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G
IGABIT ETHERNET IS A POPULAR BROADBAND
technology for good reason. It not only can transfer large
amounts of data through a large network at high speeds, but it

also is a mature technology with an appealing performance to cost-of-ownership
ratio. Unfortunately, though, gigabit Ethernet suffers a performance drop when it is han-

dling traffic with small packets: it tends to lose them.
This is a serious problem because small packets have become important in many real-time

applications—in Voice over Internet Protocol (VoIP), for example, which carries voice conversations
over the Internet. Every VoIP connection sends 50 packets over the network every second, packets that

contain only 160 B or less. And since this small-packet, high-rate, real-time type of traffic is conveyed across
the Internet, all Linux-based firewalls, routers, and Web caches suffer from the packet-loss problem too.

Fortunately, there is a cure. The Ethernet controller’s driver is the culprit. Its negligent memory management is
responsible for the small-packet loss. A technique called receive descriptor recycling (RDR) provides a solution. By

actively reusing the software descriptors needed to administer the traffic flow, RDR alleviates the controller bottleneck.
An RDR-enabled controller can reduce

small-packet loss by 40%.
We have studied high-rate, small-

packet traffic in an Ethernet con-
troller, as implemented in an Intel

e1000 network interface card (NIC)
Linux driver, which is widely used in
high-end systems and servers. We have
also evaluated the performance boost
provided by the RDR technique. (For
background, see “Researching Gigabit
Ethernet Performance.”)

MEASURING NETWORK
PERFORMANCE

The performance of a network can be
measured in terms of packet rate, packet
loss, response time, and throughput. In
addition, important criteria for the net-
work equipment are the efficient utiliza-
tion of the central processing unit (CPU)
and low resource requirements. When a
network setup is optimized for high-rate
small-packet traffic, inevitable limita-
tions arise, e.g., CPU and resource
requirements increase in order to
accommodate high rates of small pack-
ets, as does the host bus utilization.
Note that transmit performance is not
affected by small-packet traffic to the
same extent as receive performance.
This asymmetry exists because the local
host cannot usually overwhelm the
Ethernet controller with outgoing traffic. 

The setup we used in our study of
network performance (Fig. 1) consisted
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of a dual-CPU server connected through
gigabit Ethernet to a network processor,
which acted as a very powerful traffic
generating source. Table 1 presents an
overview of relevant system specifications. 

The tests were performed on raw
Ethernet frames in the IEEE 802.3 medi-
um access control (MAC) format; see
Fig. 2. They consist of a 14-B header
followed by variable-length user data
(the payload having a minimum of 46
B) and a 4 B cyclic redundancy check
(CRC) at the end for data integrity,
resulting in a total data overhead of 18
B per frame and a 20 B gap between
consecutive frames. 

RECEIVE THROUGHPUT
The expression for raw throughput is

Throughput = payload + overload

payload + overload + gap
× bandwidth.

Filling in the values imposed by the
IEEE 802.3 standard results in a plot of
the theoretical throughput as a function
of payload size (the solid line in Fig. 3).
As the measurements presented in the
next paragraphs will show, this theoret-
ical deduction closely models the
behavior of send throughput of frames
by an NIC. The measured receive
throughput (the dotted line in Fig. 3),
on the other hand, differs from what is
sent, the result of some kind of bottle-
neck. It is this bottleneck that we inves-
tigated and analyzed.

Note that the send curve in Fig. 3 does
not start at the origin, since a zero payload
in the throughput equation results in a
nonzero throughput because of the over-
head present in MAC frames (see Fig. 2).

For the throughput measurements, the
network processor (NP) acted as a
source, flooding the server with packets
(Fig. 1). Figure 4 shows the bit rate
throughput measured when frames with
variable payload size on one port of the
server were received from one port of
the NP. The bit rate measured at the out-
put of the NP (send side) matches the
theory well. In the range of 46 to 200 B
of payload, the reception bit rate mea-
sured at the server (receiving side) is
much lower (data are lost). In higher
payload ranges, the sent bit rate is
reached (no losses). Receiving on both
ports of the dual card simultaneously
produces an identical plot.

Figure 4 also shows the theoretical
limit of the peripheral component
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Fig. 1 Overview of experimental setup. The (a) server is connected via a gigabit Ethernet
network to the (b) network processor, which acts as a traffic generating source.

