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ABSTRACT 

 

 
Identifying the genetic basis associated with Mendelian disorders or complex phenotypes 

is essential in human genetics in order to design more effective and eventually to better 

understand the molecular mechanisms behind these genetic disorders. 

Usually, a list of candidates is obtained in a high-thoughput experiment, such as a 

genomewide association study. This set of genes (either a chromosomal region or a list of 

genes scattered in the genome) is usually not small enough to easily undertake a manually 

one-by-one validation and therefore a selection of the putative most interesting genes is 

needed.  This problem has been named gene prioritization and in the last years, several 

computing based approaches have been proposed to cope with it. This thesis presents a 

work on gene prioritization. 

The first part of this text thoroughly reviews the web based gene prioritization tools that 

can be freely used by any user. We describe seventeen tools and we stress their 

similarities and differences with the aim to help the user to choose the most appropriate 

one for his type of data. We have also reviewed the bibliography associated with these 

tools in search of validations and tool performance comparisons and we have finally set up 

a website where this information and regular updates are stored. In the last two years, the 

number of tools described in the website has almost doubled. 

Furthermore, we have developed a performance review among gene prioritization tools, 

both using the whole genome as starting candidate set or a limited one. We have 

compared individual results with the combination of the tools and finally we have 

completed our review with the combination of the best performance gene prioritization 

tools in our benchmark in three real life experiments. All the expertise gathered  in our 

complete review has been used to find new candidate genes involved in congenital heart 

disease, congenital diaphragmatic hernia and asthma. 

Finally, we propose the use of cluster analysis as a preprocessing step of gene 

prioritization approaches that use training genes to lead the prioritization. We claim that 

the automatic selection of a homogenous training set produces more accurate rankings 

than the expert selected ones. To this purpose, we have applied a transactional clustering 

algorithm, CLOPE, to two different gene prioritization tools: Endeavour and Genedistiller. 
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Chapter 1 

Introduction 
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The morphological and functional unity of every living being is called cell. These (usually)  
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The reason why we are like we are can be found in a long and thin macromolecule called 

DNA (desoxyribonucleic acid). DNA is a polymer of nucleotides and each nucleotide 

consists of a sugar ring (the same one for all DNA nucleotides), a phosphate group (the 

same one for all DNA nucleotides) and a nitrogenous base, which can be either adenine 

(A), guanine (G), thymine (T) or cytosine (C). Therefore, the relative position of every of 

these nitrogenous bases in the long polymer of the DNA will make the difference between 

two DNA strings. 

The human genome contains about 3 billion nucleotides in 23 chromosomes. The DNA 

contains information needed to build the proteins supporting the human body (structural 

proteins), protecting it from external hazards (antibodies) and controlling the metabolism 

(enzymes) and any other functions (signal transduction). This information, in the form of 

genes, follows the so-called central dogma of the molecular biology. It is first transcribed 

from DNA to RNA (a different type of nucleic acid), which leaves the nucleus and, with the 

help of the organelles called ribosomes, it is translated into proteins (which are themselves 

polymers of amino acids). 

It has been estimated that there are between 20000 and 25000 protein coding genes in 

the human genome. However, the number of proteins that can be built is much higher, due 

to processes like alternative splicing, where pieces of RNA produced by transcription of a 

gene can be connected in different manners and therefore different products can be 

obtained. 

Therefore, the original sequence of As, Cs, Gs and Ts of the DNA strands controls how 

our body is built and how it works, why we are different and, for example, our susceptibility 

to various diseases.  

DNA comes in a double string of nucleotides. The bases adenine and thymine chemically 

attract each other by the formation of hydrogen bridges, as do cytosine and guanine. At 

the corresponding position, when in one strand of DNA we find a T, in the other string 

there will be an A (and vice versa) and if we find a G, in the other string there will be a C 

and vice versa: the two strings are complementary.  

Several types of genetic alterations have been found, which can account for both human 

traits variability and genetic diseases: 

• Single Nucleotide Polymorphism.- “SNPs are single base pair positions in genomic 

DNA at which different sequence alternatives (alleles) exist in normal individuals in 

some population(s), wherein the least frequent allele has an abundance of 1% or 

greater” [1]. A single base alteration with a frequency less than 1% is called 

mutation. In both cases, the alteration can modify the probability of suffering from a 

particular disease. 

• Copy-number variations.- CNVs are chromosomal structural variations resulting in 

an abnormal number of copies of one or more regions of the DNA due to both 

deletion or duplication. In the last years, the number of complex diseases linked to 

an abnormal number of copies of chromosomic regions is increasing [2]. 
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• Structural rearrangement or translocation.- A complete region is moved from one 

chromosome to another. In this case, there is no gain or loss in the total amount of 

genetic information content but the order of the nucleotides changes. Subtypes of 

acute myelogenous leukemia and chronic myelogenous leukemia are caused by 

chromosomal translocations [3, 4]. 

• Epigenetic modifications.- Involves any changes in gene expression not caused by 

changes in the underlying DNA sequence. 

 

Understanding the genetic basis of the diseases is an essential aim of human genetics in 

general and medical genetics in particular and it will be the subject this work will focus on. 

Knowing the disease mechanisms leads to more effective therapies and treatments. 

Humans have known for thousands of years that health is affected by heredity [5]. 

However, we usually name the works of the Czech monk Gregor Mendel in the second 

half of 19th century as the starting point of genetics. He studied inheritance in plants and in 

1865 he presented his paper Versuche über Pflanzenhybriden (“Experiments on Plant 

Hybrids”), where the inheritance patterns of certain traits in pea plants were described. 

However, it was not until the beginning of the 20th century that his work was acknowledged 

by the scientific community [6, 7] and the first studies relating diseases with heredity were 

launched [8]. 

During the 20th century, a series of discoveries made genetics knowledge boost. In 1910 

Thomas Hunt Morgan placed genes on chromosomes. In 1941 George Beadle and 

Edward Tatum identified that proteins originate from genes, making a first step towards the 

definition of the central dogma of the molecular biology. In 1944 the Avery-MacLeod-

McCarty experiment identified DNA as the genetic material. In 1950 Erwin Chargaff proved 

that the four nucleotides are present in numbers based on a general rule. In 1953 James 

Watson and Francis Crick, based on previous work of Rosalind Franklin proposed the 

double helix model for the DNA chain. 

With the improvement of sequencing techniques, starting with Sanger’s sequencing work 

in 1977, many genomes of different organisms have been sequenced, contributing to the 

development of genetics but the cornerstone of human genetics happened in the 

beginning of the 21st century, when the human genome was sequenced [9].  

The sequencing of the human genome opened the door to the high-throughput 

experiments where thousands of experiments can be performed in parallel. A well known 

example is microarrays, where a chip containing a collection of samples of DNA is used to 

measure the expression of thousands of genes simultaneously. 

 

1.2 BIOINFORMATICS 

In parallel to the development of genetics, the second half of 20th century witnessed a 

boost in computing. The ever-increasing computer power of integrated circuits based 

computers started to be used to mine the huge databases that high-throughput 
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experiments were creating. For instance GenBank [10], an open access sequence 

database which contains nucleotide sequences and their protein translations has doubled 

its records every 18 months since 1982. PDB [11], the protein data bank, a repository for 

the 3-D structural data of large biological molecules such as proteins and nucleic acids, 

has passed from 13597 structures in 2000 to 82809 in 2012. 

In the last years, plenty of computational solutions have been implemented to satisfy the 

requirements of geneticists: homology searching (e.g. BLAST), sequence alignment (e.g. 

ClustalW), phylogenetics (e.g. PHYLIP), functional patterns (e.g. HMMER), gene 

prediction (e.g. GenScan), regulatory region analysis (e.g. MatInspector), RNA structure 

(e.g. UniFold), protein structure (e.g. JPred)… 

The number of databases storing biologically related information has also enormously 

increased in the last decades. First data repositories were set up at the end of the 60s [12, 

13]. Nowadays, the number of publicly available databases with biological information 

exceeds thousand [14]. 

 

1.3 GENE PRIORITIZATION 

The concept of gene prioritization can be defined as the sorting of a set of genes based on 

their characteristics in order of relevance with respect to a particular biological process. 

When this process is applied to a gene list containing a gene of interest, the user expects 

this gene to be ranked in the first positions. Gene prioritization can be seen as a natural 

continuation to classic biological approaches such as linkage analysis or genome-wide 

association studies which usually return an output containing hundreds of genes when are 

applied to hunt a particular gene of interest (involved in a disease, for instance) [15, 16]. 

This concept was first introduced ten years ago by Pérez-Iratxeta, who already described 

an approach to this problem [17]. This approach takes advantage of both the progress 

made in computational development and the large amount of genomic data publicly 

available. Since then, in these ten last years, many approaches have been developed, 

among which some have been implemented into web applications and eventually validated 

[18–46]. These tools use different strategies, different inputs and outputs and the 

databases where the gene information is collected are also diverse. However, these tools 

agree on the guilt-by-association concept: the most promising candidates to pursue the 

research with a e.g. knock-down experiment will be the ones that are similar to the genes 

that are already known to be linked to the biological process of interest [47–49]. 

One of the possible strategies used during the gene prioritization process involves the 

analysis of two sets of genes. The candidate set contains the list of genes that will be 

eventually ranked and the training set of genes includes a list of genes, usually associated 

or linked to the disease, from which a profile will be retrieved in order to rank the candidate 

genes. The final ranking will depend on the similarity of the candidate genes with the 

training genes profile and the measure of this similarity will depend on a set of databases. 
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The selection of the three factors (candidate set, training set and databases) are critical 

steps upon which the final accuracy of the ranking fully depends, and in some tools, these 

critical decisions must be taken by the final user. 

 

1.3.1 CANDIDATE SET 

Any gene set can be ranked. However, as long as the set contains a gene of interest, it is 

natural to admit that the smaller the set is, the easier the gene of interest will be ranked in 

high positions. The full genome can be used as candidate set (if a particular tool allows it), 

but a narrower gene list will avoid noise and false positives which could hide the hunted 

gene. 

As stated before, a common scenario consists of a research group in a wet lab hunting a 

gene involved in a particular disease. The traditional techniques used in the laboratory to 

identify the putative gene vary but they have in common that their output is not usually 

limited to one or more genes but to several megabases.  

Validating all these genes one by one seems a too expensive and time-consuming task. 

Instead, using these regions as candidate sets in gene prioritization experiments can 

narrow down the list of candidates to an affordable number to manually validate.  

The most common wet lab strategies applied when a gene of interest for a particular 

disease is to be found are: 

• Genetic linkage.- This technique locates the gene of interest in a region 

neighbouring a piece of known DNA called a genetic marker and that is related to 

the disease. It has been used along with positional cloning in the last decades of 

the 20th century to find gene mutations that lead to monogenic disease such as 

cystic fibrosis and Huntington’s disease [50, 51]. 

• Genome-wide association studies.- GWAS scans the full genome of a set of 

individuals with the aim of finding genetic alterations connected with a phenotype of 

interest. This high throughput approach has been used in the last years to identify a 

large number of robust associations between specific chromosomal loci and 

complex human diseases, such as type 2 diabetes and rheumatoid arthritis [52] 

• Differential expression of genes in a disease tissue.- A microarray can also be used 

to select an initial candidate set. In this case, the list of candidate genes will not be 

a region but a group of genes that are differentially expressed among patients with 

respect to control cases.  

• Chromosomal aberration.-If a chromosomal region is duplicated or deleted in a 

group of patients sharing a genetic condition, it becomes immediately a region of 

interest in a gene prioritization experiment. 

 

 



6 
 

1.3.2 TRAINING SET 

The selection of the training genes by the user usually includes those genes that have 

already been linked to the disease. While the selection of the candidate set is basically 

based on the output of a wet lab experiment, the choice of the training set depends much 

more on the expertise of the user. He must take the decision whether adding or not to the 

training set a gene weakly linked to the disease, or a promising candidate still to be 

confirmed. Furthermore, a wrong candidate set, as long as it contains the gene of interest, 

would mean a larger ranking but, if the approach is good, the hunted gene would still rank 

high. However, a wrong training set would imply a wrong profile and the comparisons 

between candidate genes and the profile would lead to an inaccurate ranking. 

A particularly difficult case arises with complex syndromes where different diseases 

classify under a single name. This is the case of e.g. leukemia, a type of cancer affecting 

blood and bone marrow that presents an uncontrolled proliferation of undifferentiated bone 

marrow cells. Under the name leukemia, different syndromes spread: 

• Lymphoblastic or lymphocytic leukemia.- In this type of leukemia, cells created in 

the bone marrow that should develop into lymphocytes are abnormal, do not 

develop properly and grow quickly. 

• Myeloid or myelogenous leukemia.- In this case, the abnormal cells are supposed 

to develop into red blood cells, some types of white blood cells and platelets. 

These two types of leukemia can be further split into chronic and acute syndromes and 

in addition, there are other more rare types of the disease. 

In chapter 5, we describe a method to relieve the user from the burden of choosing the 

right training set. We argue that the use of cluster analysis can help the user to obtain 

homogeneous training sets that will in general lead to more accurate rankings. 

 

1.4 CLUSTER ANALYSIS 

Clustering, or cluster analysis, corresponds to the assignment of objects to groups called 

clusters, in such a way that elements falling in the same cluster will be similar among them 

and dissimilar from the elements placed in other clusters. The number and the 

characteristics of the clusters are not known beforehand and for this reason, cluster 

analysis is also known as unsupervised learning. Clustering is widely used  in many fields 

such as statistical pattern recognition [53], data mining [54], machine learning [55], 

information retrieval [56] or bioinformatics [57] and it has plenty of daily applications like 

image segmentation [58], target marketing [59], network intrusion detection [60] or 

financial fraud detection [61]. 

The evolution of clustering goes beyond 50 years of research and has consisted of an 

interdisciplinary effort made by taxonomists, social scientists, psychologists, biologists, 

statisticians, mathematicians, engineers, computer scientists, medical researchers and 

many others who collected and analyzed vast amounts of real data [62].  
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The previous definition of what clustering is implies the existence of the notion of 

similarity between objects of a database, in our case genes or gene products, so that they 

can be compared and assigned to the same or to different clusters. Defining this similarity 

is the keystone in a clustering algorithm, since the whole classification will depend on it. 

However, the nature of the elements to be clustered can be very diverse and the measure 

of similarity chosen will be one or another according to the type of attributes that these 

elements will contain.  

 

1.4.1 TYPES OF DATA 

A database consists of a set of records or tuples defined over a set of attributes which 

can take different values. A thorough taxonomy of the types of attributes can be found in 

[63]. Briefly, they can be classified either according to the size of the domain of the values 

that the attribute can take or based on the attributes measurement scales. 

The size of the domain of the attributes indicates how many different values the 

attribute can take. On the one hand, an attribute will be called continuous if, between any 

two values, there exists an infinite number of other values. For instance, the height or the 

weight of a person are continuous values. On the other hand, an attribute will be discrete if 

the values that it can take are finite. For instance, the salary or the number of children of a 

person are discrete values. A special case of discrete attributes are those which can only 

take two values. These are called binary attributes. For instance, the gender of a person is 

a binary attribute. 

The second way of classifying attributes is based on the existence of a measuring 

scale which allows values to be ordered and, therefore, give us the opportunity of 

comparing them. Suppose an attribute i, and two objects x and z, with values xi and yi for 

this attribute, respectively. Then, there are four different situations [64]: 

1. If we can only distinguish values without being able to order them, i.e. we have 

either xi = yi or xi != yi, we will say that the scale is nominal. Nominal-scaled values 

cannot be ordered. For instance, the birthplace of a person is a nominal-scale 

attribute. 

2. Ordinal-scaled attributes are like nominal-scaled but with the possibility of being 

ordered. However, differences about values cannot be quantified. Therefore, the 

distinguished situations would be xi = yi, xi< yi and xi> yi. For example, the Mohs 

scale of mineral hardness, which classifies minerals according to the ability of a 

harder material to scratch a softer one, but gives no clue about “how hard” a 

mineral is, is an example of ordinal-scaled attributes. 

3. Interval-scaled values can be measured in a linear scale. They can not only be 

ordered, like ordinal-scaled, but the difference between them can be quantified. 

Examples include the Celsius scale of temperature. 

4. Ratio-scaled values include interval-scaled and add a meaningful zero point. An 

example is the Kelvin temperature scale. The zero point of the Celsius scale of 

temperature is arbitrary and even negative numbers are used, but in the case of 
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Kelvin temperature scale, the zero point, the absolute zero, is not arbitrary but 

physically significant. 

The first two types, nominal- and ordinal-scaled attributes, are known as qualitative or 

categorical attributes, while interval- and ratio-scaled attributes are called quantitative or 

numerical. 

 

 

1.4.2 TRADITIONAL CLUSTERING APPROACHES 

Originally, clustering methods were divided in two types: partitional and hierarchical 

methods. Since no optimal method was found after years of research, new perspectives 

were explored and nowadays we can distinguish up to five different strategies to deal with 

the clustering problem: 

• Partitional clustering.- Given a database of n objects to be clustered, a partitional 

clustering algorithm constructs simultaneously k partitions of the data, optimizing an 

objective function. Enumerating all possible data groups and finding the optimum one is 

computationally infeasible (even for a small number of items, the number of possible 

partitions to be explored is huge). Therefore, most techniques using this approach start 

with an initial partition and then an iterative optimization, mostly a greedy algorithm, 

leads to its improvement. Examples of these techniques include K-means [65, 66] and 

its improved K-medoids methods, like PAM [67], CLARA [67] and CLARANS [68]. 

• Hierarchical clustering.- Given a database of n objects to be clustered, a hierarchical 

clustering algorithm constructs a tree of clusters called dendrogram. This family of 

algorithms can be further divided in agglomerative techniques, when the hierarchical 

decomposition is created in a bottom-up manner and divisive, when the tree is formed 

in a top-down fashion. 

o Agglomerative clustering algorithms follow a bottom-up strategy. The initial 

solution is a set of as many clusters as objects to be clustered, and iteration 

after iteration, the most similar clusters are merged until a unique cluster 

including all the objects is reached.  

o Divisive clustering algorithms follow a top-down strategy. The initial scenario 

is a unique cluster containing all the items to be clustered. In every iteration, 

the most dissimilar clusters are divided until there are as many clusters as 

items. 

Examples of these algorithms include CURE [69] and BIRCH [70]. 

• Density-Based clustering.- These methods explore the data space searching for 

dense regions of items separated by regions of low density. Normally, the cluster 

grows as long as the number of objects in the neighborhood is greater than a 

certain parameter. Examples of these techniques include DBSCAN[71], 

OPTICS[72] and DENCLUE [73]. 
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• Grid-based clustering.- The data space is divided in a finite number of cells. 

Clusters will be formed from adjacent groups of cells whose density of objects 

exceeds a certain threshold. STING [74], WaveCluster [75] and CLIQUE [76] are 

well known examples. 

• Model-Based clustering.- These methods search for the optimum parameters that 

make a mathematical model fit with the data to be clustered. They are mostly based 

on the assumption that the data are generated by a mixture of probability 

distributions. The most known example is the Expectation-Maximization algorithm 

[77]. 

 

1.4.3 CATEGORICAL CLUSTERING 

Originally, most of clustering algorithms developed focused on numerical data. This did 

not happen due to the relative amount of numerical data over categorical data in 

databases but because of the ease of developing a clustering algorithm based on 

numerical data and, therefore, on the concept of distance. 

 However, the important presence of categorical data during the massive growth of 

data storage during the last years, made the clustering community to turn their eyes to this 

new kind of clustering problem where the difference among objects must be measured 

using other strategies than distance. 

 The first strategy to cope this problem was the so called conceptual clustering 

where objects were classified into clusters that represented certain descriptive concepts 

rather than into clusters defined by distance among the objects [78]. Cobweb [55] became 

very popular. This algorithm uses incremental learning to build a dendrogram, but instead 

of using divisive or agglomerative strategies, it dynamically builds it by processing a single 

data point at a time. Every node of the tree represents a certain concept which is 

associated with a set of objects, each of one described by a list of Boolean properties. In 

every new iteration, any dataset point to be clustered will compare its properties with the 

total addition of all the different properties of the points in each cluster and, according to a 

user-dependent parameter will join a cluster or will seed a new one. 

 Some of the first categorical clustering methods tried to adapt strategies that were 

used in numerical clustering to categorical data. This is the case of k-modes and its 

successors. K-modes [79] is an extension of the classic clustering algorithm k-means 

adapted to categorical data. Like in k-means, a partitioning algorithm, k-modes partitions a 

data set into a given number of clusters such that an objective function is optimized. The 

differences with the original algorithm concern the distance measure used (based on 

matches and mismatches of items instead of using Euclidean distance), the use of modes 

instead of means and the use of a frequency based method to update modes in every 

iteration. K-modes has been improved using weighted attributes based on the ratio of 

frequency of attribute values in the data set [80] 
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Other modifications of the k-means algorithm is k-histograms [81] which replaces 

the means of the clusters with histograms which are dynamically updated during the 

clustering process. 

There exist also methods which tackle the clustering problem as a search in a 

graph. ROCK [82] is a hierarchical clustering algorithm which considers two records to be 

neighbors when the distance between them, based on the Jaccard coefficient, is lower 

than a pre-specified threshold. A link connects two records if they share a neighbor. The 

criterion that ROCK follows is to group records according to the number of links connecting 

them. Unfortunately, since this is an agglomerative algorithm, is not applicable to large 

datasets. Some modifications have been proposed that outperform the original ROCK 

algorithm: VBACC [83] assumes that, if the data set has high dimensionality, the pre-

specified threshold can be omitted since it leads to a too sparse graph and the clustering 

algorithm fails to properly partition; QROCK [84] sees the dataset points as vertices of a 

graph and finds the clusters by determining the connected components of the graph and 

QNNS [85] can select qualified neighbors automatically without pre-specifying the 

threshold parameter.  

Other graph-based clustering methods are Click [86], a clustering algorithm which 

finds clusters based on a search method for k-partite maximal cliques and STIRR [87], 

which undertakes clustering as a partitioning problem in a hypergraph and solves it using 

non-linear dynamical systems. 

Some other methods use a summary approach. These methods do not store all the 

information of the tuples to be clustered, but use a summary, speeding up the clustering. 

Two examples are CACTUS [88] and LIMBO [89]. CACTUS assumes that the domain 

sizes of categorical attributes are small. It uses two types of summaries, intra and inter-

cluster, and works in three phases: summarization, clustering and validation. LIMBO is a 

scalable and hierarchical clustering algorithm based on the idea that keeping a summary 

that describes tuples and clusters is sufficient. The clustering process uses a notion of 

distance inspired in the Information Bottleneck framework [90]. 

Another categorical clustering method, using a different approach is COOLCAT 

[91], which is based on the entropy of the clusters. This algorithm takes advantage of the 

fact that the entropy of a set is inversely proportional to the amount of common attribute 

values of the set. In a first phase, the algorithm defines a suitable number of clusters and 

in a second phase it allocates the rest of the points to the clusters minimizing the value of 

the entropy of the overall cluster. 

And finally, there are also methods which cluster tuples according to the frequency 

of the values of attributes. Squeezer [92] is a scalable and incremental clustering algorithm 

based on the maximization of the support of the attribute values. This measure is the 

number of tuples in a cluster containing the value. In only one scan over the dataset, every 

item either seeds a new cluster or is grouped in an existing one, depending on the pre-

specified similarity threshold. Being a one-scan-algorithm, the order in which the dataset 

points are inputted influences the partition of the data.  
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The output of most of the clustering algorithms, not only the methods addressed to 

categorical data but in general, depends on the user, since initial parameters introduced by 

the user are necessary. Not all the methods require them and the ones which do, do not 

always need the same type of input. However, there is one parameter common to many 

tools: the number of clusters.  

The presence of these parameters, along with the strong dependency of the cluster 

algorithm on the type of data, makes very difficult to quantitatively compare clustering 

tools. A fair comparison will only be done if exhaustive experiments covering all possible 

problems are undertaken. This has not been done, so far, but partial work, compares a 

selection of specific tools in specific problems. Most of cases where comparisons among 

tools have been explicitly undertaken have used the UCI machine learning repository 

datasets (http://www.cis.uci.edu/~mlearn/MLRepository.html), using specially mushroom, 

zoo and congressional voting datasets[81, 84–86, 88, 89, 92]  but others have created 

synthetic databases based on ad-hoc generators [87]. However, these publications can 

show different results when comparing the same tools on the same data. Even if the 

database is the same, there is a non negligible human factor which can bias the results. 

Since not all the tools need the same type of input, making a fair comparison among tools 

becomes even more difficult. In addition, some comparisons are not thoroughly done and 

use different software platforms, with different technical characteristics. 

 

1.4.4 TRANSACTIONAL CLUSTERING 

Within the categorical data, we can distinguish a particular type of objects, called 

transactions. A transaction is a set of related items which can be viewed in a database as 

records with attributes, each corresponding to a single item. An example of transactional 

data is the market basket data, for instance t1={beer, milk}, t2={milk, oranges} and it can be 

represented by t1={1,1,0} and t2={0,1,1} if the first attribute stands for beer, the second for 

milk and the third one for oranges. The volume of transactional databases is normally very 

large, either in number of records and in the amount of attributes and, eventually, 

dimensions in the data space. These two common characteristics in transactional data 

lead to a, usually, very sparse database. For example, in a market basket database, a very 

low percentage of customers will have any product in common with each other. The size of 

the database, the high dimensionality and hence the sparsity make either traditional 

numerical and categorical clustering techniques unsuitable. New algorithms have been 

developed in the last years to cope with this problem. These new strategies define global 

criterion functions instead of local ones, like some of the categorical clustering algorithms 

introduced in the previous sections do [82, 87, 88]. The difference between both types of 

criterion functions is that the latter works with a pairwise similarity between data points 

while the former computes at cluster level. That makes the locally defined criterion function 

based algorithms unsuitable for large databases as the computation cost grows very fast.  

But not only new algorithms have been designed from scratch, since also some 

categorical algorithms have been adapted to the characteristics of the transactional 

databases, like the previously described VBACC as an improvement of ROCK. 
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The first algorithm specifically designed for transactional data was Largeitem [93]. 

This clustering algorithm is based on the notion of large item. A transaction item i will be 

defined as a large item in a cluster Ci if, for a pre-specified support � (between 0 and 1), 

the number of transactions in the cluster is at least �*|Ci|. Otherwise, the transaction item 

will be defined as a small item. The clustering algorithm using large items tries to minimize 

the cost of the solution, minimizing the number of small items and maximizing the number 

of large items grouped in the same cluster. 

