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ABSTRACT

Protecting commodity operating systems against software
exploits is known to be challenging, because of their sheer
size. The same goes for key software applications such as
web browsers or mail clients. As a consequence, a signif-
icant fraction of internet-connected computers is infected
with malware.

To mitigate this threat, we propose a combined approach
of (1) a run-time security architecture that can efficiently
protect fine-grained software modules executing on a stan-
dard operating system, and (2) a compiler that compiles
standard C source code modules to such protected binary
modules.

The offered security guarantees are significant: relying on
a TCB of only a few thousand lines of code, we show that the
power of arbitrary kernel-level or process-level malware is re-
duced to interacting with the module through the module’s
public API. With a proper API design and implementation,
modules are fully protected.

The run-time architecture can be loaded on demand and
only incurs performance overhead when it is loaded. Bench-
marks show that, once loaded, it incurs a 3.22% system-wide
performance cost. For applications that make intensive use
of protected modules, and hence benefit most of the security
guarantees provided, the performance cost is up to 14%.

Categories and Subject Descriptors

D.4.6 [Operating Systems Security and Protection]:
Access Controls, Invasive Software

General Terms
Design, Security
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1. INTRODUCTION

A significant fraction of Internet-connected computers is
infected with malware, usually with kernel-level access. Yet,
many of these computers are used for security-sensitive tasks,
and handle sensitive information such as passwords, corpo-
rate data, etc. While efforts to increase the security of com-
modity operating systems [30] and applications [36, 5, 10]
are important and ongoing, their sheer size makes it very
unlikely that they can be made secure enough to avoid in-
fection [23, 11] with kernel-level malware. Due to the lay-
ered design of commodity systems, kernel-level malware can
break the confidentiality and integrity of all data and code
on the system.

This unfortunate situation has triggered researchers to de-
sign systems that can execute security sensitive code in an
isolated area of the system, thus improving the security guar-
antees that can be offered. Of course, an important design
goal (and design challenge) is to realize this while remaining
compatible with current operating systems and hardware.
Most of these proposed systems leverage recent hardware
extensions for trusted computing or virtualization to exe-
cute code, and differ in the granularity of protection they
offer (protection of full applications [10, 36, 5, 13, 19] versus
protection of small pieces of application logic [20, 21, 28, 33,
4]), and in their root of trust (a correctly booted system [13,
33] or a hardware security module such as a TPM chip [14,
21, 28, 20, 4]). We provide a more complete overview of
existing work in section 6.

State-of-the-art systems for protection of software mod-
ules focus on attesting the correct and secure execution of a
single module to a third party [20, 21, 28, 4]. We focus on the
complementary case of increasing the security guarantees of
applications for the owner of the system. We propose an
approach to selectively harden security-critical parts of an
application. An SSL-enabled webserver, for example, could
be built in a modular way where sensitive information is
passed between trusted modules until it is finally encrypted
and passed to the TCP/IP stack. This would reduce the
power of a kernel-level attacker to one with only access to
the network. Current systems are ill-equipped for this task:
writing co-operating protected modules is too hard, mes-
sages passed between modules may never be delivered and
a lack of support for multiple instances of the same module
prevents a modular application design.

In this paper, we propose a system consisting of two parts:
a run-time security architecture and a compiler. The secu-
rity architecture implements a program-counter based access
control model. A protected module is divided into a public



and a secret section. The secret section stores the sensitive
data and is only accessible from within the module. The
public section contains the module’s code and can be read
from outside of the module. This enables authentication
and secure communication between modules in a cheap and
secure way: an attacker is not able to intercept, modify or
masquerade any messages between protected modules.

The compiler provides an easy way to compile standard
C-code into protected modules. Since the program-counter
dependent access control model allows modules and unpro-
tected code to share the same virtual address space, their
interaction is straightforward. This significantly simplifies
the hardening of applications.

Modules compiled with our compiler effectively reduce the
power of kernel-level malware and in-process attackers to
only being able to interact with the modules through a pub-
lic APIL In earlier work[2] we have proven for a simplified
model of our access control mechanism and compiler that
with a proper API design and implementation the module
is fully protected: an attacker that is able to inject arbitrary
assembly code at kernel-level is only as strong as an attacker
interacting through the module’s API.

More specifically, we make the following contributions:

e We propose Fides, a security architecture for fine-grain-
ed protection of software modules, based on a mem-
ory access control model that makes access privileges
dependent on the value of the program counter (in-
struction pointer). The access control model is strong
enough to support fully abstract compilation [1] of
modules; low-level attacks against a compiled module
exist iff the source-level module can also be exploited.

e We show how this access control model supports novel
features, such as

1. the ability to support function pointers to trusted
modules. Secrecy and integrity of any data passed
as arguments is ensured by the authentication of
the pointer’s destination.

2. the ability to update modules after they are de-
ployed, thereby allowing legacy software to be
ported easily and incrementally with minimal mod-
ification.

e We report on a fully functioning prototype implemen-
tation, demonstrating that Fides can be implemented
on commodity hardware while remaining fully compat-
ible with legacy systems.

e We present a compiler that compiles standard C source
code modules into protected binary modules.

e We show that Fides has an average performance over-
head of around 3% on the overall system, which is
reduced to 0% when no modules are loaded. Mac-
robenchmarks show an overhead of up to 14% for ap-
plications that intensively use Fides’ services.

We do not consider trusted I/O and leave it as future
work. However, a trusted path between an 1/O module and
I/O devices can be established as in related work [22, 40].

The remainder of this paper is structured as follows. First,
we clarify our objectives by defining the attacker model and
desired security properties in Section 2. Section 3 gives an

overview of the security architecture and its key concepts.
In Sections 4 and 5, we discuss how the run-time system and
compiler were implemented and evaluate performance. We
finish with a discussion of related work and a conclusion.