Header Payload CRC Header Payload CRCGap

Fig. 2 Ethernet frames in the IEEE 802.3 MAC format

Table 1. Specifications of hardware used in the study.

Host Chipset CPU Linux
PCI-X bus System bus Kernel

SVR01 ServerWorks GC Dual Xeon 2.4 GHz Scientific 3.0.4
64 b, 133 MHz 400 MHz 2.6.12-smp

SVR02 Dell SC1425 Dual Xeon 2.8 GHz Scientific 3.0.4
64 b, 133 MHz 800 MHz 2.611-smp

Type Ports Chipset Host bus (max.)

Intel Pro/1000MT Dual 82546EB PCI-X 64 b, 133 MHz

Intel Pro/1000MT Quad 82546EB PCI-X 64 b, 133 MHz

IBM PowerNP NP4GS3 Tri BCM5700 PCI

Researching gigabit Ethernet performance

Many researchers have evaluated gigabit Ethernet performance in various ways.

A. Barczyk, A. Carbone, and coworkers studied full-link load effects, while M. L.

Loeb and colleagues studied the influence of the Transport Control

Protocol/Internet Protocol (TCP/IP), as P. Gray and A. Betz did, independently. (See

“Read More About It.”)

To discover the most fundamental factors affecting gigabit Ethernet perfor-

mance, the authors of this article conducted measurements on raw Ethernet

frames, avoiding any additional overhead imposed by higher-level network proto-

cols such as TCP/IP. R. Hughes-Jones and coworkers took a similar approach, but

their work did not focus on the performance of small packets. A group composed

of A. Barczyk, D. Bortolotti, and others conducted some work on small-packet traf-

fic effects using raw Ethernet frames, but no thorough low-level hardware-based

analysis was performed.

Although Intel has released a document on small-packet traffic performance,

it simply presents recommendations without solid measurements to prove any

performance gain.
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interconnect (PCI) bus. The
PCI standard specifies a
computer bus for attaching
peripheral devices to a com-
puter motherboard. It con-
nects hardware devices such
as NICs, sound cards, and
graphic cards with the sys-
tem bus and eventually the
CPU. Clearly, for single-port
operation, this PCI bus band-
width will not pose any limit
on gigabit Ethernet transfers,
even though it is a theoreti-
cal value that will never
actually be reached due to
numerous nonidealities.

The slope of the first part
(payload smaller than 200 B) of the
receive throughput curve is 0.004,
which is in agreement with measure-
ments by A. Barczyk and coworkers
(see “Read More About It”), who attrib-
uted it to the transfer setup on the PCI
bus. We, however, reached a different
conclusion about what contributes to
this slope.

LOW-LEVEL MEASUREMENTS 
Our receive throughput measure-

ments indicate the real performance of
the network but do not give us a clue
about the nature of the bottlenecks in the
network. Therefore, we carried out low-
level tests, including PCI traffic analysis
and kernel profiling, emphasizing the
hardware and software, respectively. 

Bus Analysis
Like the network overhead

issues, PCI bus protocols also
impose penalties on small-
packet traffic. In addition to
the actual data transfer, each
bus transaction requires extra
control cycles, which intro-
duce overhead (e.g., arbitra-
tion latency, address phases,
attribute phases, wait states).
Bus overhead costs become
more pronounced with small-
packet traffic as bus control
and wait cycles consume a
larger fraction of each bus
transaction. 

We analyzed, in addition
to simple PCI, the more advanced and
faster PCI-Extended (PCI-X) bus proto-
col, which is found in many high-end
servers. Compared to PCI, it provides
a higher bus bandwidth and is more
fault-tolerant. 

Figure 5 shows the two regimes of
transmission—smooth and stumble—
across the PCI bus, again when the NIC
is flooded by an NP in the setup of Fig.
1. The dark areas indicate that the signal
varies a lot, i.e., frames are transmitted
across the bus. This plot was taken in
PCI mode, be we observed exactly the
same behavior for PCI-X traffic.

During the smooth regime, all frames
are nicely put on the PCI bus behind
each other [with an interframe delay of 54
clock ticks (CLKs), or 0.8 μs at 66 MHz].
The Intel Pro/1000 MT Ethernet controller
uses receive descriptors to keep the
books. Such a descriptor is basically a
pointer to a block of configurable size in
the computer’s memory where the NIC is
to store a received frame. 

