

MPC, TABS and AHU in Hollandsch Huys

Model based Predictive Control with Thermally Activated Building Systems and Air Handling Unit

Maarten Sourbron, Lieve Helsen Geotabs – Eindhoven meeting August 29-30, 2012

1

Overview

EUVEN

- · TABS and AHU in MPC
- · AHU-implementation in Hollandsch Huys MPC

2

MPC-TABS-AHU: cost function

EUVE

- · TABS cost:
 - Heat transfer water-concrete
 - Production power and efficiency: COP(T), multistage, ...
 - Circulation pumps
- AHU cost
 - Heating coil / cooling coil heat transfer (Moist Air!)
 - Production power and efficiency: heat recovery, bypass, recirculation, back-up configuration
 - Fans

7

MPC-TABS-AHU: example

LEUVE

- MPC with 2nd order building zone model
- Sunday-Monday sequence
- $Q_{TABS,nom} = 42 \text{ W/m}^2$; $Q_{air,nom} = 10 \text{ W/m}^2$

MPC-TABS-AHU: example

- Change in T_{vs.min} (air supply) = 20 °C instead of 18 °C
- No real change in MPC control action due to low thermal power of air supply

AHU in Hollandsch Huys MPC

LEUVEN

- · Now only modelled as a disturbance to the zone,
- but with an energy consumption that effects the heat pump production unit

$$-P_{heat-pump} = P_{TABS} + P_{AHU}$$

AHU in Hollandsch Huys MPC

LEUVEI

- r1 = return air from office (T_{office})
- r2 = return air after return fan: $T_{r2} = T_{r1} + 0.5$
- r3 = return air after heat recovery: $\eta_{heatrecovery}$
- s1 = supply air from outside (T_{ambient})
- s2 = supply air after heat recovery: $\eta_{heatrecovery}$
- s3 = supply air after heat recovery bypass
- s4 = supply air after mixing point: fixed recirculation (50-50)
- s5 = supply air after coil:

Moist air calculation, P_{max} =75kW (see specs;supply water 17-20) $P_{calculated} = P_{AHU}$

• s6 = supply air after supply fan to offices : $T_{s6} = T_{s5} + 0.5$