
A Two-Tier Sandbox Architecture for Untrusted JavaScript

Phu H. Phung
∗

ProSec Security Group
Chalmers University of Technology

Gothenburg, Sweden
phu.phung@chalmers.se

Lieven Desmet
IBBT-DistriNet Research Group

KU Leuven
3001 Leuven, Belgium

lieven.desmet@cs.kuleuven.be

ABSTRACT
The large majority of websites nowadays embeds third-party
JavaScript into their pages, coming from external partners.
Ideally, these scripts are benign and come from trusted sourc-
es, but over time, these third-party scripts can start to mis-
behave, or to come under control of an attacker. Unfortu-
nately, the state-of-practice integration techniques for third-
party scripts do not impose restrictions on the execution of
JavaScript code, allowing such an attacker to perform un-
wanted actions on behalf of the website owner and/or web-
site visitor.

In this paper, we present a two-tier sandbox architec-
ture to enable a website owner to enforce modular fine-
grained security policies for potential untrusted third-party
JavaScript code. The architecture contains an outer sand-
box that provides strong baseline isolation guarantees with
generic, coarse-grained policies and an inner sandbox that
enables fine-grained, stateful policy enforcement specific to
a particular untrusted application. The two-tier approach
ensures that the application-specific policies and untrusted
code are by default confined to a basic security policy, with-
out imposing restrictions on the expressiveness of the poli-
cies.

Our proposed architecture improves upon the state-of-the-
art as it does not depend on browser modification nor pre-
processing or transformation of untrusted code, and allows
the secure enforcement of fine-grained, stateful access con-
trol policies. We have developed a prototype implementa-
tion on top of a open-source sandbox library in the EC-
MAScript 5 specification, and applied it to a representative
online advertisement case study to validate the feasibility
and security of the proposed architecture.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-

∗Part of this work was performed while the author was vis-
iting Stanford University hosted by Prof. John Mitchell.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JSTools’12, June 13, 2012, Beijing, China
Copyright 2012 ACM 978-1-4503-1274-5/12/06 ...$15.00.

cation—Assertion checkers; D.4.6 [Operating Systems]:
Security and Protection

General Terms
JavaScript, Security, ECMAScript 5, Sandbox

Keywords
Web Application Security, Fine-grained Security Policy, Web
Mashups, Untrusted

1. INTRODUCTION
Embedding external content into web pages is becoming

more and more popular. A recent report [1] shows that 97%
of Fortune 500 web sites display content from external part-
ners using e.g. JavaScript widget providers, ad networks, or
packaged software providers. Typically, a web master of a
hosting page needs to trust the external JavaScript code be-
fore inserting it to the page since the external JavaScript
(mashup) code run in the context of the hosting page. How-
ever sometimes this trust can be misplaced. In September
2009, readers of the New York Times website faced a fake
virus infection pop-up which directs the readers to a web
page that claims to offer anti-virus software. The attack
happened because the external content, e.g. the ad, is nor-
mally fetched dynamically from an external source by the
user’s browser [24], which is not under the control of the
hosting page.

There have been a number of solutions proposed dealing
with untrusted JavaScript code, such as Google Caja [17],
Facebook JavaScript [4], ADsafe [2] and Conscript [16], and
so on. However, we identified some important limitations
with the current state of the art as will be discussed in more
detail in Section 2. In particular, most of the approaches re-
quire (1) browser modifications or server-side pre-processing
e.g. static validation, filtering, or transformation of the un-
trusted JavaScript, limiting the deployment capabilities, or
(2) restrict the expressiveness of the enforcement to coarse-
grained access control policies.

To achieve both the expressiveness of security policies as
well as easy of deployment of our secure integration archi-
tecture, we propose a client-side security architecture that
enforces fine-grained, stateful security policies for untrusted
JavaScript code but does not require pre-processing of the
code nor browser modification. This client-side security ar-
chitecture is realized by means of a two-tier sandbox archi-
tecture: a generic, coarse-grained sandbox provides strong

baseline isolation guarantees, whereas a second sandbox en-
ables fine-grained, stateful policy enforcement specific to a
particular untrusted application. The application-specific
policy enforcement code is executed within an outer sand-
box environment which guarantees that it – even if subverted
or badly written – will still adhere to some general security
policies provided by the baseline isolation of the outer sand-
box, and e.g. does not give unauthorized access to sensitive
resources or unintentionally leak unprotected references.

We have developed a prototype implementation of the pro-
posed two-tier sandbox architecture, leveraging on recent
developments in ECMAScript 5, a new JavaScript specifi-
cation. For the sandboxing technology, we have built upon
an existing open-source JavaScript library [3]. This library
applies the strict mode of ECMAScript 5, and allows to load
and execute untrusted code dynamically in a sandbox envi-
ronment. The fined-grained policy enforcement is a modified
version of our lightweight self-protecting JavaScript mecha-
nism [19, 14], and improves upon the earlier work by achiev-
ing strong security guarantees and being able to deal with
untrusted code. The policies express access control restric-
tions for both method calls as well as property accesses, and
are expressed in pure JavaScript so that a policy writer can
easily express stateful and fine-grained policies.

Our proposed architecture improves upon the state-of-
the-art since it does not depend on browser modification
nor transformation of client-side code, and allows the secure
enforcement of fine-grained, stateful access control policies
for untrusted JavaScript. The solution enables application-
specific policy enforcement, even if multiple third-party ap-
plications are loaded on the same page. We have applied
the prototype implementation to a set of mashup compo-
nents, and a representative online advertisement case study
to validate the feasibility and security of the proposed ar-
chitecture.

Organization.
The rest of this paper is written as follows. The next sec-

tion briefly sketches the challenges for securely integrating
third-party JavaScript, and expresses the requirements for
a client-side security architecture. Section 3 proposes the
two-tier enforcement architecture for policy enforcement of
untrusted code on an API in sandbox compartments. We
present the prototype implementation of the architecture in
Section 4. In Section 5 we present our design for specifying
fine-grained policies. The validation of the prototype are
presented and discussed in Section 6. Discussion and future
work are given in Section 8.

2. PROBLEM STATEMENT
The state-of-practice technique to integrate third-party

scripts in webpages is via script inclusion [22]. By doing so,
the browser will execute the code as if it part of the original
webpage, without any restrictions of the Same-Origin Policy.
As a side effect, the third-party code executes in the same
JavaScript context, and has access to all the code and data
of the integrating webpage.

