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Abstract

We study the stabilizability of a linear controllable system using state derivative

feedback control. As a special feature the stabilized system may be fragile, in the

sense that arbitrarily small modelling and implementation errors may destroy the

asymptotic stability. First, we discuss the pole placement problem and illustrate the

fragility of stability with examples of a different nature. We also define a notion

of stability, called p-stability, which explicitly takes into account the effect of small

modelling and implementation errors. Next, we investigate the effect on the fragility

of including a low-pass filter in the control loop. Finally, we completely character-

ize the stabilizability and p-stabilizability of linear controllable systems using state

derivative feedback. In the stabilizability characterization the odd number limita-

tion, well known in the context of the stabilization of unstable periodic orbits using

Pyragas type time-delayed feedback, plays a crucial role.
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1 Introduction

We analyze the stabilizability and stabilization of the linear or linearized system

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ R
n is the system state vector and u(t) ∈ R

m is the system input at time t,
using state derivative feedback,

u(t) = Kdẋ(t), Kd ∈ R
n×m. (2)

In this stabilizability study we explicitly take into account the effects of arbitrarily small
modelling, approximation and implementation errors, which may for instance be caused
by feedback latency, unmodelled sensor and actuator dynamics and approximations of the
derivatives.

From a practical point of view, the motivation for using state derivative feedback (2)
instead of conventional state feedback, u(t) = Ksx(t), comes from applications where
accelerometers are used for measuring the system’s motion. Typical applications are in
vibration control of mechanical systems where the state variables are positions and velocit-
ies, while the accelerations, which are the sensed variables, are directly used for feedback,
see [2, 3, 1]. In some applications, including vibration suppression, the fact that the con-
trol law (2) keeps the steady state solutions of the uncontrolled system invariant might be
considered as a positive feature.

From a theoretical point of view the stabilizability study of the system (1) with the con-
trol law (2) is a challenging problem if robustness aspects are taken into account. As will
be addressed later in the text, the synthesis of the derivative feedback can be accomplished
using modified pole placement methods under a controllability assumption. However, the
achieved closed-loop dynamics may be fragile in the sense that the stability of the con-
trolled system may lack robustness against arbitrarily small modelling and implementation
errors. In other words, although the nominal system is asymptotically stable, some sta-
bility margins may be equal to zero. The main goals of the paper consist of studying this
fragility problem and making a complete characterization of the stabilizability of (1) with
(2) in the presence of any type of small modelling and implementation errors.

Other problems where a fragility of stability has been observed can be found in the
literature. More specifically, a lack of robustness of stability against small feedback delays
or against small delay changes has been observed for boundary controlled (hyperbolic)
partial differential equations, see e.g. [5, 6, 8, 11, 17, 21], for feedback controlled descriptor
systems [10] and for neutral functional differential equations [12, 13]. In [22] a model for
gradient play dynamics is discussed where the discretization of a derivative may induce
instability. In [14, 16] it was shown that the discretization of distributed delays in control
laws, arising in the context of finite spectrum assignment of time-delay systems, may
destabilize the system, even if the discretization stepsize is arbitrarily small.

The structure of the paper is as follows: in Section 2 the pole placement problem for
the system (1) using the control law (2) is first discussed. Next, a unified framework
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for studying the effect of small modelling and implementation errors is presented and a
practical notion of stability is introduced. In Section 3 two examples of a different nature
are presented which illustrate that closed-loop stability may not be robust against small
modelling and implementation errors. The observations on the instability mechanisms
lead us to Section 4, where we investigate to what extent the inclusion of a low-pass filter
may solve the robustness problems. Finally, in Sections 5-6 a full characterization of the
stabilizability of (1) using (2) is given, with and without taking into account the effect
of small modelling and implementation errors. It will be shown that in the former case
an important role is played by a condition that boils down to the so-called odd number
limitation, well known in the context of the stabilization of unstable periodic solutions
using Pyragas type time-delayed controllers [20] and in the context of delay difference
feedback [9]. Some concluding remarks end the paper.

The following notation and definitions will be adopted: C (C+, C
−) is the set of complex

numbers (with strictly positive and strictly negative real parts), and j =
√
−1. For λ ∈ C,

λ̄, <(λ) and =(λ) define the complex conjugate, the real part and the imaginary part of
λ. For Ω ⊂ C, ∂Ω denotes the boundary of Ω and clos(Ω) its closure. R (R+, R−) denotes
the set of real numbers (larger than or equal to zero, smaller than or equal to zero). N is
the set of natural numbers and is assumed to include zero. Z the set of integers. For an
operator or matrix A, σ(A) and ρ(A) denote its spectrum and spectral radius respectively.
Throughout the paper we make the following assumption.

Assumption 1.1. The pair (A,B) is controllable.

2 Prerequisites

2.1 Pole placement using state derivative feedback

Note that the closed loop system (1,2) may be rewritten as

(I − BKd)ẋ(t) = Ax(t) (3)

Thus, the closed loop system is well-posed if BKd has no eigenvalue equal to one. The
characteristic function of the closed loop system is then given by

H0(λ) := det(λI − A − BKdλ) (4)

We first give some preliminary results considering the stability of the closed loop system.