2. OBJECTIVES

High-level programming languages offer protection facili-
ties such as abstract data types, private field modifiers, or
module systems. While these constructs were mainly de-
signed to enforce software engineering principles, they can
also be used as building blocks to provide security proper-
ties. Declaring a variable holding a cryptographic key as pri-
vate, for example, prevents direct access from other classes.
This protection however does not usually remain after the
source code is compiled. An attacker with in-process or ker-
nel level access is not bound by the type system of the higher
language. We will show that Fides is able to provide such
strong security guarantees. We first discuss the abilities of
an attacker and then discuss how Fides provides these guar-
antees.

2.1 Attacker model

We consider an attacker with two powerful capabilities.
First, an attacker can execute arbitrary code — user-level or
kernel-level — in the legacy operating system. This kind of
root-level access is a realistic threat: legacy operating sys-
tems consist of millions of lines of code and this unavoidably
leads to the presence of programming bugs, such as buffer
overflows [23], that can be exploited by an attacker to inject
code [11, 39].

With kernel-level privileges, the attacker can try to cor-
rupt or read the state of protected modules, modify the
virtual memory layout of applications containing protected
modules or intercept their loading process to tamper with
security-sensitive code or data. The attacker can also try to
intervene in the communication between modules, or to at-
tack data that protected modules wish to store persistently.

Second, the attacker can build and deploy her own pro-
tected modules. Our security architecture does not assume
that software modules that request protection can be trusted.
In other words, it is our goal to ensure the security of a pro-
tected module by one stakeholder, even if modules of mali-
cious stakeholders are also loaded in the system.

With respect to the cryptographic capabilities of the at-
tacker, we assume the standard Dolev-Yao model [8]: cryp-
tographic messages can be manipulated, for instance by du-
plicating, re-ordering or replaying them, but the underlying
cryptographic primitives cannot be broken.

We assume the attacker has no physical access to the hard-
ware. An attacker with control over the physical system may
disconnect memory, place probes on the memory bus, or per-
form a hard reset. Since remote exploitation of commodity
systems is far more common than exploitation through phys-
ical access, this is a reasonable assumption.

2.2 Security properties

To provide strong security guarantees, we use a combina-
tion of a run-time system and a compiler.

2.2.1 Fides run-time system

The Fides run-time system enforces a program-counter
based access control mechanism. It guarantees the following
security properties:



o Restriction of entry points. Protected modules can
only be invoked through specific entry points, prevent-
ing an attacker from jumping to an incorrect location
in the module and executing on unintended execution
paths [32].

e Confidentiality and integrity of module data. A pro-
tected module can store sensitive data in a way so it
can only be read or modified by the module itself.

e Authentication of modules. Modules can authenticate
each other securely. This also implies that code of
modules is integrity protected.

e Secure communication between modules. Fides guar-
antees integrity, confidentiality and delivery of data
exchanged between modules.

e Minimal TCB. The correct and secure execution of
a module only depends on (1) the hardware, (2) the
Fides architecture and (3) the module itself and any
other module that it calls. In particular, the operating
system is excluded from the TCB.

2.2.2  Secure compilation of modules

Using the protection mechanisms offered by the run-time
system as building blocks, the compiler allows the compila-
tion of standard C source code into protected modules. It
provides the following security guarantees:

e [Integrity of execution. An attacker is not able to influ-
ence the correct execution of the module

e Secure communication between modules. The compiler
ensures that sensitive information is passed only be-
tween modules using a secure channel.

e Secrecy of sensitive information. Only information
that is passed explicitly to unprotected memory or to
another module exits the module. Leakage of possibly
sensitive information, for example information linger-
ing in save-by-caller registers, is prevented.

Note that it is not our objective to protect against vulner-
abilities in protected modules: the security of a protected
module can be compromised if there are exploitable vul-
nerabilities in its implementation. Examples include logical
faults (i.e. a faulty API design [17]), or memory errors [11,
39, 35]. Instead, our goal is to protect the module from mal-
ware that exploits vulnerabilities in the surrounding appli-
cations or underlying operating system. A vulnerable mod-
ule however, can only affect the security of other modules
if they explicitly place trust in the former and, for exam-
ple, exchange sensitive information. An attacker introduc-
ing malicious modules in the system does not gain any more
power as they are not trusted by any other module. In sec-
tion 5 we will show that a low-level attack against modules
exist iff also a high-level attack exists.

3. OVERVIEW OF THE APPROACH

In Fides, an application and the protected modules it uses,
share the same virtual address space. Protection of the mod-
ules is provided by enforcing a memory access control model:
access rights to memory locations depend on the value of the
program counter. Roughly speaking, while the processor is
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Figure 1: The layout of an SPM.
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Table 1: The enforced memory access control model.

executing within the boundaries of a specific protected mod-
ule (i.e. the program counter points to an instruction that is
part of the module), it can access memory allocated to that
module. If the processor is executing outside the bound-
aries of the module, it has only limited rights to access the
module’s memory. In particular, destruction of the module
is also only possible from within the module: this is why
we use the term self-protecting module (SPM) for protected
modules in Fides.

This section gives an overview of how this basic mecha-
nism is used to support communicating protected modules.
First, we discuss in more detail the layout of an SPM and
the enforced memory access control (Section 3.1). Next,
we describe the four primitive operations offered by Fides
(Section 3.2). Then, in Sections 3.3 and 3.4, we discuss the
typical life cycle of an SPM, and how SPMs can authenti-
cate each other and collaborate securely. Finally we discuss
in section 3.5 how modules can be updated.

3.1 Layout of a Self-Protecting Module

A self-protecting module is a chunk of memory divided in
two sections (see Fig. 1). The Secret section contains the
module’s sensitive data. This not only includes sensitive
data processed by the module, such as cryptographic keys,
but also data used for the correct execution of the module,
such as its call stack. Read and write access to the Se-
cret section is only allowed from within the module. Access
from outside the module, including from another instance of
the same SPM, is prevented. These access restrictions give
modules total control over any data stored in their Secret
section.