Receive descriptors (RDs) are made
available to the NIC in groups of 16
consecutive descriptors (see Fig. 6).
Such a group is identified by its tail,
i.e., the address of the last RD in this
group (the receive descriptor tail, or
RDT). When a frame is received, the
Ethernet controller uses the next avail-
able RD in the current RDT to find out
where in memory to store the frame (i).
After the subsequent memory transfer
of the frame finishes (ii), this RD is sent
back to the driver (iii) to advertise the
presence of a frame at that memory
location (delay of 7 CLKs).

As Fig. 6 shows, the (ii) and (iii)
transfers happen across the PCI(-X) bus.
They can thus be identified in Fig. 7,
which represents an interpreted version
of Fig. 5. This trace shows, left to right
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and top to bottom, the advancing time
axis (in clock ticks). The series of green
dots are frames that are written to main
memory. The following traffic pattern
can be extracted for the smooth regime
(0 to 14,500 CLKs): 

1) Four frames (green dots) are trans-
ferred to main memory through memory
transfer bursts with an interframe delay
of about 45 CLKs, or 0.7 μs.

2) After 25 CLKs, or 0.4 μs, the four
corresponding RDs are written back to
the driver (one red spot).

3) Steps 1 and 2 are repeated 16 times
(for a total of 64 frames), after which four
new RDTs are buffered from the driver
(small gaps in between series of 64
frames).

4) The NIC acquires a new RDT,
allowing it to fetch 16 new RDs, and
the cycle starts again from
step 1 onward.

Under normal circum-
stances, the driver wil l
provide the NIC with new
RDTs (marked “rdt” in
Fig. 7) ,  a l lowing i t  to
fetch newly allocated RDs
in time. This transfer of
new RDs continues until
all allocated descriptors
for that batch have been
provided or unt i l  the
card’s f rame receive
buffer is nearly full and
the card terminates the
descriptor transfer by rais-
ing the STOP# signal in
order not to lose any
frames. Since an NP is
flooding the network card
during this test  (with
approximately 1 million
packets per second), the
termination will happen
more and more, as seen
on the STOP# signal line
in Fig. 5.  After the
descriptor transfer, the
frame receive buffer
quickly empties to regain
the time lost during this
transfer. All frames are
now put on the PCI bus
with a minimum delay of
seven CLKs in between. 

Clearly, under persistent
heavy traffic, the card will
become unable to fetch
enough descriptors to keep
up with the high frame rate
and at the same time send
every single frame to the
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Fig. 6 Schematic overview of the path of receive descriptors
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system. The card will have to allow a
first-in, first-out (FIFO) receive buffer to
overrun and silently drop frames until it
has some more RDs to quickly empty
the buffer and try to start
receiving again. The relief
is, however, of short dura-
tion, as the card will soon
have exhausted its
(already) very limited pool
of RDs, and it will have to
wait again.

This is what happens in
the second—the so-called
stumble regime (14,500
CLKs to end)—where huge
gaps of 4,000 CLKs show
the lack of RDs is prevent-
ing any further traffic until
new RDTs are received.
This results in many FIFO
buffer overruns and a huge packet loss
of up to 500,000 packets per second.
Furthermore, the omnipresent STOP#
indicates that any transfer that takes
longer than absolutely necessary is
abruptly terminated by the NIC.

In the smooth part, the system can
process one frame per microsecond (i.e.,
what the NP sends). As the system tum-
bles down into stumble regime, this
number degrades to a value of merely
0.3 frames per microsecond, or 0.28
Gb/s, in accordance with earlier mea-
surements, e.g., Fig. 4. This indicates that
the linear part for small packet sizes is
caused by this stumble behavior.

While it might be tempting to think
the PCI bus or NIC is the cause of this

bottleneck, calculations of PCI bus uti-
lization proved otherwise. During the
whole trace, peak data rates did not
reach any higher than 250 MB/s. Since

the practical limit for a PCI bus is about
50% of the theoretical maximum, which
is 533 MB/s in this case, this is accept-
able and it was already a clear indica-
tion that neither the PCI bus nor the
card was responsible for this stumble
behavior. And since this trace was taken
for a single port receiving frames, it is
clear that a PCI (64-b, 66 MHz) will
pose a bottleneck when more than one
port and/or card is operating on the
same bus.

As noted earlier, we performed
similar measurements on the PCI-X
bus, with comparable results and con-
clusions with regard to stumble
behavior.