Proposition 2.1. If det(A) = 0, then the closed loop system (1,2) has a zero characteristic
root for all values of Kd.

Conditions for arbitrary pole placement by state derivative feedback (2) are given in
[1] as follows.
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Proposition 2.2. If the pair (A,B) is controllable, then all characteristic roots of the
closed-loop system can be assigned at arbitrarily positions in C \ {0} using the control law
(2) if and only if det(A) 6= 0.

The following result from [1] establishes relations with pole assignment using state
feedback.

Proposition 2.3. Assume that det(A) 6= 0. With the control law (2), the closed-loop
system has the same characteristic roots as with the state feedback

u(t) = Ksx(t) (5)

if

Kd = Ks(A + BKs)
−1.

Given the fact that algorithms for designing the controller (5) are widely available, this
is an important result. However, algorithms have also been developed for a direct design
of the state derivative feedback gain Kd. A general pole placement technique for state
derivative feedback was proposed in [1] for single-input delay free systems and in [2] for
multiple-input systems. The same authors proposed an LQR technique for computing state
derivative feedback in [3]. The application of acceleration feedback to vibration suppression
problems has been discussed at length in [19] and [7].

Remark 2.4. If det(−A) < 0, i.e., if the system (1) has an odd number of characteristic
roots in C

+, stabilization implies that an odd number of unstable roots need to be shifted to
the left half plane, while a root cannot cross the imaginary axis at zero. This may sound
counter intuitive but is always possible: if Kd is increased from zero to the stabilizing
value then some characteristic roots move to the right-half plane via infinity, where for the
critical value of Kd the system is not well-posed. As an example of this one can consider
the system

ẋ(t) = x(t) + u(t), u(t) = kd ẋ(t), u, x ∈ R

for which clearly the open loop system has an odd number of characteristic roots in C
+.

Further, the closed-loop characteristic root λ satisfies

λ =
1

1 − kd

, kd 6= 1.

It is straightforwardly seen that the closed loop system is stable for kd > 1 and that λ → ∞
if kd ↑ 1.
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2.2 Framework for robustness analysis

As we shall illustrate in the next section, the use of state derivative feedback may introduce
some fragility, in the sense that arbitrarily small modelling and implementation errors, e.g.,
arbitrarily small delays in the feedback loop, may change the system’s behavior significantly
and may even render an asymptotically stable nominal system unstable. To create a
unifying framework to study this fragility problem, we assume that the modelling and
implementation errors are such that the characteristic function of the actual system is
given by:

H(λ; p) := det(λI − Ã(p) − B̃(p) G1(λ; p) Kdλ G2(λ; p)), (6)

where p ∈ (R+)np denotes some parameters and the functions

Ã : (R+)np → R
n×n, p 7→ Ã(p);

B̃ : (R+)np → R
n×m, p 7→ B̃(p);

G1 : C × (R+)np → C
m×m, (λ, p) 7→ G1(λ; p),

G2 : C × (R+)np → C
n×n, (λ, p) 7→ G2(λ; p),

(7)

satisfy the following assumption.

Assumption 2.5.

1. The functions p 7→ Ã(p) and p 7→ B̃(p) are continuous;

2. limp→0 Ã(p) = A; limp→0 B̃(p) = B;

3. for every p ∈ (R+)np and i = 1, 2, the functions Gi(·; p) are meromorphic; for every
λ ∈ C, the functions Gi(λ; ·) are continuous;

4. Gi(λ; 0) = I, for all λ ∈ C and i = 1, 2;

5. for every compact set Ω ⊂ C, we have

lim
p→0

max
λ∈Ω

‖Gi(λ; p) − I‖ = 0, i = 1, 2; (8)

6. there exist constants M,N,P > 0 such that for all λ ∈ C with <(λ) ≥ −N and for
all p ∈ (R+)np with ‖p‖ ≤ P ,

‖Gi(λ; p)‖ ≤ M, i = 1, 2.

In Figure 1 a block diagram is drawn of the controlled system in the presence of modelling
and implementation errors. For p = 0, the function (6) reduces to H0 in (4). It is clear
that Ã(p) and B̃(p) model uncertainty on A and B. To motivate the inclusion of G1 and
G2 in the control loop we present some examples of a different nature, which all satisfy
Assumption 2.5.
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Figure 1: Feedback interpretation of the controlled system.

• Feedback delays. The case where

np = n + m, p = (τu1
, . . . , τun

, τx1
, . . . , τxn

),
G1(λ; p) = diag(e−λτu1 , . . . , e−λτum ), G2(λ, p) = diag(e−λτx1 , . . . , e−λτxn ),

corresponds to the case where one assumes a time-delay τuk
in the k-th component

of the input u and a time-delay τxl
in the measurement of the l-th component of ẋ,

where 1 ≤ k ≤ m, 1 ≤ l ≤ n;

• Numerical computation of derivatives. If, for example,

np = 1, G1(λ; p) = I, G2(λ, p) = g2(λ; p)I, (9)

with

g2(λ; p) =

{

1−e−λp

λp
, λp 6= 0,

1, λp = 0,

then we get

λKd G2(λ; p) = Kd
1 − e−λp

p
,

Thus, this corresponds to the situation where ẋ(t) in the control law (2) is not
measured directly, but computed on-line from the measurements of x(t) using the
finite-difference formula

ẋ(t) ≈ x(t) − x(t − p)

p
; (10)

• Unmodelled dynamics. G1 and G2 may, for instance, model neglected actuator and
sensor dynamics.

