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ABSTRACT

In a 1971 paper, Adamjan, Arov and Krein (AAK) gave an explicit formula for

t~e approximation of an infinite Hankel matrix by a Hankel matrix of lower

rank in terms of singular vectors for the Hankel matrix. This has recently
received some attention in identification and realization theory where the

relation between singular value decomposition (SVD) and balanced realization

is now u~derstood. Some properties of the AAK approximation are derived and
it is compared with other approximations obtained from singular value de­

compositions of the system Hankel map~

1. INTRODUCTION: NOTATION AND BASIC RESULTS

Let £ and X denote the classical Banach spaces of functions defined on the
p p

unit circle in the complex plain, and let Hh denote the Hankel operator with

symbol h E£oo' i.e. Hh f = (I-P)h f, Vf EJC2 with P the orthogonal projection

of £2 onto JC2·

The whole class h+JCoogenerates the same Hankel operator Hh since Hh only

depends upon the coanalytic part of h, i.e. only upon ck(h), k~l, with

ck(h) the Fourier coefficients

sentation (c.. 1(h)) .. 21 of H , acting as an operator onl+J- l,J"" h
If f is a real function, defined on the set V, then

eikO for JC2 and (JC2/ we can work with th~ matrix repre­
Q •

2

we mean by ~[min f(a) 1=

{F,A} that the minimum F of f(a) for a varying over V is obtaineda EV

2Tf

c (h) = _1 fk 2Tf

o

In the basis ~k

k
~ h(~)d8 , ~

i8
e k E~.

for a = Ao If this minimum is unique we write ~! instead of ~.

We denote by S(H ) = Z7 c (h)~-k the unique conjugate analytic member in theh k

class h+JCoo(which is again a symbol for Hh).

Let B be the set of all bounded operators from JC
2

subset of B of bounded operators with a dimension

1 (k)
on to (JC2) and B the

not exceeding k (i.e. the

matrix representation has rank at most k) 0 1-1 is the set of all Hankel oper-

ators in Band I-I(k)similarly all Hankel operators in B(k) 0

Concerning the symbols of these classes of Hankel operators we introduce the

notation R(k) : the set of all conjugate analytic rational functions of de­

gree at most k, multiplicity counted and F(k) = R(k) + J~ = {f E£oo\f=r+h

. (k) }Wl th r E Rand h E J(oo .



We will use a star to indicate the hermitian transpose of a matrix and an

upper bar for the complex conjugate. The Adamjan-Arov-Krein result is [11

property 1.1

If H E/-Ihas singular values So (H) >sl (H) > ... > sk_1 (H) > sk (H)

sk+r (H) and sk(H) is ~n eigenvalue of (l H) 1/2 then there exists Lk EI-{(k)

s. t.

,6![ min IIH-LII]

LE{-{(k+r)

00 -j
and n (~) = L: 1 nj ~ .
Moreover

with

pair

(k) n_(~)

Lk = H-HA, E/-I and ¢k (~) = sk (H) -t:-(-~k '+ ~
of singular vectors of H, associated with

where (~,n) is an arbitrary
00 j-1

sk(H) and ~+(~) = /'1 ~j ~

If fEL
00

(1) n (~)/~ (~) is inner (i.e. it is analytic and in modulus 1 a.e. for- . +

I ~ I = 1)

(2) t;+ (~)and n(Uhave the factorizations E (~)= b (~)a(~H)(~)and- -++

n

( ~)= ~ b(~)a(~)¢(~),I ~ I= 1, with 2n-
-

= 2~ f¢(U

outer(Le.it is analytic and£n I ¢ (0) I,Q,nl¢(eiO)IdG)

b (~) and b (~) inner and 0+ -
a(~) inner and independent of the choice of the pair (t;,n).

With the Nehari and Kronecker properties, this can be translated- into [1].

property 1.2

* 1/2
and s (Hf) an eigenvalue of (H Hf) -, thenk - f

J.J![min IIf-hll]

hEF(k) 00

and as in property 1.1.

2. I<EALI2ATION OF LINEAl<.SYSTEMS

Consider the linear discrete system

xk E <en

A E <tnxn

uk ' Yk E <t ,

nxl lxn
BEcr: . CE<r

with final djmcn~;i_orl<llstCltc space (n < 0».

