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Abstract: Intermediate constructs are required as bridges between complex behaviors and realistic models of neural circuitry. For
cognitive scientists in general, schemas are the appropriate functional units; brain theorists can work with neural layers as units
intermediate between structures subserving schemas and small neural circuits.

After an account of different levels of analysis, we describe visuomotor coordination in terms of perceptual schemas and motor
schemas. The interest of schemas to cognitive science in general is illustrated with the example of perceptual schemas in high-level

vision and motor schemas in the control of dextrous hands.
Rana computatrix, the computational frog, is introduced to sho
flexible cooperation between theory and experiment. Rana computatrix may be able to do for the study of the organ
principles of neural circuitry what Aplysia has done for the study of subcellular mechanisms of learning. Approach, avoidance, and
detour behavior in frogs and toads are analyzed in terms of interacting schemas. Facilitation and prey recognition are implemented as
tectal—pretectal interactions, with the tectum modeled by an array of tectal columns. We show how layered neural computation
enters into models of stereopsis and how depth schemas may involve the interaction of accommodation and binocular cues in anurans.

w how one constructs an evolving set of model families to mediate
izational
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1. Multiple levels of analysis

Recently, the domination of cognitive science by the
serial computational paradigm has been broken by re-
search on “connectionism” and “parallel distributed pro-
cessing” (see Rumelhart and McClelland [1986] for a
collection of papers; and Arbib [1987] for a historical
perspective linking this field to earlier work in brain
theory and adaptive networks). The stress, however, has
been on models with only two levels: overall behavior and
“neuronlike” elements. In this target article, I argue for
the utility of schemas as units of computational analysis
intermediate between behavior and neuron, while stress-
ing that brain theory is not just connectionism: Incorpo-
rating data from neuroanatomy and neurophysiology
requires considerations that go well beyond the develop-
ment of cognitive models “in the style of the brain.”

In this target article, I will discuss levels of analysis that
can bridge between neurons and behavior. Schemas and
their use in models of vision and visually guided behavior
will be introduced to suggest their utility for cognitive
science in general. Rana computatrix, a family of com-
putational models of neural circuitry underlying visually
guided behavior in frog and toad, will be used to illustrate
strategies for moving from schema-theoretic models to
testable models of neural circuitry.

I argue that top-down -analysis of animal behavior
should yield a functional model of how that behavior is
achieved through the interaction of simultaneous com-
puting agents called schemas. These must be “large”
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enough to allow an analysis of behavior at or near the
psychological level. In brain theory, we must also turn to
lesion studies (at a gross level) and neurophysiology and
neuroanatomy (at a finer level) to suggest how the sche-
mas might be implemented in the brain of the organism
under study.

Figure 1 emphasizes that our choice of levels of analysis
can be functional or structural. A top-down analysis starts
with picking some overall animal behavior for study ~ but
even this selection is theory laden, and what seems like a
natural choice for behavior may prove on further study
not to be unitary at all. For this reason, I regard Marr’s
(e.g., 1982) notion of an independent computational level
of analysis as mistaken — for example, one cannot give ana
priori analysis of depth perception because different
animals (or different subsystems of a given animal) may
make different use of visual cues that cannot be dis-
covered until “implementational details” (the data of
neuroscience!) are taken into account. We will suggest
that depth perception in the frog and toad is not unitary;
quite different mechanisms are involved in depth percep-
tion for prey and for barriers. If Marr is interpreted as
likewise allowing such an account, then his levels seem to
add nothing to earlier elucidation of the virtues of a
functional analysis (Arbib 1975). Proceeding with such an
analysis, we explain behaviors in terms of interactions
among functional units (called “schemas”) whose nature
will be discussed in more detail below. If we start with a
structural analysis, the brain region defined by cytoarchi-
tectonics or input/output pathways provides the large-
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Figure 1. Levels of functional and structural analysis.

scale framework. Then, as we try to make the bridge from
large unit to neuron, we can elaborate our models in
terms of such intermediate constructs as arrays (layers),
columns, or modules, which can be characterized either
functionally or structurally. The eventual goal, of course,
is for functional and structural analyses to be rendered
congruent.

For many behaviors, analysis at the level of single
neurons may be superfluous. However, even when this
further level is appropriate, there remains the question of
how detailed the analysis of each neuron must be. Con-
sider Figure 2a, which shows Székely and Lzar’s (1976)
Golgi study of the frog tectum. There is a diversity of
neurons and a richness of structure, yet the diagram tells
us little about the detailed connectivity needed to relate
structure to function. One can also have too much detail,
however, as can be seen in the reconstruction from
electron microscopy in Figure 2b. Detailed studies of
single neurons are undeniably important, but these
should be used to fine-tune more economical “black-box”
models of neurons. It is these simplified model neurons
that serve as the units in our models of large networks.
The models described in Section 4 offer one approach to
such a simplification. As detailed in Appendix C, we have
described the behavior of each neuron by a simple dif-
ference or differential equation (linear in terms of the
synaptically weighted input values), representing the
firing rate of each cell by a simple nonlinear transforma-
tion of the membrane potential.

In modeling the circuitry of the tectum (Figure 2d,
based on Lara et al. 1982), we were guided by Székely and
Lazdr’s “tectal column,” Figure 2c. Unlike in analyses of
mammalian cortex, this terminology doés not-imply that
adjacent columns must have different response proper-
ties. Rather, the tectal column is simply a basic unit of
vertical organization — a “tile” that can be repeated again
and again to approximate the tectal neural net. In Section
4, we will outline how an array of such tectal columns has
been used in modeling prey-predator discrimination.

Quite apart from the details of its specification, a
neuron may serve as a functional unit, a structural unit, or
both. We can determine what are units in the brain
physiologically (e.g., by electrical recording) or anatom-
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Figure 2. (a) Diagrammatic representation of the lamination
and the representative types of neurons of the optic tectum.
Numbers on the left indicate the different tectal layers. Num-
bered cell types are as follows: (1) large pear-shaped neuron with
dendritic appendages and ascending axon; (2) large pear-shaped
neuron with dendritic collaterals; (3) large pyramidal neuron
with efferent axon; (4) large tectal ganglionic neuron with
efferent axon; (5-6) small pear-shaped neurons with descending
and ascending axons respectively; (7) bipolar neuron; (8) stellate
neuron; (9) amacrine cell; (10) optic terminals; (11) assumed
evidence of diencephalic fibers (from Székely & Ldzdr 1976).
(b)Details of synaptic interaction of dendritic appendages,
which exceed current models in intricacy {from Székely & Lizir
1976). (c) Schematic representation of a tectal column (from
Székely & Lédzdr 1976). (d) Neurons and synaptology of the
model of the tectal column. The numbers at the left indicate the
different tectal layers. The glomerulus is constituted by the LP
and SP dendrites and recurrent axons as well as by optic and
diencephalic terminals. The LP excites the PY, the SN, and the
GL, and is inhibited by the SN. The SP excites the LP and PY
cells, and it sends recurrent axons to the glomerulus; it is
inhibited by the SN. The SN is excited by LP neurons and
diencephalic fibers, and it inhibits the LP and SP cells. The PY is
activated by the LP, SP, and optic fibers, and is the efferent
neuron of the tectum (Arbib 1982b).




ically (e.g., by staining). In many regions (but not all) we
know which anatomical entity yields which physiological
response. For example, the identification of the physio-
logical responses recorded from the tectum during the
facilitation of prey-catching behavior shown in Figure 13d
with specific anatomically defined cells in Figure 2a is a
current research matter (as initiated by Antal et al. 1986;
Matsumoto et al. 1986) that is not yet reflected in model-
ing studies. Nonetheless, hypotheses had to be made in
formulating and testing our models. For the model in
Figure 2d, other choices also had to be made. Figure 2a
shows two types of output cells in the tectum: the pyra-
midal cell and the large tectal ganglionic neuron. The
model in Section 4 assumes only that the output of the
former is relevant to the phenomenon of prey selection.
Our models must be adaptable to phenomena that de-
pend on ganglionic output.

It is for such reasons that our modeling methodology
explores a variety of different connectivities in some
overall paradigm of brain function. We set up a model
family that allows us to experiment with a number of
different connectivities and parameter settings for the
cells of the model. This leads to a style of incremental
modeling. For example, the first model of a “tectal col-
umn” was introduced to explain certain facilitative effects
in prey-catching behavior; a linear array of such columns
was then used to model certain data on size dependence
of prey-catching activity in toads; inhibition from the
pretectum to such an array was then introduced to model
the behavior of an animal confronted with more than one
prey stimulus. Elsewhere (Arbib 1982a)  have referred to
incremental modeling as “evolutionary modeling” be-
cause these models form three stages in an evolutionary
sequence (although it is the modeler rather than nature
who introduces the variations and does the selection) for
what I have dubbed Rana computatriz, “the computa-
tional frog” — our developing model of the neural circuitry
underlying visuomotor coordination in the frog and toad.

2. Perceptual and motor schemas

Although there are formal characterizations of programs
in FORTRAN, Or LISP, Or PASCAL, there is no single defini-
tion that encompasses all programs: serial, parallel, or
concurrent, recursive or nonrecursive, and object-based
or not. Despite this, computer scientists recognize com-
monalities that allow new program concepts to be built on
old ones. In the same spirit, our work on schemas has not
yet yielded a single formalism, but contributes to the
evolution of a theory of schemas. The schemas are pro-
grams developed to satisfy the following criteria (Arbib
1981):

(a) Schemas represent perceptual structures and dis-
tributed motor control. Hypotheses about how behavior
is generated are formulated in terms of assemblages of
perceptual schemas and coordinated control programs of
motor schemas.

(b) Schemas can be instantiated. Given a schema that
represents generic knowledge about some domain of
interaction (e.g., a chair and how to sit on it), we need
several schema instantiations, each suitably tuned, to
subserve our perception of several instances of that
domain.
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(c) Like procedures or programs, schemas can be com-
bined to form new schemas. In particular, a given schema
may be instantiated many times within a larger schema
instantiation. In serial programs, no matter how many the
subroutine calls in a program, only one call will be
executed at any given time. By contrast, schema in-
stantiations are inherently concurrent. We postulate
that, unlike serial computers, the brain can support the
concurrent activity of many schemas for the recognition of
different objects and for the planning and control of
different activities.

(d) As constrained by criteria (a)—(c) above, schemas
can enter into theories of AI, perceptual robotics, or
cognitive psychology. To qualify as part of brain theory
(computational neuroscience), schemas must be further
linked to a theory about neural localization or, at an even
finer-grained level, to their implementation in neural
circuitry.

The schema notion will be made explicit in three
applications: frog visuomotor coordination (Section 3),
machine vision (Appendix A), and robotics (Appendix B).
In Arbib (1975) I introduced the terms “perceptual sche-
ma” and “motor schema.” At about the same time,
Minsky (1975) established the term “frame” in the Al
community. I did not abandon the term “schema,” how-
ever, for three reasons: (a) There was a continuity be-
tween my concerns and those of Bartlett (1932), Head and
Holmes (1911), Piaget (1971), Schmidt (1975), and other
writers who had already used the term “schema.” (b) The
term frame already had two uses — in “the frame prob-
lem” of AI (when an operator is applied, how does one
keep track of the changes not explicitly specified in the
description of the operator?), and in the “frame” as the
unit picture in a movie that is a candidate for analysis by a
(machine) vision system. (c) Frames (Minsky 1975) and
scripts (Schank & Abelson 1977) were developed with an
emphasis on representing the overall framework in which
a situation is to be analyzed; my work, on the other hand,
empbhasizes the constructive aspect, with perceptual and
motor schemas being combined to form schema as-
semblages and coordinated control programs that can
themselves form new schemas to be combined into yet
larger schemas. Despite these differences, I see develop--
ments in frame theory and script theory as part of the
same enterprise as schema theory.

The internal model of the world (Craik 1943; Gregory
1969; MacKay 1966; Minsky 1961) must be built of units,
each of which corresponds roughly to a domain of interac-
tion, which may be an object in the usual sense, an
attention-riveting detail of an object, or some domain of
social interaction (Arbib 1975). The system determines
whether a given domain of interaction is present in the
environment using a perceptual schema. The state of
activation of the schema then determines the strength of
the hypothesis that what the schema represents is indeed
present. Other schema parameters represent properties
such as size, location, and motion of the perceived object.
A schema assemblage — an assemblage of instantiated
perceptual schemas — provides a short-term memory
(STM) combining an estimate of environmental state with
a representation of goals and needs. Long-term memory
(LTM) is provided by the stock of schemas from which
STM can be assembled. (Appendix A describes a comput-
er system for constructing a schema assemblage to repre-
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sent a photograph of an outdoor scene [Weymouth
1986].) New sensory input and internal processes update
the schema assemblage. This can itself be action-depen-
dent, as in actively palpating an object. The internal state
is also updated by knowledge of the state of execution of
current plans. We hypothesize that these plans are made
up of motor schemas, which are akin to control systems
but can be combined to form coordinated control pro-
grams to control the phasing of various patterns of co-
activation,

Biological control theory usually studies neural circuit-
ry specialized for the control of a specific function, be it
the stretch reflex (Stein 1982) or the vestibulo-ocular
reflex (Robinson 1981). Yet most behavior involves com-
plex sequences of the coordinated activity of a number of
control systems. I have introduced the notion of coordi-
nated control program (Arbib 1981) as a combination of
control theory. and the computer scientist’s notion of a
program suited to the analysis of the control of move-
ment. Such a program can control the time-varying in-
teraction of a number of schemas. In the diagrams depict-
ing such a program, there are lines representing both
transfer of activation and transfer of data.

Although we will emphasize visuomotor coordination
in the frog and toad in later sections, our first example of a
coordinated control program is based on the study of
human reaching to grasp an object. The top half of Figure
3 (Jeannerod 1981) shows a collage of hand shapes as the
hand moves from its initial position to pick up a ball. As
the hand moves, it is preshaped so that when it has almost
reached the ball, it has the right shape and orientation to
enclose the ball prior to gripping it firmly. The lower half
of the figure indicates with a dot the position of the tip of
the thumbnail in consecutive frames of a movie. Examin-
ing the spacing of these dots, we can see that the move-
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Figure 3. (Top) Superimposed view of hand shape and posi-

tion in reaching for a ball. (Bottom) Circles indicate position of
thumb-tip in successive movie frames and the separation into a
slow phase followed by a fast phase (Jeannerod 1981).
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Figure 4. A coordinated control program for reaching toward
and grasping an object (adapted from Arbib 1981),

ment can be broken into two parts: a fast initial move-
ment, and a slow approach movement. Moreover,
Jeannerod has shown that the transition from the fast to
the slow phase of the hand transfer movement is coupled
with a transition from the preshape of the hand itself to
the closing in of the fingers so that touch can take over in
controlling the final grasp.

Figure 4 shows a tentative program for this behavior.
Solid lines indicate the transfer of data from one schema
to another and dashed lines indicate the transfer of
activation, (Appendix B describes a formalism for such
coordinated control programs - there called “task
units” — developed in the study of distributed control of
dextrous robot hands.) The top half of the figure shows
three perceptual schemas: Successfully locating the ob-
ject activates schemas for recognizing its size and orienta-
tion. The outputs of these perceptual schemas are avail-
able for the control of the hand movement, which in turn
involves the concurrent activation of two motor schemas.
One of these moves the arm to transport the hand toward
the object, the other concurrently preshapes the hand,
with finger separation and orientation guided by the
output of the appropriate perceptual schemas. We note
that it is only the completion of the fast phase of hand
transfer that triggers the slow phase of hand transfer and
“wakes up” the final stage of the grasping schema to shape
the fingers using tactile feedback. This simple example
shows that a coordinated control program involves both
concurrency and seriality of schema activation and it
exemplifies how vision and touch interact. In some cases,
a perceptual schema is an explicit representation of the
environment on which planning can draw; in other cases,
it is implicit, embedded in a motor schema and providing
the tuning of parameters, or the setting of bounds for
those parameters, directly. Finally, we have dis-
tinguished two types of motor control — a fast ballistic
kind, and a slow passage to equilibrium. (For further
work motivated by Figure 4, see Arbib et al. [1985] and
Iberall et al. [1986], which introduce the notions of virtual
finger and opposition space, respectively.)

We return now to our general consideration of animal
behavior. As action continues, the current plan may
continue to be executed simply with tuning or updating




of parameters; or, because of some unexpected occur-
rence or completion of the current plan, some form of
replanning or new planning may be required. From this
viewpoint, both the schema assemblage and the current
plan are temporally dynamic processes. They evolve
with time, and so does the interaction between the two.
Motor schemas change the environment and vice versa:
Changes are remembered as well as anticipated. This

provides the basis for learning. Here it seems useful to

distinguish episodic learning (Squire’s [1986] “de-
clarative” memory), in which certain features of the
schema assemblage and plan at a particular time are
remembered together, from skill learning (Squire’s
“procedural” memory), in which a plan and its param-
eters are updated over time to better tune them to
environmental circumstances, but without conscious re-
call of the learning experience (see Arbib [1985] and
Arbib and Hesse [1986] for a first sketch of a schema-
theoretic account of consciousness). The memory of par-
ticular episodes may be indexed with respect to schemas
for general skills, and so in this way generalization may
override specific memories.

Novel inputs (e.g., coming upon an unexpected obsta-
cle) can alter the elaboration of high-level structures into
lower-level tests and actions that in turn call upon the
interaction of motor and sensory systems. We study
programs that are part of the internal state of the system
and can flexibly guide ongoing action in terms of internal
goals or drives and external circumstances. Our thesis,
then, is that the perception of an object (activating appro-
priate perceptual schemas) involves gaining access to
routines for interaction with the object (motor schemas)
but not necessarily the execution of even one of these
routines. Although an animal may perceive many aspects
of its environment, only a few of these can at any time
become primary loci of interaction. Perception therefore
“activates” (i.e., defines a search space; draws a map), and
planning “concentrates” (lays out the route to be fol-
lowed).

Our framework for analyzing visually guided behavior
of a complex organism is thus based on these general
premises.

1. As the organism moves — making, executing, and
updating plans — it must maintain an up-to-date represen-
tation of its relationship with its environment.

9. The “model of the environment” is an active, infor-
mation-seeking process composed of an assemblage of
perceptual schemas, each instantiation of which repre-
sents a distinct domain of interaction with relevant prop-
erties, such as size and motion, represented by the
current values of parameters of the schema.

3. The activation of perceptual schemas provides ac-
cess to related motor schemas but does not necessarily
entail their execution. Planning is required to determine
the actual course of action. The plan is updated as action
affords perceptual updating of the internal model.

4. The plan of action is to be thought of as a coordi-
nated control program composed of motor schemas.
Each motor schema is viewed as an adaptive controller
that can update its representation of the object being
controlled. Thus the adaptation procedure can be viewed
as a perceptual schema embedded .in a motor schema.
. Behavior is as real as anatomy. However, when we
spell out a network of interacting schemas that subserves
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it, we are dealing with theoretical constructs. Are sche-
mas “real”? My provisional answer is that they are ap-
proximations to reality, just as many physicists would
argue that concepts of the electron at the turn of the
century were approximations to a reality that was re-
vealed only with the development of quantum mechanics
(a reality that is now itself seen to be but an approxima-
tion, as measured by the pragmatic criterion, as we probe

-the world of quarks and strings). In any particular dia-

gram, such as Figure 4, the schemas may be too neatly
separated. The schemas become “more real” as their
functional analysis is refined into assemblages/programs
of subschemas that allow either a more subtle analysis of
behavior or an improved mapping of function to neural
structure.

The quest is for a general theory of interacting percep-
tual and motor schemas adequate for top-down analysis of
action-oriented perception or perceptually guided ac-
tion, or for language (Arbib et al. 1987) and other cog-
nitive processes. The general framework must be com-
plemented by concepts specific to a particular domain. In
the next three sections, we accordingly turn to the study
of visuomotor cordination in the frog and toad to ex-
emplify how a schema-theoretic analysis may be inte-
grated with the search for the specific neural codes used
by the various schemas and brain regions.

3. Schema models of Rana computatrix

Lettvin et al. (1959) initiated the behaviorally oriented
study of the frog visual system with their classification of
retinal ganglion cells into four classes, each projecting toa
retinotopic map at a different depth in the optic tectum,
the four maps in register, We view the analysis of such
interactions between layers of neurons as a major ap-
proach to modeling “the style of the brain.” In this section
we present models of visuomotor coordination in the frog
and toad at the level of schemas; the next two sections
illustrate the general view of cooperative computation
between neurons within a layer, and between layers in
specific models exhibiting cooperative computation. We
will make the following points:

1. A given schema, defined functionally, may be dis-
tributed across more than one brain region; conversely, a
given brain region may be involved in many schemas. A
top-down analysis may advance specific hypotheses about
the localization of (sub)schemas in the brain, and these
can be tested by lesion experiments.

2. In some cases we will then proceed to model each
schema by interacting layers of neuronlike elements, or
by nets of “intermediate-level” units. Even if the nets are
little constrained by anatomy or physiology, such studies
can be valuable in extending our understanding of “paral-
lel distributed processing/connectionist” approaches to
cognition and of the properties of neural networks, better
preparing us to handle new data as they become avail-
able.

3. However, once a schema-theoretic model of some
animal behavior has been refined to yield hypotheses
about the localization of schemas, we can then model a
brain region by seeing whether its known neural circuitry
can indeed be shown to implement the posited schema.
In some cases the model will suggest properties of the
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circuitry that have not yet been tested, thus laying the
ground for new experiments.

4. Once a number of models have been established,
further modeling should be incremental, in that new
models should refine, modify, and build upon prior
models, rather than being constructed ab initio. Incre-
mental modeling will not always work, however, and new
data may lead to extensive reformulation. In a sense, the
less often this happens, the better the modeling strategy.

3.1. Schemas for pattern recognition. Lettvin et al. (1959)
found that group 2 retinal cells responded best to the
movement of a small object within the receptive field and
group 4 cells responded best to the passage of a large
object across the receptive field. It became common to
speak of R2 cells as “bug detectors” (Barlow [1953]
referred to R3 ganglion cells as “fly detectors”) and of R4
cells as “enemy detectors,” although subsequent studies
make it clear that a given frog or toad behavior will
depend on far more than the activity of a single class of
retinal ganglion cells (Ewert 1976).

Given the mapping of retinal “feature detectors” to the
tectum and the fact that tectal stimulation could elicit a
snapping response, it became commonplace to view one
task of the tectum to be directing the snapping of the
animal at small moving objects — it being known that the
frog would jump away from large moving objects and
would not respond when there were only stationary
objects. This might suggest that the animal is controlled
by, inter alia, two schemas, one for prey catching, which
is triggered by the recognition of small moving objects,
and one for predator avoidance, which is triggered by
large moving objects. However, Ewert (1976) has ob-
served (Figure 5) that animals with lesions of the pretec-

€

Figure 5. Three sequences showing a toad with a pretectal
lesion snapping at moving objects at which the normal toad
would not snap: (a) its own foot; (b) the foot of another toad; (c)
experimenter’s hand (Ewert 1976).
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Figure 6. Prey-catching orienting behavior to different config-
urations of the stimulus. (A) Turning reaction to the stimulus
presentation. Note that D, the effective angular displacement of
the stimulus, differs from T, the angle of turning movements.
(B) Orienting activity to three stimulus configurations, parallel
("worm”: type a) and perpendicular (“antiworm”: type b) rec-
tangles, and squares (type c). (B.a) Normal animal’s response
becomes more frequent when we increase the dimension (H) of
a stimulus of type a, whereas response frequency rapidly drops
to zero when we increase the dimension (V) of a type b stimulus,
and a sort of summation of these two responses is obtained when
we increase both dimensions of stimulus type ¢. (B.b) This
diserimination is lost in toads with pretectal lesions (from Ewert
1976).

tum will snap at large moving objects that a normal toad
will avoid. This suggests a new analysis in terms of a prey-
selection schema that can be activated by moving objects
of any size, and a predator-recognition schema that serves
not only to activate avoidance behavior but also to inhibit
prey acquisition. Thus, even gross lesion studies can
distinguish between alternative top-down analyses of a
given behavior.

Of course, such an analysis can be refined by more
detailed behavioral studies that let us determine what
features of a moving object serve to elicit one form of
behavior or another. For example, Ewert (Figure 6)
placed a toad in a perspex cylinder from which it could see
a stimulus object being rotated around it. He then ob-
served how often the animal would respond with an
orienting movement (this frequency being his measure of
how “preylike” the object was) for different stimulus
objects. As we can see from Figure 6B, the wormlike
stimulus (rectangle moved in the direction of its long axis)
proved increasingly effective with increasing length,




whereas for 8° or more extension on its long axis, the
antiworm stimulus (rectangle moved in the direction
orthogonal to its long axis) proved ineffective in releasing
orienting behavior. The square showed an intermediate
behavior; the response it elicits rises to a maximum at 8°,
but is extinguished by 32°. (See Ewert’s accompanying
target article, this issue.)

With such quantitative data at hand, Ewert and von
Seelen (1974) produced the top-down model shown in
Figure 7. As seen in Figure 7A, they postulated that
retinal output was passed in parallel to a tectal “worm
filter” and a thalamic “antiworm filter,” with the output of
the latter serving to inhibit tectal (type II) activity excited
by the former. As we can see in Figure 7B, a worm
stimulus would then tend to yield strong excitation of the
worm filter, which would be little inhibited by the
thalamic antiworm response, thus yielding a vigorous
output; the antiworm (Figure 7D), on the other hand,
would yield weak tectal type I activity, strong thalamic
activity, and resultant weak tectal output. The square
would yield intermediate behavior. Ewert and von
Seelen were able to adjust the parameters in this model to
fit the data over a linear subrange of the results. In
suggesting how we might build on this, however, our
main point is not that the model is restricted to linearity,
but that it is “lumped” in both space and time in that it
omits fine details in both these dimensions. That is,
although the average rate of response of the output
correlates well with the average turning rate of the toad,
the model can neither explain the spatial locus at which
the toad snaps nor the time at which it snaps. We shall
thus be interested (Section 4) in the development of
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Figure 7. A lumped model of prey—predator discrimination: A
worm filter provides excitatory input to an output cell, which
also receives inhibitory input from an antiworm cell. The result
is that (B) a worm provides a potent response; (C) a square
provides an immediate response; and (D) an antiworm yields
little or no response (after Ewert & Von Seelen 1974).
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unlumped models, which can indeed explain the spa-
tiotemporal distribution of the animal’s behavior.

3.2. A model of prey selection. In much visually guided
behavior the animal does not simply respond to a single
stimulus but rather to some property of the overall
configuration. Consider, for example, the snapping be-
havior of frogs confronted with one or more flylike stim-
ulus. Ingle (1968) found that it is only in a restricted
region around the head of a frog that the presence of a
flylike stimulus elicits a snap; that is, the frog turns so that
its midline is pointed at the stimulus and captures it with
its tongue. There is a larger zone in which the frog only
orients, and beyond that zone the stimulus elicits no
response at all. When confronted with two “flies” within
the snapping zone, either of which is vigorous enough
that alone it could elicit a snapping response, the frog
exhibits one of three reactions: It snaps at one of the flies,
it does not snap at all, or it snaps in between at the
“average fly.” Didday (1976) offered the simple model of
this choice behavior as shown in Figure 8a. Itis presented
here not to represent the state of the art, but rather as a
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Figure 8. (a) Schematic view of Didday’s model of interacting
layers of neurons subserving prey selection. (b) Primitive coop-
eration model in which the layer of S-cells of (a) is replaced by a
single inhibitory neuron (from Amari & Arbib 1977).
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clear example of the distributed processing of structured
stimuli. Didday used the term “foodness” to refer to the
parameter representing the extent to which a stimulus
could, when presented alone, elicit a snapping response.
The task was to design a network that could take a
position-tagged “foodness array” and ensure that usually
only one region of activity would influence the motor
control system. The model maintains the spatial distribu-
tion of information; new circuitry is introduced allowing
different regions of the tectum to compete so that nor-
mally only the most active region provides an above-
threshold input to the motor circuitry. To achieve this
effect he first introduces a new layer of cells that is in
retinotopic correspondence to the “foodness layer” and
that yields the input to the motor circuitry. In some
sense, then, it is to be “relative foodness” rather than
foodness that describes the receptive field activity appro-
priate to a cell of this layer.