This is clearly not desirable in case the third-party JavaScript
is malicious or can not be trusted. But even if the external
party is trustworthy at the moment of website construction,
the partner can become malicious over time, or be the victim
of an attacker by itself. As a result, if an attacker controls
the integrated script, he has full control over the hosting

website and can perform unwanted actions on behalf of the
website owner as well as website visitors.

Therefore, several countermeasures have been proposed [21,
13, 11, 19, 16, 12] and some of them are widely adopted [17,
4, 2]. Section 7 discusses various solutions in more detail, but
in this section we briefly highlight two important shortcom-
ings in the current state-of-the-art: the ease of deployment
and the expressiveness of security policies.

Ease of deployment.
There are several modes of deployment, each with their

own characteristics. The most invasive set of solutions re-
quire client-side modifications [18, 16, 25], which strongly
limits the adoption of the solution, and requires web users
to install additional extensions or custom-build browsers.
Other solutions requires server-side pre-processing (such as
filtering, transforming or wrapping untrusted code) [11] or
impose restrictions to the third-party code to adhere to safe
subset of JavaScript [4, 2, 12].

Both browser modification and pre-processing approaches
make the deployment more difficult, and differ from the
state-of-practice setting in which a legacy browser fetches
JavaScript code directly from the external partner.

Expressiveness.
Most of available solutions only allow coarse-grained ac-

cess control policies to be specified. Facebook JavaScript [4],
ADsafe [2], and Google Caja [17] for instance only allow to
enforce general coarse-grained policies for untrusted JavaScript.
Alternative solutions providing fine-grained policy enforce-
ment rely however on client-side modifications [18, 16, 25]
or server-side pre-processing [11].

Another key issue in policy enforcement is that writing
fine-grained, stateful policies can be hard and error-prone,
and attackers can subvert defective policies to bypass the en-
forcement [16, 14]. One approach to tackling this issue is to
constrain the way that policies are written, however it lim-
its the expressiveness of policies. For instance, WebJail [25]
constrains policies to whitelists to avoid ‘inverse sandbox ’
attacks. Designing a specific policy language which can con-
struct a suitable static type system to ensure the correctness
of policies [16] but this typically also requires modifications
to the browser.

2.1 Requirements
As stated before, the current set of secure integration

techniques for third-party JavaScript either rely on browser
modification or code pre-processing, or strongly limits the
expressiveness of the security policies. To achieve an expres-
sive and easy-deployable client-side security architecture, we
therefore propose the following requirements:

R1. The client-side security architecture should be able to
cope with fine-grained security and/or stateful security
policies.

For instance, a policy developer should be able to ex-
press that (1) only a subset of security-sensitive oper-
ations can be used, (2) that certain functions only can
be called if the arguments satisfy additional constraints
(e.g. appear in a whitelist), and (3) that no cross-origin
requests may be sent out after user-supplied input has
been received (e.g. as part of a form).

R2. To ease the deployment of the security architecture,

the solution should not require any modification of
the browser, nor should depend on server-side pre-
processing of the untrusted JavaScript code.

By targeting mainstream browsers, the solution can
be deployed without additional effort of the end-user
(such as downloading a specific browser extension or
custom-build browser). Without the need for code pre-
processing, the state-of-practice integration technique
can be preserved to directly embed external scripts in
the browser.

R3. The client-side security architecture provides complete
mediation in accessing security-sensitive operations. Ir-
respectively of how the security-sensitive operation gets
called, the security policies is always applied.

R4. The client-side security architecture must be robust to
potential flaws in security policies.

Since the process of writing fine-grained and/or state-
ful security policies can be error-prone [15, 16, 14],
the security architecture must be able to limit the el-
evation of privileges in case a security check can be
circumvented due to a policy flaw.

3. TWO-TIER SANDBOX ARCHITECTURE
The main purpose of the client-side security architecture is

to build a sandbox environment, in which untrusted scripts
can run securely. In such a sandbox environment, all ac-
cesses to security-sensitive operations are mediated, and are
controlled via a security policy.

3.1 Two-tier approach
Since writing fine-grained and/or stateful security poli-

cies can be hard and error-prone, especially for rich environ-
ment such as client-side web scripting, we propose a two-tier
sandbox architecture. The architecture protects security-
sensitive operations by nesting two sandbox environments,
as depicted in Fig. 1: a generic, coarse-grained outer sand-
box provides strong baseline isolation guarantees, whereas a
second sandbox enables fine-grained, stateful policy enforce-
ment specific to a particular untrusted application.

Sandbox running
untrusted code,

defined in a
separate file e.g.

`untrusted.js’

Sandbox running policy
code, defined in a
separate file e.g. `policy.js’

Base-line API
implementation,
in e.g. `api.js’ file

JavaScript
environment,
i.e. the DOM

The policy code can only
access the base-line API and
provided wrapper functions

The untrusted code can only
access objects returned by
the enforcement sandbox

Figure 1: The two-tier sandbox architecture

Our motivation for the architecture is that giving a lim-
ited set of allowed operations as coarse-grained policy, a pol-
icy developer can define additional, fine-grained restrictions.
Hereby, the policy developer can focus on the application-
specific policy, rather that coping with the technicalities of
achieving the basic set of restrictions and complete media-
tion.

Outer sandbox.
The outer sandbox provides a reusable sandboxing layer

that enforces coarse-grained security policies, i.e. the outer
sandbox limits the set of security-sensitive operations and
properties available to the inner-sandbox.

By separating this functionality as a separate and reusable
sandbox, the two-tier architecture is able to provide strong
baseline guarantees, irrespectively of eventual policy flaws
in the inner sandbox.

Also the quite challenging effort of achieving complete me-
diation in a JavaScript environment [19, 14] can be easily
reused over multiple instantiations. Once the outer sand-
box achieves complete mediation to a particular security-
sensitive operation, this complete mediation is automatically
inherited by any inner sandbox.

Inner sandbox.
The inner sandbox enforces additional application-specific

constraints upon access to security-sensitive operations or
properties. Since the baseline guarantees are already pro-
vided by the outer sandbox, the inner sandbox can provide
an expressive policy environment to the policy writer, al-
lowing him to express fine-grained and/or stateful security
policies specific to an untrusted application.