From a fragility point of view we are interested in the relationship between the stability
properties for p = 0 and for small p 6= 0. For this, we first introduce the following practical
notion of closed-loop stability.

7



Definition 2.6. The closed-loop system formed by the feedback interconnection of the
system (1) with output x and a controller with transfer function −C(λ) is p-stable if its
null solution is asymptotically stable, and for every set of functions (7) satisfying Assump-
tion 2.5, there is a constant p̂ > 0 such that the zeros of

det
(

λI − Ã(p) − B̃(p)G1(λ; p)C(λ)G2(λ; p)
)

are in C
− for all p ∈ (R+)np with ‖p‖ < p̂.

In this way, requiring that (1), stabilized with (2), be robust against small modelling and
implementation errors can be rephrased as requiring the p-stability of (1)-(2).

To conclude this section, we note that, for an arbitrary set of functions (7) that satisfy
Assumption 2.5, the requirement that the roots of H0 in (4) are in C

−, along with As-
sumption 2.5, is in general not sufficient to guarantee that the zeros of H in (6) are in C

−

for sufficiently small p. However, an (approximate) matching of n zeros always takes place
as follows from the following result.

Proposition 2.7. Assume that det(I − BKd) 6= 0 and let µi ∈ C, 1 ≤ i ≤ n, be the
eigenvalues of (I − BKd)

−1A. There exist a number p̂ > 0 and n continuous functions

λ̂i : [0, p̂)np → C, p 7→ λ̂i(p), 1 ≤ i ≤ n,

which satisfy H(λ̂i(p); p) ≡ 0 and

lim
p→0

λ̂i(p) = µi, 1 ≤ i ≤ n. (11)

Proof. Let B ⊂ C be an open disk which contains all zeros of H0. The function H(λ; p)
uniformly converges on compact subsets of C to H0(λ) as p → 0. This implies the existence
of a number p̂ such that

max
λ∈∂B

|H0(λ) − H(λ; p)| < min
λ∈∂B

|H0(λ)|, ∀p ∈ [0, p̂)np .

By Rouché’s Theorem one concludes that H(λ; p) and H0(λ) both have n zeros in B if
p ∈ [0, p̂)np . The existence of the functions λ̂i, 1 ≤ i ≤ n, follows from the combination of
this result with the continuity of the individual zeros of H w.r.t. p. The assertion (11) can
be shown in a similar way, by letting B be a disk with arbitrarily small radius centered at
a zero of H0, and taking the same steps.

In what follows, we focus on the behavior of the other zeros which may be introduced
by the implementation or approximation.
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3 Sensitivity of stability to arbitrarily small model-

ling and implementation errors

With two case studies we first show that even if all zeros of (4) are in C
−, then (6)

may have zeros in C
+ for arbitrarily small values of p. The first case study, inspired by

[22], concerns a numerical approximation of the derivatives in the control law, the second
concerns the effect of a neglected time-delay. In both cases the eigenvalue distribution of
BKd determines the position of the characteristic roots introduced by the approximation.

3.1 Approximation of derivatives

With the approximation (10) of the derivatives in the control law (2), or, equivalently, with
the transfer functions (9), the characteristic function of the closed-loop system becomes:

I1(λ; p) := det

(

λI − A − BKd
1 − e−λp

p

)

.

We then have the following result.

Proposition 3.1. If BKd has at least one eigenvalue which does not belong to clos(S),
where

S :=







λ ∈ C : =(λ) ∈ (−π, π) and

<(λ) <

{

=(λ) cotan(=(λ)), =(λ) ∈ (−π, 0) ∪ (0, π),
1, =(λ) = 0,







, (12)

then there exist numbers p̂ > 0, c > 0 and a function λ̂ : (0, p̂) → C, p 7→ λ̂(p), such that

I1(λ̂(p); p) = 0, and <(λ̂(p)) >
c

p

for all p ∈ (0, p̂).
If all eigenvalues of BKd belong to the set S, then there exist numbers p̂ > 0 and c > 0
such that for all 0 < p ≤ p̂, the function I1(λ; p) has exactly n zeros in the half plane
{

λ ∈ C : <(λ) > − c
p

}

.

Proof. Let

G(λ; p) := pnI1

(

λ

p
; p

)

= det
(

λI − Ap − BKd(1 − e−λ)
)

,

and let

G̃(λ) = det(λI − BKd(1 − e−λ)).

It is clear that

G̃(λ) = 0 ⇐⇒ λ − λi(1 − e−λ) = 0, i = 1, . . . , n, (13)
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where λi, i = 1, . . . ,m, are the eigenvalues of BKd. In what follows we distinguish the
following two cases.

