
On Families of Categorial Grammars of Bounded Value,

Their Learnability and Related Complexity Questions

Christophe Costa Florêncioa, Henning Fernaub

aUniversity of Amsterdam, Informatics Institute, ILPS, Amsterdam, the Netherlands
bUniversität Trier, FB IV—Abteilung Informatik, D-54286 Trier, Germany

Abstract

In [1], the learnability of several parameterized families of categorial grammar
classes was studied. These classes were shown to be learnable in the technical
sense of identifiability in the limit from positive data. They are defined in
terms of bounds on parameters of the grammars which intuitively correspond
to restrictions on linguistic aspects, such as the amount of lexical ambiguity.

The time complexity of learning these classes has been studied in [2]. It was
shown that, for most of these classes, selecting a grammar from the class that is
consistent with given data is NP-hard. In this paper existing complexity results
are sharpened by demonstrating W[2]-hardness. Additionally, parameters are
defined that allow FPT-results; roughly, this implies that if these parameters
are fixed, these problems become tractable.

We also define the new family Gk-sum-val, which is natural from the viewpoints
of Parameterized Complexity, a flourishing area of Complexity Theory (see [3])
and from Descriptional Complexity, a sub-area of Formal Language Theory (see
[4]). We prove its learnability, analyze its relation to other classes from the
literature and prove a hierarchy theorem.

This approach is then generalized to a parameterized family defined in terms
of a bound on the descriptional complexity expressed as a Hölder norm. We
show that both the hierarchy result and the property of finite elasticity (and
thus learnability) are preserved under this generalization.

Keywords: grammar induction, identification in the limit, finite elasticity,
parameterized complexity, categorial grammar, regular tree languages, Hölder
norms

1. Introduction

We consider the complexity of consistency problems for some family (Lk) of
language classes ordered by inclusion, which is of the following form: Given a

Email addresses: C.CostaFlorencio@uva.nl (Christophe Costa Florêncio),
fernau@uni-trier.de (Henning Fernau)

Preprint submitted to Elsevier June 4, 2012

finite language sample D and some parameter k, is there some language L ⊇ D
contained in Lk?

This question shows up quite naturally in the context of (consistent) learning
from text (details can be found below); the corresponding learning algorithms
are often expressed as starting from a finite set D of input strings, and the very
first task is to find a grammar from the target class that is consistent with D.

For many families of language classes, this type of consistency problem is
trivial. Consider for example the class Ak of languages that can be accepted
by a finite automaton with at most k states. In this case we can always answer
YES to the consistency problem, since an automaton exists that accepts Σ∗.1

However, this trivial type of reply is no longer possible if the universal lan-
guage (i.e., Σ∗ in the case of string languages) is not an element of each of
the language classes of interest. Examples are provided by classes of classical
categorial grammars; see [1].

The language families Lk are usually defined via grammar families Gk. As
a variant of the mentioned consistency problem, we may be given a finite set
of derivation structures and some parameter k and ask if there is a grammar
G ∈ Gk that produces those structures (and possibly more). Note that this can
also be seen as a special case of the first problem formulation, if we consider
languages of structures (formally, labeled ordered trees).

We study the computational complexity of consistency problems both from a
classical (P vs. NP) perspective, as well as from the perspective of parameterized
complexity. As far as the authors are aware, we have obtained the first such
results for grammar induction problems and, more generally, learning problems
in the identification in the limit paradigm.2

Apart from these complexity results, we also introduce a new family of cat-
egorial grammars, based on the so-called sum-value of a categorial grammar (to
be defined in the next section) which is interesting in its own right, since it con-
stitutes a new strict hierarchy of categorial language classes, where each level
is learnable from positive examples. We generalize this and other classes to a
parameterized family defined in terms of a bound on the descriptional complex-
ity expressed as a Hölder norm. Using elementary mathematical properties of
Hilbert spaces, we demonstrate that both the hierarchy result and the property
of finite elasticity (and thus learnability) are preserved under this generalization.
Such a ‘transfer’ result has been hitherto unknown for the setting of learning
from positive data.

Thus the new results presented in this paper fall within and bridge three
areas of research:

1Such an automaton consists of just one state, which is accepting, and a transition for
every element in Σ which loops back to this state.

2The paper [5] deals strictly with the parameterized complexity of several flavors of exact
learning of CNF/DNF formulas and certain types of graph learning problems.

Another relevant paper, [6], appeared after the publication of our first results in [7]. Among
other things, it demonstrates W[1]-hardness of the consistency problem for the non-erasing
pattern languages.

2

� Complexity Theory (more specifically, both classical aspects and aspects
of Parameterized Complexity),� Formal Languages (in particular, touching the sub-areas of Descriptional
Complexity and classical questions as hierarchy theorems and algorithmic
questions),� and Learning Theory (primarily, Inductive Inference and Grammatical
Inference).

Moreover, since categorial grammars are mainly studied within computational
and mathematical linguistics, our results may be especially relevant for re-
searchers from these fields.

In order to keep the paper as self-contained as possible, we will try to provide
the necessary background of all the relevant fields. Readers familiar with this
material can of course skip these sections.

Throughout the paper, we use standard notation from Formal Language
Theory. For example, Σ∗ is the set of all words over the alphabet Σ, including
the empty word ε. Any element from Σ∗ is called a word or a string. The length
of a word w is denoted by |w|. If D is a finite language, then ‖D‖ denotes the
sum of all lengths of all words from D.

Previous paper versions. A part of this paper appeared in [7], covering only
parameterized complexity results for the consistency problem of the family of
(structure) languages of categorial grammars of bounded max-value. The hier-
archy result and the results concerning the Hölder norm bound approach were
first presented in [8]. Due to space restrictions, many proofs and claims were
omitted in these conference papers.

2. Categorial Grammars—Definitions and Examples

The classes studied in [9, 10] which are also the focus of the present paper are
based on a formalism for (ε-free) context-free languages called classical categorial
grammar (CCG). In this section the relevant concepts of CCG will be defined.3

We will use the same notation as found in [1].
In CCG, each symbol (or atom) in some given alphabet Σ is assigned a finite

number of types. In the remainder, we assume Σ to be fixed. This is technically
convenient, and makes no difference in the context of learning, since only the
subset of Σ that actually appears in the data is relevant for the learner. Types
are constructed from primitive types by the operators \ and /. We let Pr denote
the (countably infinite) set of primitive types. The set of types Tp is defined as
the smallest set satisfying:

1. Pr ⊆ Tp,

3It is worth mentioning that the first paper on CCG [11] considerably pre-dates those on
Chomsky-type grammars which are much better known in Computer Science.

3

2. if A ∈ Tp and B ∈ Tp, then A\B ∈ Tp,

3. if A ∈ Tp and B ∈ Tp, then B/A ∈ Tp.

One member t of Pr is called the distinguished type, and is considered a
constant. In CCG there are only two modes of type combination, backward
application, A,A\B ⇒ B, and forward application, B/A,A⇒ B. In both cases,
type A is the argument, the complex type is the functor.4 Given an expression
of the form A/B (B\A), its main operator is ‘/’ (‘\’). Grammars consist of
type assignments to symbols, i.e., symbol 7→ T , where symbol ∈ Σ and T ∈ Tp.
A CCG G can be hence viewed as a mapping from Σ into finite subsets of types
Tp.

Def. 1 A derivation of B from A1, . . . , An is a binary branching, labeled tree
that encodes a proof of A1, . . . , An ⇒ B.

Let Tp(G) denote the set of types that occur in a CCG G. A type from
Tp(G) is called useless if it does not appear in any derivation of G. A grammar
is called reduced if it contains no useless types, see [1]. The types appearing in
the definition of a CCG are also called the range of the grammar. This should
not be confused with the range of a type: the range of A/B (B\A) is A, its
domain is B.

Through the notion of derivation the association between grammar and lan-
guage is defined. All structures contained in some given structure language
correspond to a derivation of type t based solely on the type assignments con-
tained in a given grammar. This is the structure language generated by G, de-
noted FL(G). The string language generated by G, L(G), consists of the strings
corresponding to all the structures in its structure language, where the string
corresponding to some derivation consists just of the leaves of that derivation
(also known as the yields).

The symbol FL is an abbreviation of functor-argument language, the deriva-
tion language generated by a CCG that is obtained by suppressing types as-
sociated to inner nodes in the derivation (tree). Hence, structures correspond
to terms. More precisely, structures are of the form symbol, fa(s1,s2) or
ba(s1,s2), where symbol ∈ Σ, fa stands for forward application, ba for back-
ward application and s1 and s2 are also structures. The set of all functor-
argument structures over the alphabet Σ is denoted by ΣF .

Note that structure languages as defined above are in fact regular tree lan-
guages. Thus the issues discussed in this paper could be relevant to the topic
of learning (regular) tree languages, but we will not pursue this further here.

Ex. 2 The top left structure in Fig. 1 is a derivation for a proof of

np, np\(t/np), np/n, n/n, n⇒ t.

4According to an alternative convention that is sometimes found in the literature, A\B is
used where we write B\A. We follow the original notation from [12].

4

t

FA
t/np np

BA FA
np np\(t/np) np/n n

FA
n/n n

t

FA
t/np np

BA FA
np np\(t/np) np/n n

John kicks the

FA
n/n n
red ball

FA

BA FA
John kicks the

FA
red ball

Figure 1: Parsing with categorial grammars.

Note that all tree nodes carry types as labels, and that to inner nodes, in addition,
labels BA and FA are associated, which indicate the operations applied at those
points in the derivation.
The top right structure shows a CCG parse, which is a derivation where the
leaves are labeled not just with types, but also with the lexical items (such as
John) that these types are assigned to in the grammar used for the parse. At
the bottom, the corresponding functor-argument structure is shown.

Classical categorial grammar can be extended to (various variants of) gen-
eral combinatory grammars by introducing additional operators such as Forward
Composition (A/B,B/C ⇒ A/C) or Forward Crossing Composition (A/B,C\B
⇒ C\A). These are linguistically motivated, and allow both a more flexible
interface between surface structure and semantics, and extend the expressive
power to mild context-sensitivity. Refer to [13, 14] for an overview.5

All learning functions in [1] are based on the function GF. This function
receives a sample of structures D as input and yields a set of assignments (i.e., a
grammar) called the general form as output, which generates exactly D. It is a
homomorphism and runs in linear time. GF assigns t to each root node, assigns
distinct variables to the argument nodes, and computes types for the functor
nodes: if it is the case that s1 7→ A, given ba(s1,s2)⇒ B, then s2 7→ A\B. If
s1 7→ A, given fa(s2,s1)⇒ B, then s2 7→ B/A. When learning from strings,

5In addition to the classical/combinatorial approach, there also exists a type-logical ap-
proach to categorial grammar. This falls outside the scope of this paper, the interested reader
is referred to [15] for a survey, and to [16, 17] for learnability results for classes of type-logical
categorial grammars.