In the remainder of this paper, we will focus on fine-
grained access control policies, but the proposed security
architecture can also be interesting to enforce usage control
policies or information flow control policies.

Loading the security architecture.
Loading the security architecture works as follows. First,

the outer sandbox, mediating access between the inner sand-
box and the hosting page, loads itself and makes a limited set
of security-sensitive operations available to the inner sand-
box according to the coarse-grained policy. Next, the inner
sandbox loads the untrusted JavaScript code into the second
sandbox environment, in which accesses to security-sensitive
operations are mediated by the application-specific security
policy.

By doing so, accesses from untrusted JavaScript to security-
sensitive operations first pass the application-specific policy
enforcement of the inner sandbox. Upon approval of the
application-specific policy, the call is delegated to the coarse-
grained policy enforcement of the outer sandbox. This defense-
in-depth approach ensures that the two-tier sandbox archi-
tecture, even if application-specific policy get subverted, can
always guarantee coarse-grained isolation provided by the
reusable outer sandbox, and therefore cannot unintention-
ally provide accesses to security-sensitive operations or prop-
erties on the hosting page.

4. PROTOTYPE IMPLEMENTATION
The prototype implementation of the two-tier sandbox

architecture consists of two parts: the security architec-

ture realizing the sandboxing of untrusted code, and the
fine-grained policy enforcement mechanism. For realizing
the sandbox architecture purely in JavaScript, we employ a
sandbox library namely Secure ECMAScript (SES) [3], de-
veloped in ECMAScript 5 by the Google Caja Team.

In this section, we briefly introduce the SES sandbox li-
brary and then present our prototype implementation of the
architecture which is built on top of the SES library. The
fine-grained policy enforcement mechanism is discussed in
more detail in Section 5.

4.1 The Secure ECMAScript 5 sandbox library
(SES)

Features of the current JavaScript language conspire to
make sandboxing nontrivial, and sandboxing untrusted JavaScript
code normally requires complex filtering, transforming and
wrapping untrusted code to restrict the code to a manage-
able subset [12]. The ECMAScript 5 specification, released
by the ECMA committee in December 2009, has been mod-
ified to make sandboxing easier and more widely applica-
ble. ECMAScript 5 (ES5) is a new standard specification of
JavaScript language which represents, from a security per-
spective, a huge improvement over the previous (current)
specification, ECMAScript 3. Besides new features such as
providing a way (Object.defineProperty method) to em-
ulate platform objects, or providing new APIs, ES5 pro-
vides more robust programming to write secure JavaScript.
Firstly, objects in ES5 can be frozen such that the frozen ob-
jects are tamper-proof. Secondly, isolation problems in ES3
are solved in ES5 strict mode, a restricted subset of ES5.
The strict mode creates a restriction on ES5 language to
archive two isolation properties: static lexical scope, and no
encapsulation leak. Strict mode provides complete and static
lexical scoping by disallowing deletes on variable names, no
prototype chain for scope objects, disallowing with state-
ments, which provide a mechanism to insert scope objects.
In ES3 and most current browsers, there are several channels
that untrusted code running within a restricted closure can
access the global object by referring to the implicit this pa-
rameter, or access critical resources by abusing caller-chain.
ES5’s strict mode repairs these leaks by disallowing these
channels to ensure no encapsulation leaks in a closure. These
restrictions can plug encapsulation leaks that happen in ES3
so that make it possible to implement safe closure-based en-
capsulation.

Secure ECMAScript 5 (SES) is a sandbox library, devel-
oped in ES5 strict mode, that enables the construction of a
sandbox without the need for server-side transformation or
pre-processing. The main goal of the library is to make un-
trusted code run inside an isolated environment so that the
untrusted code cannot access global variables and the global
object but can only have access to the whitelist built-in ob-
jects, a provided API (which is essentially mediating access
to security-sensitive operations) and the objects created by
itself. We refer the readers to [23] for the full detail of the
library together with its semantics and soundness. Giving
a piece of untrusted code represented as a string variable
untrustedCodeSrc with an API api, once the SES library
is initiated in a web page (frame), a sandbox environment
can be constructed in the frame as illustrated as follows.

4.2 The two-tier sandbox architecture proto-
type

var api = { . . . } ; // c o n s t r u c t i n g
var makeSandbox =

cajaVM . compileModule (untrustedCodeSrc) ;
var sandboxed = makeSandbox (api) ;

Built on top of the SES sandbox library, our two-tier sand-
box architecture consists of two nested sandbox compart-
ments. As shown in Fig. 1, we assume that the baseline API
is developed in a separated file ‘api.js’, the policy code is
specified in ‘policy.js’ file, and the untrusted code is retrieved
from a third-party site and stored at the hosting server in
‘untrusted.js’ file1. Listing 1 illustrates the deployment of
the architecture. In this listing, the api variable is the base-
line API, constructed in the ‘api.js’ file (included in the host-
ing page by a <script> tag as normal); the ‘policy.js’ and
‘untrusted.js’ files are loaded (using XMLHtmlRequest) into
the policyCode and untrustedCode variables, respectively.

Listing 1: The structure of two-tier sandbox archi-
tecture
var outerSandbox =

cajaVM . compileModule (pol icyCode) ;
var enforcedAPI = outerSandbox (api) ;
load untrustedCode (enforcedAPI) ;
function load untrustedCode (api){

var innerSandbox
= cajaVM . compileModule (untrustedCode) ;

innerSandbox (api) ;
}

Creating the baseline API.
The outer sandbox relies on a baseline API being pro-

vided, and we assume that such a baseline API is available
(and verified as in e.g. [23, 20]). Given such a baseline API,
our architecture realizes modular and fine-grained policy en-
forcement on top of such a coarse-grained API in a secure
manner. Constructing such an API is not a simple task and
out of scope for this paper, but we like to refer to ongoing
efforts such as the DOMADO library as part of the Google
Caja project.

To validate the results in this paper, we opted to construct
a proof-of-concept API which mediates selected accesses to
the DOM. This API has been realized as follows.

