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Abstract. The wavelet transform has proven to be a valuable tool for
image processing applications, like image compression and noise reduc-
tion. In this paper we present a scheme to process very large images that
do not fit in the memory of a single computer, based on the software
library WAILI (Wavelets with Integer Lifting). Such images are divided
into blocks that are processed quasi independently, allowing efficient par-
allel programming. The blocking is almost completely transparent to the
user.

1 Introduction

Wavelet transforms have good decorrelating properties. Wavelets are localized
in both the spatial domain and the frequency domain, and are based on a
multi-resolution analysis. They can have vanishing moments, which means that
a smoothly varying signal can be represented with a small set of basis func-
tions. The combination of this properties makes wavelets successful for image
compression.

In application areas like Geographical Information Systems (GIS), image
sizes are measured in gigabytes (GB) and even terabytes (TB). For example, an
aerial color image of Belgium, where each pixel corresponds to one square meter,
merely consumes 90 GB of storage. It is obvious that such images need to be
stored and handled in a compressed form. Wavelets can provide for this since
wavelet-based techniques offer better compression rates than other techniques.
Moreover, many image processing operations can be done in the wavelet domain.
Some of them can even be done better in the wavelet domain than in the spatial
domain.

We have developed the software library WAILI, which allows the combination
of image compression and processing in one package. In this paper we describe
the extension of WAILI to block-based processing, which allows for a parallel
implementation.
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2 Wavelets and the Lifting Scheme

2.1 Predict and Update

The wavelet transform of a 1D signal is a multi-resolution representation of that
signal where the wavelets are the basis functions which at each resolution level
give a highly decorrelated representation. At each resolution level, the signal is
split into a high pass and a low pass part and the low pass part is split again
etc. These high pass and low pass parts are obtained by applying certain wavelet
filters.

The lifting scheme is an efficient implementation of these filtering operations.
Several introductions to the lifting scheme are available [7, 6]. Suppose that the
low resolution part of a signal at level j + 1 consists of a data set λj+1. This set
is transformed into two other sets at level j: the low resolution part λj and the
high resolution part γj . This is obtained first by just splitting the data set λj+1

into two separate data subsets λj and γj (e.g. the even samples and the odd
samples). Such a splitting is sometimes referred to as the lazy wavelet transform.
Then these two sets are recombined in several subsequent pairs of lifting steps
which decorrelate the two signals.

A dual lifting step can be seen as a prediction: the data γj are ‘predicted’
from the data in the subset λj . When the signals are still highly correlated, then
such a prediction will usually be very good, and thus we do not have to keep
this information in both signals. That is why we can keep λj and store only the
part of γj that is not predictable (the prediction error). Thus γj is replaced by
γj −P(λj) where P represents the prediction operator. For smooth signals, the
prediction error is small. This is the real decorrelating step.

However, the new representation has lost certain basic properties, which one
usually wants to keep, like for example the mean value of the signal. To restore
this property, one needs a primal lifting step, whereby the set λj is updated with
data computed from the (new) subset γj . Thus λj is replaced by λj +U(γj) with
U some updating operator.

In general, several such lifting steps can be applied in sequence to go from
level j +1 to level j. To recapitulate, let us consider a simple lifting scheme with
only one pair of lifting steps.

Splitting (lazy wavelet transform) Partition the data set λj+1 into two distinct
data sets λj and γj .

Prediction (dual lifting) Predict the data in the set γj by the data set λj .

γj ← γj − P(λj).

Update (primal lifting) Update the data in the set λj by the data in set γj .

λj ← λj + U(γj).

These steps can be repeated by iteration on the λj , creating a multi-level trans-
form or multi-resolution decomposition.
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The inversion rules are obvious: revert the order of the operations, invert the
signs in the lifting steps, and replace the splitting step by a merging step. Thus,
inverting the three step procedure above results in:

Inverse update λj ← λj − U(γj),

Inverse prediction γj ← γj + P(λj),

Merge λj+1 ← λj ∪ γj .

2.2 Integer Transforms

In practice, discrete signals are represented by integers. Doing the filtering oper-
ations on these numbers however will transform them in rational or real numbers
because the filter coefficients need not be integers. To obtain an efficient imple-
mentation of the discrete wavelet transform, it is of great practical importance
that the wavelet transform is represented by a set of integers as well, while the
transform should still be invertible. This is easily achieved within the lifting
framework.