5

the structure language is not available to the learner, but given a set of strings
there exist only finitely many possible sets of structures for the classes under
discussion. These are then used to produce hypotheses.

Categorial types can be treated as terms, so natural definitions of substitu-
tion and unification apply. A substitution over a grammar is just a substitution
over all of the types contained in its assignments. This notion can be used to
unify distinct types assigned to the same word. Consider, for example, the fol-
lowing grammar, which the reader can verify generates just the words ab, ba
and babb:

G =
a 7→ t/A,B\t, C/(E/E), (C/D)/D
b 7→ A,B, t/C,D, (E/E)/D

The types t/A and C/(E/E) can be unified to yield the single type t/(E/E),
obtained by applying the most general unifier σ = {C ← t, A ← (E/E)}. The
type B\t cannot be unified with any of the other types, since they all have
‘/’ as main operator, while B\t has ‘\’ as main operator. The types t/A and
(C/D)/D cannot be unified because their functors are a constant and a complex
type, respectively. Finally, C/(E/E) and (C/D)/D cannot be unified because
this would fail the so-called occurs check: it would require that C is unified with
C/D, which would result in a cyclic term.

We state without proof that FL(G) ⊆ FL(σ[G]) for each substitution σ, see
[1] for details.

A CCG G can be viewed as a mapping from Σ into finite subsets of types Tp.
Accordingly, we can associate a value function vG that maps a ∈ Σ onto |G(a)|,
i.e., the number of types that G maps to a. If clear from context, the index
G will be suppressed. As discussed in [18], at least two natural size measures
can be derived from v, depending on the chosen metric: the max-value of G
is maxa∈Σ v(a), while the sum-value of G is

∑

a∈Σ v(a). A categorial grammar
G is called k-max-valued (k-sum-valued, respectively) if its max-value (sum-
value, respectively) is upper-bounded by k. The according grammar classes are
denoted by Gk-max-val and Gk-sum-val, resp. In the literature [2, 1], k-max-valued
grammars are also known as k-valued grammars, and 1-max-valued grammars
are also known as rigid grammars, and denoted as Grigid. This class is known to
be learnable from structures with polynomial update-time, by simply unifying
all types assigned to the same symbol in the general form ([1]). The other classes
originally defined in [9, 10] are generalizations of this class. The k-sum-valued
class has not been studied before.

The languages that can be described with k-max-valued (k-sum-valued,
resp.) grammars are comprised in the classes Lk-max-val (Lk-sum-val, resp). The
structure languages that can be generated by grammars from Gk-max-val and
Gk-sum-val, resp., are written FLk-max-val and FLk-sum-val, resp.

One more class discussed in [1] that we need to define is that of the least
cardinality grammars, denoted by Gleast-card. A grammar of least cardinality
with respect to L is a partial function from Σ to Tp+ such that L ⊆ FL(G) and
there is no grammar G′ such that

∑

a∈Σ vG′(a) <
∑

a∈Σ vG(a) and L ⊆ FL(G′).

6

The following two propositions concern the relations between Gk-sum-val and
the other classes. They follow directly from the definitions:

Prop. 3 In the case that k = |Σ|, Gk-sum-val ⊇ Grigid.

Observe that a grammar that assigns zero types to a and two types to b is
2-sum-valued, but not rigid.

Prop. 4 If a given sample D of a structure language is not a subset of any
language in FL(k−1)-sum-val, but is a subset of some language in FLk-sum-val,
then {G |G ∈ Gk-sum-val, D ∈ FL(G)} = {G |G is of least cardinality w.r.t. D}.

For the intuition behind these definitions, we quote Buszkowski and Penn [10]:

Following the general methodological principle of economy, we look
for a simplest possible description of the initial data; simplicity may
be interpreted here as minimization of the number of different types
assigned to each atom.

3. Learning from Positive Samples

In [19] the notion of identification in the limit was introduced. In this model
a learning function sees an infinite sequence which enumerates the target lan-
guage, called a text, and hypothesizes a grammar for the target language at each
time-step. A class of languages is called learnable if and only if there exists a
learning function that, after a finite number of presentations, guesses the right
language on every text for every language from that class and does not deviate
from this hypothesis.

Research within this framework is known as (formal) Learning Theory. Only
those aspects of Learning Theory that are relevant to our result will be discussed,
see [20] for a comprehensive overview of the field.

Many different variants of the paradigm have been studied, amongst them
the learning of indexed families of computable languages, i.e., learning in the
presence of a uniform decision procedure for languages in the class (see [21]).
This is a natural assumption when studying grammar induction, and we will
assume it in the remainder of this paper.

Let the set Ω denote the hypothesis space, which can be any class of finitary
objects. In the context of this paper, members of Ω are called grammars. The
set S denotes the sample space, a recursive subset of Σ∗ or of ΣF for some fixed
finite alphabet Σ. Elements of S are called words in the first case, subsets of
S are then called languages. Elements of S are called structures in the second
case, subsets of S are then called structure languages. The naming function
L maps elements of Ω to subsets of S. If G is a grammar in Ω, then L(G) is
called the language generated by (associated with) G. The universal membership
problem takes as input a word and a grammar and asks if that word belongs to
the language generated by the given grammar.

7

A triple 〈Ω,S,L〉, with Ω, S and L as described above, is called a grammar
system.6 A class of grammars is generally denoted by G, a class of languages is
denoted by L.

The class of all categorial grammars is denoted CatG, the grammar systems
under discussion are hence 〈CatG,ΣF,FL〉 and 〈CatG,Σ∗,L〉.

We will adopt notation from [1] and let FL denote a class of structure lan-
guages. The corresponding naming function is FL(G). Learning functions are
written as ϕ.

The setting of learning from structures is closely related to learning from
meaning, i.e., from strings together with their semantic types. This is outside
the scope of this paper, the interested reader is referred to [23, 24].

Identifiability in the limit of a class guarantees the existence of a learning
algorithm, but the learning problem is not necessarily tractable. In order to
obtain a usable algorithm, further constraints on the learner need to be specified.
Ideally we would use some notion of polynomial identification in the limit. There
are several around, but they are all of a somewhat ad-hoc nature. Yokomori [25]
defines a class as polynomial-time identifiable in the limit from positive data if
a learning algorithm for that class exists such that both the number of explicit
errors of prediction and the computation time it needs for any data sequence
are bounded by polynomials over the complexity of the representation.

Obviously, this kind of definition implies that it must be possible to produce
a hypothesis that is consistent with the data (and belongs to a given class)
in polynomial time, this property is known as polynomial update-time. There
seems to be some consensus that this is an important property for efficient
learnability, but see [26, 27]. Given the class C, we will denote this problem as
C-consistency.

Note, however, that NP-completeness of C-consistency does not exclude
the existence of a learning algorithm for C that is in some sense efficient. It
is theoretically possible that in such a case there exists a learning algorithm
that runs in polynomial time whenever it converges on the data set, and trades
efficiency for consistency before convergence.

A language class L is said to have infinite elasticity (see [28, 29, 30]) if
there exists an infinite sequence (wn) of words and an infinite sequence (Ln) of
languages in L such that, for all n ∈ N, wn /∈ Ln, but {w1, . . . , wn} ⊆ Ln+1.
A language class L has finite elasticity if it does not possess infinite elasticity.
If 〈Ω,S,L〉 is a grammar system and G is a recursively enumerable subset of
grammars from Ω, then the family of languages L(G) = {L(G) | G ∈ G} is
learnable (identifiable in the limit) if it has finite elasticity.

The language families that we defined in the preceding section are partic-
ularly interesting from the point of view of Learning Theory. They provide
non-trivial examples of language families with finite elasticity, so that we can
state:

6This notion should not be confused by that of a grammar system as defined in [22].

8

Thm. 5 Families from both the hierarchies Lk-sum-val and FLk-sum-val have fi-
nite elasticity.

Proof. The maximum number of types that can be assigned to any symbol
in a k-max-valued grammar is k. Thus, Gk-sum-val(Σ) ⊂ Gk-max-val(Σ), and
Lk-sum-val(Σ) ⊆ Lk-max-val(Σ).

Since Lk-max-val is known to have finite elasticity for every k, every subclass,
including Lk-sum-val, has finite elasticity (for every k), and is thus learnable.

An analogous argument can be given for FLk-sum-val. �

Cor. 6 Both families from the hierarchies Lk-sum-val and FLk-sum-val are iden-
tifiable in the limit.

4. Formal Language Results

The following hierarchy result was demonstrated in [1] (Theorem 5.5):

Thm. 7 For any k ≥ 1, Lk-max-val (L(k+1)-max-val.

The analogous result for FLk-max-val follows directly from the definition of
the class.

We complement this result by showing:

Thm. 8 For any k ≥ 1, Lk-sum-val (L(k+1)-sum-val.

Note that the proof of this theorem is quite unusual, since it heavily relies
on the finite elasticity property that was originally defined for Learning Theory
purposes.
Proof. This proof somewhat resembles the proof of the hierarchy theorem
for Lk-max-val. It is possible to provide a simple proof based on the relationship
between Lk-sum-val and Lk-max-val, but we prefer to give a constructive proof since
it provides more insight and proves a hierarchy theorem for the corresponding
class of structure languages as well.

By definition, Gk-sum-val ⊂ G(k+1)-sum-val, which immediately implies the in-
clusion Lk-sum-val ⊆ L(k+1)-sum-val. It remains to show its strictness, i.e., that
L(k+1)-sum-val − Lk-sum-val 6= ∅.

In the case that k = 2, the grammar a 7→ A, t/A is in Gk-sum-val, and thus
the language {aa} is in Lk-sum-val. In the case that k = 1, only grammars of the
form a 7→ t are in the class, so only languages of the form {a} are in Lk-sum-val.
This demonstrates that L(k+1)-sum-val − Lk-sum-val 6= ∅ for k = 1.

It remains to show that L(k+1)-sum-val − Lk-sum-val 6= ∅ for k ≥ 2. Let
Ln = {ai | 1 ≤ i ≤ n}, and Liac = {Ln | n ∈ N+}. Note that Liac is an infinite
ascending chain, so, since Lk-sum-val has finite elasticity (Theorem 5), for any
fixed k, Liac 6⊆ Lk-sum-val. Thus, there exists an n ∈ N such that Ln /∈ Lk-sum-val.
We will show that for the least such n, Ln ∈ L(k+1)-sum-val.