The Public section contains information that is non-confi-
dential and should only be integrity-protected. This includes
all' the module’s code and constant values such as strings.
Once the module is protected, the contents of this section

1Self-modifying code and interpreted code could be sup-
ported easily by making the Secret section executable, but
we consider such support of out scope for this paper.



can no longer be modified, it can only be read and/or exe-
cuted. Read access is allowed from unprotected code as well
as from other SPMs, allowing authentication of modules.

SPMs are able to access unprotected memory in the same
address space. While Fides’ design does not impose any ac-
cess limitations on these locations, access restrictions set by
the legacy kernel are enforced to prevent malicious modules,
for example, from overwriting kernel space.

Each SPM comes with a list of memory locations in the
Public section that are valid entry points into the SPM.
Fides will guarantee that an SPM can only be executed by
jumping to a valid entry point. This prevents attacks that
attempt to extract information by selectively executing code
snippets [32].

Table 1 summarizes the enforced access control rules. It
shows for instance that code in unprotected memory or other
SPMs can read the Public section of an SPM, or can execute
an address that is an entry point of the SPM (from this point
on, the program counter is within the Public section and the
access rights are elevated).

3.2 Primitive operations

Fides implements four primitive operations to create, de-
stroy and query the location and layout of SPMs.

The crtSPM primitive is used to create an SPM. It takes
the location and size of the Public and Secret sections and
a list of entry points. First, Fides verifies whether all refer-
enced logical pages are mapped to physical pages, that they
do not overlap with any existing SPMs, and that all entry
points point into the Public section. Then, Fides creates an
identifier spm_id for the SPM. Fides guarantees that until
it is rebooted, no other SPM will receive the same iden-
tifier. Therefore the identifier can be used to differentiate
instances of the same module. Fides also clears the Secret
section (set to all zeroes) to remove the initial contents of
the Secret section from the attack surface. Finally, memory
access protection of the SPM is enabled.

The killSPM primitive will destruct the SPM that called
it (or generate a fault if called from unprotected code). En-
forcing that only SPMs can destruct themselves is important
for security: it prevents attacks where an attacker destroys
an SPM unexpectedly e.g. during a callback to unprotected
memory. It also allows SPMs to pause their destruction
until its sensitive data is stored securely to disk and over-
written in memory. Note that this does not prevent Fides
from interrupting non-responsive modules (see section 4.1).

Fides supports two primitives to allow authentication of
SPMs. The 1ytSPM primitive is given any virtual address
and returns the base address, layout and spm_id of the mod-
ule that is mapped at the specified location. The tstSPM
primitive is more efficient and returns whether the SPM
with a given spm_id is loaded starting at the specified lo-
cation. Both primitives check whether the referenced SPM
is loaded correctly: as SPMs are loaded in processes’ vir-
tual address space, pages may not be mapped, mapped to
incorrect physical pages, or mapped out of order.

3.3 Life Cycle of a Self-Protecting Module

Fig. 2a and 2b describe the life cycle of an SPM. We ex-
plain the steps from creation to destruction in detail.

Setting up an SPM.
First (Fig. 2a, step 1), the legacy operating system pro-
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Figure 2: The life cycle of an SPM from (a) initial-
ization to (b) destruction.

vides a user process with a chunk of (possibly physically
non-contiguous) memory and the SPM is placed in unpro-
tected memory.

In the second step, the crtSPM primitive is called. An
attacker that compromised the previous step(s), will be de-
tected later on and mitigated. At this point, the SPM can
be authenticated and service other modules. However, most
SPMs will need to restore their secret state from persistent
storage after creation (step 3). In Fides, this is handled by a
special SPM, called the Vault that will only pass previously
stored data over a secure channel. Details of authentication
and secure communication will be discussed in Section 3.4.
In appendix A we elaborate on the workings and security of
the Vault.

Destroying an SPM.

When the SPM is no longer needed, it should be destroyed
properly (Fig. 2b). First, the module accesses the Vault to
store any secret data that must be available for later execu-
tions. In step 2, the secret data of the SPM is overwritten
to prevent it from being disclosed in unprotected memory.
Finally, the module calls the ki11SPM primitive to lift the
imposed access control of the module’s memory.

3.4 Secure local communication

One of Fides’ objectives is to support a system of collab-
orating modules (see Fig. 3), each with its own secrets and
own services that it offers to other modules, adhering to the
principle of least privilege [29]. Hence, SPMs must be able
to authenticate each other, and establish secure communi-
cation channels. We explain both aspects in detail.

The identity of an SPM is captured in what we call a
security report. It contains four parts:

e A cryptographic hash of the Public section allowing
verification that the Public section was not compro-
mised before protection was enabled. It is essentially
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Figure 3: Fides’ ability to establish secure chan-
nels, enables the easy creation of complex trust net-
works. Modules A and B are able to explicitly place
trust on (possibly another instance of) an SPM im-
plementing RSA operations without trusting each
other. Similarly, a malicious module M will not be
able to cause any harm as it is not trusted by any
module.

the SPM’s identity as the access control model only
allows code execution from this section.

e The layout of the SPM, including the sizes of the Public
and Secret sections, and the list of entry points (rela-
tive to the Public section) to verify that the protection
request was not compromised. Modification of the size
of the Secret section in the SPM’s initialization phase
for example, may cause the use of unprotected memory
to store sensitive information.

o A serial and version number. The authentication mech-
anism is flexible enough to support SPMs to be up-
dated easily. As the cryptographic hash of the Public
section will differ between versions, a serial number is
required to link different versions of the same SPM to-
gether. A version number prevents the re-use of old
(e.g. security vulnerable) SPMs.

e Cryptographic signature. The security report is signed
by its issuer. SPMs have a list of trusted certificate
authorities (CAs) to verify the signature of SPMs they
authenticate.

Since a security report is signed by its issuer, it can be
stored in unprotected memory. Any working mechanism to
retrieve an SPM’s security report will suffice. For simplicity,
we will assume in the rest of the paper that it is stored in
front of the SPM.

One-way authenticated service call.