Other approaches are OAK [94], an agglomerative hierarchical clustering algorithm 

that uses cosine similarity as a distance measure between transactions, CLOPE  [95], 

which clusters based on the maximization of histograms of every cluster and k-todes  [96] 

which uses category-based adherence, based on the average distance of the items in a 

transaction to a cluster, as a global measure to be minimized.. 

 

1.4.5 CONCLUSION 

Cluster analysis has become very important during the last years due to the massive 

growth of databases following the dramatic increase on computing power. Mining 

documents on Internet [97] and finding genes with similar functions in microarrays [98]are 

two of many applications of these techniques. 

However, clustering is a very difficult problem. The definition of what a cluster is, is rather 

vague. One has to decide on an appropriate similarity measure to compare objects as well 

as on an objective function to drive the process.  Both choices offer possibilities to express 

domain knowledge. While this flexibility increases the applicability, an objective 

comparison of clustering approaches over a set of different problems is made hard if not 

impossible. Clustering also depends deeply on the nature of the data to be clustered. The 

type of the attributes is crucial, but also the sparsity and the number of attributes of every 

object have to be taken into account before choosing the right method. This makes 

possible that using different algorithms on the same data, the results can be completely 

different [62]. There is not a gold standard, and for a particular problem, it can happen that 

an old and classic method works better than a recently proposed one. In fact, K-means, 

proposed over 50 years ago is still widely used and, moreover, has been taken as a 

standard to be improved when categorical and transactional clustering problems have 

been tackled. 

A particularly difficult type of cluster analysis, involves categorical data. In this type of 

problem, distance cannot be used to measure similarity or dissimilarity among objects and 

other strategies have to be selected. Specific algorithms have been proposed particularly 

in the last years to cope with this problem and this section lists them so that a more clear 

vision can be taken of this research field.  

When the records to be clustered are transactional items, that is to say, a set of related 

items with attributes corresponding to a single item, then we are before a transactional 

cluster analysis problem. Numerical clustering algorithms are useless to tackle this 
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problem due to the curse of dimensionality, a situation that appears when the number of 

attributes of each object (and hence, dimensions) becomes too high. When the number of 

dimensions increases, the distance from a point to the closest one approaches the 

distance between this point and the furthest one [99]. Some categorical clustering 

algorithms also fail facing this type of data because of the selection of a local criterion 

function to optimize during the process of clustering, which is too time and resource 

consuming when the database is large.  

 

1.5 AIMS AND OBJECTIVES 

The gene prioritization problem was defined a decade ago and since then, many different 

computational solutions have been created to tackle it. After years of research, the set of 

gene prioritization tools is large and heterogeneous and include approaches based on 

different strategies, such as  training sets of genes or keywords describing the knowledge 

of the disease, different ways to input the candidate set to be ranked, multiple types of 

data sources and diverse types of outputs.  

The objective of this work is double. First of all, we intend to clarify the fast evolving gene 

prioritization field by thoroughly describing and comparing the gene prioritization 

approaches available as free online services. We point out the similarities and the 

differences, stressing in which cases a particular tool or group of tools is more suitable 

than others and comparing a representative subset of them in terms of performance. 

And second, we aim at increasing the performance of gene prioritization experiments by a 

first time statistical supported gene prioritization tools integration and by a cluster analysis 

based preprocessing step for training set based gene prioritization tools. Both cases are 

validated and applied to real biological data. 

 

1.6 STRUCTURE OF THE THESIS AND PERSONAL 

CONTRIBUTION 

In this thesis, we have given an insight into gene prioritization. We have thoroughly 

described the current gene prioritization tools freely available as web interfaces, we have 

compared some of them in terms of performance and reliability and we have combined the 

top performing ones in a new strategy to propose new meaningful candidates for a number 

of congenital and complex diseases. Furthermore, we propose a cluster analysis 

preprocessing step for training set based gene prioritization tools in order to obtain better 

rankings. 

Chapters 2 and 3 depict the state of the art in gene prioritization. Chapter 2 reviews all the 

gene prioritization tools that have been developed in the last years and that offer a free 

web based interface. Chapter 3 goes one step beyond in the review of gene prioritization 
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tools and sets up a benchmark of 42 diseases where the performance of the tools is 

compared. 

Chapter 4 presents a study where the highest quality gene prioritization tools based in the 

benchmark previously described are combined in a novel two-layer based strategy and 

their prioritization power is applied to three different genetic conditions. 

Chapter 5 introduces the use of cluster analysis as a preprocessing step in gene 

prioritization in order to obtain homogeneous training sets with the aim of producing higher 

quality rankings. 

Chapters 2, 3 and 4 have been jointly produced by the Ph.D. candidate and the mentioned 

co-authors in terms of  the conception of the idea and development of the study. In chapter 

2, the Ph.D. candidate has set up the initial idea, reviewed one third of the gene 

prioritization tools, has mined the literature in search of tool validations and has written the 

manuscript. In chapter 3, the Ph.D candidate has devised the study, has performed 

experiments with three tools and up to five different configurations and has written the 

paper. In chapter 4, the Ph.D. candidate has initiated the approach, has run two gene 

prioritization tools for three diseases, has collaborated in the interpretation of the final 

ranking related to asthma and has written the manuscript.  

In chapter 5, the Ph.D. candidate has set up the initial idea, devised the strategy, 

implemented the cluster analysis, analyzed the results and finally has written the 

manuscript. 
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Chapter 2  

Summary 

 
The gene prioritization problem has attracted a deep attention from the bioinformatics 

community during the last decade, since the problem was defined in 2002 [17]. Since then, 

many different approaches have been developed to tackle this problem. The existence of 

so many different tools with similar objective made the choice of one of them a difficult 

decision for a potential user, what is just the contrary of the main purpose of gene 

prioritization tools: to ease the work of the wet-lab researchers. 

Our main aim in this publication has been to make the decision of which gene prioritization 

tool allows the easier use for any potential user, regardless of his expertise with 

computers.  

We exhaustively review the class of freely accessible gene prioritization solutions offering 

a web interface. Therefore, we have discarded gene prioritization tools without a web 

interface to allow users, who are not experts in the use of the computers, could make the 

most of this paper. 

We point out the tool differences in terms of input, output and databases used. Input in 

gene prioritization can vary in terms of both training genes and candidate genes. The 

training data can consist of known genes and/or keywords and the candidate data can 

include a chromosomal region, a list of genes differentially expressed or even the full 

genome. Gene prioritization tools also differ in the output that they offer. Whereas most of 

them return a ranking of genes, a selection of promising candidates is also a valid output. 

In both cases, a statistic support of the results can be provided. As for the databases, 

gene prioritization tools can work with functional annotation data, protein-protein 

interaction, text mining, pathway data, expression values, sequence information, 

phenotypic data and others. Therefore, with so many variants and as stated before, 

selecting the right tool could be a difficult step for the user and our main aim has been to 

make this decision easier. 

Based on these variants, we also propose in this chapter a decision tree that puts the 

different possibilities in a visual way and that can be used by the final user to find the most 

appropriate tool for his needs.  

Furthermore, we include a bibliography with the validations of every tool and different 

publications where performance comparisons among tools can be found. 

Finally, we have developed a website containing up-to-date information about these tools 

(www.esat.kuleuven.be/gpp) In the last months, new tools have been added showing that 

the gene prioritization portal can be a reference site for researchers interested in the gene 

prioritization problem [100–102]. 

 

This chapter has been published in 2010 as an electronic version and in 2011 as a printed 

version in the Briefings in Bioinformatics journal: 
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Tranchevent, L.-C., Capdevila, F.B., Nitsch, D., De Moor, B., De Causmaecker, P., and 
Moreau, Y. (2011). A guide to web tools to prioritize candidate genes. Brief. Bioinformatics 
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tools, has mined the literature in search of tool validations and has written the manuscript. 
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Abstract
Finding the most promising genes among large lists of candidate genes has been defined as the gene prioritization

problem. It is a recurrent problem in genetics in which genetic conditions are reported to be associated with

chromosomal regions. In the last decade, several different computational approaches have been developed to

tackle this challenging task. In this study, we review 19 computational solutions for human gene prioritization that

are freely accessible as web tools and illustrate their differences.We summarize the various biological problems to

which they have been successfully applied. Ultimately, we describe several research directions that could increase

the quality and applicability of the tools. In addition we developed a website (http://www.esat.kuleuven.be/gpp) con-

taining detailed information about these and other tools, which is regularly updated.This review and the associated

website constitute together a guide to help users select a gene prioritization strategy that suits best their needs.
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BACKGROUND
One of the major challenges in human genetics is to

find the genetic variants underlying genetic disorders

for effective diagnostic testing and for unraveling the

molecular basis of these diseases. In the past decades,

the use of high-throughput technologies (such as

linkage analysis and association studies) has permitted

major discoveries in that field [1, 2]. These technol-

ogies can usually associate a chromosomal region

with a genetic condition. Similarly, one can also

use expression arrays to obtain a list of transcripts

differentially expressed in a disease sample with re-

spect to a reference sample. A common characteristic

of these methods is usually the large size of the

chromosomal regions returned, typically several

megabases [3]. The working hypothesis is often

that only one or a few genes are really of primary

interest (i.e. causal). Identifying the most promising

candidates among such large lists of genes is a chal-

lenging and time consuming task. Typically, a biolo-

gist would have to go manually through the list of

candidates, check what is currently known about
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each gene, and assess whether it is a promising can-

didate or not. The bioinformatics community has

therefore introduced the concept of gene prioritiza-

tion to take advantage of both the progress made in

computational biology and the large amount of

genomic data publicly available. It was first intro-

duced in 2002 by Perez-Iratxeta etal. [4] who already

described the first approach to tackle this problem.

Since then, many different strategies have been de-

veloped [5–34], among which some have been im-

plemented into web applications and eventually

experimentally validated. A similarity between all

strategies is their use of the ‘guilt-by-association’

concept: the most promising candidates will be the

ones that are similar to the genes already known to

be linked to the biological process of interest

[35–37]. For example, when studying type 2 diabetes

(T2D), KCNJ5 appears as a good candidate through

its potassium channel activity [38], an important

pathway for diabetes [39], and because it is known

to interact with ADRB2 [40], a key player in dia-

betes and obesity. This notion of similarity is not

restricted to pathway or interaction data but rather

can be extended to any kind of genomic data.

Recently, initial efforts have been made to experi-

mentally validate these approaches. For instance, in

2006, two independent studies used multiple tools in

conjunction to propose new meaningful candidates

for T2D and obesity [41, 42]. More recently, Aerts

et al. [43] have developed a computationally sup-

ported genetic screen whose computational part is

based on gene prioritization (Figure 1).

With this review, we aim at describing the current

options for a biologist who needs to select the most

promising genes from large candidate gene lists. We

have selected strategies for which a web application

was available, and we describe how they differ from

each other and, when applicable, how they were suc-

cessfully applied to real biological questions. In add-

ition, since it is likely that novel methods will be

proposed in the near future, we have also developed

a website termed ‘Gene Prioritization Portal’ (avail-

able at: http://www.esat.kuleuven.be/gpp/) that

represents an updatable electronic review of this field.

SELECTINGTHEGENE
PRIORITIZATION TOOLS
In this study, we review 19 gene prioritization tools

that fulfill the two following criteria. First, the strategy

should have been developed for human candidate

disease gene prioritization. Notice that predicting

the function of a gene or its implication in a genetic

condition are two closely related problems.

Moreover, several gene function prediction methods

have indeed been applied to disease gene prioritization

with reasonable performance [5]. However, it has

been shown that gene prioritization is more challen-

ging than gene function prediction since diseases often

implicate a complex set of cascades covering different

molecular pathways and functions [44]. Besides, to our

knowledge, none of the existing gene function pre-

diction methods includes disease-specific data. Thus,

these methods were excluded from the present study.

For gene function prediction methods, readers are

referred to the reviews by Troyanskaya et al. [45] and

Punta et al. [46]. Our second criterion is that a func-

tional web application should be available for the pro-

posed strategy. Since the end users of these tools are

not expert in computer science, approaches only pro-

viding a set of scripts, or some code to download have

been discarded. Furthermore, we focus our analysis on

the noncommercial solutions and thus require theweb

tools to be freely accessible for academia. Using these

criteria, we were able to retain a total of 19 applica-

tions that still differ by (i) the inputs they need from the

user, (ii) the computational methods they implement,

(iii) the data sources they use and (iv) the output they

present to the user. The thorough discussion of these

characteristics has allowed us to create a decision tree

(Figure 2) that supports users in their decision process.

In the following section, we summarize the gene

prioritization tools that we have retained. The corres-

ponding references and the URL of their web appli-

cations are presented in Table 1. Several approaches

combine different data sources. SUSPECT ranks

candidate genes by matching sequence features,

gene expression data, Interpro domains, and GO

terms [6]. CANDID uses several heterogeneous data

sources, some of them chosen to overcome bias [7].

Endeavour is, however, using training genes known

to be involved in a biological process of interest and

ranks candidate genes by applying several models

based on various genomic data sources [8].

Among the tools using different data sources,

ToppGene, SNPs3D, GeneDistiller and Posmed in-

clude mouse data within their algorithms, but in a

different manner. ToppGene combines mouse

phenotype data with human gene annotations and

literature [9]. SNPs3D identifies genes that are can-

didates for being involved in a specified disease based

on literature [10]. GeneDistiller uses mouse

Web tools to prioritize candidate genes 23

 at K
U

 L
eu

v
en

 - F
acu

lteit R
ech

tsg
eleerd

h
eid

 o
n
 S

ep
tem

b
er 1

2
, 2

0
1
2

h
ttp

://b
ib

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



Figure 1: A major challenge in human genetics is to unravel the genetic variants and the molecular basis that

underlay genetic disorders. In the past decades, geneticists have mainly used high-throughput technologies (such as

linkage analysis and association studies).These technologies usually associate a chromosomal region, possibly encom-

passing dozens of genes, with a genetic condition. Identifying the most promising candidates among such large lists

of genes is a challenging and time consuming task. The use of computational solutions, such as the ones reviewed

in that paper, could reduce the time and the money spent for such analysis without reducing the effectiveness of

the whole approach.

Figure 2: Decision tree that categorizes the19 gene prioritization tools according to the outputs they use and the

outputs they produce. This tree is designed to support the end users in their decision so that they can choose the

tools that suit best their needs. By starting from the first question on the top and by going down, the user can de-

termine a list of tools that can be used; in addition, the Figure 3 that describes the data sources used by the tool

can also be used to support the decision.

24 Tranchevent et al.
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phenotype to filter genes [11] and Posmed utilizes

among other data sources orthologous connections

from mouse to rank candidates [12].

G2D uses three algorithms based on different pri-

oritization strategies to prioritize genes on a chromo-

somal region according to their possible relation to

an inherited disease using a combination of

data mining on biomedical databases and gene se-

quence analysis [4]. TOM efficiently employs func-

tional and mapping data and selects relevant

candidate genes from a defined chromosomal

region [13, 14].

Tools that are mainly based on literature and text

mining are PolySearch, MimMiner, BITOLA,

aGeneApart and GenePropector. PolySearch extracts

and analyses relationships between diseases, genes,

mutations, drugs, pathways, tissues, organs and me-

tabolites in human by using multiple biomedical text

databases [15]. MimMiner analyses the human phe-

nome by text mining to rank phenotypes by their

similarity to a given disease phenotype [16] and

BITOLA mines MEDLINE database to discover

new relations between biomedical concepts [17].

aGeneApart creates a set of chromosomal aberration

maps that associate genes to biomedical concepts by

an extensive text mining of MEDLINE abstracts,

using a variety of controlled vocabularies [18].

GeneProspector searches for evidence about human

genes in relation to diseases, other phenotypes and risk

factors, and selects and prioritizes candidate genes by

using a literature database of genetic association stu-

dies [19].

Finding associations between genes and pheno-

types is the focus of Gentrepid and PGMapper.

Whereas Gentrepid predicts candidate disease

genes based on their association to known disease

genes of a related phenotype [20], PGMapper

matches phenotype to genes from a defined

genome region or a group of given genes by com-

bining the mapping information from the Ensembl

database and gene function information from the

OMIM and PubMed databases [21].

Tools, such as GeneWanderer, Prioritizer,

Posmed and PhenoPred, make use of genomewide

networks. GeneWanderer is based on protein–pro-

tein interaction and uses a global network distance

measure to define similarity in protein–protein inter-

action networks [22]. PhenoPred uses a supervised

algorithm for detecting gene–disease associations

based on the human protein–protein interaction net-

work, known gene–disease associations, protein

sequence and protein functional information at the

molecular level [23]. Instead of using a human pro-

tein–protein interaction network, Posmed is based

on an artificial neural network-like inferential pro-

cess in which each mined document becomes a

neuron (documentron) in the first layer of the net-

work and candidate genes populate the rest of layers

[12].

Although we have limited our analysis to the tools

freely accessible via a web interface, we are aware of

other gene prioritization methods that were

excluded of the present analysis but that still repre-

sent important contributions to the field. First,

Table 1: Overview of the 19 tools reviewed in the current study with their corresponding publications and website

Tool References Website

SUSPECT [6] http://www.genetics.med.ed.ac.uk/suspects/

ToppGene [9] http://toppgene.cchmc.org/

PolySearch [15] http://wishart.biology.ualberta.ca/polysearch/index.htm

MimMiner [16] http://www.cmbi.ru.nl/MimMiner/cgi-bin/main.pl

PhenoPred [23] http://www.phenopred.org

PGMapper [21] http://www.genediscovery.org/pgmapper/index.jsp

Endeavour [8, 32] http://www.esat.kuleuven.be/endeavour

G2D [33, 34] http://www.ogic.ca/projects/g2d_2/

TOM [13, 14] http://www-micrel.deis.unibo.it/�tom/

SNPs3D [10] http://www.SNPs3D.org

GenTrepid [20] http://www.gentrepid.org/

GeneWanderer [22] http://compbio.charite.de/genewanderer

Bitola [17] http://www.mf.uni-lj.si/bitola/

CANDID [7] https://dsgweb.wustl.edu/hutz/candid.html

PosMed [12] http://omicspace.riken.jp

GeneDistiller [11] http://www.genedistiller.org/

aGeneApart [18] http://www.esat.kuleuven.be/ageneapart

GeneProspector [19] http://www.hugenavigator.net/HuGENavigator/geneProspectorStartPage.do
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several gene prioritization methods, such as

CAESAR [24], GeneRank [25] and CGI [26] pro-

pose interesting alternatives (e.g. natural language

processing based disease model [24]), however,

they only provide a standalone application to install

and run locally. We believe that a web application is

essential since it does not require an extensive IT

knowledge to be installed and used. Second, there

are methods that were once pioneers in that field and

for which web applications were provided in the

past, but are not accessible any more (e.g. TrAPSS

[27], POCUS [28], Prioritizer [29]). Prioritizer

recently moved from a living web application to a

program to download and was therefore excluded

prior to publication. Third, several studies also pre-

sent case specific approaches tailored to answer a spe-

cific problem [30, 47–53]. For instance, Lombard

et al. [47] have prioritized 10 000 candidates for

the fetal alcohol syndrome (FAS) using a complex

set of 29 filters. Their analysis reveals interesting

therapeutic targets like TGF-�, MAPK and members

of the Hedgehog signaling pathways. Another ex-

ample is the network-based classification of breast

cancer metastasis developed by Chuang et al. [48].

These approaches are, however, case specific and

cannot be easily ported to another disease. Last,

alternative techniques to circumvent recurrent prob-

lems in gene prioritization are currently under devel-

opment. As an illustration, Nitsch et al. [31] have

proposed a data-driven method in which knowledge

about the disease under study comes from an expres-

sion data set instead of a training set or a keyword set.

DESCRIPTIONOF THEGENE
PRIORITIZATIONMETHODS
The genomic data are at the core
We have defined a data source as a type of data that

represents a particular view of the genes (see Box 1—

‘Gene view’) and thus can correspond to several

Box1: Glossary

Gene prioritization
Thegeneprioritization problemhasbeen defined as the identification of themostpromising candidate genes from a
large list of candidates with respect to a biological process of interest.
Data sources
Data sources are at the core of the gene prioritization problem since the quality of the predictions directly correl-
ateswith the quality of the data used tomake these predictions.The different genomic data sources can be defined
as different views on the same object, a gene. For instance, pathway databases (such as Reactome [58] and Kegg
[59]) define a ‘bio-molecular view’ of the genes, while PPI networks (such as HPRD [60] and MINT [61]) define an
‘interactomeview’. A single data typemightnotbepowerful enough to predict the disease causing genes accurately
while the use of several complementary data sources allow much more accurate predictions [8, 29].
SupplementaryTable1contains the list of the12 data sources we have defined.
Inputs
Two distinct types of inputs canbe distinguished: theprior knowledge about the genetic disorder of interest and the
candidate search space.On the one hand, the prior knowledge represents what is currently known about the dis-
ease under study, it canbe represented either as a set of genes known to play a role in the disease or as a set of key-
words that describe the disease. On the other hand, the candidate search space defines which genes are
candidates.For instance, a locus linked to a genomic conditiondefines a quantitative trait locus (QTL), the candidates
are therefore the genes lying in that region. Another possibility is a list of genes differentially expressed in a tissue
of interest that are not necessary from the same chromosomal location. Alternatively, the whole human genome
can be used. An overview of the inputs requiredby the applications can be found in Table 2.
Outputs
For the 19 selected applications, the output is either a ranking of the candidate genes, the most promising genes
being ranked at the top, or a selection of the most promising candidates, meaning that only the most promising
genes are returned. Several tools areperformingboth at the same time (Gentrepid, Bitola, PosMed), that is first se-
lecting the most promising candidates and then ranking only these. Several tools benefit from an additional
output, a statistical measure, often a P-value, which estimates how likely it is to obtain that ranking by chance
alone.The statisticalmeasure is often of crucial importance since therewill always be a gene ranked in first position
even if none of the candidate genes is really interesting.Notice then that a selection canbe obtained from a ranking
byusing the statisticalmeasure (e.g. by choosing a threshold abovewhich all the genes are considered as promising).
You can find an overview of the outputs produced by the different applications inTable 2.
Textmining
It is the automatic extraction of information aboutgenes, proteins and their functionalrelationships from textdocu-
ments [62].

26 Tranchevent et al.
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related databases. Data sources are at the core of the

gene prioritization problem since both high coverage

and high quality data sources are needed to make

accurate predictions. In total, we have defined 12

data sources: text mining (co-occurrence and func-

tional mining), protein–protein interactions, func-

tional annotations, pathways, expression, sequence,

phenotype, conservation, regulation, disease prob-

abilities and chemical components. Using these cate-

gories, we have built a data source landscape, which

describes for each tool which data sources it uses

(Supplementary Table 1). We can observe from the

data source landscape map that text mining is by far

the most widely used data source since 14 out of

the 19 tools are using co-occurrence or functional

text mining. Most of the approaches make use of

a wide range of data sources covering distinct views

of the genes, but four tools rely exclusively on

text mining (PGMapper, Bitola, aGeneApart and

GeneProspector), however their use of advanced

text mining techniques still allow them to make

novel predictions. At the other end of the spectrum,

conservation, regulation, disease probabilities and

chemical components are poorly used and only by

two tools at most although they describe unique fea-

tures that might not always be captured by the other

data sources. However, the rule should not be to

include as many data sources as possible but rather

to reach a critical mass of data beyond which accurate

predictions can be made.

Inputs and outputs of the methods
The tools also differ in the inputs they require and

the outputs they provide. Two types of inputs have

been distinguished: the prior knowledge about the

genetic disorder of interest and the candidate search

space. We furthermore consider two possibilities for

the prior knowledge as it can be defined by a set of

genes or by a set of keywords. The retrieval of a

training set requires the knowledge of, at least, one

disease causing gene, but preferably more than one.

In addition, the set needs to be homogeneous,

meaning that it usually contains between 5 and 25

genes that, together, describe a specific biological

process. When no disease gene can be found, mem-

bers of the pathways disturbed by the diseases are also

an option (Thienpont et al., manuscript in prepar-

ation). Alternatively, several tools accept text as

input, text is either a disease name, selected from a

list, or a set of user defined keywords that describe

the disease under study. In the second case, the

expert should define a complete set of keywords

that covers most aspects of the disease (e.g. to

obtain reliable results, ‘diabetes’ should be used in

conjunction with ‘insulin’, ‘islets’, ‘glucose’ and

others diabetes related keywords but not alone).

Regarding the candidate search space, we have

distinguished between a locus, a differentially

expressed genes (DEG) list, and the whole

genome. A locus is a set of neighboring genes

(e.g. all genes from the cytogenetic band 22q11.23)

while the genes in a DEG list are not necessarily

located at the same locus. Although these two

options are similar, the distinction we made is im-

portant since several tools allow the definition of a

locus but not of DEG list and vice versa.

Alternatively, nine tools allow the exploration of

the full genome, in case no candidate gene set can

be defined beforehand.

Regarding the outputs, two types were con-

sidered, a ranking and a selection of the candidate

genes. In a ranking scenario, all the candidates are

ranked so that the most promising candidate can be

found at the top, while for a selection, a subset of the

original candidate set, containing only the most pro-

mising candidates, is returned. From the 19 tools,

four perform a selection of the candidates and

three of these four perform a selection followed by

a ranking. In addition, we record which tools further

measure the significance of their results via any stat-

istical method. Of interest, a selection can then be

obtained from a ranking by using a threshold on this

statistical measure. Table 2 shows an overview of the

input data required by the tools as well as the output

they produce. Also, a clustering of the tools regard-

ing to their inputs and outputs is presented in

Figure 3. In addition, we have created a decision

tree to help users to choose the most suitable tools

for their biological question. The tree is based on

three basic questions that users should ask themselves

before selecting the tools they want to use. By an-

swering these questions, users define first, which

genes are candidate; second, how the current know-

ledge is represented; and third (when necessary),

what is the desired output type.

The importance of biological validation
Since the methods we are interested in are predictive,

an important criterion for selection is the perform-

ance. The tools reviewed here were all originally

published together with the results of a benchmark

analysis as a proof of concept. It is however difficult to

Web tools to prioritize candidate genes 27
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Figure 3: Repartition of the19 tools according to the data sources they use. The four data sources most common-

ly used areText (functional and interactions mining), protein^protein interactions, functional annotations and path-

ways and are therefore represented as large ellipses. The additional seven data sources are represented with

symbols.