Case 1: ∃k ∈ {1, . . . , n} : λk 6∈ clos(S). Following from expression (13) and Lemma A.1,
G̃ has a zero in C

+. By the uniform convergence of G(·; p) to G̃ on compact sets as
p → 0 and Rouché’s Theorem, there exist constants c1 > 0 and p̂1 > 0 such that for all
p ∈ (0, p̂1), G(·; p) has a zero in the right half plane {λ ∈ C : <(λ) > c1}. Hence by (15),
I1(·; p) has a zero in the half plane {λ ∈ C : λ > c1/p}.
Case 2: λi ∈ S, 1 ≤ i ≤ n. By expression (13) and Lemma A.1 from the appendix, G̃
has a zero at the origin with multiplicity n while all other zeros are confined to the open
left half plane. Since the zeros of G(·; p) belong to the set

{

λ ∈ C : |λ| ≤ ‖Ap‖ + ‖BKd‖(1 + e−<(λ))
}

(14)

and G(·; p) uniformly converges to G̃ on compact sets as p → 0, an application of Rouché’s
Theorem allows to conclude the existence of constants c > 0 and p̂ > 0 such that for all
p ∈ (0, p̂):

1. G(·; p) has exactly n zeros in the half plane {λ ∈ C : <(λ) > −c};

2. all other zeros of G(·; p) are in the half plane {λ ∈ C : <(λ) < −c}.

This is equivalent to the assertion of the proposition when taking into account the equi-
valence

G(λ; p, 0) = 0 ⇐⇒ I1(λp; p) = 0. (15)

Remark 3.2. In [22] the special case is treated where A and BKd are multiples of each
other, which stems from a gradient play dynamics application.

Corollary 3.3. If BKd has an eigenvalue outside clos(S) and the control law (2) is sta-
bilizing, then the closed-loop system is not p-stable. Furthermore, I1(λ; p) has zeros in C

+

for arbitrarily small values of p.

3.2 Feedback delay

We assume the presence of an unmodelled feedback delay p in all input channels, that is,

G1(λ; p) = e−λpI, G2(λ; p) = I.

Then the characteristic function becomes.

I2(λ; p) := det
(

λI − A − BKdλe−λp
)

.

As shown in the following result, the eigenvalue distribution of BKd determines the beha-
vior of the zeros thus introduced.
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Proposition 3.4. If ρ(BKd) > 1, there exist numbers p̂ > 0, c > 0 and a function
λ̂ : (0, p̂) → C, p 7→ λ̂(p), such that

I2(λ̂(p); p) = 0, and <(λ̂(p)) >
c

p

for all p ∈ (0, p̂).
If ρ(BKd) < 1, there exist numbers p̂ > 0 and c > 0 such that for all 0 < p ≤ p̂, the

function I2(λ; p) has exactly n zeros in the half plane
{

λ ∈ C : <(λ) > − c
p

}

.

Proof. If ρ(BKd) > 1, it follows from the theory developed in [4, 15] that for all p > 0,
there exists a sequence of complex numbers {λν}ν≥0 such that

I2(λν ; p) = 0, ν ≥ 1,

limν→∞ =(λν) = +∞, limν→∞ <(λν) = log(ρ(BKd))
p

.

By letting c = (log(ρ(BKd)))/2 the statement of the proposition follows.

If ρ(BKd) < 1, there exists a c > 0 such that ρ(BKde
c) < 1. Next, we let λ0 be a zero of

I2(·; p) satisfying <(λ) > −c/p. As the matrix (I−BKde
−λp) is invertible if <(λ) > −c/p,

we get

det
(

λ0I − (I − BKde
−λ0p)−1A

)

= 0.

This implies

|λ0| ≤ max<(λ)≥−c/p

∥

∥(I − BKde
−λp)−1A

∥

∥ ≤ M, (16)

where

M := max
<(λ)≥−c

∥

∥(I − BKde
−λ)−1A

∥

∥ .

Consequently, all zeros of I2(·; p) in the half plane {λ ∈ C : <(λ) ≥ −c/p} also lie in the
disk {λ ∈ C : ||λ|| ≤ M}. Combining this result with Proposition 2.7 yields the assertion
to be proven.

Corollary 3.5. If BKd has an eigenvalue outside the unit disk and the control law (2) is
stabilizing, then the closed-loop system is not practically stable. Furthermore, I2(λ; p) has
zeros in C

+ for arbitrarily small values of p.

4 Filtered state derivative feedback

Using Assumption 2.5 and Rouché type arguments, all but n zeros of H(λ; p) move off to
infinity as the parameter p tends to zero. An obstruction to p-stability occurs if some of
these zeros move off to infinity without leaving the closed right half plane. Such situations
are illustrated with Proposition 3.1 and Proposition 3.4. A natural way to prevent the
presence of zeros with a large modulus in the right half plane consists of including a low-
pass filter in the control scheme. Note that such an approach has already been successfully
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applied to the discretization of distributed delay controllers in the context of finite spectrum
assignment, where similar robustness problems occur [14, 16].