Didday’s transformation scheme from foodness to rela-
tive-foodness uses a population of “S-cells” that are in
topographic correspondence with the other layers. Each
S-cell inhibits the activity that cells in its region of the
relative-foodness layer receive from the corresponding
cells in the foodness layer by an amount that increases
with greater activity outside its particular region. This
ensures that high activity in a region of the foodness layer
penetrates only if the surrounding areas do not contain
sufficiently high activity to block it. (Amari and Arbib
[1977] present a functionally equivalent but more real-
istic model in which S-cells have no blind spot, but do
receive recurrent local excitation.) When we examine the
behavior of such a network, we find that plausible inter-
connection schemes yield the following properties:

1. If the activity in one region far exceeds the activity
in any other region, then this region eventually over-
whelms all other regions, and the animal snaps at the
corresponding space.

2. Iftwo regions have sufficiently similar activity levels
then (a) they may both (providing they are very active)
overwhelm the other regions and simultaneously take
command, with the result that the frog snaps between the
regions; or (b) the two active regions may simply turn

down each other’s activity, as well as activity in other-

regions, to the point that neither is sufficient to take
command. In this case the frog remains immobile, ignor-
ing the two “flies.”

One trouble with the circuitry as so far described is that
the buildup of inhibition on the S-cells precludes the
system’s quick response to new stimuli. If in case 2b
above, for example, one of those two very active regions
were suddenly to become more active, then the deadlock
ought to be broken quickly. In the network so far de-
scribed, however, the new activity cannot easily break
through the inhibition built up on the S-cell in its region.
In other words, there is hysteresis. Didday thus intro-
duced an “N-cell” for each S-cell. The job of an N-cellis to
monitor temporal changes in the activity of its region.
Should it detect a sufficiently dramatic increase in the
region’s activity, it then overrides the inhibition on the S-
cell and permits this new level of activity to enter the
relative foodness layer. With this scheme the inertia of
the old model is overcome, and the system can respond
rapidly to significant new stimuli (see Amari and Arbib
1977 for a mathematical analysis). Didday hypothesized
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that the S-cells and N-cells modeled the “sameness” and
“newness” cells, respectively, that had been observed in
the frog tectum. Regrettably, no experiments have been
done to test this hypothesis.

3.3. Schemas for depth and detours. We next describe a
high-level model that addresses data on depth and detour
behavior in toads in terms of interacting schemas. Collett
(1982) has shown that a toad, confronted with a barrier
beyond which a worm can be seen, may proceed directly
toward the prey or it may sidestep the barrier and then
approach the prey. In Figure 9, each dot—dash line pair
indicates a position of the toad, with the dot indicating the
position of its head and the line indicating its orientation,
as seen from above. The whole sequence on the right-
hand side of the figure represents one behavior of the
animal in response to the stimulus shown below it. The
row of dots represents a paling fence; the T, an opaque
barrier; the circle with squiggles in it, a dish of meal-
worms. The mealworms are initially visible to the toad
and lead, in combination with the fence, to the whole
sequence of behavior in which the animal sidesteps
around the fence, pauses, and then continues to the
position marked “stop.” What is worth noting is that soon
after its initial movement the toad can no longer see the
worms, and yet it proceeds along a trajectory whose final
stage clearly indicates that the animal has retained an
accurate representation of their position. However, the
final approach is aborted by the lack of adequate stimuli.
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Figure 9. A trajectory of a toad that has sighted a number of
mealworms behind a paling fence (the row of dots) and then
detours around the fence to approach the prey. Note that when
it stops (the prey no longer being in view) its position shows that
it has retained a representation of prey position, which is
relatively accurate despite the intervening movement of the
toad (Collett 1982).




Epstein (1979) adapted Didday’s simple model of the
tectum as a row of neurons selecting its maximal stimulus
by positing that each visible preylike stimulus provides a
tectal input with a sharp peak at the tectal location
corresponding retinotopically to the position of the stim-
ulus in the visual field, with an exponential decay away
from the peak. A barrier, on the other hand, provides a
trough of inhibition whose tectal extent is slightly greater,
retinotopically, than the extent of the barrier in the visual
field. Epstein’s model can exhibit choice of a target in the
direction of the prey or the barrier edge, but not the
spatial structure of the behavior.

Given that the behavior of the toad — whether ap-
proaching the prey directly or detouring around the
barrier — depends on how far behind the barrier the
worms are, a full model of this behavior must incorporate
an analysis of the animal’s perception of depth. To address
this, Arbib and House (1987) gave two models for detour
behavior that make use of separate depth maps for prey
and barriers. In the first, the Orientation Model (Figure
10) the retinal output of both eyes is processed for
“barrier” and “worm” recognition to provide separate
depth mappings for barrier and worm. We suggest that
the animal’s behavior reflects the combined effects of
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Figure 10. Conceptual schematic of visual/motor pathway:
Assumptions made in this diagram are (1) that separate depth
maps are maintained for prey and barrier stimuli, (2) direction
for an orientation turn is obtained by combining information
from these two depth maps, and (3) information on preferred
orientation and depth of prey and barriers is available simul-
taneously to motor schemas. These schemas are capable of
integrating this information to produce a coordinated motor
output (Arbib & House 1987).
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prey “attraction” and barrier “repulsion.” Formally gen-
eralizing Epstein’s model, the barrier map B is convolved
with a mask I which provides a (position-dependent)
inhibitory effect for each fencepost, whereas the worm
depth map W is convolved with a mask E that provides an
excitatory effect for each worm. The resultant map

T = BxI + WxE

is then subject to further processing, which will deter-
mine the chosen target. E is an excitatory mask that
projects broadly laterally and somewhat less broadly
toward the animal; I is an inhibitory mask with a short
distance behind the edge where there is little inhibition
(beyond this, inhibition is equally strong at all distances).
The total excitation, T, is summed in each direction, and
then a maximum selector network chooses the direction
with maximal activity. If this corresponds to the prey, the
animal will approach and snap; otherwise, further pro-
cessing is required. We postulate that each component of
the detour behavior (sidestep, orient, snap, etc.) is gov-
erned by a specific motor schema. Ingle (1982) offers
some clues as to their localization: He finds that a lesion of
the crossed tectofugal pathway will remove orienting;
lesioning the crossed pretectofugal pathway will block
sidestepping; and lesions of the uncrossed tectofugal
pathway will block snapping.

In their second model, the Path-Planning Model, Ar-
bib and House (1984) associate with each point of the
depth map a two-dimensional vector. In place of a single
scalar indicating a measure of confidence that there is a
target for the first move at the corresponding position in
the visual field, the vector is to indicate the preferred
direction in which the animal should move were it to find
itself at the corresponding position. The model specifies
how this vector field is generated and begins to specify
how the vector field is processed to determine the appro-
priate parameters for the coordinated activation of motor
schemas. Each prey object sets up an attractant field,
while each fencepost sets up a field for a predominantly
lateral movement relative to the position of the post from
the viewpoint of the animal. Arbib and House suggest
that in the case of a “tracking creature” like the gerbil, the
vector field is integrated to yield a variety of trajectories,
with a weight factor for each trajectory, whereas, in a
“ballistic creature” like the frog or toad, processing yields
a map of motor targets, appropriately labeled as to type.
The current model uses vectors encoding components of
forward and lateral motion; future work will explore the
hypothesis that a particular vector would have compo-
nents governing sidestepping, turning, and snapping. It
is an open question whether the components of the vector
would be expressed in adjacent nerve cells or distributed
across different regions of the brain.

3.4. Schemas for prey acquisition. Lara et al. (1984) offer
an alternative model of detour behavior in the presence of
barriers with gaps in which the recognition of gaps is an
explicit step in detour computation. The same paper also
offers models — at the level of interacting schemas rather
than layers of neuronlike elements — for prey acquisition
in environments containing chasms as well as barriers,
and for predator avoidance. We now turn to a presenta-
tion of the schemas for prey acquisition by toads posited
in this approach. In what follows, the figures use the
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Figure 11. Ifprey isin the visual field, the orientational motor schema OR is activated. The consequent unfolding of action depends
on whether a barrier (activating perceptual schema barr) or a chasm (activating perceptual schema chasm) or “free space” (activating
perceptual schema FP) is perceived. See text for further details (from Lara et al, 1984),

abbreviations PS, MS, S, and GS for perceptual schema,
motor schema, schema, and goal state, respectively.

The prey-acquisition schema (Figure 11)is activated by
the instantiation of the perceptual schema for prey, but
the actual motor schemas executed will depend on
whether further perceptual processing activates the “free
prey” perceptual schema FP representing a situation in
which no obstacles intervene between the animal and its
prey; perceptual schema barr, which represents a situa-
tion in which a barrier intervenes; and perceptual schema
chasm, which represents an intervening barrier. The
activation of the corresponding schema — prey-no obsta-
cle, prey-barrier, or prey-chasm, respectively — is repre-
sented in Figure 11 as the outcome of competitive in-
teraction between the three perceptual schemas,

If perceptual schema FP is instantiated, it generates a
parameter d for the distance of the prey. If d is small (d—),
then the animal fixates, snaps, and swallows the prey to
achieve the goal state. If d is larger (d+), then the animal
approaches the prey. The arrow to B indicates that the
animal will return to the circle marked B above — so long
as the prey remains visible, the animal will continue to
approach it until 4 is small enough for it to snap and
swallow the prey. It might be argued that both of the
returns in the figure should be replaced by returns to o -
since a barrier might be interposed or become visible
after the animal has executed an approach motor schema.
In any case, such returns (to be discussed further below)
represent the behavioral fact that the toad seems to
execute a single behavior (which may itself be composite,
as in fixate — snap— swallow) to completion, with the
passage to the next requiring a fresh perceptual trigger,
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rather than formulating some overall plan to be pursued
and modulated in the light of changing circumstances (in
the way that a human, going to get some object, would
initiate a search strategy should the object not be in its
expected place).

If perceptual schema barr is instantiated, it makes
available two parameters: dpo, the distance of the prey
behind the barrier, and A, the height of the barrier. If dpo
is small or negative (dpo—), the toad approaches the
barrier and proceeds as if no barrier were present (trans-
fer to B). If the prey is further behind the barrier and the
barrier is low (dpo+, h—), the toad will approach and
jump over the barrier, whereas if the barrier is high
(dpo+, h+), the animal will make a detour. More specifi-
cally, instantiation of the perceptual schema for a gap will
elicit the motor schema for orienting to (OR g) and
approaching (Appr g) that gap. It seems necessary to
include the “gap” at the end of a barrier as also activating
the gap perceptual schema. In either dpo+ case, control
is returned to « after execution of the specified motor
schema.

Finally, if perceptual schema chasm is activated, it
makes available parameters representing the depth d and
width w of the chasm. If the depth is small (d—) the toad
will walk across the floor of the chasm; if the chasm is deep
but not wide (w—, d+), the toad will leap the chasm; but if
the chasm is wide and deep (w+, d+), the animal will not
approach the chasm.

The general considerations of Section 2, which influ-
enced the Arbib-House model of detour behavior, sug-
gest that the animal’s behavior should depend on the
representation of the environment by an assemblage of




schemas embodying the spatial relations between multi-
ple objects in the environment, rather than sequential
activation of a perceptual schema for one prey object and
then at most one obstacle. In fact, in the description Lara
et al. (1984) give of the actual implementation of ap-
proaching gaps, they do use a mode of competitive
interaction, which is only hinted at in Figure 11, by the
various arrows labeled “-” to express competitive interac-
tions. More generally, the idea seems to be that the gap
schema is instantiated for each gap in the environment;
each schema is given an activity level based on its position
relative to toad, prey, and other gaps; and it is the most
active gap schema that provides the parameters for the
activation of the next motor schema. Once this motor
schema has been executed, the animal’s behavior is

determined ab initio by the activation of its perceptual

schemas in its new situation.

Note that this explicit view of motor schema activation
by the “winner” (cf. the Didday model of prey selection
above) of perceptual schema competition obviates the a—
B question raised above, since we simply postulate that,
once triggered, a motor schema is executed to completion
with the parameters supplied by the perceptual schemas,
whereupon activation of perceptual schemas is reinitiated
to trigger the next motor schema. As noted above, this
seems an appropriate model for the frog and toad — the
schema assemblage is completely “refreshed” after each
integral action. This is in contrast to the action-perception
cycle in human behavior, for example, in which activation
of perceptual schemas serves to update an existent sche-
ma assemblage and coordinated control program, rather
than to create new ones.

An example of two trajectories predicted by the model
of Lara et al. is presented in Figure 12. In (a), the “toad”
chooses the gap nearer the prey, but in (b), the presence
of the wide gap in the further fence biases the animal’s
“choice” to favor the other gap in the nearer fence.
Clearly, such predictions can be used to test the model,
and data culled from observations of animal behavior can
be used to refine the algorithmic specification of the
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Figure 12. Computer simulation, using a program elaborating
the schemas of Figure 11, of a toad’s behavior in response to a
worm in the presence of barriers. In (a) the toad always prefers
the closer gap; in (b) the farther gap is wider and is the one
chosen (from Lara et al. 1984).
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constituent schemas, just as psychophysical data can be
used to tune models of visual function in humans. Such
specifications can serve as the endpoint of analysis for the
cognitive scientist or ethologist who is not interested in
neural mechanisms; but for the neuroscientist, they can
provide the formal “specification” of the task whose
implementation in neural circuitry is to be analyzed.

4, Tectal column models of Rana computatrix

In this section and the next we proceed down alevel from
schemas, examining how certain of the schemas of the
previous section can be captured in the cooperative
computation of layers in anatomically defined regions of
the anuran brain. In the present section, we will pursue
the analysis yet another level downward, showing how
the properties of certain layers can be implemented by
models of neural networks constrained by neurophysi-
ological data.

4.1. Facilitation of prey-catching behavior. Frogs and
toads take a surprisingly long time to respond to a worm.
Presenting a worm to a frog for 0.3 sec may yield no
response, whereas orientation is highly likely to result
from a 0.6 sec presentation. Ingle (1975) observed a
facilitation effect: If a worm is presented initially for 0.3
sec, then removed, and then restored for only 0.3 sec, the
second presentation suffices to elicit a response so long as
the intervening delay is at most a few seconds. Ingle
observed tectal cells whose time course of firing accorded
well with this facilitation effect (Figure 13d). This leads us
to a model (Lara et al. 1982) in which the “short-term
memory” is encoded as reverberatory neural activity
rather than as the short-term plastic changes in synaptic
efficacy demonstrated, for example, by Kandel (e.g.,
1978) in Aplysia. Our model is by no means the simplest
model of facilitation — rather, it provides a reverberatory
mechanism for facilitation consistent with Ingle’s neu-
rophysiology and the then known local neuroanatomy of
the tectum. .

The present model addressed facilitation at a single
locus of the tectum. Interactions among a number of
columns will be discussed below. The tectal columnar
model is abstracted somewhat crudely from the anatomy
of Székely and Lézdr (1976) — and thus must be integrated
with new and detailed anatomy and neurophysiology
(e.g., Lazér et al. 1983). Each column (Figure 2d) com-
prises one pyramidal cell (PY) as sole output cell, one
large pear-shaped cell (LP), one small pear-shaped cell
(SP), and one stellate interneuron (SN). (The simulation
results of Figures 13 and 14 were actually based on a
larger column, with 1 PY, 3 LP, 2 SP, and 2 SN, but the
results for the column of Figure 2d are essentially the
same.) All cells are modeled as excitatory, save for the
stellates. The retinal input to the model is a “foodness”
measure, and activates the column through glomeruli
with the dendrites of the LP cell. LP axons return to the
glomerulus, providing a positive feedback loop. A branch
of LP axons also goes to the SN cell. There is thus
competition between “runaway positive feedback” and
the stellate inhibition. (The equations used in the simula-
tion can be found in Appendix 1 of Lara et al. 1982.)

To return to the tectal model: Glomerular activity also
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(a) Computer simulation of tectal cells’ responses when a brief stimulus is presented. The onset of the stimulus producesa

long-lasting depolarization in the glomerulus, which then fires the large pear-shaped cell (LP). This neuron in turn sends recurrent
axons to the glomerulus and the stellate cell (SN), which acts as the inhibitory neuron in the column. When the inhibitory effect of SN
releases the LP cell, arebounding excitation occurs. The small pear-shaped cell is integrating the activity of GL, LP, and SN neurons to
giveadelayed short response. (b) Ifin the above situation we presentastimulus of longer duration, then we show that now the pyramidal
neuron fires, In (c) we show that when a second stimulus of the “subthreshold duration” used in (a) is presented, the pyramidal cell (PY)
responds. (The frequencies of the spikes are a graphical convention. The spikes are drawn simply to highlight when the membrane
potential ofa cell isabove threshold. ) (From Laraetal. 1982) (d) Physiological behavior of cells related to prey-catching facilitation: (A) A
briefclass 2 burst s followed by a delayed response of a tectal cell; (B) a tectal cell responds to the presentation of the stimulus and again
with a delay; (C) a tectal neuron produces a delayed response to the presentation of the stimulus. (D) the poststimulus histogram of a

tectal cell shows a delayed peak at 3 to 4 seconds (from Ingle 1975).

excites SP, which likewise sends its axon back to the
glomerulus. SP also excites LP to recruit the activity of
the column. PY is excited by both SP and LP. Clearly, the
overall dynamics will depend upon the actual choice of
excitatory and inhibitory weights and of membrane time
constants to ensure that excitation of the input does not
lead to runaway reverberation between the LP and its
glomerulus, and that this activity is “chopped” by stellate
inhibition to yield a period of alternating LP and SN
activity. SP has a longer time constant and is recruited
only if this alternating activity continues long enough. It
required considerable computer experimentation to find
weights that yield the neural patterns discussed below.
More recently, Cervantes-Perez (1985) has given a math-
ematical analysis of how weighting patterns affect overall
behavior. We hope our hypotheses concerning the ranges
of the parameters involved in the model will stimulate
more detailed anatomical and physiological studies of
tectal activity.

In one simulation experiment, we graphed the activity
of the pyramidal cell as a function of how long a single
stimulus is applied (Figure 14a). There is, as in the
experimental data, a critical presentation length below
which there is no pyramidal response. Input activity
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activates LP, which reexcites the glomerulus but also
excites the SN, which reduces LP activity. But if input
continues, it builds on a larger base of glomerular activity,
and so over time there is a buildup of LP-SN alternating
firing. If the input is removed too soon, the reverberation
will die out without activating SP enough for its activity to
combine with LP activity and trigger the pyramidal
output. If input is maintained long enough, the rever-
beration may continue, though not at a high enough level
to trigger output. However, reintroducing input shortly
after this “subthreshold” input can indeed “ride upon”
the residual activity to build up to pyramidal output after
a presentation time too short to yield output with an
initial presentation.

4.2. Worm-antiworm discrimination. We will now try to
explicate Ewert’s behavioral data on prey—predator dis-
crimination (Figure 6) in terms of neural networks at the
level of detail of the tectal column. In doing this, we are
helped by Ewert’s recordings of the activity of different
types of neurons in toads conducting the task of Figure 6.
In Figure 15a, we see that TH3 neurons (in the thalamus/
pretectum) have a response that is uniform for worms,
increases with increasing length for antiworms, but is
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Figure 14. (a) Computer simulation of the PY behavior when

stimuli are presented for different intervals. For each value B of
the duration of the stimulus, we present a horizontal line
showing the time during which the pyramidal cell is active. (b)
Computer simulation of the temporal pattern of the facilitation
process after the presentation of a brief stimulus. Here we show
the period of pyramidal cell activity for various values A of the
interval between a pair of stimuli each having duration B = 1.5
(Lara et al. 1982).

greatest for squares, increasing with their size. The ac-
tivity of tectum type I neurons (T5(1)) seems to correlate
fairly well with increases in the length of the stimulus in
the direction of motion, although it is somewhat higher
for squares than for worms. It is the tectum type II
neuron, T5(2), whose overall rate of neural response
seems to best match the overall frequency of the behav-
ioral response; and it is this averaged neural response that
is explained by the Ewert—von Seelen model of Figure 7.
We note, too, that Figure 6b shows that the discrimina-
tion among worm, antiworm, and square is essentially
abolished by pretectal lesion. Our task now is to give a
distributed model. As already discussed in Section 1, we
want to do this in an incremental way — rather than
seeking a minimal model of tectum to explain the specific
pattern recognition task at hand, we try to model the
tectum in terms of the basic columnar structure already
presented.

The structure of our model is shown in Figure 16
(Cervantes-Perez 1985). Rather than using a single col-
umn to represent the tectum, we now use an 8 X8 array of
columns, and we provide the column not only with the R2
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Figure 15. Tectal and pretectal cell response from common
toads to different configurations of moving stimuli (see Figure 6
legend). (A) Response of a pretectal neuron TH3, which is
mostly sensitive to large (type c) and perpendicular (type b)
stimuli. (B) Response of a tectal cell T5(1), which is most
sensitive to stimuli type c, then type a, and then type b. (C)
Response of tectal neuron T5(2), which mostly prefers stimuli
type a, then type c, and gives a very weak response to type b.
This neuron’s response resembles the animal’s behavior. (D)
Response of both tectal cells, T5(1) and T5(2), after thalamic
pretectal lesions. It shows how the discriminative abilities of
these cells are lost (from Ewert 1976).

input of our initial study of facilitation, but also with R3
and R4 input. In addition, we represent the pretectum by
an array of TH3 cells receiving R3 and R4 input. The
retinal input is based on the ganglion cell response curves
of Figure 17, in which only the average rate of firing of a
cell is given for each stimulus, rather than the temporal
pattern of that response. (Since the tectal response must
depend on the spatiotemporal pattern of retinal ganglion
cell firing, current work in my laboratory [Lee 1986] is
aimed at more detailed modeling of the response of frog
retina to varied activity.) The connections of R3 and R4 to
THS3 are tuned to yield the responses shown in Figure

15A.
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Figure 16. Interactions among retina, optic tectum, and pre-
tectum. The retina sends fibers in a retinotopical fashion to both
optic tectum (class R2, R3, and R4) and pretectum (class R3 and
R4). (a) TH3 neurons also project retinotopically to the optic
tectum. For simplicity we show only the projection of three
rows of TH3 cells projecting upon the tectal columns. (b) A
closer look at the interactions among retinal, tectal, and pretec-
tal cells. The TH3 cell of the pretectal column inhibits LP, SP,
and PY of the tectal column corresponding to its retinotopic
projection (from Cervantes-Perez et al. 1985).
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Figure 17. Retinal ganglion cells’ response (classes R2, R3,
and R4) to different configurations (type a, b, and c) of moving
stimuli with a visual angular velocity of 7.6 degrees/sec. Left,
they present a receptive field formed by a central excitatory
(ERF) and a peripheral inhibitory (IRF) area. The three gang-
lion neurons respond almost with the same intensity to type a
stimuli of different sizes. For stimuli of types b and ¢, ganglion
cells R2 and R3 increase their rate of response up to their
respective receptive field sizes, and then it drops down, where-
as R4 increase their rate of response when the size of the
stimulus increases, giving the strongest response to stimuli of
type ¢ (from Ewert 1976).

With appropriate setting of parameters, the model
does indeed exhibit, in computer simulation, responses
to moving stimuli of different types (Figure 18) that match
well the neural data of Figure 15. However, it is clear that
the model is only approximate at a quantitative level and
that — if our goal is prediction of detailed neural firing
rather than just a general understanding of pattern recog-
nition networks — further work must be done on tuning
the model parameters. Figures 19 and 20 give us a more
detailed look at the output of the computer runs involved
in generating the single points of the overall summation of
the data in Figure 18. Figure 19 shows the response, for a
brief period of time, of the 8 X8 array of tectal columns to a
moving worm (a), antiworm (b), and square (c) when no
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Figure 18. Computer simulation of the response of pretectal
and tectal cells to different configurations (type a, b, and c) of
moving stimuli (visual angular velocity of 8 degrees/sec). (a)
Pretectal TH3 cell response: It is mostly sensitive to stimuli of
type ¢ and b. (b) Overall response of the tectum to the three
types of stimulus (a, b, and c¢): Tectum response is mostly
sensitive to stimulus type a and weaker to stimulus type b. (c)
Response of a PY cell to the three different stimuli: It responds
better to stimulus type a, then to type ¢, and it gives a very weak
response to a stimulus of type b. This curve is equivalent to b. (d)
PY response when pretectal ablation occurs: These cells are
mostly sensitive to stimuli of type c or a, and less to those of type
b (from Cervantes-Perez et al. 1985).

pretectal influence is included in the model. Each figure
represents an 8X8 array of graphs of neural activity
corresponding to the pyramidal cell activity of the col-
umn, with time measured from left to right in each
subgraph. We thus see that the response to a worm
moving from left to right is delayed later and later as we
look at tectal columns arrayed from left to right in the path
corresponding retinotopically to the path of the worm. It
is interesting to note that the response of individual cells
to an antiworm is weaker than their response to a worm,
but that, due to the lateral extent of the antiworm, more
cells are excited in its passage ~ as is also the case for the
square, which likewise yields more vigorous response on
a cell-by-cell basis. Finally, Figure 20 shows the response
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Figure 19. A computer simulation of the PY cell response of
the 64 columns of the tectum to the different configurations of
moving stimuli when pretectal ablation occurs: All stimuli are
moved from left to right with a visual angular velocity of 8
degrees/sec. The figure shows four-dimensional graphs, where
the x and y axes are used to represent the spatial localization of
the (i, j) column. The y axis of this plane is also used to show the
time scale for the response of every column’s PY cell, and the
vertical axis (z axis) represents its local membrane potential.
When the PY local potential is above the threshold, this is
indicated by spikes in the graphs. (a) Response to a “wormlike”
stimulus (type a) of 8 X 2 degrees; (b) response to the same
stimulus moved as “antiwormlike” (type b); (c) response to a
square stimulus (type c) of 8 X 8 degrees. At the level of one PY
cell, the tectal response is strongest to stimulus type c, then to
type a, and finally to type b. The overall response of the tectum
is also stronger to a type c stimulus. It is also more widespread,
whereas the response to a “wormlike” stimulus, although like-
wise strong, is concentrated in a narrower area (from Cervantes-
Perez et al. 1985).

of the full model in which the tectum is subject to
pretectal inhibition, Here we see that there is a vigorous
response to the worm, virtually no response to the anti-
worm, and only a weak response to the square. For
further details of the model, the results of further simula-
tion, a demonstration of directional invariance of re-
sponse, and a discussion of motivation, the reader is
referred to Cervantes-Perez et al. (1985).

4.3. Incremental modeling. We have demonstrated incre-
mental modeling by showing how our model of a “tectal
column” was introduced to explain certain facilitation
effects in prey-catching behavior. In subsequent papers
(not discussed here), a linear array of such columns has
been used to model certain data on size dependence of
prey-catching activity in toads; inhibition from pretectum
to such an array was then introduced to model the
behavior of an animal confronted with more than one prey
stimulus. We have just discussed a fourth stage, modeling
of the tectum as an 8X8 array of tectal columns in
interaction with retina and pretectum. Lara and Arbib
(1985) have further developed the model to address
certain issues in stimulus-specific habituation. These
models form five stages in an “evolutionary” sequence for
Rana computatrix, and incorporate models of the retina,
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Figure 20. A computer simulation of the PY cell response of
the 64 columns of the model of the interactions among retina,
optic tectum, and pretectum. All stimuli are moved from left to
right with a speed of 8 degrees/sec. (See Figure 19 legend for an
explanation of the graph characteristics.) (2) Response to a
“wormlike” stimulus of 8 X 2 degrees (type a); (b) response to an
“antiwormlike” stimulus of 2 X 8 degrees (type b); and (c)
response to a square stimulus of 8 X 8 degrees (type c). The
response of the PY cells is strongest to stimulus type a, then to
type ¢, and finally to type b. It can be seen that the response toa
type ¢ stimulus, although more widespread, is weaker than that
to type a, whereas the weakest response is again to stimulus type
b. PY cells are most sensitive to “wormlike” stimuli, rather than
to squares or “antiwormlike” stimuli (from Cervantes-Perez et
al. 1985).

tectum, and pretectum, as well as a forebrain region
analogous to the hippocampus. Moreover, the models are
designed to contribute to a “tool kit” that can help us
study other schemas and neural systems (apart from the
frog’s and toad’s) and that can encourage the comparative
study of different systems. For example, the role of the
stellate neuron in our tectum model is reminiscent of
Purkinje inhibition of the positive feedback between
cerebellar nuclei and reticular nuclei, a basic component
of Boylls’s (1975; 1976) model of cerebellar modulation of
motor schemas, based on Tsukahara’s (1972) finding that
reverberatory activity was indeed established in the sub-
cerebellar loop when picrotoxin abolished the Purkinje
inhibition from the cerebellar cortex. It would be in-
teresting to conduct an analogous experiment by blocking
inhibitory transmitters in the tectum.