9

Let Gn be a k-sum-valued grammar such that L(Gn) = Ln.
7 There must

exist a type A ∈ range(Gn) − Pr such that A is not a proper subtype of any
type in range(Gn). Let B = (. . . (t/A)/ . . .)/A

︸ ︷︷ ︸

n

, and let Gn+1 = Gn ∪ {〈a,B〉}.

We will now show that L(Gn) = Ln.
The range of B can only be t. Since B is not the proper subtype of any type

in range(Gn+1), the only derivation that can yield type B consists of just a leaf,
and this type is assigned to a in Gn. Therefore, there exists a derivation proving
B,A . . . A

︸ ︷︷ ︸

n

⇒ t, and Gn+1 allows a CCG parse corresponding to this derivation.

The yield of the parse is an+1, and since B is not a proper subtype of any type
in the range of Gn+1, the only other derivations that Gn+1 allows are exactly
the derivations that Gn allows. Thus L(Gn+1) = L(Gn) ∪ {an+1} = Ln. �

From this proof it immediately follows that:

Thm. 9 For any k ≥ 1, FLk-sum-val (FL(k+1)-sum-val.

5. Hölder Norms

The bounds defining the k-max-valued and k-sum-valued classes are in fact
special cases of Hölder norms. These are of the form ‖ ~x ‖p=

p

√∑n

i=1 |xi|p for
~x = (x1, . . . , xn) ∈ Rn and p ≥ 1. For p = 1, this is the sum norm bound, for
p → ∞ this is the maximum norm bound, and for p = 2 we obviously obtain
the Euclidian distance bound.

Prop. 10 [Folklore]

1. ‖ ~x ‖∞≤‖ ~x ‖p for any p ≥ 1.

2. For 1-dimensional spaces, ‖ ~x ‖∞=‖ ~x ‖p for any p ≥ 1.

Thus, a natural question presents itself: do learnability and hierarchy theo-
rems hold for every class of CCGs defined in terms of Hölder norms? Let GH(k,p)

collect those grammars G which satisfy ‖ ~v(G) ‖p≤ k. We write LH(k,p) and
FLH(k,p) for the corresponding string- and structure languages. Recall that we
assume the alphabet Σ to be fixed. By definition, we have:

Lem. 11 For every k, p ≥ 1, GH(k,p) ⊆ GH(k+1,p).

Proposition 10 (1) entails, completely analogous to Theorem 5:

Thm. 12 Let p ≥ 1. Families from both the hierarchies LH(k,p) and FLH(k,p)

have finite elasticity.

Thm. 13 For every k, p ≥ 1, LH(k,p) (LH(k+1,p).

7Note that when we write Gn, n is simply an index, not necessarily the value of k.

10

Proof. From Lemma 11, it immediately follows that LH(k,p) ⊆ LH(k+1,p).
Since the strictness (for the case p = 1) was shown in Theorem 8 by a unary
example, based on the finite elasticity of that class, Proposition 10 (2), together
with Theorem 12 yield the claim. �

From this proof, it immediately follows that:

Thm. 14 For every k, p ≥ 1, FLH(k,p) (FLH(k+1,p).

More generally, if Lk now denotes any language class that has finite elasticity
and whose definition is obtained by restricting the L∞ norm of some vector
~v(G) associated to some grammar G for L ∈ Lk, then, for any p ≥ 1, Lk,p is a
hierarchy with finite elasticity, as well, where Lk,p consists of all languages that

can be described by grammars G with ‖ ~G ‖p≤ k.
This might allow to identify the language class that comes closest to one’s

needs for, say, linguistic reasons, as all these classes enjoy similar positive learn-
ability properties.

6. Complexity Notions

We assume some familiarity with the basic notions of classical complexity
on the side of the reader.

There has been recent interest in the development of parameterized complex-
ity results to allow for a more fine-grained analysis of NP-hard problems. So,
a problem (parameterized by k) is in FPT if we can develop an algorithm with
running time O(f(k)p(n)), where n is the overall input size and k is the (size
of the) parameter. f is an arbitrary function (depending on k but independent
of n) and p is a polynomial. An algorithm that proves FPT-ness is also called
an FPT-algorithm, or a parameterized algorithm. More details can be found in
the monograph [3].

The classical example for a problem in FPT is the vertex cover problem
on undirected graphs. So, given a graph G and a parameter k, the question is
whether a vertex cover C exists with |C| ≤ k, where a vertex cover set can be
characterized by the fact that, upon removing it together with all incident edges,
no edges will remain in the graph. One simple FPT-algorithm is a branching
algorithm that picks an edge {x, y}, as long as this is possible and as long as the
parameter value k is bigger than zero, and branches into the two possibilities
of covering that edge. In each of the branches, one more vertex is taken into
the proposed partial cover, the graph is modified by deleting that cover-vertex
from the instance (together with its incident edges), and the parameter value is
decremented by one. If this binary search tree arrives at a graph with no edges,
then a cover with at most k vertices was found on that path of the search tree
and this can be accordingly reported. If all branches of the search tree are cut
because the parameter value was decreased down to zero and no solution was
found so far, then we face a NO-instance. In that (worst) case, the search tree
will have 2k leaves and twice as many nodes in total. Since all work that arises
in the nodes can be done in polynomial time, this is an FPT-algorithm.

11

It is worth mentioning that the very first analysis that is, to our knowledge,
published on the sketched simple search tree algorithm was in the algorithms
textbook of Mehlhorn [31], predating any other publication on parameterized
algorithms. It has become the standard example, including the discussion of
several improvements, in all textbooks on Parameterized Complexity [3, 32, 33].
The current record-holder has brought the basis of the expression estimating
the size of the search tree (and hence the running time) down to less than 1.28,
see [34].

This approach makes sense in particular if the parameter of interest can be
assumed to be small. The hierarchy level k in our formulation of the consistency
problem might be such a small parameter: in linguistics, the amount of lexical
ambiguity for natural language is assumed to be very small in relation to the
number of symbols found in any realistic lexicon. We thus arrive at problems
that we call, for instance, Lk-max-val-consistency in order to make the pa-
rameter explicit. However, we cannot always hope to find nice parameterized
algorithms. More specifically, we can derive as a corollary from the fact that
L1-valued-consistency is NP-hard ([2, Theorem 5.32] or alternatively, [35])):

Cor. 15 Unless P = NP, there is no FPT algorithm that decides Lk-max-val-
consistency.

Proof. If this were not the case, there would be an algorithm that decides the
consistency problem in time O(f(k)p(n)). Setting k = 1, we would arrive at a
polynomial-time algorithm that decides if, given a finite set D of strings, there
exists a 1-max-valued (rigid) categorial grammar G such that D ⊆ L(G). This
problem is known to be NP-hard. �

This corollary is surely disappointing from a parameterized point of view,
since it seems to rule out the use of the natural parameter k as a good choice
of a parameter for the consistency problem for k-valued categorial grammars.

The proof of NP-hardness of L1-valued-consistency makes use of the fact
that there is no bound on the size of the alphabet, so we still might hope for
better parameterized results when we restrict our attention to languages over
alphabets of size three, for example.

As we will see, this hope will not be fulfilled. However, in order to formulate
and establish the indicated result, we need some more notions from parameter-
ized complexity.

As with classical complexity, we need an appropriate notion of reduction
to prove hardness results, and some knowledge about classes of parameterized
problems that are believed not to possess FPT-algorithms. Actually, there is
a whole hierarchy of parameterized problems that is believed to be strict, the
so-called W-hierarchy. Usually, its lowest level, W[0], is called FPT (which we
have already defined).

The W-hierarchy is usually defined in terms of circuits. However, the lowest
three levels of this hierarchy are the most important ones for this paper, and
they can be characterized by halting problems of Turing machines.

12

Namely, if a parameterized problem (with parameter k) is in W[1], then it
can be solved by a nondeterministic one-tape Turing machine within f(k) steps
for some function f . A typical W[1]-complete problem is the following one:
given a nondeterministic one-tape Turing machine M and a parameter k, does
M halt within k steps (when starting on the empty tape)? There are also many
graph-theoretic problems that belong to this class. For example, recall that C
is a minimum vertex cover in a graph G = (V,E) iff the subgraph induced by
V \ C is an independent set (also known as a stable set) of G, i.e., a set of
vertices having no edge between any pair of them. This relation is also known
as the Gallai identity, see [36]. So, the question of finding an independent vertex
set I of size k is intimately related to the question of finding a vertex cover C
of size k′. However, while the latter problem is in FPT, the first question is
W[1]-complete.

If a parameterized problem (with parameter k) is in W[2], then it can be
solved by a nondeterministic multi-tape Turing machine within f(k) steps for
some function f ; it is important that this Turing machine has parallel access to
its working tapes. A typical W[2]-complete problem is the following one: given a
nondeterministic multi-tape Turing machine M and a parameter k, does M halt
within k steps (when starting on the empty tape)? Another problem related
to vertex cover in graphs is the analogous question for hypergraphs. This
problem is also known as hitting set: given a hypergraph G and a parameter
k, we ask for a vertex set C of size at most k such that each edge e of G is hit,
i.e., e∩C 6= ∅ (note that a hyperedge e is simply the set of vertices it connects).
hitting set is known to be W[2]-complete.

We still need a satisfying notion of reduction in order to define hardness (and
completeness) for parameterized complexity classes. Given two parameterized
problems P and P ′ with parameterizations k and k′, resp., a parameterized
(many-one) reduction translates an instance (I, k) of P in polynomial time into
an instance (I ′, k′) such that k′ = f(k) for some function f . Obviously, if P ′

is in W [i], i = 0, 1, 2, then so is P . So, if P is W[2]-hard and we can provide
such a reduction that translates P into P ′, then P ′ is W[2]-hard, as well. As an
example, consider the reductions presented in Sections 5.3-5.5 from [2] that show
NP-hardness of several variants of ’consistency problems’. These reductions
use vertex cover, and the reductions are actually parameterized reductions
in the following sense: they show how an instance (G, k) of vertex cover

can be transformed in polynomial time into an instance (F, k) of Lk-max-val-
consistency. The fact that the same parameter appears in both problems
is one of the reasons we originally hoped for FPT-ness results for this type of
problem.

The hunt for this type of results can be also seen under a broader perspective.
For decades, the P-Cognition thesis held that cognitive capacities are limited
to those functions that can be computed in polynomial time. More recently,
the FPT-Cognition thesis has been proposed as an alternative. In short, this
means that one would concede more computing power to the brain and other
computational cognitive devices to cope with certain problems, thereby widening
the territory of tractability. Detailed discussions on this matter can be found

13

in [37, 38]. Naturally, learning is one of the basic cognitive tasks and hence fits
into these discussions.

