region, and solve the subproblem again.
- 3. Refine $\widehat{g}^{(\prime)}$.
- Sometimes, we can check the condition without generating $\widehat{g}^{(\gamma_{\text{cand}}^{(\prime+1)})}$: ETR and EP are designed in favor of this case.

Numerical Results for the Footbridge Problem

Order	Optimum	CPU Time
12	24.77751651	879 s
20	24.78594112	205 s
20	24.7762798	295 s
20	24.7775166	190s
	12 20 20	12 24.77751651 20 24.78594112 20 24.7762798

A single evaluation of g costs 540 s.