The type of model presented in this section is generic,
and must be specialized in different ways in the light of
differing ethological, anatomical, and physiological ob-
servations on different species. Moreover, the experi-
mental literature at any time is not only not complete, but
is also not free from disagreements. The job of the
modeler, then, cannot be to provide a model constrained
entirely by the current set of parameters, nor can or
should modeling wait till “all the parameters are in.”
Rather, our task is to work closely with experimentalists
in providing models that better structure the data, so that
we can assess which families of data can be integrated in a
consistent fashion. With respect to the issues raised in
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this section, further developments will require more
refined analysis of the retina and of the temporal response
of the different types of tectal neurons. Other contribu-
tions to the further “evolution” of Rana computatrix
involve studies of predator-avoidance and stimulus-spe-
cific habituation, as well as the work to be discussed in the
next section. Both experimental and simulation research
are necessary and will clarify the real nature of the neural
mechanisms of visuomotor coordination.

5. Layered models for depth perception

We now look in more detail at the schemas for depth
perception developed by House to provide the sub-
systems for the “worm depth map” and “barrier depth
map” for the detour model of Arbib and House (1987)
discussed briefly in Section 3. To provide background for
out toad models, we first consider the problem of stereop-
sis, or segmentation on the basis of depth cues, in humans
and monkeys. To test the hypothesis that depth computa-
tion precedes recognition, Julesz (1971) developed a
method based on random dot stereograms. These are
binocular stimulus pairs each of which contain only visual
noise but so designed that the patches of visual noise
presented to one retina are identical to, but at varying
disparities from, patches presented to the other retina.
Julesz found that human subjects’ visual systems were
able to carry out the appropriate binocular matching to
perceive displaced surfaces, stippled with random pat-
terning, at varying depths in space. In other words,
without precluding that some depth perception could
follow pattern recognition, Julesz did establish that the
formation of a depth map of space could precede the
recognition of pattern. He offered a model of this process
in terms of cooperative computation involving an array of
magnetic dipoles connected by springs.

For the brain theorist this raises the question whether
the depth map could be computed by a cooperative
process involving realistic neurons (assuming that the
data on what constituted realistic neurons was provided
by the work of Barlow et al. 1967). One of the first papers
to address this issue was that by Arbib etal. (1974) (Figure
21), who built a cooperative computational neural net
model for constructing the depth map “guided by the
plausible hypothesis that our visual world is made up of
relatively few connected regions.” The neural manifold of
this model had cells whose firing level represented a
degree of confidence that a point was located at a corre-
sponding position in three-dimensional space. The neu-
rons were connected via inhibitory interneurons to em-
body the principle that cells that coded for nearby
direction in space and similar depth should excite each
other, whereas cells that corresponded to nearby direc-
tion in space and dissimilar depth should inhibit each
other (see Sperling [1970] and Nelson [1975] for related
models). It was shown through computer simulation by
Dev (1975) and later established by mathematical analysis
by Amari and Arbib (1977) that this system did indeed
yield a segmentation of the visual input into connected
regions. Later, a variant of this model was published by
Marr and Poggio (1977), and in subsequent writings Marr
showed how our plausible hypothesis that the visual
world is made up of relatively few connected regions
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(b) The problem of resolving ambiguity: We conceptualize “layers” of cells (they are really in “columns”), one for each gross disparity.
The aim is to segment the activity into connected regions. (c) Coupling coefficients for one approach to the problem: moderate local
cross-excitation within layers; increasing inhibition between layers as the difference in disparity increases (from Arbib et al. 1974). (d)
The full model of competition and cooperation, which allows the idea shown in (c) to be subject to mathematical analysis (from Amari

& Arbib 1977).

could be developed into an elegant mathematical the-
orem relating the structure of a depth-perception al-
gorithm to the nature of surfaces in the physical world.

With this work, then, it was established that depth
maps could be constructed by a method of computation
guided by the hypothesis that the world was made up of
surfaces, and that the algorithm could involve some form
of cooperative computation. The cooperative computa-
tion algorithms discussed above exhibited the problem of
false minima, however. For example, consider a picket
fence. Suppose that, by chance, the initial activity favors

that match of fencepostsi, i+ 1, . . . ,i+ jasseen by the
left eye with fenceposts i + 1, i + 2, ..., i+ j + 1,
respectively, as seen by the right eye. In the cooperative
computational model, this initial mismatch could co-opt
the possible choices of neighbors and end up with a high-
confidence estimate that the fence was at a different
depth from that at which it actually occurred. This pro-
vides a local “energy minimum” for the algorithm. The
question then arises of how one could come up with an
algorithm that would avoid at least some of these false
minima. The answer provided by Marr and Poggio (1979)
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can be related to two contributions, one from machine
vision, and one from psychophysics: the idea of pyramids
or processing cones, and the idea of spatial frequency
channels, respectively. Marr and Poggio developed a
system in which, with hardly any cooperative computa-
tion, a fairly confident rough-depth estimate for different
surfaces could be made using the low spatial-frequency
channel. This rough model was then used to control
vergence eye movements, sculpting a more detailed
spatial map on the first approximation through the dispar-
ity information provided via channels of higher spatial
frequency. In mammals, the disparity information actu-
ally seems to be precise only over a very small depth
range. Disparity cues must be augmented by vergence
information. Work in both human psychophysics and
monkey neurophysiology (Poggio & Poggio [1984] review
these and other approaches to stereopsis) has suggested
that primates use three broad classes of depth detectors:
those tuned for fine-depth disparities, those tuned for
stimuli nearer than the coarse fixation distance (near
cells), and those for farther stimuli (far cells). The hypoth-
esis is that near and far neurons help initiate vergence,
whereas tuned excitatory neurons guide completion and
maintenance of vergence.

On the basis of psychophysical evidence that figural
neighborhood interactions are involved in human ster-
eopsis, Mayhew and Frisby (1980) conjectured that the
matching processes are integrated with the construction
of a primitive binocularly based description of image
intensity changes. They then offered an algorithm,
STEREOEDGE, whose initial stages used local piece-
wise binocular grouping of adjacent, similar, zero cross-
ings or peak matches, whereas later stages used a Waltz-
type relaxation process (Waltz 1975; for a review of similar
models see Davis & Rosenfeld 1981). The earlier stages
were much influenced by the work of Marr and Poggio,
whereas the later stages exhibited the cooperative pro-
cessing that Marr and Poggio (1979) sought to exclude. As
Mayhew and Frisby (1981) note, both Marr—Poggio al-
gorithms seek to select matches according to depth con-
tinuity rather than figural continuity, thus differing con-
siderably from STEREOEDGE.

Prazdny (1987) offers an explicit critique of the Marr
and Poggio (1979) proposal that false matches may be
avoided by trading off resolution for disparity range using
a coarse-to-fine matching strategy. He notes that low and
high spatial frequencies are often informationally
orthogonal. For example, if grass is viewed through a
picket fence, there is no reason why the disparities of the
fence should be related in any way to the disparities of the
grass surface. He offers a specific laboratory test using a
random-dot stereogram in which the background plane is
transparent, and two depths, one from low and one from
high spatial frequencies, can be observed simultaneous-
ly. He concludes that patches of the visual field may be
fused and then held “locked” by some form of hysteresis
as proposed by Julesz (1971). Prazdny (1985) offers an
algorithm that successfully detects disparities generated
by opaque as well as transparent surfaces. An interesting
feature of the model is the absence of the explicit inhibito-
ry connections employed by Sperling (1970), Dev (1975),
and Nelson (1975). The principal disambiguation mecha-
nism is facilitation due to disparity similarity; Prazdny
argues that dissimilar disparities should not inhibit each
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other because, when there are transparent surfaces, a
disparity may be surrounded by a set of features corre-
sponding to other surfaces.

After this brief excursion into the analysis of mam-
malian systems, we now return to the depth schemas
required for our analysis of detour behavior in the frog
and toad. It must be noted that even if a specific brain
mechanism is used by the brain of one animal this need
not be the mechanism used by a distinct species. It is
known that the frog and toad can snap with moderate
accuracy at prey located in the monocular visual field; this
led Ingle (1976) to hypothesize that for the frog it was
accommodation (focal length information for the lens) that
subserved depth perception. More detailed experiments
by Collett (1977), which involved placing specially con-
structed spectacles on the nose of the toad, showed that
the story was more complex. The monocular animal did
indeed use accommodation as the depth cue, but for an
animal with prey in the binocular field, the major depth
cue was disparity, with accommodation cues exerting
perhaps a 6% bias on the depth judgment based on
disparity. The problem, then, is to design a model that
will function on accommodation cues in the monocular
animal but will nonetheless be most dependent upon
binocular cues within the binocular field.

With this, we turn to two models of depth perception in
the toad due to House (1982; 1984). First a note on
coordinate systems. In describing the disposition of prey
and barriers, it is customary to use a cartesian grid fixed
on the floor of the animal’s arena. In describing the visual
input, we project the three-dimensional world radially
onto the retinas, thus providing the animal with two
different two-dimensional maps of the world. As is clear
from Figure 64, a given radial direction mapped on one
eye may signal a turn to the left for a nearby target, a turn
to the right for a farther target. We thus posit that the
toad’s depth map encodes the position of external stimuli
in a body-centered set of radial coordinates, one for the
turn angle required to fixate an object and the other for
depth, with acuity decreasing with distance from the
animal.! However, the nature of that encoding in neural
tissue is still unknown. In House’s first model, which is
our current model for depth mapping of barriers, there is
an explicit code, with a small patch in the neural map
encoding a single angular direction but a full range of
depth and the proportion of cells representing nearer
depths much greater than the proportion of cells repre-
senting farther depths. In House’s second model, our
current model of prey localization, there is no explicit
map. Following Collett and Udin (1983), it is posited that
each tectum localizes a prey target on its two-dimensional
map, and it is then up to the motor system to compute the
three-dimensional location from the disparity of these
two signals.

House’s first model, the Cue Interaction Model (House
1982) uses two systems, each based on Dev’s (1975)
stereopsis model, to build a depth map. One is driven by
disparity cues, the other by accommodation cues, but
corresponding points in the two maps have excitatory
cross-coupling. The model is so tuned that binocular
depth cues predominate where available, but monocular
accommodative cues remain sufficient to determine
depth in the absence of binocular cues. The model pro-
duces a complete depth map of the visual field, and so is
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Figure 22, A depth-mapping model using cross-coupling be-
tween an accommodation-driven system and a disparity-driven
system (House 1982).

appropriate for building a representation of barriers for
use in navigation. The model is shown in Figure 22. At
the top we see an accommodation-driven field, M, which
receives information about accommodation and which -
left to its own devices — would sharpen up that informa-
tion to yield relatively refined depth estimates. Below,
we see the type of system, S, posited by Dev to use
disparity information and suppress ghost targets. Howev-
er, the systems are so intercoupled that a point in the
accommodation field M will excite the corresponding
point in the disparity field S, and vice versa. Thus a high
confidence in a particular (direction, depth) coordinate in
one layer will bias activity in the other layer accordingly.
The result is that the system will converge to a state
affected by both types of information — although the
monocular system can, by itself, yield depth estimates.

Figure 23 shows stages in the processing by this model
of a scene comprising a fence and two worms. The left-
hand column of each subfigure shows the accommodation
(above) and the disparity field (below) for the fence
information; the right column shows prey information. In
the top image of Figure 23b, we see the initial state of the
accommodation field. The information is blurred, repre-
senting the lack of fine-tuning offered by accommodation.
Below, we see the initial state of the stereopsis field. The
targets are better tuned, but they offer ghost images in
addition to the correct images. Figure 23f shows the
outcome of the interaction posited in the model. We see
that virtually all the ghost fence targets have also been
suppressed. In addition, we see that the accommodation
information has been sharpened considerably. The infor-
mation is now precise and unambiguous, and thus can be
used to guide the further behavior of the animal.

The above model is of interest in its own right — as a
model specific to the study of the amphibian (we postulate
that such a system processes barrier information), and as
an indication of the class of stereopsis models based on
multiple cues. Here, however, I would like to stress its
more general significance. We claim that cooperative
computation is a general principle of brain operation,
with different sensory systems providing different pat-
terns of information to be factored into the determination
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of the overall behavior of the organism. Since we ex-
plicitly designed the model of Figure 22, we know that
one layer represents accommodation information where-
as another represents disparity information — and we can
clearly see the differences in these types of representa-
tion in Figure 23b. However, Figure 23f represents the
sort of state of activity that is much more likely to be seen
during the ongoing behavior of the system, and here we
see that both surfaces represent pooled information based
on the interaction between the layers, rather than infor-
mation directly supplied by sensory systems. This clearly
indicates the dangers of experimentation based on feature
analysis without related high-level modeling. As we can
see, feature analysis of Figure 23f would simply show cells
responsive to information available at a specific depth and
visual direction. Only a subtler analysis, guided by a
model of the kind presented here, would allow the
experimenter to discover that, although much of the time
the two surfaces exhibited congruent activity, one was in
fact driven primarily by accommodation, while the other
was driven primarily by disparity information.

Collett and Udin (1983) showed that, for the task of
unobstructed prey catching, toads are able to make accu-
rate binocularly based depth estimates even after n.
isthmi (NI), the major cross-tectal binocular relay, has
been lesioned. Collett et al. (in press) report behavioral
studies on two toads with lesions that destroyed or discon-
nected most of both NI. To find out whether binocular
cues remain effective after NI lesions, they tested prey-
catching behavior when the toads viewed prey through
prisms that changed horizontal binocular disparities or
through convex lenses that altered the accommodative
state of the eyes. In both cases, there is a conflict between
monocular and binocular cues. As we have seen, Collett
(1977) found that binocular cues predominate in the
normal animal; the present study showed this also to be
true in the NI-lesioned toads. Collett and Udin postu-
lated that the toad may use triangulation to locate the
prey, rather than a process of disparity matching, much as
the mantid has been hypothesized to form depth esti-
mates by comparing output signals from the two optic
lobes (Rossel 1983). They also found that toads under-
shoot their prey equally whether the disparities imposed
by prisms are horizontal, vertical, or oblique ~ contrary to
mammalian disparity detectors, which can operate only if
there is reasonable vertical alignment between stiinuli on
the two retinas. In particular, Collett et al. doubt that a
point in the visual field is resolved by the tectum into its
horizontal and vertical components. Rather, they offer for
consideration the notion that the tectum codes position in
polar coordinates, with disparities measured as the dif-
ference between the radial coordinates of a point in each
eye.

House’s (1984) second model, the Prey Localization
Model, incorporates the triangulation hypothesis. Each
side of the brain selects a prey target based on output of
the contralateral retina and computes a depth estimate by
triangulation to adjust lens focus. If the selected retinal
points correspond to the same prey object, then the
depth estimate will be accurate and the object will be
brought into clearer focus, “locking on” to the target. If
the points do not correspond, the resulting lens adjust-
ment will tend to bring one of the external objects into
clearer focus, and the two halves of the brain will tend to
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Figure 23. Time course of the model: The time course of the depth model from its initially inert state (a) to a satisfactory depth
segmentation (f) is shown here. All figures are in the retinal angle versus disparity coordinate system. Successive figures are
temporally spaced 1.4 field time-consonants apart. Thus, the elapsed simulation time represented is nearly 7 time constants. The
two-dimensional grids show the level of excitation of the various fields, and the line graphs under the grids indicate the intensity of

localization on the retinal angle axis of excitation in the inhibitory pools (House 1982).
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choose that object over the other. However, Caine and
Gruberg (1985) find that frogs with lesions of NI failed to
respond to either threat or prey stimuli in the corre-
sponding region of the visual field (contradicting Collett
and Udin), while exhibiting normal barrier avoidance and
optokinetic nystagmus.

All this poses a clear challenge for future theory and
experiment.

6. Conclusions and implications

I have argued that computational models of cognition
should yield a functional model of how behavior is
achieved through the interaction of a number of simul-
taneously active computing agents called schema in-
stantiations. The dissection of a behavior in terms of
interacting schemas is to provide the meeting ground for
the behavioral and brain sciences. For the cognitive
scientist, a schema-theoretic model may suffice so long as
it survives the tests of the psychological laboratory. For
the neuroscientist, such a model must be refined to
hypotheses about the localization of schemas, constrained
by the study of brain lesions and of detailed neural
circuitry.

One useful level of analysis intermediate between the
purely functional schema and the individual neuron is
that of the layer in which we can represent activity as a
spatiotemporal function without quantization in terms of
the activity of separable neurons. Yet it can be valuable to
model schemas, their instantiations and their interac-
tions, by interacting layers of neuronlike elements or by
nets of “intermediate-level” units, even if the nets are
little constrained by anatomy or physiology. They still
serve to extend our vocabulary for discussing the proper-
ties of neural networks, better preparing us to handle new
data as they become available.

Our models stress cooperative computation of interact-
ing subsystems at two levels of analysis: (a) competition
and cooperation in closely coupled layers of neurons and
(b) the cooperation of different schemas, each with partial
sources of information, in committing the organism to a
course of action.

Our focus on visually guided behavior in the frog and
toad provided core examples of schema models, of models
based on interacting layers of “neuronlike” units, and of
neural network models closely coupled to detailed data
from neuroanatomy and neurophysiology. Besides il-
lustrating these types of models and the give and take
between them, the examples were also meant to suggest
the excitement of incrementally “evolving” an integrated
account of a single animal, seeing the challenges posed by
combining different aspects of vision with mechanisms for
the control of an expanding repertoire of behavior. I trust
itis clear that the results have general implications for the
study of the neural bases of behavior that are in no way
limited to the frog and toad. In Section 5, the “disparity”
between the findings of Caine and Gruberg (1985) and
Collett and Udin (1983) on the effects of nucleus isthmi
lesions on depth perception and prey catching high-
lighted the need for the incremental style of modeling,
which allows us to gain insight into current experimental
data yet leaves us the flexibility to learn from new data, to
make sense of conflicting data, and to offer both new
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hypotheses and new challenges for experimental testing.

The last point may be emphasized by drawing an
analogy between Aplysia and Rana computatrix. It is not
many years ago that the study of invertebrates was re-
garded as being peripheral, at best, by the majority of
neuroscientists, Yet the increasing attention to mecha-
nisms of neural function has made Aplysia and its squishy
or crunchy cousins invaluable in the study of basic cellular
mechanisms of facilitation and habitaation, and in the
study of the coupling of neurons for rhythm generation,
for example. However, these very successes at or near the
cellular level should not blind us to the drastic differences
in organizational principle that separate the primate brain
from the Aplysia nerve net. My suggestion is that if
creatures that have evolved by chance can provide insight
into cellular mechanisms, then “creatures” that “evolve
in the computer” can provide opportunities for under-
standing organizational principles. Moreover, I argue
that those organizational principles are not to be sought
solely in terms of cellular mechanisms but in terms of
structural constructs (layers and modules), functional
constructs (schemas), and computational strategies (coop-
erative computation, competition and cooperation in
neural nets, etc,). Rana computatrix is thus a test bed not
only for the incorporation of specific data on neural
circuitry but also for the development of organizational
principles. Data on the frog and toad thus do not exhaust
the implications of Rana computatrix. Rather, the better
we understand the relation of detailed neural circuitry to
models that are more schematic (in both senses of the
word), the better we can adapt these models to provide
insight into analogous systems in other organisms.

To close this discussion, let me note that the analysis of
levels here has implications for the social structure of
cognitive science in general and brain theory in particu-
lar. Models evolve in complexity in (at least) two ways:

(a) through replacing units by more detailed networks;
and

(b) through integrating more and more schemas into
explanations of an increased range of behaviors and/or
brain regions.

A problem with (a) is that the simulation of a large array
of units may not be feasible if each unit is described in the
most refined way currently available. A problem with (b)
is that the analysis of one “macroschema” may itself be a
full research task, yet the interfaces with other schemas
may introduce constraints that simply cannot be ignored.
The resolution will require much greater “cooperative
computation” between research groups, and the develop-
ment of standards for interfacing their work. Here are
three “scenarios™

1. We discussed the “evolution” of two different, but
overlapping, subsystems of Rana computatriz: one for
prey selection, and one for depth and detours. We must
now synthesize these into an overall system. In the
process, we may better understand some of the complex-
ity of tectal circuitry as we probe its computations in
subserving several rather different schemas.

2. Much of our modeling addresses the ways in which
retinotopically structured subsystems may interact to
determine the location of objects or task-related features
to commit the organism to some spatially structured
course of action. In the meantime, Robinson and his
colleagues (e.g., Robinson 1981) have used control theory
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to explicate how the (numerically, rather than spatially,
encoded) position of a target can be transformed to
commands for muscle contractions to bring the eye to
bear on the target. This raises fascinating problems in the
interfacing of such efforts:

(a) What control system for, say, snapping at prey,
would be analogous to Robinson’s systems for eye move-
ments?

(b) What constraints on such a control system are
imposed by making it accept retinotopic, rather than
numerical, inputs?

(c) How can a better appreciation of variables involved
in muscle control change our conception of the proper
output for the “more or less visual” portions of the
visuomotor control system?

To the extent that different groups work on these
problems, it would be most helpful to have an agreed-on
“interface language” to express the flow of information
between subsystems. This should be so designed that
researchers could couple programs developed in differ-
ent laboratories and use the experience to suggest
changed input/output specifications to constrain model
development at each site.

3. In our versions of Rana computatrix to date, we
have used “black-box” models of the retina, but we now
seek more insight into the details of spatiotemporal pat-
terns of retinal output (Lee 1986). To this end, we are
simulating a 10,000 neuron network on a CRAY super-
computer. Meanwhile, other workers find it necessary to
exploit the full power of a VAX 11/780 to explore the
detailed synaptic and membrane interactions within a
single neuron. Here, the suitable interface seems to be a
description of the cell’s input/output relations at an inter-
mediate level of complexity. At any time, the task of one
group would be to test how well a network of such model
neurons would explain overall retinal response, while
another group would explore how adequately such a
representation corresponds to the fine details of neuronal
form and function.

As a corollary to these methods should come far better
tools for the exchange of data between experimentalist
and theorist. Published data often lack details crucial for
model testing and development. In the future, we should
see increased availability of large data sets recorded in
forms that will allow easy processing for detailed com-
parison of model and experiment. More generally, the
self-conscious analysis both of what levels of analysis are
appropriate for cognitive science and of explicit meth-
odologies for interfacing between them should greatly aid
the evolution of “cognitive science” from its current
status as a loose federation of disparate subjects into a
genuinely integrated field. My point is that the correct
strategy is not the reduction of cognitive science to one
“fundamental level” but rather the development of strat-
egies for “two-way reduction” (Arbib 1985; Arbib &
Hesse 1986) whereby the reality of different levels may be
recognized and reconciled to create a richer whole.

APPENDIX A

Perceptual schemas for high-level vision. Appendix A outlines the
approach to schemas for high-level vision adopted by Wey-
mouth (1986) as part of the VISIONS project on machine vision
(Hanson & Riseman 1978). The system is to automatically go
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Table 1. Object classes for interpretation

sky
foliage
tree crown
bush
ground plane
grass (lawn)
other ground cover
road
paved (called “dark” road)
dirt (called “light” road)
buildings
other buildings
house
roof
walls
wall features (or “markings”)
window group
window
shutter
door

from a color photograph (e.g., 256X 256 pixels with 8 bits per
color) to an interpretation network describing the scene, with
pointers from object-nodes to the corresponding region of the
image.

Low-level processes work independently of object-specific
knowledge to extract regions of the image to serve as candidates
for surfaces of objects, to extract long lines, and to measure
features ~ such as color, texture, shape, size, and location — of
these regions and lines. (Other processes can yield further
information, such as depth and motion, and the present meth-
odology can make use of these powerful cues.) The result is an
intermediate representation of the image that can serve as the
basis for interpretation processes that apply object-dependent
knowledge to label regions with interpretations, grouping re-
gions and building descriptive networks in the process. Table 1
shows the hierarchy of objects for which knowledge is encoded
in the present system.

The result of interpretation is a hierarchical network compris-
ing a segmentation of the image into interpretable regions, a
labeling of the regions, a geometric model of the scene describ-
ing object placement and structure, and a network containing
the spatial, compositional, and taxonomic relations of objects in
the scene and in its image (Figure Al.1).

The actual system not only produces the network but also a
confidence value associated with each node. Interpretation
integrates many procedures: matching 3D models of geometric
structure to line segments in the image; using pattern identifica-
tion techniques to identify classes of objects associated with
regions; using a network of object-part relations to guide the
process. The system uses parallel distributed control, taking
advantage of redundancies to recover object identity from noisy
error-ridden data.

It will help to distinguish four types of entity (Figure A1.2): A
schema encodes knowledge (both local and contextual) of crite-
ria for recognizing an object of a particular kind. A schema
instance is the trace of running a schema on a particular subset of
(the network constructed on the basis of) the image. When a
schema instance is activated, it is with an associated area of the
image and an associated set of local variables. Multiple instances
would normally be associated with separate portions of the
image. A hypothesis is the assertion that a particular object
provides the interpretation of a portion of the image. It is
registered when the relevant schema instance achieves a thresh-
old in its confidence level, and will then include parameters




Arbib: Visual modeling

Symbolic Relations (represented as arcs)

bush nexi-to house

grass on ground plane shrubs in-front-of (3d) house
roed on ground plane person in-front-of (3D) house
person on-top-of (3D) lewn

Additional spatiel relations (not shown) are pant

).

Figure AL 1. A hand-generated interpretation network for an outdoor scene containing a house, a person, a road, foliage, grass, and
sky. The arcs representing the symbolic relations listed at bottom left of the figure are omitted for clarity. Note that objects may be
rooted in other objects, in actual regions of the image, or may be confidently inferred (such as the back wall of the house) from the
Imowledge of 3D shape and structure of objects accessed by the interpretation process (Weymouth 1986).

descriptive of the object so recognized — contrast schema activa-
tion (when an instance starts to process) with schema “firing” or
propagation (when an instance posts a hypothesis that can affect
the activity of other schemas). A schema instance may set as a
goal the confirmation that a certain context applies. Posting a
goal may in turn lead to the forming of a schema instance to
check whether a posited object occurs in a certain portion of the
image.

As the process of interpretation proceeds, it may select low-
level processes to, for example, refine the segmentation of some
regions, or merge others. The knowledge required for in-
terpretation is stored in what is called LTM (long-term memo-
ry), in the form of a network of schemas - as distinct from STM
(short-term memory), the network that describes the particular
scene. It echoes the structure of LTM, both that between
schemas (for interobject and interpart relations) and that within
a schema (for geometric relations of parts).

The STM network makes context explicit: Each object repre-
sents a context for further processing. The control mechanism
must be able to handle multiple instances of an object class,
keep track of several objects, and use to advantage the relations
among objects. Interobject relations include the part-whole
relation and class membership. Commonalities between two
schemas (e.g., “house” and “barn”) can be handled by making
them subordinate to a more general schema (e.g., “building”).
Other relations (all expressed as edges in the networks) concern
proximity and coexistence: e.g., “attached to,” “near,” “must
occur with,” and “can occur with.” Viewpoint-specific relations
include “above,” “below,” “to the left (right) of.” Scene schemas
are “framelike” in that they describe the types of objects that
may occur in a scene of the given type, together with their likely
spatial relationships. Object schemas may either be primitive,

in that they define criteria for object recognition directly in
terms of properties of the intermediate representation; or com-
posite, in which case they define the object in terms of rela-
tionships between constituent parts.

Each schema combines declarative knowledge (e.g., descrip-
tion of the 3D geometry of an object, or typical appearances of
object surfaces, or object-subpart relationships) with procedural
knowledge in the form of object-recognition routines and con-
trol programs. Object descriptions relate image events to object
labels. They are available at several levels of resolution, and
through a hierarchy of subparts. Hierarchies of specialization
(class-subclass) and composition (part-subobject) are used as a
framework for control, Much of this knowledge about an object
is represented in interpretation strategies embedded within the
correponding schema. Under the guidance of the schema net-
work in LTM, and on the basis of the intermediate representa-
tion (which may itself change in response to requests to low-
level processes), the interpretation processes build an in-
terpretation network that comprises schema instances (what we
have called instantiations), goals, and hypotheses linked to each
other and to groupings of image features and the 3D structures
that interpret them (Figure Al.3). There may, of course, be
several instances of an object-class in a scene. As nodes are
created in STM, their subordinate part (and class) nodes are
checked for consistency with the network in LTM. Missing, but
required, subparts detract from the confidence score associated
with the object. Interpretations that overlap in the image that
are not related by subpart or subclass ares are discounted
(mutually) because they are assumed to be in conflict. This is
handled through a scanning mechanism.