7. Complexity Results

7.1. k-Maximum-Value Problems

In [2], only hardness results were shown. We first complement these results
by demonstrating membership in NP. This was originally neglected, since the
consistency problem was studied as an aspect of learning problems, specifically
of identification in the limit. In this paradigm, the length of the input sequence
before convergence is inherently unbounded. Thus, it makes little sense to
consider questions such as membership in NP, which would require a polynomial
number of steps before convergence.

Lemmas 6.1 and 6.2 from [1] (attributed to Buszkowski and Penn) underline
the importance of the concept of the general form GF(D) (as discussed above),
a CCG associated to a finite structure language D. Without giving details here,
note that it is further known that any reduced CCG G′ consistent with D can be
obtained from GF(D) by unification (implied by Prop 6.35 from [1]). Moreover,
the size of GF(D) (and hence the size of G′) is bounded by a polynomial over
‖D‖. If D is a finite string language, then any finite structure language D′ that
yields D is of size polynomial in ‖D‖. Hence, any GF(D′) of interest is also of
size polynomial in ‖D‖.

Thm. 16 FLk-max-val-consistency is NP-complete (for every fixed Σ with
|Σ| ≥ 3).

Proof. NP-hardness of FLk-max-val-consistency is shown in [2] (Theorem
5.16, which holds for the case where |Σ| = 3 and any larger alphabet). To see
membership in NP, let (D, k) be an instance of FLk-max-val-consistency. The
nondeterministic procedure we propose first generates some G ∈ Gk-max-val, by
unifying types in GF(D) that are assigned to the same symbol. Then, for each
structure s ∈ D, the procedure tests whether s ∈ FL(G) (which can be done
in polynomial time). If (and only if) all these tests are passed, the algorithm
returns YES. �

Thm. 17 Lk-max-val-consistency is NP-complete. Here, the alphabet Σ is not
fixed.

Proof. NP-hardness of Lk-max-val-consistency is shown in [2] (Theorem
5.32, which holds for the case where k = 1 and |Σ| is unbounded). To see
membership in NP, let (D, k) be an instance of Lk-max-val-consistency. The
nondeterministic procedure we propose consists of two parts; first, for each
string in D, a derivation is chosen. Then, the union of the resulting structures,
D′ (note that ‖D′‖ is obviously polynomial in ‖D‖), is used as a sample for
learning from structures, so that some G ∈ Gk-max-val is generated by unifying
types in GF(D′) that are assigned to the same symbol. Then, for each string

14

w ∈ D, the procedure tests whether w ∈ L(G) (which can be done in polynomial
time). If (and only if) all these tests are passed, the algorithm returns YES. �

We can actually sharpen the hardness assertion in the sense of parameterized
complexity, by defining a polynomial-time transformation from hitting set to
a dataset for a language in FLk-max-val. Deciding that the data is consistent
with a language in that class, i.e., FLk-max-val-consistency, then corresponds
to deciding the existence of a cover of a specified size c. We will call any
grammar that generates a language in the class consistent with the given input
a consistent grammar.

Since the construction is somewhat involved, an example is included in Ap-
pendix Appendix A.

7.2. Explanation of the construction

The construction makes use of several techniques that we now discuss infor-
mally to make things more accessible.

Padding. At certain places in the construction we may want types that are
assigned to the same symbol in the general form to be unified in the consistent
grammar. To this end, elements can be added to D such that extra types are
assigned to the same symbol that are pairwise non-unifiable, and not unifiable
to the types to be unified. This can be achieved by assigning the right (in this
case, depending on k) number of such types (which we call padding types).

Multiple occurrences of the same primitive type. At other places in
the construction we may need multiple occurrences of the same primitive type.
Padding cannot be used directly, since primitive types can often be unified with
complex types, and thus with the padding types, which is undesirable. Instead,
for primitive type P assigned to type p, we can replace all occurrences of p in
a given sample D with, say, fa(p, x). We thus have (compound) types Pi/Xi

assigned to p in GF(D), which makes the use of padding types possible.

Excluding all but one / Selection gadget. For our construction we need at
some points to exclude all types but one that are assigned to the same symbol
to be unified with some other type.

Let n distinct types Ti, some type U , and n padding types be assigned to
t. Given a sufficiently small k, at least one type Ti has to be unified with U
in order to obtain a consistent grammar that is in Gk-max-val. Let all types Ti

and U be extended as follows: let {Γ1, . . . ,Γn} be a set of pairwise non-unifiable
types, and let T ′

i = Ti/X1,i/ · · · /Xn,i,
8 where all Xs are primitive types, except

Xi,i = Γi. Let U ′ = U/Y1/ · · · /Yn, where the Yis are multiple occurrences of
the same primitive type.

Now, let some T ′
i be unified with U ′. This will yield a substitution such that

Γi is substituted for Yi and thus for all Y1, . . . , Yn.
This immediately excludes the unification of any other T ′

j with U ′, since that
would require unifying Γj with Γi.

8Here, we assume left-associativity of / to simplify our formulas.

15

Overlapping types. In our construction we use an ‘overlapping types’ ap-
proach to exclude exactly one arbitrary step out of n possible unification steps.
Let n types Ti, as well some type U , and k− 2 padding types, be assigned to t.

In the case that n ≥ 2, at least n− 1 of the types Ti have to be unified with
U . In the case that we want this to be exactly n − 1 types, i.e., exclude one
arbitrary of these types from unification with U , we can extend both all Ti and
U in the following way: let T ′

i = Ti/X1,i/ · · · /Xn+1,i, where all Xs are pairwise
distinct primitive types, except for Xi+1,i and Xi,i, which are the same primitive
type. The fact that these two domain types are the same causes an ‘overlap’.
Let U ′ = U/Y1/ · · · /Yn+1, where all Y s are distinct primitive types, except for
Y1 and Yn+1, which should form a non-unifiable pair and thus cannot be both
primitive types. Now, let T ′

1 be unified with U ′. Since X2,1 = X1,1, Y2 = Y1. It
should be clear that sequentially unifying types T ′

2, T
′
3 . . . will yield a substitution

σ such that σ[Y1] = σ[Y2] = · · · = σ[Yn+1]. Since Y1 cannot be unified with
Yn+1, it follows that it is not possible to unify all types T ′

1, T
′
2, . . . with U ′.

However, unifying all types of this form, save one single T ′
i , with U ′ is possible,

since the resulting substitution σ need not be such that σ[Xi+1,i] = σ[Xi,i],
and hence it is not required that σ[Yi+1,i] = σ[Yi,i], which, by definition, is not
possible.

7.3. The construction

We now define a construction that is based on these ideas.

Def. 18 Let hg(HG , c) be the algorithm that maps instances of the vertex cover
problem for hypergraphs to samples of structure languages defined in the follow-
ing way:

The hypergraph HG = (V,E) consists of a set V of vertices numbered 1, . . . , v
and a set E of (hyper)edges numbered 1, . . . , e. It is characterized by the func-
tions d(i), 1 ≤ i ≤ e, which gives the degree (or size) of edge Ei, i.e., the number
of vertices that belong to that edge, and n(i, j), which gives the index of the jth
vertex that edge i is incident on. The constant c specifies the maximal size of
the cover.

The sample D output by hg is the smallest set that fulfills the following
requirements:

For each i, 1 ≤ i ≤ e, the structures
fa(. . . fa(fa(. . . fa(ei, fa(ci, x)) . . .fa(ci, x))

︸ ︷︷ ︸

d(i) times

, ui), . . . ui)
︸ ︷︷ ︸

d(i) + 1 times

and

fa(fa(fa(fa(fa(. . . fa(ei, f(i,1)), . . . f(i,d(i))), fa(tt, t)), s(i,1)), . . .s(i,d(i)−1)), fa(ttt, t))
are in D. Additionally, for each j, 1 ≤ j ≤ d(i),
fa(. . . fa(ei, G(j,1)), . . . G(j,d(i))), T(j,1)), . . . T(j,d(i)+1)) where

G(j,x) =

{
fa(vn(i,x), x) if x = j and
g(i,x), otherwise

where

T(j,x) =

{
fa(tj,j , x) if x = j ∨ x = j + 1 and
t(j,x), otherwise.

16

For each i, 1 ≤ i ≤ e, fa(c, fa(ci, x)) is in D.
If c = 1, the padding structure ba(x, c) is in D.
For each i, 1 ≤ i ≤ c, the padding structure ba(x, ci) is in D.
For each i, 1 ≤ i ≤ v, the padding structure ba(x, vi) is in D.
For each ti,j, the padding structure ba(x, ti,j) is in D.

We add k − 2 padding structures for each ei, and k − 1 such structures for
each vi, ci, and for tt and ttt.

In order to make clear why the sample is built up in this way, we now discuss
the types as they occur in any grammar in Gk-max-val that is consistent with this
sample. For the sake of readability, we first introduce shorthand notation in
the form of Υ, Γ and Σ, which represent complex types that will occur in
the general form (types written as capital letters are primitive types, unless
otherwise stated). Let 1 ≤ i ≤ e in the following.

Let Υi = Ci,1/ · · · /Ci,v/(Us(1,i,0)/Us(1,i,1))/ · · · /(Us(d(i),i,0)/Us(d(i),i,1)),
where the C and U types are primitive types.

Define Σi = Fi,1/ · · · /Fi,v/(Sg(1,i,0)/Sg(1,i,1))/ · · · /(Sg(v,i,0)/Sg(v,i,1)). Here,
the F and S types are primitive types.

Let Γn(i,j) = Gi,1/ · · · /Gi,v/ (Tt(1,i,0)/Tt(1,i,1))/ · · · /(Tt(d(i),i,0)/Tt(d(i),i,1))
for 1 ≤ j ≤ d(i), Tt(k,i,0) = Tt(ℓ,i,1) if ℓ = n(i, j), and the Tt(ℓ,i,j)s are dis-
tinct (primitive) types, otherwise.

Every type Gi,j , in the case that i = j, is equal to some type ∆n(i,j).
9

The types ∆1,∆2, . . . are based strictly on alternating forward- and backward
slashes, with the main operator always the backward slash. The type ∆1 is X\t.
For any two u, v such that u 6= v, ∆u and ∆v are not unifiable. Note that this
allows any two Γn(i,x) and Γn(i,y), x 6= y, to be unifiable, since the ∆-subtypes
appear in different positions of these Γ terms.

From GF(D), the grammar shown in Fig. 2 is derived by unifying all types
assigned to x. This simplifies the presentation without affecting the proof of
W[2]-hardness in any way. Note that in the interest of clarity we omit type
assignments to symbols fn(x,y), gn(x,y), sx,y, tx,y and ux.