Firstly, we virtualize a critical object by creating a con-
structor function and store the original critical object in a
reference map pointing to the constructor itself (virtualiza-
tion is a known technique which has been employed in e.g.
Domita [17] or ADsafe [2]). The map object is out of the
scope of the constructor function, therefore it is inaccessi-
ble from the untrusted code. This can avoid a transfor-
mation or static validation of untrusted code as performed
in e.g. Domita or ADsafe to prevent untrusted code access
special variables storing original critical objects. We use
the WeakMap implementation in the SES library [3] to keep

1We use this method to get untrusted code in order to
load at runtime using XMLHtmlRequest. An alterna-
tive method is to use the Uniform Messaging Policy (see:
http://www.w3.org/TR/UMP/) to request the code di-
rectly from the third-party site (cross domain).

such references.
Secondly, we have built the prototype of the constructors

with methods and properties having the same name of those
of critical objects. In each method or property, we can check
the arguments and enforce a static policy to ensure some
security properties before invoking or returning the original
method or property retrieved from the reference map. The
returned object by the original method is also mediated to
ensure the complete mediation. Arguments of a method call
are also wrapped so that no side-effects can happen.

4.3 Tamper-proofing Arguments
Our architecture is based on sandbox compartments in a

SES environment of which the soundness and confinement
have been proved [23]. The capability of untrusted code,
therefore, is confined by the API provided by the enforced
objects and the sandbox environment. It means that the
untrusted code within the sandbox cannot access arbitrary
references except the enforced API.

In a SES environment, built-in objects are frozen so that
untrusted code cannot modify a built-in prototype to launch
prototype poisoning attack on policy enforcement code. Pro-
totype poisoning is an attack vector in which the attacker
can compromise trusted code by modifying a global proto-
type that is inherited by the trusted code [15, 14]. Our
enforced objects are protected by using Object.seal(obj)

in ES5 so that existing properties of the object become non-
configurable, i.e. no property descriptors can be changed, and
no properties can be deleted. This is an important improve-
ment since in Mozilla, deleting a wrapped object recovers
the original object [19].

5. FINE-GRAINED POLICY DEFINITION
AND ENFORCEMENT

The main goal of our two-tier sandbox architecture is
to define and enforce stateful, fine-grained security policies
specifically to a piece of untrusted JavaScript code. As men-
tioned briefly in introduction, we adopt the lightweight self-
protecting JavaScript proposed in [19] for policy enforce-
ment in the inner sandbox in our two-tier sandbox architec-
ture. Security policies in this mechanism are defined in pure
JavaScript language in aspect-oriented programming (AOP)
style so that they can express stateful and fine-grained poli-
cies. Although the self-protecting JavaScript method pro-
vides a way to specify and enforce fine-grained policies, it
does consider the whole page as untrusted code, except for
the policy code itself2, and therefore cannot be used to de-
fine modular policies for portions of untrusted code within
a page. In this work we adapt this enforcement mechanism
to fit on our two-tier sandbox architecture. Moreover, the
implementation of [19] is in current JavaScript specification
and faced some vulnerabilities which have been patched in
later work [14]. We revisit and revise the issues addressed in
[14] to fit in the implementation in the new context of ES5.

Similar to [19], policy enforcement mechanism in this work
mediate access to security-sensitive methods and fields. A
policy for such a mediator defines if the access is allowed,
rejected or modified according to a further policy. Within

2The policy code is injected into the header of the page to
ensure that the policy code is executed first in order to wrap
the security critical methods before the untrusted (attacker)
code can get a handle on them

policy code, a policy writer can define helper functions and
variables as security states to keep some execution history of
the code, or as some sensitive information such as whitelists.
The basic idea of the enforcement is first to keep the refer-
ence to the method or property to be mediated, and then
execute the policy which decides whether to allow access on
the original method or property. Differing from [19], this en-
forcement is executed within a sandbox environment, there-
fore local variables and functions are protected. Moreover,
the enforced object is sealed in ES53 so that it cannot be
deleted. We present in detail the enforcement for method
invocation and property access.

5.1 Policy Definition
A policy for method invocation defines whether or not

the invocation may proceed depending on some conditions.
In our enforcement model, a condition could be based on
security states, patterns such as whitelists, and the value of
the arguments. We propose two types of policy definition:
(1) property access policy and (2) method invocation policy
since an object in an API contains properties and methods
proxying accesses to the real corresponding object.

Listing 2: A policy example for an API object
var document pol icy={

getElementById : {
method : function (args , proceed){

var id = args [0] ;
i f (id === ’ main ’){

return proceed (d iv Main po l i cy) ;
}
// . . more cases

} ,
a rgs : [’ s t r i n g ’]

}
// o ther p r o p e r t i e s and methods ’ d e f i n i t i o n
}
var d iv Main po l i cy = {

s t y l e : {
property :{

read : function (){ return div M sty le ;} ,
wr i t e : function (va lue){ return fa lse ;}
} ,
a rgs : [’ ∗ ’]

}
// p r o p e r t i e s and methods ’ p o l i c y d e f i n i t i o n
}
var div M sty le =. . // f u r t h e r p o l i c y

A property access policy includes read and write policy
defined in corresponding functions which returns a boolean
value or an object indicating access permission. In the write
function, the value argument is the real value assigning to
the property at runtime, which the policy can inspect before
writing. Note that these values might be further constrained
by some general policies e.g. sanitizing HTML content, in
the baseline API, i.e. by the outer sandbox. In the read

3In ES5, sealing an object by e.g. Object.seal(obj) can set
all existing properties of the obj object to non-configurable,
i.e. all property descriptors cannot be changed and all the
properties cannot be deleted.

function, we can define further restrictions on the returned
value by returning a policy predefined in an object variable
which is enforced further on the value. These policies are
stateful in which security states can be defined and updated
runtime to be used by the policies.

A method invocation policy of a specific object is defined in
a function with two parameters function(args,proceed){..},
where args contains the arguments of the invocation, and
proceed is the function to control the execution of the orig-
inal method. Calling the proceed(..) function will allow the
original method to be executed. Our policy definition pro-
posal provides a systematic way to write fine-grained and
stateful policies depending on invocation arguments (first
parameter in the policy function) and security states (can
be encoded in variables) at runtime. If the original method
returns an object, the object must be enforced by a prede-
fined policy to ensure full mediation. Based on the above
assumption on a return object of API call is safe and the fact
that the policy writer knows exactly the type of the returned
object and which policy should be enforced on the returned
object, we provide a way to define this recursive enforcement
by calling the proceed(..) function with one parameter as
the desired policy. This implementation feature is different
from [19] because we enforce policies on API objects while
the implementation in [19] enforces policies on built-in meth-
ods. Listing 2 illustrates a policy example on an API ob-
ject including a method invocation policy (getElementById
in document_policy) that recursively enforces a further pol-
icy (div_Main_policy) on the return value, and a property
access policy (style in div_Main_policy).