Table 2: Description of the inputs needed by the tools and the outputs produced by the tools

Tool Inputs Output

Training data Candidate genes Ranking Selection of

candidates

Test

statistic

KnownGenes Keywords Region DEG Genome

SUSPECT x x x x

ToppGene x x x x

PolySearch x x x x

MimMiner x x x

PhenoPred x x x

PGMapper x x x x

Endeavour x x x x x x x

G2D x x x x x

TOM x x x

SNPs3D x x x

GenTrepid x x x x x

GeneWanderer x x x x x

Bitola x x x x x

CANDID x x x

aGeneApart x x x x

GeneProspector x x x

PosMed x x x x x x

GeneDistiller x x x x

Wedistinct two types of inputs: theprior knowledge about the genetic disorder of interest and the candidate search space.Theprior knowledge can

be represented either as a set of genes known to play a role in the disease or as a set of keywords that describe the disease.The candidate search

space is either a locus linked to a genomic condition or a list of genes differentially expressed in a tissue of interest (DEG) or the whole human

genome.The output is either a ranking of the candidate genes or a selection of the most promising candidates. In addition, a statistical measure

that estimates how likely it is to obtain that result by chance alone.More details about the inputs and outputs can be found in the Box1.
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compare the performance of these benchmarks dir-

ectly since their setups are different (different diseases,

different genes). Although a rigorous comparison is

still missing, various studies that compare several gene

prioritization tools by analyzing their performance on

a particular disease have been performed (e.g. on T2D

[41, 42, 54]). An overview is presented in

Supplementary Table 2. Although it is of primary

importance, the performance obtained through a

benchmark analysis represents more a proof of con-

cept than a critical performance assessment.

Therefore, it is only an estimation of the real perform-

ance (e.g. for a real biological application) and it is

also most likely benchmark specific. That is the rea-

son why we believe that the definition of the

desired inputs/outputs and data sources, and the

knowledge of real biological applications are also

crucial.

Beside these benchmarks, several biological appli-

cations have been described in the literature.

Supplementary Table 3 gives an overview of these

applications. Interestingly, three of them analyzed

T2D associated loci and are using several gene pri-

oritization tools in conjunction [41, 42, 54]. Elbers

et al. [42] analyzed five loci previously reported to be

linked with both T2D and obesity that encompass

more than 600 genes in total. The authors used six

gene prioritization tools in conjunction and reported

27 interesting candidates. Some of them were already

known to be involved in either diabetes or obesity

(e.g. TCF1 and HNF4A, responsible for maturity

onset diabetes of the young, MODY) but some can-

didates were novel predictions. Among them, five

genes were involved in immunity and defense (e.g.

TLR2, FGB) and it is known that low-grade inflam-

mation in the visceral fat of obese individuals causes

insulin resistance and subsequently T2D. Also, 10

candidate genes were so-called ‘thrifty genes’ because

of their involvement in metabolism, sloth and glut-

tony (e.g. AACS, PTGIS and the neuropeptide Y

receptor family members). Using a similar strategy,

Tiffin et al. [41] prioritized T2D and obesity asso-

ciated loci and proposed another set of 164 promis-

ing candidates. Of interest, 4 of the 27 candidates

reported by Elbers et al. were also reported by

Tiffin et al. (namely CPE, LAMA5, PPGB and

PTGIS). Although there is an overlap between the

predictions, some important discrepancies remain

and can be explained by the fact that the two studies

do not focus on the same set of loci and do not use

the same gene prioritization tools. This indicates that

several gene prioritization tools can be applied in

parallel to strengthen the results. Teber et al. [54]

compared the finding from recent genome-wide as-

sociation studies (GWAS) to the predictions made by

eight gene prioritization methods. Of the 11 genes

associated with highly significant SNPs identified by

the GWAS, eight were flagged as promising candi-

dates by at least one of the method. Another inter-

esting validation is a computationally supported

genetic screen performed by Aerts et al. [43] in fruit

fly. The aim of a genetic screen is to discover in vivo

associations between genotypes and phenotypes. A

forward genetic screen is usually performed in two

steps: in the first step, the loci associated to the

phenotype under study are identified and in a

second step, the genes from these loci are assayed

individually. Aerts et al. have introduced a computa-

tionally supported genetic screen in which the

associated loci found in the first step are prioritized

using Endeavour and then only the genes ranked in

the top 30% of every locus are assayed in a secondary

screen. Additionally, it was shown that 30% is a

conservative threshold since all the positives were

ranked in the top 15%. This shows that gene priori-

tization tools, when integrated into such

workflows, can increase their efficiency for a

decreased cost.

Intuitive interfaces
Beside the data, the inputs/outputs and the perform-

ance, what is critical for a tool to be used is its

interface. Ideally, it has to be an intuitive interface

that accepts simple inputs and provides detailed

outputs. A past success and reference in bioinformat-

ics is basic local alignment search tool (Blast) for

which only a single sequence needs to be provided

[55]. In return, Blast provides the complete detailed

alignments together with cross-links to sequence

databases so that the user can fully understand

why the input sequence matches to a given database

sequence. We, as a community, should develop tools

that answer the end users’ needs and that probably

corresponding to the simple input—detailed

output paradigm described above. Besides, the

presence of an advanced mode that allows users

to fine tune the analysis is also clearly an

advantage (e.g. defining a threshold for the Blast

e-value).

Several gene prioritization tools such as

MimMiner, PhenoPred, aGeneApart and

GeneProspector can already be fed with a single
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disease name that represents the simplest training

input possible. However, an advanced mode to fine

tune the analysis is missing for these applications. The

outputs generated by the tools are very detailed and

almost always contain cross-references to external

databases (e.g. Hugo, EnsEMBL, RefSeq).

However, only few tools present detailed informa-

tion about the data underlying the ranking of the

candidate genes. This data is crucial for the user

who needs to determine which candidates should

be investigated further. This is probably the weakest

point of most of the current tools although several

tools like Suspects and G2D already propose prelim-

inary solutions. In addition, most of the tools benefit

from a user manual and a dedicated help section that

help users to understand how they should interact

with the interface.

FUTUREDIRECTIONS
With the use of advanced high-throughput technol-

ogies, the amount of genomic data is growing expo-

nentially and the quality of the gene prioritization

methods is also increasing accordingly. However,

several avenues need to be explored in the coming

years to increase even further the potential of these

tools. We have already mentioned the interface,

which is sometimes overlooked in the software

development process. More at the data level, some

efforts have already been made to use the huge

amount of data available for species close to human

[9–12]. Already, several tools described in the current

review include rodent data (e.g. SNPs3D,

ToppGene, GeneDistiller, Posmed). However, the

development of gene prioritization approaches com-

bining in parallel many data sources from different

organisms is still to come. Another important devel-

opment is the inclusion of clinical and patient related

data. DECIPHER [56] already represents a first step

in that direction since it includes aCGH data from

patients and allow text mining prioritization (using

the core engine of aGeneApart [18]) of the genomic

alterations, detected in the aCGH data, with respect

to the phenotype of the patient. Efforts should also

be made to include data sources that have been, so

far, rarely included such as chemical components and

miRNA data. Another important research track is to

explore different computational approaches to im-

prove once more the algorithms that are running

the gene prioritization methods. Preliminary results

have shown, for example, that kernel methods are

more efficient than simpler statistical methods

such as Pearson correlation or binomial based

over-representation [57]. The last challenge of this

field is its necessary adaptation to the shift observed

in genetics towards the study of more complex

disorders that is though to be more difficult than

the study of the Mendelian diseases.

Altogether, the methods described in this review

represent significant advances indicating that this

field is still an emerging field. It is therefore most

likely that novel methods will be developed in the

future and that the existing ones will be improved.

To overcome the limitations due to the static nature

of this review, we have developed a website whose

aim is to represent an updatable electronic version of

the present review. This web site, termed ‘Gene

Prioritization Portal’ (available at: http://www.esat

.kuleuven.be/gpp), contains, for every tool, a

detailed sheet that summarizes the necessary infor-

mation such as the inputs needed and the data

sources used. It also builds tables that describe the

general data source usage and the general input/

output usage that are equivalent to Table 2 and

Supplementary Table 1 of the current publication.

We believe that this website represents a first step to

guide users through their gene prioritization

experiments.

CONCLUSION
This review tries to clarify the world of gene priori-

tization to the final user through an exhaustive guide

of 19 human candidate gene prioritization methods

that are freely accessible through a web interface.

This taxonomy has been done according to different

characteristics of the tools, including the type of

input, data sources used during the process of priori-

tization and the desired output. We think that this

review is a useful tool not only to help the wet lab

researchers to dive into gene prioritization, but also

to guide them to select the most convenient method

for their analysis.

To keep up with the especially fast evolving

world of bioinformatics in general and gene priori-

tization in particular, we have developed a website

http://www.esat.kuleuven.be/gpp/ that contains

updated information of all the tools described in

this review. We expect our portal to become a ref-

erence point in gene prioritization where not only

users but also developers will find up-to-date infor-

mation necessary for their research.
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Key Points

� Numerous computational methods have been developed to

tackle the gene prioritization problem in human; we have col-

lected themethods that offer suchweb services freely.

� Wehave describedhow thesemethods differ fromeachotherby

the inputs they need, the outputs they produce and the data

sources they use.

� We have furthermore described some of the biological applica-

tions to which gene prioritization approaches were successfully

applied.

� Awebsite that contains information about the available genepri-

oritization methods has been developed and will be updated on

a regular basis.
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bib.oxfordjournals.org/.
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Supplementary material for the manuscript entitled “A guide to web tools 

to prioritize candidate genes” by Tranchevent et al. 
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SUSPECT    x  x x      

ToppGene x  x x x x x x     

PolySearch  x x x x       x 

MimMiner  x x x   x x     

PhenoPred   x x   x x     

PGMapper  x           

Endeavour  x x x x o x x   x o x  

G2D x  x x   x      

TOM    x  x       

SNPs3D  x x x x  x x     

GenTrepid  x x  x  x      

GeneWande

rer 
  x          

Bitola  x           

CANDID  x x   x x  x  o  

aGeneApart  x           

GeneProspe

ctor 
 x           

PosMed x x x x    x    x 

GeneDistiller x  x x x x  x     

Supplementary Table 1: Data sources used by the 19 tools. We have defined 12 

distinct types, each type can correspond to several databases (e.g., Reactome and 

Kegg are two pathway databases). A cross means that a data source is available for 

one tool. A circle means that the user can add its own data source of that type. 
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Tool Reference Compared with 

SUSPECTS 

Teber et al. (2009) [1] GenTrepid, G2D 

Tiffin et al. (2006) [2] G2D, GenTrepid 

Thornblad et al. (2007) [3] PosMed 

Huang et al. (2008) [4] Endeavour 

ToppGene   

PolySearch   

MimMiner   

PhenoPred   

PGMapper   

Endeavour 

Hutz et al. (2008) [5] CANDID 

Köhler et al. (2008) [6] GeneWanderer 

Huang et al. (2008) [4] Suspects 

G2D 
Teber et al. (2009) [1] GenTrepid, SUSPECTS 

Tiffin et al. (2006) [2] SUSPECT, GenTrepid 

TOM   

SNPs3D   

GenTrepid 
Teber et al. (2009) [1] G2D, SUSPECT 

Tiffin et al. (2006) [2] G2D, SUSPECT 

GeneWand

erer 
Köhler et al. (2008) [6] Endeavour 

Bitola   

CANDID Hutz et al. (2008) [5] Endeavour 

aGeneApart   

GeneProsp

ector 
  

PosMed Thornblad et al. (2007) [3] SUSPECTS 

 

Supplementary Table 2: Collection of studies that compare different gene 

prioritization tools by applying them either to real biological problems or to a common 

benchmark.   
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Tool Reference Disease 

SUSPECTS 

Tiffin et al. (2006) [2] Type 2 Diabetes 

Elbers et al. (2007) [7] Type 2 Diabetes 

Teber et al. (2009) [1] Type 2 Diabetes 

Huang et al. (2008) [4] Osteoporosis 

ToppGene Sinha et al. (2008) [8] p53-mediated tumorigenesis 

PolySearch   

MimMiner   

PhenoPred   

PGMapper Xiong et al. (2008) [9] Arthritis 

Endeavour 

Huang et al. (2008) [4] Osteoporosis 

Windelinckx et al. (2007) [10] Muscle strength 

Elbers et al. (2007) [7] 
Common obesity and type 2 

Diabetes 

Cheung et al. (2008) [11] 
Bone mineral density variation 

and fracture risk association 

Liu et al. (2008) [12] BMD and bone structure 

Tzouvelikis et al. (2007) [13] Pulmonary fibrosis 

Osoegawa et al. (2008) [14] Cleft lip and palate 

Adachi et al. (2007) [15] Adipocyte proteome 

Vanden Bempt et al. (2007) 

[16] 
Breast cancer 

Storey et al. (2009) [17] Spinocerebellar ataxia 

Aerts et al.  (2009) [18] 
Atonal mediated neural 

development 

Katsanou et al. (2009) [19] 

Placental Branching 

Morphogenesis and Embryonic 

Development 

Sookoian et al. (2009) [20] Type 2 diabetes 

G2D 

Teber et al. (2009) [1] Type 2 Diabetes 

Tiffin et al. (2006) [2] Type 2 Diabetes 

Tiffin et al. (2008) [21] Metabolic syndrome 

Elbers et al. (2007) [7] 
Common obesity and type 2 

Diabetes 

TOM   

SNPs3D   

GenTrepid 

Teber et al. (2009) [1] Type 2 Diabetes 

Sparrow et al. (2008) [22] 
Spondylocostal dysostosis 

(SCD) 
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GeneWande

rer 
  

Bitola   

CANDID   

aGeneApart Pasmant et al. (2008) [23] NF1 contiguous gene syndrome 

GeneProspe

ctor 
  

PosMed   

GeneDistille

r 
  

 

Supplementary Table 3: Collection of the biological applications found in the 

literature that use one of the tools of the present review. Redundancy with the Suppl. 

Table 2 is possible when several tools were used in conjunction.
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Chapter 3  

Summary 

This chapter expands the review of the previous chapter adding a quantitative 

component following the spirit of CASP for protein structure prediction.  

In our effort to help the gene prioritization final user to select the most convenient 

tool for his purposes, we have compared several web based and freely accessible 

gene prioritization tools in terms of performance and reliability. We have measured 

the tool performance based on the position in the final ranking of a set of recently 

discovered disease genes. As for reliability, we have taken into account the 

percentage of experiments where the validating gene was returned by the tool as 

part of the final ranking. 

The main differences between this approach and other similar work is that we have 

used recently published disease genes as validating genes. During six months, we 

have selected from scientific literature those genes published as linked to a particular 

genetic condition. We have run our experiments in the 48 hours following to the 

publication to ensure that the databases used by the tools where still not updated 

with this information.  

The input for all the gene prioritization tools has been the same and it has consisted 

of a set of keywords built by ourselves and a chromosomic region of about 10 Mb 

encompassing the validating gene. 

In this way, we have run 43 times several gene prioritization tools and we have 

recorded both the final position of the validating gene and whether this gene was 

taken into account by the tool or not. Several statistical measures have been 

calculated. 

Furthermore, we have integrated the tools and compared the combined ranking with 

the individual ones and the results show better figures in the combined approach, 

giving a strong support to the work that we present in chapter 4. 

This chapter has been submitted to the Bioinformatics journal on July 2012. 

Personal contribution 

This chapter has been jointly produced by the Ph.D. candidate and the mentioned 

co-authors in terms of  the conception of the idea and development of the study. In 

particular, the Ph.D candidate has devised the study, has performed experiments 

with three tools and up to five different configurations and has written the paper�
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ABSTRACT 

Motivation: Gene prioritization aims at identifying the most promis-

ing candidate genes among a large pool of candidates—so as to 

maximize the yield and biological relevance of further downstream 

validation experiments and functional studies. During the past few 

years, several gene prioritization tools have been defined and some 

of them have been implemented and made available through freely 

available web tools. In this study, we aim at comparing the predictive 

performance of eight publicly available prioritization tools on novel 

data. We have performed an analysis in which 42 recently reported 

disease gene associations from literature are used to benchmark 

these tools before the underlying databases are updated.  

Results: Cross-validation on retrospective data provides perfor-

mance estimate likely to be overoptimistic because some of the data 

sources are contaminated with knowledge from the disease-gene 

association. Our approach mimics a novel discovery more closely 

and thus provides more realistic performance estimates. There are 

however marked differences, and tools that rely on more advanced 

data integration schemes appear more powerful. 

Contact: yves.moreau@esat.kuleuven.be 

1 INTRODUCTION  

A major challenge in human genetics is to discover novel disease 

causing genes, both for Mendelian and complex disorders. Identi-

fying disease genes is a crucial first step in unraveling molecular 

networks underlying diseases, and thus understanding disease 

mechanisms, also towards the development of effective therapies. 

The discovery of a novel disease gene often starts with a cytoge-

netic study, a linkage analysis, a high-throughput omics experi-

ment, or a genome-wide association study (GWAS). However, 

these studies do not always pinpoint the disease gene uniquely, but 

often result in large lists of candidate genes that are potentially 

relevant (Hardy and Singleton, 2009). Moreover, recent advances 

in next-generation sequencing offer promising opportunities to 

explore the genomic alterations of patients (Schuster, 2008). How-

  
#To whom correspondence should be addressed.  

ever, thousands of mutations in hundreds of genes are often detect-

ed, among which only a few are in fact linked to the genetic condi-

tion of interest (Lupski et al., 2010). The experimental validation 

of these candidate genes, for instance through resequencing, path-

way or expression analysis, is still expensive and time consuming. 

An efficient way to reduce the validation cost is to narrow down 

the large list of candidate genes to a small and manageable set of 

highly promising genes, a process called gene prioritization. Priori-

tization was in the past achieved manually by geneticists and biol-

ogists and was mainly based on their own expertise. Nowadays, 

biologists and geneticists can use computational approaches that 

can handle and analyze the large amount of genomic data currently 

available.  

In the past few years, many gene prioritization methods have been 

proposed, some of which have been implemented into publicly 

available tools that users can freely access and use (Moreau et al., 

2012; Doncheva et al., 2012; Piro et al., 2012; Tiffin 2011, Oti 

2011; Tranchevent et al., 2010). Information about these tools is 

summarized in our Gene Prioritization Portal 

(http://www.esat.kuleuven.be/gpp) that currently describes 33 

prioritization tools. This web site has been designed to help re-

searchers to carefully select the tools that best correspond to their 

needs. For instance, only few tools can prioritize the whole ge-

nome, which can be necessary when no positive regions can be 

identified beforehand, or when selecting candidates for a medium-

throughput screen (instead of low-throughput validation). Another 

example is the study of a poorly characterized disorder, for which a 

prioritization tool not relying on a set of known disease genes 

might be more suited. Recently, several studies have demonstrated 

that gene prioritization tools can help geneticists to discover novel 

disease genes (Thienpont et al., 2010; Calvo et al., 2006). For 

instance, a KIF1A mutation was discovered in hereditary spastic 

paraparesis patients after KIF1A was predicted to be the best can-

didate gene from the locus using multiple prioritization tools 

(Erlich et al., 2011). Another study discovered homozygous muta-

tions in the PTRF-CAVIN gene in patients with congenital gener-

alized lipodystrophy with muscle rippling after PTRF-CAVIN was 

predicted as the most probable candidate gene for high expression 
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in muscle and adipose tissue (Rajab et al., 2010). A third study 

identified the HHEX gene to be associated with type 2 diabetes in 

a Dutch cohort after investigating the T2D-susceptibility loci using 

candidate gene prioritization (Vliet-Ostaptchouk et al., 2008). 

However, beyond these conceptual differences, one essential pa-

rameter to consider when selecting gene prioritization tools is their 

respective performance—that is, their ability to identify the true 

positive genes as promising candidate genes in order to maximize 

the yield of the follow-up experimental validation. A common 

standard in bioinformatics is to estimate the performance with a 

benchmark analysis. Several publications that introduce a novel 

prioritization approach also describe a comparative benchmark 

with several existing methods (Hutz et al., 2008; Köhler et al., 

2008; Thornblad et al., 2007). However, these benchmarks are 

most of the time cross-validations of gold-standard disease data 

sets (e.g., known data). Therefore, the estimation of the perfor-

mance is likely an overestimate of the real performance (i.e., on 

novel data). Because different types of data are dependent on each 

other (for example, GO annotation, KEGG pathway membership, 

and MEDLINE abstracts) it becomes impossible to remove all 

cross-talk effects between data sources (e.g., removing MEDLINE 

data does not remove all information from the biomedical literature 

since much of it is present in GO and KEGG) to prevent contami-

nation of the prediction of the disease gene by actual retrospective 

knowledge of this association. This makes it challenging to create 

benchmarks on retrospective data that are indicative of the perfor-

mance of the method in an actual research setting. Next to bench-

marking, some studies use several prioritization methods to ana-

lyze disease associated loci, mostly for type 2 diabetes and obesity 

(Tiffin et al., 2006; Elbers et al., 2007; Teber et al., 2009). Howev-

er, the results have not been experimentally validated, which 

means that it is not possible to identify which methods made better 

predictions. Also, a few studies combine computational and exper-

imental analysis: in silico generated hypothesis are then validated 

in vivo. We have, for instance, performed a computationally-

supported genetic screen in Drosophila that led to the identification 

of 12 novel atonal genetic interactors (Aerts et al., 2009). Although 

useful, such studies often rely on the use of a single tool and there-

fore cannot be used to compare different approaches. They also 

give no indication of the performance of the method in general, but 

only illustrate it on a single well-validated case. 

In this study, we aim at comparing the performance of several 

freely accessible web-based gene prioritization tools on novel data, 

which, to our knowledge, has never been performed before. To this 

aim, we selected recently reported disease gene associations from 

literature and use several gene prioritization tools to make predic-

tions immediately after publication (typically within two days). 

Our approach relies on the fact that, when the prioritization tools 

are used, the novel disease gene association of interest is not yet 

included in the databases that underlie these tools. As a conse-

quence, our approach mimics a novel discovery, and therefore the 

estimation of the performance is more accurate. It has to be men-

tioned that we compare tools and not the underlying algorithms 

(we see a tool as an algorithm plus some data sources), because 

this is what is most relevant to geneticists. 

 

 

2 METHODS 

2.1 Gene Prioritization tools 

We aim at comparing the gene prioritization tools that can easily be used, 

and therefore only select the tools for which a free web-based implementa-

tion is available. The main objective is to assess the ability of the gene 

prioritization tools to predict potential novel disease genes which can then 

be experimentally validated. We have therefore not selected the tools 

whose ranking strategies depend exclusively on text as they would most 

likely work only when the novel disease gene was already considered a 

good candidate gene prior to discovery. One exception is Candid that also 

uses other data sources beside MEDLINE (e.g., protein domains, interac-

tions, and expression data). In total, we have selected eight tools: Suspects 

(Adie et al., 2006), ToppGene (Chen et al., 2007), GeneDistiller (Seelow et 

al., 2008), GeneWanderer (Köhler et al., 2008), Posmed (Yoshida et al., 

2009), Candid (Hutz et al., 2008), Endeavour (Aerts et al., 2006), and Pinta 

(Nitsch et al., 2010). The tools are run with their settings recommended by 

the developers. When applicable, multiple configurations are defined to 

explore several possibilities (for instance, several ranking algorithms within 

one tool). Originally, Pinta was developed to use expression data as input 

data, but here, we replace the continuous data (coming from expression 

data) with binary data using training genes: a 1 is inputed for each training 

gene, and a 0 is associated to the other genes. For an overview of the tools, 

please see Supplementary Table S1. All tools except Candid are used to 

prioritize a set of candidate genes (from a chromosomal region), and Can-

did is used to prioritize the whole genome. Pinta and Endeavour support 

both genome-wide and candidate set based prioritizations, and are used for 

both in this study (Endeavour-GW and Pinta-GW for genome-wide priori-

tization, Endeavour-CS and Pinta-CS for the candidate set prioritization). 

In addition, GeneWanderer can be run with up to four different ranking 

strategies (random walk, diffusion kernel, shortest path and direct interac-

tion). We present the results for the first two strategies (GeneWanderer-RW 

for random walk, GeneWanderer-DK for diffusion kernel) since they have 

been showed to outperform the other two, simpler, approaches (Köhler et 

al., 2008) and since they can be efficiently used with many training genes. 

The performance of Posmed shows a strong dependency on the set of 

keywords used as an input and we ran it twice with different inputs. In the 

first run, we use the complete keyword set (Posmed-KS), and in the second, 

we only use the name of the disease (Posmed-DN). GeneDistiller is trained 

with both genes and keywords. These keywords are then used to find 

additional genes through the mining of OMIM, which in our case has less 

influence since OMIM is already used to derive the training genes. We 

therefore consider that GeneDistiller is trained with genes only. Candid is 

the only tool that can also be trained with disease specific tissues, when 

available, tissues relevant to the disease under study are used. Notice that 

Suspects went offline during our study after the 27th association and is not 

supported anymore (Euan Adie, personal communication), therefore, 

Suspects results are based on 27 associations over 42. 

2.2 Validation data set 

The validation data set is built by mining the scientific literature to identify 

the recently discovered disease-gene associations. This is achieved manual-

ly to avoid false positive associations. We select 6 journals that frequently 

publish papers that describe such associations: Nature Genetics, American 

Journal of Medical Genetics (part A / part B), Human Genetics, Human 

Molecular Genetics, and Human Mutation. We select all the novel disease-

gene associations regardless of the disease under study, of the methodology 

used, and of whether the findings are confirmed or not. Novelty is assessed 

by using OMIM (McKusick, 1998), the Genetic Association Database 

(Becker et al., 2004), GoPubmed (Doms and Schroeder, 2005), and 

GeneCards (Safran et al., 2010). More precisely, we assess novelty at the 

gene level, and therefore novel mutations within already known genes are 

not considered. This process was kept active for 6 months (May 15 - No-

vember 15, 2010) and led to a collection of 42 associations (see Table 1 
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and Supplementary Table S2). For each association, the tools are run as 

soon as the association is identified following the defined workflow (see 

below). By doing this, we simulate as much as possible the prediction of a 

novel disease gene since the underlying databases are still unaware of the 

association. Once an association is identified, the exact inputs for the 

different tools have to be defined. For instance, ToppGene, GeneDistiller, 

GeneWanderer, Pinta and Endeavour require training genes (genes already 

known to be associated to the disease under study) whereas Suspects, 

Posmed, GeneDistiller and Candid require keywords that describe the 

disease. Training genes and keywords are collected from the corresponding 

OMIM pages, GAD pages and from recently published reviews when 

possible. BioMart (Haider et al., 2009) is used to map between gene sym-

bols and tool specific gene identifiers (e.g., EntrezGene or Ensembl identi-

fiers). As mentioned above, most of the tools require in addition a set of 

candidate genes (from the whole genome). Several tools accept chromoso-

mal coordinates whereas some prefer cytogenetics bands. For each associa-

tion, we select the cytogenetics bands that cover approximately 10Mb 

around the novel disease gene and derive the chromosomal coordinates. We 

choose 10Mb to obtain on average at least 100 candidate genes. Once 

again, BioMart is used to retrieve specific gene identifiers. For an overview 

of the inputs for the 42 associations, please see Supplementary Table S3.  