Note that hg runs in time polynomial in the size of the hypergraph. There
are bounds on the parameters of the grammar: given hypergraph HG = (V,E)
and stipulated size of the cover c, then k = max(2, c), and

|Σ| = 5 + |V |+ 2|E|+ 2

|E|
∑

i=1

d(i) + 2

|E|
∑

i=1

d(i)2.

The construction works just for k ≥ 2, but this does not affect the result
in any way. Note that for k = 1, the consistency problem is known to be
solvable in polynomial time. Similarly, hitting set is solvable in polynomial
time with parameter k = 1. So, it would be possible to slightly modify hg as

9Recall that function n(i, j) yields the index of the jth vertex that edge i is incident on.
Also note that, otherwise, Gi,j is a primitive type.

17

G′ :

e1 7→ t/Υ1,
t/Γn(1,1) , . . . , t/Γn(1,d(1)) ,
t/Σ1,
Padding

. . .
ee 7→ t/Υe,

t/Γn(e,1) , . . . , t/Γn(e,d(e)) ,
t/Σe,
Padding

v1 7→ ∆1,Padding
. . .
vv 7→ ∆v,Padding

c1 7→ C1,1/X, . . . , C1,v/X,C1/X,Padding
. . .
ce 7→ Ce,1/X, . . . , Ce,v/X,Ce/X,Padding

c 7→ t/C1, . . . , t/Ce,Padding

x 7→ X

t 7→ t
tt 7→ t/t,Padding
ttt 7→ (t/t)/t,Padding

Figure 2: The grammar obtained from the general form by unifying all types assigned to x.

follows to be parameter-preserving for all c ≥ 1. If c ≥ 2, hg(HG, c) is defined
as before, while for c = 1, the transformation would first solve the problem
(HG, 1) and then, depending on the outcome of this first step, output either
a fixed YES-instance of FLk-max-val-consistency or a fixed NO-instance of
FLk-max-val-consistency (for k = 1).

Thm. 19 FLk-max-val-consistency is W[2]-hard.

Proof. By modifying the mentioned NP-hardness proofs, we show how to
transform an instance (G, k) of hitting set to FLk-max-val-consistency, pre-
serving the parameter. To be more precise, the hitting set problem can be
reduced in polynomial time to finding a grammar consistent with structures D
and in the class Gk-max-val. We achieve this using the algorithm hg as given
in Definition 18 and the following remark. We can assume that k ≥ 2 in the
following discussion.

Consider the hypergraphHG = (V,E), G = GF(hg(HG, k)), and k such that
a cover of size k exists for HG . Hence, (HG, k) is a YES-instance of hitting
set.

For any symbol ei, unification of all types t/Γn(i,1), . . . , t/Γn(i,d(i)) to t/Σi

will lead to a substitution such that Sg(1,i,0) = Sg(1,i,1) = · · · = Sg(v,i,0) =
Sg(v,i,1). This is not possible, since this would require unification of t/t and
(t/t)/t, so for each symbol ei, at most one of the types t/Γn(i,1), . . . t/Γn(i,d(i))

can be unified with t/Υi instead. For each i, only one of these t/Γ types can be
chosen for this, since it will block unification of t/Υi with any of the other t/Γ
types: for any given i, the U types in Υi all have to be of the same type, and

18

such a unification step will result in a substitution such that some ∆ type will
be substituted for all these U types.

For every i, the T types in Γn(i,j), 1 ≤ j ≤ d(i), overlap: Tj,j occurs twice
in every Γn(i,j).

Thus, they cannot all be unified with Σi, since the pair of the first and last
S type in every Σ-type is not unifiable.

Hence, for each i, exactly one of the t/Γ types has to be unified with the
t/Υ type, and the rest with the Σ type. This implies a substitution such that
for each Ci, a ∆ℓ is substituted such that ℓ = n(i, j), 1 ≤ j ≤ d(i). This
corresponds to choosing vertex ℓ in the original hypergraph to cover edge i.
Since, for all i, t/Ci is assigned to symbol c, and since zero padding types are
assigned to this symbol (because k ≥ 2), the number of distinct ∆ types that
substitute for the C types can be no more than k. This proves that the answer
to FLk-max-val-consistency is YES.

Let k and HG be such that a minimum cover for HG is of size k′ > k, and
let G = GF(hg(HG , k)) as before. Hence, (HG, k) is a NO-instance. Following
the same line of reasoning as earlier in this proof, it is clear that for each Ci, a
∆ν must be substituted in order to obtain a consistent grammar that is in the
class. Given the definition of hg , these ∆ types correspond to one of the vertices
that edge i is incident on. Given that k′ > k, there are at least k′ distinct such
∆ types, and since for all i, t/Ci is assigned to c, at least k′ distinct types are
assigned to c in a consistent grammar, which thus cannot be in Gk-max-val. Thus
the answer to FLk-max-val-consistency is NO.

This proves that the answer to FLk-max-val-consistency for the sample
hg(HG, k) is the same as for hitting set for HG with k as size of the cover.
Since the reduction hg runs in polynomial time, this proves W[2]-hardness. �

As for the problem Lk-max-val-consistency, note that for k ≥ 2, Lk-max-val

contains Σ∗, which immediately trivializes the problem. Furthermore, we refer
to [35] for a proof of NP-hardness for the case k = 1. It should be clear that
these results render the parameterization discussed in this section meaningless
from the viewpoint of parameterized complexity.

As an aside, let us mention that in the literature (see Corollary 5.13 from [2],
for example) also consistency questions related to the least-k-valued grammars
and languages were considered. This means we are looking for the smallest k
such that there is a grammar G ∈ Gk-max-val and D ⊆ FL(G). These problems
are also known to be NP-hard, but it is an open question whether they belong
to NP.

8. k-Sum-Value Problems

In parameterized complexity, the sum-variants of problems are often some-
what easier than the max-variants, see [39] for a nice overview. It is not clear
whether this is also the case here, and we were not able to adapt the previ-
ous reduction (using hitting set). We were only able to prove the following,
weaker result:

19

Thm. 20 FLk-sum-val-consistency is NP-complete.

Proof. The relationship between Gk-sum-val and Gleast-card (recall Proposition 4)
implies the following: when k has the smallest value so that, for some given sam-
ple, the answer to the consistency problem is YES, FLk-sum-val-consistency is
equivalent to FLleast-card-consistency.

Thus, FLleast-card-consistency for some D can be answered by consid-
ering FLk-sum-val-consistency for D with increasing values for k, starting at
k = |Σ|. Since FLleast-card-consistency is known to be NP-hard (see [2],
Corollaries 5.14 and 5.18), it is thus NP-hard for FLk-sum-val-consistency.
Given a grammar G ∈ Gk-sum-val as a witness, both its consistency with the
sample and membership in Gk-sum-val can be checked in polynomial time, so
FLk-sum-val-consistency is NP-complete. �

This leaves open the existence of FPT-algorithms for this problem. Such
algorithms are usually based on some enumeration strategy, but a naive appli-
cation of such an approach will not work in this case, since it is easy to come up
with constructions such that the search space is of a size exponential in ‖D‖.

Similar question can be asked for Hölder norms other than the max or sum
norm, and the corresponding language families as introduced in Section 5.

9. Reparameterizations

As already seen with the example of vertex cover versus independent
set, basically the same problem can be parameterized in different ways, pos-
sibly leading to positive (FPT) results or to negative (W[1]-, W[2]-hardness)
results. So it might be that other choices of parameterization may lead to
FPT-algorithms. This question of finding suitable parameterizations is both of
theoretical and of practical importance, since it allows for a localization of the
hard parts in the input and may also be helpful in finding practically useful
algorithms. Here, not only single parameterizations are interesting, but also
combinations of various parameters, as discussed in recent invited talks of Fel-
lows and Niedermeier, see [40, 41].

One other natural choice of a parameter is the number of unification steps
u needed to transform the general form of D into some k-max-valued (or k-
sum-valued) grammar G such that D ⊆ L(G). This leads to problems like
u-step Lk-sum-val-consistency. The input to such a problem would be a
triple (D, u, k), where D is the finite input sample. A variant could be uni-

form u-step Lk-sum-val-consistency, where the input would be (D, k), and
the question would be whether there exists a u such that (D, u, k) is a YES-
instance of u-step Lk-sum-val-consistency. Hence, the inputs to uniform

u-step Lk-sum-val-consistency and to Lk-sum-val-consistency are the same.

Thm. 21 (D, k) is a YES-instance to Lk-sum-val-consistency (FLk-sum-val-
consistency, resp.) if and only if (D, k) is a YES-instance to uniform u-
step Lk-sum-val-consistency (FLk-sum-val-consistency, resp.).

20

Proof. Given G = GF(D) and c, where D is a sample of a structure language,
a grammar G′ ∈ Gk-sum-val consistent with D has to be such that G′ ⊇ σ[G]
for some substitution σ. This substitution corresponds to a finite number of
unification steps over G.

In the case that D is a sample of a string language, all possible structure
language samples consistent with this sample can be computed. For each of
these samples the argument for samples of structure languages holds. �

Along the same line of reasoning we can show:

Thm. 22 (D, k) is a YES-instance to FLk-max-val-consistency if and only if
(D, k) is a YES-instance to uniform u-step FLk-max-val-consistency.

In conclusion, the uniform problem variants do not offer new insights. How-
ever, they immediately provide:

Cor. 23 uniform u-step Lk-sum-val-consistency, uniform u-step FLk-sum-val-
consistency, and uniform u-step Lk-max-val-consistencyare NP-complete.

uniform u-step FLk-max-val-consistency is W[2]-hard.

Instead of a single parameter, one could also consider two or more param-
eters. (Formally, this is captured by our definition by combining those mul-
tiple parameters into one single parameter.) So, the FPT-question of u-step
Lk-sum-val-consistency would be whether an algorithm exists that runs in time
f(u, k)p(‖D‖) for some function f and some polynomial p.

Thm. 24 u-step FLk-sum-val-consistency is in FPT.

Proof. Given D, ‖GF(D)‖ is exactly ‖D‖. Hence, in order to obtain a
grammar with exactly k type assignments, at most ‖D‖ − k unification steps
need to be performed to obtain a grammar in the class. Given that u bounds
the number of these steps, for a sample larger than u+ k the answer to u-step
FLk-sum-val-consistency is always NO.

If ‖D‖ ≤ u+ k, a grammar might be obtained by unifying types in GF(D).
Given GF(D), the number of all possible unification steps is upper bounded by
the number of pairs10 of types in GF(D), i.e., 1

2 ·‖GF(D)‖·(‖GF(D)‖−1), which
is overestimated by 1

2 · (u + k)2. Out of all these pairs, the learning algorithm
must choose at most u pairs. This puts an upper bound on the size of the
search-space of

f(u, k) :=
u!