In the present system data are treated as primitive hypoth-
eses; hypotheses are made and confirmed by the selective
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Figure Al.2. (Top) A schema instance in STM (short-term
memory) includes the complete program state of one invocation
of an interpretation strategy (which need not be serial) from a
schema in LTM (long-term memory), providing both the values
of local variables and a pointer to program steps in the in-
terpretation strategy. When the schema is instantiated, some
local variables may be preset to initial default values supplied by
the schema, whereas if a goal activates the schema, initial values
may be set from the goal. Partial interpretations are built up by
pointers to hypotheses in STM. (Bottom) The relationship
between schemas, instances, goals, and hypotheses. When (a) a
schema instance requests a goal, a request link records that
relationship. The goal then activates a new instance of an
appropriate schema (b), with a contract link showing which goal
the instance is working on. If a hypothesis to satisfy the goal is
created by that instance (c), this hypothesis is attached to the
contract link and posted in STM. A flag on the contract link
signals whether further processing is possible. The hypothesis is
then posted (d) to the instance on the request link, which may
resume any processing suspended pending satisfaction of the
requested goal. Unless this instance terminates the connec-
tions, the various links may remain in place as pathways for
further communication (Weymouth 1986).

organization of prior hypotheses; processing of a hypothesis is
determined by a rating estimating its effectiveness in, and
consistency with, the interpretation process. Each schema re-
fers to an object. Not only can a schema create the hypothesis for
the object, it can also reorganize related hypotheses in the
context of the object or scene represented by the schema.
Activation of a schema may ultimately cause the creation of
several hypotheses, either the alternate organizations of related
hypotheses or multiple instances of objects. The schema in-
cludes processes that encode the context represented by the
schema in the control of perception.
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A schema contains a list of important events, a set of pro-
grams, and a set of parameter values. When a schema is instanti-
ated, a specific set of the schema’s programs (which are run in
parallel) are invoked. Default settings of parameters may be
overridden by parameters supplied when the instance is in-
voked. The programs, executed in parallel with equal priority,
control the invocation of functions to extract data and data
structures, and to create and manipulate hypotheses. For exam-
ple, the roof schema invokes a function called roof-rectangle-
builder that tries to combine image regions to build a (perspec-
tive view of) a rectangle within appropriate size, color, and
texture constraints. This function invokes more primitive func-
tions for the organization of data, creating intermediate data
structures such as corners and parallel lines. Instantiation of a
schema may be either data-driven or goal-driven.

In data-driven (bottom-up) activation, any event from the
“list of important events” can activate the schema. To initiate
processing, each region in the intermediate representation has
an associated list of adjacent regions and lines; each line has a list
of regions it borders. Each line and region has a unique index.
We distinguish lines and regions as properties extracted from
the image, from edges and surfaces as items in the scene. Lines
and regions can be filtered bottom-up for significance, so that
certain ones will then have edge and surface hypotheses, re-
spectively, associated with them. These provide “islands of
reliability” to start up the schema activation process. Further-
more, schemas can associate surfaces and edges with objects,
thus elevating certain regions and edges to become primitive
hypotheses in the network describing the scene.

An example of a data-driven interpretation routine for the sky
is as follows. (Other routines can use contextual cues to deter-
mine that a region is skylike.) Five measures of goodness of fit
are calculated for a region:

m,(r) measures the extent to which the location is middle to
high in the image;

my(r) measures the extent to which the color of r is high
intensity, high saturation, and high blue (more generally, it
might also measure closeness to “cloud color” or “smog color™);

m,(r) measures the extent to which r is a large, wide region;

m,(r) measures how far the texture exhibits low blue
deviation;

my(r) evaluates the shape of r in terms of an optimal height-to-
width ratio near one-half.

Then a region is adjudged more “skylike” the greater is

Mg (r) = 5.5my(r) + 4mg(r) + my(r) + my(r) + ms(r).

The particular m,’s and the weights were chosen by trial and
error — the larger the weight, the more crucial the feature.
Future work will show how to automate their extraction from a
large collection of hand-scored images. The point here is not to
advocate the particular measure chosen, but simply to note that
such measures can be effective in assigning a confidence level to
an initial “data-driven” classification of a region on the basis of
local cues. In general, this will only be the first step and in no
way forces the final interpretation. As we see from this example,
some object classes have known limits on surface color and
texture; in other cases, geometric form and surface appearance
may be more useful.

For another example, a long horizontal line below the sky
could activate the roof schema. With additional evidence, the
roof hypothesis might be formed. This might be on the impor-
tant event list of the house schema, thus instantiating it. A chain
of bottom-up activation leads to an early interpretation, which
may then provide a context for the goal-driven extraction and
interpretation of detail.

In goal-driven (top-down) instantiation, a goal is created by
some active program, and supplied with certain parameters. A
schema that can potentially “satisfy” that goal gets activated and
“attaches” a schema instance to it. This instance runs its pro-
grams. If a level of sufficient confidence is reached, “satisfying”
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Figure A1.3.

Interpretation strategies are stored in schemas that are linked in a schema network in long-term memory (LTM).

Under the guidance of these schemas, the intermediate representation is modified and interpreted by a network of schema instances
that label regions of the image and link them to a 3D geometry in short-term memory (STM) (Weymouth 1986).

the goal, a hypothesis is created, and a message is passed to the
goal to tell it that it has been satisfied. The instance may then
stop processing (waiting for further instructions) or may con-
tinue, attempting to refine or change the hypothesis. A cycle of
incremental improvement can continue until (if ever) the sche-
ma instance has reached the end of all its programs.

When a schema program S executes a “wait-for-hypothesis”
statement, it suspends execution until a hypothesis of that type
is created. Alternatively, if the requisite hypothesis has an
associated schema, then S can instantiate the associated schema,
specifying the image area and initial values for the local vari-
ables, The new instance treats the request for activation as a goal
for a hypothesis of the object represented by the schema (Figure
Al.2). If the hypothesis is created, the schema instance will
signal the satisfaction of the goal. The activating schema may
either continue processing or suspend activity pending the
receipt of this signal. In this way schema instances can be
coordinated to create structures within which hypotheses are
linked (through relations) in the final interpretation. Each sche-
ma unifies multiple strategies for the recognition of a specific
object class; these strategies serve the same goal and interact
strongly.

Early matches are used to construct a skeletal description,
which can in turn be used to guide the search for further facts.
The facts that are easier to match, and how they can be used to
limit search, have to be encoded as domain-specific knowledge.
Just which cues are most potent will depend on the specific
image. Context provided by a few quickly perceived cues leads
to the activation of a schema assemblage, which in turn guides
future applications of perceptual schemas. For example, a roof
might be recognized primarily by its geometry if it is unoc-
cluded but by its spatial relation to an already recognized wall if
it is behind some trees.

Procedural information includes the order in which object
primitives are best perceived (edge between roof and sky
matches image better than edge between roof and wall), and the
relative perceptual importance of subparts (look for the windows
before the doors). The object description provides structures for

integrating representations of geometric structure and image
appearances: a compromise between a complete geometric
description (possibly with free variables) in a 3-D object-cen-
tered coordinate system and a summary of expected ap-
pearances. For example, with a tree crown or crumpled paper,
only the latter may be useful. The description of object ap-
pearance is to be related to feature values (such as color, texture,
and shape) of regions in the segmentation.

Important constraints used in the design of the schema
system characterize when two object labels can be applied to the
same space. Constraints are provided by a part—subpart hier-
archy, which allows the description of complex subparts (e.g.,
“roof” and “house”) to be expressed only once and localized,
with surface and line used as primitive subparts; and there are
specializations (e.g., “house” from “building”) forming a class—
subclass hierarchy, which allows the description of a more
general prototype to be associated with the object. Each spe-
cialization of a generic description inherits properties of the
generic object — unless superseded by the specification of
particular features on relations.

Relations like “near,” “above,” “to-the-left-of” are used with
respect to the frame of reference of the camera, whereas rela-
tions concerned with assemblages of objects include “attached-
to” and “occurring with.” For example, a gable roof may be
characterized by two equal rectangles meeting at a common line
(the crest of the roof), meeting at an angle between 25° and 105°,
and having a certain range of possible values of texture and
color. The roof description (Figure Al.4) has nodes for object,
surface, edge. It is assumed that the properties of the roof side
that is not visible in a particular view are the same as those of the
visible roof side. Each view of the roof can be characterized by,
for example, grouping of lines and the relations among them.

Interpretation must amalgamate many uncertain results into
a more perfect union. During visual perception, we may find
some interpretation mistaken (that’s not a shutter) yet retain the
parts of the interpretation consistent with the new data (jt is
rectangular). Many plausible interpretations proceed in paral-
lel, in such a way that the most likely one dominates, sharing
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Figure Al.4. (Top) A network describing a roof: The STM
structure contains both items based on image data and the
derived three-dimensional structure. The nodes may have actu-
al parametric values inferred from a geometric model. The
interpretation network is derived from the schemas in LTM that
contain information on both the 3D spatial relations of the object
parts and on various projective views. (Bottom) Several factors
contribute to the interpretation of a portion of the image as a roof
including region characteristics (color and texture), shape infor-
mation from line data, and relations with other objects (sky and
other house parts) (Weymouth 1986).

common data structures and descriptions. The structure that is
selected as the interpretation is just another organization of the
facts and intermediate representations. Context switching con-
sists of attending to a different portion of the structure that
accompanies the selection of an alternative explanation as the
most likely one.

An example of interpretation is given in Figure A1.5. The
reader is referred to Weymouth (1986) for further examples and
amuch fuller specification ofa range of schemas, including those
which elicit further low-level processing to provide necessary
refinement of the intermediate representation, and those which
construct geometric models of objects in the scene.

APPENDIX B:

Motor schemas for dextrous hand control. Appendix B illustrates the
notion of motor schemas by outlining the approach to schemas
for control of dextrous hands adopted by Lyons and Arbib (in
press). Lyons (1986) developed a generic hand simulation adapt-
ed both (1) to the human hand and (2) to the Salisbury (JPL/Stan-
ford) robot hand, which has three fingers, each with three
degrees of freedom (but four motors). The approach confronts
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Figure ALl.5. This figure shows the time relations of goal
requests, schema activations, and hypothesis creations during
interpretation. The vertical axis shows the passage of time,
starting at the top. We see schema instances created by goal
requests (except for the initial activation of the roof schema by
image data). Note that much of the ordering of hypothesis
formation is essentially random, the result of implementing an
inherently parallel process on a serial computer (Weymouth
1986).

two fundamental difficulties in dealing with complex robotic
systems: the coherent control of many degrees of freedom, and
the integration of sensory information into motor behavior. Asin
Section 2, the approach is based on perceptual schemas and
motor schemas. A complex domain of interaction (tasks and/or
perceptual events) is represented as a schema assemblage or,
more precisely, as an assemblage of (potentially) concurrently
active schema instantiations.

The semantics of a schema is a generic port automaton
description augmented with instantiation and deinstantiation
operations. The instantiation operation forms a schema in-
stantiation (SI) by taking as input a schema together with
instantiation parameters: (1) initial values for internal variables,
and (2) a connection map specifying connections of ports on this
SI to ports on other SIs. The behavior section of an SI cycles
continuously until the SI is deinstantiated. We do not set forth
the formal semantics here, but only the formal syntax, an
informal indication of the semantics, and a few indicative
examples.

The syntax of a schema definition is

[N (ip) (op) (v) (b)]

where
N is the identifying name for the schema;
ip is the list of input port names;
op is the list of output port names;




v is the list of internal variable names; and
b is a specification of behavior.
A behavior is given by the syntax

(behavior section) ::= (Stat)*

(a sequence of 0 or more elements of Stat) where
(Stat) ::= (Assign)| (If | (For) | (Instn) | (Dinstn) | (Forall)

In this list of alternatives, the “conventional” statements are
(Assign) 1:= (Var):=(Expr) | (OutputPort):=(Expr)

which evaluates an expression based on internal variables
and/or values read from an input port either to update an
internal variable, or to write a value to an output port; and

(Ify::= IF{condition)THEN(Stat)* ELSE(Stat)* ENDIF

which is a conventional conditional.
Instantiation and Deinstantiation are novel, and have the

syntax
(Instn)::= (Schemaname);, . {VoHCo}
where
Co::={Couplings)*
(Couplings)::= Ipname<SIPName | SIPName<Opname
SIPName::=Schemanamey,g(port)

and
(Dinstn)::=STOP{Schemanamey,}.

Instantiation creates a new instance of a schema and couples its

ports to extant SIs in the specified way, whereas deinstantiation

simply removes the specified instance from the SI network.
Another novel instruction is the FORALL given by

(Forall)::= FORALL Schemaname DO (Instn)* ENDFORALL

which allows all instances of a given schema simultaneously to
instantiate their own similar but private SIs.

The above definition establishes a schema in terms of a body
(behavioral section). We also build up schemas recursively. An
assemblage SI is a computing agent in which the behavior is
defined in terms of the behavior of a network of communicating
SIs. The syntax of an assemblage definition is

[N (ip) (op) (s)ib)(p)(n)]
where

N is the identifying name for the assemblage;

ip is the list of input port names;

op is the list of output port names;

v is the list of internal variable names;

s is a list of component schemas;

ib lists the commands to form instantiations;

p renames ports of the component Sls as ports of the as-
semblage; and

n defines the port connection mappings between component
SIs.

The syntax of p is given by

p::=(Equivalence)*
(Equivalence)::=(portname)=(portname)

Recalling the format [N (ip)(op) . . . ] for schema syntax, we
list a number of predefined schemas that form the building
blocks for the robot schemas.

Position-Servo Schema

[Jmotor(desired)(actual) . . . {implementation dependent) . . . ]

which will cause the joint to move until the actual position of the
joint as reported on output port actual will match the desired
position requested at the input port desired.

Tactile-Contact Schema

[Tactile()(Contact) . . . (implementation dependent) . . . ]

Arbib: Visual modeling

which has no input port, but continually reports whether or not
the touch sensor with which it is associated has registered a

contact.
Separable-Environmental-Facet Schema

[SEF((F, . . .

which corresponds to a sensor or a perceptual schema monitor-
ing some “facet” of the environment. It could thus be a sensor
reporting the RBG (red, blue, green) values ofa single pixel, ora
house schema reporting the position, size, and other salient
characteristics of a house.

Each such schema may have many instantiations in a given
distributed controller for a perceptual robot.

A task unit is an assemblage consisting of perceptual schemas,
motor schemas, and linking (coordinated control) schemas.

We use the abbreviated syntax [P-M] for a task unit compris-
ing the perceptual schema P and the motor schema M, as in the

following examples:

F,) . .. (implementation dependent) . . . ]

Joint; = [Jposition; — Jmotor;]
Jointf; = [Jforce; — Jmotor;]
Closejoint; = [Tactile; — Joint;]
A precondition for a task unit is an SI, which will test for some
defined conditions before making an instance of the task unit.
We use the abbreviated syntax

Pre ?:[P-M]

for a task unit comprising precondition Pre, perceptual schema
P, and motor schema M. For example
Mug ?:[Mugpar-Graspmug)

where Mug is a perceptual schema to recognize a mug to be
picked up; Mugpar is a perceptual schema to extract relevant
parameters of a mug; and Graspmug is a motor schema for
grasping a mug.

To exemplify the above, we now consider (Figure A2.1) the
Reach task-unit schema, with abbreviated syntax

Reach = [RObject — (MoveWrist, OrientWrist)].
First we set up the RObject schema:

[RObject (Pn On) (Pt Ot)
(handlength grotate)
(Pt:= Pn-handlength
Ot:= grotate+On)]

Handlength and grotate are internal variables set up on in-
stantiation to record the length and orientation of the hand that
will do the reaching. (Thus a more extended task unit could
show explicitly the receipt of these variables from other SIs.) In
the task unit (Figure A2.1), RObject will receive the position
and orientation of the object to be grasped, through input ports

- Pn and On respectively, from output ports F, and F,, of percep-

Figure A2.1. The Reach task-unit schema, with abbreviated
syntax: Reach = [RObject — (MoveWrist, OrientWrist)].
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tual schema SEF,. The body of the SI then adjusts these values
appropriately, and passes on the desired orientation and posi-
tion of the wrist through output ports Ot and Pt. The coordinat-
ing schema 7 then uses these values to direct the motor schemas
Orientwrist and Movewrist to bring these values to the indi-
cated positions. We now give the formal syntax. In what follows,
the inserts enclosed thus { . . . ) are not part of the task unit, but
are rather interpolated comments to aid comprehension.
[Reach (Mp M Op Og) (Pos Ornt)

(Sets up the ports for 7.)

(RObject SEF)

{Specifies perceptual schemas.)
(Movewrist Orientwrist)

(Specifies motor schemas. Next we instantiate RObject)
(RObject(hlength, grot)

(with appropriate values of internal variables)

(Op«—RObject(Pt), Oo«-RObject(Ot),
RObject(Pn)«<-SEF(F)), RObject(On)«-SEFy(Fy))

(and port connections to T and SEF,. We then set up Move-
wrist, which has no internal variables, with its port connections
to )

Movewrist ()
(Mp<Movewrist (actual), Movewrist (desired)<Pos)

(and similarly for Orientwrist.)

Orientwrist ()
(Mp<~Orientwrist (actual), Orientwrist (desired)«—Pos)

(Next we specify the local variables of Reach)
(hlength grot Ptemp Otemp del)

(and then specify the body of 7, which cycles through the
operations of reading the current position and orientation)

(Ptemp:=Mp

Otemp:=Mg
(and then issues commands to move and orient to the object (in
steps specified by the local variable del))

IF Ptemp # Op THEN Pos:= Ptemp+del ENDIF
IF Otemp # Oo THEN Ornt:= Otemp+del ENDIF

(terminating only if orientation and position reach the desired
values.)

IF (Ptemp=0p) AND (Otemp=0g) THEN STOP ENDIF)]

Our second example illustrates the use of the FORALL
statement. The schema Object? (Figure A2.9) initiates a parallel

Figure A2.2 The parallel search initiated by Object?
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search for the presence of a given object in the environment. To
simplify matters, we assume that the perceptual schema Objtest
can decide the presence of the object from a set of four measure-
ments reported by SEF (a different schema from that of the last
example) over 4 output ports F, F,, Fy, F.

[Objtest (F; Fy F3 Fy) (judgment)
(DF, DF, DF; DF)

(The input ports Fy, Fy, F,, F, will receive the messages from
the corresponding output ports Fy, F,, F,, F, of SEF, and DF;,
DF,, DF,, DF, are local variables that hold the desired values
that characterize the object (we do not attempt to emulate here
the subtlety of perceptual schemas of Appendix Al). The body of
the schema thus makes the simple comparison) ,

(IF (F,=DF;) AND (F;=DF,) AND (F3=DFj) AND (F,=DF,)
THEN judgment:=1

ELSE judgment:=0

ENDIF

STOP)]

(Object? then operates by instantiating copies of OBjtest for
every region of the environment. We assume that an SEF ST is
already in place to monitor each region, We also structure
Object? so that it can feed information about the features of the
located object to some task unit T.)

[Object? (result) ()
(T.....

(This is shorthand for the specification of task unit T.)
(DF, DF, DF; DF)

(Internal variables make the desired feature values available to
each Objtest SI. The next instructions create one instance for
each extant SEF SI:)

(FORALL SEF, DO
Objtesti (DFl DF2 DF3 DF4)
(Objtest(F)<-SEF(F,), Objtest(Fy)<-SEF(Fy),
Objtest(F3)<—SEF(F3), Objtest(F4)<-—SEF(F4),
Object (result)«Objtest; (judgment))
ENDFOR

(These connections include a fan-in so that Object? will be
bombarded by the judgments of all the Objtest SI for all the
regions. Object? waits for a match, then sets up the task unitand
terminates. )

IF result=1 THEN

STOP
ENDIF)]

The FORALL construct here expresses the inherent paral-
lelism of a search. Of course in any actual implementation, be it
in brain or robot, a key question will be to emulate this paral-
lelism on a limited set of processors. For example, peripheral
vision in humans can extract only crude feature properties; eye
movements then direct foveal processing on the basis of these
peripheral cues as well as on the basis of the current schema
assemblage representing the environment (Didday & Arbib
1975).

The observant reader will note that this appendix describes a
formal programming language that does not have explicit con-
structs for two concepts central to the vision schemas of Appen-
dix A — namely, for the distinction between goal, hypothesis,
and schema instance, and for the maintenance of activa-
tion/confidence levels. These can in fact be handled by intro-
ducing goal schemas and hypothesis schemas (the “request” and
“contract” links will be built by the instantiation processes of
Figure AL2), and by maintaining the level as an internal
variable to be updated by the body of the schema, However, itis
a question for our current research to determine the best
“marriage” of these two approaches to building a schema en-




vironment for efficient implementation on a network of
computers.

APPENDIX C:

Matrix model of tectal-pretectal interactions. Appendix C is adapted
from Appendix A of Cervantes-Perez (1985) and makes explicit
the model of tectal-pretectal interactions used in Section 4. The
input to the model comprises three arrays, R2, R3, and R4,
which are generated by a model of the retina and represent the
firing rates of three populations of retinal ganglion cells. The
tectum~—pretectum model comprises six layers, each of which is
characterized by two arrays: the first, labeled with a lower-case
letter, represents membrane potentials; the second, bearing the
corresponding upper-case label, represents firing rates. There
are five layers in the tectum — glomeruli (gl, GL), large pear-
shaped cells (Ip, LP), small pear-shaped cells (sp, SP), stellate
neurons (sn, SN), and pyramidal cells (py, PY)— but there is just
one layer (tp, TP) of cells in the current model of the pretectum.

The cells interact only via their “firing rates,” which depend
solely on each cell’s own membrane potential. Thus in this
model we do not need separate arrays to hold “old” and “new”
values, but instead cycle through two steps:

Step 1: Using current values of firing rate arrays, compute
new values of membrane potential arrays.

Step 2: Using new values of membrane potential arrays, use
componentwise operations to form the new values of the corre-
sponding firing rate arrays.

Step 1. Updating the membrane potentials

The difference equation: The membrane potential of each cell is
described by a differential equation of the form

Tm dm(t)/dt = — m(t) + Si(t)
which we will replace by the difference equation
Tml(m(t + At — m(t))/At] = — m(t) + S,,{t)
which yields
(1) m(t + At) = (1 — Atlr,)m(t) + (At/m)S,(t).

The connection matrices: The influence of one layer, a, on
another, b, will either be pointwise, in which case the strength
of the connection will be written w, ,, or some fan-in will be
involved, in which case we represent the connections by a
matrix W, . In the present model, each matrix is 3X3, and is
constant save for its central element. In what follows we shall
use the abbreviation W{x,y} for the matrix

yyy
yxy
yyyl
It should also be noted that the use of pointwise connections is
unlikely to survive when the model is expanded, so that in what
follows each term of the form w,,.a has been replaced by
W, ,*a where W, , = W{w,_,,0}.
With this we present the details for each cell type. In each

case, we use the difference equation (1), so it only remains to
specify 7, and S_ for each choice of m:

Glomerulus
Here

Tg = 2.3
and

Sgl = Wrz‘gl*RZ + W]p.g]*LP + Wsp.gl*SP

Arbib: Visual modeling

where
Wioo.g = 6.7, 0}, Wip. = W8, 5.3} and Wy g = W{0.7, 0.7},

Large pear-shaped cell
Here

mp = 0.3
and

S‘p = Wg“p*g] + W,ZJP*R2 + Wsp.]p*SP - th_lp*TP -
Wsn.lp*SN

where
Wngp = VVrZ.)p = W{lv O}
Weptp = W{0.8,0.6}, Wy, ), = W{0.1, 0}, and Wy, =
W{8.0,8.2}.
Small pear-shaped cell
Here
Tsp = 0.9
and

Ssp = Wr2.sp*R2 + ng.sp*CL - th.sp*TP - Vvsn.sp*sP

where

Wr2.sp = W{]-: 0}7 ng.sp = W{l.0,0.5},
Wip.sp = W{0.1, 0}, and Wy, o, = W{20.0, 0},

Stellate neuron
Here
Ten = 1.6
and
Sen = Wip.sn*LP
where
Wip.en = W{5.2,5.2}.

Pyramidal neuron

Here
Toy = 0.12
and
Spy = Win.py*RE + Wig p *R3 + Wiy gy *Re + Wy #SP +

Wlp‘py*LP - th.py*TP
where

Wr2.py = W{SS, 0}, WrS.py = W{OS, 0}, Wr4.py = W{70, 0},
Wep oy = W{2.0,0}
Wip.py = W{0.7, 0.56}, and Wy, 5y = W{0.9, 0},

Pretectal cell
Here
T = 0.02
and
Sip = W3 p*R3 + Wy p,*R4
where
Wiap = W(0.3, 0} and W,y = W{5.0, O},
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f(x) h{x) s(x,A,B)
| s ]
x [ A B x
Figure A3.1. Thresholding functions.

Step 2. Updating the firing rates

The “firing rate” of a cell is obtained by passing the membrane
potential through a “thresholding function” of one of the types
shown in Figure A3.1:

fix) = if x = 0 then 1 else 0

h(x) = if x = 0 then x else 0

s(x,A,B) = if x = A then 0 else (if x = B then 1 else (x — A)/(B
— A).

The updating of the firing rate is then accomplished simply by
applying a thresholding function componentwise to the corre-
sponding array of membrane potentials.

Glomerulus Here we simply take

GL =gl

but we still need two distinct arrays because of our updating
convention,

Large pear-shaped cell LP = f{lp — 1.0
Small pear-shaped cell SP = f{sp — 2.0)
Stellate neuron SN = h(sn — 0.2)
Pyramidal neuron PY = s(py, 2.3, 5.0)
Pretectal cell TP = h(tp — 3.8).

i
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NOTE

1. A series of papers by Pellionisz and Llinds (e.g., 1982)
introduced a tensor theory of cerebellar function. Arbib and
Amari (1985) have shown that the central claim of the theory —
that the input to the cerebellum is a covariant intention vector
transformed by a metric tensor encoded in the cerebellum to a
contravariant execution vector — has not and probably cannot be
substantiated. Later papers have made it clear that the work of
Pellionisz and Llinds uses no tensor analysis beyond linear
algebra, However, the work has had considerable heuristic
value for a number of investigators (e.g., Gielen & van Zuylen
1986), encouraging them to seek an explicit analysis of coordi-
nate transforms in the brain. It must be stressed that the analysis
is unrelated -to metric tensors, seeking rather to explore the
utility of linear algebra (e.g., the Moore-Penrose generalized
inverse; Pellionisz 1984) for the study of coordinate transforms,
a method already applied in robotics.
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Commentaries submitted by the qualified professional readership of
this journal will be considered for publication in a later issue as
Continuing Commentary on this article. Integrative overviews and
syntheses are especially encouraged.

Biologically applied neural networks may
foster the coevolution of neurobiology and
cognitive psychology

Bill Baird
Department of Biophysics, University of California at Berkeley, Berkeley,
Calif, 94720

Arbib’s work and expertise span in detail an exceptional range;
from experimental neurobiology through theoretical neural
modeling to artificial intelligence and cognitive psychology. The
program of synthesis across levels he describes and illustrates in
his target article is worthy of special attention. The strategic
importance in this program of the detailed neural modeling of a
specific well-chosen physiological system as opposed to general
analysis of abstract neural networks is strongly delineated in
Arbib’s discussion. There is a clear message here for the bur-
geoning field of “connectionism” and neural networks for asso-
ciative memory. The strongest impact and development of these
theoretical notions may be achieved where they are confronted
with the real physiology of a particular system and refined to
provide the bridge between biology and schemas of behavior
that allows the cross-fertilization of structural and functional
descriptions to occur.

