From Lifted Inference to Lifted Models

Daan Fierens
Department of Computer Science
KULeuven, Belgium
daan.fierens@cs.kuleuven.be

Abstract

In this position paper we raise the question
whether lifted inference can be performed by
‘lifting’ the probabilistic model rather than
the inference algorithm. We show that this
is indeed possible using so-called count mod-
els — at least for the common examples used
within the exact lifting literature. The chal-
lenge is to turn this into a general approach.

1 Lifted Probabilistic Models

Today, lifted probabilistic inference applies a ‘lifting’
algorithm to a given model (e.g. [1, 4, 5]). Here, we
ask the question whether one could instead compile the
given model to another model — the ‘lifted” model —
such that standard propositional inference on the lifted
model corresponds to (or is as efficient as) lifted infer-
ence on the original model. This has recently been
done for lifted solving of linear programs and infer-
ence with pairwise Gaussian MRFs [6], but not yet
for probabilistic models in general. Such lifted mod-
els help to characterize what lifted inference really is.
E.g., they naturally suggest to view lifted inference as
efficient inference in an ‘over-sized’ ground model that
includes ‘redundant’ variables with shared parameters.
The ‘lifted model” approach compiles the ‘over-sized’
into a ‘just-right sized’ model. It also takes away the
burden of developing lifted versions of propositional
inference algorithms.

What could a ‘lifted model’ look like? We propose to
compile a given model to a count model: a propo-
sitional model defined over count random variables
rather than the original variables.

2 Count Models by Example

We consider the task of computing marginals or max-
marginals in factor graphs defined over Boolean ran-

Kristian Kersting

University of Bonn and Fraunhofer TAIS, Germany

kristian.kersting@iais.fraunhofer.de

dom variables. Our compilation approach consists of
three steps: (S1) construct a count model, (S2) per-
form inference on the count model using any propo-
sitional algorithm, and (S3) ‘recover’ the marginals.
Fig. 1 illustrates this approach for models commonly
used in the exact lifted inference literature [1, 2, 4, 5].
Below we explain the steps for computing marginals
in the sick-death example [1], Fig. 1(a,b).

(S1a) Structure of the Count Model. Given a
factor graph (be it in parfactor or ground form), we
first determine the structure of the count model. The
idea is that variables for which (the computations of)
the marginals are identical are ‘collapsed’ into a single
count variable. A count variable that covers a group of
variables ¢ in the original model represents the num-
ber of variables in g having value true (and hence has
lg| + 1 possible values). E.g., all variables Sick(p) are
collapsed into a count variable #Sick. When given
the ground factor graph, one way to find clusters of
variables is to run color passing [4]. For the exam-
ples reported here, this gives the appropriate result.
In general, however, color passing can overcluster (it
clusters variables indistinguishable for BP), yielding a
count model that can only give approximate marginals.

(S1b) Parameters of the Count Model. Given the
structure of the count model, we compute its poten-
tials. For sick-death, we need two factors: ¢(FE,#5S)
(to be derived from the factor ¢(E, S(p)) in the origi-
nal model) and ¢(#S5,#D) (from ¢(S(p), D(p)). The
corresponding equations are given in Fig. 1(a) and il-
lustrated for domain size 3 in Fig. 1(b). As an exam-
ple, the entry ¢(#S = 1,#D = 1) in Fig. 1(b) can be
interpreted as follows: it covers all scenarios with 1 sick
and 1 dead person. One scenario is that the same per-
son is sick and dead, so 2 other people are non-sick and
alive, yielding a contribution of 6}% #Bu on the ground
level, to be multiplied with 3 (multinomial coefficient)
because there are 3 choices for the sick&dead person.
The other scenario is that the sick and the dead person
are different, yielding BBy 8: s, to be multiplied by 6.

(One might be tempted to include bi- or multinomial
coefficients also in the other factor ¢(E, #5S5), but that
is incorrect because it double-counts scenarios.) Note
that the equations for the potentials in Fig. 1(a) are
expressed as function of the domain size N. Hence our
count model is a fully just-right parameterized model,
applicable for any domain size.