Suppose now that {uk}kE~ E£2 and that all eigenvalues of A are inside the

unit disc, then there exists a unique solution for the system such that
n

{xk}k_1~ E£2' Taking ~-transforms, this solution is given as x(~)
(~-A) B u(~). The corresponding {Yk}k E~ E£2 and the transferfunction



h(s) = C(s-A)-lB is conjugate analytic and uniform bounded. The s-transform

of the output is given by y(s) = C(sI-A)-l B u(r,) ~ S u(r,). S is known as

the systemoperator. The restricted input/output map is the Hankel operator
-* * 2* *

H = (I-P)sIJ( =0 c with O=[C (CA) (CA) ... ] the observability matrix

and C = [B A~ A2B ... ] the controlability matrix. We suppose the realiza­

tion minimal, so that rank H = order A = rank 0 = rank C. It is possible
.. -1 -1 I"> *

to chose an equivalent realization(W A W,W B,CW) such that Po = 0 0= ~=

CC* ~ Pc where!: = diag(sO(H) ,sl (H),...sn_1 (H)) is the diagonal aDpearing

in the singular value decomposition of H. Then, the realization is called

balanced [2,3].

We consider now the problem of approximating a system of finite order

n(HEH(n)) with a system of lower order (llE/-I(k) with k < n). This is re­

lated to the problem of approximating r ~ S (H) E R (n) with a lower ordern

rational function rk = S(~)ER(k), k < n. Several algorithms have been pro-

posed to solve this problem. See[2] for some references. We mention only

two possible strategies :

Suppose for simplicity that the singular values of H are all different.

a) Partial minimal realization

h d . f' d ., E F (k) d - . f
One met 0 lS to In an approxlmatlon rk as a Pa e approxlmant 0 rn,

which does not yield a guaranteed stable approximation, so that we have to

take the conjugate analytic part r' of the Pade approximant rk, so that

H I E/-I(j)with j ~k and thus will probably not be optimal in H(k) and even
r. (j)

not In /-I .

b) Adamjan-Arov-Krein (AAK) approximation

The AAK approximant H =Lk, given by property 1.1 will be an optimal approxi­

mation for H. The theorem only claims that the associated symbol ~k=rn-~k

is in F(k) , but ~k is not rational in general. Thus also here the conjugate

analytic part of ~k must be taken to obtain rk ER(k), but then rk is not the

optimal £ approximant of r in F(k) any more, but it does solve the system-
co n

theoretical problem.

In the next section we will ("xplore the structure of ~Ik(r;) sorncwhut_furtller.

3. SOME PROPERTIES CONCERNING THE AAK APPROXIMATION

property 3.1

Let HEH(n) and (~,~) be a pair of singular vectors of H, associated with

sk(H), the k-th singular value of H, then

(1) ~ (r,) E R (j) for some j ~ n



(2) s (rJ+

s+ (C;)

-1
l; n_(l/c;) ~k with Ck a constant of modulus 1 and n (~) and

as in property 1.1.

Let us denote the reciprocal of a polynomial p(l;) of degree m by P(l;) i.e.
- m-
P(l;) = C; P(l/~).

(n)
Suppose now H E H has symbol r

polynomials of degree at most n.

= S(H) = ~i~~E R(n) with R(l;) and N(l;)

If n (l;)is as defined in the previous

sk(H)T(C;)N(S) C;k

N(C;)T(C;)

0, a minor change

property, then it can be written as T(C;)/N(s) with N(C;) the denominator of

rand T(l;) a polynomial of degree at most n. Thus the AAK approximation

~ (l;)= r(l;) - s (H)n (C;)/t;, (C;)is given byk k - +

R(C;)T(C;)

If a E C, then we mean by its reciprocal the complex number l/a. We now

formulate

property 3.2

(n) (n) ,,(k),
Let H E Hand r = S (In E R , then the AAK approxlmatlon t/J E F of r lSk
a rational function of degree at most n-l with all its poles among the zeros

of S (C;) (one zero at infinity excluded), which are also the reciprocals of+

the zeros of n (C;) (again one zero at infinity excluded). Suppose (A,B,C)

is a balanced realization of H, ak the k-th row of A and bk the k-th ele­

ment of B (0 ~k ~n-l!), then, if S (0) ~ 0 we find the mentioned zeros of+

n_(c;) in the spectrum of E = A - b~lakB.