Consider a SecureRandom module that provides crypto-
graphic random numbers, and a Client module that authen-
ticates and requests its service (Fig. 4a).

First, the Client calls the 1ytSPM primitive, locates the
security report, and verifies (1) its signature on the security
report, (2) the hash of the Public section and the layout of
the SPM against the information in the security report, and
(3) whether serial and version number are as expected.

Second, the SecureRandom module is called. This is sim-
ilar to calling a function: parameters are loaded in registers
and a jump to the appropriate entry point is performed.
An important difference with regular function calls on the
x86 platform is that the return address must also be passed
in a register. Under normal operation return addresses are
pushed on the call stack of the caller. However, to protect
the integrity of their execution, modules are not allowed to

access each others call stack and the return address can-
not be retrieved. Hence, a continuation entry point, in this
case receive_random, is provided as a parameter (similar to
continuation-passing-style programming[26, 3]).

In the final step, SecureRandom generates a random num-
ber and returns it by performing a jump operation to the
receive_random entry point.

The bandwidth of the secure channel can be increased
significantly by storing large messages in memory shared
between sender and receiver. We will further discuss this
mechanism in Section 4.1.

In case the Client module requires additional random num-
bers, the SecureRandom module can be re-authenticated us-
ing the tstSPM primitive. Based on the spm_id returned
by 1ytSPM when the module was first authenticated, it en-
sures that the same instance of the module will be accessed
and rechecking the security report is not required. We will
show in Section 5 that repeated authentication is signifi-
cantly more efficient than initial authentication.

Two-way authenticated service call.

Two-way authentication is very similar. Assume that a
module Client wishes to communicate with another module,
Server, and that mutual authentication is required (Fig. 4b).

First, Client locates the Server’s security report and au-
thenticates the module as in one-way authentication. In
step two, a message is sent to the Server containing the
entry point, receive_secret, where the response should be
returned to. In step three, the Server locates the Client’s se-
curity report using the provided return point and the 1ytSPM
primitive. Only after successful authentication of the client,
sensitive data is returned.

In case the origin of service requests must be proven, a
secret session token can be passed to the authenticated end-
point during the initial authentication. The session-token
should be passed in all future service requests.

3.5 Updating SPMs

Fides’ authentication scheme allows a module to be up-
dated easily without requiring any modification of modules
or unprotected code that are clients of the updated module.

Updating works as follows. A client authenticates a mod-
ule starting from just a function pointer: using the 1ytSPM
primitive, the SPM queries Fides for the base address of the
referenced module and locates its security report. After au-
thenticating the issuer and verifying its serial number?, the
module is authenticated as described in Section 3.4. In ad-
dition the client should check the version number. Updated
versions might contain API inconsistencies to previous ver-
sions e.g. services may be serviced on new entry points. Sim-
ilarly, the version number should be high enough to prevent
attacks where a module is downgraded to an older, vulner-
able version. To transfer secret state from an old version
to a newer, special support is required. An update protocol
could be implemented by the modules to pass the informa-
tion, or a support SPM could be built to pass persistent
sensitive information to updated SPMs. This approach al-
lows the Vault to remain simple and easy verifiable: it will
only return sensitive data to the same SPM that previously
requested storage.

®The issuer/serial number combination is assumed to
uniquely determine functionality, and this should be stable
over updates of the module.
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Security of updating modules depends on the ability to
create crytographically signed security reports. Since it can
safely be assumed that only the creator of the initial report
has access to the private key, an attacker is not able to fab-
ricate his own new versions.

4. A PROTOTYPE IMPLEMENTATION

A key element of Fides is the program-counter dependent
memory access control model. Since access rights have to
be checked on each memory access, implementing this com-
pletely in software would have a huge performance cost. Al-
ternatively, modifying hardware, an approach taken by re-
lated research [37, 38, 9], has serious drawbacks. In this
section, we describe an efficient implementation of the run-
time system and the compiler on readily available hardware.

4.1 The Fides architecture

The key observation is that the memory access control
rules only change when entering and exiting SPMs. In our
implementation, we use a small dynamic hypervisor to iso-
late SPMs from the rest of the system, and we ensure that
the correct memory permissions are set on entering/exiting
SPMs. Hence, there is only an overhead on entering and ex-
iting SPMs, leading to a reasonable performance overhead.

We introduce a minimal hypervisor that runs two virtual
machines, the Secure VM and the Legacy VM (see Fig. 5).
Both VMs have the same guest physical view of host physical
memory, but they have a different configuration of memory
access control. Note that there is no duplication of memory,
only two virtual views of the same physical memory.

Our prototype implementation can be loaded and unloaded
when required, avoiding any overhead when no SPMs are in
use. Fides is bootstrapped by loading a device driver in the
legacy kernel to gain supervisor privileges. Then, physical
contiguous memory is allocated to store a hypervisor and
the Secure VM. Next, a dynamic root of trust is started
and the hypervisor and Secure VM are launched. Finally,
the running legacy kernel is pulled in the Legacy VM, and
memory access control of both VMs is configured [15, 27].

The Legacy VM.

The legacy kernel and user applications continue their op-
eration without any interruption: the only difference after
the start of Fides is that access to certain parts of memory

is now prohibited in the Legacy VM. More specifically, the
memory where SPMs and parts of the TCB are stored, is
protected. If the legacy VM accesses this memory (for in-
stance tries to read or write the Secret section of an SPM),
this will trap to the hypervisor and the access attempt is
prevented.

The Fides device driver that was used to bootstrap Fides
also provides an interface to the security architecture, for in-
stance to create and query SPMs. This interface can not be
exploited: no sensitive information is ever returned. How-
ever, given our attacker model, an attacker may change the
returned results before code in the Legacy VM can process
it. Hence, these primitives can only be used securely from
within an SPM thereby avoiding the results to leave the
Secure VM. This problem does not occur when SPMs are
created from unprotected memory: when an attacker inter-
fered with the creation of an SPM, this will be detected by
the authentication protocol and no sensitive information will
be passed to it.