(S2) Inference. The count model is a regular fac-
tor graph, so we can use any propositional inference
algorithm (in practice, the large number of states of
a count variable can be a burden). For all examples
shown, exact inference on the count model yields (af-
ter S8) exact marginals for the original model.
Before moving to the final step (S3), let us compare
the characteristics of the count model and the original
ground model. On the negative side, the size (number
of entries) of the factors in the count model is larger
than for the original model (e.g. for sick-death).
On the positive side, however, even when the origi-
nal model is loopy, the count model can be a tree, al-
lowing for efficient exact inference (e.g. Fig. 1(d—f)).
More generally, the count model typically has lower
treewidth than the original model. Also, the count
model sometimes has a lower order (max. number of
variables per factor) than the original model. This
happens e.g. for friends&smokers, where the origi-
nal model has order 3 but the count model has order
2, see Fig. 1(f). This is relevant when computing max-
marginals since many such algorithms (e.g. LP-based
ones) assume a pairwise model (i.e. order 2).

(S3) Recovery. Inference on the count model yields
the marginals for E, #S5 and #D. From the marginals
of #S (which is a count variable with N + 1 possible
values), we can derive the marginals of the original
S(p) variables (which are identical for all p) by apply-
ing the recovery equations, see Fig. 1(c), and normaliz-
ing the results. We can do the same for #D and D(p).
The recovery equations always have the same form as
in Fig. 1(c), regardless of the model considered.

Discussion. For all examples in Fig. 1, the lifted
model yields the same exact marginals as the original
ground model (if, of course, we perform exact inference
in S2). All steps take time at most polynomial in the
domain size N, so the approach is ‘lifted’ according
to Van den Broeck’s definition [2]. The fact that these
original models with all the individual variables can be
converted into count models involving only the count
variables suggests that the original models are in some
sense ‘misspecified’ or ‘oversized’, and that the conver-
sion can be seen as re-sizing the model (see also the
work on lifting linear programs [6]). The idea of hav-
ing random variables that represent counts is related
to other work in lifted inference like C-FOVE’s count-
ing conversion [5]. Although C-FOVE also works with

count variables (‘counting formulas’), it never entirely
replaces the group of individiual variables by the corre-
sponding count variable yielding a purely propositional
model. This also surfaces in the fact that C-FOVE has
no counterpart of our recovery equations. Another dif-
ference between lifted models and (as far as we know)
all exact lifted inference approaches is that they only
compute the marginals for one (cluster of) variable(s),
while we can compute all marginals in parallel using
an appropriate inference algorithm in S2.

The Max-Marginal Case. The above is for com-
puting marginals. Max-marginals require a slightly
different count model. For the equations defining the
potentials, Fig. 1(a), as well as the recovery equations,
Fig. 1(c), the max-marginal form can be obtained
from the given equations by (1) replacing all sums by
maximizations and (2) omitting all coefficients (like
C(N,i,s,d) in Fig. 1(a), s/N in Fig. 1(c), etc.).

3 Outlook and Challenges

While we have a conversion to a count model for
most examples from the literature on exact lifting,
we currently do not have a fully general conversion
method, in particular for deriving the potentials of
the count model (S1b). Yet, it is clear that many
models contain reoccurring ‘patterns’. Some simple
patterns of dependencies are: one-to-one (e.g. the fac-
tor between Sick(p) and Death(p) in sick-death,
but also in friends&smokers between Smokes(p)
and Cancer(p)), one-to-many (e.g. between Epidemic
and Sick(p), but also in workshop-attributes and
competing-workshops), and many-to-many (e.g. in
competing-workshops). Each pattern requires a spe-
cific way of defining the corresponding potential in the
count model. Of course there are many other, more
complex, patterns possible, e.g. with self-loops as in
friends&smokers. Ideally, we need a set of general
conversion rules (like lifted compilation rules [2]). We
currently do not have such a general treatment, and
even suspect that the conversion is not always possi-
ble. Rather, the question seems to be for which classes
of models it is possible. Another interesting question
is whether we can derive closed-form equations for the
marginals, parameterized by the domain size (as some-
times done in ‘counting programs’ [3]). Our conversion
to count models might be a step in this direction. The
count model itself is already parameterized by the do-
main size (e.g. the potentials in Fig. 1(a)). For all
examples shown, the count model is a small tree or
chain, and deriving the resulting marginals in closed
form can be done.