Inspecting arguments.
As mentioned, a policy may need to inspect the invo-

cation arguments, security states, and/or patterns such as
whitelists. As pointed out in our recent work [19, 14], argu-
ments in JavaScript are non-declarative, thus could be the
source of attacks [19, 14, 11, 16, 15] because of implicit type
conversion in JavaScript when a policy inspects arguments
provided by untrusted code. In our previous work [14], we
proposed a way to define and enforce declarative arguments
by coercing each argument value based on a declared type
to ensure that the value when inspecting is the same value
when using the argument. This declarative argument ap-
proach is applied in this work: the types of the arguments
are declared in the args field in policy code as e.g. in List-
ing 2.

Only argument elements declared by the type array can
be inspected by the policy and the value is explicitly co-
erced to the defined type. However, we do not have a type
for the return value as in [14] since our policy enforcement
is on API objects which are assumed to be safe. Instead,
we propose more fine-grained enforcement for the returned
object as argued above, whereby it is possible to specify a
policy for a returned object in order to recursively enforce
full mediation.

5.2 Enforcement Method
Our enforcement method is implemented in a whitelist

manner, i.e. only methods and properties defined in the pol-
icy are accessible, the other are absent from the enforced
object. We provide an interface to enforce a policy on an
object. The key functionality of the interface is to traverse
the policy to get all the names of methods and properties

together with the policy in order to enforce the policy on
the same name of the object. The methods and properties
of the object not defined in the policy are redefined as an
empty function or null value so that they are not accessi-
ble from untrusted code. Listing 3 illustrates part of the
implementation of the interface.

Listing 3: Policy enforcement
function e n f o r c e W h i t e l i s t P o l i c i e s (object ,

p o l i c i e s){
Object . keys (p o l i c i e s) . forEach (

function (name) {
// i n s p e c t i f the e lement i s a method ,
// g e t the corresponding p o l i c y and t y p e s

i f (method)
wrapMethod (object , name , po l i cy , types) ;

else // proper t y
wrapProperty (object , name , readPol icy ,

wr i t ePo l i cy , types) ;

}) ;
// i t e r a t e the o b j e c t to make the methods
//and p r o p e r t i e s t h a t are not d e f i n e d in
// p o l i c i e s u n a c c e s s i b l e
. . .
return Object . f r e e z e (ob j e c t) ;

} ;

A method call policy and a property access policy are
enforced slightly different. We explain in detail the two en-
forcement mechanism as below.

5.2.1 Enforcing method call policies

Listing 4: Enforcing a method invocation
function wrapMethod (object , method ,

po l i cy , types){
// . . f i n d f u n c t i o n f o r p o s s i b l e a l i a s e s
var o r i g i n a l = ob j e c t [method] ;
ob j e c t [method] = function () {

var polArgs=// . . c lone arguments by
// the d e f i n e d t y p e s

var proceed= function (p o l i c i e s) {
var r e s u l t=// e x e c u t e o r i g i n a l func

i f (! p o l i c i e s) return r e s u l t ;
return e n f o r c e W h i t e l i s t P o l i c i e s

(r e s u l t , p o l i c i e s) ;
}
return p o l i c y (polArgs , proceed) ;

}
return ob j e c t [method] ;
}

We adapt our previous enforcement implementation [14]
to handle the enforcement for returned object. In summary,
the enforcement for a method invocation policy is a wrapper
that keeps the reference to the original method of the ob-
ject to be wrapped, and redefines the method by invoking a
policy function which can control the execution of the orig-
inal method. As described, a policy is defined as a function

with two arguments: the first argument is the parameters
of the invocation, the second argument is the proceed func-
tion, representing the reference to the original function; call-
ing the proceed function will execute the original method.
We modify the proceed function (from [14]) to take one ar-
gument as a policy for the returned object of the original
method. If this policy is defined (from the policy to be en-
forced), the returned object will be recursively enforced by
the provided policy. The simplified snippet of this interface
is illustrated in Listing 4.

5.2.2 Enforcing property access policies

Listing 5: Enforcing a property access with a policy
function wrapProperty (object , property ,

read , write , type){
var desc = Object . getOwnPropertyDescriptor

(object , property) ;
// . . a s s e r t desc o b j e c t
var newdesc = {

get : function () {
var r eadPo l i cy = read () ;
var value = desc . get . c a l l (ob j e c t) ;
i f (r eadPo l i cy===true) return value ;
i f (typeo f r eadPo l i cy===’ o b j e c t ’)

return e n f o r c e W h i t e l i s t P o l i c i e s
(value , r eadPo l i cy) ;

} ,
s e t : function (v) {
var c loneValue = coerceByType (type , v) ;
var wr i t ePo l i c y = wr i t e (c loneValue) ;
i f (typeo f c loneValue===’ o b j e c t ’)

c loneValue = combine (cloneValue , v) ;
i f (wr i t e Po l i c y===true)

return desc . s e t . c a l l (ob ject ,
[c loneValue]) ;

} ,
c o n f i g u r a b l e : false ,
enumerable : true
}
Object . de f ineProper ty (object , property ,

newdesc) ;
} ;

Our enforcement on property access policies relies on the
Object.defineProperty(..) method in ES5 to enforce de-
sired policies. We first get the current getter-setter functions
of the property of the object (using Object.getOwnProperty-
Descriptor(..)) to be enforced. We then define a new de-
scriptor with getter and setter functions to execute read and
write policy functions from the policy so that these policy
functions are always invoked whenever the property is ac-
cessed. Depending on runtime policy results from the read
and write policy functions, the original getter and setter
functions may be called to run in the context of the object.
The returned value will be further enforced if there is a pol-
icy defined in read policy function. Listing 5 shows this
enforcement mechanism.