When applying a first order filter to the control law (2), the controller becomes:

T u̇(t) + u(t) = Kdẋ(t) (17)

where T = 1/ωf is the time constant of the filter, and ωf is its cutoff frequency.
The feedback system that consists of (1) and (17) is given by

ż(t) =

[

A B
0 − 1

T
I

]

z(t) +

[

0 0
1
T
Kd 0

]

ż(t), (18)

where z(t) = [x(t)T u(t)T ]T . This system can be rewritten as

ż(t) =

[

A B
1
T
KdA

1
T
(KdB − I)

]

z(t). (19)

Let J0(λ; T ) be the characteristic function of (18, 19), that is,

J0(λ; T ) := det

(

λI −
[

A B
1
T
KdA

1
T
(KdB − I)

])

. (20)

We perform the subsequent analysis in two steps. First, we discuss the effect of the in-
troduction of the filter on the stability of the nominal system. Next, we investigate the
effect of small approximation and implementation errors. We end the section with a brief
discussion of the results.

4.1 Filter design

Intuitively, one might expect that the introduction of a filter with a sufficiently high cut-off
frequency (i.e., T is sufficiently small) has little influence on the dynamic behavior of the
nominal system. However, this is not always the case, as follows from the following result.

Proposition 4.1. Assume that det(I − BKd) 6= 0 and let ξi ∈ C, 1 ≤ i ≤ n, be the
eigenvalues of (I − BKd)

−1A. There exist a number T̂ and n continuous functions

η̂i : (0, T̂ ) → C, T 7→ η̂i(T ), 1 ≤ i ≤ n,

which satisfy J(η̂i(T ); T ) ≡ 0 and

lim
T→0+

η̂i(T ) = ξi, 1 ≤ i ≤ n. (21)

If (KdB−I) is Hurwitz, then there exist numbers ĉ > 0, T̂ > 0 such that for all T ∈ (0, T̂ ),
the function J0(λ; T ) has exactly n zeros in the half plane

{

λ ∈ C : <(λ) > − ĉ

T

}

.
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If (KdB − I) has an eigenvalue in the open right half plane then there exist numbers ĉ > 0
and T̂ > 0 such that for all T ∈ (0, T̂ ), the function J0(λ; T ) has a zero in the half plane

{

λ ∈ C : <(λ) >
ĉ

T

}

.

Proof. The proof follows the same steps as the proofs of Propositions 2.7 and 3.1, and it is
therefore not developed in detail. We restrict ourselves to some consideration on the large
eigenvalues introduced by the filter. From the normalized characteristic function

T n+mJ0

(µ

T
; T

)

= det

(

µI −
[

AT BT
KdA (KdB − I)

])

,

where the argument of det(·) becomes triangular as T → 0+, it is apparent that for small
values of T , the eigenvalues of (KdB−I) determine the large eigenvalues of the closed-loop
system.

From Proposition 4.1 one concludes that the presence of the filter may induce an addi-
tional stability constraint, namely the Hurwitz stability of the matrix (KdB − I).

Remark 4.2. The above results can also be interpreted in terms of robustness of the
unfiltered feedback system (1)-(2). If the nominal system (1)-(2) is asymptotically stable
but (KdB−I) is not Hurwitz, then the stability of the nominal system is not robust against
arbitrarily small modelling error described by

np = 1; G1(λ; p) = I; G2(λ; p) =
1

1 + pλ
. (22)

Note that (22) satisfies Assumption 2.5. In this way the above analysis can be seen as
another illustration of the fragility, already illustrated in the previous section with two
examples of a different nature.

4.2 Effect of small modelling and implementation errors

We consider the controller (17) and assume that T and Kd are such that the null solution
of (18) is asymptotically stable.

In the presence of small modelling and approximation errors as described in Section 2.1
the characteristic function (20) becomes:

J(λ; T, p) :=

det

(

λI −
[

Ã(p) B̃(p)
1
T
G1(λ; p)KdG2(λ; p)Ã(p) 1

T
(G1(λ; p)KdG2(λ; p)B̃(p) − I)

])

,
(23)

where Ã, B̃, G1, G2 satisfy Assumption 2.5. The corresponding block diagram of the closed-
loop system is displayed in Figure 2.

Due to the low-pass filter in the control loop, the closed-loop system (1) and (17) is
p-stable in the sense of Definition 2.6, as can be concluded from the following proposition.

13



Figure 2: Feedback interpretation of the controlled system with a low-pass filter included
in the feedback.

Proposition 4.3. Assume that T > 0 is fixed. Let ξi ∈ C, 1 ≤ i ≤ n + m, be the zeros of
J0(λ; T ). There exist a number p̂ and n + m continuous functions

η̂i : [0, p̂)np → C, p 7→ η̂i(p), 1 ≤ i ≤ n + m,

which satisfy J(η̂i(p); T, p) ≡ 0 and

lim
p→0

η̂i(p) = ξi, 1 ≤ i ≤ n + m. (24)

Furthermore, there exist numbers p̃ > 0 and c > 0 such that for all p ∈ (R+)np with
‖p‖ ≤ p̃, the functions J(λ; T, p) and J0(λ; T ) have the same number of zeros in the half
plane

{λ ∈ C : <(λ) ≥ −c} . (25)

Proof. The proof of the first assertion is similar to the proof of Proposition 2.7, and is
omitted. For the second assertion, choose numbers N and P according to Item 6. of
Assumption 2.5. Choose c ∈ (0, N) such that J0 has no zero with real part equal to c.
Let λ0 be a zero of J(·; T, p0) where ‖p0‖ < P . If <(λ0) ≥ −c, then we get from (23):

λ0 ∈ σ

([

Ã(p) B̃(p)
1
T
G1(λ0; p)KdG2(λ0; p)Ã(p) 1

T
(G1(λ0; p)KdG2(λ0; p)B̃(p) − I)

])

.