A look at the kernel’s memory man-
agement information made clear that
memory access was responsible for the
large gaps in stumble regime. These

gaps result from the occa-
sional reallocation of large
quantities of main memory
by the driver, during
which, obviously, the main
memory needs to be
accessed. Meanwhile oth-
ers—for example, memory
transfers by the NIC—are
prevented from accessing
the main memory.

It is not the memory
bank technology that is
causing the bottleneck but
rather the way the driver
handles memory access.
Simple on the back-of-the-

envelope calculations show that stan-
dard DDR-2 400-MHz (PC2-3200) RAM
memory modules provide enough raw
bandwidth.

It is clear that the Intel Pro/1000
MT Ethernet Controller card, when
used in combination with a fast PCI-X
host bus, will not become a bottle-
neck, even for quad port operation.
We therefore took a closer look at the
software side of the network infra-
structure, i.e., the Linux operating sys-
tem and the Intel e1000 Ethernet
Controller driver.

Kernel Profiling
Our software testing employed the

OProfile package, a systemwide pro-
filer for Linux systems, capable of
profiling all running code at low over-
head. It reports on the number of
times a certain software function call
(in user space, kernel, or driver, for
example) has been made and what
percentage of the total samples this
represents. 

Figure 8 summarizes results of the
OProfile tests. Analyzing the exact con-
tent of the most frequently made soft-
ware calls, OProfile established that
these are involved with freeing and
reallocating RDs. This gave us the idea
to tune the e1000 driver to more clev-
erly handle this RD processing, and
implement some kind of receive
descriptor recycling.

RECYCLING DESCRIPTORS
Analyzing the NIC driver source code

for packet reception handling pointed
out that the most frequently called soft-
ware functions are memory-related (Fig.
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8). Especially for small payload sizes, the
situation only worsens because there are
more descriptors and thus more memory
management overhead.

It is this overhead that prevents the
driver from quickly sending new RDs to
the Ethernet controller, as they need to
be freed and reallocated first. This is
why the receive descriptor recycling
mechanism was devised. The idea is to
allocate a fixed number of permanent
descriptors, which are reused every
time, effectively taking away the need
for the costly reallocation overhead.
The only processing that remains to be
done is resetting some fields in the
descriptors.

We implemented the RDR mecha-
nism for the Intel standard e1000 Linux
Ethernet driver, on which the original
measurements described in this article
were performed. The improvement
afforded by RDR could then be seen
readily. Our report for CERN, listed in
“Read more About It,” gives details of
the code implementations.

The same tests described above were
repeated with the RDR mechanism in
operation. For small packets, the RDR-
enabled driver was able to reduce packet
loss by 40% (Fig. 9). The influence is
most evident for short-delay packets. The
performance of higher payloads
remained unchanged with RDR.

CONCLUSIONS AND 
FUTURE WORK 

In our study, we measured several
benchmarks for the gigabit Ethernet
hardware and the Ethernet controller
driver. Among the parameters ana-
lyzed were throughput, packet loss,
and efficiency of resource utilization.
Emphasis was placed on high-rate,
small-packet network traffic under
near real-time constraints. Applying
low-level analysis to the Intel Pro
card, we showed that the current bot-
tleneck lies in the way the driver han-
dles the descriptor memory manage-
ment, which proves to be fatal for
small packets.

To remedy the situation, we imple-
mented a receive descriptor recycling
mechanism, the Intel Pro e1000 Ethernet
driver. With that addition to the network,
small-packet performance improved by
40% in terms of increased throughput
and reduced packet loss.

By targeting high-rate, small-pack-
et traffic, and including low-level
PCI(-X) bus analysis and kernel pro-
f i l ing,  the s tudy extends gigabi t

Ethernet performance to the ful l
spectrum of traffic possibilities. The
mechanism developed can be
employed to increase performance of
al l applications that require high
throughput for small packet sizes,
e.g., VoIP. 

The high reliability of small-size
transmissions is also crucial for the cor-
rectness of calibration runs of some
experiments at the new Large Hadron
Collider (LHC) particle accelerator in
the CERN nuclear research center,
Geneva, Switzerland. The receive
descriptor recycling will be tested there
in a real-life environment.

Plans for future work include verify-
ing the results for other driver imple-
mentations that suffer similar bottle-
necks and investigating the possibility
of turning off cache coherency by
requesting non-cacheable descriptor
buffer memory so as to prevent numer-
ous occasions of cache thrashing. 
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