Theoretical work in Freeman's laboratory at Berkeley on
olfactory pattern recognition in the rabbit olfactory bulb (Free-
man 1975) has proceeded by an interactive process like the
incremental modeling approach Arbib describes, and we basi-
cally endorse his perspective. [See Skarda & Freeman: “Brains
Make Chaos in Order to Make Sense of the World,” BBS 10(2)
1987.] In this commentary I will focus on the issue of associative
network implementations of perceptual schemas (an issue that is
close to our work), expanding on selected points. Through an
88 array of electrodes monitoring spatial patterns in the EEG,
we have observed the intermediate level of large-scale neural
network activity during behavioral conditioning; this has given
rise to a rewarding dialogue between experiment and theories of
associative memory (Baird 1986a). The demands of this system
have forced us to create and analyze pattern recognition net-
works that bifurcate from a single chaotic background state into a
state space with multiple periodic and chaotic attractors (Baird
1986b). We hope that nature is instructing us to go beyond the
systems that engineers are at present comfortable with so that
we may discover new principles in these unusual features given
to us by the natural design.

Although the “behavior” we study is a simple licking response
to water reward, and we have not yet been motivated to use
schema level descriptions, we are aware of the importance of the
“action-sensation” cycle in perception and have an interest in
visualizing the full sensory/motivational/motor control process
as a system of neural networks (perhaps in “layers” of intercon-
nected cortical areas). It was something of a disappointment to
find that, despite Arbib’s extensive work in motor control
elsewhere, and the well-developed schema-level descriptions of
approach behavior in frogs in his target article, there was no
discussion of a corresponding neural model of motor or moti-
vational structures or of the systems mapping cooperatively
discriminated sensory features to motor output to implement
the schemas described. There is mostly topographic mapping
and local neighborhood interactions in the model presented,




characteristic of a feature extraction or preprocessing operation,
which in our system is followed by an associative memory type of
network with global cross-correlating interconnection for object
recognition. Might there be the need for such a system in the
frogP It seems that relatively global (nontopographic) cross-
mapping might be required at least to map ratios of features or
patterns arising from identified objects to behaviorally related
but otherwise structurally unrelated ratios of motor activation.

An important role of the intermediate level network model
noted by Arbib is to guide and interpret experimental investiga-
tion where complex cooperative behavior of neurens is in-
volved. This is certainly the case for associative networks.
Single-cell “receptive field” or “trigger feature” investigations
*can be highly misleading (or uselessly incoherant, as they are in
our system) when the network is cross-correlating its inputs.
Apparent receptive fields may exist in such a net when the
experimental situation is such that it always relaxes to the same
attractor. Appropriate variation of the experimental context,
however, could reveal a large variation in the apparent recep-
tive field (as reported in some studies) when a different attractor
is evoked and the relation of unit activity to input is completely
altered.

Arbib points out that Marr’s “computational” level or the
functionalist’s algorithmic level do not have the generality and a
priori independence from biological implementation that a
cognitivist might imagine, since different organisms may use
different algorithms in such a way that the concept of the task
itself is different. Thus the discovery of the implementational
details of a biological system may contribute to the way a task is
conceived and described at the functional level. Furthermore,
the structural network level of description may be viewed as
providing a compact way of encompassing large classes of sym-
bolic algorithmic descriptions of the behavior of a system in the
case where a network with a particular learning algorithm is
capable of generating many specific algorithms to solve large
classes of problems. Without knowing what specific symbolic
description is appropriate we can know that the adaptive system
is capable of solving the problem. John Holland’s classifier
system (1975), which uses a “genetic” learning algorithm, is
perhaps a good example of an autonomous self-programming
system. It works with binary strings whose symbolic meaning
might be hard to interpret, yet succeeds in generating, evaluat-
ing, organizing, and utilizing new productions to perform the
tasks required to meet its internal needs in an arbitrary external
environment.

The centrality of instantiations
John A. Barnden

Computer Research Laboratory and Computer Science Department, New
Mexico State University, Las Cruces, N. Mex. 88003

Tapplaud Arbib’s incorporation of multiple, coexistent instantia-
tions of schemas as a central feature of his framework. Not
enough attention has been given in neural net and connectionist
research to multiple instantiations of schemas, frames, situa-
tions, scripts, and so forth. In fact, insofar as Arbib’s target
article is about the general nature of a schema framework, I see
its main substance as lying in the notion of multiple instantia-
tions. If Arbib’s general view of schemas did not encompass
multiple instantiations, then one would presumably view sche-
mas themselves as relatively permanent, interacting, concur-
rent processes. There is nothing particularly novel about the
individual abstract schema programs Arbib proposes, and the
general idea that information processing in the brain is based on
interacting processes is hardly new. This, compounded with
Arbib’s understandable desire for a general framework rather
than a particular specification language for schemas (see sec. 2,
para. 1), means that without multiple instantiations we would
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not be left with very much in the way of a substantive proposal
about abstract schemas in general. On the other hand, the
inclusion of multiple instantiations presents deep, revealing,
and approachable problems when the task of implementing the
schema level in neural circuitry is considered.

I do not mean that multiple instantiations exhaust the sub-
stance of Arbib’s target article in all its aspects. First, I am not
impugning the intrinsic interest of the neural-level modeling
efforts he reports. Second, the notion of cooperative computa-
tion would be important and interesting even in the absence of
multiple schema instantiations. There are problems to be tack-
led in determining the nature of communication among cooper-
ating agents and the means by which agents absorb incoming
information. These are pressing issues in computer science,
artificial intelligence, and cognitive science (including connec-
tionism). In the Section 5 depth-finder example, the two coop-
erating subsystems (one disparity based, one accommodation
based) can, I take it, be viewed as unique instantiations of two
different schemas. This uniqueness does not mitigate the worth
of the model or the schema notion underlying it.

I also find Arbib’s plea for an intermediate level between
behavior and neurons a refreshing corrective to the lack of such a
level in much neural-net and connectionist work. Quite apart
from the point that intermediate levels are a heuristic aid in
managing a large research effort, they can also free one to
discover useful reductions of high-level notions to low-level
ones that could otherwise escape one’s attention — through
being, perhaps, too complex or deviant to conceive of unitarily.?

Arbib is right to emphasize multiple schema instantiations,
but I wish that he had pursued the matter further. The depth-
finder example of Section 5 is prominent in the paper, yet it does
not involve multiple instantiations. The other examples, in the
main text and Appendix B, do not involve detailed attention to
multiple instantiations, and there is no consideration of how
multiple instantiations would be neurally realized. As I shall
now discuss, the multiple-instantiation issue has relationships to
longstanding issues in brain theory and connectionism, and
poses interesting problems for these fields.

One old problem in connectionist research is that of avoiding
“cross-talk” between different pieces of information. For exam-
ple, if one supposes that a connectionistically implemented
agent is simultaneously entertaining the ideas that John loves
Mary and Bill loves Sally, one has to take a certain amount of
care to ensure that the agent’s internal state is not also one that
would obtain if the propositions were instead that John loves
Sally and Bill loves Mary.2 A standard approach to the issue is
based on recruiting neurons or neural assemblies to represent
the particular instances of a situation class (e. g., loving) as well as
having a neural assembly standing for the situation class itself
(see Hinton 1981). Recruitment is also advantageous in account-
ing for the ability of an agent to entertain any novel, short-term,
complex propositions (or data structures) in the first place. The
notion of temporary, short-term recruitment in turn raises such
questions as, for example: How is it managed? Does it rely on
synaptic-weight change or on some other mechanism? How can
it be made fast enough? How economically can inferential and
other information-processing mechanisms respond to neural
structures involving recruited — and therefore in a sense unpre-
dictable — assemblies? How are recruited assemblies demobi-
lized? — a nontrivial question at least in the case of “distributed”
connectionist systems in which a given assembly can share many
neurons with other assemblies. The report of a recent workshop
on connectionism (McClelland et al. 1986) identifies cross-talk
and the more general issue of accounting for possibly novel,
complex temporary data structures as being of major concern.
The relevance to the multiple-instantiation issue is clear —
simultaneous presence of several propositions about loving is
similar to, or even an example of, the simultaneous presence of
several instantiations of an Arbib schema.

Suppose for definiteness that a schema § is neurally realized
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as some particular neural net N. What then does it mean to say
that an instantiation of S is present? If only one instantiation ata
time were ever allowed, an instantiation’s existence could sim-
ply be a matter of certain state parameters of N having certain
values — e.g., certain neurons having certain firing rates. But in
the multiple, coexisting instantiation case, things are not so
simple — e.g., we cannot suppose that a neuron can simul-
taneously be firing at several different rates. We can ask general
questions such as: Can we produce a theory in which different
instantiations are somehow superimposed states of N itself? Or
are the different instantiations different copies of N in some
sense (these copies being dynamically recruited, or perhaps
permanently existing but only intermittently active)? Or do the
different instantiations involve neural networks that are not
copies of N but are temporary holders of different sets of
parameter values for S and different “program counters” for S
(so that the networks might be copies of only a part of N)? If
instantiations involve neuronal recruitment, what are the an-
swers to the above questions about recruitment? How are the
answers to all these questions affected by a consideration of the
number of instantiations of a given schema that can be simul-
taneously present?

This discussion of instantiations can be modified to account for
the possibility that it is only instantiations, and not schemas
themselves, that are identifiable with neural circuits. A schema
could, for instance, be construed merely as a propensity to
create or activate neural circuits of a certain form that act as
instantiations.

A special problem concerning data communication among
computing agents arises for a brain-oriented framework like
Arbib’s, There are several different types of neural encoding
that might be envisaged for the data. For example, on one
channel of communication the information might take a reti-
notopic form; on another, it might be encoded in the firing rates
of some neurons with no special organization. I appreciate that
at the schema level Arbib may not wish to take such factors into
account because they are implementation details (although he is
sensitive to them, as point 2(b) in section 6 shows). At the same
time, I suspect that such factors should be allowed to affect
abstract schema formalisms. For example, a particular type of
encoding (perhaps by single-neuron firing rate) may have a large
inherent imprecision, so that only data channels that could
tolerate that imprecision should be so encoded, whereas other
types of encoding (e.g., fine-grained retinotopic encoding of
position information) may involve much less imprecision. It
might therefore be advantageous to specify, in a schema for-
malism itself, the degrees of precision that various channels
(ports) require. This would (a) provide a guard against un-
critically allowing schemas to transfer values on low-precision
channels to high-precision ones. More generally, it would (b)
help to ensure that the behavioral part of a schema does not
involve excessive hidden conversion between different sorts of
encoding. It would also (c) usefully constrain the types of
encoding allowed in implementing the schema system at hand
in neural circuitry. Points (b) and (c) suggest that a schema
formalism could even allow particular encoding techniques to
be specified or suggested for channels.

There is another enhancement to the schema framework that
I would like to propose and that I suspect would be congenial to
Arbib. Appendices A and B imply that the behavioral part of a
schema is to be specified by means of a fairly conventional
analogue to current programming languages (although the im-
precise description of schemas in the main text leaves the door
open to other sorts of behavior specification). The suggested
enhancement is to allow the behavior to be specified instead by
means of a mathematical description of an input—output func-
tion linking input ports to output ports, or, more generally, of a
relation (in the set-theoretic sense) linking the ports. The
introduction of a program to compute the function or relation
could then be part of the task of implementing the schema in
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lower-level terms; and it may not even be appropriate to think of
using a program (as opposed to, say, a connectionist subsystem
with no convenient abstract algorithmic characterization) on the
implementation route. I would in fact favor a hybrid approach in
which both programs and mathematical descriptions are avail-
able as behavior-specification tools.

NOTES
1. In my own research on connectionist models for complex short-

term inferential information processing I have eschewed the typical idea
of thinking of abstract connectivity among pieces of information as being
mapped in any direct way onto hardware connectivity among units in a
network. Instead, the mapping appeals to an intermediate level in
which there is a notion of relative position of data items in certain
representational media. This relative position at the intermediate leve:
manifests itself in terms of hardware connectivity in a complex way (see

Barnden 1985; 1986).
2. In some contexts, however, one might want to claim that cross-talk

effects accurately reflect human information processing. This approach
is taken in a limited visual-processing context by Hinton and Lang

(1985).

Advantage of modeling in neuroscience

J.-P. Ewert
Department of Neuroethology, University of Kassel, D-3500 Kassel, Federal
Republic of Germany

Professor Arbib’s successful approach to Rana computatrix fol-
lows the cybernetic enterprise of addressing problems of sen-
sorimotor coordination by constructing model systems. Because
there are no boundaries between biological, artificial, and
hybrid systems in cybernetics (the “bridge between sciences”),
cross-disciplinary collaboration makes comparative studies in
brain function feasible and testable. The amphibian brain can be
regarded in a certain sense as a kind of “microcosm” of the
highly complex primate brain, as far as certain homologous
structures and assigned ballistic preplanned and pre-pro-
grammed target-oriented behavioral processes are concerned
(e.g., see Bullock 1983; Northeutt 1986). It is thus possible to
investigate in amphibians comparable visuomotor functions
without having to face mammalian complexity. During our
collaborative research with systems theorists we have learned
that progress in the understanding of neural principles proceeds
with guidance from model networks. Modeling — paralleled by
simulations — transforms theory derived from data into testable
structures. Where empirical data are difficult to obtain because
of structural constraints, the modeler can provide assumptions
and approximations that, by themselves, are a source of hypoth-
eses and subject to predictions. If a neural model is tied to
empirical data, it can be used to predict results and to stimulate
new experimental tests whose data may in turn improve the
model. The algorithms derived from the model have heuristic
value for comparative studies in neuroscience and can also be of
applied scientific interest. We will select some examples to
illustrate the advantage of modeling.

Predictions. Our first systems-theoretic model explaining the
neuroethological data of the toad’s prey selection in response to
moving visual objects (Ewert & von Seelen 1974) was based on
interacting homogeneous networks coupled with lateral excita-
tion and lateral inhibition and was characterized by the follow-
ing properties: (1) Specific filter operations in space and time
domains are carried out by retinotectal and retinopretectal
networks; (2) stimulus discrimination is a result of subtractive
network interactions; (3) the output of the model network is
mediated by prey-selective tectal neurons that decode the
“prey schema” (encoded in terms of circuits provided by func-
tional units); (4) pattern recognition can be implemented with
this circuitry by comparing (cross-correlating) the visual input
with its filter property (see also Suga 1984). Due to symmetrical




network couplings, such a model predicts that the preference of
a stripe moving in worm (W) configuration versus the same
stripe moving in antiworm (A) configuration should be invariant
under the direction of object movement in the x-y coordinates of
visual space. Experimental tests of the toad’s prey-catching
(Ewert, Arend, Becker & Borchers 1979) and the response of
prey-selective tectal T5(2) neurens (Ewert, Borchers & von
Wietersheim 1979) have shown movement directional invar-
iance of the W/A configural preference. The invariant (“univer-
sal”) refers here to invariant relationships provided by the
neuronal circuitry.

Limitations. Without simulations it is often hard to realize that
a given model network actually includes many different models,
.depending on the choice of network parameters. This can be
illustrated by the following example. Since elongating an anti-
wormlike stripe perpendicular to the direction of movement
only changes spatial parameters whereas elongating a wormlike
stripe parallel to the direction of movement influences both
spatial and temporal components of the stimulus, the W/A
{worm/antiworm) discrimination (Ewert 1969) can be explained
in part by an “asymmetry in the time domain” despite sym-
metrical network couplings: The worm darkens a retinal area
longer than does a corresponding antiworm. Computer simula-
tions by model networks (Cervantes-Perez 1985) therefore pre-
dict — for specific parameter settings — that changes in the
dynamic domain should, by variation of the visual angular
velocity of the stimuli, alter the stimulus selectivity of the
network’s output and, at an extreme, even lead to an inversion of
W/A preference. However, the experimental data on the com-
mon toad’s prey-selective T5(2) neurons (see Ewert et al. 1978,
p. 44; cf. also the corresponding “H>S>V neurons” by Roth
and Jordan 1982, p.395) and prey-catching (Burghagen 1979)
have shown that the W/A configural preference is invariant
under changes of stimulus angular velocity. (The velocity-de-
pendent “inversion” of the fire salamander’s W/A preference
reported by Luthard and Roth [1979] has unfortunately not
turned out to be reproducible — Roth, personal communication;
Himstedt 1982; Finkenstidt 1983 — and can only be explained
by experimental error.) Although state-dependent processes
modulate certain characteristics of visual neurons so as to influ-
ence object discrimination (related to stimulus area and shape)
and to shift category boundaries, an inversion of the W/A
configural preference in prey catching could not be induced,
even by specific training experiments (Ewert 1981; for defini-
tions of “configuration” and “shape” see Appendix in the target
article by Ewert, this issue). The reason for velocity invariance
in the W/A preference is obviously linked to (1) the different
properties of tectal W-coding and pretectal A-coding circuits
and (2) their subtractive interactions. This example shows that
the potential of a model system may be much greater than the
actual requirements of the brain. The interaction between
theory and experiment thus allows one to determine the opera-
tional range of the validity of certain parameters of the model.

Approximations. The models of Arbib and his coworkers pro-
ceed at two levels: schemas and neural networks. Arbib’s con-
cept of schemas extends the usage in classical ethology. Where-
as the classic work of Jacob von Uexkiill (1909), Niko Tinbergen
(1951), and Konrad Lorenz (1943) studied behavior in terms of
the release of single motor schemas (fixed action patterns) by the
activity of separate perceptual schemas (innate releasing mecha-
nisms), schema theory allows us to study the interpretation of
the environment in terms of the interactions of perceptual
schemas, yielding appropriate coordinated control programs for
motor schemas and compound motor coordinations (cf. “in-
teracting functional units” of Figure 19C and “sensorimotor
codes” of Figure 22 in Ewert’s target article). The model of
detour behavior is a good example of this. But since Arbib and
his coworkers seek neuronal implementations of schemas, they
also share in the advantage that neuroethology has over classical
ethology: We can come to understand how the evolution of the
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brain constrains the algorithmic specification of schemas (see
also Ewert’s commentary on Anderson’s target article, this
issue). The method of incremental modeling (“evolving family of
models”) similarly gives insight into brain mechanisms by study-
ing how to change the model to accommodate the function of
more and more schemas and their interaction.

These models incorporate properties concerned with space-
and context-dependent variables, as well as coordinated control
programs that link perceptual and motor schemas. Investigating
sensorimotor codes we are faced with the question of how these
might “anlock” specific bulbar/spinal motor pattern generators
(MPGs), the motor schemas (see Figure 22 in Ewert’s target
article). Our recent discovery of bulbar neurons displaying
multiple properties (e.g., involving T5(4), T4, and cyclic burst-
ing characteristics) suggests that interactions among highly
integrative cells are incorporated in a relatively compact “re-
ticular” network (Ewert et al., submitted; Schwippert & Ewert,
submitted). Since in the interwoven structures of the reticular
system functions are not discretely localized but integrated
(which is a problem for lesion studies), guidance from model
networks may be particularly fruitful here in order to investigate
coordinated control programs and understand MPGs (Selvers-
ton 1980). Concerning the “interwoven” nature of the bulbar
reticular structure one can ask whether MPGs for various
rhythmic action patterns depend on a general bulbar pattern
generating circuitry that (as a function of specific inputs from
different “command releasing systems” or sensorimotor codes)
develops appropriate patterns of excitation and inhibition. Al-
ternative models may involve individual, partly interacting,
oscillators,

Applications. The study of biological sensorimotor systems
holds the promise of providing elegant solutions to practical
problems in technical devices. Natural pattern recognition sys-
tems, for example, successfully deal with different invariance
conditions (see commentary by Stevens on Ewert’s target arti-
cle, this issue). Comparable properties have proved difficult to
implement in the optoelectronics of machines (e.g., posi-
tion/orientation/velocity invariance in the recognition of work
pieces on assembly lines; prevention of occlusion by background
structures). Computer simulations of natural information-pro-
cessing systems represent operating algorithms, derived from
the basic properties of the model, which could be implemented
in robotic systems.

We hope that the current dialogue between Bufo bufo and
Bufo computatrix will help solve some of the problems in our
understanding of adaptive sensorimotor and motor pattern gen-
erating processes.

Levels of psychological reality, Arbib’s
‘“schemas,” and matters maybe
metaphysical

Keith Gunderson
Department of Philosophy and the Minnesota Center for Philosophy of
Sclence, University of Minnesota, Minneapolis, Minn. 55455

I would like to'raise a few noncontentious methodological and
perhaps quasi-metaphysical questions about matters only in-
conspicuously untouched in Arbib’s target article. Arbib hopes
his model will help reveal principles of neural organization and
will mediate between that level and complex behaviors that, I
assume, are in some way psychological. I take it that “schemas”
are a kind of conceptual dowry donated to a hopeful marriage
between functional cognitive levels of description and those
involving neural localization and implementation in neural
circuitry.

I am not competent to assess the details of the latter levels,
but I am impressed by arguments of Cherniak (1987) that
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various idealizations of neural (cognitive) function:-do not seem
to accord with neuroanatomy (one requiring a brain as “bigas a
bathtub”) and so on. So Arbib’s modeling of schemas “by
interacting layers of neuronlike elements, or by nets of ‘inter-
mediate-level” units” which are “little constrained by anatomy
or physiology” may be more risky than it appears. But setting
that aside, how is the top (behavioral) level to be circumseribed?

Arbib claims that his schemas (simultaneous computing
agents) “must be ‘large’ enough to allow an analysis of behavior
at or near the psychological level.” What, however, is the
difference between a psychological level and a “near”-psycho-
logical level insofar as the explanatory target of Rana com-
putatrix is concerned? Unless we know this, exactly what
Arbib’s “large”-enough schemas initially apply to at the top tier
of analysis remains unclear. Let me label this the Psychological
Level Triangulation problem (or the PLT problem).

A PLT problem arises for any psychological research program
that purports to model, explain, reduce, or eliminate meth-
odologically or metaphysically puzzling mental phenomena at
some “deeper” — clearly physicalistic (organismic) — level of
analysis. I also think the PLT problem pops up in the strategic
framework espoused by Arbib, which does not attempt to
reduce cognitive science to one fundamental level but instead
uses what he calls a “ ‘two-way reduction’ whereby the reality of
different levels may be recognized and reconciled to create a
richer whole.” Related to the foregoing is the question of what
representational role and psychological reality Arbib’s schemas
assume in his overall conceptual picture.

Schemas are said to be “approximations to reality” — both a
psychological and a neurophysiological reality, I would assume.
But what kind of psychological reality? I would suppose that the
schema models of Rana computatrix are designed to provide a
base from which to generalize (at least with respect to method)
to how one might dissect human visual-cognitive competences.
Yet one must decide whether such competences are to be
characterized solely in terms of behaviors and their underlying
neurophysiological causes or also in terms of whatever it is
(introspectively) like to make and be aware of making various
perceptual discriminations. Any interest in such a decision
arises only if one focuses on the extrapolation from the frog-toad
model to a human one, since not being a frog or a toad, one is not
faced with the possibility of using introspectively accessed data.
But in the case of human beings there is always the suspicion, no
matter what the methodology, that just such data do in one way
or another play some role, whether overtly or covertly. For
example, in Newell and Simon’s (1963) early computer simula-
tions the use of verbal protocols in constructing the program was
an overt acknowledgment of the possible relevance of introspec-
tive data. It constituted one kind of coping with what I have
called the PLT problem. Typically, however, I think the role of
such first-person psychological data, if any, is much less ob-
vious. In connection with Arbib’s project this topic concerns the
psychological reality of his schemas.

Given that schemas are used to represent cognitive-percep-
tual phenomena, how are they to be interpreted vis-a-vis the
introspectively accessible strata of such phenomena? Do any of
them represent any of that? or do none of them make “contact”
at such levels? Similar considerations arise for Marr’s (1982)
approach to vision. In discussing the “range of perspectives that
must be satisfied before one can be said, from a human and
scientific point of view to have understood visual perception”
Marr wrote: “First and foremost, there is the perspective of the
plain man. He knows what it is like to see, and unless the bones
of one’s arguments and theories roughly correspond to what this
person knows to be true at first hand, one will probably be
wrong. . .” (pp. 4-5). But how is that first-person point of view
of the “plain man” to be represented? Is it only a rhetorical
starting point that gets lost in the model-building shuffle?

Arbib’s claim that his “schemas become ‘more real’ as their
functional analysis is refined into assemblages/programs of sub-
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schemas that allow either a more subtle analysis of behavior or
an improved mapping of function to neural structure” suggests
that such “contact” — with “qualia,” “raw-feels,” or whatever
one least dislikes calling them ~ is either irrelevant or at most
highly covert. If so, is this because they seem ontologically
undesirable? Methodologically Intractable? Or both?

Related to these issues is the question of whether the various
explanatory schemas are to be viewed as being equally psycho-
logical (or “mentalized”). A schema representing “generic
knowledge about some domain of interaction (e.g., a chair and
how to sit on it)” at least initially suggests some (complicated and
considerable) degree of understanding and intentionality. But is
this true for schemas in general? (Might Arbib, for example,
wish to borrow a controversial tactic from Dennett (1978b) and
construe them as hierarchically “homuncularized” — schemas at
each level performing diminishing amounts of cognitive donkey
work yet allegedly accounting for our various intentionalized
tasks without spiraling into a regress, or, at the end of it all,
assuming some strange metaphysical status? Again, with respect
to the work of Marr and others in computational vision, one can
raise a similar question. Are the various levels of computation
that allegedly underlie visual cognition to be viewed as equally
or diversely psychological or, as could be the case, not psycho-
logical at all? Clearly they are not to be disqualified as candidates
for psychological reality simply because we lack introspective
access to them. Yet one would like at some point to have a sense
of how to distinguish between internal states and processes that
are mental though not introspectively available, and those that
are purely noncognitive physicalistic processes underlying
them. An underlying cause of something psychological need not
itself be psychological. And, of course, there are all sorts of
information-processing subsystems in us capable of instantiating
a myriad of computer programs, which are decidedly noncog-
nitive in nature. (As Searle [1980] pointed out in BBS, there is a
level at which the stomach can be described as an information-
processing subsystem, but the stomach is not thereby endowed
with any capacity for understanding.)

Perhaps these questions are not “quasi’-metaphysical, as I
suggested at the outset, but floridly metaphysical, and simply a
roundabout way of coaxing to the surface some suggestions as to
how the mind-body relationship sorts itself out in Arbib’s
conceptual scheme of schemas.

The biotope of Rana computatrix

P. I. M. Johannesma
Department of Medical Physics and Biophysics, University of Njmegen,
6525 EZ Nijmegen, The Netherlands

Rana computatrix, created by Michael Arbib and developed in
his computational school, is intended “to show how one con-
structs an evolving set of model families to mediate flexible
cooperation between theory and experiment.”

In a Grimm’s fairytale a prince is incarcerated in the body of a
frog; in the story of Arbib a frog is encaged in the frame of a
machine. Whereas Grimm introduces a beantiful princess to
release the prince from his frog-type confinement, Arbib does
ot suggest such a happy ending for his frog: The machine
appears to form a permanent residence.

In order for Rana computatrix to fulfill its role in the coopera-
tion of theory and experiment it is desirable that frogs, natural
and artificial, share a common biotope for perception and
behavior. We share the view of Arbib that the conformity of
Rana computatrixz and Rana naturalis is not only determined by
their structural similarity but at least as much by their functional
congruence (see Arbib’s Figure 1). Functional aspects are not




clearly defined in Arbib’s descriptions, however. As a conse-
quence, Rana computatrix has no proper access to the biotope of
Rana naturalis. The liberation of the computational frog from
algorithmic schemas is the objective of this commentary. We
will not be able to attain this goal completely, but we will try to
indicate a way out.

For an arbitrary system, three aspects or levels of description
are relevant: structure, process, and function.

Structure is the material substrate of the system; for many
types of systems this may be considered as a set of elements and
relations. In the nervous system these are the neurons and their
axonal-dendritic connections.

Process is the dynamic sequence of states occurring in the
structure. Parameters change on a long-time scale; variables
change on a short-time scale. For an autonomous system, state
variables give a complete desecription of the process. In the
nervous system we can consider synaptic strength and threshold
as parameters and the dendritic-somatic currents and/or poten-
tials as state variables, with the action potentials as derived
variables (Johannesma et al. 1986).

Function is the relation of the system with its environment.
For most systems this relation is the transformation of input into'
output, stimulus to response. This class of systems we call
transformational. If we know the transformation or mapping of
an arbitrary input x into the associated output y, then we know
the function of the system. However, there is a wider class of
systems whose function is not only transformation but which
includes representation. A representational system forms an
internal model of its environment. Brains and computers belong
to the class of representational systems. The visuomotor system,
as part of the nervous system, transforms the image of a moving
object into the rotation of the eyes following this object or the
movement of the body with respect to this object, but it also
constructs an internal model of the visual scene (even into the
future) and of the possible behavioral attitudes with respect to
this object. If a tree frog jumps at a fly in flight it is not
responding directly to a physical stimulus but generating a
behavioral program with respect to a perceptual construct
derived from the physical stimulus based on internal state and a
possible set of behavioral acts.