We round the intermediates of each lifting step to integers (for example the
nearest integer) and indicate this operation by square braces. Thus, we actually
compute rounded values:

γj ← γj − [P(λj)] , and λj ← λj + [U(γj)] .

It is not difficult to verify that each step of the lifting scheme with round-
ing is perfectly invertible and thus the whole signal is perfectly reconstructible,
whatever the rounding rule we use, on condition of course that the rounding is
deterministic [1, 8].

2.3 Example: Cohen-Daubechies-Feauveau

The popular family of classical biorthogonal wavelets constructed by Cohen,
Daubechies and Feauveau [2] fits in the above scheme. Especially its member
with two vanishing moments for both the primal and dual wavelet (hence named
CDF (2, 2) wavelet) is widely used.

Thanks to the lifting scheme, the accompanying wavelet transform can be
implemented in an efficient way [8]). From the second generation viewpoint, one
transform step of a discrete signal x = {xk} looks like:

Splitting Split the signal x (i.e. λj+1) into even samples (i.e. λj) and odd
samples (i.e. γj):

si ← x2i, and di ← x2i+1.

Prediction Predict the odd samples using linear interpolation:

di ← di − 1
2
(si + si+1).
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Update Update the even samples to preserve the mean value of the samples:

si ← si +
1
4
(di−1 + di).

As a result, the signal s = {sk} is a coarse representation of the original signal
x, while the signal d = {dk} contains the high frequency information that is lost
when going from resolution level j + 1 to resolution level j.

A whole family of lifting schemes can be constructed in this way, of which the
above example is just the simplest possible case. Since lifting steps use coefficients
from regions near the coefficients that are updated, one needs special care at the
boundaries. This is also important for a parallel implementation.

Note that this transform works on one-dimensional data. For two-dimensional
data, like images, it can be applied row and columnwise, resulting in a tensor
product transform at each step. Instead of with 2 subbands (low pass and high
pass), one will end up with 4 subbands: LL — low pass in both the horizontal
and vertical directions, LH — low pass in the vertical, high pass in the horizontal
direction, HL and HH. When iterated on the LL subband, the result is a multi-
resolution decomposition as shown in Figure 1. This ordering of the subbands
at the different resolution levels is called the “Mallat” ordering [3].

LL LH

HL HH

Fig. 1. The two-dimensional wavelet transform: iteration on the LL subband,
showing the wavelet coefficients in “Mallat” ordering

3 WAILI: Wavelets with Integer Lifting

WAILI is a software library — written in C++ — providing wavelet transforms
and wavelet-based operations on two-dimensional images [8]. WAILI is available
in source form1 for research purposes.

WAILI implements various integer wavelet transforms, using lifting technol-
ogy. It includes some image processing operations, such as:

– Crop and merge on wavelet transformed images. This allows to cut a rect-
angular subimage out of a large wavelet transformed image, or to replace a
rectangular area in a large wavelet transformed image.

– Noise reduction, using thresholding based on generalized cross validation.
– Simple compression, using thresholding of subbands.

1 WWW: http://www.cs.kuleuven.ac.be/~wavelets/
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4 Very Large Images and Tiling

We define an image to be very large if it does not fit in the memory of the
computer system that is processing it. Note that by this definition, whether
an image is very large or not depends not only on the image but also on the
computer system.

4.1 Tiling

In order to process very large images, they have to be divided in blocks (tiling).
Fortunately wavelets are localized in both the spatial and frequency domains.

For the division in blocks only the spatial domain is important, and this means
that one needs only a limited subset of the input image to calculate a subset
of the wavelet coefficients. The same is true for the inverse transform. From
Figure 2, it is clear that only a fraction of the blocks in the right part of the
figure are needed to reconstruct the rectangle in the left part.

Since not all blocks have to be present in main memory at the same time, this
allows for the successful processing of very large images on small uni-processor
machines with limited memory. Moreover, the processing of the blocks can be
distributed among multiple machines and/or CPUs.
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(a) (b)

Fig. 2. Locality in the (a) space and (b) wavelet domain. The dotted lines in (b)
indicate block boundaries

Within WAILI, each subband is divided separately in blocks. Blocks are
square and block sizes must be powers of two (except near the borders of the
image). Because small blocks cause more administrative overhead, it is recom-
mended to use the same block size at different resolution levels.