This design ensures excellent compatibility with legacy op-
erating systems: the only change from the OS’s viewpoint is
that certain memory regions (that are unused during normal
operation) are rendered inaccessible.

Hypervisor.

The hypervisor is executing at the most privileged level
and serves three simple purposes. First, it provides coarse-
grained memory isolation of the legacy VM, secure VM and
itself. It also prevents any access to SPMs that is not allowed
from unprotected memory. However, it does not implement
the fine-grained program-counter dependent memory access
control. This is implemented in a separate security kernel
in the secure VM and will be discussed later.

Second, the hypervisor schedules both virtual machines
for execution based on a simple request passing mechanism.
The secure VM is scheduled only when a request is passed
to it (i.e. when an SPM is called), or when it did not yet
finish executing the previous request. Hence, the Secure VM
consumes no CPU cycles when no SPMs are being executed.

Third, the hypervisor creates a new dynamic root of trust
(DRTM aka late launch) when it is loaded. This allows the
attestation of the correct launch of the security architecture.
It also allows the TPM chip to store sensitive information
based on this measurement, such as the cryptographic keys
used by the Vault. If Fides was compromised before it was
protected in memory and launched or a hypervisor was al-
ready present, the result of this measurement differs and
sensitive data is inaccessible.

Secure VM.

To allow easy access to the unprotected memory, the Se-
cure VM has the same view of physical memory as the
Legacy VM but with different access control settings: SPMs
can be accessed but are protected by a security kernel



Security kernel.

To reduce the size of the TCB, only a minimal amount of
features are used: memory paging, a separation of user and
kernel mode, page fault handling and a few system calls. We
now discuss how these features are used to enforce the fine-
grained access control model and how SPMs can use Fides’
primitive operations.

To ensure isolation, SPMs are executed in user mode.
When a module is invoked, the security kernel receives a re-
quest specifying the virtual address of the entry point called.
This address is translated to a physical address by directly
traversing the (untrusted) page tables in the Legacy VM.
Next the containing module is located. When no module
is found an error is returned to the Legacy VM, else a new
address space is created mapping the entire module. As
modules are always mapped at the same virtual addresses
as in the Legacy VM, it is easy to access unprotected mem-
ory locations. When these are not yet mapped, a page fault
will be generated. At that time the referenced physical page
is located, checked whether it is part of an SPM and checked
against the access rights of the SPM. To prevent an SPM
from receiving unauthorized access to memory locations, the
address space is rebuilt each time an SPM is invoked. Note
that the page tables of the Legacy VM are not trusted: they
are only used to check which physical page was referenced.

The security kernel also ensures that modules are prop-
erly loaded: since the untrusted page tables of the legacy
kernel are used, an attacker may try to only load modules
partially in memory or rearrange the order of its pages. To
mitigate this threat, the security kernel records the order
of the physical pages when a module is created and ensures
that the same order is used when the module is called or its
presence tested using the 1ytSPM and tstSPM primitives.

TOCTOU attacks are mitigated by preventing concurrent
execution of modules. As modules can only destroy them-
selves, an authenticated module must still be mapped in
memory when it is called. This is however overly restrictive
as only the presence of the called module must be ensured.

Besides passing information between SPMs in registers,
the security kernel also provides support to pass bulk data
using a special shared memory segment that is accessible
only to the currently executing SPM. Hence, the receiver
automatically gains access when it is called. To prevent in-
formation leakage, the called SPM must overwrite the passed
data before execution returns to unprotected code. Access
to this memory segment from the legacy VM is prevented us-
ing Extended Page Tables (EPT), the same hardware mech-
anism used to isolate different VMs.

Limitations of the prototype implementation.

To prevent time-of-check-to-time-of-use attacks, SPMs must

not be destroyed after they were authenticated but before
they are called. This would cause sensitive information
stored in registers to leak to untrusted code. Our proto-
type currently handles this by preventing SPMs to be inter-
rupted. However, this is largely a prototype limitation, and
not fundamental. Fides could, for example, support inter-
rupts by suspending and resuming the executing SPM after
the interrupt is handled. Entries to other SPMs are denied
to prevent destruction of already authenticated communica-
tion endpoints by the interrupted module. Non-responsive
modules on the other hand, may be destroyed by the security
kernel without further consideration. Alternatively, support

for multicore processors could also be added and SPMs can
be run on one specific core. In that case, unprotected code
is able to execute uninterrupted. This may be acceptable,
as it can be expected that SPMs are only responsible for a
small fraction of all computation.

In production systems the use of DMA should be pre-
vented from overwriting an SPM. Just as the prototype cur-
rently prevents the Legacy VM to access SPM locations, the
IOMMU should be configured to prevent DMA accesses to
modules.

4.2 Automated compilation of modules

We modified the LLVM? compiler to compile standard C
source code modules into protected modules. More specifi-
cally, the compiler ensures the following:

e Each module implements its own stack.

e When returning to unprotected memory, registers and
condition flags are cleared.

e Function pointers point to unprotected memory or to
a function in the SPM with a correct signature.

e Function call annotations specify that the referenced
module must be authenticated before the function is
called and possibly sensitive information is passed.

e The entry point handling returns from callback func-
tions, cannot be exploited. The entry point is only
serviced when a callback actually took place.

We now discuss two notable implementation details: sup-
porting function calls to SPMs and the use of function point-
ers by modules.

Supporting function calls to SPMs.

For each SPM, a wrapper is created to allow easy invoca-
tion. The wrapper serves two purposes. First, it loads and
unloads the SPM when appropriate. Second, it creates a
stub function for each available entry point. Fig. 6 displays
a schematic overview of an invocation. In step 1 untrusted
code accesses a stub in the SPM’s interface as a normal func-
tion. Arguments are passed together with the entry point
to the security kernel via the Fides driver and hypervisor
(step 2). After all consistency checks pass, the SPM is in-
voked (step 3). The SPM’s execution stops when it tries
to execute unprotected memory, either because the SPM’s
service returns or because an external function is called. In
both cases the security kernel returns the contents of all reg-
isters to the stub (steps 4-6). There appropriate action is
taken: returning to its caller or invocation of the function
pointer before re-entering the SPM.