(12 · (u + k)2)! · (u − 1
2 · (u+ k)2)!

where u and k are fixed parameters. Since each unification step can be
performed in time linear11 in ‖D‖, an answer can be obtained in time f(u, k) ·
p(‖D‖) for some polynomial p.

10In the sense of sets with cardinality 2.
11Provided the terms are represented as DAGs or systems of equations, see [42].

21

Thus, for a sample larger than u + k, the answer is always NO, and in the
case that ‖D‖ ≤ u+ k, it takes FPT-time to settle the question. �

Thm. 25 u-step Lk-sum-val-consistency is in FPT.

Proof. We can easily extend Theorem 24 to the case of string languages.
Just as is the case for structure languages, in the case that ‖D‖ > u+k, the

answer to u-step Lk-sum-val-consistency is always NO.
In the case that ‖D‖ ≤ u+ k, a grammar may exist that is consistent with

D and is in the class. It can be obtained analogously to the procedure defined
in the proof of Theorem 17: again, we use a nondeterministic procedure that
consists of two parts; first, for each string in D, a derivation is chosen. Then,
the union of the resulting structures, D′ (note that ‖D′‖ is obviously polynomial
in ‖D‖), is used as a sample for learning from structures.

The Catalan number Cn = 1
n+1

(
2n
n

)
specifies the number of pairwise distinct

binary trees with n+1 leaves. Since these trees have n internal nodes and, since
in the context of CCG, every one of these can be labeled as either forward or
backward application, the number of possible functor-argument structures for
a string of length l is 2l−1Cl. The length of the strings in D is upper bounded
by ‖D‖ and thus by u + k, and the number of strings is |D|, which is upper
bounded by u+ k as well.

Thus, given D, the number of possible structure samples D′ is bounded by

g(u, k) :=

(

2u+k−1 1

u+ k

(
2(u+ k − 1)

(u+ k − 1)

))u+k

where u and k are fixed parameters.
For each of the possibleD′, a problem from u-step FLk-sum-val-consistency

can be considered, which is in FPT, as shown above. Thus u-step Lk-sum-val-
consistency is in FPT. �

On first sight, it may seem that the similar u-step Lk-max-val-consistency
and u-step FLk-max-val-consistency problems can be approached in the same
way. However, by definition, k bounds only the number of types assigned to
single symbols, so the total size of the consistent grammar is not bounded with
these parameters. This can be solved by including |Σ| as a parameter. Thus we
obtain the following two results:

Thm. 26 fixed |Σ| u-step FLk-max-val-consistency is in FPT.

Proof. It is easy to see that, given that u bounds the number of unification
steps, for a sample larger than u + |Σ| · k, the answer to fixed |Σ| u-step
FLk-max-val-consistency is always NO.

When the sample is smaller than this, we obtain the same bound for pairs
of types as in the proof of Theorem 24, namely 1

2 · ‖GF(D)‖ · (‖GF(D)‖ − 1),
and thus a bound on the size of the search-space of

u!

(u + |Σ| · k)!(|Σ| · k)!
.

22

Thus, fixed |Σ| u-step FLk-max-val-consistency is in FPT. �

Thm. 27 fixed |Σ| u-step Lk-max-val-consistency is in FPT.

Proof. As in the case for structure languages, for a sample larger than u+|Σ|·k
the answer to fixed |Σ| u-step Lk-max-val-consistency is NO.

For smaller samples a consistent grammar may exist, so analogous to the
proof of Theorem 25, we can consider the number of derivations compatible
with the strings in D. Again, the length of the strings in D is upper bounded
by ‖D‖, and thus, in this case, by u+ |Σ| · k, and the number of strings is |D|,
which is upper bounded by u+ |Σ| · k as well.

Thus, given D, the number of possible structure samples D′ is bounded by

(

2u+|Σ|·k−1 1

u+ |Σ| · k

(
2(u+ |Σ| · k − 1)

(u+ |Σ| · k − 1)

))u+|Σ|·k

.

For each of the possible D′, fixed |Σ| u-step FLk-sum-val-consistency can
be considered, which is in FPT. Thus fixed |Σ| u-step Lk-max-val-consistency
is in FPT. �

One could also study the step number u as a parameter in isolation. One
problem formulation could be the following one: Given a finite sample D and a
categorial grammar G (and the parameter u), does there exist a sequence of at
most u unification steps, starting from the general form GF(D) and leading to
G? This might be an interesting subject for future study. However, note that
the slightly more general problem of deciding the existence of such a sequence
from some arbitrary given grammar (not necessarily in general form) is already
at least as hard as the well-known graph isomorphism problem for u = 0.12

We can encode a graph into a grammar by assigning to one single symbol the
types Ti/Tj for every edge from vertex i to vertex j in the graph (and assigning
Tℓ and t/Tℓ for every vertex ℓ to avoid useless types). Let G1 and G2 be two
such grammars encoding graphs Graph1 and Graph2, then u = 0 (i.e., an empty
sequence of unification steps) just if there exists a renaming such that, when it
is applied to G1, G2 is obtained. It is easy to see that this is only the case if
Graph1 and Graph2 are isomorphic.

Finally note that similar FPT results can be shown for language families
whose definition is based on other Hölder norms, see Sec. 5, but this is not
so interesting as long as it is still unsettled if the corresponding consistency
problems are NP-hard, see Sec. 6.

10. Consequences for the Complexity of Learning

In [2], the hardness results were phrased in different terminology. To formu-
late these, we need some more notions.

12Though it is not known if graph isomorphism is NP-complete, this problem is also
believed not to be solvable in polynomial time, see [43, 44, 45].

23

Fix a grammar system 〈Ω,S,L〉. A learning function ϕ learns a grammar
class G ⊆ Ω prudently if it learns G and the range of ϕ is a subset of G. In other
words, hypotheses are only drawn from G. A learning function ϕ is responsive
on G ⊆ Ω if it is defined on any finite sequence of words the range of which
is a subset of some language L(G), where G ∈ G. Hence, whenever possible,
ϕ should produce a hypothesis. A learning function ϕ is consistent if, for any
finite sequence s the range of which is a subset of some language L(G), where
G ∈ G, either ϕ(s) is undefined or the set of words enumerated by s is a subset
of L(ϕ(s)).

Consider now more specifically the grammar system 〈CatG,ΣF,FL〉, i.e.,
consider learning from structures. For instance, [2, Proposition 5.12] reads as
follows:

Prop. 28 Let ϕ be a learning function that, given k ∈ N+, can learn any of
the classes Gk-max-val from structures, and that, for each k, is responsive and
consistent on this class and learns this class prudently. Deciding whether ϕ is
defined for an arbitrary sample D is an NP-hard problem (given that there is
no bound on the size of the alphabet).

More generally, we can phrase the problem Gk-learnability as follows:
The input is a uniform learning function ϕ that learns each family Gk prudently
and that is, for each k, responsive and consistent on this class. The problem is
to decide if ϕ is defined for arbitrary inputs (D, k). (A similar problem can be
phrased for learning from strings.)

The complexity results obtained in this paper are summarized in Table 1.
They can be easily interpreted as results on learnability. For instance, we could
phrase:

Prop. 29 Let ϕ be a learning function that, given k ∈ N+, can learn any of
the classes Gk-sum-val from structures, and that, for each k, is responsive and
consistent on this class and learns this class prudently. Deciding whether ϕ is
defined for an arbitrary sample D is an NP-hard problem (given that there is
no bound on the size of the alphabet).

11. Conclusions and Future Research

The main contributions of this paper are the complexity results as summa-
rized in the previous section, in particular, in Table 1. We have shown that
for one natural parameterization, the consistency problem for one of the classes
is (most likely) not in FPT. For a parameterization that includes a bound on
the number of unification steps that the learner is allowed to perform, we have
obtained positive results.

Furthermore, we have defined a new (natural) hierarchy of families that we
have shown to be learnable from both strings and structures. We have also
generalized this hierarchy to a family of hierarchies defined in terms of Hölder
norm bounds on the descriptional complexity of categorial grammars. In general

24

Problem Complexity
FLk-max-val-consistency W[2]-hard
FLk-sum-val-consistency NP-complete
uniform u-step FLk-max-val-consistency W[2]-hard
uniform u-step Lk-max-val-consistency NP-complete
uniform u-step FLk-sum-val-consistency NP-complete
uniform u-step Lk-sum-val-consistency NP-complete
u-step FLk-sum-val-consistency FPT
u-step Lk-sum-val-consistency FPT
fixed |Σ| u-step FLk-max-val-consistency FPT
fixed |Σ| u-step Lk-max-val-consistency FPT

Table 1: Summary of the complexity results demonstrated in this paper.

terms, we believe that there are further quite interesting connections between
the areas of Grammatical Inference and that of Descriptional Complexity that
deserve further study. For example, we could associate to any nondeterministic
n-state automaton A an n-dimensional vector ~v(A), indicating in component i
the amount of lookahead needed to disambiguate any nondeterminism in state
si. Then, a deterministic automaton A is k-reversible [46] iff its reversal Ar

satisfies: ‖ ~v(Ar) ‖∞≤ k. From the viewpoint detailed in this paper, it appears
natural to study the learnability of classes of regular languages defined by the
restriction ‖ ~v(Ar) ‖p≤ k for any p ≥ 1.

From a technical point of view, it would be nice to complement our W[2]-
hardness result (Theorem 19) by demonstrating membership in W[2]. A natural
idea would be to design a multi-tape Turing machine with one tape storing or
counting the rule (applications) for each symbol. However, it is not clear if
such a Turing machine would need only f(k) many steps to decide consistency.
Such a question might also be interpreted in the direction of parallelizability of
derivations in categorial grammars. We are not aware of any such study for this
type of mechanism, but we would like to point to the fact that studies in this
direction were undertaken for the weakly equivalent mechanism of context-free
grammars, see [47, 48] and references therein.

The obvious interpretation of our positive (FPT) results would be that, as
long as the parameters k, u, and |Σ| are kept low, the classes under consideration
are efficiently learnable, in the sense of having polynomial update time. Of
these parameters, the last one is the most problematic, since for typical (NLP)
applications the lexicon is very large. Thus, our analysis suggests the approach
of choosing as a parameter the total number of distinct types in the grammar,
and keeping this number low. This may also have implications for theories of
natural language acquisition.

It would be interesting to study the consistency problem for other language
class hierarchies, where each class has finite elasticity. A natural candidate
are the language families based on different Hölder norms as introduced in this

25

paper. One further example might be families based on elementary formal
systems as examined by Moriyama and Sato [28].