As ρ(·) ≤ ‖ · ‖, this implies that |λ0| ≤ R, where

R =

sup

{∥

∥

∥

∥

[

Ã(p) B̃(p)
1
T
G1(λ; p)KdG2(λ; p)Ã(p) 1

T
(G1(λ; p)KdG2(λ; p)B̃(p) − I)

]∥

∥

∥

∥

:

λ ∈ C, p ∈ R
np , <(λ) ≥ −c, ‖p‖ ≤ P} .

(26)

Note that by Assumption 2.5 the right hand side of (26) is finite. We conclude that if
‖p‖ ≤ P , then all zeros of J(·; T, p) in the half plane (25) are confined to the compact set

Ω := {λ ∈ C : <(λ) ≥ −c, |λ| ≤ R} .
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Next, from Assumption 2.5 it follows that J(λ; T, p) converges to J0(λ; T ) uniformly on
compact sets as p → 0. Hence, we can choose p̃ ∈ (0, P ) such that for all p ∈ R

np with
‖p‖ ≤ p̃ the following estimate holds:

max
λ∈∂Ω

|J0(λ; T ) − J(λ; T, p)| ≤ min
λ∈∂Ω

|J0(λ; T )|.

The second assertion of the proposition then follows from an application of Rouché’s The-
orem.

4.3 Discussion

In Section 3 we have shown by construction that (unfiltered) state derivative feedback may
lead to a fragile closed-loop system in the sense that the closed-loop system is stable but
not p-stable. This was illustrated for a numerical approximation of derivatives by a finite
difference formula and for a small delay in the feedback loop. In both cases the eigenvalues
of the matrix BKd determine the robustness of stability. However, even if the resulting
conditions on the gain Kd are satisfied, stability may still lack robustness against other
type perturbations satisfying Assumption 2.5.

In this section we have shown that if the filtered derivative feedback control law (17) is
stabilizing, then the closed-loop system is p-stable. However, the existence of a stabilizing
filtered derivative feedback for the nominal system may again impose restrictions on the
gain, as expressed in Proposition 4.1. Summarizing, we have the following result:

Theorem 4.4. Assume that the control law (2) asymptotically stabilizes the system (1).

If the matrix (BKd−I) is Hurwitz, then the filtered control law (17) is stabilizing for small
values of T and results in a p-stable closed-loop system.

If (BKd − I) has an eigenvalue in C
+, then the closed-loop system with the control law (2)

is not p-stable. Furthermore, the filtered control law (17) is not stabilizing for small values
of T .

Proof. Follows from Propositions 4.1, Remark 4.2 and Proposition 4.3.

Further refinements will be made in the next section, where relations between stabilizing
values of Kd and the eigenvalue distribution of (BKd − I) will be taken into account.

5 Conditions for p-stabilizability

In this section we discuss the p-stabilizability problem and the design of stabilizing state
derivative controllers of the form (2) or (17). As we shall see, the condition det(−A) > 0,
which is satisfied if A has no zero eigenvalue and an even number of eigenvalues in the
closed right half plane, will play a crucial role.

Throughout this section we assume that (A,B) is controllable and that A is cyclic.
Remarks on the non-cyclic case will be made in the next section.

We start by stating a technical lemma.
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Lemma 5.1. Assume that det(−A) < 0. If the control law (2) is stabilizing, then the
matrix BKd has a real eigenvalue larger than one.

Proof. The proof is based on a continuation argument. If we consider the feedback u =
kKdẋ(t), where k ∈ [0, 1] is a real parameter, then the closed loop system becomes

(I − kBKd) ẋ(t) = Ax(t). (27)

Since det(−A) < 0, for k = 0 the system has an odd number of characteristic roots in the
open right half plane. On the other hand, for k = 1 it has an even number of characteristic
roots in the open right half plane (zero) as it is assumed that (2) is stabilizing. Because the
characteristic roots appear in complex conjugate pairs and depend continuously on k, there
must be a value of k = k̃ ∈ (0, 1) for which there is a characteristic root either at zero,
or ”at infinity”. The former is not possible because a zero characteristic root is invariant
w.r.t. changes of k and would contradict the stability for k = 1. The latter implies that
det(I − k̃BKd) = 0. Consequently, k̃BKd has an eigenvalues equal to one, or, equivalently,
BKd has a real eigenvalue equal to 1/k̃ > 1.

The two following theorems are direct corollaries.

Theorem 5.2. If det(−A) < 0 and the control law (2) is stabilizing, then the closed-loop
system is not p-stable.

Proof. This result can be shown in three different ways. As BKd has an eigenvalue larger
than one, an approximation of the derivative with a finite difference scheme (Proposi-
tion 3.1), a small feedback delay (Proposition 3.4), as well as a neglected first order lag
(Proposition 4.1 - Remark 4.2) destroy stability.