The resulting 42 novel disease gene associations do not represent a homo-

geneous set. Therefore, we have divided them into confirmed (for mono-

genic diseases, the mutation is found in at least 2 unrelated patients; for 

multifactorial diseases, a GWAS is replicated in a separate cohort), inter-

mediate (a single study, but additional functional evidence is provided), and 

unconfirmed (a single study) associations. 

2.3 Performance measures 

For each tool, we then assess its ability to identify the novel disease genes 

as promising genes using several statistical measures. We first compute the 

median of the rank ratio over all associations. We preferably use rank ratio 

over rank because tools do not necessarily return the same number of 

candidate genes even when fed with the same inputs. In addition, we also 

draw the boxplots of these rank ratios to give a more comprehensive view 

of the tool performance. Another method to compare the tools is to build 

the Receiver Operating Characteristic (ROC) curves, and to compute the 

Area Under the Curve (AUC) as an estimate of the global performance. To 

compare the tools even further, we computed the true positive rates when 

setting the threshold for validation at the top 5% (TPR in top 5% of candi-

dates), 10% (TPR in top 10%) and 30% (TPR in top 30%). This is motivat-

ed by the fact that in a real situation, the number of candidate genes to 

assay often needs to be limited because of financial and time constraints. 

We have selected three thresholds that represent reasonable biological 

hypotheses, as we previously illustrated in a genetic screen (Aerts et al., 

2009). The corresponding TPR measures are used to estimate how efficient 

the tools are if only the top 5%, 10%, or 30% candidate genes would be 

assayed. Notice that these values correspond to the shape of the lower end 

of the ROC curve (the sharper the curve, the higher the TPR). There are 

cases for which some tools are not able to identify the novel disease gene at 

all, we therefore include a response rate. It is defined as the percentage of 

associations for which each tool does return a prioritization result for the 

novel disease gene (in some cases a tool will not return any result, for 

example because it could not correctly map the gene identifier or some 

candidates are otherwise filtered out). For example, if one of the 42 disease 

genes could not be ranked (i.e., gene is missing), the response rate drops 

down to ~98% (41/42).  

Lastly, we also derive a heat map to detect any correlation between tools by 

computing the pairwise cosine similarity of the rankings presented in 

Tables 2 (see Supplementary Figure S1). 

 

 

Table 1. The validation data set consisting of 42 recently discovered dis-

ease gene associations. 

Gene Disease/phenotype Reference(s) 

HCCS  Congenital Diaphragmatic Hernia  
Qidwai et al. (2010) 

BRCA2  Bipolar Disorder  
Tesli et al. (2010) 

TNFRSF19  Nasopharyngeal carcinoma  Bei et al. (2010) 

MECOM  Nasopharyngeal carcinoma  
Bei et al. (2010) 

ATF7IP  Testicular germ cell tumor  
Turnbull et al. (2010) 

DMRT1  Testicular germ cell tumor  
Turnbull et al. (2010) 

FUT2  Crohn's disease  
McGovern et al. (2010) 

CSF1R  Asthma  
Shin et al. (2010) 

GLI3  Metopic craniosynostosis  
McDonald-McGinn et al. (2010) 

STOM  Nonsyndromic cleft lip/palate  
Letra et al. (2010) 

UTRN  Arthrogryposis  
Tabet et al. (2010) 

GABRR1  Bipolar schizoaffective disorder  
Green et al. (2010) 

UBE2L3  Crohn's disease  
Fransen et al. (2010) 

BCL3  Crohn's disease  
Fransen et al. (2010) 

EZH2  Myelodysplastic syndromes  
Nikoloski et al. (2010) 

TRAF6  Parkinson's disease  
Zucchelli et al. (2010) 

IL10  Behcet's disease  
Remmers et al. (2010);  

Mizuki et al. (2010) 

DAB2IP  Abdominal aortic aneurysm  
Gretarsdottir et al. (2010) 

SPIB  Primary biliary cirrhosis  
Liu et al. (2010) 

MMEL1  Primary biliary cirrhosis  
Hirschfield et al. (2010) 

TBX2  Complex heart defect  
Radio et al. (2010) 

RUNX2  Single-suture craniosynostosis  
Mefford et al. (2010) 

CRHR1  Multiple sclerosis  
Briggs et al. (2010) 

IFNG  Leprosy  
Cardoso et al. (2010) 

SH2B1  Congenital Anomalies of the Kidney 

and Urinary Tract  

Sampson et al. (2010) 

DISP1  Congenital Diaphragmatic Hernia  
Kantarci et al. (2010) 

G6PC3  Dursun syndrome  
Banka et al. (2010) 

PQBP1  Periventricular heterotopia  
Sheen et al. (2010) 

CD320  Methylmalonic aciduria  
Quadros et al. (2010) 

CHST14  Ehlers-Danlos syndrome  
Miyake et al. (2010) 

PLCE1  Esophageal squamous cell carcino-

ma  

Wang et al. (2010);  

Abnet et al. (2010) 

C20orf54  Esophageal squamous cell carcino-

ma  

Wang et al. (2010) 

SDCCAG8  Retinal-renal ciliopathy  
Otto et al. (2010) 

TP63  Lung adenocarcinoma  
Miki et al. (2010) 

UBE2E2  Type 2 diabetes  
Yamauchi et al. (2010) 

LPP  Tetralogy of Fallot  
Arrington et al. (2010) 

RANBP1  Smooth pursuit eye movement 

abnormality  

Cheong et al. (2011) 

HTR7  Alcohol dependence  
Zlojutro et al. (2010) 

SOX17  Congenital anomalies of the kidney 

and the urinary tract  

Gimelli et al. (2010) 

ACAD9  Mitochondrial complex I deficiency  
Haack et al. (2010) 

TRAF3IP2  Psoriasis  
Ellinghaus et al. (2010);  

Hüffmeier et al. (2010) 

WDR62  Autosomal recessive primary 

microcephaly  

Yu et al. (2010);  

Nicholas et al. (2010) 
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2.4 Integration of predictions 

In order to get an estimate of the usefulness of a meta-predictor, the results 

of the different tools are combined using the Order Statistics as within 

Endeavour. Integration happens separately for the genome-wide tools and 

for the candidate set based tools, and tools that return only few rankings 

(Suspects and Posmed) were not included. For each experiment, the gene 

identifiers of the different tools are mapped using Biomart. In order to 

avoid getting artificially favorable rankings, the size of the merged ranking 

is set to the maximum size of the underlying rankings. 

 

3 RESULTS 

The overall ranking results of all gene prioritization tools are 

summarized in Table 2, the complete results are presented in Sup-

plementary Tables S9 and S10. These results have also been added 

to the Gene Prioritization Portal 

(http://www.esat.kuleuven.be/gpp). 

 
 
Table 2. Results for the genome-wide and candidate set based prioritization 

tools. (*) Values computed only on the first 27 associations. 

 

 Median Response 

rate 

TPR in 

top 5% 

TPR in top 

10% 

TPR in top 

30% 

Genome-wide prioritization tools 

Candid 18.10 100% 21.4% 33.3% 64.3% 

Endeavour-GW 15.49 100% 28.6% 38.1% 71.4% 

Pinta-GW 19.03 100% 26.2% 31.0% 71.4% 

Integration 12.45 100% 19.1% 38.1% 78.6% 

Candidate set based prioritization tools 

Suspects 12.77* 88.9%* 33.3%* 33.3%* 63.0%* 

ToppGene 16.80 97.6% 35.7% 42.9% 52.4% 

GeneWanderer-

RW 

22.10 95.2% 16.7% 26.2% 61.9% 

GeneWanderer-

DK 

22.97 88.1% 11.9% 21.4% 52.4% 

Posmed-DN 45.45 50.0% 4.7% 11.9% 23.8% 

Posmed-KS 31.44 47.6% 4.7% 7.1% 23.8% 

GeneDistiller 11.11 97.6% 26.2% 47.6% 78.6% 

Endeavour-CS 11.16 100% 26.2% 42.9% 90.5% 

Pinta-CS 18.87 100% 28.6% 31.0% 71.4% 

Integration 6.99 100% 40.5% 57.1% 83.3% 

 

 

3.1 Performance measures 

When considering the median of the rank ratios, GeneDistiller, 

Endeavour-CS, and Suspects are the tools that perform the best on 

this benchmark (respectively 11.11, 11.16, and 12.77). They are 

followed by Endeavour-GW (15.49), ToppGene (16.8), Candid 

(18.1), Pinta-CS (18.87), Pinta-GW (19.03), GeneWanderer-RW 

(22.11), GeneWanderer-DK (22.97), Posmed-KS (31.44), and 

Posmed-DN (45.45). The boxplots presented in Figure 1 illustrate 

that both, GeneDistiller and Endeavour-CS perform better than the 

other candidate set based prioritization tools (Figure 1-right). 

Among the genome-wide tools, Endeavour-GW performs slightly 

better than Pinta-GW and Candid (Figure 1-left). 

When considering the response rate, Endeavour (both modes), 

Candid, and Pinta (both modes) performed the best study with 

100% closely followed by ToppGene, GeneDistiller, and 

GeneWanderer-RW with more than 95% (meaning that only one or 

two associations are missing). At the other hand of the spectrum, 

Posmed-KS and Posmed-DN only work for about half of the ex-

periments in our benchmark (respectively 47.6% and 50%). 

When we compare the tools based on the global AUC (see Figure 

2), we observe that GeneDistiller appears as the best performing 

tool overall with an AUC of 86%. It is followed by Endeavour-CS 

(82%), Endeavour-GW (79%), Pinta-GW (77%), Suspects (76%), 

Pinta-CS (75%), Candid (73%), GeneWanderer-RW (71%), 

GeneWanderer- DK (67%), ToppGene (66%), Posmed-KS (58%), 

and Posmed-DN (56%). However, the ROC curves are in general 

intertwined meaning that none of the approaches is clearly per-

forming better than the other. However, we postulate that, in our 

case, the most important section of the ROC curve is the beginning 

and therefore use three other measures, the true positive rates at 

5%, at 10%, and at 30%. These measures indicate how efficient the 

tools would be if only the top candidate genes would be assayed.  

Considering the TPR in top 10% and 30%, we can observe a simi-

lar trend. Indeed, at 10%, GeneDistiller is first with a rate of 47.6% 

(20 associations found over 42), followed by both ToppGene and 

Endeavour-CS with 42.9% (18 associations). However, at 30%, the 

best tool is Endeavour-CS (90.5% - 38 associations), followed by 

GeneDistiller (78.6% - 33 associations). The other tools show 

smaller TPR at both levels: Pinta-CS (31%, 71.4%), Suspects 

(33.3%, 63%), GeneWanderer-RW (26.2%, 61.9%), 

GeneWanderer-DK (21.4%, 52.4%), Posmed-KS (7.1%, 23.8%), 

and Posmed-DN (11.9%, 23.8%). Among the genome-wide priori-

tization tools, Endeavour-GW shows highest TPR in top 10% and 

30% (38.1%, 71.4%), followed by Candid (33.3%, 64.3%) and 

Pinta-GW (31%, 71.4%). 

 

 
Figure 1: Boxplots of the 42 novel disease genes from the validation 

data set illustrated for the genome-wide (left) and candidate gene set 

based (right) prioritization tools. 

 

3.2 Correlations 

Supplementary Figure S1 shows the heat map of the novel disease 

gene ranking positions for all tools in this study. For the tools that 

have two modes (i.e., Posmed, GeneWanderer, Endeavour, Pinta), 

the two modes are highly correlated (> 0.89). There is also a signif-

icant correlation between Candid and GeneWanderer-DK (0.82). 

The other values are within 0.4 and 0.7, indicating that all tools are 

moderately correlated. 

 

3.3 Integration of predictions 

Our meta-analysis reveals that the best results are obtained when 

predictions are combined over the different tools (see Table 2 and 

Supplementary Table S11). For the genome-wide tools, all perfor-

mance measures are improved by the integrative method (e.g., 
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median of 12.45 for the meta-predictor versus 15.49 for Endeav-

our-GW). Similar results are obtained for the candidate set based 

tools (e.g., median of 6.99 for the meta-predictor versus 11.11 for 

GeneDistiller), although the TPR in the top 30% of the integrative 

method is still lower than for Endeavour-CS (83.3% versus 

90.5%). 

 

 

 
Figure 2: ROC curves of the genome-wide (A) and candidate gene set 

based (B) prioritization tools. 

 

4 DISCUSSION 

 
We aim at assessing the usefulness of eight gene prioritization 

tools that are freely available via web applications. We have built a 

validation based on 42 recently discovered disease-gene associa-

tions from literature containing novel genes for both monogenic 

conditions and complex disorders. We have selected novel disease-

gene associations regardless of their strength, and of the underlying 

methodology. To mimic a real discovery, we have run the tools as 

soon as the article appeared online so that all databases used for 

gene prioritization are still not contaminated by the knowledge of 

the novel disease-gene association. This also means that we had to 

exclude tools that query MEDLINE online since their results 

would be biased. 

We want to compare the performance of the tools even if the inputs 

are different (genes vs. keywords, genome-wide vs. candidate set). 

Among the eight gene prioritization tools that we have analyzed in 

this study, only Endeavour, Candid, and Pinta have been used for 

genome-wide prioritization. The input data for Endeavour and 

Pinta are training genes, whereas Candid requires keywords. The 

gene prioritization tools that we have used to prioritize candidate 

genes within a region of interest are Suspects, ToppGene, 

GeneWanderer, Posmed, GeneDistiller, and again Endeavour and 

Pinta. Suspects and Posmed are trained with keywords, the other 

tools require training genes. We have extensively searched through 

literature and dedicated databases to identify as many reliable 

training genes as possible for the disease of interest, as well as a set 

of appropriate keywords to derive fair and meaningful compari-

sons. However, different, and possibly better, results might be 

obtained by refining the inputs. 

Our validation is too small to claim that the differences among the 

tools are significant. However, a trend can still be observed, 

GeneDistiller and Endeavour-CS consistently appear as the best 

tools when looking at all performance measures. It is interesting to 

notice that the best results are in general obtained with tools that 

use many data types in conjunction (up to eight for Endeavour, as 

compared to the three data sources used by Posmed), but there is 

no perfect correlation. This is in agreement with the conclusion of 

the recent review by Tiffin et al. (2009), who indicate that success-

ful computational applications will be facilitated by improved data 

integration. 
All tools except Posmed have a high response rate ranging from 

88% to 100%, meaning that at least 37 of the 42 novel disease 

genes are prioritized (or 24 of 27 for Suspects). However, the 

response rates for Posmed-KS and Posmed-DN are respectively 

47.6% and 50%, which can be explained by the fact that Posmed 

also acts as a filter on the candidate genes to obtain a reduced list 

of genes in the end. There are therefore cases for which the novel 

disease gene has been removed by the filter. This is different from 

the other tools for which missing genes basically correspond to 

genes that are not recognized by the tool (it happens most of the 

time with poorly characterized genes, such as C20orf54). Another 

special case is Suspects that went offline during the validation and 

therefore could only be validated with the first 27 associations. We 

therefore calculated the response rate only on the first 27 associa-

tions. 

Two types of tools can be distinguished, the ones that are trained 

with already known genes and the ones that are trained with de-

scriptive keywords. It appears that gene-based tools seem to work 

better than keyword-based tools (the average of medians is 17.2 for 

genes based tools and 27 for keyword based tools - similar results 

are obtained with the other measures, see Supplementary Table 

S8). This could be because we use in general more genes than 

keywords for training (18.8 genes on average for 6 keywords). 

This also indicates that more keywords might be needed to model a 

disease, a small text (such as an OMIM entry) might even be nec-

essary (van Driel et al., 2006). 

There is in general an agreement between the five performance 

measures we use throughout our study. One notable exception 

exists for ToppGene, whose AUC is 66%, and corresponds to rank 

10th (out of the 12 prioritization tools). In contrast its associated 

TPR in top 10% is 42.9%, which corresponds to rank 2nd. This 

apparent contradiction can be explained by observing Figure 2, in 

which the ROC curve exhibits a non convex shape. This is because 

ToppGene either ranks the novel disease gene on top or at the 

bottom (i.e., the disease genes are rarely ranked in the middle). 

And therefore the TPR in top 10% will be high because it only 

takes into account the top of the list, while the AUC will be lower 

because it basically behaves like an average over all cases. Another 

important point is that our observations are in line with the ‘no free 

lunch’ theorem. Indeed each tool can perform better than all the 

others for some cases, or, in other words, none of the tools outper-

forms another on the complete data set (if we do not consider the 

special case of Posmed that also acts as a filter). 
Posmed-KS has been trained with the complete keyword set, 

whereas Posmed-DN has been trained only with the disease name. 

The median rank ratio is 31.44 when the complete keyword set is 

used and drops to 45.45 when only the disease name is inputted. If 

we only compare the results over the 19 associations for which 

both tools are able to prioritize the novel disease gene, the differ-

ence becomes even larger (29.6 and 50 respectively for Posmed-

KS and Posmed-DN). Altogether, these results indicate that 

Posmed does not rely on the use of the single disease name and 

that the extra keywords are indeed important. It can be observed 

that the performance measures for Posmed are worse than for the 

other tools in our benchmark study. However, when looking at the 

individual ranks, it can be observed that Posmed returns far fewer 

genes than the other tools because it also acts as a filter. As a re-

sult, the rank ratios are on general larger and the performance 
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measures are therefore worse. As such, it becomes difficult to 

fairly compare Posmed to the other tools because our measures of 

performance naturally penalize the fact that Posmed returns priori-

tizations for a limited set of candidates. Changing our performance 

measures to counterbalance this effect would then give an unfair 

advantage to Posmed because it returns prioritizations only for the 

“safer bets”. 
GeneWanderer has also been run twice with different network 

algorithms: random walk (RW) and diffusion kernel (DK). The 

respective performance are very similar although the random walk 

approach is performing a little bit better than the diffusion kernel 

albeit non significant (22.11 to 22.97 for median rank ratio – simi-

lar differences are observed with the other measures). The heat 

map indicates a strong correlation (>0.9, see Supplementary Figure 

S1) between the two modes, which was expected since applying 

diffusion to a kernel can be interpreted as equivalent to applying a 

random walk on the underlying network. Altogether, this indicates 

that these two algorithms are similar. 

Endeavour and Pinta are used to prioritize both the whole genome 

(Endeavour-GW and Pinta-GW) and the defined chromosomal 

region (Endeavour-CS and Pinta-CS) allowing us to identify the 

influence of the size of the gene list to prioritize. The median rank 

ratio is better for Endeavour-CS (11.16) than for Endeavour-GW 

(15.49) in our benchmark. The difference is smaller but remains 

when considering the AUC, and the TPR in top 10% and 30%. 

The same training genes are used, and therefore the observed 

difference is only caused by extending the small candidate gene set 

to the whole genome. This confirms previous findings that priori-

tizing the whole genome is more difficult than prioritizing a rather 

small positive locus. The heat map indicates that the two Endeav-

our modes are strongly correlated as expected since the core algo-

rithm is the same in both modes (>0.9, see Supplementary Figure 

S1). At contrary, the results for both Pinta modes are very similar 

(correlation of 0.99) and seem to indicate that the size of the can-

didate set does not influence this algorithm. 

In this study, we consider the tools as off the shelf solutions, and 

use them as recommended by the developers without fine tuning of 

the parameters. However, an important feature that might influence 

the results is the date of the last data update. The latest genomic 

data (still prior to discoveries considered in this study) is likely to 

give the best results since it will model more accurately what is 

currently known, when compared to data that is two years old. In 

our setup, we have no control over the genomic data used and 

cannot identify if variation in performance among tools can be 

explained by this.  

In addition, the quality of both the data sources and the integration 

methodologies are also influencing the outcome of the prioritiza-

tion process. However, we aim at estimating the usefulness of 

some prioritization tools for geneticists. And therefore an in-depth 

comparison of the implementation of the tools is beyond the scope 

of this study. 

It is important to notice that the 42 novel disease gene associations 

do not represent a very homogeneous set. Indeed, the median of 

the rank ratios over the tools show that some associations seem to 

be easier to predict than others. This also explains why all tools are 

moderately correlated on the heat map (> 0.4). A plausible expla-

nation is the disparity in the available data between the novel 

disease genes. Since only little data can be gathered for poorly 

characterized genes, such as C20orf54, they are more difficult to 

prioritize. However, we also hypothesize that the nature of the 

underlying genetic disorder, as well as the quality of the reported 

association might influence the ability of the tools to predict cor-

rectly that association. We have therefore divided the associations 

between confirmed, intermediate, and unconfirmed. Among the 42 

associations, 23 are confirmed, 8 are intermediate, and 11 are 

unconfirmed (see Supplementary Table S2). We hypothesize that 

this might influence our validation since some unconfirmed associ-

ations might in fact be spurious. We observe that Suspects and 

ToppGene perform better for the 23 confirmed associations than 

for the 19 unconfirmed ones (see Supplementary Tables S4 and 

S5). This trend is however not always shared as the situation is 

opposite for GeneDistiller and GeneWanderer. Although informa-

tive, these comparisons are not significant due to the small number 

of associations.  

In our validation data set, there are 17 monogenic diseases and 25 

multifactorial disorders (see Supplementary Tables S6 and S7). It 

has been shown that it is more difficult to make predictions for 

multifactorial diseases than for monogenic diseases (Linghu et al., 

2009). Our results however seem to indicate that not all tools are 

influenced by the intrinsic complexity of multifactorial diseases. 

For instance, Endeavour and ToppGene seem to perform better for 

monogenic conditions while GeneWanderer and Suspects perform 

better for complex disorders. However, the size of our validation 

data set does not allow for a complete statistical analysis. Larger 

validation data sets and real predictive studies will be pursued to 

complement our preliminary study. 

Several studies have shown that combining predictions of several 

tools lead to even better predictions (Tiffin et al., 2006; Elbers et 

al., 2007). However, no performance criteria were used to select 

the tools to be combined. With this comparison of tools, we ease 

the selection of the most efficient tools, whose combination may 

lead to more accurate predictions. In addition, we report that the 

meta-predictors that integrate the predictions made by several tools 

perform better than the best individual tools as already reported 

(Thornblad et al., 2007). 

Our results indicate that cross-validation based benchmarks tend to 

overestimate the real predictive performance. Indeed, all the tools 

for which such a benchmark exists have lower AUC than anticipat-

ed using our dataset (see Supplementary Table S12). We therefore 

believe that developers should take extra care when benchmarking 

their tools as to avoid these pitfalls. Also, some hard constraints 

have made this study small enough not to reach significance (e.g., 

only few tools have a programmatically queryable interface).  

As already discussed in (Moreau et al., 2012), this field needs to 

consolidate through improved benchmarking efforts due to the lack 

of a ground truth for evaluating the performance of prioritization 

methods. Therefore we see a need for a large-scale community 

effort to compare multiple tools across common prospective 

benchmarks. We hope our work represents the first step towards a 

collaborative effort to tackle this problem at a larger scale. 
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SUPPLEMENTARY TABLE S1: OVERVIEW OF THE GENE PRIORITIZATION METHODS. 
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SUPPLEMENTARY TABLE S2: LIST OF THE 42 NOVEL DISEASE GENE ASSOCIATIONS. 

 
�

������
��
��

�	������ �
���	��

�� ���������������	
�	
�� �������� ��
�	�����
����
	��	�
� ��������

	�	"*� 2�������
!��
��
����
�3�4�

�5������6�

���������� ��������!���!�� ��������� ���5�!��
� 7���!�
���
������������

�,��17� .�
�!�8"��
���
�6�
!����

���������� ��������!���!�� ��������� ���5�!��
� ����!�
���
������������

.9,�� 26�
�
6��
������
�6�
!�����

���������� �����������!����
�
�����:�
���������

���5�!��
� �����!�
���
������������

��(�;� "�!�����6�
!���� ���������� �����!���!�� ��������� ���5�!��
� ����!�
���
������������

�<4;� 2�������
�!�����6���������

���������� ��������!���!��� ��������� ���5�!��
� ����!�
���
������������

,���� ���������
�
"����!��������
,�!����

���������� ��������!���!�� 
�
������ ���5�!��
� 7���!�
���
�����������
�",�����'����5����!��
�5�2<���

�"��	�#� =�����
8!���
��
��
������6�

���������� ��������!���!�� ��������� ���5�!��
� #���!�
���
������������

�>?1 � ���������
�
�����
�����5�����
��
��6���
�����
�!���!6��!����

���������� ��������!���!�� ��������� ���5�!��
� #���!�
���
������������

$"=��� ��������
�
!������/���!���!6�
���!������
6�

���������� �$��
�������
���
6����

�0(� ���5�!��
� ����!�
���
�5���
������

�=,=1� 2�
���
����
�!����� ��
��5����!��
� �$	�� �0(� ���5�!��
� =��
�����������
��
����
��������!����
�
����8���
6�����

"	@�4(� 	'
�����
���!����
����!6���

��
��5����!��
� �$	�� �0(�� ���5�!��
� =��
�����������
��
����
��������!����
�
����8���
6�����

"2=�1� �������
�!���!����

�
����!�

��
��5����!��
� �$	�� �0(� ���5�!��
� %������6�����
�����11��
,���2�
��������
���1A��;1�*��

BC��� �!���D��
������� ��
��5����!��
� �$	�� �0(� ���5�!��
� =��
�����������
��
����
��������!����
�
�$	������8���
6�����

�	@==1� @���
�!�
����-��55����/��

���!
�!�

��
��5����!��
� �$	�� �0(� ���5�!��
� $��������
�����1���
����-���!�=����1�7�18
;��1*���

4B0�� <��!��6� ��
��5����!��
� �$	�� �0(�� ���5�!��
� =��
�����������
��
����
��������!���

4<1�� @��E��D��
������� ��
��5����!��
� �$	�� �0(� ���5�!��
� =��
�����������
��
����
��������!����
�
����8���
6�����

22.<1� (!���!6�'�
��!6�
��!!������

��
��5����!��
� �$	�� �0(�� ���5�!��
� =��
�����������
��
����
��������!����
�
����8���
6�����

=	0@(1�
�

���������!������6��
��/������
�'��!��
��6�
�

��
��5����!��
� �0(�����8
�6�����

�0(� ���5�!��
� �����������
�����11��
	��F�2�
�������@�
0��!���6�����!��������
1A�@�1��� ��

(<�.1�
�

.��������
�
�G���������

�
��!�������

��
��5����!��
� �$	�� �0(� ���5�!��
� ������!�
���
����
�����
�

�(4@� (!���!6�'�
��!6�
��!!������

��
��5����!��
� �$	�� �0(�� ���5�!��
� �����������
�����11��
�������	���������
 #�1���A��

�(�;� <����
�
�����!�������

��
��5����!��
� �$	�� �0(� ���5�!��
� ,������
�����11��0���
������7;�#�� *���

�=	B;4(�� (��!������ ��
��5����!��
� �$	�� �0(� ���5�!��
� ������!�
���
����
�����



C@.�.�� �6�����
��'����� ��
��5����!��
� �$	�� �0(� ���5�!��
� =��
���������������
��
����
��������!����

�";��� 2���6
��
������
���
�!���

���������� (�������!���!�� 
�
������ ����!��
�������

"4�(1� ���������
�
"����!��������
,�!����

���������� �$	�� 
�
�����:�
���!�8

�
�����:�
�0(:�
���������

����!��
�������

(H@(1� (�!�/���!���
�!�
����!�������

���������� (�������!���!�� 
�
������ ����!��
�������

C�=0� 	!��!��!6������ ���������� (�������!���!�� ��������� ����!��
�������

����!5A7� .��������
�
�G���������

�
��!�������

��
��5����!��
� �$	�� �0(� ����!��
�������

,�= � �
����
�
����
�������
��5����!��
� �$	�� �0(� ����!��
�������

��>2� 0���6�
!������
�5��

�����
����

��
��5����!��
� �$	�� �0(� ����!��
�������

C@.�<;� �!���D��
������� ��
��5����!��
� �$	�� �0(� ����!��
�������

<((� ���!�
��6��5�B�

���� ���������� (�������!���!�� 
�
������ ����� ��

=C0?�� ����
�8����!��
�!�����6���������

���������� �����������!����
��
�������� ����� ��

�,�@1� ���������
�
	����
�����5�����
%�
��6���
�C!���!6�
�!����

���������� �����!���!�� 2��!�8

�
������

����� ��

�@?�� ����
�3����!��

�5����

���������� �����!���!�� 
��
��������
I���
�
�
�!�������

����

����� ��

	�B 4(� �������
�!���!����

�
����!�

��
��5����!��
� �$	�� �0(� ����� ��

@�<;� �!���D��
������� ��
��5����!��
� �$	�� �0(� ����� ��

@=�	�� @���
�!�
����-��55����/��

���!
�!�

��
��5����!��
� �$	�� �0(� ����� ��

��B1=� 	������ ��
��5����!��
� �$	�� �0(� ����� ��

2.�>2� 0������!6����
�
��!�������

��
��5����!��
� �$	�� �0(� ����� ��

�0B=�B1*�0������!6����
�
��!�������

��
��5����!��
� �$	�� �0(� ����� ��

�=	B�� (�!������D��
���������
��5����!��
� ,6��8������� �3�!�������
��
�
����!�������

����� ��



SUPPLEMENTARY TABLE S3: INPUT DATA FOR THE 42 EXPERIMENTS. 
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SUPPLEMENTARY TABLE S4: COMPARATIVE RESULTS BETWEEN THE CONFIRMED 

AND UNCONFIRMED DISEASE-GENE ASSOCIATIONS USING THE CANDIDATE SET 
BASED PRIORITIZATION TOOLS. 