6. VALIDATION
To validate the feasibility and security of our two-tier ar-

chitecture, we have applied our prototype implementation

in various application scenarios, in which untrusted third-
party JavaScript code get integrated (e.g. gadget integra-
tion in web mashups). In this section, we will report on
one particular case study, the integration of online adver-
tisements. This case study captures the representative char-
acteristics of context-sensitive text advertisement services
such as AdBrite and Google Adsense.

The policy we want to enforce on the untrusted advertise-
ment code is the following. First, we want to restrict the
untrusted code to only write to a particular subset of the
page (i.e. one particular div element, where the ad will be
displayed). Next, we want to restrict the DOM read access
to a particular subset of the page, so that only that part
of the page is used in the context-sensitive analysis of the
untrusted code. Moreover, we want to disable this reading
access as soon as the user enters data into the page (e.g. by
filling in an input form). These are just simple policies but
represent application-specific and stateful policies. For ex-
ample, we can define specific elements that the ad can read
or write, or define a security state to monitor if the user
enters the data.

To enforce these policies on context-sensitive advertise-
ment scripts, we first select the basic API of the outer sand-
box to which the application-specific policies and untrusted
code will be confined. Next, we define fine-grained, stateful
policies to enforce on the untrusted code.

The baseline API enables in a coarse-grained and application-
independent way the set of features that are accessible within
the outer sandbox (i.e. that can be used by the application-
specific policy as well as the untrusted code). In our online
advertisement validation experiment, we have chosen to only
provide a very limited API, namely access to DOM opera-
tions. The baseline API is constructed via virtualization as
briefly mentioned in Section 4.2. The technique constructs
mediator objects by creating virtual objects which provide
predefined methods and properties to mediate accesses to
the DOM.

Next, we define the application-specific policy described
informally above. Similar to the baseline API, we con-
struct mediator objects to mediate read and write access
to the DOM. The policy code also subscribes to the key-
board events e.g. keydown to capture any user input. The
mediator object for read access grants access based on the
requested DOM element and whether a user input event was
captured, write access is granted solely on the DOM element
specific to the ad. The policy allows the ad to set the style,
width, height of the ad area and also restricts the maximum
value of width, height so that the ad can not display an
oversize area. Listing 6 illustrates some of these policies.

The context-sensitive advertisement script and the applica-
tion-specific policy are deployed in two separate code files,
and and loaded into the two sandbox environments as de-
scribed in Section 3. This case study has been successfully
tested on Mozilla Firefox 4.0.1 on a Windows 7 platform.

In addition, various security tests have been performed to
assess the security guarantees by our proposed architecture.
Based on known attack vectors and vulnerabilities in previ-
ous solutions (as described in e.g. [15, 16, 14]), we assessed
whether untrusted code could break out of the sandbox en-
vironment.

For reference, we have first executed the attack vectors in
the hosting page to ensure that the attacks are successful.
We then have deployed the attack vectors into a sandbox

Listing 6: Application-specific and stateful policy
examples for untrusted ad
var data read = fa l se ; //a s e c u r i t y s t a t e
var d iv Main po l i cy = {

innerHTML : {
read : function (){

i f (dataread)
return f a s l e ;

return true ;
} ,
// . . . o ther d e f i n i t i o n s

} ;
var use r input = {

addEventListener : {
method : function (args , proceed){

var eventStr = args [0] ;
i f (eventStr===’ keydown ’){

dataread = true ;
return proceed () ;

}
} ,
a rgs : [’ s t r i n g ’ , ’ func t ion ’ , ’ boolean ’]

} ,
// . . . o ther d e f i n i t i o n s

} ;

environment with an API without any enforcement to en-
sure the API provides adequate functionalities and the at-
tacks are successful. Finally, we have deploy the malicious
script into the sandbox environment with an API enforced
by above defined policies.

We did not success to break out of our proposed two-tier
security architecture; the malicious script execution is pre-
vented by two-tier sandbox enforcement. This result was
to be expected, since our two-tier architecture relies on the
same foundations and security guarantees of the Secure EC-
MAScript library (SES) [3].

7. RELATED WORK
Solving security issues for untrusted JavaScript has re-

cently received wide attention both in industry and in the
research community. However, most of the recent work
concern the context of current version of JavaScript (EC-
MAScript 3). Proxy [26] is a recent approach in ECMAScript
5 to construct robust APIs. Although this approach does not
allow to specify modular and flexible policies, it can be used
to construct a robust API as a baseline API library for our
approach, providing a complete framework for the DOM ac-
cess for untrusted code. To the best of our knowledge, our
work is the first study in enforcing fine-grained security poli-
cies for untrusted JavaScript in ECMAScript 5. In [22], the
authors have reviewed current security mechanisms for un-
trusted JavaScript in the literature. In this section, we only
review recent work related to fine-grained policy enforce-
ment and sandboxing mechanisms. We divide the related
work based on whether it requires browser modification.

Browser-level implementations.
Browser-level implementations have access to the lower-

level implementation of the JavaScript interpreter, and there-
fore have the possibility to modify or extend the semantics

of JavaScript to provide greater security. However, this ap-
proach also has down side from an immediate practical per-
spective. It requires the browser users to be proactive to
protect themselves. From a technical point of view, modify-
ing a browser requires much effort. Moreover, the implemen-
tation is likely to change more frequently since the codebase
of browsers e.g. Firefox normally change rapidly.

JCShadow [18] is a recent work (and closest to our work)
that also motivates for fine-grained policy enforcement for
untrusted JavaScript, and proposes a reference monitor within
a JavaScript engine to enforce policies. The mechanism is
implemented by modifying the JavaScript engine in Firefox
3.5.

ConScript [16] modifies Internet Explorer 8 to provide
aspect-oriented programming constructs for JavaScript in
order to enforce fine-grained security policies. ConScript
can enforce edit automata [10] policies which is essentially
the same class covered by our policies.

Inspired by ConScript, WebJail [25] applies the deep as-
pect weaving technique to FireFox browser, and introduces
a least-privilege composition policy on top of this security
architecture. This secure composition policy is based on
an analysis of security-sensitive operations in the upcom-
ing HTML5 specification, and provides a whitelist-based
approach to nine disjoint categories of sensitive operations
(such as external communication and client-side storage).

There are also several other approaches such as [5, 7] us-
ing browser modification to enforce policies. However, these
methods can only enforce coarse-grained access control poli-
cies which are not applicable to untrusted script scenarios.