Theorem 5.3. If det(−A) < 0, then the system cannot be stabilized with a control law of
the form (17). Moreover, every dynamic control law of the form

ζ̇(t) = Afζ(t) + Bf ẋ(t), u(t) = Cfζ(t), (28)

with Af Hurwitz, results in an unstable closed-loop system.

Proof. The first assertion is a consequence of Theorem 4.4 and Lemma 5.1. The proof of
the second assertion is by contradiction and employs a continuation argument. Assume
that the control law (28) is stabilizing. With the parameterized control law

ζ̇(t) = Afζ(t) + kBf ẋ(t), u(t) = Cfζ(t),

with parameter k ∈ [0, 1], the closed loop system becomes
(

I −
[

0 0
kBf 0

])

ξ̇(t) =

[

A BCf

0 Af

]

ξ(t), (29)

where ξ(t) = [x(t)T ζT (t)]T . For k = 0 the system has an odd number of characteristic
roots in the open right half plane as det(−A) det(−Af ) < 0, while for k = 1 it has an even
number of characteristic roots in the open right half plane (zero) as it is assumed that
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(28) is stabilizing. Because the characteristic roots appear in complex conjugate pairs and
depend continuously on k, there must be a value of k = k̃ ∈ (0, 1) for which there is a
characteristic root either at zero, or ”at infinity”. The former is not possible because a
characteristic root at zero is invariant w.r.t. changes of k, which contradicts the stability
for k = 1, the latter is not possible because the matrix

I −
[

0 0
kBf 0

]

is invertible for all values of k.

Remark 5.4. This result is expected from the stabilization mechanism outlined in Re-
mark 2.4 and the fact that a filter prevents characteristic roots with a large modulus.

Next, we consider the case where det(−A) > 0. We first have the following lemma.

Lemma 5.5. If det(−A) > 0, then there always exists a stabilizing control law of the form
(2) for which all eigenvalues of BKd are zero.

Proof. The existence of such a control law is shown by construction in the proof of Theorem
2 of [9]. To make this paper self contained, we outline the main steps.

There exist a transformation of the state, z = Txx, and of the input, w = Tuu, that
put the system (1) in the controller canonical form

ż(t) = Acz(t) + Bcw(t), (30)

with

Ac =















0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . .
...

0 0 1
−an · · · · · · −a2 −a1















, Bc =















0
...
...
0
1

B̃2 · · · B̃m















.

The control law

w(t) = K̃dż(t), (31)

where

K̃d =











−kn−1 · · · −k1 0
0 · · · · · · 0
...

...
0 · · · · · · 0











,

then results in a closed-loop system with characteristic equation

λn +
n−1
∑

l=1

(al + kl)λ
n−l + an = 0.
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As an = det(−A) > 0, there always exist stabilizing values of k1, . . . , kn−1. Furthermore,
all eigenvalues of BcK̃d are equal to zero. In the original coordinates the control law (31)
becomes:

u(t) = T−1
u K̃dTx ẋ(t) := Kd ẋ(t).

By combining Lemma 5.5 with Theorem 4.4 we arrive at the following result.

Theorem 5.6. If det(−A) > 0, then there always exists a stabilizing controller of the form
(17) for which the closed-loop system is p-stable.

The obtained stabilizability conditions are summarized in Table 1.

det(−A) < 0 det(−A) = 0 det(−A) > 0

stabilizable yes no yes
p-stabilizable no no yes

(neither with (2) nor with (17) and (28)) (with (17))

Table 1: p-stabilizability of the controllable system (1) using state derivative feedback. A
is assumed cyclic.

6 Remarks on the non-cyclic case

If the cyclic index1 of A is k > 1, then there always exist transformations of the state,
z = Txx and the input, w = Tuu, which transform (1) into

ż(t) = Acz(t) + Bcw(t), (32)

where

Ac =







A11 0
. . .

0 Akk






, Bc =







B11 · · · B1k . . . B1m

. . .
...

...
0 Bkk . . . Bkm






,

with Aii cyclic and the pair (Aii, Bii) controllable for each i = 1, . . . , k.

As their proofs do not depend on the cyclic index of A, Theorems 5.2-5.3 remain valid.

Theorem 6.1. If det(−A) < 0 and the control law (2) is stabilizing, then the closed-loop
system is not p-stable. Furthermore, every dynamic control law of the form (28), with Af

Hurwitz, results in an unstable closed-loop system.

1the maximum of the geometric multiplicities of its eigenvalues
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Based on a decomposition into k sub-problems induced by the canonical form (32), and
an application of Theorem 5.6 to each sub-problem, we arrive at the following result.

Theorem 6.2. If det(−Aii) > 0, 1 ≤ i ≤ k, then there always exists a stabilizing controller
of the form (17) for which the closed-loop system is p-stable.

When comparing Theorem 6.1 with Theorem 6.2, the stabilizability analysis is complete
if one can make an assertion for the case where

det(−A) > 0, ∃i ∈ {1, . . . , k} : det(−Aii) < 0. (33)

This is still an open problem. The following example indicates that in such case a lack of
practical stability may occur.