 

������
�����
��� ��
���
�����#$�� ������#��� ��
��	��	����� �	
��#���

������
� ��
���
�����#�! ������#!� %
�������#��

��
�	�����

&��	�
� 11�7; 1��#� �7�1A �#�#* ����� ;;�;; 1A� * 11�11 ��� #

��$����'(� 1 �;* ;*�1; 1 �;* #� � 7�;A 7�;A 1 �;* �1� 7 �1� 7

��$����)*(� 1 �;* 7 �#; 1 �;* 1 �;* #� � #� � ;*�1; ;*�1; �1� 7

��$����+*(� 7;�7# A��A� �A��� 7;�7# �1� 7 ����*  ;�*1 *1�;� �A���

,

�
�	�����

&��	�
� 17�1� �7�*1 1;�#� 11��; �� �#�1;  � * 11��1 1;

��$����'(� ���;� ;1�A# 1A� * 1A� * A��� A��� ;��#7 ;1�A# ;��#7

��$����)*(� ���;� ;��#7 ;��#7 ���;� 1A� * A��� A �#* 7 �; 7��11

��$����+*(� ;��#7 7 �; A �#* �;�1� ���;� �1��A #7��1 #*�7  #�*A

 
 
 
 
 

SUPPLEMENTARY TABLE S5: COMPARATIVE RESULTS BETWEEN THE CONFIRMED 

AND UNCONFIRMED DISEASE-GENE ASSOCIATIONS USING THE GENOME-WIDE 
PRIORITIZATION TOOLS. 
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SUPPLEMENTARY TABLE S6: COMPARATIVE RESULTS BETWEEN THE MONOGENIC 

DISEASE GENES AND THE COMPLEX DISORDER GENES USING THE CANDIDATE SET 
BASED GENE PRIORITIZATION TOOLS. 
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SUPPLEMENTARY TABLE S7: COMPARATIVE RESULTS BETWEEN THE MONOGENIC 

DISEASE GENES AND THE COMPLEX DISORDER GENES USING THE GENOME-WIDE 
GENE PRIORITIZATION TOOLS.  
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SUPPLEMENTARY TABLE S8: COMPARATIVE RESULTS BETWEEN GENE 
PRIORITIZATION TOOLS TRAINED WITH KNOWN GENES AND DESCRIPTIVE KEYWORDS.  
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SUPPLEMENTARY TABLE S9: RANKING POSITIONS (AS RANK RATIOS) OF THE 42 

NOVEL DISEASE GENES FROM THE VALIDATION DATA SET FOR THE CANDIDATE SET 
GENE PRIORITIZATION METHODS. 
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SUPPLEMENTARY TABLE S10: RANKING POSITIONS (AS RANK RATIOS) OF THE 42 

NOVEL DISEASE GENES FROM THE VALIDATION DATA SET FOR THE GENOME-WIDE 
PRIORITIZATION METHODS. 
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SUPPLEMENTARY TABLE S11: RANKING POSITIONS (AS RANK RATIOS) OF THE 42 

NOVEL DISEASE GENES FROM THE VALIDATION DATA SET FOR THE META 
PREDICTORS. 
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SUPPLEMENTARY TABLE S12: COMPARISON OF THE STATED PERFORMANCE IN THE 
ORIGINAL TOOL PUBLICATION WITH MEASURED PERFORMANCE IN THIS STUDY. 
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Chapter 4  

Summary 

 

This chapter takes advantage of the information gathered in the two previous chapters to 

perform a gene prioritization experiment in a real biological experiment with the intention of 

discovering novel genes and not only validating or reviewing different tools. The top tools 

found in the previous chapter have been combined in a two-layer based experiment to obtain 

a ranking of 200 candidate genes in three diseases starting from the whole genome as an 

initial candidate set.  

This work is not the first attempt to compare gene prioritization tools but it is the first time in 

which performance reasons have been used to select the tools to be combined and that a 

statistically supported method has been used to combine the rankings of the tools. 

Candid [1], Pinta[2], Genedistiller[3] and Endeavour[4], the top four gene prioritization tools 

from the previous chapter (two genomewide tools and two non-genomewide tools) have 

been combined in a two steps strategy. First, using the full human genome, the genomewide 

tools have reduced the list of candidates to 2000 genes (approximately 10%, which 

according to the previous chapter includes the disease gene around one third of the 

experiments). The two rankings have been combined using order statistics and a second 

step including the two non-genomewide tools has been launched and the top 10% has been 

selected. A final ranking of 200 genes has been obtained using order statistics. 

This approach has been applied to three diseases: congenital heart disease, congenital 

diaphragmatic hernia and asthma. The validation, when using real life data, is much harder 

since there is not a valid result to compare to. Therefore, the quality of the rankings has 

been provided by experts in each disease.  

In general, a thorough analysis of the top genes shows that genes related to the disease 

have been highly ranked. After a first analysis of the results, this approach has confirmed the 

retinoic acid pathway hypothesis for congenital diaphragmatic hernia and has suggested two 

new candidate genes for asthma: RELA and FAS. Furthermore, the top ranking gene for 

congenital heart defect, BMPR1A has been recently associated with syndromic heart defects 
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Abstract 

Background 

Genomic approaches to identify the factors underlying genetic diseases often 

generate lists of candidate genes. In the last decade, several prioritization methods 

have been developed to help geneticists to identify in silico the most promising 

candidate genes in order to increase the yield of downstream experiments. In this 

study, we combine the predictions made by four different prioritization tools in order 

to propose meaningful candidate genes. 

Results 

We first apply our analysis on two birth defects, non syndromic congenital heart 

defect and congenital diaphragmatic hernia, and we extend it to asthma, a complex 

disease. For each disorder, we combine the predictions from four prioritization tools 

to identify novel candidate genes. BMPR1A, the top ranking gene for congenital 

heart defects has recently been associated with syndromic heart defects. 

Furthermore, the results confirm the retinoic acid pathway hypothesis for congenital 

diaphragmatic hernia and propose two new candidate genes for asthma: RELA and 

FAS. 

Conclusions 

Our computational analysis reveals that the top predictions are either associated with 

syndromic cases of the diseases under study or are functionally linked to previously 

identified genes and therefore represent potentially new candidate genes. 

Altogether, our results demonstrate that computational disease gene prioritization 

methods can be used to quickly retrieve a small set of relevant candidate genes. 

Background 

Identifying genes associated with Mendelian or complex disorders is a primary aim in 

human genetics since more effective treatments can be developed from a better 

understanding of the molecular factors underlying these genetic disorders. Often this 

gene identifying process begins with a high-throughput experiment, such as an 

association study, or a transcriptome profiling study that generate a pool of 

candidate genes (e.g., a large chromosomal region for a specific phenotype). This 

set of candidate genes is then scrutinized, to identify the most promising candidates 

in order to increase the yield of the downstream validation. This task can be time-

consuming when done manually because a large amount of data needs to be 

analysed and integrated. However, geneticists can nowadays consider 

computational predictions as an extra line of evidence, in order to derive a 

manageable and meaningful set of promising candidate genes. We have, for 

example, combined copy number variant detection and prioritization to identify TAB2 
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as a novel congenital heart defects gene [5]. More recently, Erlich et al. have 

identified a KIF1A mutation in a familial case of spastic paraparesis by combining 

homozygosity mapping and computational prioritization using multiple tools [6]. 
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Most existing prioritization methods integrate multiple genomic data in order to derive 

accurate predictions. They however differ by the training information they require, the 

data and the strategy they use, and the output they produce [7]. Prioritization 

methods are usually benchmarked on known data [8, 9], which can serve as an 

estimate of their performance on real case studies [10]. In addition, there exist 

predictive studies that focus on one specific disorder or phenotype and propose 

meaningful candidate genes by using several prioritization methods in parallel [11–

13]. For instance, starting from a list of 9556 potential candidate genes, Tiffin et al. 

have used seven prioritization methods to identify nine promising candidate genes 

for type 2 diabetes and five for obesity, including PGM1 that has since then been 

associated with type 1 diabetes [14]. A few months later, Elbers et al. also reported a 

study on type 2 diabetes and obesity in which they pinpointed 27 functional 

candidate genes from an initial set of 612 genes using six prioritization methods. 

Polymorphisms in one of the predicted genes, ESR1, have since then been 

associated with severe obesity [15] and increased HDL [16]. Another example is the 

work of Teber et al., who analysed the 9556 candidate genes gathered by Tiffin et al. 

using eight prioritization strategies. They showed that 8 of the 11 genes identified in 

genome-wide association studies were at the same time also tagged as promising by 

the computational methods. More recently, we have benchmarked several 

prioritization tools and showed that the best results are obtained when the rankings 

provided by the tools are combined (Börningen et al., in review). A main conclusion 

of these and other studies is that combining several methods usually leads to more 

accurate predictions [17]. 

However, the previous attempts of combining gene prioritization methods neither 

provided any performance reasons to select the tools to be combined nor performed 

the gene rankings combination with any type of statistical support. In the present 

study, we aim at a step beyond in gene prioritization rankings combination by using 

four gene prioritization methods proven to outperform other tools in a benchmark 

(Börnigen et al., in review), by applying Order Statistics to combine gene rankings 

and by using the whole human genome as starting point. The four gene prioritization 

methods (Candid [1], Pinta[2], GeneDistiller[3] and Endeavour[4] ) are applied in a 

two-layer holistic strategy that takes advantage of the most suitable input conditions 

for every tool (whole human genome for Candid and Pinta and smaller candidate 

sets for GeneDistiller and Endeavour). Intermediate rankings of every tool have been 

combined using Order Statistics. This strategy has been applied to three genetic 

disorders and the top ranking genes have been analyzed. We first focus on non 

syndromic congenital heart defects, that represent our main field of expertise [5, 18]. 

We then extend the analysis to another birth defect, congenital diaphragmatic hernia, 

and to a more complex disorder, asthma. 
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Results and discussion 

In the current study, we aim at defining a manageable set of high-quality candidate 

genes for congenital heart defects by prioritizing the complete human genome. To 

this end, we first identify which genes are already associated with heart defects and 

define keywords that describe this disorder. We then use our two-layer workflow in 

order to determine which genes represent promising candidate genes for further 

investigation. Eventually, we extend the analysis to another birth defect 

(diaphragmatic hernia) and to a complex trait (asthma). 

Prioritization using four tools 

We have defined a two layer workflow to combine the predictions of the four gene 

prioritization tools (Figure 1). These tools are chosen for their empirical performance 

on a recent benchmark (see Methods). For each layer, the results are combined 

using Order Statistics, which allows genes ranked by only one of the methods to still 

be included in the combined ranking. Our two layer approach is suitable to prioritize 

the complete genome. If predictions would be combined in a single layer, the top 

10% candidates genes would still represent 2,000 genes, which is too large to be 

further analysed. Using our two-layer strategy, the number of candidate genes goes 

from around 20,000 to 2,000 (after first layer), and then to 200 (after second layer). 

This cut-off of 10% is based on our previous study, which demonstrates that these 

four prioritization methods are able to rank the disease genes on average in the top 

10%. 

Also, only a two layer based strategy allows the four selected prioritization tools to be 

combined since one of them, Genedistiller cannot perform genomewide prioritization. 

Case study 1: non syndromic congenital heart defects 

Congenital Heart Defects (CHD) are structural malformations of the heart that are 

present at birth. These defects can involve one or several parts of the heart, such as 

walls, valves, or incoming/exiting blood vessels. There are different types of CHD 

that range from simple defects with mild symptoms to more complex defects with 

severe and sometimes life-threatening consequences. CHD are the single most 

important congenital cause for perinatal mortality and morbidity, affecting close to 

1% of newborn babies (8 per 1000) [19, 20]. CHD are induced either by 

environmental influences [21], by an altered gene dosage or function [22–24], by 

stochastic factors [25] or by combinations thereof. In the last decades, mutations in 

several genes have been associated with monogenic CHD, mainly through linkage 

analysis in large families in which a CHD segregates as an autosomal-dominant trait 

[26]. However these causative genes only account for a very small fraction (< 1%) of 

CHD cases [27], thus representing a serious limitation in the genetic counselling of 

CHD patients and their families and in the elucidation of the pathogenesis of CHD. 

Approaches such as the one described in the present study can therefore be used to 
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pinpoint which genes should be investigated further. 

 

As mentioned in the methods section, a homogeneous gene set is required to build 

the disease model. We therefore focus on genes associated with isolated CHD since 

genes associated with syndromic cases would introduce noise in the predictions 

(because they are also associated with extracardiac phenotypes such as cleft 

lip/palate). Using the CHD knowledge base CHDWiki [18], we define a set of 30 

genes associated with non-syndromic CHD. In addition, we have gathered a set of 

23 CHD specific keywords. The lists are provided in table 1. 

 

We then run our two layer approach, the complete results are shown in table A.1 in 

appendix A. In the following sections, we discuss more extensively the results 

(genes are mentioned together with their position in the final ranking). A close look at 

the predictions reveals that 17 out of the 25 top ranked candidates are already 

associated with other cardiac diseases (see Table 4). In particular, several candidate 

genes are already known to cause syndromic CHD. For example, several mutations 

in gene NOTCH2 (8th) were found in patients with Alagille syndrome, which includes 

cardiac defects such as pulmonary valvar stenosis, tetralogy of Fallot, and peripheral 

pulmonary arterial stenoses [28]. A similar situation can be observed with TGFB1 

(11th) and FBN1 (12th), two genes associated with Marfan syndrome, that includes 

three cardiac phenotypes: mitral valvar prolapse, mitral regurgitation, and ascending 

aorta dilation [29]. A third example is the candidate gene BRAF (28th), for which 

mutations have been found in patients with Noonan syndrome, 

Cardiofaciocutaneous syndrome, and Leopard syndrome, which all include 

pulmonary valvar stenosis and atrial septal defect (ASD) [30–32]. Other candidate 

genes are involved in other cardiac diseases such as SCN5A (4th) and LMNA (5th), 

associated with dilated cardiomyopathy [33–35]. Also, sequence variants in MYH7 

(2nd), TNNT2 (14th), and TNNI3 (47th) are associated with left ventricular hypertrophy 

(LVWT), which in turns is associated with a higher risk of developing stroke, 

coronary heart disease, heart failure, and various cardiovascular defects [36]. More 

interesting maybe are the 8 candidate genes with evidence from animal models (also 

in Table 4). For instance, mutations in PDGFRB (17th) lead to various heart 

malformations in mice [37]. Similar observations were made when PTEN (19th) [38], 

AKT1 (25th) [39, 40], and FBN2 (42nd) [41] are altered.  

 

Then, an enrichment analysis reveals that the remaining candidate genes are 

associated with functions that are highly relevant to CHD. In particular, several Gene 

Ontology terms are related to heart development: 'Heart development', 'Cardiac 

muscle tissue development', 'Blood vessel development', 'Vasculature development'. 

For example, the gene TGFB2 (44th) promotes cardiac myocyte differentiation from 
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embryonic stem cells in mice [42]. Another example is TTN (60th) that is involved in 

the contraction of the cardiac muscle [43]. Several genes are active in the adult 

heart, and are for instance annotated with the terms 'Heart normal bulk heart 3rd' 

(CAGP), 'Muscle protein' (SwissProt), and 'Muscle contraction' (Gene Ontology) 

among others. For example, the cardiac calsequestrins CASQ2 (16th) is expressed 

specifically and exclusively in the adult heart [44]. So is the connexin gene GJA5 

(37th), that is present in human ventricle and is involved in gap junction formation 

[45]. Also, when looking at Cancer Genome Anatomy Project (CGAP) data, it can be 

observed that several other top candidate genes encode parts of the contractile 

apparatus and are expressed exclusively in heart (TNNT2 (14th), MYBPC3 (3rd), 

MYL7 (49th)) or mainly in heart (MYL2 (43rd), TNNC1 (30th), ACTA1 (29th)) [46]. 

Altogether, this data indicates that the predictions of the computational workflow are 

relevant. Figure 2 summarizes this information in a network view in which best 

candidates, known disease genes and links between them are displayed. 

 

We then performed a systematic analysis of CHD associated loci, in order to identify 

genes that rank high genome-wide and that are located within known CHD loci. For 

instance, a terminal 4p deletion has been found in a patient with Optiz G/BBB 

syndrome, which includes cardiac defects [47]. The gene FGFR3 (88th) is located on 

4p16 but has not yet been associated with any cardiac phenotype. Another example 

is the 5p duplication syndrome, for which heart defects are recurrent. More precisely, 

a 5p11-p13.3 duplication has been detected in a patient with cardiac phenotype [48]. 

This region harbours the gene GDNF, ranked 108th in our final list, although not yet 

linked to any cardiac phenotype either. CHD are also associated with the recurrent 

10q22-q23 deletion syndrome. This region harbours the BMPR1A gene that is 

ranked 1st in our list. Interestingly, we have recently reported a patient with an 

atrioventricular septal defect who has an intragenic micro-deletion in the BMPR1A 

gene, therefore confirming its role in heart development [49]. 

 

We have included the final predictions in our collaborative platform CHDWiki 

(accessible at http://homes.esat.kuleuven.be/~biouser/chdwiki) so that researchers 

interested in heart defects can discuss these candidates.  

Case study 2: common left-sided congenital diaphragmatic hernia 

In order to show that our strategy is applicable to other genetic disorders, we apply it 

to another birth defect, common left-sided congenital diaphragmatic hernia. 

Congenital Diaphragmatic Hernia (CDH) is a defect in the closure or development of 

the diaphragm characterized by either a structural malformation of the diaphragm or 

by a defect in its muscularization. In the most extreme cases, the diaphragm can be 

absent. Its incidence is around 1.7 – 5.7 per 10,000 live births [50]. CDH is generally 

associated with pulmonary hypoplasia and postnatal pulmonary hypertension of 
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variable severity that account for the high mortality and much of the morbidity in 

survivors.  

 

CDH is a complex genetic disorder with numerous genes associated with syndromes 

in which CDH is observed, but few genes directly associated with development of 

isolated CDH.  Furthermore, CDH does not display complete penetrance for the 

many loci which share an association, or for those syndromes in which CDH is 

observed. Two main hypotheses are proposed for development of lung hypoplasia 

and abnormal pulmonary vasculature observed in cases of CDH; one in which a 

primary genetic defect causes CDH, leading to an abnormal lung growth and 

development (secondary hit), and another in which a primary genetic defect directly 

affects both diaphragm and lung development, supported by the overlapping function 

of certain genes in the development of both organs. 

 

CDH can be anatomically divided into three main subtypes: a posterolateral 

‘Bochdalek’ hernia (70% of cases), an anterior ‘Morgagni’ type (27%), and a central 

septum transversum hernia (3%). In addition, the vast majority of hernias are left-

sided (85% of cases), whilst the remainder are right-sided (13%) or bilateral (2%) 

[51–53]. CDH occurs as an isolated defect in around 60% of cases, or as syndromic 

CDH for the remainder in which additional congenital malformations are present [54]. 

The main abnormalities observed in syndromic CDH happen in the cardiovascular, 

urogenital, and musculoskeletal systems [54]. 

 

We have decided to focus on isolated posterolateral CDH since it is the most 

frequent type. For the prioritization, we have only included the genes and keywords 

associated to isolated ‘Bochdalek’ CDH (Table 2).  The most promising candidate 

genes for CDH are shown in table A.2 in appendix A. 

Similarly to the other case studies, we also perform an enrichment analysis of the top 

candidate genes. There are genes involved in ‘Heart development’ (Gene Ontology), 

and ‘Skeletal system development’ (Gene Ontology) that represent two of the three 

main phenotypes associated with syndromic CDH. For instance, mutations in the 

gene GJA1 (39th) are found in patients with heart malformations and defects of 

laterality [55], which is relevant since laterality may be a factor influencing 

development of left or right side CDH. Another example is the candidate gene TTN 

(164th) that encodes a large abundant muscle protein. It is involved in skeletal 

muscle assembly [43], as well as in dilated cardiomyopathy [56], which makes TTN 

an interesting CDH candidate gene. Regarding the skeletal system, the gene 

COL1A1 (89th) is considered interesting through its association with osteogenesis 

imperfecta, a bone disorder [57], and the COL3A1 gene has been associated with 

Ehlers Danlos syndrome in which CDH has been observed as part of the phenotype. 
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So is IGF1 (199th) that can induce skeletal muscle hypertrophy through activation of 

the Ca2+/calmodulin-dependent phosphatase calcineurin [58]. Even more interesting 

is the BMP2 gene (184th), involved in bone morphogenesis [59], as well as 

cardiogenesis [60, 61], two common phenotypes in syndromic CDH. 

 

Interestingly, several Gene Ontology terms are related to cell proliferation and 

apoptosis: 'regulation of cell proliferation', 'regulation of cell death'. It has indeed 

been hypothesized that CDH could be caused by perturbation of cell proliferation 

during diaphragm development [62]. For instance, the blockade of TGFBR2 (13th) in 

mice mesoderm-derived tissues results in mildly abnormal lung branching and 

reduced cell proliferation after mid-gestation, accompanied by multiple defects in 

other organs, including diaphragmatic hernia [63]. Also, IGF1 (199th) and CTNNB1 

(22nd) have been shown to be involved in smooth muscle cell proliferation in mouse 

[64, 65]. CTNNB1 also plays a role in WNT signalling, a candidate pathway for the 

pathogenesis of CDH, and also a key pathway in lung development [66]. 

 

Another interesting annotation category is about steroids, as indicated by Gene 

Ontology terms such as 'steroid hormone receptor activity', and 'response to steroid 

hormone stimulus'. Steroids have been used for a long time already to treat CDH in 

animal models. For instance, Chen et al., observed that estradiol (a member of the 

steroid family) can promote lung development in rats with CDH [67]. Similar results 

were found in an ovine CDH model [68], in a rabbit model [69], and in a rat model 

[70]. Although there seems to be an effect in animal models, it is still debatable 

whether prenatal corticosteroids benefit fetuses with CDH [71, 72]. Still several 

candidate genes detected by our method are involved in steroid activity. For 

instance, PPARD (36th) is a member of the steroid hormone receptor superfamily 

[73]. BRCA1 (191st) and BRCA2 (183rd) mRNA levels are coordinately elevated in 

human breast cancer cells in response to estrogen, another steroid. [74]. Also, there 

exists cross-talk between the Wnt and the estrogen signaling pathways via functional 

interaction between ESR1 (21st) and CTNNB1 (22nd) [75]. 

 

A common hypothesis is that a defect in the Vitamin A / retinoid signaling pathway 

may influence the pathogenesis of CDH [76–78]. Several studies have indeed shown 

that double knockouts of retinoic acid receptors result in impaired lung 

morphogenesis suggesting that retinoids may be involved in the molecular 

mechanisms of CDH, [79–81]. It has been demonstrated that prenatal retinoic acid 

treatment in the nitrofen CDH rodent model during the late stage of lung 

development could correct the expression level of key lung and/or diaphragm 

developmental genes like CTGF [82], NR2F2, FOG2 and GATA4 [83]. In our results, 

and given that no retinoic genes were used for training, we observe that several top 

candidate genes are involved in the retinoic signaling pathway such as RARG (5th), 
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RXRA (14th), and RXRG (78th). This therefore seems to confirm the retinoic acid 

hypothesis. 

 

We then analyse whether known CDH loci contain genes that are highly ranked 

genome-wide. We have collected a set of 15 CDH loci, represented in Table 5, and 

filter the genome-wide results to retain only the genes located within these regions. 

Only 1 of the 15 regions does not harbour any of the top 2000 genes (7%). The 

results for the other 14 regions are presented in Table 5. For instance, a known 

locus on chromosome X contains AR that ranks 23th on the genome, and another 

locus on chromosome 6 contains GJA1, ranked 39th. Altogether, these results 

indicate that the predictions are relevant and can be used by geneticists in their 

research. 