The distinction between process and function and between
transformation and representation may clarify the concept and
use of schemas in perception. Process is the transformation of
the input of a schema into its output. For example, in the control
program for reaching toward and grasping an object shown in
Figure 4 of Arbib’s target article the “VISUAL LOCATION”
schema transforms “visual input” and “recognition criteria”
during “activation of visual search” into “target location.” On
the other hand, the function of “VISUAL LOCATION” is to
represent “target localization.” Although “target localization” is
coded in internal variables (e.g., a spatiotemporal pattern of
action potentials), its meaning is the location of a target in
external variables. The neural activity pattern represents the
location of a fly in the physical world around the frog. In order to
understand the meaning of the “neural represention of sensory
stimuli” it may be useful to construct the “sensory interpreta-
tion of neural activity.” If the neural representation is consid-
ered as a mapping P from sensory space into neural space, then
the sensory interpretation is the inverse map II of neural space
into sensory space. This is illustrated in Figure 1.

Transformations P and Q can be divisioned in subtransforma-
tions or schemas (see, e.g., Figures 4 and 11 of Arbib), leading to
an elaboration of Figure 1 and to a number of forward maps P,
and inverse maps II,. The dynamic development of the neural
variables determined by brain structures and processes corre-
sponds to the trajectory of movement in sensory space.

Our assertion is that the formal description of the nervous
system should be in terms of structure, process, and transforma-
tion, that is, the forward mappings P and Q, while understand-
ing the function of the nervous system should be based on the
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TRANSFORMATION
sensory P neural Q motor
space % space ? space
REPRESENTATION
sensory a neural q motor
____________ ________—é
space space space
Figure 1. (Johannesma). The process of transformation and

the function of representation of neural variables. The transfor-
mation diagram shows the flow of neural signals as a physiologi-
cal process; the representation diagram indicates the function of
neural activity as an internal model.

representation given by backward map II and forward map Q.

In sensory parts of the nervous system the backward map II
can be derived from the response of single neurons to sensory
stimuli. The formulation of the experimental data is normally in
terms of receptive fields of the neuron with spatio-spectro-
temporal dimensions (Aertsen & Johannesma 1981; Eggermont
etal, 1983; Johannesma & Eggermont 1983). The inverse map I1
can be computed by the appropriate combination of forward and
backward transition probabilities. An approximation is given by
superposition of the receptive fields of the neurons that are
active. Since receptive fields are defined in sensory space, the
result of this procedure is a signal or a distribution of signals in
sensory space. (For a mathematical description and some results
of simulation see Johannesma 1981; Johannesma & Aertsen
1982; Johannesma et al. 1986.)

If sensory stimulus x induces the neural activity pattern z, be
it deterministically or stochastically, then

z=Px
If£ is the sensory interpretation of neural activity pattern z, then
tE=1Iz

As a consequence, the sensory interpretation & of a sensory
stimulus x is

E=IPx

where II P is a deterministic or stochastic mapping of sensory
space onto itself.

A demonstration of these ideas can be given in relation to
Figure 23 of Arbib’s target article. The quantity displayed in the
graphs is the activity of the accommodation field and the dispari-
ty field. This activity forms an internal variable of Rana com-
putatrix. In my opinion no appropriate metric has been or can
be defined to compare internal variables of model and animal.
Even neural variables of different animals cannot be compared
directly; they form different languages with individual syntaxes;
only in the semantic domain might a common frame of reference
exist. Application of a sensory interpretation of the internal
variables by an inverse map of neural space into sensory space
would result in a structure of the visual space of Rana com-
putatriz that could then be compared to the visual space of Rana

naturalis.

Limits of perception, both in the natural and in the artificial
frog, are given by the map 7 P. The evaluation of the quality of
this map should be made by assessing the perceptual resolution
of the animal by observing its behavior. We do not imply that
the map 1 is available to the subject, natural or artificial, but in
our opinion it allows an external observer to compare perceptual
abilities of Rana naturalis and Rana computatrix. Along these
lines artificial and natural frogs are not compared with respect to
their internal variables, but as companions sharing a common
biotope.
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Structure and process in schema-based
architectures

Pat Langley

Department of Information and Computer Science, University of California,
Irvine, Calif. 92717

I was pleased to read Michael Arbib’s argument for different
levels of description in cognitive science; in the flurry of recent
activity over connectionist theories of behavior, the higher
levels of abstraction have often been overlooked, despite con-
tinuing advances at those levels. Newell, Simon, and Shaw’s
(1958) original arguments for the computer simulation of human
behavior focused on the notion of functional descriptions, and
Arbib reintroduces that concept in justification of his schema-
based theory.

Arbib also argues for linking neural-level and functional-level
explanations. Although I respect this goal, I am not convinced
that this is the best path for cognitive science at this stage in its
development. The history of physical science shows that higher-
level theories can be successfully pursued independently of
lower-level ones. Chemistry made steady progress for well over
a century before the quantum theory and particle physics
provided deeper explanations for its basic phenomena. Similar-
ly, cognitive science has made steady progress at the functional
level, developing symbol-based theories of problem solving,
natural language processing, vision, memory, and learning that
have provided us with a broad understanding of human cogni-
tion and perception.

Certainly, at some stage cognitive scientists will want to
connect their functional models with neural models, and Arbib’s
work presents an excellent example of this approach. He argues
convincingly that this can already be accomplished for simple
instinctive behavior, such as that occurring in frogs. But apply-
ing this approach to the more varied and complex mechanisms

that underlie human intelligence is another matter entirely, and-

it will be some time before we are capable of such feats. In the
meantime, we should not ignore the mechanisms involved in
problem solving and natural language processing simply be-
cause we cannot yet explain them in neural terms. Rather, we
should continue to study them at the functional level, extending
the significant strides that have already been made in this
direction.

Now let me turn to the details of Arbib’s schema theory. I
firmly believe that our computational theories should be cast
within an overall model of the cognitive architecture, so I was
encouraged by Arbib’s steps in this direction. Moreover, most
research on schema-based architectures (e.g., Schank 1982) has
focused on issues of representation and memory organization,
dealing with process concerns in an ad hoc manner.! Given his
interest in motor behavior, I hoped Arbib would break away
from this trend, but when all was said and done, the only
processes he had proposed were vague and rather standard
notions of schema “activation.” I believe that schema-based
theories have much to offer, but I do not think we should
attempt to map them onto neural models until they have been
more completely specified at the functional level.

I was also disappointed that Arbib’s schema framework did
not make more contact with the well-established phenomena of
cognitive psychology. He incorporates the notions of short-term
and long-term memories, but he does not attempt to explain the
well-known limits on the former or the occasional inaccessibility
of the latter. He invokes the distinction between declarative and
procedural knowledge, but then fails to elaborate on their
connection. Are the retrieval mechanisms different for the two
forms of knowledge? Are separate learning mechanisms in-
volved? Well-defined structures are of little use for making
predictions if the associated processes are ill defined.

I also felt the focus on parallelism among schemas was mis-
placed. Parallelism at the neural level does not imply that it
exists at the functional level, despite its current popularity.
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There is certainly evidence for some parallelism at the func-
tional level: It seems likely that much of retrieval and classifica-
tion operate in this mode. However, there is also strong evi-
dence for an attentional bottleneck that requires serial proces-
sing on tasks such as problem solving and parsing. Recent
production-system models (e.g., Rosenbloom & Newell 1987)
have addressed this dual character of the human information-
processing system and I would welcome a concerted effort to
handle these phenomena within a schema-based architecture.
Finally, I found the representation for motor schemas to be
somewhat implausible. Artificial intelligence and cognitive sci-
ence have succeeded largely because they rejected traditional
computer science representations and developed their own
formalisms for describing symbolic structures and processes. .
Arbib’s schemas suggest an influence from the field of robotics,
in which most researchers continue to use numeric representa-
tions and algorithmic control structures. I do not mean to
suggest that motor behavior is best described using semantic
networks or production systems; I fully expect that this domain
deserves its own representational language, and that this will
incorporate levels of detail about the body and the environment
that existing Al representations could not easily support. But
neither can I believe that Arbib’s representation will give the
flexibility and adaptivity required to model human motor be-
havior, even if it suffices for frogs. Nor can I see how it would
support models of motor skill improvement and acquisition.
Iam probably being too harsh. Actually, Iam quite pleased to
see someone seriously addressing the nature of sensorimotor
intelligence; cognitive science has nearly ignored this topic, to
its own detriment. I also respect Arbib’s goal of linking func-
tional-level accounts to neural-level models and encourage
researchers interested in the interface between schemas and
behavior to join him in this quest. But I encourage other
researchers to work toward a more complete account of the
human cognitive architecture at a functional level. Chemistry
did not disappear with the development of atomic physics, and
functional-level explanations will continue to play a central role
in cognitive science as long as the field exists. We have already
made significant strides in understanding the processes and
structures that underlie human cognition, but we need to
expand upon these initial results and integrate them into a
coherent theory of behavior. This quest is fully as important as
determining the mapping between neurons and functions.

NOTE
1. In contrast, research in production-system architectures (Ander-

son 1983; Klahr et al. 1987) has focused on process issues in preference
to problems involving memory and its organization.

Cognitive modeling: Of Gedanken beasts
and human beings

Dan Lloyd
Department of Philosophy, Trinity College, Hartford, Conn. 06106

It’s an article of faith, reflected even in the title of this journal,
that top-down cognitive science and bottom-up neuroscience
will ultimately converge on unified models of complex behaving
systems. Arbib has gone a long way toward realizing that
synthesizing ambition, and the questions pressed here are
primarily invitations to further incremental development. Rana
computatriz and other computer implementable models in
behavioral neuroscience spark concern about two related issues:
completeness and accuracy.

A complex neural model should be complete in two senses:
The behavioral capacities we analyze and model from the top -
should bottom out in neurally plausible implementations; and
the relevant pathways modeled should extend without break
from sensory input to motor output. Otherwise, we risk smug-




gling in a homunculus, or at least an anuranculus — a black box
that makes the model go but has no apparent correlate in the
living system — and we thereby end up modeling our own hand-
waving, Though under construction, Rana computatrix comes
close to satisfying this standard of completeness, but not every
theme sounded in the target article has yet found a home in a
complete model, The target article completes vertical links with
respect to facilitation effects and prey discrimination, and al-
ludes to other successes. But the current depth and detour
detection schemas Arbib discusses (sections 3.3, 5) are mainly
top-down analyses, with some support from lesion studies.
Though something like these schemas will ultimately play a role
in anuran psychology, as Arbib notes (sections 1, 3), the particu-
lar schemas proposed may not reduce to well-defined localized
brain functions. I take it that schemas that turn out to be
bottomless are thereby undermined. Thus the scaffolding from
top to bottom is, at present, somewhat top-heavy.

The connectionist models familiar from Rumelhart and Mec-
Clelland (1986) meet the standards of completeness, but Arbib
rightly questions them for omitting intermediate levels of neural
organization. This raises a second inevitable consideration in
large-scale neural modeling: accuracy. Rana computatrix incor-
porates a range of neuroscientific data that are either unavailable
or ignored in most PDP (parallel distributed processing) mod-
els. Thus Arbib’s model is presumably closer to reality than the
relatively undifferentiated architectures proposed by most con-
nectionists. Nonetheless, there remain questions about ac-
curacy. At several points (1.0, 4.1, 4.2), Arbib notes that produc-
ing the right characteristics required tuning the parameters of
his model tectal columns. Appendix C indicates the numerous
parameters there to be tuned. One wonders what guides the
choices of adjustments among these parameters. Furthermore,
in simplifying the physiology of the tectal column (Figure 2), and
in assembling the synthetic tectum (4.2), the modeler risks
ignoring a physiological determinant of behavior with nonob-
vious but real effects. In dynamic systems like the nervous
system, an incremental departure from accuracy in any of these
details can have ramifying effects, requiring the equivalent of
conpensatory epicycles to keep the model on track. Increments
have more than incremental consequences.

In the ideal world, models would be maximally complete and
perfectly accurate. But in practice, completeness and accuracy
force the researcher into trade-offs. On the one hand, construct-
ing a complete model demands some educated guessing; on the
other, at this point our accurate knowledge is limited to parts of
all but the simplest systems. Which way should the modeler
build? I suggest that, if one must choose, completeness is the
most useful goal. Arbib points out two reasons for this: Focusing
only on components can lead one to overlook emergent effects of
cooperative computation; and working with complete models,
even if wrong in detail, nonetheless provides us with analytical
tools applicable to future data and future, more accurate, mod-
els (sections 3, 6). I think the reasons to push for completeness
go beyond these, however, and reveal a further source of the
value of Arbib’s work for cognitive science.

In a commentary in the first volume of this journal, Daniel
Dennett (1978a) described a research strategy for understand-
ing human cognition that surely smolders (though perhaps not
by Dennett’s spark) in the minds of most students of animal
cognition. He proposed that one approach the complexity of
humans by looking at simpler systems, first solving cognitive
problems as they arise in these “simple minds” and then boot-
strapping toward increasingly complex and humanlike cog-
nizers. Two sorts of systems appealed to Dennett as fruitful
stepping stones: living systems and artifactual systems born of
engineering imagination, “Martian three-wheeled iguanas” and
the like. The psychology of imaginary behaving systems has
since become the centerpiece of Braitenberg (1984). His vehi-
cles, though highly idealized, illustrate the advantages of “syn-
thetic psychology™: A system we build is much easier to under-
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stand than one we find. I suggest that Rana computatrix be
located in the phylum of these Gedanken beasts, the most
advanced of its kind yet to evolve.

Accordingly, whether R. computatrix is a good model of living
Ranidae or Bufonidae is a secondary issue, because the model is
itself of cognitive interest. Especially in its forthcoming incarna-
tions (sections 5 and 6), R. computatrix will be exhibiting
simulated behavior in its simulated environment that will invite
cognitive description and analysis. In particular, models like
Arbib’s might be valuable tools for addressing foundational
issues in cognitive science and philosophy. High on the list is the
understanding of representation. Arbib writes of internal mod-
els of the world (section 2), assemblages of instantiated schemas
that correspond to “domains of interaction.” How does this
picture account for features of the specificity of representation?
Do the instantiated schemas in R. computatrix’s brain represent
flies, small distal objects, or small patches of retinal stimulation?
Similarly, under what conditions will we say that R. com-
putatrix’s model of the world is false? These are central issues
for cognitive science, and complete models like Arbib’s can
provide concrete guidance in their resolution. (For a more
extended discussion, see Lloyd 1987.) Progress on these issues
will contribute ultimately to specifying the continuities and
differentiae of animal and human cognition.

In sum, Arbib’s approach is incremental in several senses: He
assembles model systems part by incremental part; both top-
down and bottom-up data incrementally determine the models;
new data lead to incremental adjustments; the models — of both
living systems and Gedanken beasts — fall in an incremental
continuum of models of interest to cognitive science. Each
progressive enlargement is a contribution, and the whole cog-
nitive science that results is greater than the sum of these

incremental parts.

What is the schema for a schema?

Alan K. Mackworth
Department of Computer Science, University of British Columbia,
Vancouver, B.C., Canada V6T 1W5

Arbib’s main thesis is that schema theory can serve as an
intermediate level of functional analysis. His subsidiary thesis is
that it should so serve because it thereby provides a common
language for cognitive science. The argument that it can is by
demonstration. The argument that it should is by exhortation.

Since the modern introduction of the concept of schema by
Head (Head & Holmes 1911; Oldfield & Zangwill 1942) the
concept itself has repeatedly demonstrated an ingenious talent
for metamorphosis. A schema has variously been identified with
a map, a record, a pattern, a format, a plan, a conservation law
(and a conversation law), a program, a data structure, a co-
routine, a frame, a script, a unit, and an agent. Each of these
concepts has, in turn, considerable variability and ambiguity.
The schema for a schema is extraordinarily plastic. “An orga-
nism has somehow to acquire the capacity to turn around upon
its own schemata and to construct them afresh” (Bartlett 1932,
p. 206). Our schema for a schema certainly demonstrates that
capacity.

Unfortunately, if we allow this unbridled plasticity, the main
thesis becomes impossible to falsify, making it a slogan rather
than a scientific hypothesis. Arbib is aware of this trap but, still,
his concept of schema must be sharpened up and the arguments
strengthened., The argument for the main thesis hinges on
establishing a single, encompassing but precise schema for
“schema.” The argument for the subsidiary thesis hinges on the
same point. Schema theory risks suffering the fate of the Tower
of Babel. It cannot, in its current state, serve as the common

language of cognitive science.
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Arbib provides some functional criteria for schemas and four
structural definitions that, although precise, are far from coex-
tensive. They can mostly be characterized as defining a schema
as a program in a serial programming language with some
mechanism for parallel execution of subprograms,

So our primary goal should be to evolve a coherent theory of
schema systems that, as Arbib emphasizes, must serve the
needs of functional and structural analyses. His target article is
clearly a major step in that evolutionary process. One weakness,
however, is in his following the prescription of identifying
necessary functional attributés of a schema system. The four
criteria given are somewhat vague and nonspecific, which leads
to the range of structures and languages proposed as realizations
of schema theory.

One source of the problem can be identified. In rejecting
Marr’s notion of the “computational level” as an independent
level of analysis Arbib ignores a rich source of functional con-
straints. Although the term “computational level” is a very poor
choice of words, the idea itself is crucial. Let us call it, instead,
the task level. ,

Analysis at the task level allows us to determine the natural
constraints that may be exploited by a system and the structure
of the equivalence classes of solutions to the perceptual or motor
task. We can determine whether a solution is overconstrained or
underconstrained by the various potential information sources.
Ifitis underconstrained (that is, the solution equivalence classes
have more than one member), then additional constraints or
preferences can be identified that may be imposed to select a
particular solution (Mackworth 1983).

Task analysis also allows us to determine the inherent task
complexity — the degree of difficulty of the problem itself with
respect to a family of computational architectures - using
measures of time, space, number of gates, degree of parallelism,
and so on. These tools put necessary limits on any algorithm’s
performance as well as allow us to analyze the actual perfor-
mance of a particular representation and algorithm. There are
intriguing new results from theoretical computer science to be
exploited. For example, the appeal to massive parallelism is a
standard escape hatch these days, but complexity analysis of
tasks reveals that some stubborn problems may be inherently
serial in nature, not to be dissolved by the magic of massive
parallelism. Just as Minsky and Papert (1969) showed that
connectedness is an inherently serial problem within the frame-
work of an earlier, more restricted, parallel scheme, the Per-
ceptron, we should be aware of the existence of this class of
“intrinsically” serial problems and the implications for schema
theory. For example, establishing a form of local coherence, arc
consistency, between a set of declarative schema instances is,
surprisingly, such a problem (Mackworth 1987).

Functional analysis at the task level can lead to the identifica-
tion of adequacy criteria that any representation scheme must
necessarily satisfy. Eleven descriptive adequacy criteria and
five procedural adequacy criteria are identified and discussed in
Mackworth (1987). These can serve as functional criteria for
schema theory (Havens & Mackworth 1983).

Even given highly constraining functional criteria, there are,
of course, an unbounded number of schema theories that could
satisfy them. Arbib emphasizes the need to consider also the
constraints arising from the neural architecture. Are the four
schema theories he proposes so constrained? They assume, for
the most part, “von Neumann” architecture, including sub-
routines called by name with numerical parameters, sequential
control with program counters, and minor modifications for
parallelism, including the FORALL mechanism and coroutines.
Are they appropriate languages to be implemented on the
cognitive architecture, given what we know of it? There is a
chasm between the schema level and the neural level. Bridging
it is a major task in the research program Arbib lays out. The
relationship established in Section 5, between a schema theory
of prey and obstacle detection in the toad and its neural imple-
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mentation, is a rickety bridge but it is one of the few we have.

In summary, we must apply the functional and structural
approach to the analysis of schema theory itself. It is critical that
we establish the tightest possible functional criteria for schema
theory and derive a crisp structural theory: the schema for a
schema. The claim that schema theory is a necessary component
of the analysis of behavior thereby becomes an empirically
testable hypothesis.
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Eye of toad, and toe of frog?
John C. Marshall

Neuropsychology Unit, Neuroscience Group, The Radcliffe Infirmary,
Oxford OX2 6HE, England

Irespond to Michael Arbib’s target article as one whose concern
with frogs is somewhat limited (limited in fact to recipes for
cooking their legs), but whose interest in visually guided behav-
ior is considerable. The reason for this latter concern is, of
course, that, as a hospital-based neuropsychologist, I see brain-
damaged patients with a wide range of (acquired) disorders of
visuospatial cognition and praxis.

To mention but a few illustrative examples: In patients with
bilateral parietal lobe damage, there is often “global spatial
disorientation” (Kase et al. 1977). Despite normal language and
intellect, these patients have randomly wandering eye move-
ments, they fail to track slow-moving objects with their eyes,
and are unable to touch or grasp objects reliably with either
hand, overshooting, undershooting, or veering to left or right.
Such patients may also be unable to perceive visually more than
one object at a time (Berti et al. 1986), and may misorient to
auditory stimulation. In addition, there can be associated disor-
der of topographical learning and memory (patients failing to
find their way from corridor to ward), and, upon being guided to
the bed, such patients may be quite unable to orient themselves
into a reasonable position for lying down (despite adequate
object recognition).

Some of these deficits (and many others) can be seen in
relatively “pure,” isolated form. Thus Ratcliff and Davies-Jones
(1972) demonstrated that defective localization of stimuli in
peripheral vision can be dissociated from generalized visual
disorientation; deficits in visually guided maze learning, in
which maze and patient are in a fixed relationship, can dissociate
from locomotor map-following, where the patient’s orientation
relative to the environment changes (Ratcliff & Newcombe
1973). Right posterior damage can provoke a particularly salient
inability to mentally rotate objects in space (Rateliff 1979). And
topographical memory loss, consequent upon right medial tem-
poro-parietal lesions (Landis et al. 1986), can be found in the
context of many relatively well-preserved perceptual and spatial
skills (Whiteley & Warrington 1978).

A severe inability to perceive two objects simultaneously
(“simultanagnosia”) can coexist with good ability to recognize
single objects after bilateral occipito-parietal injury (Luria
1959); left-neglect, where the patient with right posterior
damage behaves as if the space contralateral to the lesion does
not exist, can present in a variety of forms; the underlying
impairment may be primarily attentional (Baynes et al. 1986),
motor (Joanette et al. 1986), or representational (Bisiach &
Luzzatti 1978). The condition further fractionates into disorders
of extrapersonal and personal space (Bisiach et al. 1986). With
respect to personal space, very selective autotopagnosias (diffi-
culty with pointing to body parts on command) have been




reported after left parietal damage (Ogden 1985) in nonaphasic
patients. The role of the left hemisphere in some visuocognitive
skills is also brought out by the fact that severe impairment in
the detection of “hidden (geometric) figures” is preferentially
associated with aphasia-provoking lesions (Orgass et al. 1972;
Teuber & Weinstein 1956).

And finally one might mention that in “speakers” of American
Sign Language (Poizner et al. 1987), spatial syntax in the service
of linguistic communication can be firmly dissociated from the
perception and manipulation of objects in extrapersonal space;
sign-language aphasias are consequent upon left-hemisphere
damage (as are spoken-language disorders), whereas right-
hemisphere damage results in nonlinguistic impairments of
spatial topography.

These, then, are just a few of the visuocognitive and visu-
omotor deficits concerning which neuropsychologists would be
grateful for any theoretical (or perhaps even computational)
Ainsights that anyone can offer (for more extensive review see De
Renzi 1982; Miller 1986; Young 1983).

Will toads, frogs, and their artificial analogue, Rana com-
putatrix, provide that help? The overall structure of Marr’s
theory of vision (Marr 1982) has already provided us with new
and helpful ways of looking at the varieties of visual agnosia
(Humphreys & Riddoch 1987; Ratcliff & Newcombe 1982). Will
Rana computatrix play a similar heuristic role in elucidating
other disorders of visual cognition? Or is the prey-catching,
predator- or barrier-avoiding behavior of the frog based upon
mechanisms that are too special-purpose (and too closely linked
to the specific anatomy and behavioral adaptations of the frog) to
be of use to me and the patients I seeP I do not know. But I do
wish that more members of the simulation community would
take a look at the kinds of data provided by disorders of human
cognition.

As I said, we need all the help we can get. If we are ever to
provide serious remediation for patients with these often devas-
tating disorders (either by “retraining” a damaged system, or by
finding alternative ways around the impairment), we shall re-
quire models vastly more sophisticated than those that I, at
least, currently work with. I would like to think that Rana
computatrix is a step in the right direction; but frogs will not
excite me in nonculinary ways until I can see the relationships
between this kind of modeling and the problems with which our
patients present. Is global stereopsis in the frog linked with the
perception of anomalous (subjective) contours? Both normal and
pathological data suggest that the functions are intimately relat-
ed in man (Hamsher 1978). When Arbib stresses “implementa-
tional details” and notes that different animals “may make
different use of visual cues,” I begin to worry whether Rana
computatrix does it our way.

Recent physiological findings on the
neuronal circuit of the frog’s optic tectum

Nobuyoshi Matsumoto
Department of Biophysical Engineering, Faculty of Engineering Science,
Osafka University, Toyonaka, Osaka 560, Japan

Arbib introduces neuronal circuit models for the frog, and
discusses how visually guided behaviors are generated by them.
The interpretation of behaviors by means of neural microcircuits
is of great interest to physiologists. Unfortunately, data are not
sufficient for discussing the behaviors precisely. Arbib depends
mainly on the tectal column circuit proposed by Székely and
Lazdr (1976) in describing Rana computatriz. It should be
remembered that the tectal column structure was originally
proposed mainly on the basis of anatomical studies; no detailed
physiological information had been available at the time. Nev-
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ertheless, the circuit model has some significant implications
not only for anatomy but also for physiology. I will present some
supplemental physiological data relating to the neuronal circuit
of the frog’s optic tectum that might help strengthen the model.

First of all, there is a point I do not clearly understand in the
modeling, A glomerulus shown in Arbib’s Figure 2(d) is con-
nected directly to two dendritic endings that belong to different
neurons. Anatomically, they should make contact to form syn-
apses. I am afraid that this kind of simplification might lead to
some errors in evaluating the function of the model, especially
when discussing the time sequence of excitatory and inhibitory
potentials,

As Székely and Ldzdr have pointed out, there are at least two
restrictions on the neuronal circuit diagram of the tectal column.
First, large ganglionic neurons are not involved in the circuit.
Our recent results (Antal et al. 1986; Matsumoto, Schwippert &
Ewert 1986), however, have shown that large ganglionic neu-
rons play an important role in information processing in the
optic tectum. Unfortunately for the model, large ganglionic
neurons showed much more variety in morphology and phys-
iology than we had expected. )

Second, the contribution of class 3 retinal fibers to the tectal
column is not considered. Physiologically, an interaction be-
tween the myelinated and unmyelinated fiber system has been
observed in many of the tectal neurons recorded (Matsumoto &
Bando 1978; 1980). One of the possible interactive circuits is
shown in Figure 16(b); this model was used to explain the
discrimination between wormlike and antiwormlike stimulus
patterns. We identified the prey-selective efferent neuron as
the pyramidal neuron and found that they receive a strong
inhibitory input from class 3 retinal fibers (Antal et al. 1986;
Matsumoto & Antal 1984; Matsumoto, Schwippert & Ewert
1986). There is an indication, as shown in Figures 7 and 16(b),
that thalamic neurons are involved in this inhibitory circuit
(Ewert 1984). However, we have no further information about
whether the thalamic neurons directly inhibit prey-selective
(pyramidal) neurons or whether they inhibit through tectal
interneurons.