Example 6.3. The system
{

ẋ1(t) = x1(t) + u1(t)
ẋ2(t) = x2(t) + u2(t)

is of the form (32) with Ac = I, Bc = I and A11 = A22 = 1. Clearly, we have det(−Ac) > 0,
but det(−A11) = det(−A22) < 0.

The control law

u(t) = Kdẋ(t), Kd ∈ R
2×2,

is stabilizing if and only if the eigenvalues of the matrix Kd have real part larger one. By
both Proposition 3.1 and Proposition 3.4, the closed-loop system is not p-stable.

If we apply the filtered control law

T u̇(t) + u(t) = Kdẋ(t), T > 0, Kd ∈ R
2×2,

then the characteristic equation of the closed-loop is given by

det

(

λ2I + λ

(

1

T
(I − Kd) − I

)

− 1

T
I

)

= 0,

As this equation has a zero in C
+ for all values of T and Kd, stabilization is not possible.

7 Concluding remarks

The possible lack of stability robustness of the stabilized system (1)-(2) against arbit-
rarily small modelling and implementation errors, which was illustrated with several ex-
ample case-studies, led us to the practical notion of p-stability. The stabilizability and
p-stabilizability of the system (1) with the (filtered) control law (2) was characterized.

For the generic case where A is cyclic, a complete characterization of stabilizability
is described in Table 1. Surprisingly, if det(−A) < 0, which is satisfied if A has an odd
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number of eigenvalues in the open right half plane, the system is stabilizable, but not p-
stabilizable, neither using static feedback nor using dynamic feedback. This shows that the
so-called odd number condition, det(−A) < 0, well known in the context of Pyragas type
time-delayed feedback controllers, is also a fundamental obstruction to stabilizability in
this context, yet only appears at a second stage, where robustness aspects are considered.

For the case where A is non-cyclic a full characterization of stabilizability and p-
stabilizability was made, except when (33) holds, that is, in the canonical form there
are subsystems which satisfy the odd number condition, but the whole systems does not.
Example 6.3 illustrates that again a lack of robustness of stability may occur and suggests
that the necessary and sufficient p-stabilizability condition in the non-cyclic case is given
by det(−Aii) > 0, for all i = 1, . . . , k. Whether or not this is true is an open problem and
a topic of further research.

Motivated by the large number of applications of sampled-data systems, which appear,
for instance, in network controlled systems, it is also worthwhile to investigate to what
extent the controller construction, observed phenomena and robustness issues discussed in
the paper carry over to the hybrid case where the controller is discrete and difference based.
In the overview article [14], where one investigates the effect on stability of approximating
distributed delays in a class of control laws for time-delay systems, it is shown that also
with pure discrete approximations of control laws fragility problems may occur, and may
lead to phenomena which are different than those observed for continuous approximations.
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A A technical lemma

Lemma A.1. Consider the equation

λ − µ(1 − e−λ) = 0, (34)

where µ ∈ S, with S given by (12). Then all roots of (34) are in C
−, except for a root at

the origin with multiplicity one.

Proof. We distinguish two cases as below.
Case 1: µ 6∈ R.

We first characterize the zeros of the auxiliary function

h(λ; ν) := λ − µ(1 − e−λν)

as a function of the parameter ν ≥ 0. For ν = 0, the function h has only one zero at the
origin, which is invariant w.r.t. changes of ν. If ν is increased from zero, then the number
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of zeros in the closed right half plane can only increase if zeros cross the imaginary axis.
A zero at the origin with multiplicity larger than one cannot occur since

h′(0; ν) = 1 − µν 6= 0.

If h has a zero jω, ω ∈ R \ {0}, for some value of ν, then we have:

jω = µ(1 − e−jων).

Solving this equation yields:

ω = ω∗ := 2=(µ), ν = ν∗
k := ∠(µ)+πk

=(ν)
, k ≥ 1. (35)

Next, we look at the crossing direction of a zero on the imaginary axis w.r.t. the parameter
ν. Taking the derivative of h(λ(ν); ν) = 0 w.r.t. ν at (λ, ν) = (jω∗, ν∗

k) yields:

λ′(ν∗) =
jω∗µe−jω∗ν∗

1 − νµe−jω∗ν
,

from which we get

<(λ′(ν∗)−1) = <
(

1
jω∗µe−jω∗ν∗

)

= <
(

1
jω∗(µ−jω∗)

)

= < ((2=(µ)(=(µ) + j<(µ)))−1) > 0

and

<λ′(ν∗) > 0. (36)

From (35) and (36) we can conclude:

1. if ν ∈ [0, ν∗
1), then all zeros of h are in C

−, except for a zero at the origin with
multiplicity one;

2. if ν > ν∗
1 , then h has zeros in C

+.

The assertion of the proposition is straightforward when taking into account that µ ∈ S
(µ 6∈ clos(S)) is equivalent to ν∗

1 > 1 (ν∗
1 < 1).

Case 2: µ ∈ R.
The equation h = 0 is the characteristic equation of the system ẋ(t) = µx(t)−µx(t−τ).

The stability of this system has been analyzed in e.g. [18, 23], from which the statements
of the proposition follow.
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