Acknowledgements. We would like to thank the two anonymous reviewers for
their comments. The research was partly funded by the University of Trier,
which allowed the first author to visit Trier. This work was partly conducted
while the first author was at K.U. Leuven, Department of Computer Science,
Leuven, Belgium.

References

[1] M. Kanazawa, Learnable Classes of Categorial Grammars, Phd thesis,
CSLI, 1998.

[2] C. Costa Florêncio, Learning Categorial Grammars, Ph.D. thesis, Univer-
siteit Utrecht, The Netherlands, 2003.

[3] R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer, 1999.

[4] M. Holzer, M. Kutrib, Descriptional complexity — an introductory survey,
in: C. Mart́ın-Vide (Ed.), Scientific Applications of Language Methods,
volume 2 of Mathematics, Computing, Language, and Life: Frontiers in
Mathematical Linguistics and Language Theory, Imperial College Press,
2010, pp. 1–58.

[5] R. G. Downey, P. A. Evans, M. R. Fellows, Parameterized learning com-
plexity, in: L. Pitt (Ed.), COLT’93, ACM, 1993, pp. 51–57.

[6] F. Stephan, R. Yoshinaka, T. Zeugmann, On the parameterised complexity
of learning patterns, in: E. Gelenbe, R. Lent, G. Sakellari (Eds.), Computer
and Information Sciences II - 26th International Symposium on Computer
and Information Sciences, ISCIS, Springer, 2011, pp. 277–281.

[7] C. Costa Florêncio, H. Fernau, Finding consistent categorial grammars of
bounded value: a parameterized approach, in: A.-H. Dediu, H. Fernau,
C. Mart́ın-Vide (Eds.), Language and Automata Theory and Applications
LATA, volume 6031 of LNCS, Springer, 2010, pp. 202–213.

[8] C. Costa Florêncio, H. Fernau, Hölder norms and a hierarchy theorem
for parameterized classes of CCG, in: J. M. Sempere, P. Garćıa (Eds.),
International Colloquium on Grammatical Inference ICGI, volume 6339 of
LNCS, Springer, 2010, pp. 280–283.

[9] W. Buszkowski, Discovery procedures for categorial grammars, in:
E. Klein, J. van Benthem (Eds.), Categories, Polymorphism and Unifi-
cation, University of Amsterdam, 1987, pp. 35–64.

[10] W. Buszkowski, G. Penn, Categorial grammars determined from linguistic
data by unification, Studia Logica 49 (1990) 431–454.

26

[11] K. Adjukiewicz, Die syntaktische Konnexität, Studia Philosophica 1 (1935)
1–27.

[12] J. Lambek, The mathematics of sentence structure, Am. Math. Mon. 65
(1958) 154–170.

[13] M. Steedman, Categorial grammar. Tutorial overview, Lingua 90 (1993)
221–258.

[14] M. Steedman, The Syntactic Process, MIT Press/Bradford Books, 2000.

[15] M. Moortgat, Categorial type logics, in: J. van Benthem, A. ter Meulen
(Eds.), Handbook of Logic and Language, Elsevier Science B.V., 1997, pp.
93–177. Chapter 2.

[16] D. Béchet, A. Foret, k-valued non-associative Lambek grammars are learn-
able from function-argument structures, in: Proceedings. of the 10th Work-
shop on Logic, Language, Information and Computation (WoLLIC’2003),
Ouro Preto, Brazil, volume 84, pp. 60–72.

[17] C. Costa Florêncio, A limit point for rigid associative-commutative Lambek
grammars, in: A. Copestake, J. Hajic̆ (Eds.), Proceedings of EACL2003,
Tenth Conference of the European Chapter of the Association for Compu-
tational Linguistics, Budapest, April 12–17, pp. 75–82.

[18] J. Dassow, H. Fernau, Comparison of some descriptional complexities of
0L systems obtained by a unifying approach, Inf. and Comput. 206 (2008)
1095–1103.

[19] E. M. Gold, Language identification in the limit, Inf. and Control 10 (1967)
447–474.

[20] S. Jain, D. N. Osherson, J. Royer, A. Sharma, Systems that Learn: An
Introduction to Learning Theory, The MIT Press, Cambridge, MA., second
edition, 1999.

[21] D. Angluin, Inductive inference of formal languages from positive data,
Inf. and Control 45 (1980) 117–135.

[22] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, G. Păun, Grammar Systems: A
Grammatical Approach to Distribution and Cooperation, London: Gordon
and Breach, 1994.

[23] D. Dudau-Sofronie, I. Tellier, M. Tommasi, A learnable class of classical
categorial grammars from typed examples, in: 8th Conference on Formal
Grammar, pp. 77–88.

[24] S. A. Fulop, On The Logic And Learning Of Language, Trafford on Demand
Publishing, 2004.

27

[25] T. Yokomori, Polynomial-time learning of very simple grammars from pos-
itive data, in: Proceedings of the Fourth Annual Workshop on Computa-
tional Learning Theory, ACM Press, University of California, Santa Cruz,
1991, pp. 213–227.

[26] R. Wiehagen, T. Zeugmann, Too much information can be too much for
learning efficiently, in: K. P. Jantke (Ed.), Analogical and Inductive Infer-
ence: Proceedings of the International Workshop AII’92, Springer, Berlin,
Heidelberg, 1992, pp. 72–86.

[27] R. Wiehagen, T. Zeugmann, Ignoring data may be the only way to learn
efficiently, J. of Exp. and Theor. Artif. Intelligence 6 (1994) 131–144.

[28] T. Moriyama, M. Sato, Properties of language classes with finite elasticity,
in: K. P. Jantke, et al. (Eds.), 4th Workshop on Algorithmic Learning
Theory ALT’93, volume 744 of LNCS/LNAI, pp. 187–196.

[29] T. Motoki, T. Shinohara, K. Wright, The correct definition of finite elas-
ticity: Corrigendum to identification of unions, in: COLT’91, Morgan
Kaufmann, 1991, p. 375.

[30] K. Wright, Identification of unions and languages drawn from an identifi-
able class, in: COLT’89, Morgan Kaufmann, 1989, pp. 328–333.

[31] K. Mehlhorn, Graph algorithms and NP-completeness, Heidelberg:
Springer, 1984.

[32] J. Flum, M. Grohe, Parameterized Complexity Theory, Text in Theoretical
Computer Science, Springer, 2006.

[33] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Univer-
sity Press, 2006.

[34] J. Chen, I. A. Kanj, G. Xia, Improved upper bounds for vertex cover,
Theoretical Computer Science 411 (2010) 3736–3756.

[35] C. Costa Florêncio, Consistent identification in the limit of rigid grammars
from strings is NP-hard, in: P. Adriaans, H. Fernau, M. van Zaanen (Eds.),
Grammatical Inference: Algorithms and Applications; 6th International
Colloquium, ICGI, volume 2484 of LNCS/LNAI, Springer, 2002, pp. 49–
62.

[36] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci.
Budapest, Eötvös Sect. Math. 2 (1959) 133–138.

[37] I. v. Rooij, Tractable Cognition: Complexity Theory in Cognitive Psychol-
ogy, Ph.D. thesis, University of Victoria, Canada, 2003.

[38] I. v. Rooij, The tractable cognition thesis, Cognitive Science 32 (2008)
939–984.

28

[39] M. Serna, D. M. Thilikos, Parameterized complexity for graph layout prob-
lems, EATCS Bulletin 86 (2005) 41–65.

[40] M. R. Fellows, Towards fully multivariate algorithmics: Some new results
and directions in parameter ecology, in: J. Fiala, J. Kratochv́ıl, M. Miller
(Eds.), Combinatorial Algorithms, 20th International Workshop, IWOCA,
volume 5874 of LNCS, Springer, 2009, pp. 2–10.

[41] R. Niedermeier, Reflections on multivariate algorithmics and problem pa-
rameterization, in: J.-Y. Marion, T. Schwentick (Eds.), 27th International
Symposium on Theoretical Aspects of Computer Science (STACS 2010),
volume 5 of Leibniz International Proceedings in Informatics (LIPIcs),
Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2010, pp. 17–32.

[42] F. Baader, J. H. Siekmann, Unification theory, in: [49], Oxford University
Press, 1994, pp. 41–125.

[43] D. S. Johnson, The NP-completeness column, ACM Transactions on Al-
gorithms 1 (2005) 160–176.

[44] J. Köbler, U. Schöning, J. Torán, Graph Isomorphism Problem: The Struc-
tural Complexity, Birkhäuser Verlag, 1993.

[45] R. C. Read, D. G. Corneil, The graph isomorphism disease, J. of Graph
Theory 1 (1977) 339–363.

[46] D. Angluin, Inference of reversible languages, J. of the ACM 29 (1982)
741–765.

[47] F. J. Brandenburg, On the height of syntactical graphs, in: P. Deussen
(Ed.), Proceedings of the 5th GI-Conference on Theoretical Computer Sci-
ence, volume 104 of LNCS, Springer, Karlsruhe, FRG, 1981, pp. 13–21.

[48] K. Reinhardt, A parallel context-free derivation hierarchy, in: G. Ciobanu,
G. Păun (Eds.), Fundamentals of Computation Theory, 12th International
Symposium, FCT ’99, volume 1684 of LNCS, Springer, 1999, pp. 441–450.

[49] D. M. Gabbay, C. J. Hogger, J. A. Robinson (Eds.), Handbook of Logic in
Artificial Intelligence and Logic Programming, Oxford: Oxford University
Press, 1994.