Arbib has shown facilitation of prey-catching behavior using
his model. One interesting phenomenon that might be related
with facilitation should be mentioned. Suppose we electrically
stimulate the optic nerve. The large pear-shaped neuron in the
tectal column produces a monosynaptic and a disynaptic EPSP
(excitatory postsynaptic potential) followed by an IPSP (inhib-
itory postsynaptic potential). In our earlier experiment (Mat-
sumoto & Bando 1980), exactly the same response could be
recorded from some of the large ganglionic neurons. Presynap-
tic fibers were found to be myelinated rather than unmyelinated
ones. Since the conduction velocity of unmeylinated fibers is too
slow to make a reliable analysis, we do not know whether or not
the same effect can occur in the unmyelinated fiber system. Itis
easily understood that reverberatory responses could be trig-
gered if the inhibitory potentials were eliminated. When large
ganglionic neurons were visually stimulated, some of them
showed reverberatory responses (Matsumoto, Schwippert &
Ewert 1986). If the stimulus suddenly stops in the receptive
field, the amplitudes of EPSPs are greatly enhanced, probably
because of focal stimulation of the excitatory receptive field.
This effect was greatest for a wormlike stimulus, which produces
the smallest inhibitory effect on the neuron. We do not know,
however, whether the reverberatory response seen in large
ganglionic neurons is dependent on the positive feedback circuit
in the tectal column.

As mentioned earlier, we physiologists have not collected
enough data for a detailed analysis of the function of the optic
tectum of the frog. To solve this problem we are now investigat-
ing synaptic connections between retinal fibers and tectal neu-
rons by recording simultaneously from presynaptic (extra-
cellular) and postsynaptic (intracellular) elements (Matsumoto,
Nagano & Li 1986). We soon hope to be able to provide new
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findings to improve the model of the neuronal circuit of the
frog’s optic tectum.

The computing frog

G. Székely

Department of Anatomy, University Medical School, H-4012 Debrecen,
Hungary

Although we are still very far off from understanding the neural
mechanisms underlying visually guided behavior of the frog, I
find Arbib’s endeavor a fortunate choice for modeling the visual
part of the brain, which has been in the forefront of interest for
the last few decades. The basic idea is to describe behavioral
phenomena in terms of interacting schemas as units of computa-
tional analysis and then to implement the schemas, perceptual
and motor, in realistic models of neural circuitry. I find this
approach a very plausible and promising one, and the strong
commitment of the author to remaining in continual contact
with the biological material should receive the greatest recogni-
tion from experimenting scientists. The target article raises
several questions, of which I would like to discuss two in my
commentary.

1. How realistic is a “realistic” network? This question neces-
sarily comes to a neuroanatomist’s mind whenever he tries to
extract some kind of “biologically meaningful” neuronal organi-
zation from a body of crude experimental findings. To make it
quite clear, the structure of the nervous system is so complex
that the experimentalist is compelled to make, deliberately or
unconsciously, conceptual models in order to describe and
interpret his results. In such conceptual models the invariants of
the universal are abstracted, simplified, and arbitrarily rear-
ranged to fit the preformed concepts of the experimentalist.
This applies just as much to the simple reflex arc and the several
ingenious “conceptual models” of Ramén y Cajal (1911) as to the
columnar organization of the optic tectum that I and Lézdr
(1976) described.

The reason I so explicitly point to “conceptual modeling” - to
the probable disagreement of many of my experimenting col-
leagues — is that some aspects of the perceptual schema domain
are modeled back to the assumed “reality” with the help of my
tectal column concept. Although I tremendously enjoyed the
lovely computer experiments of Cervantes-Perez (1985) on
these columns, I could not help uneasily feeling how much he
had to change and twist the (otherwise unknown) parameters of
the elements of the column before he obtained the sorts of
responses from the pyramidal neuron that Jérg-Peter Ewert (see
his target article in this issue) would have expected of his T5(2)
neuron, (which, being a “worm detector, ” is also a conceptual
model). The same applies to the likewise beautiful computer
experiments on the 8X8 array of tectal columns (Cervantes-
Perez et al, 1985), which, however elegant, are disappointingly
trivial in showing the retino-pretectal-tectal interaction exactly
in the same way as Ewert would unambiguously describe in
three sentences.

In both computer experiments success consisted of the best
possible simulation of the animal’s behavior. This is exactly what
one would expect of good modeling if the premises — the tectal
column, the physiological classification, and so on — represented
real invariants of the world. The tectal column, for example, is
one of the many possibilities among how the neuronal intercon-
nections may be organized in the optic tectam. In my opinion, a
computer scientist should not stop at this concept; he should
perform the role of a computer experimentalist, using his ma-
chine ability to test such possibilities. He should not take all
biological data (the conceptual models) at face value but, with
the freedom of the experimentalist, try to see whether other
neuronal interactions would yield better, or worse, results in
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terms of some arbitrary criteria. He may then call the attention
of the biological experimentalist to prior faulty conclusions, to
overlooked data, to the need to reinterpret existing data, to
some “emergent” properties that remained unnoticed in biolog-
ical experiments; and a number of other interactions may
evolve, The computer scientist just waiting for biological data is
a passive partner to the biologist, as opposed to the computer
experimentalist, who not only checks the biologist’s data and
interpretations but provides him with ideas and inspirations for
new experiments.

The biologist facing the problem posed by thousands and
thousands of interacting elements acutely feels the burden of
uncertainty in his approach, and needs the contribution of the
computer scientist just as he needs solid biclogical data. It
seems to me that Rana computatrix would be an excellent tool in
such an active partnership. Even in its present state, R. com-
putatrix calls for more detailed correlative morphological inves-
tigations, which have only just begun with two recent publica--
tions (Antal et al. 1986; Matsumoto, Schwippert & Ewert 1986).
Serial EM (electron microscopic) investigations we have just
initiated in this laboratory are badly needed to verify and
explore neuronal interconnections; above all immu-
nohistochemistry combined with other neuronal tracing tech-
niques would yield important data for R. computatriz. L am sure
physiologists have other lists of data. Conversely, a number of
experiments could be performed with R. computatrix (e.g.,
giving inhibitory character to different neuron types, incorpo-
rating modulatory effects of various peptides, etc.).

2. The investigation of visually guided behavior is almost
always focused on the optic tectum, which is certainly an
important visual center but not the only one in the frog. In
addition to the pretectal structure, there are two more areas
receiving optic fibers in the anterior thalamus and one in the
mesencephalic tegmentum. Except for this latter center, all
other areas receive a precise retinotopic projection of the visual
field and are reciprocally interconnected in a remarkably orga-
nized fashion (Ldzdr 1984; Székely 1971). Highly organized
reciprocal interconnections exist between the tectum and the
isthmic nucleus, and the role of this latter nucleus is only
recently appreciated in visually guided behavior (see Arbib’s
target article). These many centers with highly organized inter-
connections make one wonder about their role in the control of
visually guided behavior. As an experimenting biologist (though
perhaps not wholly aware of the difficulties a computer simula-
tion may create) I would like to see the incremental evolution of
R. computatrix in this direction as well.

Schema theory: A broadening viewpoint

Tang Yi Qun
Department of Computer Science, Wuhan University, Wuhan, Hubei, The
People’s Republic of China

Research on the brain, behavior, and intelligence needs inter-
communication among several disciplines; but cognitive psy-
chology and artificial intelligence do simulation based mainly on
functional levels, whereas neurophysiology and anatomy are
interested in neurons and neural circuitry. There is a gap
between them. Arbib has advanced schemas as a bridge to link
them: Functional modeling could gain more insight into struc-
ture from neurons and neural circuitry through schemas; on the
other hand, experiments on neurons could receive some guid-
ance from more global viewpoints. To play the role of a bridge,
schemas should be compatible with both functional modeling
and experimental data on neurons and their cireuitry — that is,
they must not only be able to represent human thought and
behavior but must also map into some areas of the brain in a one-
to-many or many-to-many fashion.




If schemas are considered as units representing and interact-
ing with the world, then it may be possible to represent human
thought and behavior with an adaptive schema network. For-
tunately, certain functions and their corresponding subnet-
works are clearly hierarchical. Schemas located at the same level
would interact by competition and cooperation, whereas sche-
mas at different levels would act by maintaining the proper
sequence. For example, motor control — from the motor cortex
to the cerebellum, brain stem, spinal cord, and muscle servo — is
clearly hierarchical. [See Stein: “What Muscle Variable(s) Does
the Nervous System Control in Limb Movements?” BBS 5(4)
1982.] Visual information processing in the frog and the toad is
another example. On the other hand, in each level of the
hierarchy there are many concurrent activities, for instance, the
information processing in retina. The brain accordingly pro-
cesses and integrates information in both sequential and parallel
distributed ways. Arbib’s operations on schemas reflect this
feature, such as compounding (several schemas compounded
are a more powerful new schema), generalization, instantiation,
and activation (data-driven or goal-driven).

I think it is important to find more methods for representing
schemas. Semantic networks are successfully used to represent
structured, well-learned knowledge in artificial intelligence,
but they are suitable only for the analytic mode of thinking that
breaks the object up into parts and then combines them.
Dividing the whole into parts may lose much information. There
is another mode (“imagistic thinking”) whose function is to
process the object as a whole (Qian 1983). This helps to abstract
similarities among objects, as used in analogies and logical
inference. What schema representation will facilitate such anal-
ogies and abstraction in this mode of thinking? It is likely to be
quite different from those that are suitable to the analytic mode.

The ideal of using the schema concept as a bridge is in an early
stage of development and perhaps somewhat premature, but
worthy of further exploration.

Schemas: Not yet an interlingua for the brain
sciences

John K. Tsotsos
Department of Computer Science and The Canadian Institute for Advanced
Research, University of Toronto, Toronto, Ontario, Canada M5S 1A4

Arbib argues for the utility of schemas as intermediate represen-
tations between neural-level analysis and overall brain behav-
ior. He presents examples on how to move from schemas to
testable models of neural circuitry, proposing that schemas can
provide a meeting ground for the behavioral and brain sciences.
Unfortunately, there is no reason to believe that there is only
one requisite level of intermediate representation. I agree that
there is a need for a common language of discourse, and for
stating theories. Only with a common formalism can theories
from one discipline contribute to development in another. In
other sciences — for example, physics — the language of mathe-
matics forms this common formalism. However, schemas, as
Arbib uses them, do not yet provide this interlingua for the
brain sciences.

The key problem with Arbib’s schemas (as well as with
Minsky’s frames [Minsky 1975], Schank’s scripts [Schank &
Abelson 1977], and the other versions of packaged knowledge) is
that a syntax and semantics for the formalism are not provided.
Arbib only provides a set of four constraints on the charac-
teristics of schemas. It is difficult to argue against the utility of
representation or of knowledge packages in general; they have
so many advantages and these have appeared in many papers (a
partial summary appears in Tsotsos 1984). There is a need,
however, to introduce the concept to other domains because,
although it is perhaps well accepted in the computer science
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community, it may not be so well accepted in other disciplines.
The designer of a representation must determine how appropri-
ate the representation is for the problem domain, and must give
it a syntax and formal semantics so that others may adopt it as
well. A common formalism is useful only if other researchers use
it, if one can compare different representations of the same
problem solution, and if one can distinguish correct from incor-
rect representations. Throughout most of the target article,
Arbib uses schemas in an informal manner; a great many ques-
tions arise about schemas in general and about the representa-
tion of specific constructs. The general questions are:

How are schemas mapped onto an implementation for testing
purposes? If they are part of a programming language, is there a
compiler or interpreter for the language?

How can schemas proposed for the same behavior be com-
pared without simulation?

What class of behaviors does a given schema represent? How
can one tell whether that class of behavior is the desired one,
and contains no other unwanted behaviors?

How can one tell whether a given schema formalism is
sufficient for all the behaviors of interest, and only those?

The specific questions are:

Is a schema a procedural or declarative entity? Does this
matter?

Are the arrows between units in a schema control lines, data
lines, or do they represent some other relationship?

What are the primitives of schemas? Is it possible to define a
set of primitives so that all behaviors of interest can be repre-
sented using combinations of these primitives?

In motor tasks, temporal issues are of particular importance.
How is time represented in the schemas?

How are motion qualities, such as “grasp gently” or “grasp
aggressively,” represented?

What are the subtleties of vision that the language of Arbib’s
Appendix B cannot capture, in addition to not handling control
concepts? Are they not critical?

It is claimed that the “FORALL” construct is novel; it appears
previously at least in my own work, and definitely in my 1984
contribution to Arbib and Hanson’s edited volume (Tsotsos
1987). In fact, the work of Weymouth described in Arbib’s
Appendix A is very similar to the representation and control
framework for vision I had put forward (Tsotsos 1980) and
further refined (Tsotsos 1985; 1987). In fairness, however, my
own work does not provide answers to most of the questions I
have raised here (and no one else’s does either, I believe).

The problems with schemalike and semantic net representa-
tions were first noted in seminal papers by Hayes (1974) and by
Woods (1975). Further analyses are found in papers by
Brachman and by Hayes (Brachman 1983; Hayes 1979). These
papers launched a very different emphasis in the knowledge
representation research community: that of providing represen-
tational formalisms with a logical semantics. (See Mylopoulos
and Levesque [1984] and Levesque [1987] for overviews of
knowledge representation research and Brachman and Leves-
que [1985] for a collection of key papers in the field.)

The need for a common language of discourse among the
artificial intelligence, cognitive psychology, and neuroscience
communities is critical, particularly with the current burgeon-
ing interest in many centers in interdisciplinary research. In this
regard, Arbib is completely right, and I regard his proposal of
schemas as a very reasonable starting point. The questions I
have raised are not so much criticisms of Arbib’s work but

. indications that much more work remains to be done. It is

appropriate to examine the success of mathematics as a common
language for the physical sciences. Mathematics has an agreed-
upon formal semantics. A family of compatible representational
tools is provided, each suitable and appropriate for a different
problem task (arithmetic, algebra, geometry, topology, proba-
bility, and statistics, calculus, analysis, set and number theory,
logic, combinatorics, and others). I feel it is a mistake to expect

BEHAVIORAL AND BRAIN SCIENCES (1987) 10:3 447




Commentary/Arbib: Visual modeling

thata single representational formalism can be found that will be
sufficient and appropriate for all levels of analysis of the brain. T
believe that a family of representations is required in much the
same way as a family of representations and tools has been found
to be appropriate for the physical sciences. The members of this
family must be compatible with one another in the same way
that the different languages of mathematics are compatible.
Schemas or their derivatives are certain to play a role at some
level of representation.

Schemata and representational constraints

Cees van Leeuwen
Department of Experimental Psychology, University of Nijmegen, 6625 HR
Nijmegen, The Netherlands

The target article gives me the impression that the author is
telling the wrong story at the right time. Arbib acknowledges a
point not generally accepted by neurologists — that a functional
explanation of a neurological system is necessary in order to
capture the relevant aspects of its structure. He therefore
accepts a cognitivist type of description as intermediate be-
tween the behavioral level and the neurological one. Cog-
nitivism identifies functional description with formal descrip-
tion. The formal descriptions involve computations on repre-
sentations. Since “the eventual goal, of course, is for functional
and structural analyses to be rendered congruent,” it comes as
no surprise that Arbib seeks to combine neural circuitry into
more complex ensembles called “schemata.” However, he does
not wish to accept the computational level of explanation as a
separate level, because “different animals (or different sub-
systems of a given animal) may make different use of visual cues
that cannot be discovered until ‘implementational details’ are
taken into account.” If the role for computational notions is
merely a heuristic one, they will ultimately be eliminated from
the theory. It seems, however, that they are meant to stay, since
“For many behaviors, analysis at the level of single neurons may
be superfluous.” Arbib therefore seems willing to have the best
of both worlds, without even mentioning the conceptual prob-
lems involved in identifying the computational level of explana-
tion with a certain type of neurological hardware.

But let us dream of such an account with all these problems
solved. Basic steps in the computations are carried out by the
underlying neurological system. We assume that its “imple-
mentational details” are simply “facts” about the neurological
hardware. We assume that these facts indeed constrain our
elementary computational steps. Then why do schemataneed to
play the role of the elementary computational processes pro-
vided by the neurological hardware? They seem far from ele-
mentary processes.

If this is the point Arbib wishes to make, my critique boils
down to the following: The question of which processes are
carried out depends on the question of which representations
can be stored and retrieved. Constraints on representations are
therefore at least as fundamental as those on processes. An
interesting theoretical possibility lies in imposing neurological
constraints that have consequences for representations. Satis-
faction of these constraints would be a prerequisite for the
ascription of meaning to representations in a cognitive explana-
tion. This means that the constraints themselves should be
formulated independently of any semantic domain. Any do-
main-dependent formulation of the representational properties
is beside the point. Schemata are, alas, domain-dependent
entities, and can therefore not be expected to serve as a basis for
understanding the neurological constraints on computational
theories.
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Schema theory: A new approach?

W. von Seelen

Arbeitsgruppe Il (Biophysik), Institut fir Zoologie, Johannes Gutenberg
Universitét, D-6500 Mainz, Federal Republic of Germany

As his books have demonstrated, Arbib is familiar with theories
no matter how complicated they are. One therefore wonders
what impels him to construct models — for example, models of
simple toads—that do simple things in simple experiments.
Many physicists have avoided doing just this and have immi-
grated into brain research (e.g., from thermodynamics) with the
aid of complicated equations. On the basis of similarities be-
tween “physical” and “neuronal” structures, they have then
attempted to explain or at least to imitate brains. These attempts
have been “successful”: They have led many scientists to think
about information processing in terms of a kind of neuronal
“architecture” and thereby to solve problems such as pattern-
recognition or optimization algorithms that are useful in tech-
nical applications. However, such work has repeatedly arrived
at the conclusion that almost nothing about the brain can be
explained in this way. Given the conditions of the real world, the
equations in physics are approximations that are frequently
inadequate when boundary conditions alter. Physics is certainly
essential for the understanding of biology, but in its conceptual
methods rather than in uncritical use of its equations. The result
is that there are many formulas in brain research today, but few
concepts in which theories can take root.

In my opinion, Arbib’s target article presents a concept that
could be seminal. It is justified eloquently and illustrated with
many examples. In order to comment on it — insofar as I have
understood it — I would like to “distort” it a little as seen from my
own point of view: To describe brain functions, a certain level of
abstraction is necessary. Arbib chooses basic schemata, which
have to be constructible in neuronal architecture that is tech-
nically measurable. As a help in finding and defining basic
schemata, I think they should be interpreted as “basic situa-
tions.” These consist of sensory or motor cues or both. To
perceive and handle these situations - for example, prey-
detecting and prey-catching ~ is the task of the animal. By
combining basic situations, more complex behavior can be
generated, The spatiotemporal behavior of layered feedback
structures can be used to encode and combine such representa-
tions, as Arbib shows for the stereo problem. This approach
assumes that brains are not universal computers but rather
systems that must solve concrete problems in a specific environ-
ment, that must be capable of evolution, and that can be
constructed reliably under the constraints of ontogeny. The
development of one new schema allows a large number of
combinations with already existing ones, and the requisite
hierarchies are easy to construct. Compared with the al-
gorithmic approach, this concept, based on the structure of the
relevant task and neuronal networks, has the advantage of using
experiments that can be currently implemented as well as
computer simulated.

This approach of course also involves problems not solved in
the target article:

1. How can basic schemata or basic situations be defined and
systematically detected? :

2, What strategy is used to couple the basic schemata when a
target function has to be defined?

3. Is there a general and workable data format for such
systems?

4. Is self-organization possible?

1 think it is worth proceeding in the direction Arbib. has
outlined. The path is difficult, but it is the one physics has used
since the beginning of experimentation.

The computer simulations tend to conceal a conceptual detail
I think should be reexamined: the columnar structure of neu-
ronal networks. This has not been detected neuroanatomically




and may be misleading functionally. Neurophysiological record-
ings suggest that there are columns in a layered structure with
retinotopic mapping; but because there is feedback within and
between layers, such columns would be functionally irrelevant.
Since the different layers have separate outputs (cortex), their
functions are also different; and columns are not adequate as an
implementation of an operator for a picture point, for example.
A more viable hypothesis may be a neuronal layer as a basic
system complemented - if necessary — by discrete, geo-
metrically arranged grids to which input is directed or where
specific internal processing takes place (e.g., “blobs” in the
visual cortex). ’

In view of the almost uniform structure of large brain areas
{e.g., the neocortex of mammals) it is possible to get by with a
few kinds of networks. However, these have to be analyzed and
implemented as completely as possible. So, as far as the toad is
concerned, one should investigate whether mapping the retina
onto the tectum using coordinate transformations — as occurs in
mammals — would not considerably simplify processing, es-
pecially with moving stimuli.

Schemas and bridging gaps in the
behavioral and brain sciences

Johan P. Wagemans
Laboratory of Experimental Psychology, University of Leuven, B-3000
Leuven, Belgium

Arbib’s target article is an extremely valuable effort in bridging
gaps among disciplines, theories, and topics. The elaboration of
this claim will be the major focus of this commentary. Some
shortcomings or difficulties are also pointed out, but compared
with the extremely high value of the major part of this work, the
latter are only minor quibbles.

1. Major achievements: Bridging gaps. In the behavioral and
brain sciences cross-disciplinarity is often argued for but seldom
achieved. Indeed the gap between the cognitive sciences study-
ing the higher-order processes of human minds and the neuro-
sciences studying the neural tools embodying these processes is
large and deep. In his research on the mechanisms of visually
guided behavior, Arbib lays the groundwork for a connection
not only among disciplines, but also between two often diver-
gent strategies of doing science (theory building versus experi-
mental testing), between metatheoretical approaches (ecologi-
cal versus constructivist) and between research domains
(perception and action).

Concerning the (lack of) relation between the cognitive and
neurosciences, Arbib clearly states that the higher-order behav-
ioral and cognitive capacities and processes cannot be reduced
to low-level neural tissues and firings in one single step. Some
intermediate format is needed in gradually bridging the gap
between the two extremes. Arbib argues for the notion of
schema as a useful candidate in doing this job. Considering the
fruitfulness of this conjecture in the empirical achievements of
his work, Arbib may well be right. In using incremental model-
ing, as he calls it, Arbib also demonstrates that constructing
theories and doing experimental research are not as divergent as
is often the case. Although every scientist would claim that the
ideal strategy of doing science is certainly the combination of the
two, those who are actually good at both are very rare.

Arbib is not unique in stressing the need for a level of analysis
mediating between the strictly cognitive and neurophysi-
ological ones. Others have made a comparable plea for a third
level of explanation in the behavioral and brain sciences: For
example, Newell (1980; 1982) has argued for a symbolic level
between the physical or neurophysiological level and the knowl-
edge level. In a similar vain, Pylyshyn’s (1980; 1984) view on
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cognitive science is centered on a distinction of (1) basic mecha-
nisms, (2) a syntactic or computational level, and (3) a semantic
or representational level, all three of which are essential in
capturing generalizations that cannot be made on another level.
The difference between Arbib’s and other approaches lies in the
details offered in the research on all three levels and in the
categorizing of the levels. Whereas a schema would be consid-
ered an instance of the highest level (knowledge, semantic or
representational) in the mainstream of cognitive science, Arbib
sees it as an intermediate-level construct and, indeed, as he
specifies it for the perceptual and behavioral domain, he might
well be right: The content of the schema is determined by its
formal computations and as such it is not semantic in the strict
sense. ,

The notion of a schema is a relevant one in considering the
difference between direct and indirect theories of perception
(and broadened to the total domain of the behavioral and brain
sciences, the divergence between ecological and constructivist
or cognitive approaches). Gibson (e.g., 1979) would have called
schemas, like any other intervening processes or structures,
superfluous in explaining perception or other psychological
processes. Nevertheless, the way Arbib uses the term — namely,
as a process whereby “the system determines whether a given
domain of interaction is present in the environment” — is much
more compatible with the ecological approach than would be
expected of the schema notion as such. The example of prey
selection or obstacle avoidance could easily fit the ecological
framework of detecting the edibility or pounce-on-ability of the
stimulus patterns by the resonance of the perceptual system
with the invariants specifying those affordances. The huge step
forward of Arbib’s approach, in comparison with Gibson’s, is
that Arbib is much more explicit about the way the tuning
actually occurs. In using his incremental style of modeling, he is
able to specify even the exact neurophysiological structures and
processes embodying the schemas involved in the perceptual
pickup and its behavioral consequences.

The focus of Arbib’s target article, visually guided behavior,
represents a serious and detailed effort to bridge the gap be-
tween perception and action. This problem was a critical one in
the early days (cf. Tolman’s rats buried deep in thought; see
Guthrie 1935, 1960), as well as very recently (cf. the latest
research efforts in robot vision, e.g., Brady & Paul 1984; Horn
1985). Attempts to solve it accordingly deserve praise when the
theoretical models are as detailed and empirically grounded as
Arbib’s research on visually guided prey-catching and obstacle
avoidance in the frog and the toad.

2. Minor shortcomings and difficulties. As I warned in the
introduction, my remarks are only minor and disparate in nature
and do not take anything away from Arbib’s major positive
contribution to the progress of our sciences.

Arbib’s account of Marr’s (1982) computational investigation
of visual information processing is too negative and based on a
serious misunderstanding of the specificity of the computational
level of analysis, Arbib argues that Marr is wrong in regarding
this computational level as independent. He states that “one
cannot give an a priori analysis of depth perception because
different animals . . . may make different use of visual cues that
cannot be discovered until ‘implementational details’ . . . are
taken into account” (sect. 1, para. 4). Now, Marr’s claim is
exactly that the same computational task (e.g., of recovering
depth from 2D images) can be done by several algorithms (e.g.,
shape from shading, structure from motion, depth from stereo-
images) that each have distinct implementations. So the finding
that different organisms use other “depth cues” is no refutation
of Marr’s approach but a clear confirmation. Arbib’s view that
Marr’s ideas add nothing to the virtues of classic functional
accounts is equally mistaken. The level of mathematical rigor
and computational detail attained by Marr and his group is
unique and was never before achieved.
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Arbib is not right in characterizing modules as structural units
(sections 1 and 6). As stressed by Fodor (1983; 1985), and as
emerges from Marr's (e.g., 1982) work, a module is, on the
contrary, a strictly functional unit. That is precisely the dif-
ference between the relatively new concept of module, defined
by computational criteria, and the rather old notion of layers,
structurally defined.

In addition to these failures in Arbib’s target article, perhaps
he could specify in his response some further details concerning
several insufficiently worked-out statements. First, in the sec-
tion on prey selection (3.2), Arbib discusses Didday’s (1976)
model hypothesizing “sameness” and “newness” cells, suggest-
ing that further experiments need to be done to work out this
conjecture. Our question is whether it is not a logical mistake to
suppose the existence of two different cells to detect the two
values of one single Boolean variable, namely, new or not.
Second, in the section on prey acquisition (3.4), Arbib attributes
two discrete values, d+ and d—, to the continuous distance
parameter. Must these values be specified a posteriori, or is it
possible to connect them with a kind of schema for the snapping
range of the frog’s tongue? Finally, Arbib stresses the need for a
distributed model (sect. 4.2, para. 1) and claims that cooperative
computation is a general principle of brain operation (sect. 5,
para, 1), but compelling theoretical or empirical arguments
supporting these statements are seldom offered and should
therefore be provided in the Author’s Response.

Grasping schemas is (are) difficult

H.T.A. Whiting
Department of Psychology, Faculty of Human Movement Sciences, The
Free University, Amsterdam, The Netherlands

Whereas both Thelen (1986) and Arbib (in his target article)
would seem to agree in interpreting behavioral outcomes at any
point in time as products of dynamic, relational, multilevel
interactions among system properties, Thelen’s concern has
been not only with behavior in the real (movement) time domain
but also over the developmental time span. It is perhaps this
double perspective that has led her to interpret the complex
ordering and co-ordering observable in both moving and devel-
oping organisms — conceived as cooperative systems — as
emergent properties rather than as being imposed by some
higher-order executive level distributing instructions to lower
levels. Such analternative viewpoint is not entertained by Arbib
in the target article, so his theoretical approach has to be seen as
an attempt to explain the actions of animals (and, ultimately,
man) in computational terms utilizing the concept of perceptual
and motor schemas. Whereas such an approach leads Arbib to
raise the question “Are schemas real?” those (like Thelen)
favoring a dynamical approach would want to pose the alter-
native, and more searching, question, “Are schemas neces-
sary?” A rigid application of Occam’s razor would suggest that
they are not (Kugler 1986). Why invoke mental representations
if more powerful explanations can be found for the same phe-
nomena? Why introduce special mechanisms (e.g., motor sche-
mas) when explanations of the same observations might be
derived from first principles (Kelso & Scholz 1985)?

If schemas (motor) are real, as Arbib hints, where do they
come from? Apart from distinguishing between episodic and
skill learning, Arbib has little to say about learning or develop-
ment — particularly as they relate to motor actions. It is hence
interesting in this respect to take note of Precht!’s (1986) point
that the neonatal movement repertoire does not appear de novo
at birth but is preceded by a prenatal developmental course.
Prechtl (1986), with the aid of real-time ultrasound, was able to
show that fetal movements that later comprise the motor reper-
tory of the full-term neonate are fully formed by the fifteenth to
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sixteenth week of gestation. Is it also necessary to invoke
schemas for their motor control? If so, were they present prior to
the movements or added at a later date?