Since we want to process both complete images and subimages that are part
of a large image, the upper left corner of a (sub)image is not always located at
the origin (0, 0), but may have arbitrary coordinates (see Figure 3). To facilitate
the wavelet transforms, the internal boundaries of the blocks must always be
aligned to the block size. Hence, not only the blocks at the right and bottom
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borders of the image may be rectangular and smaller than the block size, but
also at the left and upper borders.

offsety

left blocksize blocksize blocksize blocksize right

top

blocksize

blocksize

blocksize

bottom

offsetx

(0,0)

Fig. 3. Division of a subband in blocks. The margins (top, bottom, left and
right) are chosen such that the coordinates of the block boundaries are always
multiples of the block size

The whole wavelet decomposition is divided in blocks like shown in fig. 4.
Within each channel (color images consist of multiple channels), the tree forms
a “Mallat” ordering (cfr. Figure 1). A block within an image is thus uniquely
defined by 5 indices: channel , resolution level, subband, column and row.

To implement wavelet transforms on tiled images, one has to consider the
following steps:
Splitting step: To split a block in “even” and “odd” coefficients, in both the
horizontal and vertical directions, one needs that block only. So this step is trivial
to parallelize.
Lifting steps: To calculate the lifting operation on a border coefficient, some
coefficients from an adjacent block are needed. Thus in a parallel implementa-
tion there must be communication of border coefficients (exchange of “overlap
regions”, with a width depending on the wavelet transform). Since in a primal
lifting step the “even” blocks (i.e. the blocks with the even coefficients) are up-
dated by the “odd” blocks, and vice versa in a dual lifting step, these updates
can be done independently in each block, except for the communication just
mentioned. Hence, this step can be parallelized easily. The parallel efficiency
grows with increasing block size due to the “perimeter effect”.

4.2 Block Management

We extended WAILI to support very large images that are divided in blocks.
This is nearly completely transparent to the user: all traditional operations can
be performed, just like on small non-blocked images.
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Block

Block
ManagerImage

Channel 0 Channel 1 Channel 2

Subband 0
LL

Subband 1
LH

Subband 2
HL

Subband 3
HH

Level -2

Col 0 Col 1 Col 2 Col 3 Col 4 Col 5

Row 1

Row 0

Row 2

Row 3

Row 4

Row 5

Level -3

Level -1

Level 0

Fig. 4. Subdivision of an image into channels, levels, subbands and blocks

The “block manager” is responsible for managing the blocks of which a very
large image is composed. To access a part of the (transformed) image, the block
manager is asked for blocks and retrieves them, e.g. from disk or via a network.
If a block is modified, it has to be updated on the storage device. Blocks are
passed to the compression module to remove redundancy among the wavelet
coefficients within each block. The block manager for sequential processing also
keeps a cache of recently used blocks to speed up processing. An overview of the
complete system is given in Figure 5.

Disk

Block Cache

Processing
and

Visualization

Wavelet
Transforms

Memory

Network

Memory
I/F

Disk
I/F

Network
I/F

C
om

pr
es

si
on

Block
Manager

Fig. 5. Design of the large scale image processing
system

Fig. 6. Zerotree encoding

To obtain a parallel version, we only need to adapt the block manager and
introduce communication of the border coefficients during the lifting steps.
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4.3 Block-Based Denoising of Images

WAILI uses soft-thresholding to reduce additive, stationary noise. The threshold
is selected at each transform level and for each subband separately, using gener-
alized cross validation [8]. Since this is an asymptotical method, it only performs
well for sufficiently large subbands.

For wavelet transformed images that are divided into blocks, the denoising
technique is applied independently on each block of each subband. Because only
the highpass subbands are processed and blocks belonging to lowpass subbands
are left alone, it does not become visible where the borders between the blocks
are located.

Experiments showed that one gets better results, compared to the case where
complete subbands are denoised, because now the threshold is more adapted to
the local properties of the image. Thus denoising is not only easily parallelizable,
it also yields a better image quality.

5 Image Compression

Due to their decorrelating properties, wavelets are well suited for the compression
of images and signals. If a sufficiently smooth image is transformed, most high
pass coefficients will be zero or very small. Compression algorithms based on
wavelets often use a variant of “zerotree encoding” [5, 4]. Most compression
methods are targeted at “small” images. In that case the individual subbands are
too small to get a sufficient compression gain from compressing them separately,
hence zerotree encoding combines the subbands to exploit the correlation that
is still present among spatially related coefficients at different resolution levels.
(see Figure 6).