Case study 3: asthma 

Our approach can also be applied to more complex diseases. Asthma is a chronic 

respiratory disease which afflicts patients of all ages, causes significant morbidity 

and mortality and, consequently, generates substantial costs to our society. It is 

characterized by variable and recurring symptoms including coughing, chest 

tightness, wheezing and breathlessness, airflow obstruction, bronchial 

hyperresponsiveness and underlying inflammation [84].  

The prevalence of asthma in western countries has considerably raised during 

recent decades [85] as well as other allergic and autoimmune disorders, such as 

rhinitis [86], atopic dermatitis [87], multiple sclerosis [88] and insulin-dependent 

diabetes [89] mellitus among others [90]. Although multifactorial, asthma is mainly 

attributable to genetic causes with heritability estimated between 35% and 95% [91]. 

However, according to the estimation from the largest GWAS in asthma, SNPs 

explain less than 5% of asthma's heritability [92].  

Recent years have seen considerable progress in unraveling the contribution of 

genetic determinants to the susceptibility of developing asthma as well as to the 

severity of the disease. Scientific literature indicates that more than 300 genes [93] 

have been associated with asthma or clinical conditions related to asthma, and the 

number continues to increase.  In addition, environmental factors such as ethnicity 

and sex of the patient, passive and active tobacco smoke exposure, contact with 

animals, family size and birth order, vaccination, breastfeeding, and air pollution 

have been shown to influence asthma [91]. 

Similarly to the previous two case studies, we have selected a group of keywords 

describing the characteristics of the disease and a set of training genes associated 

with asthma. Both the list of keywords and genes, as well as the results the 

prioritization are available in table A.3 and appendix A.  
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After applying the two layer gene prioritization strategy, we obtain a prioritized list of 

200 genes. An enrichment analysis on the ranking reveals that the top prioritized 

genes are linked to functions directly connected to asthma, such as ‘immune 

response’ (Gene Ontology) or ‘defense response’ (Gene Ontology). Other terms 

strongly related to inflammation and immune response arise: ‘lymphokine’ 

(Swissprot), ‘Cytokine-cytokine receptor interaction’ (KEGG), ‘cytokine activity’ 

(Gene Ontology) or ‘regulation of immunoglobulin production’ (Gene Ontology).  

A total of 10 genes out of the top 25 have been associated with asthma (see Table 

6), some of them in several independent studies such as TGFB1 (1st) a member of 

the transforming growth factor-beta family of cytokines, involved in proliferation, 

differentiation, adhesion, migration and other functions in many different cell types 

[94, 95]. Other confirmed associations in the top 25 include IL1B (2nd) [96], PTPRC 

(3rd)  [97], TGFBR2 (4th) [98], TLR4 (5th) [99], IL6 (7th) [100], TLR2 (10th) [101], CCL2 

(17th) [102, 103] , IL12B (23th) [104, 105] and C3 (24th) [106]. 

Other 11 genes of the top 25, although not positively associated with asthma, have 

been related to the disease and to inflammation or remodeling processes in a 

number of publications and are involved in defense and immune response or interact 

with other genes that participate in defense and immune response (see Table 6).  

Out of these genes, RELA, that is involved in induction of pro inflammatory cytokines 

like TNF and IL1B which are relevant in pathophysiology of asthma and FAS, whose 

soluble portion is different in the context of asthma and rhinitis seem particularly 

interesting candidates to focus when looking for new genes related to asthma. 

Besides, RELA lies in a known asthma locus, 11q13.1 [107], so is NFKB1, on 4q24 

[108] and TNFRSF1A (26th) in 12p13 [109]. 

Conclusions  

In this study, we propose candidate genes for three genetic disorders, non 

syndromic congenital heart defects, common left-sided congenital diaphragmatic 

hernia, and asthma. We use four high performance computational methods and a 

two layer prioritization strategy to prioritize the complete human genome in order to 

identify these relevant candidate genes. A preliminary analysis of the results 

indicates that indeed the top predictions are supported by disease, functional, and 

animal model evidence. In particular, the role of the top ranking gene for heart 

defects, BMP1RA, has recently been confirmed and among others, RELA and FAS 

are suggested as interesting candidate genes for asthma. These promising 

candidates represent in silico predictions that are available to the scientific 

community for further experimental validation. We believe that such studies are 

made easier when disease specific knowledge bases exist and are maintained. For 

heart defects, we use CHDWiki to quickly retrieve the already known genes and to 

discuss the novel candidate genes. 
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Methods 

Gene prioritization methods 

Four gene prioritization tools are considered: Candid [1], Pinta [2], Endeavour [4] and 

GeneDistiller [3]. We have recently developed a benchmark in the spirit of the CASP 

challenge (Börnigen et al., in preparation) and have therefore selected these tools on 

the basis of their respective performance. 

 

Candid accepts keywords that describe the disease under study as input and 

prioritizes the whole human genome. It mines literature and protein domain 

databases with the keywords to retrieve potentially relevant genes. Candid further 

refines the scores by taking into consideration conservation from HomoloGene, and 

interaction data from EntrezGene, therefore favouring well conserved genes that 

interact with genes linked to the inputted keywords. Candid version 6 is used, and 

the four criterions are given equal weights (literature, domains, conservation, and 

interactions). Pinta maps disease specific differential expression onto a functional 

network and prioritizes genes according to the differential expression of their 

functional neighbourhood. In our case, we replace the differential expression data by 

binary data representing the disease status of the genes. Candidate genes are 

therefore prioritized according to the number of known disease genes present in their 

functional neighbourhood. In our case, the functional network is STRING 8.2, the 

algorithm is heat kernel with diffusion parameter set to 0.5, number of steps to 2 and 

number of randomizations to 500. Endeavour and GeneDistiller both use a set of 

known disease genes to model the disease under study. They then rely on a guilt-by-

association approach, so that promising candidate genes are the ones that are 

similar to the already known genes. Both tools use many data types to infer these 

similarities including functional annotations, literature data, phenotypic data, and 

regulatory information. For GeneDistiller, the “focus on possible pathways” mode 

was used. For Endeavour, all data sources except cis-regulatory modules, Bind, 

IntAct, and Mint were selected. 

Disease associated keywords and genes 

We have selected three genetic diseases to validate our approach: non-syndromic 

congenital heart defects, non-syndromic congenital diaphragmatic hernia and 

asthma. 

Identifying appropriate training genes and keywords is crucial in order to retrieve 

reliable prioritization results. Ideally, gene sets should only contain genes directly 

associated with the disease of interest, and not weakly connected genes such as 

biomarkers since homogeneity is very important [8]. In addition, the proportion of 

genes linked to syndromic cases should be kept under control. Indeed, since these 

genes are also linked to other phenotypes, using too many of them can introduce 



82 

 

noise in the model and can therefore bias the analysis. Similarly, keywords should 

be selected wisely. For instance, keywords that represent broad phenotypes (e.g., 

cancer) should be avoided because they might also introduce noise in the analysis. 

At contrary, specialized keywords (e.g., oesophageal squamous cell carcinoma) are 

preferred. Also, when the disease under study involves several phenotypes or known 

complications, the keyword set should try to cover them, but the focus should always 

be the main phenotype. For this study, reputed experts have selected, for each of 

the three diseases, the corresponding sets of genes and keywords. When 

applicable, several gene and keyword sets were defined for a single disease, but 

only one was retained after quality control (data not shown). The keywords and 

training genes that we have collected for the three diseases are presented in tables 

1, 2 and 3. 

Combination of the predictions 

Because we use four prioritization tools, we obtain four different rankings of the 

candidate genes. We then integrate these four rankings into one global ranking 

through a two-layer holistic approach (Figure 1). This strategy is based on the results 

of a recent benchmark, where gene prioritization tools where compared in two 

different experiments. In the first one, the full genome was prioritized, while for the 

second experiment a ~10Mb chromosomal region around the true disease gene was 

used to define the candidate genes (Börnigen et al., in review). We have selected 

the best tools in each setup as to take advantage of their condition specific 

performance (Pinta and Candid for full genome, GeneDistiller and Endeavour for 

non-genomewide). The first layer, then, is designed to filter the whole human 

genome to identify potentially interesting candidate genes using Candid and Pinta. 

This layer reduces the search space from approximately 20,000 human genes to a 

set of 2,000 candidate genes. The second layer is then responsible for selecting the 

most promising candidate genes from the genes selected in the first layer using 

Endeavour and GeneDistiller. Again, the top 10% of the gene list is retained, 

meaning that the final ranking contains 200 candidate genes. After each layer, the 

rankings are merged using Order Statistics, as used within Endeavour [4]. In both 

cases and when necessary, gene identifier mapping happens through BioMart [110]. 

Enrichment analysis 

The enrichment analysis is performed using DAVID with the default parameters 

[111]. The EST data is retrieved from the website of the Cancer Genome Anatomy 

Project [112]. The functional networks are built with String [113] using knowledge 

bases and experimental databases only (therefore excluding text-mining) and 

retaining only high confidence scores (>0.7). 
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Figure 1 - Schematic representation of our two layer holistic approach 

In the first layer, Pinta and Candid prioritize the whole human genome to 

define a set of 2,000 promising candidate genes. In the second layer, these 

genes are prioritized with Endeavour and GeneDistiller to identify the 200 

most promising candidate genes.�



 

 

 

 

 

Figure 2 - Network view of the known CHD genes and the top pre
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Network view of the known CHD genes and the top predictions

Network view that combines the known congenital heart defect genes (inner 

and the most promising candidates (outer circle). Genes without interactions have 
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CHD gene set Keyword Set 
Gene name Term 

ACTC1 congenital heart defect 
ACVR2B heart 
ALDH1A2 cardiac 
ANKRD1 cardial 
CFC1 cardiovascular 
CITED2 valve 
CRELD1 septum 
ELN atrioventricular 
ZFPM2 atrium 
FOXH1 atrial 
GATA4 mitral 
GATA6 aortic 
GDF1 outflow 
GJA1 systolic 
LEFTY2 diastolic 
MAP3K7IP2 endocardial 
MYH11 splanchnic mesoderm 
MYH6 anterior-posterior polarity 
NKX2-5 left-right polarity 
NKX2-6 neural crest 
NODAL looping 
NOTCH1 coronary 
PDGFRA endocardial cushion 
TBX20 hypertrophy 
TFAP2B cardiomyopathy 
THRAP2 pericardium 
ZIC3 epicardial 
JAG1 epicardium 
TBX5 myocardial 
TBX1 cardiomyocyte 
 septal defect 
 tetralogy 
 fallot 
 perimembranous 
 arteriosus 
 cyanogenic 
 cyanosis 
 truncus 
 trunk 
 ductus 
 eisenmenger 
 dilated 
 transposition 
 hypoplastic left heart syndrome 
 pulmonary insufficiency 
 pulmonary stenosis 

 

  Table 1 – Training set and keywords for congenital heart defect 

 This table contains the training data used in our workflow i.e. the keyword set 

and seed gene set built for congenital heart defect 
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CDH gene set CDH keyword set 
Gene name Term 

STRA6 congenital diaphragmatic hernia 
RBP1 bochdalek hernia 
RBP2 left-side CDH 
RBP3 isolated CDH 
RBP4 congenital hernia of diaphragm 
RBP5 eventration of the diaphragm 
CRABP2 diaphragmatic hernia 
RBP7 left-sided CDH 
POLR2L diaphragm eventration 
AVP diaphragm 
ADH1C diaphragmatic 
ADH1B diaphragmatic defect 
ADH1A posterolateral hernias 
ADH4 pulmonary hypoplasia 
ADH5 pulmonary hypertension 
ADH7 retinoic acid pathway 
ADH6 retinoic acid 
RDH5 vitamin A 
RDH8 retinoid 
RDH10 retinol 
RDH11 retinoid signalling pathway 
RDH12  
RDH13  
RDH14  
DHRS9  
RDH16  
DHRS3  
LRAT  
ALDH1A1  
ALDH1A2  
ALDH1A3  
CRABP1  
CYP26A1  
CYP26B1  
RARA  
RARB  
RARG  
RXRA  
RXRB  
RXRG  
NR2F2  
ZFPM2  
GATA4  

 

 

  
Table 2 – Training set and keywords for congenital diaphragmatic hernia 

 This table contains the training data used in our workflow i.e. the keyword set 

and seed gene set built for congenital diaphragmatic hernia 
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Asthma gene set Asthma keyword set 
Gene name Term 

ORMDL3 asthma 
ZPBP2 atopy 
IL1RL1 airway hyperresponsiveness 
IL18R1 FEV1 
IL33 CP20 methacholine  
SMAD3 allergic asthma 
CX3CR1 airway inflammation 
ALOX15 airway remodeling 
PLAU  
FLG  
CD14  
PTPRE  
IL1R2  
BACE1  
IL1R1  
SPI1  
MMP2  
CAT  
NQO1  
C5  
NPSR1  
VDR  
IL13  
IL4  
IL4R  
IFNG  
ADAM33  
IL10  

 

  

Table 3 – Training set and keywords for asthma 

 This table contains the training data used in our workflow i.e. the keyword set 

and seed gene set built for asthma 
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Rank Gene Band Disease evidence 

1 BMPR1A 10q22 10q22-q23 deletion syndrome 

2 MYH7 14q12 Atrial septal defect, Ebstein anomaly, cardiomyopathy 

3 MYBPC3 11p11 Cardiomyopathy, left ventricular noncompaction 

4 SCN5A 3p21 Cardiomyopathy, long QT syndrome 

5 LMNA 1q22 Cardiomyopathy, left ventricular noncompaction 

6 TGFBR2 3p22 Loeys-Dietz syndrome, Marfan syndrome 

7 TGFBR1 9q22 Loeys-Dietz syndrome, Marfan syndrome 

8 NOTCH2 1p12 Alagille syndrome 

9 FGFR1 8p12 Kallman syndrome 

10 NOTCH3 19p13 Animal model: cardiac fibrosis 

11 TGFB1 19q13 Marfan syndrome 

12 FBN1 15q21 Marfan syndrome, mitral valve prolapse 

13 ACVR1 2q24 Atrial septal defects 

14 TNNT2 1q32 Cardiomyopathy, septal defects 

15 CREBBP 16p13 Rubinstein-Taybi syndrome, pulmonary valvar stenosis 

16 CASQ2 1p13 Ventricular tachycardia 

17 PDGFRB 5q33 Animal model: neovascularization 

18 CTNNB1 3p21 Animal model: cardiac development 

19 PTEN 10q23 Animal model: left ventricular hypertrophy 

20 HAND1 5q33 Septal defects 

21 COL1A1 17q21 Animal model: heart valve disease 

22 HNF1A 12q24 Animal model: atrioventricular septal defects 

23 EP300 22q13 Rubinstein-Taybi syndrome 

24 LAMC1 1q31 Animal model: cardiomyopathy, heart valve disease 

25 AKT1 14q32 Animal model: coronary heart disease 

 

 

 

 

  

Table 4 – Most promising candidate genes for congenital heart defects 

The most promising candidate genes for CHD are presented with functional 

evidence when applicable. 

�
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Loci 
#genes in 

region 
Top gene Genome-wide rank 

Chr 1 (170596692, 192187380) 167 ABL2 336 

Chr 2 (230278105, 242923099) 175 HDAC4 394 

Chr 4 (terminal, 2064607) 56 FGFR3 16 

Chr 4 (139442723, 156051983) 127 EDNRA 125 

Chr 4 (22766528, 36328463)  38 PPARGC1A 313 

Chr 5 (terminal, 18712406) 112 TRIO 210 

Chr 6 (terminal, 7193095)  74 FOXC1 283 

Chr 6 (155239588, 170899992) 110 RPS6KA2 378 

Chr 9 (terminal, 9402318)  79 JAK2 245 

Chr 11 (114237274, 134452384)  276 MLL 165 

Chr 14 (87952783, 104622155) 307 AKT1 72 

Chr 15 (70485883, 73852471) 70 NEO1 168 

Chr 22 (14506719, 24620247)  292 MAPK1 213 

Chr X (120476201, 130520358)  51 XIAP 892 

 

 

 

 

 

 

 

  

Table 5 - Analysis of CHD associated regions 

First, a list of 14 known CHD loci is compiled. For each locus, the most promising 

candidate gene and its genome-wide ranking are indicated. Complete results are 

provided in Additional File 3. 

 

�
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Position Gene Association to asthma 

1 TGFB1 Associated with asthma in several studies [94, 95] 

2 IL1B Weakly associated with asthma in Canadian / Australian populations [96] 

3 PTPRC Splicing of PTPRC is regulated by SFRS8, a gene associated with asthma [114]. 

4 TGFBR2 Several polymorphisms associated with atopy and asthma [98] 

5 TLR4 Associated with asthma in Swedish children [99] 

6 MYD88 Its over expression causes an increase in the level of transcription from interleukin-

8 promoter [115] 

7 IL6 Variants modify the bronchodilator drug responsiveness in asthma [100] 

8 SMAD2 A key element on the TGF�1 signaling pathway in human bronchial epithelial cells, 

that is altered in asthmatic bronchial epithelial cells [116]  

9 IL1RAP A transmembrane protein required for interleukine-1 and linked to IL-33 [117] and 

IRAK [118] 

10 TLR2 Determinant of susceptibility to asthma in children of European farmers [101] 

11 NFKB1 Linked to IL-8 [119] 

12 CSF2RA No association known to asthma 

13 INPP5D Associated with TLR4 [120], IL-8 [121] and TNFa [122] 

14 CD4 CD4
+
 T cells producing Th2 cytokines play a prominent role in the lungs of 

asthmatic subjects [123] 

15 IL10RA No association known to asthma 

16 RELA Indirectly linked to CCL3, IL23A, TNF and IL1B [124] 

17 CCL2 Associated with asthma, and asthma severity [102, 103] 

18 FAS Related to autoimmune disease [125] and present in its soluble form (sFas) in 

allergic asthmatic patients [126] 

19 IKZF1 Thought to play an important role in CD4 and CD8 lineage [127] 

20 CREBBP Linked to IL-4 [128] 

21 IL2RG No association known to asthma 

22 ITGB2 Involved in induction and adhesion of eosinophils [129] 

23 IL12B Associated with severity of atopic and non-atopic asthma [104, 105] 

24 C3 Variants affect susceptibility to bronchial asthma [106] 

25 TNFRSF1A No association known to asthma 

 

Table 6 – Top 25 genes for asthma 

A list of the top ranked 25 genes in asthma and their relation with the disease, if known, 

is presented. 
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Chapter 5  

Summary 

 

In this chapter, we present a work on gene prioritization where we propose a preprocessing 

method to enhance the ranking capacity of training set based gene prioritization tools.  

A group of gene prioritization tools use training genes to lead the prioritization process. 

These genes, usually identified as linked to the genetic condition under investigation, provide 

the tool with a profile which will be later used to classify the candidate genes. In these tools, 

including Endeavour[4] and Genedistiller[3], the selection of the training genes entirely 

depends on the expertise of the user. 

Our intention with this work is to relieve the user from the complete responsibility when 

selecting genes for the training set. We intend to do so using cluster analysis to find groups 

of similar genes in the training set. 

Due to the categorical nature of the databases used in the analysis, we have selected a 

transactional based clustering algorithm: CLOPE. This algorithm uses a global measure 

which depends on the histograms of the clusters and it has been successfully applied to 

market basket type problems. 

We have applied cluster analysis to 27 expert selected training sets and to the only training 

set based gene prioritization tools that allow massive experiments, Endeavour and 

Genedistiller.  

We have compared the validation results of the expert selected training sets and the ones 

returned by the cluster analysis and we have seen a general increase in the quality of the 

ranking. To discard the reduction of size as a cause of the improvement, we have compared 

randomly selected training sets with the clustered ones and the results also show a general 

improvement after the clustering. 

 

This work has been submitted to BMC Bioinformatics On May 2012 
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Abstract  

Background 

Unravelling the causes of polygenic diseases is an essential aspiration of human 

genetics. Bioinformaticians have defined the candidate gene prioritization problem 

and several tools in order to tackle this problem have been developed in the last 

years. A group of these tools, Endeavour and GeneDistiller included, rely on a so-

called training set of genes, based on the expertise of the user to rank candidate 

genes. However, when complex diseases or general terms including different 

subtype syndromes are validated, the results are not as good as the ones obtained 

with more simple, yet polygenic, diseases. 

Results 

To address this challenge we have applied clustering as a pre-processing step in 

gene prioritization to obtain more homogeneous training sets and, therefore, more 

accurate rankings. Due to the nature of the biological data during the cluster 

analysis, we have selected CLOPE, a clustering algorithm designed to cope with 

transactional data. 

Conclusions 

Leave-one-out cross-validation experiments show that the use of clustering as a pre-

processing step in training set based gene prioritization leads, in general, to smaller 

and more homogeneous training sets and to a more accurate final ranking. 
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Background 

Very common and life taking diseases in our society, such as cardiovascular 

disorders, diabetes, schizophrenia and numerous forms of cancer, among other 

conditions, are controlled by both environmental and genetic factors. Identifying the 

molecular basis of these complex conditions is essential since it is a critical step 

towards the design of more reliable diagnostic tests and the development of more 

effective treatments. 

Conventional strategies like linkage analysis and positional cloning have been 

successfully applied in the last decades to unravel the genetic basis of monogenic 

diseases and to identify the underlying causative genes (Altshuler et al., 2008). More 

recently, Genome Wide Association Studies (GWAS) have been used to identify 

associations between chromosomal loci and complex human diseases (Cantor et al., 

2010). However, due to the complex nature of the polygenic disorders, these 

techniques often fail to identify the exact disease causing gene (The Wellcome Trust 

Case Control Consortium, 2007). Indeed for complex diseases, the genetic 

mechanism that triggers the abnormal phenotype is shared by several genes that are 

acting in conjunction, meaning that the individual effect of a single gene is weaker 

than for monogenic conditions. Therefore, traditional techniques tend to identify the 

chromosomal regions that harbour the genes rather than the genes themselves. 

These regions can be very large, ranging from kilobases for genetic association 

studies up to megabases for genetic linkages, and often contain hundreds of genes 

(Hardy et al., 2009). Usually only one or a few of these genes are of primary interest, 

and identifying these novel disease associated genes can be an expensive and time-

consuming task if all the candidate genes must be individually experimentally 

validated. 

Consequently, bioinformaticians have plunged into this problem through the 

definition of the candidate gene prioritization problem and the development of 

several prioritization methods (reviewed in Tranchevent et al., 2011). Selecting the 

most promising candidate genes among a large pool of candidate genes is 

nowadays facilitated by computational tools that take advantage of both the fast 

development of informatics and the exponential growth of the biological databases 

they are using. The vast majority of these tools select promising candidates using 

the guilt-by-association concept: the best candidate genes are the ones that are 

similar to the genes already known to be involved in the disease under study. Thus, 

a key step for an efficient prioritization is the identification of these genes already 

associated to the disease under study, that together form a training set. However, 

results are more accurate if the training set is homogeneous and describes very 

precisely one single biological process. At the contrary, prioritization is less effective 

if the training set is heterogeneous or contains outliers. In the latter case, the genes 

do not share enough relevant features to build an accurate model. For example, 

when working on complex disorders such as congenital heart defects, more accurate 
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results are obtained when prioritizing with seven training sets that cover the different 

biological processes associated to congenital heart defects (Thienpont et al., 2010). 

In the present study, we test the hypothesis that the performance of training set 

based gene prioritization methods is influenced by the homogeneity of the training 

sets, and that therefore clustering based pre-processing can enhance their 

performance. To this end, we propose a clustering based pre-processing strategy 

that identifies one or several homogeneous training sets from a single potentially 

heterogeneous training set. The effectiveness of the proposed strategy is then 

assessed through a benchmark analysis on known data.  

Results 

Clustering based pre-processing 

In this paper, we develop a clustering based strategy that is applied prior to 

prioritization to remove outliers and to obtain clusters that are more homogeneous 

than the original gene set (see Figure 1). We perform clustering on 29 disease gene 

sets using CLOPE. Clusters with less than 3 elements are discarded, and therefore, 

only 15 of the 29 diseases return valid clusters. In addition, for 5 of these 15 

diseases, more than one cluster is produced. Table 1 presents a summary of the 

clustering results for the 15 diseases that returned valid clusters (see also Table B.2 

in appendix B for the complete results). The disease sets contain 27 genes on 

average, and clusters are on average reduced to 11 genes, which represents a 

reduction of 60%. We can observe that 92,2% of the discarded clusters contain a 

single gene, the remaining 7,8% contain two genes. 

Results of the benchmark 

We assess the relevance of our clustering strategy through a cross-validation 

scheme on known data using two prioritization methods termed Endeavour and 

GeneDistiller. More precisely, we perform 25 replicates of leave-one-out cross-

validation for both the original disease gene sets and the clusters issued from them 

(see Figure 1). The classification error values (AACs) for this benchmark and the 

average of their medians are presented in Figure 2 (see also Tables B.3 and B.4 in 

appendix B for the numeric values and Tables B.5 and B.6 also in appendix B for the 

numeric values for diseases with more than one cluster). We can observe that, in 

general, the AACs values of the clusters are smaller than those of the original 

disease gene sets. This is observed for 12 and 10 of the 15 diseases for Endeavour 

and Genedistiller. 

Control experiment 

We then assess whether the observed increase in performance is a consequence of 

the cluster homogeneity or of the size reduction. To this end, we also cross-validate 
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randomly generated clusters and compare their AACs to the AACs obtained with the 

real clusters. The Figure 2 contains the AACs for the 15 diseases for both 

prioritization methods (see also Table B.7 in appendix B for the complete results). 

We observe better results in general for the real clusters than for the control clusters 

in 14 and 10 of the 15 diseases respectively for Endeavour and GeneDistiller. 

Discussion  

This paper describes the application of a clustering method as a pre-processing step 

to enhance human candidate gene prioritization. Several disease specific gene sets 

are refined using a clustering strategy. A benchmark analysis shows that our 

unsupervised classification can generate smaller and more homogeneous gene sets 

that lead in general to better performance.  

The original benchmark on 29 genetic disorders has revealed that the cross-

validation performance is significantly lower than the average for a few diseases 

(e.g., Alzheimer's disease, amyotrophic lateral sclerosis). A reasonable explanation 

is the possible heterogeneity of the corresponding training sets mainly because 

disease names are sometimes broad terms that include distinct disease subtypes. In 

addition, the worst performance is sometimes associated to diseases with large 

training sets, that gather together genes from multiple pathways. For example, the 

leukemia gene set contains 112 genes, however several types of leukemia can be 

distinguished: Acute Lymphoblastic Leukemia (ALL), Chronic Lymphocytic Leukemia 

(CLL), Acute Myelogeneous Leukemia (AML), and Chronic Myelogeneous Leukemia 

(CML) among others. Another example is neuropathy that comprises a broad range 

of syndromes that affect nerves and/or nerve cells possibly through the disturbance 

of distinct pathways (Reilly, 2009). 