On the other hand, approaches to enforcing security poli-
cies without modifying browser have advantage in them-
selves. The enforcement can be provided as a library by
a server or a proxy and the policies are enforced at runtime
at the browser. One branch in this area is to modify the
original program or restrict untrusted code in a safe subset
while the other deploys non-invasive approach to original
code.

Code transformation and safe subsets.
BrowserShield [21], Caja [17], and Facebook JavaScript [4]

are examples of the approaches using code modification or
filtering. BrowserShield [21] is an approach using code trans-
formation dynamically to enforce security policies. The idea
of BrowserShield is further developed at Microsoft Live Labs
as a Web Sandbox framework [9] which rewrites untrusted
JavaScript to run it inside an isolated virtual machine which
mediates access to the real JavaScript environment.

Google Caja [17] is another approach to enforcing poli-
cies of a web page on the client side. Caja defines a safe
JavaScript subset based on object-capability model. Un-
trusted JavaScript code is transformed into a safe version
with isolated modules by a rewriting process. The trans-
formed code is provided APIs by libraries such as Domita to
have indirect access to the DOM. However, Caja does not
support fine-grained policies enforcement as we investigate
in this work.

Similar to Caja, Facebook JavaScript (FBJS) [4] is an an-
other industrial approach to sandboxing untrusted JavaScript
application embedded into Facebook. Untrusted code writ-
ten in FBJS is also transformed in a separate namespace so
that it is isolated to the other.

Maffeis et al proposed another approach [11] for untrusted
JavaScript which uses filtering, rewriting, and wrapping to

isolate the untrusted code. Although these mechanisms have
proved the soundness by semantics or automated tools [12,
23], they limit untrusted code into a subset of JavaScript
and do not allow developers to specify application-specific
and fine-grained policies as we investigate in this work.

ADsafe [2] is another safe subset of JavaScript to allow un-
trusted advertisements executing on a trusted hosting page.
The safe subset is an interface that mediates access to the
DOM and other global variables to ensure that the untrusted
code cannot perform malicious behaviors. Before placing an
untrusted ad code into a hosting page, the ad code must
be validated by an static analysis tool called JSLint to en-
sure that the untrusted code only has access to the interface
provided by the ADsafe library. The soundness of API con-
finement of ADsafe has been shown in [20, 23]. Although
this mechanism do not allow to define fine-grained policies,
the ADsafe subset could be provided as a baseline API in our
architecture so that the untrusted code can be loaded and
executed dynamically without code validation by an off-line
tool.

Non-invasive approaches.
Non-invasive approach to enforcing security policies is ex-

emplified by the lightweight self-protecting JavaScript method
[19]. This method defines a wrapper library in aspect-oriented
programming [8] style to intercept built-in functions with a
security policy. The library is placed at the header of a
page so that it can execute first to wrap sensitive function
calls and property accesses, and therefore to make the web
page self-protecting. The implementation of this method
faces several challenges which have been addressed in a later
work [14]. However, the implementations in [19, 14] focus on
enforcing policies on built-in objects which is at page-level
while our architecture is to enforce policies on API objects
for untrusted code. In our work, we revisit the implementa-
tion in the context of ECMAScript 5, and adapt and revise
the implementation by the new advantage features of ES5.

ObjectViews [15] is a similar approach to our work which
provides wrappers as a library in JavaScript to share objects
among principals in the browser. In untrusted code context,
ObjectViews [15] focuses on safe sharing of objects (in ES3)
between privileged code and untrusted code. However did
not discuss how to load and execute untrusted code as we
investigate in this paper.

Similar to our case study of context-sensitive advertise-
ment application, AdJail [24] is an approach to isolating an
ad script into a hidden iframe (shadow page) which is en-
forced by the same-origin policy. The ad script interact with
the hosting page through tunnel scripts in both frames which
can enforce to confidentiality and integrity policies. How-
ever, the framework only supports limited coarse-grained
access control policies.

8. DISCUSSION AND FUTURE WORK
Our two-tier sandbox architecture is built on the spec-

ification of ECMAScript 5 and its “strict mode” to pro-
vide modular and fine-grained security policies for untrusted
JavaScript code. The implementation of the architecture
is based on an existing technique [19], and a library [3],
however, improving on both of these. In particular, the
two-tier sandbox architecture allows application-specific and
fine-grained security policies be defined and enforced mod-
ularly, which is lacking in [3], and allow the enforcement on

untrusted code, which is missing in [19]. Moreover, the pol-
icy enforcement mechanism is also executed within a sand-
box so that the policy code cannot expose unprotected re-
sources. This improves on both [3] and [19] by providing a
fail-safe for badly written policies without need for complex
policy language development. To the best of our knowl-
edge, our security architecture is the first study in enforc-
ing fine-grained security policies for untrusted JavaScript in
ECMAScript 54. In summary, the architecture is unique in
the sense that it enforces application-specific and stateful
fine-grained security policies for untrusted JavaScript code
without browser modification or pre-processing of the code.
In addition, the baseline API in the outer sandbox ensures
a failsafe fallback in case of badly written policies.

Not all third-party code available in the wild supports
yet the strict mode of ECMAScript 5, but we believe that
this will be shifting quite rapidly. As ECMAScript 5 be-
comes available in all major browsers, and multiple con-
tent providers (such as Google and Yahoo) already favor
the strict mode. Moreover, the API of the SES sandbox li-
brary is currently under proposal by the ECMA committee
(TC 39) to be included as built-in features in a future ver-
sion of ECMAScript [23], our work demonstrates the use of
SES and provides a step towards a mechanism for execut-
ing untrusted code with application-specific and fine-grained
security policy enforcement.

In future work we will further contribute to a robust base-
line API, and we plan to validate our two-tier sandbox ar-
chitecture on a broader range of real-life applications, by
automatically injecting the client-side architecture for exist-
ing untrusted third-party code.

Acknowledgments
This research is partially funded by the EU FP7 WebSand
project. Phu H. Phung was additionally supported in part
by the Ericsson Research Foundation. Lieven Desmet was
also partially funded by the EU FP7 NESSoS project, the
Interuniversity Attraction Poles Programme Belgian State,
Belgian Science Policy, and by the Research Fund KU Leu-
ven. Thanks to David Sands and Andrei Sabelfeld for their
feedback and helpful comments. The first author also would
like to thank John Mitchell, Ankur Taly, and Mark Miller for
their helpful discussions on an earlier version of this work.