We believe that further working out the idea of lifted
models is a promising but also challenging future av-
enue for StarAl

Vp $pg(Epidemic,Sick(p))
Vp dgp(Sick(p),Death(p))

(¢) Recovery equations:
N
P(S(p)=0)=3. - P(#S=5)
s=1

N-s
N

P(#S =s)

Hmm=ﬂ=2

(a) Original model (parfactors): Count model:

- cb#ES .ﬂ ¢#SD #.]).eath

Potentials of original model: Potentials of count model:
E S(p)| des S(p) D®)| dsp Py (E= [, #S=5)= a}'ta;\;—s f= false
fof]oa £ f | By b (E=t,#S=s)=aa)™ t=twe
,f E gft f % ﬁft ' N = domain
t ot |ay t ot | By Gysp(#S =s,#D=d) e
min(s.d)
E=Epidemic S=Sick D =Death - C(N,i,s,d) B, By By "
____________________ | . [:max(OZ,S;di) / / 4
(b) Ground model for N=3: I with I
Pes ! C(N.i,s,d) =
|
Dby S CHINN

e @ @ Potentials of count model for N=3:
E #S | dues #S #D | dusp

i(s —i)!(d—i)!(.N—s —d +i)!

S h ok

0 | oy 0 0Py
l|a*paq O 1|3 B% Py
2 log oy 0 2 Br B4
3| o 0 3|p%
0 ath 10| 3B%By
1| oy o 1 1] 6BgBaBst3 Bsz By
2 foy 02 1 2| 6ByPn Byt 3B By
3 a3tt A
3031 By

(d) Original model (parfactors):
Vp dga(Series,Attends(p))

Vp,w ¢ ,y(Attends(p),Hot(w))

Count model:

d)#SA ¢#AH
& G

(e) Original model (parfactors):
Vp dga(Series,Attends(p))
Vp ¢4, (Attends(p),Attr,)

Vp ¢4, (Attends(p),Attr,)

Count model:

¢#SA

(f) Original model (parfactors):

Vp1.p; $sp(Smokes(p,),Friend(p;,p,),Smokes(p,))
Vp dsc(Smokes(p),Cancer(p))

Count model:

d)#SF d)#SC

Figure 1:

Examples of the conversion to a count model: (a)-(c) Sick death (detailed example), (d) Competing

workshops, (e€) Workshop attributes, (f) Friends & smokers.

Acknowledgements. Daan Fierens is a post-
doctoral fellow of the Research Foundation-Flanders
(FWO-Vlaanderen). Kristian Kersting is supported by
the Fraunhofer ATTRACT fellowship STREAM and
by the EC (FP7-248258-First-MM).

References

[1] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-
order probabilistic inference. In IJCAI 2005.

[2] G. Van den Broeck. On the completeness of first-order
knowledge compilation for lifted probabilistic inference.

3]

(4]

[5]

(6]

In NIPS 2011.

A. Jha, V. Gogate, A. Meliou, and D. Suciu. Lifted
inference seen from the other side: The tractable fea-
tures. In NIPS 2010.

K. Kersting, B. Ahmadi, and S. Natarajan. Counting
belief propagation. In UAT 2009.

B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes,
and L. P. Kaelbling. Lifted probabilistic inference with
counting formulas. In AAAT 2008.

M. Mladenov, B. Ahmadi, and K. Kersting. Lifted lin-
ear programming. In AISTATS 2012.