The condition Sl ~ 0 is no strong restriction but if t;,1

in the definition of E is needed.

4. LOWER ORDER APPROXIMATION VIA SVD

Because the AAK approximation is expressed in terms of the singular vectors

and values of an infinite Hankel matrix, it is a tempting idea that some of

the algorithms computing a lower order approximation via SVD should actually

find the AAK approximation. We will mention three proposed conceptual al­

gorithms which give the same approximation, but are definitely different

from the AAK approximation. (By conceptual we mean t~hat we formulate the

algori thms as if it were possible to compute t:heSVD of an infinite Hankel

matrix [[EH(n)). We look for an approximant in H(k). We first take an op-

'1 ... B(k) . b lid h" ,tlma approxlmatlon In , glven y Property . , an t lS In turn lS ap-

proximated by a Hankel matrix, characterized by a realization triple

(Ak,Bk,Ck). This method is followed by Kung [2J and Zeiger-McEwen [4,5]

while Moore [3] directly finds the triple (Ak,Bk,Ck) from a balanced real-



izatiqn (A,B,C). Because the balanced reaLLzaUon and a SVD of an infinite

Hankel matrix are essentially the same, they all throe find the same approx-

imation.

In Kung's paper it is illustrated by an example that the result he obtains

with his algorithm is not far from the AAK approximation. This could sug­

gest the errorneous idea that he computes a numerically perturbed AAK approx­

imation. That the nearness to the AAK approximation is only due to the fact

that the zeroed singular values of H were very small is illustrated by the

following example.

Let h(1;;)= (1) with e = 0.1, then {hk}kE = {0,1,e,e2,e3, ... }. TheC 1;;-e . ill

eigenvalues of IIh are ,\0 = 1.056[3... and ,\1 = -0,.95580... and all others are

zero. The AAK approximation of degree zero is '\~e/(1;;+,\o).This gives H=

H = 0, and this is in accordance with property 3.2 which says that r (1;;)
rk k

is a rational function of degree n-1 = 1 and has k = 0 poles inside the

unit disc.
2

Similarly for a degree one AAK approximation we find -,\ie/(1;;+'\l)'
Using the Kung algorithm to find the degree one approximation we get approx­

imately 0.475/(1;;-0.549) with a pole that is definitely different from the

AAK pole.

5. ALGORITHMS FOR THE SVD OF AN INFINITE HANKEL MATRIX

It will be clear from the foregoing that computing the SVD of an infinite

Hankel matrix H EH(n) plays an important role and this is almost the same as

the computation of a balanced realization.

Kung [2J proposes to take the NxN leading submatrix of H, such that the

Markov parameters h. for j >N are smaller in magnitude than a preset value
J

and compute the SVD of this submatrix. This could lead to situations where

the rank n of H can be very small, while the Markov parameters h. are slowly
J

decreasing, c.g. II = Hh with h((;) = (C-c)-l with lei q; 1. Thus we need t.he

SVD of a large NxN matrix while the first Markov parameters already contain

all necessary information.

Moore's technique [3] is to transform an arbitrary realization triple (A,B,C)

into a balanced one. 1~is requires more work (two Lyapunov equations and

three SVD's) but on matrices of order nxn, where usually n «N, a saving of

computer effort after all.

It is known that the singular values are rather stable with respect to per-

turbation of H, but the set of singular vectors can be very sensitive, thus

the computation of a balanced realization is an ill conditioned problem, and



this can be more critical for the Moore method than for the Kung method.

6. CONCLUSION

We have introduced the Adamjan, Arov and Krein approximation result and

applied it to the realization problem of a system impuls response. We have

compared the AAK result with some heuristic algorithms based on balanced

system realization and SVD decomposition.

It has appeared that the AAK realization is not a perturbation of the heu­

ristic realizations. Also, a possible but not very practicable way to

compute the AAK realization has been deduced. The work presented has ap­

peared first in Dutch [7]. While working on the English version attention

of the authors has been drawn to a recent report of L. Silverman and Maamar

Bettayeb [8] which contains some of the results of the paper.
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