We use CLOPE for our clustering approach because it is well suited for our genomic 

data. In addition, its performance in terms of computing time makes it suitable for our 

benchmark. The clustering is based on functional annotations that describe 

accurately the current knowledge we have about the genes and their functions. Our 

clustering method only uses the annotations that are significantly over-represented 

within the disease gene set as compared to the whole genome. The resulting 

clusters are therefore only based on annotations that are relevant to the disease 

under study. Our results show that our clustering approach also performs outlier 

detection. Indeed, 40% of the genes present in the original disease gene sets are 

considered as outliers and therefore removed prior to further analysis. We notice that 

92,2% of these outliers are discarded because the corresponding clusters only 

contain a single element. These genes are discarded because they do not share 

annotations with the other genes and keeping them would hinder the homogeneity of 

the cluster. The remaining 7,8% outliers are issued from clusters of size two. These 

clusters are too small to undergo a leave-one-out cross-validation since that would 

leave only one gene for training when the other is left out. It does not mean however 
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that these clusters are irrelevant for real predictive studies, for which the two genes 

can be used for training. We benchmark our strategy using the 15 diseases for which 

valid clusters are obtained. An explanation for such reduction lies in the nature of the 

clustering algorithm and the heterogeneity of the databases. The algorithm strongly 

rewards genes that are very similar across all databases (high histograms) but thus 

penalizes genes for which no consensus can be found across all databases. Missing 

values are also an important cause for this stringency and since not all five 

databases have the same number of records, genes with missing data are strongly 

penalized. Another limitation is related to the clustering procedure. Most clustering 

algorithms, including CLOPE, place one gene in a single cluster. With this simple 

assumption, it is impossible to model accurately the fact that one gene can 

participate in several pathways and therefore should ideally be part of several 

clusters. Future approaches to this problem should include the use of clustering 

strategies capable of producing overlapping clusters. 

A closer look at the clustering results for myopathy reveals interesting insights. 

The two myopathy clusters correspond to two different situations. Cluster 2 contains 

the following genes: COL6A3, COL6A2, COL6A1, and COL9A3. These genes are all 

members of the collagen superfamily and  the first three of them are associated to a 

particular type of myopathy: Bethlem myopathy. At contrary, cluster 1 contains 

TNNC and ACTC1, both linked to dilated cardiomyopathy, and MYH2 and MYL2, two 

myosin genes. In the case of anemia, the cluster consists of five genes related to 

Fanconi anemia (FANCD2, FANCE, FANCF, FANCC) and in cataract, three 

crystalline proteins are clustered (CRYGC, GRYGD and CRYBA1). This illustrates 

that the clusters we produce make sense biologically, however this does not hold for 

all diseases. 

To benchmark our approach, we have used two gene prioritization methods: our tool 

Endeavour, and GeneDistiller for which an API is available. These methods both rely 

on a guilt-by-association model to compute similarities between known genes and 

candidate genes. Therefore, the databases used to cluster the gene sets have not 

been used for prioritization to avoid biased results. Our benchmark indicates that the 

performance is higher for the clusters than for the original gene sets, and this for 

both prioritization methods. For some diseases, however, the classification error is 

larger after clustering. This is mostly the case for diseases with small training sets 

(e.g., spinocerebellar ataxia, spastic paraplegia, Ehlers-Danlos syndrome) that are 

already more homogeneous than the larger gene sets of the more complex diseases 

(e.g., leukemia, anemia). Another explanation is that the databases used for 

clustering and the ones used for prioritization are different, and it is possible that 

what is identified as a cluster using a first set of databases does not represent a 

homogeneous gene set when other databases are considered. One option to 

circumvent that problem is to include more databases in the clustering process. 

Furthermore, a comparison between our valid clusters and randomly generated sets 



112 

 

of genes of the same size indicates that the performance improvement is not due to 

size reduction. For Endeavour, on average, the performance for randomly generated 

clusters (8,27%) is even worse than the performance for complete disease set 

(6,24%), indicating that size reduction does not lead to better performance in 

general. 

One limitation of our approach is the correlation between the annotation terms, that 

is not corrected. As a result, the clustering process is potentially driven by correlated 

features, which might bias the approach. In the future, we want to extend the 

analysis by starting with a set of uncorrelated annotations. 

Conclusions  

We have developed a clustering based pre-processing method for human candidate 

gene prioritization. A benchmark analysis has revealed that the resulting clusters 

lead to better performance because the prioritization methods take advantage of 

their intrinsic homogeneity. In particular, for complex disorders with several subtypes 

or distinct associated phenotypes, the use of several clusters automatically derived 

from a large disease gene set, allows for a more precise modelling of the disease, 

and, presumably, more accurate predictions. 

We have used five different databases to cluster the genes, we consider our priority 

to extend this set of databases to cover other gene characteristics. With more 

databases added, we expect a clearer link between different syndromes of a disease 

and clusters.  

Methods 

Clustering data 

Biological databases can be classified into two categories. On the first hand, 

knowledge bases contain structured data that describe our current knowledge in 

genetics and molecular biology. On the other hand, huge data repositories, such as 

the gene expression omnibus (GEO), contain raw data that can be used to discover 

novel patterns in the data. Traditionally, the combination of these two types of data 

provides a good balance between reliability and novelty. For our study, knowledge 

bases such as Gene Ontology and Kegg are ideal since we are looking for 

functionally homogenous clusters. These biological databases often use different 

data representation (e.g., vector based, network based) with different properties 

(e.g., binary values, continuous values, various levels of sparseness). It has been 

shown that cluster analysis is extremely dependent on the type of attributes of the 

elements to be clustered and mixing different types of data normally lead to less 

accurate results (Ahmad et al., 2007). Therefore, for the present study, we have 

chosen to focus on the most prevalent type of data sources in order to use a single 

clustering algorithm. To this end, we have selected the annotations based data 
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sources underlying Endeavour, whose information is stored as binary vectors: Gene 

Ontology (The Gene Ontology Consortium 2000), KEGG (Kanehisa et al., 2000), 

InterPro (Hunter et al., 2009), EnsemblEST (Hubbard et al., 2009) and SwissProt 

(The Uniprot Consortium, 2007).  

When a gene set is considered, not all annotations should be treated equally since 

some annotation attributes are frequently found genome-wide and others are rare. 

Also, as the annotation attributes are organized in tree structures, there is 

redundancy between any parent attribute and its children. Last, genes with multiple 

functions are annotated with multiples terms, possibly including terms that are not 

related to the disease. To circumvent these problems, only the significantly over-

represented attributes, retrieved using a method described in Aerts et al., 2006, are 

used. Briefly, the over-representation of each term within the training set as 

compared to the genome is assessed independently using the binomial distribution; 

and the Bonferroni step-down method is used to correct for multiple testing. Every 

gene is then represented by a binary profile that only contains the most relevant 

attributes. The clustering task is then performed on these vectors. 

Clustering algorithm 

To account for the categorical nature, the high dimensionality, and the sparseness of 

our data, we have selected a clustering algorithm that focuses on categorical 

attributes and that is not based on the concept of distance, which could not be used 

due to the high number of dimensions (curse of dimensionality, Korn et al., 2001). 

We have chosen CLOPE, a clustering algorithm designed to cope with transactional 

data of high dimensionality (Yang et al., 2002). This clustering algorithm works by 

assigning every element to a cluster maximizing the height-to-width ratio of the 

histogram of every cluster. Applied to our situation, this means that the more 

attributes that two genes share and the less non-shared attributes that every 

particular gene has, the more similar the two genes will be. Therefore, clusters 

containing genes that share as many attributes as possible (height maximization) 

and which have as few attributes as possible which are poorly shared (width 

minimization) are preferred. The profit function (1) which leads the clustering process 

depends on the area of the histogram (S), or, what is the same, the height (H) by the 

width (W) of every histogram as well as on the size (|C|) and amount of clusters (k): 
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CLOPE only has a single parameter: the repulsion coefficient r. This coefficient helps 

the algorithm to adapt to different degrees of sparseness. The acceptance criterion 

of CLOPE for two genes to be in the same cluster also depends on the distribution of 

the similarities between all gene pairs. This strategy of building the clusters based on 

the shape of the histograms of every cluster instead of a concept of distance turns 

CLOPE into a suitable algorithm to deal with our data. To select the optimal 

repulsion during the clustering process, and eventually, the number of clusters, we 

have run CLOPE with every possible repulsion value between 0 and the maximum 

value (that corresponds to the repulsion value that splits the original cluster into n 

single-gene clusters, being n the total number of genes), with increments of 0.1. For 

every disease, the value that returned the highest profit function was selected for our 

benchmark. Table B.1 in appendix B contains the repulsion values for the 15 

diseases. Clusters containing a single element are regarded as outliers and 

discarded. Clusters of two elements are also regarded as outliers even if they would 

make sense biologically. This approximation is necessary since Endeavour and 

GeneDistiller do not work optimally with too small training sets and because our 

benchmark is based on a leave-one-out scheme. 

Gene prioritization methods 

Gene prioritization is the process of identifying the most promising candidate genes 

from a large set of candidate genes with respect to a disease of interest. Many 

computational methods have been developed to tackle that problem. Different 

algorithms can be utilized, various combinations of biological databases can be 

defined, and thus dozens of different methods have been developed. For this study , 

we focus on the methods that start from a set of already known disease genes (also 

termed training genes) and then score the candidate genes based on their 

similarities to these already known genes. We benchmark our clustering approach 

using two prioritization methods Endeavour and GeneDistiller. 

We have previously developed Endeavour, a tool that prioritizes candidate genes 

based on their similarities to a set of known disease genes (Aerts et al., 2006). The 

algorithm uses different data sources, including functional annotations, large 

expression datasets from Gene Atlas, literature data through text mining, regulatory 

information, and interaction networks. Endeavour uses a three step algorithm. The 

first step is the training in which information about the known disease genes is 

extracted to build models of the disease under study (one model per data source). In 

the second step, the candidate genes are scored for each model and ranked 

accordingly. The third step is the fusion, via the order statistics, of these 

complementary and sometimes contradictory rankings into one global ranking that 

determines the most promising candidate genes. A benchmark study through leave-

one-out cross-validation on known disease and pathways genes showed that, when 

left out, the correct gene was ranked, on average, 10th out of 100 genes. We further 

experimentally validated Endeavour through the identification of 12 novel atonal 
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mediated neural development genes in Drosophila melanogaster (Aerts et al., 2009), 

and through the identification of a novel gene involved in heart development TAB2 

(Thienpont et al., 2010). 

GeneDistiller also relies on heterogeneous sources of information, including 

functional annotations, protein interactions, genetic markers, protein domains, 

families and paralogs, and phenotype information (Seelow et al., 2008). It uses 

various strategies to guide the process of gene prioritization: either through the use 

of keywords describing the disease, or through expression data or, similarly to 

Endeavour, through the definition of a set of known disease genes. In addition, an 

API is available for long or time-consuming queries, which is required for efficient 

benchmarking. Of interest, GeneDistiller has contributed to the discovery of a novel 

gene for infantile cerebral and cerebellar atrophy MED17 (Kaufmann et al., 2010). 

The biological data sources used for the clustering process have not been used for 

the prioritization procedure to avoid redundancy. The remaining databases contain 

protein-protein interactions (BIND (Bader et al., 2001), BioGrid (Stark, 2006), HPRD 

(Peri et al., 2003), InNetDb (Xia et al., 2006), IntAct (Kerrien et al., 2007), MINT 

(Chatr-aryamontri et al., 2007), STRING (Von Mering et al., 2007), UniHI (Chaurasia 

et al., 2006)), expression data (Su et al., 2002; Son et al., 2005), mitochondrial 

protein specific data (Maestro (Calvo et al., 2006), Mitropred (Guda et al., 2004)), 

global disease probability scores (Lopez-Bigas et al., 2004; Adie et al., 2005), 

genetic markers (dbSNP (Sherry et al., 2001), UniSTS (Wheeler et al., 2008)), 

literature data (Glenisson et al., 2004) and sequence similarities (Ye et al., 2006). 

Benchmark procedure 

For this study, we have used an already described benchmark dataset (Aerts et al., 

2006). This dataset consists of 620 genes distributed in 29 distinct diseases. In a first 

step, each of the 29 disease gene sets is clustered individually using CLOPE in a 

WEKA environment (Hall et al., 2009). 

We estimate the efficiency of our clustering approach with a leave-one-out cross-

validation (see Figure 1). More precisely, for each disease, we cross-validate the 

original disease gene set and the clusters derived from it, and compare the results. 

In a leave-one-out setup, all disease genes except one (termed the defector gene) 

are used for training (i.e., positive genes). The candidate set then contains 99 

randomly chosen genes plus the defector gene (i.e., unlabelled genes). The position 

of the defector genes among the 100 candidate genes indicates how well the 

computational method is able to detect its association to the disease under study 

(see Figure 1). This procedure is repeated for all the disease genes so that each 

gene is, in turn, left-out. After these repetitions, we have as many rankings as there 

are genes in the set. We then compute a ROC curve by investigating these rankings 

with a varying threshold. For each threshold value, the sensitivity and specificity are 
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calculated, and a point is drawn in the ROC space. By varying the threshold, a 

complete Receiver Operating Characteristic (ROC) curve can be built. The Area 

Above the Curve (AAC) is used as an estimate of the classification error, therefore 

allowing the comparison between different validations. The AAC ranges from 0 (i.e., 

perfect prioritization) to 1 (i.e., perfectly inverse prioritization) with 0.5 representing 

the random expectation. This validation procedure is performed for all 29 diseases, 

and then repeated 25 times to get an estimate of the variance. For each disease, a 

candidate set consisting of 99 randomly chosen genes is built beforehand and used 

for both the disease and the corresponding clusters to be able to derive fair 

comparisons. Notice however that a different candidate set is used for each of the 25 

repetitions. 

In addition, and as a control, random clusters are generated and benchmarked 

following the above procedure. Random clusters are of the same sizes as the 

original clusters and are created from the same disease gene sets. For each real 

cluster, 10 random clusters are built and cross-validated 25 times using the 

previously defined candidate sets. 
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Figure 1  - Our validation workflow 

 Clustering is applied as a preprocessing step for each disease. In addition, 

control clusters are randomly generated. In a second step, a leave-one-out cross-

validation procedure on know disease data is used to estimate the usefulness of 

the approach. 
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Figure 2  - Benchmark results 

Performance of our disease based benchmark for Endeavour (A) and GeneDistiller (B). For 

each disease, the AACs are displayed for the original disease sets (orange), the clusters 

(blue), and the control clusters (green). In addition, the most left  bars represent the median 

over the 15 diseases.  
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Tables 

 

 

Table 1  - Clustering results 

Results of clustering applied as a preprocessing method on our disease benchmark 

data. Only the 15 diseases with at least one valid cluster from the original set of 29 

diseases are kept for further benchmark. 
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Chapter 6 

Conclusion 

 

The work presented in this thesis is focused on the gene prioritization problem. The 

concept of gene prioritization was introduced a decade ago and involves the use of 

computer power to sort a list of genes based on their characteristics with respect to a 

particular biological process. Most commonly, this biological process will be a 

disease and then, the highly ranked genes will be considered good candidates to 

pursue a biological validation.  

Briefly, we review an exhaustive list of gene prioritization tools, we make a 

comparison of performance, we combine the strategies that have outperformed 

others in three different diseases and finally we develop a cluster analysis based 

method to enhance the accuracy of the gene rankings.  

In our first study, a thorough comparison among free web-based gene prioritization 

tools is presented. A description of all of these is provided and a decision tree has 

been designed in order to help the final user to select the most appropriate tool for 

his data and his purposes. A list of publications where the different tools are 

validated and compared has been presented. This can give us a first, be it shallow, 

performance comparison between tools.  The databases upon which the tools rely, 

have been categorized to allow the reader glimpsing which type of data needed by 

each of the tools when making comparisons and how eventually the ranking is 

constructed. All this information has been also uploaded to a website where we 

intend to keep up-to-date information about gene prioritization in a reference portal 

where the state of art of the field is presented. 

In our second study, we have made a quantitative comparison among gene 

prioritization tools. It has been the first time that such a complete performance 

comparison has been performed and it has given us valuable information for our next 

project where the best performance tools have been selected to be combined in a 

holistic approach. To perform a comparison as fair as possible, we have run the tools 

on 42 genes published in certain biomedical journals as disease-genes within the 72 

hours following their publication. This method allowed us to validate tools with an 

already known disease gene but the validation was done using tools that relied in 

databases still not updated with this information. We have applied this strategy to 42 

newly discovered genes in a six months period and the results show differences of 

performance among the tools in terms both of accuracy of the final ranking and 

reliability. 

Our third project takes advantage of the output of both the first and second study. 

We have combined the top performance tools of our previous work in a two-layer 

based strategy using order statistics and we have applied it to three different 
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diseases: Congenital heart disease (CHD), congenital diaphragmatic hernia (CDH) 

and asthma. The first layer includes the two best performance tools in our previous 

study when applied to the full genome. This first layer acts as a filter reducing the 

candidate set from the around 20.000 genes contained in the human genome 

contains to a set of 2000. This reduction of approximately 90% in the number of 

candidate genes is consistent with the results of our previous study. Order statistics 

is used to merge the different rankings of the first layer and a combined candidate 

set of 2000 genes is used in the second layer, where two other gene prioritization 

tools are used to reduce the list to a final ranking of 200 genes. Then, this final list is 

manually analyzed by experts to assess the validity of our approach. As we state in 

chapter 4, interesting results arose and novel interesting candidate genes are 

proposed for asthma. 

Finally, in our fourth project, we propose a preprocessing step in gene prioritization 

using a transaction based cluster analysis strategy. CLOPE is a clustering algorithm 

that has been used in the last years for market basket type of data due to its 

histogram based utility function, which is a global measure that allows a fast 

evaluation of the goodness of a clustering distribution regardless of the amount of 

elements to be clustered. We used this study to show that clustering the training set 

generally leads to better rankings using different gene prioritization tools. We also 

showed that the gain in performance is not due to the reduction in size of the training 

sets by comparing the results of the real clusters with randomly built ones of equal 

size. 

It is important to note that gene prioritization is not a goal in itself but a means to 

ease the discovery of new disease genes. Computer power can efficiently gather 

known information and incorporate unstructured data to rank possible candidate 

genes and present to the wet lab researcher an informative ranking of genes. 

However, a top ranked gene does not imply that the gene will surely be involved in 

the biological process of interest. Gene prioritization must be followed by a biological 

validation to ensure the involvement of the investigated gene in the disease. 

 

6.1 OVERVIEW 
 

In the first two studies, we have intended to shed light on the fast evolving gene 

prioritization field. We believe that the thorough analysis and description of gene 

prioritization tools of the first work and the subsequent performance study will help 

final users to select the most appropriate tool or set of tools for their needs. 

We believe that our goal has been achieved because of two reasons. First, the 

seminal paper was published in a bioinformatics journal of high impact Briefings in 

Bioinformatics and after the publication of the review, less than two years ago, it has 

been cited in 35 different works. Second, the gene prioritization portal, designed to 

keep up-to-date information on this field has been extended with few other tools after 

communication with their developers, showing that the website can become a 
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reference in the gene prioritization field. Furthermore, since May 2010, when the site 

was launched, a total of 25565 visits have been registered (10737 unique visitors). 

Giving the specificity of the topic covered by the website, we believe that these 

figures are rather impressive. 

With regard to the last two studies, their original goal was to work on the 

improvement of the already existing gene prioritization solutions. We have tried to 

achieve this by an integration of tools and a cluster analysis based preprocessing 

step. Validation experiments in chapter 5 show a general improvement in accuracy 

of the rankings, but estimating the quality of the results applied to real biological data 

is a more difficult task and deeply depends on the expertise of the users. Chapter 4 

shows interesting results where top ranked genes (starting with the full genome) are 

related to similar conditions to the one described in the training set, or they have 

been confirmed in animal models, or they are involved in syndromic examples of the 

disease. These results are very encouraging since they show that using the largest 

candidate set possible (the full genome) is not an insurmountable obstacle to obtain 

a quality ranking. 

The application of cluster analysis to gene prioritization has opened several 

questions, not all addressed in this work. Section 6.2 elaborates on these issues. 

 

 

6.2 CLUSTER ANALYSIS AND GENE PRIORITIZATION 
 

Choosing a training set is not an easy task and the complete process of gene 

prioritization depends on it. For non expert users, the selection of appropriate 

training genes is a hard and tedious task. Hard because limited expertise does often 

not allow those users to easily select or discard genes. A first approach for a non 

expert user would be to use publicly available databases on human genetics such as 

OMIM or GAD. However, this would not guarantee a complete training set due to 

incompleteness of these data sources. It is possible to complete the set using 

literature search engines like PubMed, but unfortunately this must be done manually 

turning the building of a training set into a tedious task. 

The main objective that we pursue in our fourth study (chapter 5) is to ease the task 

of the final user by automatically selecting training sets. Even if the main goal has 

been accomplished and better rankings have been obtained, there remain open 

paths still to be explored. One of them that has attracted our attention consists of 

building a fully automatic high quality training set from scratch. We implemented an 

algorithm to select all the entries in OMIM related to a disease (neuropathy, in our 

experiment) and we applied the CLOPE clustering algorithm to this big and noisy 

training set in order to obtain high quality training sets. We found the AUC values 

obtained during validation to be inferior to those obtained by expert selected sets. 

We believe that the main reason for this failure was due to the limited amount of 

databases used. The relevance of this limitation was confirmed after several 
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meetings with biologists, geneticists and biochemists since some clusters obtained 

by CLOPE algorithm had no meaning in the eyes of the biologist. To overcome this 

situation, we believe that using additional databases and therefore extending the 

characteristics of the genes used during the clustering process would allow us to 

cope again with the fully automatic selection of a training set and would help us to 

find more not only biologically meaningful training sets. 

Despite the fact that we have reviewed about 20 gene prioritization tools and that in 

the last years few more have been added to the gene prioritization portal, it is still 

uncommon to find tools that allow massive experiments. This is the reason why we 

only used two tools in our fourth study (Endeavour and Genedistiller). The huge 

amount of prioritizations run to validate 29 diseases and the 27 respective clusters 

can in no way be done manually and as long as other methods do not provide an 

API to automatically load thousands of runs, our conclusion about cluster analysis 

and gene prioritization will not be more general. 

The clustering algorithm selected has been used during the last years in very similar 

problems to the one used in chapter 5. However, it leaves out of consideration 

several elements to be introduced in future studies. First, every gene will be only 

present in one cluster. However, we know that gene products, due to alternative 

splicing for instance, interact in different pathways and therefore can be related to 

different diseases. That is why we are developing a cluster analysis approach where 

genes can be distributed in different clusters and therefore can be present in 

different training sets. 

Furthermore, CLOPE, like any other transactional clustering algorithm, takes only 

into account Boolean data. This has been a major limitation in our approach since 

many biological databases are not convertible to Boolean data. Our current efforts 

also take this into account to arrive at an algorithm for coping with different types of 

data. 

 

6.3 OTHER LINES OF RESEARCH 
 

6.3.1 HAEMATLAS 
 

In addition to the results of the validation of cluster analysis to gene prioritization 

presented in chapter 5, we have been working with this approach on real life data.  

For these project, we have repeated the strategy of clustering the training sets 

selected by the user as presented in chapter 5. The objective of this work is to 

propose new candidates related to platelet-based diseases, using hematopoiesis 

specific information. Hematopoiesis is the process leading to the differentiation of a 

common and undifferentiated cellular precursor called hematopoietic stem cell (HSC) 

into the diverse type of blood cells, which will eventually be distinct in number, shape 

and function. 
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To better understand hematopoiesis, in 2009 was launched the ambitious whole 

genome microarray based study called Haematlas [103], where gene expression 

profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T 

cells, natural killer cells, granulocytes and monocytes were compared. 

Out of this comprehensive analysis, we are particularly interested in 

megakaryocytes, since these are the cells responsible for the production of blood 

thrombocytes, more commonly known as platelets. 

Thrombocytes, and by extension megakaryocytes, represent one of the different 

lines of research in  Latron, the Laboratory for Thrombosis Research by Prof. Hans 

Deckmyn in KU Leuven campus KULAK.  

Haematlas showed that 272 genes were lineage specific in megakaryocytes. With 

the aim of finding genes directly involved in platelet based diseases, we designed a 

gene prioritization experiment where the megakaryocyte lineage specific genes 

would become the candidate set to prioritize. Two training sets covering the most 

common types of platelet based diseases were built and a combined process of 

cluster analysis plus gene prioritization was launched. One of the training sets 

includes receptors with known function in platelets: Integrins (ITGA2, ITGB1, 

ITGA2B, ITGB3), G protein-coupled receptor family proteins (TXBA2R, AXL, 

MERTK, TYRO3, F2R, F2RL3, P2RY1, P2RY12, PTGIR, ADRA2A, PTAFR, 

AVPR1A, HTR2A), protein channels (ORAI, P2RX1, ITPR, RYR2) and other types of 

receptors (GPIBA, GPIBB, GPIX, GPV, GPVI). The second training set, included 

signal transduction genes (PLA2, PLCB2, PLCG2, PTGS1, TBXAS1, GNAQ, GNAS, 

Gi�2, STIM, RASGRP1, FERMT3, APBB1IP and WAS.  

Following the previous chapter, a preprocessing step based on cluster analysis with 

CLOPE, prior to gene prioritization with Endeavour, was applied for every 

experiment (one with receptors as training set and another one with signal 

transduction genes). A complete screen of all possible values of the repulsion 

parameter was launched and an optimum value of 4.9 was found for receptors and 

2.1 for signal transduction genes. 

The cluster analysis of the training set based on receptors, yielded two clusters of 

three and five genes respectively (F2RL3,P2RY1,P2RY12 and 

GPIBA,GPIBB,GPIX,GPV,GPVI). At first sight, both clusters seem reasonably 

homogeneous (five glycoproteins in one cluster and two purinergic receptors out of 

three genes). However, there are reasons to believe that other genes from the same 

families could belong to these clusters as well. We may not forget that the cluster 

analysis has been directed by a limited amount of data, limited both in number of 

databases –restricted by the type of data of the databases- and by incompleteness 

of databases (continuously growing in terms of quantity and quality of annotations). 

The cluster analysis run on the training set of signal transduction genes returned a 

single cluster with three genes (RASGRP1, URP2, APBB1IP). 