9. REFERENCES
[1] Dasient Blog. Q1’10 web-based malware data and

trends. http://blog.dasient.com/2010/05/. May 10,
2010.

[2] Douglas Crockford. ADsafe – making JavaScript safe
for advertising. http://adsafe.org/.

[3] Mark S. Miller et al. Secure EcmaScript 5. http://
code.google.com/p/es-lab/wiki/SecureEcmaScript.
Accessed in September 2011.

[4] Facebook. Facebook JavaScript.
http://developers.facebook.com/docs/fbjs.

[5] Oystein Hallaraker and Giovanni Vigna. Detecting
Malicious JavaScript Code in Mozilla. In ICECCS ’05:

4IceShield [6] is a very recent ECMAScript 5 library inlined
to a page to detect and prevent malicious behaviour of the
page. However, similar to our lightweight self-protecting
JavaScript approach, this library does not separate between
trusted and untrusted code

Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer
Systems, pages 85–94, Washington, DC, USA, 2005.
IEEE Computer Society.

[6] Mario Heiderich, Tilman Frosch, and Thorsten Holz.
IceShield: Detection and Mitigation of Malicious
Websites with a Frozen DOM. In Proceedings of the
International Symposium on Recent Advances in
Intrusion Detection, RAID’11, 2011.

[7] Trevor Jim, Nikhil Swamy, and Michael Hicks.
Defeating script injection attacks with
browser-enforced embedded policies. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 601–610, New York, NY,
USA, 2007. ACM.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented
Programming. In ECOOP, pages 220–242, 1997.

[9] Microsoft Live Labs. Web Sandbox.
http://www.websandbox.org/. Accessed in May 2011.

[10] Jay Ligatti, Lujo Bauer, and David Walker. Edit
Automata: Enforcement Mechanisms for Run-time
Security Policies. International Journal of Information
Security, 4(1-2):2–16, 2005.

[11] Sergio Maffeis, John C. Mitchell, and Ankur Taly.
Isolating JavaScript with Filters, Rewriting, and
Wrappers. In ESORICS, pages 505–522, 2009.

[12] Sergio Maffeis, John C. Mitchell, and Ankur Taly.
Object Capabilities and Isolation of Untrusted Web
Applications. In Proc of IEEE Security and
Privacy’10. IEEE, 2010.

[13] Sergio Maffeis and Ankur Taly. Language-Based
Isolation of Untrusted JavaScript. In CSF ’09:
Proceedings of the 2009 22nd IEEE Computer Security
Foundations Symposium, pages 77–91, Washington,
DC, USA, 2009. IEEE Computer Society.

[14] Jonas Magazinius, Phu H. Phung, and David Sands.
Safe Wrappers and Sane Policies for Self Protecting
JavaScript. In T. Aura, K. Jarvinen, and K. Nyberg
(Eds.): The 15th Nordic Conference in Secure IT
Systems (NordSec 2010), LNCS 7127, pages 239–255.
Springer-Verlag, 2012. (Selected papers from OWASP
AppSec Research 2010, June 2010, Stockholm,
Sweden).

[15] Leo Meyerovich, Adrienne Porter Felt, and Mark
Miller. Object Views: FineGrained Sharing in
Browsers. In WWW2010: Proceedings of the 16th
international conference on World Wide Web, New
York, NY, USA, 2010. ACM.

[16] Leo Meyerovich and Benjamin Livshits. ConScript:
Specifying and Enforcing Fine-Grained Security
Policies for JavaScript in the Browser. In SP ’10:
Proceedings of the 2010 IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2010.

[17] Mark S. Miller, Mike Samuel, Ben Laurie, and Ihab
Awad Mike Stay. Caja: Safe active content in
sanitized JavaScript. http://google-caja.
googlecode.com/files/caja-spec-2008-06-07.pdf.

[18] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang,
and Xuxian Jiang. Towards Fine-Grained Access
Control in JavaScript Contexts. In Proceedings of the

31st IEEE International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2011.

[19] Phu H. Phung, David Sands, and Andrey Chudnov.
Lightweight Self-Protecting JavaScript. In ASIACCS
’09: Proceedings of the 4th International Symposium
on Information, Computer, and Communications
Security, pages 47–60, Sydney, Australia, 10 - 12
March 2009. ACM.

[20] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun
Guha, and Shriram Krishnamurthi. ADsafety:
Type-Based Verification of JavaScript Sandboxing. In
20th USENIX Security Symposium, 2011.

[21] Charles Reis, John Dunagan, Helen J. Wang, Opher
Dubrovsky, and Saher Esmeir. BrowserShield:
Vulnerability-driven filtering of dynamic HTML. ACM
Trans. Web, 1(3):11, 2007.

[22] Philippe De Ryck, Maarten Decat, Lieven Desmet,
Frank Piessens, and Wouter Joosen. Security of Web
Mashups: a Survey. In T. Aura, K. Jarvinen, and K.
Nyberg (Eds.): Information Security Technology for
Applications, The 15th Nordic Conference in Secure
IT Systems (NordSec 2010), LNCS 7127, pages
223–238. Springer-Verlag, 2012.

[23] Ankur Taly, John C. Mitchell, Ulfar Erlingsson, Jasvir
Nagra, and Mark S. Miller. Automated analysis of
security-critical javascript apis. In Proc of IEEE
Security and Privacy’11. IEEE, 2011.

[24] Mike Ter Louw, Karthik Thotta Ganesh, and V.N.
Venkatakrishnan. AdJail: Practical Enforcement of
Confidentiality and Integrity Policies on Web
Advertisements. In 19th USENIX Security
Symposium, 2010.

[25] Steven Van Acker, Philippe De Ryck, Lieven Desmet,
Frank Piessens, and Wouter Joosen. Webjail:
Least-privilege integration of third-party components
in web mashups. In ACSAC, December 2011.

[26] Tom Van Cutsem and Mark S. Miller. Proxies: design
principles for robust object-oriented intercession APIs.
In Proceedings of the 6th symposium on Dynamic
languages, DLS ’10, pages 59–72, New York, NY,
USA, 2010. ACM.