29

Appendix A. Example of the construction

Ex. 30 Consider the hypergraph HG = (V,E) with V = {1, 2, 3, 4} and
E = {{1, 2, 3}, {2, 3}, {3, 4}}.
Then hg(HG) is defined as in Fig. A.3.

edges:
fa(. . . fa(e1, fa(c1, x)), fa(c1, x)), fa(c1, x)), u1), u1), u1), u1)
fa(. . . fa(e2, fa(c2, x)), fa(c2, x)), u2), u2), u2)
fa(. . . fa(e3, fa(c3, x)), fa(c3, x)), u3), u3), u3)

vertices each edge is incident on:
fa(. . . fa(e1, vertex1), gn(1,2)), gn(1,3)), fa(t1,1, x)), fa(t1,1, x)), t1,3), t1,4)

fa(. . . fa(e1, gn(2,1)), vertex2, gn(2,3)), t2,1), fa(t2,2, x)), fa(t2,2, x)), t2,4)

fa(. . . fa(e1, gn(3,1)), gn(3,2)), vertex3), t3,1), t3,2), fa(t3,3, x)), fa(t3,3, x))

fa(. . . fa(e2, vertex2), gn(4,2)), fa(t4,1, x)), fa(t4,1, x)), fa(t4,3, x))

fa(. . . fa(e2, gn(5,1)), vertex3), fa(t5,1, x)), fa(t5,2, x)), fa(t5,2, x))

fa(. . . fa(e3, vertex3), gn(6,2)), fa(t6,1, x)), fa(t6,1, x)), fa(t6,3, x))

fa(. . . fa(e3, gn(7,1)), vertex4), fa(t7,1, x)), fa(t7,2, x)), fa(t7,2, x))

non-assigned:
fa(. . . fa(e1, fn(1,1)), fn(1,1)), fn(1,2)), fa(tt, t)), s1,1), s1,2), fa(ttt, t))
fa(. . . fa(e2, fn(2,1)), fn(2,1)), fa(tt, t)), s2,1), fa(ttt, t))
fa(. . . fa(e3, fn(3,1)), fn(3,1)), fa(tt, t)), s3,1), fa(ttt, t))

cover :
fa(c, fa(c1, x)), . . . fa(c, fa(ce, x))

incompatible types :
fa(tt, fa(tt, t))
fa(fa(ttt, fa(tt, t)), fa(tt, t))

Padding :
ba(x, c)
ba(x, c1), ba(x, c2), ba(x, c3)
ba(x, v1), ba(x, v2), ba(x, v3), ba(x, v4)
ba(x, t1,1), ba(x, t2,2), ba(x, t3,3)
ba(x, t4,1), ba(x, t5,2), ba(x, t6,1), ba(x, t7,2)
ba(x, tt), ba(x, ttt)

Vertices :
fa(ba(x, v1), x),
fa(ba(x, fa(v2, x)), x),
fa(ba(x, fa(ba(x, v3), x)), x),
fa(ba(x, fa(ba(x, fa(v4, x)), x)), x)

where vertex1 = fa(v1, x), vertex2 = fa(v2, x) etc.

Figure A.3: Type assignments in hg(HG).

We define the substitution σ to be such that for every i, all types assigned
to ci are unified, and all types assigned to x are unified to X. This yields the
grammar shown in Fig. A.4.

30

σ[GF(D)] =

e1 7→ ((((((t/C1)/C1)/C1)/U1)/U1)/U1)/U1,
((((((t/V1)/Gn(1,2))/Gn(1,3))/T1,1,1)/T1,1,2)/T1,3)/T1,4,
((((((t/Gn(2,1))/V2)/Gn(2,3))/T2,1)/T2,2,1)/T2,2,2)/T2,4,
((((((t/Gn(3,1))/Gn(3,2))/V3)/T3,1)/T3,2)/T3,3,1)/T3,3,2 ,
((((((t/Fn(1,1))/Fn(1,2))/Fn(1,3))/T7)/S1,1)/S1,2)/T9

e2 7→ ((((t/C2)/C2)/U2)/U2)/U2,
((((t/V2,1)/Gn(4,2))/T4,1,1)/T4,1,2)/T4,3,
((((t/Gn(5,1))/V3,1)/T5,1)/T5,2,1)/T5,2,2,
((((t/Fn(2,1))/Fn(2,2))/T11)/S2,1)/T13

e3 7→ ((((t/C3)/C3)/U3)/U3)/U3,
((((t/V3,2)/Gn(6,2))/T6,1,1)/T6,1,2)/T6,3,
((((t/Gn(7,1))/V4)/T7,1)/T7,2,1)/T7,2,2,
((((t/Fn(3,1))/Fn(3,2))/T15)/S3,1)/T17

c 7→ t/C1, t/C2, t/C3,X\t

t 7→ T2, T5, T6, T8, T10, T12, T14, T16, T18

tt 7→ t/T1, T1/T2, T3/T5, T4/T6, T7/T8, T11/T12, T15/T16,X\t
ttt 7→ (t/T3)/T4, T9/T10, T13/T14, T17/T18, X\t

c1 7→ C1/X,X\t
c2 7→ C2/X,X\t
c3 7→ C3/X,X\t

x 7→ X

t1,1 7→ T1,1,1/X, T1,1,2/X,X\t
t2,2 7→ T2,2,1/X, T2,2,2/X,X\t
t3,3 7→ T3,3,1/X, T3,3,2/X,X\t
t4,1 7→ T4,1,1/X, T4,1,2/X,X\t
t5,2 7→ T5,2,1/X, T5,2,2/X,X\t
t6,1 7→ T6,1,1/X, T6,1,2/X,X\t
t7,2 7→ T7,2,1/X, T7,2,2/X,X\t

v1 7→ V1/X, (X\t)/X, X\t
v2 7→ V2/X, V2,1/X, (X\(t/X))/X, X\t
v3 7→ V3/X, V3,1/X, V3,2/X, (X\((X\t)/X))/X, X\t
v4 7→ V4/X, (X\((X\(t/X))/X))/X, X\t

gn(1,2) 7→ Gn(1,2)

fn(1,1) 7→ Fn(1,1)

s1,2 7→ S1,2 u1 7→ U1

s1,3 7→ S1,3 u2 7→ U2

. . . u3 7→ U3

Figure A.4: Unification of type assignments.

Let G′ be obtained from σ[GF(D)] by unifying the types assigned to c, tt,
and all other symbols that have padding types assigned to them, resp., so that just
two type assignments remain for all these symbols (we suppress some irrelevant
assignments here for clarity), see Fig. A.5.

31

G′ =

e1 7→ ((((((t/C1)/C1)/C1)/U1)/U1)/U1)/U1,
((((((t/(X\t))/Gn(1,2))/Gn(1,3))/T1,1)/T1,1)/T1,3)/T1,4,
((((((t/Gn(2,1))/(X\(t/X)))/Gn(2,3))/T2,1)/T2,2)/T2,2)/T2,4,
((((((t/Gn(3,1))/Gn(3,2))/(X\((X\t)/X)))/T3,1)/T3,2)/T3,3)/T3,3,
((((((t/Fn(1,1))/Fn(1,2))/Fn(1,3))/t)/S1,1)/S1,2)/(t/t)

e2 7→ ((((t/C1)/C1)/U2)/U2)/U2,
((((t/(X\(t/X)))/Gn(4,2))/T4,1)/T4,1)/T4,3,
((((t/Gn(5,1))/(X\((X\t)/X)))/T5,1)/T5,2)/T5,2,
((((t/Fn(2,1))/Fn(2,2))/t)/S2,1)/(t/t)

e3 7→ ((((t/C1)/C1)/U3)/U3)/U3,
((((t/(X\((X\t)/X)))/Gn(6,2))/T6,1)/T6,1)/T6,3,
((((t/Gn(7,1))/(X\((X\(t/X))/X)))/T7,1)/T7,2)/T7,2,
((((t/Fn(3,1))/Fn(3,2))/t)/S3,1)/(t/t)

c 7→ t/C1, X\t

t 7→ t
tt 7→ t/t, X\t
ttt 7→ (t/t)/t, X\t

c1 7→ C1/X,X\t
c2 7→ C1/X,X\t
c3 7→ C1/X,X\t

t1,1 7→ T1,1/X,X\t
t2,2 7→ T2,2/X,X\t
t3,3 7→ T3,3/X,X\t
t4,1 7→ T4,1/X,X\t
t5,2 7→ T5,2/X,X\t
t6,1 7→ T6,1/X,X\t
t7,2 7→ T7,2/X,X\t

v1 7→ (X\t)/X, X\t
v2 7→ (X\(t/X))/X, X\t
v3 7→ (X\((X\t)/X))/X, X\t
v4 7→ (X\((X\(t/X))/X))/X, X\t

Figure A.5: More unification steps.

All that remains now to obtain a grammar that is in Gk-max-val, k = 2, is to
unify some types assigned to e1, e2, e3, resp. Given the construction, for every
one of these symbols, one of the types that represent vertices has to be unified
with the type that represents a hyperedge, and the rest to the single remaining
type.

For e1 this means that the fourth assigned type has to be unified with the first
one, for e2 the third type needs to be unified with the first one, and for e3, the
second with the first one. For each of these symbols, the remaining types should
be unified with the last type assigned, yielding G′′, cf. Fig. A.6. This grammar
is in Gk-max-val, k = 2.

32

G′′ =

e1 7→ ((((((t/(X\((X\t)/X)))/(X\((X\t)/X)))/
(X\((X\t)/X)))/U1)/U1)/U1)/U1,

((((((t/(X\t))/(X\(t/X)))/Fn(1,3))/t)/t)/t)/(t/t)
e2 7→ ((((t/(X\((X\t)/X)))/(X\((X\t)/X)))/U2)/U2)/U2,

((((t/(X\(t/X)))/Fn(2,2))/t)/t)/(t/t)
e3 7→ ((((t/(X\((X\t)/X)))/(X\((X\t)/X)))/U3)/U3)/U3,

((((t/Fn(3,1))/(X\((X\(t/X))/X)))/t)/(t/t))/(t/t)

c 7→ t/(X\((X\t)/X)), X\t

t 7→ t
tt 7→ t/t, X\t
ttt 7→ (t/t)/t, X\t

c1 7→ (X\((X\t)/X))/X, X\t
c2 7→ (X\((X\t)/X))/X, X\t
c3 7→ (X\((X\t)/X))/X, X\t

v1 7→ (X\t)/X, X\t
v2 7→ (X\(t/X))/X, X\t
v3 7→ (X\((X\t)/X))/X, X\t
v4 7→ (X\((X\(t/X))/X))/X, X\t

Figure A.6: The final grammar.

Apart from the padding, there is now just one single type assigned to c. This
is the only grammar with k = 2 obtainable from D. This type, t/(X\((X\t)/X)),
corresponds to vertex 3 in HG and, in the general form of D, is assigned to v3 in
the form of (X\((X\t)/X))/X. This is to be interpreted as a cover consisting
of just the vertex 3. As can be verified, this is indeed the unique solution for the
hypergraph HG given at the beginning of this example. Hence, any grammar G
in Gk-max-val, k = 2, consistent with D, is such that there exists a substitution
τ , G′′′ ⊇ τ [G′′], and a substitution τ ′ such that G′′′ ⊇ τ ′[G], where τ ′ is either
empty or contains only substitutions that unify (primitive) types assigned to x.

33

	Introduction
	Categorial Grammars—Definitions and Examples
	Learning from Positive Samples
	Formal Language Results
	Hölder Norms
	Complexity Notions
	Complexity Results
	k-Maximum-Value Problems
	Explanation of the construction
	The construction

	k-Sum-Value Problems
	Reparameterizations
	Consequences for the Complexity of Learning
	Conclusions and Future Research
	Example of the construction