For very large images, each zerotree contains coefficients from a multitude of
blocks. Thus zerotree encoding will cause a block access pattern that is not
feasible and the application of zerotree encoding is limited. A possible solution
is to use a two-level encoding strategy:

1. For the lowest resolution levels, zerotree encoding can still be used because
the subbands at these levels consist of only one block.

2. For higher resolution levels, a block-based encoding can be used. At these lev-
els the subbands contain several blocks. If the block size is sufficiently large,
each block will contain enough coefficients to be well compressible. Since all
blocks can be compressed independently, this step is trivially parallelizable.

6 Results

We have no parallel implementation of WAILI yet. To get an impression of
the performance of our wavelet transform code, we transformed an image of
3584× 3584 pixels, using a block size of 128× 128 pixels, for a total of 28× 28
blocks. We used the Cohen-Daubechies-Feauveau (2, 2) biorthogonal wavelets.
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All calculations were done on 16 bit integer data on a single processor machine
(Intel Pentium II, 350 MHz) with sufficient memory to avoid paging. Note that
after 2 transform levels, the subband size is no longer divisible by the blocksize
and one has to take care of rectangular blocks.

Each level of the CDF (2, 2) wavelet transform of n blocks consists of 5 steps:

– Lazy wavelet transform in both the horizontal and vertical directions. In
order to maintain the blocksize, 4 blocks are jointly transformed into 4 new
blocks. (in total n blocks are transformed)

– Lifting steps on the columns of the image: a dual lifting step (n/2 blocks)
and a primal lifting step (n/2 blocks).

– Lifting steps on the rows of the image: a dual lifting step (n/2 blocks) and
a primal lifting step (n/2 blocks).

Timings are shown in Table 1. An additional overhead of about 0.6 seconds
was caused by the supply of blocks by the block manager. However, in a parallel
implementation we can assume that the blocks are distributed over all processors,
so this overhead can be spread over the processors too.

In a parallel implementation, the lazy wavelet transform requires no com-
munication if the 4 neighboring blocks are transformed by the same processor.
If we would use 14 × 14 = 196 CPUs, the lazy wavelet transform for the first
level could be calculated in 1.33 ms and the calculation time for the 4 lifting
steps would be 28.5 ms. The lifting steps require communication of the border
coefficients. For the CDF (2, 2) transform, in each lifting step 2 strips of 128
coefficients must be exchanged between processors. On current parallel systems
(e.g. IBM SP2), the communication cost for such short messages is dominated
by the startup time (O(50 µs)), which is negligible compared to the calculation
cost.

However, the amount of data to be transformed is divided by 4 at each level.
Hence, at the second level, we can keep the blocksize equal to 128, but then only
1/4 of the CPUs can be kept busy. Thus the execution time for the second level
will also be approx. 30 ms. A similar reasoning holds for the other levels, but
in our example rectangular blocks will appear at level 3, causing an additional
overhead.

We can conclude that a parallel implementation can be efficient if the number
of transform steps is small, and the number of processors is not too large, relative
to the image size.

7 Conclusion

In this paper, we have described a strategy to perform wavelet-based image
compression and processing on very large images. The images are split in blocks,
which can be handled nearly independently.

The (integer) wavelet transform is implemented using the lifting scheme,
which can be parallelized easily and efficiently, since only communication of
pixels at the borders of the blocks is required.



346 Geert Uytterhoeven, Dirk Roose, and Adhemar Bultheel

Transform Lazy Transform Lifting Steps Total Cumulative
Level # Calls Time # Calls Time Time Total Time

1 784 0.26 1568 5.59 5.85 5.85
2 196 0.02 392 1.34 1.22 7.07
3 49 0.01 128 0.33 0.34 7.41

Table 1. Timings for the wavelet transform of an image of size 3584 × 3584.
Each call corresponds to the processing of one elementary block. All timings are
in seconds

The method is implemented as an extension to the software library WAILI.
Blocks are accessed and handled under supervision of a block manager. Although
the software has not been parallelized yet, the limited communication and the
existing block manager allow an easy and efficient parallelization.

The division in blocks also has a positive influence on the performance of
our denoising algorithm. Because denoising works independently on the blocks,
it adapts better to the local properties of the image.
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