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Résumé — This paper calculates the electric and magnetic fields and
the Poynting vector around two infinitely long parallel cylindrical con-
ductors, carrying a DC current. Also the charges on the surface of the
wire are calculated, and their distribution is visualized. The wire is as-
sumed to be perfectly electrically conducting. Furthermore, the Hall
effect is ignored. In literature [1], the problem of determining the elec-
tric field is usually tackled using an equivalent model consisting of two
line charge densities, producing the same electric field. In this work,
the Laplace equation is rigorously solved. The authors found no work
explaining the solution of the Laplace equation with boundary condi-
tions for this problem and hence thought it was useful to dedicate a
paper to this topic. The method of separation of variables is employed
and a bipolar coordinate system is used. After solving the appropriate
Sturm-Liouville problems, the scalar potential is obtained. Taking the
gradient yields the electric field.

I. PROBLEM DESCRIPTION

Two perfectly conducting cylindrical wires, each conduct-
ing a DC current I are parallel to the z-axis (Fig. 1). The
first wire is located at x = −d and conducts the current in
the positive z-direction. The other wire is located at x = d
and conducts the current in the negative z-direction. The left
wire has a potential V1 and the right wire −V1. We wish to
determine the scalar potential, the electric and the magnetic
field in the region outside the conductors. The cross-section
of the right wire is bounded by a circle, called C1.
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Fig. 1. Geometry of the problem

The electric potential φ is given by the Laplace equation:

∇2φ = 0 (1)

We’ll solve it using an appropriate coordinate system: bipolar
coordinates.

II. BIPOLAR COORDINATES AND BOUNDARY
CONDITIONS

The bipolar coordinate system [3] is defined as (τ ∈ [−∞,∞]
and σ ∈ [0, 2π]): 

x = α
sinh τ

cosh τ − cosσ

y = α
sinσ

cosh τ − cosσ

(2)

(3)

Thanks are due to prof. André Koch Torres Assis, professor of physics at
the University of Campinas - UNICAMP, in Brazil, for the illuminating
discussions.

For the problem of determining the electric scalar potential in
the region outside the two wires, also the boundary conditions
are rewritten in terms of bipolar coordinates.

A. First boundary condition: φ = 0 on the y-axis

The y-axis has the equation x = 0. Thus, according to (2),
this corresponds to points in the (τ, σ)-plane with τ = 0.

B. Second boundary condition: φ = V1 on the circumference
of the circle C1

The circle C1, with origin point (0, d) and radius a, coin-
cides with a circle of constant τ (cfr. [3]), if{

d = α coth τ
a = α

sinh τ
(4)

We thus have:

d = α coth τ =
α

sinh τ︸ ︷︷ ︸
=a

cosh τ = a cosh τ

Let’s call the τ for which this circle C1 is defined, τc. We
have cosh τc = d/a, and C1 is thus defined by the single
τ -coordinate:

τc = cosh−1
d

a
(5)

We can also calculate α from the second equation of (4):

a2 =
α2

sinh2 τc
=

α2

cosh2 τc − 1
=

α2(
d2−a2
a2

)
Thus:

α =
√
d2 − a2 (6)

III. FORMULATION OF THE PROBLEM IN BIPOLAR
COORDINATES

The scalar potential φ has to obey the Laplace partial dif-
ferential equation in bipolar coordinates [2]:

∇2φ =
1

α2
(cosh τ − cosσ)2

(
∂2φ

∂σ2
+
∂2φ

∂τ2

)
= 0 (7)

with boundary conditions:

φ(σ, τ = 0) = 0, σ ∈ [0, 2π] (8)
φ(σ, τ = τc) = V1, σ ∈ [0, 2π] (9)

where φ is a periodic function in σ with a period equal to 2π,
and τc as defined in (5).



IV. SOLUTION OF THE LAPLACE EQUATION WITH
BOUNDARY CONDITIONS

The method of separation of variables is applied. This
means that the solution for the potential φ is written as the
product of single-variable functions:

φ(σ, τ) = S(σ)T (τ) (10)

When we substitute this equation in the Laplace equation (7),
we must solve a system of two differential equations:{

S′′(σ)− kS(σ) = 0

T ′′(τ) + kT (τ) = 0

(11)

(12)

This has different solutions according to the sign of k. These
are in detail discussed in the full paper. After using the two
boundary conditions, we obtain, for the scalar potential:

φ(τ) =
V1
τc
τ (13)

V. EXPRESSING THE SCALAR POTENTIAL IN
CARTESIAN COORDINATES

In the full paper, the complete solution for the scalar potential
in Cartesian coordinates is also derived:

φ(x, y) =
V1

ln

(
d
a +

√
d2

a2 − 1

) ln

√
(x+

√
d2 − a2)2 + y2

(x−
√
d2 − a2)2 + y2

(14)

VI. ELECTRIC FIELD

The electric field outside the two conducting wires, is thus:

~E(x, y) = −~∇φ (15)

and can be expressed in Cartesian coordinates. This expres-
sion will be given in the full paper.

VII. MAGNETIC FIELD

A DC current I flows in the positive z-direction in the wire
at x = −d, and a DC current of I flows in the negative z-
direction in the wire at x = d. In the full paper, the expression
for the magnetic field will be derived in detail. There must be
made distinction between three regions of space:

A. Magnetic field in the region between the two wires: −d ≤
x ≤ d

~H(x, y) =
Iy~ex
2π

(
−1

(x+ d)2 + y2
+

1

(x− d)2 + y2

)
+

I~ey
2π

(
(x+ d)

(x+ d)2 + y2
+

−(x− d)
(x− d)2 + y2

)
(16)

We can see that inside this region, the dot product of the
electric and the magnetic field is not zero, except on the x-
and y-axes.

B. Magnetic field in the regions for which x ≤ −d or x ≥ d

We can again express the magnetic field in Cartesian coordi-
nates. However, the expression is so long that for numerically
evaluating it, in the full paper we recommend a different
approach, consisting of a method using polar coordinates.

VIII. SURFACE CHARGES ON THE WIRES

The surface density of the free charges on the surface of
the right wire, centered around x = d, is called σR, and is
equal to ε0 times the normal component of the electric field,
perpendicular to the circle C1. Here, ε0 is the permittivity of
vacuum. The surface density of the charges on the surface
of the left wire is then, by symmetry, the mirrored image
and the negative of σR. Let’s determine σR. We choose a
polar coordinate system (r, β) where r is the distance from
(x, y) = (d, 0) to the observed point, and β is the angle
between the x-axis, pointing from (x, y) = (d, 0) to infinity
and the line from (x, y) = (d, 0) to the observed point.
We find a very simple form for the radial component of the
electric field; hence, the surface charge density [C/m2] can
be determined and is:

σR = ε0Er(r = a, β) =
ε0V1
√
d2 − a2

a(d+ a cosβ) ln

(
d
a +

√
d2

a2 − 1

)
(17)

This corresponds with the expression derived with the equiv-
alent line charge model, in [4].

IX. VISUALISATION OF SOLUTIONS

With I = 1 A, V1 = 0.5 V, d = 0.01 m and a = 0.5 mm, the
full paper will show figures depicting, with some contours,
the Poynting field, the electric field, the magnetic field and
the scalar potential outside the wires. Also, some fieldlines of
the electric field, starting at the right wire will be shown, and
the surface charge density in the surface of the right wire.

As a check, the Poynting vector was numerically integrated
over the xy-plane. We obtained 1.004 W, corresponding well
with the theoretical value of 1 V × 1 A = 1 W.
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