Supporting function pointers.

Support for function pointers dereferenced within a mod-
ule is added in two steps. In the first step, an LLVM func-
tion pass replaces every function pointer dereference with a
call to one of two support functions, depending on whether
the call should be made to a trusted module or unprotected
code. The developer of the module should specify the type
of the target of the function pointer by annotating the source
code. These support functions will be compiled as part of the

3http://11vm.org/
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Figure 6: Implementation of the Fides architecture.

module and allows easy handling of function pointers with-
out having to use the LLVM intermediate representation. In
step two, the module of the target of the function pointer
is authenticated, if required. The spm_id of the destination
is stored within the boundaries of the module to limit the
cost of subsequent calls. Finally, possible side channels that
leak information about the inner state of the module, such
as the condition flags and save-by-caller registers are cleared
and the value of the stack pointer is stored before a jump to
the function pointer is made. A special return entry point is
added to the module (one per module) to facilitate returns
from the function. As with any entry point, the return lo-
cation after the module has serviced the request, is passed
through register %rbp.

Compiler limitations.

While modules can be written in standard C-code, some
source code annotations are required. Allocation requests
using the standard malloc function, for example, must spec-
ify where the memory should be allocated. A support library
has been created to statically link functions of the libc li-
brary with the module.

5. EVALUATION

5.1 Security Evaluation

Fides offers strong security guarantees to compiled mod-
ules by relying on a run-time system of only limited size and
a compiler. We now discuss both components.

Run-time system.

The run-time system implements a program-counter based
access control mechanism in three layers. At the lowest level
we rely on the TPM chip and assume that an attacker is not
able to launch physical attacks against the system. When
the Fides architecture is loaded, a dynamic root of trust
measurement (DRTM) is started, measuring the memory
state of the system. Based on this measurement the cryp-
tographic keys used by the Vault are sealed in the TPM.
An attacker that compromised the correct loading of Fides,
for example by modifying the binary on disk, will cause an
incorrect measurement and access to the sealed keys is pre-
vented. As the Vault is the only SPM that stores persistent
data, access to sensitive data is prevented.

In the second layer, the hypervisor protects all security
sensitive memory locations against faulty legacy applica-
tions and a compromised kernel. This includes secrecy of
confidential data as well as integrity of code.

The third layer, the security kernel, protects modules from
potentially malicious SPMs by realizing the program-counter
dependent access control model.

VMM | Secure kernel | Shared | Total TCB
1,045 1,947 4,167 7,159

Table 2: The TCB consists of only 7K lines of code.

An important enabler for formal verification of the TCB
is to make sure that the size of the TCB is small. Table 2
displays the TCB of Fides for its different parts, as mea-
sured by the SLOCCount* application. Only the hypervisor
(VMM) and the secure kernel are trusted. They contain
1,045 and 1,947 lines of C and assembly code respectively.
This does not include the 4,167 lines of code that is shared
between the parts. The driver (690 LOC) used to support
communication with Fides is not security sensitive and thus
is excluded from the TCB. This totals the size of the TCB
to only 7,159 LOC.

Compilation of SPMs.

Facilities offered by high-level languages such as a private
field modifier, allow easy reasoning about an application’s
security guarantees and its verification. A low-level attacker,
not bound by these restrictions, may however still exploit a
vulnerability anywhere in the application and break these
security guarantees. It has been proven [2] that a simpli-
fied version of Fides’ fine-grained access control mechanism,
is able to support fully-abstract compilation of a high-level
language with private fields: when no source-level attack
against a module exists, it also can’t be exploited after com-
pilation.

To achieve such high security guarantees, modules must be
compiled securely. Each module’s stack, for example, must
be placed in its Secret section. Our modified compiler is
able to compile standard C source code to modules meeting
these requirements.

5.2 Performance evaluation

We performed three types of performance benchmarks on
our prototype. First, we measure the system-wide perfor-
mance impact of Fides. Next, we measure the cost of local
communication (Section 5.2.2) and finally we benchmark an
SSL-enabled web server (Section 5.2.3).

All our experiments were performed on a Dell Latitude
E6510, a mid-end consumer laptop equipped with an Intel
Core i5 560M processor running at 2.67 GHz and 4 GiB
of RAM. Due to limitations of our prototype, we disabled
all but one core in the BIOS. An unmodified version of
KUbuntu 10.10 running the 2.6.35-22-generic x86_64 kernel
was used as the operating system.

5.2.1 System-wide performance cost

To measure the performance impact of Fides on the overall
system, we ran the SPECint 2006 and Imbench benchmarks.
Fig. 7a displays the results of the former. With the exception
of the mcf application (10.36%), all applications have an
overhead of less than 3.28%. We contribute the performance
increase of gcc to cache effects.

Fig. 7b displays the results of 9 important operations of
the Imbench suite: null (null system call), fork, exec, ctxsw
(context switch among 16 processes, each 64 KiB in size),
mmap, page fault, bcopy (block memory copy), mmap read

“http://www.dwheeler.com/sloccount/
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Figure 7: The performance impact on the overall
system

(read from a file mapped into a process), and socket (local
communication by socket). All tests show a performance
overhead of less than 10% and on average even as low as
3.22%. As our implementation does not require any addi-
tional computation when no SPMs are executed, this perfor-
mance overhead can be contributed completely to the hard-
ware virtualization support. We expect that as this support
matures, overhead will be reduced further. Also note that
Fides can be unloaded when it is no longer required, reduc-
ing the overhead to 0%.