Three gene prioritization experiments with Endeavour have been launched using the 

272 lineage-specific megakaryocytes genes as candidate set in the three of them 
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and the two clusters originated from receptor genes and the cluster from signal 

transduction genes as training set in each of them. We have run Endeavour with all 

databases available, and besides, we have added an external database to sharpen 

the accuracy of the prioritization. Haematlas data has been adapted to the 

requirements of Endeavour and the expression values of the genes both from the 

candidate set and from the training set have been taken into account during the 

prioritization process. 

A thorough analysis of the rankings was performed by Dr. Katleen Broos from Latron 

department. Her analysis highlights two type of genes: those highly ranked and that 

have been linked to platelets in the last years (after the publication of Haematlas) 

and those which seem good candidates for further research. The first ones can be 

seen as a sort of validation of our rankings and encourage a further analysis on the 

second ones. Tables 6.1 and 6.2 show these two groups of genes when gene 

prioritization is performed on the two clusters from receptor genes and table 6.3 

shows the analysis for the signal transduction cluster. 

The three tables show a limited overlapping, more evident between receptor 

clusters. Giving that we have analyzed the top 50 genes in a total of 272, we 

expected some sort of overlapping. However, the position of the common highly 

ranked genes is not equal showing that the use of different training sets (even 

though similar) output different rankings. These results open new doors which should 

be explored. For instance, the ranking coming from clusters of the same training set 

could be fused in the spirit of the study of chapter 4.  
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6.3.2 DAPHNIA AND BICLUSTERING 
 

Another project that has been undertaken during these last years of my research in 

Kortrijk is related to the application of bicluster analysis to transcriptomics data from 

Daphnia magna. 
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Daphnia, a water flea, has become in the last years a very interesting organism for 

several reasons. From an ecological perspective, this water flea is basic in aquatic 

ecosystems since it is both a primary grazer of algae and forage for fish. From an 

evolutionary and ecological point of view, it is a prototypical model organism as 

considerable evolutionary and ecological information about it is available (including 

relation against external agents, like host-parasite interaction). Daphnia also has a 

short generation time which makes it suitable for evolutionary studies and 

furthermore it allows to work with clonal lineages. In the last years, the amount of 

genomic data about Daphnia has been increasing, and an important milestone was 

reached with the sequencing of the full genome of Daphnia pulex, thanks to the joint 

work of the Daphnia Genomics Consortium (http://daphnia.cgb.indiana.edu). 

A last reason of the imporante of Daphnia, is that as a crustacean, the water flea is 

expected to share a relatively high number of genes with other well known model 

organisms such as Drosophila or Anopheles.  

We have been applying biclustering techniques to very recent transcriptomics data in 

order to find out groups of genes being expressed similarly in similar conditions. The 

reason of choosing bicluster analysis instead of cluster analysis is basically due to 

the fact that we aim at seeking genes that do not necessarily share a common 

pattern of expression through all the conditions of the experiment. Based on a 

benchmark [108], we have used OPSM [109], Samba [110] and ISA [111]. The work 

is still in progress and several biclusters of a size manually manageable have been 

found and are currently being analyzed.   
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APPENDIX A 

GENE RANKINGS 

 
1 TGFBR2 41 MYH10 81 MMP2 121 INSR 161 NPPA 

2 BMPR1A 42 CASQ2 82 JUN 122 E2F1 162 RUNX2 

3 NOTCH2 43 MITF 83 TNNI3 123 ESR2 163 GAS6 

4 NOTCH3 44 ACTA1 84 MYL7 124 ACTN2 164 PDX1 

5 TGFBR1 45 ITGB1 85 TP63 125 SLC25A4 165 GSN 

6 PDGFRB 46 FBLN1 86 EDNRA 126 PSEN1 166 MYLK 

7 FBN1 47 GJA5 87 PITX2 127 FLT1 167 IRS1 

8 MYH7 48 BRAF 88 CAV1 128 RELA 168 SRF 

9 LMNA 49 TGFB2 89 ERBB2 129 HAND2 169 YY1 

10 FGFR1 50 HAND1 90 LMX1B 130 PTK2 170 EPAS1 

11 TGFB1 51 NKX2-1 91 ITGAV 131 BMPR2 171 ERBB4 

12 MYBPC3 52 TEK 92 RET 132 COL3A1 172 NID1 

13 ACVR1 53 BMP4 93 FN1 133 INHBC 173 EGR1 

14 CREBBP 54 DES 94 MYH9 134 TWIST1 174 VEGFC 

15 KIT 55 TBX3 95 FHL2 135 TGFB3 175 TFAP2C 

16 LAMC1 56 RB1 96 MECOM 136 FLNA 176 LEF1 

17 TNNT2 57 EFEMP1 97 TNFRSF1A 137 STAT1 177 NOG 

18 FGFR2 58 MET 98 SOX9 138 GATA2 178 FLT3 

19 PPARG 59 FGFR3 99 MSX1 139 IL9R 179 ITGB3 

20 GLI3 60 IGF1R 100 SMAD2 140 VDR 180 SOX10 

21 ACVRL1 61 TTN 101 SMAD4 141 GDF5 181 NF1 

22 HNF1A 62 AKT1 102 CAV3 142 GATA3 182 HNF4A 

23 CTNNB1 63 BMP2 103 ACTB 143 TGIF1 183 PDGFA 

24 EP300 64 KDR 104 HIF1A 144 EPHB2 184 PPARD 

25 COL1A1 65 KRAS 105 SMAD3 145 HRAS 185 TDGF1 

26 PAX3 66 INHBA 106 TBX2 146 MAP2K1 186 GDNF 

27 DLL1 67 FOXO1 107 LAMA5 147 COL1A2 187 MAPKAPK3 

28 EGFR 68 SP1 108 IKBKB 148 ITGB4 188 RPS6KA3 

29 GTF2I 69 MYL2 109 CDX2 149 AR 189 MUSK 

30 ACVR1B 70 TP53 110 IGF1 150 SOX2 190 CRYAB 

31 ACVR2A 71 CSRP3 111 NRP2 151 MYL3 191 MAPK14 

32 TFAP2A 72 WT1 112 THBS1 152 RARG 192 CDK4 

33 HSPG2 73 MYC 113 ACAN 153 NOS3 193 BMP10 

34 FLT4 74 BMP7 114 ENG 154 THRB 194 SP3 

35 GLI2 75 ILK 115 PLAT 155 PAX6 195 GJA3 

36 GTF2IRD1 76 LTBP1 116 APC 156 PDGFB 196 CRIP2 

37 FBN2 77 PTPN11 117 ABL1 157 AXL 197 BMPR1B 

38 SHH 78 NRP1 118 STAT3 158 AKT2 198 SMAD6 

39 TNNC1 79 VEGFA 119 NFKB1 159 ERBB3 199 THBS4 

40 PDGFC 80 PBX1 120 GDF11 160 PTEN 200 CUX1 

 

 

 

 

 

Table A.1. – Top 200 genes in congenital heart disease 

Final rankings for congenital heart disease obtained combining 

Pinta, Candid, Endeavour and GeneDistiller in the two-layer gene 

prioritization strategy. 
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1 NR1H3 41 MET 81 STAT3 121 NR4A1 161 ALDH3A1 

2 PPARG 42 RELA 82 NOTCH1 122 GRHPR 162 ZBTB16 

3 PPARA 43 NR2E3 83 ALDH7A1 123 NOTCH2 163 MITF 

4 ALDH2 44 GATA6 84 FGFR1 124 SMAD2 164 GJA1 

5 AR 45 CTNNB1 85 CCND1 125 EHHADH 165 RPE65 

6 THRB 46 HSD17B8 86 HAND1 126 PLAT 166 NR2C1 

7 ESR2 47 CDK4 87 ALDH1L1 127 ECHS1 167 NF1 

8 NR1I3 48 MYC 88 EFEMP1 128 ALDH3B2 168 CASP3 

9 CYP1A2 49 ALDH3A2 89 PGR 129 WWOX 169 ALDH6A1 

10 THRA 50 TBX5 90 CYP3A4 130 UGT1A5|UGT1A6 170 HIF1A 

11 HNF4A 51 GLI2 91 SP1 131 CYP7A1 171 NID1 

12 NR1I2 52 FABP1 92 CYP3A5 132 PDGFRB 172 ARNT 

13 NKX2-5 53 NR3C1 93 ITGB1 133 HAO1 173 ALB 

14 ESR1 54 ALDH9A1 94 APAF1 134 PSEN1 174 STK11 

15 HSD11B1 55 DHRS4 95 E2F1 135 NR0B1 175 HSD3B7 

16 GRK1 56 CYP4A22 96 SOD1 136 ALDH4A1 176 ABCG5 

17 CYP2E1 57 NFKB1 97 NR5A2 137 EPHX2 177 HSD11B2 

18 CREBBP 58 AKT1 98 RORC|LINGO4 138 BMP4 178 MECOM 

19 NR0B2 59 CYP2B6 99 FASN 139 KIT 179 MMP2 

20 NR1H2 60 SHH 100 CYP1A1 140 SOX2 180 FGG 

21 PPARD 61 APOA1 101 COL1A1 141 CYP19A1 181 FGFR4 

22 NR1H4 62 EP300 102 GJB1 142 TH 182 ALDH3B1 

23 NR2F6 63 PLG 103 NR5A1 143 FGFR2 183 KLF5 

24 RLBP1 64 SOX9 104 BMPR1A 144 PAX3 184 VTN 

25 HSD17B6 65 RB1 105 PROX1 145 MAOB 185 TGFBR1 

26 ALDH8A1 66 HSD17B2 106 TTR 146 VEGFA 186 IGF2 

27 VDR 67 ACAA1 107 LMNA 147 RET 187 CEBPB 

28 HNF1A 68 EGFR 108 TNFRSF1A 148 NOS2 188 GATA3 

29 BDH1 69 DHRS1 109 AKR1C4 149 NOS1 189 BMP2 

30 BRAF 70 TP63 110 COMT 150 PECR 190 TCF3 

31 NR2F1 71 JAG1 111 ALDH1B1 151 KRAS 191 LPL 

32 GLI3 72 TGFBR2 112 CEBPA 152 ACOX1 192 PTHLH 

33 POR 73 PTGS2 113 SMAD3 153 PBX1 193 GAPDH 

34 TP53 74 CYP4F2 114 PDGFRA 154 TGIF1 194 IRS1 

35 ESRRA 75 IGF1 115 NR6A1 155 NFE2L2 195 NR2C2 

36 LRP2 76 NR4A2 116 WT1 156 CAV1 196 CYP11A1 

37 XDH 77 HSD17B4 117 GATA2 157 ITGAV 197 RORB 

38 CYP4A11 78 APOE 118 IGF1R 158 PTPN11 198 NSD1 

39 ASMT 79 ERBB2 119 TGFB1 159 HSD17B12 199 NME1|NME2 

40 CYP27A1 80 AKT2 120 CDKN1A 160 NCOR2 200 TGM2 

 

 

 

 

 

 

 

  

Table A.2. – Top 200 genes in congenital diaphragmatic hernia 

Final rankings for congenital diaphragmatic hernia obtained 

combining Pinta, Candid, Endeavour and GeneDistiller in the two-

layer gene prioritization strategy. 
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1 TNF 41 MAPK14 81 KRAS 121 FGFR3 161 SMAD1 

2 TGFB1 42 MYC 82 PTPN11 122 CXCR3 162 PLG 

3 IL1B 43 IFNGR2 83 PTGS2 123 JUN 163 KDR 

4 PTPRC 44 IL6ST 84 MMP3 124 ICAM1 164 HRAS 

5 TGFBR2 45 FASLG 85 TLR7 125 MET 165 NOTCH2 

6 TLR4 46 TLR5 86 IL27RA 126 CCL3 166 FBN1 

7 MYD88 47 PDGFRA 87 PTPN6 127 FLT3 167 ITGAV 

8 IL6 48 THBS1 88 PPARG 128 BCL2 168 MMP1 

9 SMAD2 49 PLAT 89 NR3C1 129 CSF3R 169 PIK3R1 

10 IL1RAP 50 MAP2K1 90 CEBPB 130 RXRA 170 IL15 

11 TLR2 51 RARA 91 CASP8 131 CD80 171 HNF4A 

12 NFKB1 52 IL3RA 92 CD40 132 TNFSF10 172 HGF 

13 CSF2RA 53 SMAD4 93 IL1A 133 VCAN 173 IL2RB 

14 INPP5D 54 CCL5 94 STAT1 134 ITGA4 174 TLR8 

15 CD4 55 IL7R 95 SERPINE1 135 ETS1 175 NFKB2 

16 IL10RA 56 ADAM9 96 IL6R 136 SELL 176 CCL24 

17 RELA 57 PDGFRB 97 CD44 137 LEPR 177 PECAM1 

18 CCL2 58 FGFR1 98 IL1RL2 138 HIF1A 178 ACAN 

19 FAS 59 ITGB1 99 IKBKB 139 HLA-B 179 IFNAR2 

20 IKZF1 60 CCR5 100 FGFR2 140 ESR2 180 IL1RN 

21 CREBBP 61 MMP14 101 TRAF6 141 ERBB2 181 FLNA 

22 IL2RG 62 CD40LG 102 ALOX5 142 IRF1 182 ITGB3 

23 ITGB2 63 ADAM17 103 CCR2 143 C6 183 SMAD7 

24 IL12B 64 PSEN1 104 FLT4 144 CX3CL1 184 MMP13 

25 C3 65 CCR1 105 CASP3 145 FOS 185 TGFB3 

26 TNFRSF1A 66 EGFR 106 CSF1 146 NCOA3 186 ACTB 

27 IL18RAP 67 FCER1G 107 PIK3CA 147 CCR7 187 APC 

28 IL2 68 IKBKG 108 GHR 148 PTPN22 188 THBD 

29 CD86 69 TGFB2 109 CTNNB1 149 JAK2 189 MERTK 

30 FN1 70 FCGR2A 110 CSF2 150 VAV1 190 ATM 

31 TP53 71 IL9R 111 ITGAX 151 EFEMP1 191 WAS 

32 AKT1 72 STAT6 112 IL5 152 AXIN1 192 PDGFB 

33 NFKBIA 73 RB1 113 KIT 153 TLR3 193 HLA-C 

34 CSF2RB 74 CSF1R 114 TLR6 154 CCL7 194 AC046176.1|LYN 

35 IL21R 75 IL10RB 115 RAF1 155 ITGAL 195 IFNAR1 

36 TNFRSF1B 76 MMP9 116 PIK3CG 156 ADAM10 196 HBEGF 

37 FCGR2B 77 BMP2 117 CXCR2 157 CASP1 197 KITLG 

38 IFNGR1 78 TLR1 118 PTPRF 158 IL13RA1 198 FCGR1A 

39 CXCR4 79 MAPK1 119 COL1A1 159 

HLA-A|HLA-

G 199 IL12A 

40 STAT3 80 EP300 120 C3AR1 160 PTPRJ 200 PRKCD 

 

 

 
 

 

 

  

Table A.3. – Top 200 genes in asthma 

Final rankings for asthma obtained combining Pinta, Candid, 

Endeavour and GeneDistiller in the two-layer gene prioritization 

strategy. 
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APPENDIX B 

CLUSTERING AND GENE 

PRIORITIZATION 

 
Disease Repulsion 

Alzheimer’s disease 4.4 

Amyotrophic lateral sclerosis 2.0 

Anemia 12.8 

Breast cancer 11.0 

Cardiomyopathy 5.5 

Cataract 13.0 

Charcot-Marie-Tooth disease 7.5 

Colorectal cancer 7.2 

Deafness 19.4 

Diabetes 10.7 

Dystonia 2.0 

Ehlers-Danlos syndrome 2.7 

Epilepsy 5.1 

Hemolytic anemia 4.4 

Ichthyosis 4.7 

Leukemia 11.8 

Lymphoma 20.0 

Mental retardation 10.7 

Muscular dystrophy 5.2 

Myopathy 9.8 

Neuropathy 6.8 

Obesity 5.7 

Parkinson’s disease 3.6 

Retinitis pigmentosa 6.8 

Spastic Paraplegia 2.3 

Spinocerebellar ataxia 3.9 

Usher syndrome 10.2 

Xeroderma Pigmentosum 3.9 

Zellweger Syndrome 2.7 
 

 

 

 

 

Table B.1: Optimum repulsion (r) parameter for every disease in CLOPE. R controls the 

tightness of the clusters and its value changes according to the sparseness of the space 

solution.  
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Disease Genes 

alzheimer Cluster 1 BPTF 

BLMH 

ACE 

anemia Cluster 1 FANCD2 

FANCE 

FANCF 

FANCC 

 

cardiomyopathy Cluster 1 MYL2 

TCAP 

TNNC1 

LMNA 

DES 

ACTC1 

cataract Cluster 1 CRYGC 

CRYGD 

CRYBA1 

colorectal_cancer Cluster 1 MLH1 

PMS2 

MLH3 

PMS1 

deafness Cluster 1 KIAA1199 

COCH 

ENSG00000166763 

Cluster 2 TMC1 

ACTG1 

GJB2 

ehlers-danlos Cluster 1 COL5A1 

COL1A1 

COL3A1 

COL1A2 

COL2A1 

emolytic_anemia Cluster 1 BPGM 

G6PD 

GPI 

TPI1 

 

leukemia 

 

 

Cluster 1 ARHGEF12 

TCL1A 

RALA 

ARHGAP26 

SH3GL1 

BCR 

MLLT4 

CHIC2 

Cluster 2 GATA1 

MLF2 

MLLT6 

PSMD7 

TAL1 

HLF 

TAL2 

MLLT1 

LMO1 
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TCTA 

FOXN2 

MLLT3 

HOXA9 

TET1 

C1ORF56 

LMO2 

LPP 

ETV6 

LYL1 

TCL6 

DLEU2L 

BAALC 

ELL 

MLLT10 

MLL5 

DLEU1 

FLI1 

RBM15 

AFF1 

MLF1 

RAP1GDS1 

ZMYM2 

Cluster 3 PBX3 

IKZF1 

ERG 

MLL2 

WHSC1L1 

CBFB 

MLL4 

TCF3 

RARA 

DEK 

MKL1 

MLL3 

Cluster 4 P2RX7 

LIFR 

MPL 

 

Cluster 5 FUS 

SLC20A2 

SLC20A1 

MME 

KDSR 

Cluster 6 ERBB4 

KIT 

FLT3 

PDGFRB 

Cluster 7 PBX1 

IRF1 

ARNT 

Cluster 8 TLX3 

THRB 

TLX1 

TLX2 

Cluster 9 PICALM 
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SEPT9 

NUMA1 

ACSL1 

FNBP1 

muscular_dystrophy 

 

 

Cluster 1 FRG1 

LMNA 

PABPN1 

 

Cluster 2 SEPN1 

PLEC 

DYSF 

FKTN 

SGCG 

EMD 

MYOT 

SGCD 

SGCB 

FKRP 

TCAP 

SGCA 

Myopathy 

 

Cluster 1 TNNC1 

MYL2 

MYH2 

ACTC1 

Cluster 2 COL6A3 

COL9A3 

COL6A2 

COL6A1 

retinitis_pigmentosa 

 

Cluster 1 ROM1 

PRPH2 

RP1 

TULP1 

PDE6B 

PDE6A 

RPGRIP1 

Cluster 2 RP9 

PRPF31 

PRPF8 

spastic_paraplegia Cluster 1 IPA1 

SPAST 

GPM6B 

ATL1 

BSCL2 

spinocerebellar_ataxia Cluster 1 ATXN7 

TBP 

TDP1 

ATXN1 

xeroderma_pigmentosum Cluster 1 DDB2 

XPC 

DDB1 

ERCC5 

ERCC4 

zellweger_syndrome Cluster 1 PEX5 

PEX16 

PEX13 

PEX10 
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PEX2 

PEX3 

PEX1 

 

 

 

 

 

 

 

 

 

 

 

 

Syndrome Full gene set Genes in clusters 

Alzheimer’s disease 0,11745 0,113066667 

Anemia 0,0653 0,0228 

Cardiomyopathy 0,038818182 0,0166 

Cataract 0,04966 0,010133333 

Colorectal cancer 0,091238095 0,0101 

Deafness 0,148142857 0,1492 

Ehlers Danlos Syndrome 0,0364 0,0102 

Leukemia 0,100121429 0,0952 

Muscular distrophy 0,025316667 0,04336 

Myopathy 0,062770732 0,01075 

Retinitis Pigmentosa 0,056706667 0,01624 

Spastic Paraplegia 0,047885714 0,01208 

Spinocerebellar ataxia 0,047828571 0,0698 

Xeroderma Pigmentosum 0,022 0,0216 

Zellweger Syndrome 0,026444444 0,013371429 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.2: Clusters with three or more elements obtained from gene sets on 

Supplementary Table 2 using CLOPE with r value obtained from Supplementary Table 1. 

Table B.3: Comparison of AAC between training sets and clustered genes in Endeavour. 

Diseases which return more than one cluster show the average AAC value of all of them. 

�
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Syndrome Full gene set Genes in clusters 

Alzheimer’s disease 0,0437 0,45586664 

Anemia 0,04657136 0,0086 

Cardiomyopathy 0,05733332 0,01840004 

Cataract 0,01355792 0,01146672 

Colorectal cancer 0,10881904 0,0113 

Deafness 0,06289 0,01716662 

Ehlers Danlos Syndrome 0,03852 0,02744 

Leukemia 0,08589052 0,110887879 

Muscular distrophy 0,03156368 0,041418656 

Myopathy 0,06196756 0,04635 

Retinitis Pigmentosa 0,02681372 0,010080008 

Spastic Paraplegia 0,09746672 0,30373328 

Spinocerebellar ataxia 0,03594288 0,0375 

Xeroderma Pigmentosum 0,01668 0,01248 

Zellweger Syndrome 0,04865 0,07133332 
 

Table B.4: Comparison of AAC between training sets and clustered genes in 

Genedistiller. Diseases which return more than one cluster show the average 

AAC value of all of them. 

�

�
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Syndrome Full TS Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 Cluster8 Cluster9 

Deafness 0,1492 0,078933333 0,219467        

Leukemia 0,0952 0,1373 0,106563 0,035233 0,040133 0,32296 0,0115 

0,07853

3 0,0263 0,0364 

Muscular 

distrophy 0,0434 0,067466667 0,037333        

Myopathy 0,0107 0,0114 0,0101        

Retinitis 

Pigmentosa 0,0162 0,0108 0,028933        

 

 

 

 

 

 

 

 

Syndrome Full TS Cluster1 Cluster2 Cluster3 Cluster4 

Cluster

5 

Cluster

6 Cluster7 

Cluster

8 Cluster9 

Deafness 0,05025 0,0062 

0,02813

3        

Leukemia 

0,0654679

2 0,14275 

0,13819

3 0,0717 0,0636 0,0813 0,0319 

0,03813

3 0,0598 0,18488 

Muscular 

distrophy 

0,0168726

4 0,165333 0,01044        

Myopathy 

0,0327783

2 0,0323 0,0604        

Retinitis 

Pigmento

sa 

0,0138207

2 0,010343 

0,00946

7        

 

 

 

 

 

 

 

 

 ENDEAVOUR GENEDISTILLER 

Disease Random 

AAC 

Cluster 

AAC 

Difference Random 

AAC 

Cluster AAC Difference 

Alzheimer's 

disease 0,1274 0,1131 0,0144 0,00805332 0,06693332 -0,0589 

Anemia 0,1347 0,0228 0,1119 0,04272376 0 0,0427 

Cardiomyopat

hy 0,0462 0,0166 0,0296 0,00676604 0,00833324 -0,0016 

Cataract 0,1608 0,0101 0,1507 0,01094664 0,00720008 0,0037 

Colorectal 

cancer 0,1149 0,0101 0,1048 0,01731 0,0028 0,0145 

Deafness 

Cluster 1 0,1586 0,0789 0,0797 0,07326664 0,0008 0,0725 

Deafness 

cluster 2 0,1920 0,2195 -0,0275 0,03182072 0,00439996 0,0274 

Ehlers Danlos 0,0256 0,0102 0,0155 0,010184 0,0136 -0,0034 

Table B.5: Comparison of AAC between training sets and individual clusters (for diseases with 

more than one cluster) using Endeavour 

Table B.6: Comparison of AAC between training sets and individual clusters (for diseases with 

more than one cluster) using Genedistiller 
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Syndrome 

Leukemia 

Cluster 1 0,1291 0,1373 -0,0082 0,0922 0,0527 0,0395 

Leukemia 

Cluster 2 0,1190 0,1066 0,0124 0,07212964 0,12528268 -0,0532 

Leukemia 

Cluster 3 0,1179 0,0352 0,0827 0,07657088 0,02736668 0,0492 

Leukemia 

Cluster 4 0,2478 0,0401 0,2077 0,13066148 0,01746672 0,1132 

Leukemia 

Cluster 5 0,1013 0,3230 -0,2216 0,068176 0,0488 0,0194 

Leukemia 

Cluster 6 0,2140 0,0115 0,2025 0,12347 0,0101 0,1134 

Leukemia 

Cluster 7 0,2025 0,0785 0,1240 0,09148764 0,01946672 0,0720 

Leukemia 

Cluster 8 0,1593 0,0263 0,1330 0,10254444 0,0205 0,0820 

Leukemia 

Cluster 9 0,1652 0,0364 0,1288 0,09653096 0,33488 -0,2383 

Muscular 

distrophy 

Cluster 1 0,0733 0,0675 0,0059 0,04377924 0,00933328 0,0344 

Muscular 

distrophy 

Cluster 2 0,0391 0,0373 0,0017 0,05543468 0,00232 0,0531 

Myopathy 

Cluster 1 0,1095 0,0114 0,0981 0,01904436 0,0074 0,0116 

Myopathy 

Cluster 2 0,0776 0,0101 0,0675 0,0288 0,0034 0,0254 

Retinitis 

Pigmentosa 

Cluster 1 0,0804 0,0108 0,0696 0,00593524 0,00217144 0,0038 

Retinitis 

Pigmentosa 

Cluster 2 0,0449 0,0289 0,0160 0,00900004 0,00026668 0,0087 

Spastic 

Paraplegia 0,0445 0,0121 0,0324 0,0253954 0,03933332 -0,0139 

Spinocerebell

ar ataxia 0,0528 0,0698 -0,0170 0,01787 0,038 -0,0201 

Xeroderma 

Pigmentosum 0,0408 0,0216 0,0192 0,004832 0,00232 0,0025 

Zellweger 

Syndrome 0,0313 0,0134 0,0179 0,0016524 0,00046672 0,0012 

 

 

 

 

 

 

Table B.7: Comparison of AACs between valid and random clusters using Endeavour and 

Genedistiller. The random cluster AAC values are normally distributed. This property is 

used to derive a p-value for the real cluster AAC using the normal Cumulative Distribution 

Function (CDF). 
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