5.2.2 Local communication between SPMs

To measure the impact of communication, two microbench-
marks were used. The first one measures the cost of a call to
an SPM compared to a call to a similar driver in the legacy
operating system. A simple SPM of two 4 KiB pages was
used for the test. When its entry point is executed, it imme-
diately passes control back to the calling application. The
driver used for comparison is similar. When it is accessed
using the ioctl interface, it immediately returns. Table 3 dis-
plays two results. The Entry row shows the measurement
of the time between the point of call in the user applica-
tion and the point of delivery in the SPM or driver. The
Round trip row measures the time between call and return.
Each test was executed 100,000 times. Results show a per-
formance overhead of 8,167% and 8,781% respectively. This
significant overhead is caused by the fact that for each SPM
invocation two VM entries and exits are required to pass
execution control from the legacy VM to the secure VM and
back, as well as four context switches from supervisor to user
mode are required (two in each VM, see Fig. 6). However,
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SPM | Driver | Overhead
Entry 4.35 0.05 8,167.14%
Round trip | 6.58 0.07 8,781.73%

Table 3: SPM vs. driver access overhead (in us).

one-way auth. two-way auth.
tstSPM | shab12 | tstSPM | sha512
timing 7.82 95.72 8.28 110.63
overhead | 6.03% | 1,198% | 12.22% | 1,400%

Table 4: Microbenchmarks measuring the cost (in
us) of calling an (authenticated) SPM.

given the substantial security guarantees, these costs seem
very acceptable.

The second microbenchmark measures the cost of different
authentication techniques, over an average of 100,000 runs.
Two SPMs were created, called Ping and Pong. Ping invokes
a service in Pong that simply returns a static response. Four
different setups were used, shown in table 4. Performance
results without any authentication measured 7.37us and is
used as the baseline. Columns one and two display results
for one-way authentication. Column one measures repeated
authentication where Fides is requested to check the spm_id
of the called module and column two measures an initial
authentication using SHA-512 and the 1ytSPM system call,
which is less flexible than authentication using a security
report, but used, for example, by the Vault. Initial authen-
tication has a performance penalty of 1,197.97%. Repeated
authentication is much less expensive at 6.03%. Similar tests
were conducted for two-way authentication. Performance
penalties increased to 1,400.06% and 12. 22% respectively.

5.2.3 SSL-Enabled Web Server

As a macrobenchmark, we protected an SSL-enabled web
server. Our goal was not only to protect the web server’s
long term secret, but the entire SSL-connection, including
session information. This prevents a kernel-level attacker
from hijacking the connection and renders him only as pow-
erful as an attacker with complete control over the network.

We used the PolarSSL cryptographic library® and some
functions of the diet libc library that are security sensi-
tive in our use case (i.e. sscanf) to implement the SPM.
We also implemented our own simple malloc memory man-
agement. The NSPRS library was used to create a multi-
threaded server. Each connection is handled in a separate
thread with its own SPM.

We used the Apache Benchmark to benchmark a web
server returning a static 74-byte page to the client over an
SSL-connection protected by a 1024-bit RSA encryption key.
Table 5 displays the server’s performance with a varying
number of concurrent tranctions, each setup receiving 10,000
requests. Repeated context switches during the SSL negoti-
ation phase lead to a performance cost of up to 13.93%.

6. RELATED WORK

There exists a vast body of research on software secu-
rity. For system-level software, memory safety related vul-

*http://polarssl.org/
Shttps://www.mozilla.org/projects/nspr/



Concurrency | Unprotected | Protected
1 50.27 50.09
5 83.72 83.26
10 97.34 83.44
50 102.73 89.27
100 103.10 88.74

Table 5: HTTPS-server performance (in #req/s).

nerabilities are an important threat. We refer the reader to
Younan et al. [39] for a comprehensive survey and to Erlings-
son et al. [12] for a gentle introduction. Practical counter-
measures however, cannot defend against all possible attacks
and countermeasures with strong guarantees typically come
with a significant cost.

An alternative approach is to turn to formal verification
of systems and applications to provide very strong assurance
of security properties. Impressive achievements include the
verification of the HyperV hypervisor [6], and the complete
seL4 microkernel [16]. While seL4 is also able to provide
strong security guarantees, a key design objective for Fides
is compatibility with legacy operating systems: what should
minimally change to a commodity OS to support protection
of critical software components against kernel-level malware.
For that design objective Fides outperforms sel.4 easily.

Other research results proposes hardware modifications to
increase security guarantees [37, 38]. However, one of our
objectives is to remain compatible with existing systems.

Yet another line of research takes advantage of virtualiza-
tion techniques to increase the protection of sensitive data
by increasing protection of the kernel [30] or applications [10,
36, 5] in the presence of malware. While these research re-
sults present interesting solutions, we are not convinced that
they can ever be made provable secure due to a possibly very
large TCB. The line of research most related to the work in
this paper sets out to bootstrap trust in commodity comput-
ers by securely capturing a computer’s state. An excellent
survey of this research field is given by Parno et al. [25]. We
only discuss the most relevant work.

Existing research can be categorized based on the root of
trust. Some works assume a trusted boot sequence to start a
hypervisor before the commodity operating system is loaded.
Terra [13] takes this approach to isolate closed boxes of soft-
ware. Possible attack vectors are minimized by preventing
additional code to be loaded in the box. Nizza [33] takes a
more integrated approach, executing small pieces of code in
isolation on the Nizza microkernel. While this architecture
is similar to Fides, its TCB of 100,000 lines of code is an
order of magnitude larger.

The root of trust can also be started dynamically, after
the system has booted. Pioneer [31] and Conqueror [18]
take this approach completely in software. However, many
assumptions are hard to guarantee in practice and confiden-
tiality of data cannot be provided.

Stronger guarantees can be provided when the TPM chip
is used [7, 14]. Seminal work in this field has been conducted
by McCune et al. Their Flicker architecture [21] can execute
pieces of code, called PALs, in complete isolation while se-
crecy of sensitive information is guaranteed. The TPM chip
is used intensively by Flicker, leading to a significant per-
formance cost. The TrustVisor architecture [20] mitigates

many of these disadvantages by using a hypervisor and a
software delegate of the TPM chip. P-MAPS [28] operates
similar to TrustVisor but does allow protected code to access
unprotected pages. More recently, Azab et al. showed [4]
that the System Management Mode (SMM) can be used to
implement a hypervisor-like security measure, ensuring in-
tegrity and security of module code and data. While these
systems also offer strong isolation of modules, their focus is
on remote attestation. They are ill-equipped for practical
implementation of applications with a large number of (in-
terconnected) modules: (1) writing co-operating protected
modules is hard since modules do not share the same ad-
dress space. (2) Messages sent between modules may never
be delivered. (3) A lack of support for multiple instances
of the same module makes it extremely challenging to build
modular systems. Our approach mitigates these disadvan-
tages by combining a run-time system and a compiler to al-
low programmers to easily develop protected modules that
are able to seamlessly interact with unprotected code and
other modules. Fides’ dual VM architecture also ensures 7
to 2,000 times (TrustVisor and Flicker, resp.) faster context
switches from unprotected memory to SPM’s.

Finally, our own previous work on trusted subsystems
in embedded systems [34] proposed a program-counter de-
pendent memory access control model. An implementation
technique was sketched for embedded systems with a flat
address space and with special-purpose hardware support.
El Defrawy et al. [9] implemented attestation of code in em-
bedded devices based on this access control model, but lim-
ited themselves to only a single module. This significantly
reduces the complexity of a hardware implementation as no
primitives for module creation, destruction or authentica-
tion is needed. A full hardware implementation for high-end
CPUs may not be feasible as the access control mechanism
would require interaction with existing memory translation
mechanisms. A key contribution of Fides is that it shows
that similar ideas can be implemented on commodity hard-
ware while remaining fully compatible with legacy software.

7. CONCLUSIONS

Commodity operating systems have been proven hard to
protect against kernel-level malware. This paper presented
a combined run-time system and compiler approach to se-
lectively harden modules. Using a program-counter based
access control model, programmers are able to develop mod-
ules in standard C-code that co-operate seamlessly with un-
protected code and other modules. It has been proven that
such modules are fully protected while system-wide perfor-
mance impact is limited.
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APPENDIX
A. THE VAULT

The Vault is an SPM that stores sensitive information on
behalf of other SPMs. It offers two services. First, an SPM
can ask the Vault to store persistent secret data. The Vault
will append the identity of the requesting SPM (its layout
and cryptographic hash of the public section), encrypt and
sign the data and store it using the (untrusted) services of
the legacy operating system.

Second, only an SPM that previously stored secret data
can retrieve it again. After mutual authentication, the Vault
retrieves the encrypted data from the legacy operating sys-
tem, checks its integrity, decrypts it and sends it over a
secure channel to the requesting SPM.

The Vault is treated specially by Fides: it is created when
Fides is booted, and it receives its own secret data directly
from the secure storage space on the TPM.

Besides offering secure storage, the Vault also ensures
state continuity [24]. In particular, protection against two
possible attacks is provided. First, in a rollback attack, an
attacker passes a stale version of an SPM’s stored data from
disk to the Vault. Depending on the module’s functionality,
this may result in a security vulnerability, such as the reuse
of cryptographic keys.

Second, the Vault should also provide crash resilience. As
a compromised legacy kernel may allow an attacker to cause
the system to crash, persistent storage of fresh data could
be prevented based on subtle timing differences. This essen-
tially enables an attacker to prevent the system from making
progress.

Our prototype implementation does not yet implement
state continuity guarantees, but the techniques proposed by
Parno et al. [24] are also applicable to Fides: each SPM could
request persistent storage of service requests before they are

Figure 8: Using Fides’ access control model and fast
local communication, attestation can be supported
easily and transparently to any attested module.

handled. The Vault in turn, keeps a request history for each
module. The Vault thus acts as an intermediate module that
stores state information of other modules. This reduces the
number of modules that require storage for state-continuity
on the TPM chip to one, limiting the wear on NVRAM.

B. REMOTE ATTESTATION

Fides’ access control model and local communication mech-
anism can also be leveraged to attest correct execution of
modules with two key characteristics. First, meaningful at-
testation can be provided to the remote party, called the
verifier. Only a small TCB consisting of the Fides archi-
tecture, an attestation module, the Vault and the attested
module(s), are included in the measurement. Second, the
attestation is transparent: the correct execution of any mod-
ule can be attested without any modification. This improves
reusability of modules.

Attestation in Fides is based on a two-layered approach
where each layer attests its correct execution. Due to page
constraints, only a sketch of the mechanism is presented. It
relies however on pTPMs presented by McCune et al. [20].
Interested readers are referred there.

At the lowest level, the TPM chip ensures the correct load-
ing of Fides and boots trust on the next layer. To achieve
this, PCR registers 17, 18 and 19 are extended with a mea-
surement of Fides, the security report of an attestation mod-
ule and the Attestation Identity Key (AIKspar) respectively.

At the second level, attestation modules provide an attes-
tation service and implement PCR extend and quote func-
tionality similar to a hardware TPM chip. This prevents
hardware PCR registers from being cluttered. As several
identical attestation modules can also be loaded in the sys-
tem, the number of SPMs that can be attested at the same
time is virtually unlimited.

Figure 8 displays how the correct execution of an Attested
SPM can be proven. First, the verifier provides two nonces
n1 and n2 and an attestation module is created. Next, the
attestation module extends its measurement with the Vault
and requests its AIKspas key. Similarly the attested module
is measured and contacted in step 3. Finally, the attestation
module extends its measurement with the received result
and signs it together with no. A similar request is sent to the
lower level with ni, but is only granted when the request is
made from a module compliant with the measured security
report in PCR 18. In step 4, both quotes are sent to the
verifier.

In case the attested SPM calls other SPMs, the verifier is
able to rely on the authenticated communication mechanism
to ensure that no untrusted SPMs are used in the compu-
tation of the result. Alternatively, attestation-aware SPMs
could notify the attestation module which SPMs are used.