This is not the place to pursue this debate further (the
interested reader is referred to Meijer and Roth, 1987, for an
explication); it is worth pointing out, however, that exponents of
the “alternative approach” here referred to would be less
concerned than Arbib with whether their interpretations might
survive the tests of the psychological laboratory and more
concerned with whether they survived the tests of everyday
functionally oriented behavior.

Many kinds of criticism might be, and have been, leveled at
the notion of schemas, but the particular problems in Arbib’s
target article are its vagueness and arbitrariness. A good exam-
ple of the former is provided in the following sentence (sect. 2,
para. 3): “We hypothesize that these plans are made up of motor
schemas, which are akin [emphasis added] to control systems
but can be combined to form coordinated control programs to
control the phasing of various patterns of co-activation.”

The motor schema turns out to be very difficult to grasp
indeed, particularly when, as in Arbib’s article, it is used in
contexts as different as actions, behavior, and movements.
Recourse to an earlier article of Arbib et al. (1985) on coordi-
nated control programs for movements of the hand helps a little
in confirming that the motor schema is in fact conceived of as “a
unit of motor control,” but the reader is still left to speculate on
the precise nature of that control: “A motor schema is a control
system, continually monitoring feedback from the system it
controls to determine the appropriate pattern of action to
achieve its goals” (emphasis added; Arbib et al. 1985, p. 111).

The same article illustrates how arbitrary schemas can be. A
task analysis for “grasping a mug” (for which there is, appar-
ently, also a schema) gives rise to the identification of a number
of subactions: “From a resting position . . . the hand preshapes
while the arm reaches . . . the grasp begins, and . . . the mug
has been actually grasped” (Arbib et al. 1985, p. 112).

To account for the operationalization of this task, a reach
schema and a preshape schema in addition to a grasp schema are
postulated., Presumably, if the task analysis were to be further
refined, additional schemas could be quickly invoked! [See also
Berkinblit et al.: “Adaptability of Innate Motor Patterns and
Motor Control” BBS 9(4) 1986.]

The problem with invoking ontologies, such as schemas and
programs, is that unless one wishes to resort to serial chaining:
interpretations, another ontology has to be proposed (in Arbib’s
case coordinated control programs) to account for interactional
parameters (in Arbib’s case the time-varying interactions of a
number of motor schemas) between sets of schemas (programs).

Bernstein (1935; see Whiting 1984) presents a paradigmatic
example of the problems to which this can give rise. In trying to
account for the regularity of rhythmical movement he insists
that the observed homogeneity “originates in the operations of
the central nervous system”™ “ . . there exist in the central
nervous system exact formulae of movement (Bewegingsfor-
meln) or their engrams, and that these formulae or engrams
contain in some form of brain trace the whole process of the
movement in its entire course in time” (Whiting 1984, pp. 97—
98).
Bernstein’s “proof” of the existence of such engrams was “the
very fact of the existence of habits of movements and of auto-
matized movements” (Whiting 1984, p. 98). His corollary was
that there must be some guarantee of the order and the rhythm
of the realization of such schemas. Bernstein’s ontological solu-
tion was the echphorator: . . . the echphorator lies outside the
engrams themselves and directs their order by a hierarchic
principle of Uberordnung” (Whiting 1984, p. 98).

Thus, as Reed (1984) points out, a potential, the ability to act
in a determinate way, is turned into an actuality (a latent
engram) and the actuality is claimed to cause all instantiations of
the potential. This kind of muddled thinking, he maintains,




together with the assumption (to which all existing theories of
indirect action seem to lead) that the brain causes the body to
move and that actions are the environmental consequences of
such movements, needs to be abandoned.

Author’s Response

Of schemas, neural nets, and Rana
computatrix

Michael A. Arbib

Departments of Computer Science & Neurobiology, University of Southern
California, Los Angeles, Calif. 90089

The target article strove to combine the study of action
and perception, the analysis of behavior at the molar and
the neural levels, and the approaches of artificial intel-
ligence, brain theory, and cognitive science. As a result,
the commentators come from diverse fields. I have made
a rough inventory of the commentators’ perspectives in
Table 1. Perspectives that are lacking include those of
Piagetian psychology, linguistics, and the two “extremes”
of analysis: the social level of knowledge and neuronal
analysis in terms of detailed membrane or molecular
mechanisms.

The structure of this response is as follows: The general
theme is that the schema level of analysis is of interest
even to those cognitive scientists who are not concerned
with neural implementation. However, for the neuro-
scientist, schemas have utility in providing a functional
description to constrain, and be constrained by, analysis
into neural networks, as I indicated in the target article.
Moreover, the study of Rana computatrix is not only a
tool for the study of the neuroethology of frog and toad,
but offers organizational principles useful in studying the
vertebrate brain in general. In the sections that follow,
we will note the agreement of most commentators as to
the need for intermediate levels and then we will discuss
the various claims as to what those levels might be. We
will note that the “language of schemas” need not in itself
be exhaustive as we ponder the explanatory power of
adaptive networks and nonlinear systems. However, the
need for schema-like units is not seen by everyone, so we
must turn to a critique of Gibsonianism and emergent
properties. The concept of schema is not a new one, and

Table 1. Inventory of commentators’ perspectives

Experimental research on frog brains: Ewert, Matsumoto,
Székely

Neuropsychology: Marshall, van Leeuwen

Neural modeling: Baird, Johannesma, Tang, von Seelen

Schema theory: Barnden, Mackworth, Tsotsos (the last two in
computer vision)

Philosophy: Gunderson, Lloyd

Cognitive psychology: Langley

Experimental psychology: van Leeuwen, Wagemans

Kinesiology: Whiting
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the diverse models of schema offered here are but stages
in developing a schema theory. Some of the issues are
discussed in the sections on probing the schema for
schemas and on instantiation. As we move from the level
of schemas as abstract entities of interest to all cognitive
scientists to their possible implementation in the brain,
we first look at neurological data at the level of brain
regions, analyzing brain lesion data as constraints before
turning to the more detailed level of neural networks.
When it comes to neural networks, we first note the
general implications of our study of Rana computatrix for
computer experimentation and modeling style before
turning to future directions in the modeling of frog and
toad per se. In the final sections, we turn to the broader
implications of schema theory by addressing explicit
questions about cognitive psychology and about schemas
and persons.

Intermediate levels. The commentators agree on the need
for many levels of analysis in cognitive science, but not on
what those levels should be. It is interesting that no
commentator extends the levels beyond the span from
mind to neuron, neither going “up” to the social nor
“down” to the neurochemical. Newell (1980; 1982) has
argued for a symbolic level between the physical level
and the knowledge level; Pylyshyn (1980; 1984) dis-
tinguishes between the level of basic mechanisms, a
syntactic or computational level, and a semantic or repre-
sentational level. Wagemans suggests that whereas a
schema might be considered as occurring at the highest
level in the mainstream of cognitive science I see it as an
intermediate level: The content of the schema is deter-
mined by its formal computations and as such is not
semantic in the strict sense. Perhaps we can reconcile
these levels by distinguishing a schema as specified pure-
ly in terms of its functional input/output behavior
(Pylyshyn’s representational level?) from a schema whose
function is specified in terms of internal information
processing (Pylyshyn’s computational level?). Again, if
we ignore the numerical details essential to the function
of perceptual and motor schemas and instead simply
stress the names of schemas and their abstract rela-
tionships, we seem to be close to Newell’s symbol level:

knowledge level
symbol level = schemas as abstract symbols
functional level = task level = schemas as input/output
descriptions
computational level = add internal programs to schemas
connectionist level = implement programs as connectionist nets
neural level = implement programs as plausible neural
networks

Tsotsos argues that, just as there are many different
branches of mathematics suitable and appropriate for
different problem domains, so should we expect a family
of varied representations for levels of analysis of the brain.
The target article certainly presents many different rep-
resentations. We might also note that there are alter-
natives at the implementational level, such as nonlinear
systems and associative nets. Thus Mackworth’s observa-
tion that I use four schema formalisms in my paper may
not be the negative point it first appears to be. It is an
open gquestion whether the same formalisms are appro-
priate for perceptual schemas (e.g., Appendix A) as for
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motor schemas (e.g., Appendix B); whether activation
levels are needed in the study of motor schemas (as
argued by Dakin & Arbib 1986); and whether different
schema formalisms are appropriate en route to, say, a LISP
rather than a neural net implementation. The open re-
search issue is to discover which differences are essential
to the differences in task domain and which are historical
accidents to be removed by the unification of different
minitheories.

Gunderson feels that my claim that “schemas must be
large enough to allow an analysis of behavior at or near
the psychological level” suggests a level of behavioral
analysis free of psychological ascriptions and one that
inevitably uses them. In particular, he asks, what is the
difference between a psychological level and a “near”-
psychological level? What do the “large”-enough sche-
mas grab onto? My use of the term “near-psychological”
was not intended to suggest a level “free” of psychology.
Rather, it was meant to suggest that the vocabulary we
receive from psychology may need modification as the
details of the implementation are worked out. This was
the burden of my espousal of a “two-way reduction”
whereby the reality of different levels may be recognized
and reconciled to create a richer whole, but wherein the
realities may also change. One example is the way in
which the analysis of depth perception shifts from an
unanalyzed psychological concept to a set of competen-
cies that are “near” the psychological level — perhaps
they can be said to redefine the psychological level — but
that are precise enough to be explained in terms of finer-
grained mechanisms.

It is in the same spirit that I would respond to the
comments of Mackworth and van Leeuwen concerning
Marr’s notion of the “computational level” (which is
better called the “functional level” or the “task level”). 1
did not reject the level, and in fact explicitly used the
“functional level” or “task level” as my point of departure
for the analysis of behavior long before Marr’s discussion
of it (cf. the stress on action-oriented perception in Arbib
1972). What I do reject is the claim that analysis at this
level provides a description resistant to modification
when we take “implementational details” into account.
This is what I meant by saying that Marr’s notion of the
computational level as an independent level of analysis is
mistaken. As Wagemans points out, Marr admits that a
given computational task (e.g., of recovering depth from
2D images) can be done by several algorithms. This is
true, but the point is that the initial specification of the
task at this level may not survive the attempted imple-
mentation. Thus Marr placed great weight on the com-
putational task of computing a 23D sketch prior to image
interpretation, but few in the machine vision community
now accept this as more than, at best, a partial “computa-
tional” specification. And to say that Marr worked with
mathematical rigor and computational detail (which was
certainly not the unique and ab initio creation that some
believe) is not relevant to the evaluation of his doctrine of
the computational level.

In continuing what he stresses are only minor crit-
icisms, Wagemans asserts that I am wrong in charac-
terizing modules as structural units, citing the authority
of Marr (1982) and Fodor (1985). But neurophysiologists
had already made use of the term in the 1970s
(Szenthdgothai & Arbib 1975; Mountcastle 1978} to de-
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note a structural unit in the brain, and even earlier
Kilmer et al. (1969) had used the term in modeling the
reticular formation as a chain of interacting modules,
each corresponding to a “poker chip” of neural tissue.
Actually, I think that the word “module” is robust
enough to be used with either adjective, “structural” or
“functional,” but I have argued elsewhere that there are
major incoherencies in Fodor’s account of what con-
stitutes a (functional)module (Arbib, 1987a).

Adaptive networks and nonlinear systems. It is suggested
by Baird that the discovery of the implementational
details of a biological system may contribute to the way a
task is conceived and described at the functional level, A
network with a learning algorithm, such as Holland’s
(1975) classifier system, may be capable of generating
many specific algorithms to solve large classes of prob-
lems and so may encompass large classes of symbolic
algorithmic descriptions even when we do not know what
specific symbolic description is appropriate. We may
note too the recent success in training hidden units in
“unstructured” networks to enable the nets to exhibit
previously unspecified functions in adaptive reward-
penalty (Ag p) (Barto 1985) or back-propagation networks
(Rumelhart et al. 1986). Still, the brain theorist has to go
beyond such studies in trying to understand the struc-
tural particularities of different brain regions and their
variation with behavior from species to species.

Baird agrees with my advocacy of the strategic impor-
tance of the incremental neural modeling of a specific
well-chosen system, citing the work by Walter Freeman’s
group on pattern recognition in the rabbit olfactory bulb
[see Skarda & Freeman: “Brains Make Chaos in Order to
Make Sense of the World,” BBS 10(2), 1987]. They use an
8% 8 array of electrodes to monitor spatial patterns in the
EEG during the conditioning of a simple licking response
to water reward. The data lead them to analyze pattern
recognition networks that bifurcate from a single back-
ground state into a state space with multiple periodic and
chaotic attractors (Baird 1986a; 1986b). In fact, there is
now an increasing interest in the use of chaos to model
apparently random behavior in neural systems (cf. Free-
man & Skarda 1985; Kelso & Scholz 1985; Mpitsos &
Cohan 1986). Applications of nonlinear analysis by my
own colleagues include the study of competition and
cooperation in neural nets by Amari and Arbib (1977) and
the parameter analysis of the tectal column by Cervantes-
Perez (1985, Chapter 4).

Gibsonianism and emergent properties. My work is seen
by Wagemans as connecting divergent scientific strat-
egies (theory building vs. experimental testing), between
metatheoretical approaches (ecological vs. constructivist)
and between research domains (perception and action).
He notes that Gibson (e.g., 1979) would have called
schemas, or any other intervening processes or struc-
tures, superfluous. Wagemans sees my definition of a
perceptual schema as “a process whereby the system
determines whether a given domain of interaction is
present in the environment” as compatible with the
ecological approach, but much more explicit as to how the
tuning of the system to environmental affordances actu-
ally occurs. I have indeed found Gibson very helpful in
specifying facets of perception that are worthy of study,




but I then move beyond him in insisting that we cannot
just pick up affordances without some mechanism (e.g.,
optic flow; Prager & Arbib 1982).

Whiting adopts a strongly Gibsonian position that
seems to leave little room for agreement. He notes that
Thelen’s (1986) double perspective on movement in the
time domains of both actual movement and development
leads her to interpret the observable in each domain as an
emergent property rather than as being imposed by some
higher-order executive level distributing instructions to
lower levels. Since I do not discuss this viewpoint, Whit-
ing asks, “Are schemas necessary?” Why introduce spe-
cial mechanisms (e. g., motor schemas) when explanations
of the same observations might be derived from first
principles (Kelso & Scholz 1985; Kugler 1986)? But this
may be a confusion. A theory of schemas must include a
theorv of schema formation, and the work of people like
Kelso may let us understand how a schema could emerge
from the cooperative action of a network. What has
emerged is still worthy of cataloguing, however, and its
interaction with other motor schemas (as I shall continue
to call them) still needs analysis.

Whiting cites Arbib et al. (1985) to note with disap-
proval how arbitrary schemas can be. Yet most cognitive
scientists would agree that “something” is required to tell
a mug from a screwdriver, and that, arbitrary though the
distinction may be, picking up the mug and using the
screwdriver require different skills. Many kinesiologists
agree that complex skills benefit from an analysis into
interacting components. I call these components motor
schemas, as Schmidt (1975) does, for example, and I am
developing the language of coordinated control programs
to make explicit how they can be combined. Whiting
seems to feel that to call them “emergent properties”
renders explanation superogatory. We are back to Gibson
again — but direct action instead of direct perception. He
applies to my coordinated control programs Reed’s (1984)
critique of Bernstein [see also Berkinblit et al.: “Adapt-
ability of Innate Motor Patterns and Motor Control
Mechanisms” BBS 9(4) 1986] for turning an ability to act
in a determinate way into an actuality (a latent engram),
with that actuality claimed to cause all instantiations of
the potential. On the contrary, my discussion of Piaget in
Arbib (1985), while accepting the validity of schemas,
stresses that the problem of telling which schema a given
behavior falls under is nontrivial. Reed maintains regard-
ing schemas as actualities is “muddled thinking” and
needs to be abandoned, along with the assumption (to
which, he remarks, all existing theories of indirect action
seem to lead) that the brain causes the body to move and
that actions are the environmental consequence of such
movements!

Clearly, anyone committed to understanding the neu-
ral basis of movement cannot deny that the brain causes
the body to move and that actions are the environmental
consequences of such movements, However, I do take
the following points: There need not be a coordinated
control program separate from the interaction of neural
circuitry embodying the constituent motor schemas; that
is, the coordinated control program is a description, in
this case, of transfers of activity in neural nets, not a
pattern in a separate neural net that gates those transfers.
Nonetheless, the data of Evarts and Tanji (1976) do seem
to point to the neural reality of such gating in some
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circumstances, while our ability to acquire the rudiments
of a skill through verbal instruction seems to point to the
ability to assemble schemas. This is not to deny that once
a high-level specification has “homed in” on an individual
schema, the more detailed properties of that schema may
thereafter be better understood in terms of cooperative
properties of neural nets than in terms of symbolic de-
scriptions. Here we may recall the comments of Baird,
and profit from the insights of Kelso. I must reiterate the
point made in my commentary on Anderson’s accom-
panying target article [this issue]: In computer science,
the translation from a program in a high-level language to
its machine language implementation preserves seman-
tics, whereas in cognitive (neuro)science, the high-level
description may only approximate the behavior of the
fine-grained implementation.

Tang seems to share some of Whiting’s concerns when
she argues that it is important to find more methods for
representing schemas. Whereas “frames” represent well-
learned knowledge in Al and are suitable for the analytic
mode of thinking that breaks the world up into parts and
then combines them, she speaks of another mode, imag-
istic thinking, which processes the world as a whole.
Noting that children abstract the concept of cat from one
or a few cats and can later recognize any cat immediately,
she asks, “What schema representation will facilitate
such analogies?” There are two immediate condidates.
One is schemas implemented as associative networks
(Kohonen 1984). The other is schemas of the “analytic”
kind, but supplemented by the sort of inferential mecha-
nisms provided by Indurkhya (1986) in his theory of
metaphor (and see the schema-based treatment of lan-
guage as metaphor in Arbib and Hesse 1986), However,
Tang does not follow Whiting and Reed in their rejection
of brain-based studies of movement. She suggests that it
would be useful to have a hierarchy of subnetworks in a
schema, wherein schemas located at the same level would
interact by competition and cooperation, whereas sche-
mas at different levels would act by maintaining the
proper sequence. For example, she sees motor control
from the motor cortex to the cerebellum, brain stem,
spinal cord, and muscle-servo as clearly hierarchical.

Probing the schema for schemas. It is argued by Tsotsos
that there is no single required level of representation
between behavior and brain, and that schemas do not yet
provide the desired interlingua. The designer of a repre-
sentation must determine how appropriate it is for a given
problem domain and must provide a syntax and formal
semantics so that others may adopt it as well, Mackworth
notes that since the modern introduction of the concept of
schema by Head and Holmes (1911) the schema for a
schema has been “extraordinarily plastic.” He notes that,
although I provide some functional criteria for schemas
and four structural definitions, the definitions are far from
coextensive and thus schema theory in its current state
cannot serve as the common language of cognitive sci-
ence. I have already stated, in agreement with Tsotsos,
that cognitive science may be better served by a variety of
schema formalisms; but L have also confessed that present
formalisms (both mine and those of others) are provision-
al. We may thus expect future work to benefit from
Mackworth’s observation that functional analysis at the
task level can lead to the identification of adequacy
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criteria that any representation scheme must satisfy — he
has identified eleven descriptive and five procedural
adequacy criteria that can serve as functional constraints
for schema theory (Mackworth 1987).

As Barnden and Mackworth note, the body of a schema
is specified in Appendices A and B by means of a fairly
conventional analogue to current programming lan-
guages, with numerical parameters, sequential control
with program counters, and minor modifications for par-
allelism, including the FORALL mechanism and cor-
outines (for related constructs cf. Tsotsos 1985; 1987). To
put this in perspective we must distinguish between a
language for specifying schemas at the schema level,
however imperfect (we are still learning languages for
high-level, possibly distributed, function), and the neural
implementation. The formalisms of Appendices A and B
were designed for ease of Al applications on current
computers. The Lara example comes closer to my view of
schemas-in-the-brain and their implementation on future
neural computers. The key concepts are port connec-
tions, instantiation, deinstantiation, and activity levels
mediating competition and cooperation. Barnden sug-
gests allowing the behavior of a schema to be specified by
means of a mathematical description of an input-output
function or relationship. This is what is accomplished by
the Lyons and Arbib (in press) work using port automata
(Steenstrup et al. 1982) for the semantics of schema
instantiations. As with automata, this may be specified by
an explicit input—output history or implicitly by state-
dependence. Barnden adds that it may be relevant to
know for each port of a schema the style of encoding and
the required degree of precision for the data it carries.
This could de done by extending Liyons’s (Lyons & Arbib,
in press) association of a data type with each port.

Tsotsos finds a host of questions raised by my treatment
of schemas. These I shall now attempt briefly to address:

1. How are schemas mapped onto an implementation
for testing purposes? Is there a translator? There are
translators for the schema systems of Appendices A and B
that map schemas into programs for current computers,
However, although neural nets do have a syntax and
semantics, there is no systematic way to map schemas to
neural nets when we are studying the brains of actual
animals. In fact, as I stated above, the descriptions at the
schema level and the neural level can be expected to co-
evolve, one constraining the other, when we are doing
neuroethology.

2. How can schemas proposed for the same behavior
be compared without simulation? Automata theory cer-
tainly offers techniques for proving that two automata do
or do not exhibit the same behavior, and these methods
can be extended to port automata and thus to schemas. At
the neural level, Cervantes-Perez (1985) shows how to
prove that a given range of parameter settings will yield a
certain qualitative class of behaviors. Mackworth notes
that there are intriguing new results from theoretical
computer science to be exploited. Complexity analysis
shows that some tasks are inherently serial, and Mack-
worth (in press) has shown that establishing a form oflocal
coherence (arc consistency) in a set of declarative schema
instances is such a problem. Nonetheless, a good simula-
tion test-bed will remain indispensable for the investiga-
tion of schemas and neural nets.

3. What class of behaviors does a given schema repre-
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sent? How can one tell whether that class of behaviors is
the desired one, and contains no unwanted behaviors?
How can one tell whether a given schema formalism is
sufficient for all the behaviors of interest and only those?
My own suspicion is that any interesting class of schemas
will have sufficient expressive power to compute all
computable functions. The interesting questions then
will be to identify schema networks that can match data
on speed (cf. Mackworth’s complexity theory), errors,
and lesions. Chomsky has sought to characterize a class of
grammars that can represent all and only potential human
languages, but the current formalism can certainly repre-
sent unnatural languages as well. [See also Chomsky:
“Rules and Representations,” BBS 3(1) 1980.] Amari and
Arbib (1977) and an der Heiden (1980) are among the
many to use a leaky integrator model of the neuron, but
Hopfield and Tank (1986) have shown that one can map
the “travelling salesman problem” onto an unnatural
neural net. Thus I do not think we will see schema
formalisms that represent only those behaviors of interest
to, say, the linguist or the neuroethologist.

4. Is a schema a procedural or a declarative entity?
Does it matter? Are the arrows between units within a
schema control lines or data lines, or do they represent
some other relationship? At present, I think of schema
instantiations as actively interacting entities. In the coor-
dinated control program for grasping I have specific lines
for transfer of control and data. Appendices A and B make
clear the need for passage of activation levels and (de)in-
stantiation commands. Tsotsos notes that Hayes (1974;
1979), Woods (1975), and Brachman (1983; 1985) directed
attention to the aim of providing a representational for-
malism within a logical semantics, but to my taste their
style of semantics marches us off in the wrong direction,
away from what might be called a “procedural cooper-
ative computation” approach to schemas that can offer a
bridge to connectionism or to neural nets.

5. What are the primitives of schemas? Is it possible to
define a set of primitives so that all behaviors of interest
may be represented using combinations of these primi-
tives? In a particular application domain (such as in
Appendix B), we may work with a fixed set of basic
schemas. In a general setting, I see new schemas being
formed as assemblages of old schemas; but once formed a
schema may be tuned (by something akin to an adaptive
network mechanism), much as a skill is honed into a
unified whole from constituent pieces. It is the tunability
of schema-assemblages that allows them to start as com-
posite but to emerge as primitive. Itis also the reason why
I stress that a model expressed in a schema-level for-
malism may only approximate the behavior of a model
expressed in a neural net formalism. (Perhaps this is what
Whiting had in mind. Knowing that a well-tuned skill
may not be decomposable into pieces, he rejects the role
of motor schemas in acquisition, and in more structured
skills.)

6. In motor tasks, temporal issues are of particular
importance. How is time represented in the schemas? See
Fuster (1985) and Tsotsos (1987).

7. How are motion qualities such as “grasp gently” or
“grasp aggressively” represented? What are the sub-
tleties of vision that current schemas cannot capture? Ido
not know.

Langley finds the representation of motor schemas (in




Appendix BP) to be implausible, being too influenced by
the use of numeric representations and algorithmic con-
trol structures in robotics. Well, it was a robot program-
ming language! Langley seems to make the mistake of
many cognitive scientists who have not sufficiently pon-
dered low-level vision or motor skills; they ignore the
parametric nature of much human behavior. As we devel-
op schemas tuned to human motor control, as in the work
of opposition spaces of Iberall et al. (1986), even if the
schemas as wholes act as symbols (see the above discus-
sion of Newell’s [1980] symbol level), the internal struc-
ture of a schema preshaping a hand, say, must have
properties more akin to numeric representations. Lang-
ley cannot believe that this schema language will give the
flexibility and adaptivity required to model human motor
behavior, nor does he see how it would support models of
motor skill improvement and acquisition. In fact, as
indicated in my response (5) to Tsotsos, I see the explicit
language of schema combination as pointing to the way in
which we can acquire the rudiments of a skill by verbal
instruction; but it is only with something like an adaptive
network implementation (cf. Baird) that the honing of a
skill can be explained. The pascaL-like program is one
way of specifying the network top-down before we refine
it through network analysis.

Instantiations. The notion of multiple instantiations is
seen by Barnden as central, presenting deep problems
when the task of implementing the schema level in neural
circuitry is considered. However, my paper does not
involve detailed attention to multiple instantiations, and
there is no consideration of how multiple instantiations
would be neurally realized. Since I agree with Barnden as
to the importance of these issues, I use this section to
emphasize this direction for future research.

Barnden notes that one connectionist solution to the
problem of cross-talk between similar pieces of informa-
tion is to recruit neural assemblies to represent the
particular instances of a situation class, as well as to have a
neural assembly standing for the situation class itself
(e.g., Hinton 1981). But how is short-term recruitment
managed? Does it rely on synaptic-weight change? How
can it be made fast enough? How economically can
inferential and other mechanisms respond to recruited —
and so in some sense unpredictable — assemblies? How
are recruited assemblies demobilized? This is especially
difficult when an assembly shares many neurons with
other assemblies. Von der Malsburg (1981; von der Mals-
burg & Schneider 1986) offers a solution to some of these
problems with his dynamic link architecture. He uses
synaptic change on a long time scale for long-term memo-
ry; fast modulation of synaptic weights about the long-
term values then provides the dynamic relationships
within and across assemblies. This architecture appears
to be promising for neural instantiation of schemas.

Can we produce a theory that has different instantia-
tions of a schema S as superimposed states of a single
neural net N? Or are the different instantiations different
copies of N dynamically recruited, or perhaps perma-
nently existing but only intermittently active? Barnden
suggests that we contrast an N that is specific to a given S
with an N that can be programmed to accommodate a
wide variety of given S’s (as in the universality of cellular
automata). Or might the instantiations reside in networks
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that copy only parts of N? Here we may compare Wey-
mouth’s (1986) parts (Appendix A) versus Lyons’s (1986)
wholes (Appendix B). And how does all this relate to the
number of instantiations of a given schema that can be
simultaneously active? Perhaps only instantiations are
identifiable with neural circuits, whereas a schema might
be just a propensity to activate neural circuits to act as its
instantiations. In this connection, it is tempting to recall
Heinzel and Selverston’s (1985) circuits, which serve
different motor schemas (CPGs) under proctolin control.

In an earlier issue of BBS, Arbib and Caplan (1979)
discussed the DIPM model (Arbib 1970) in the context of
the effects of brain lesions, The idea was that a schema
could set up instantiations in different parts of a cortical
network, but with time it would have a preferred subnet-
work in which appropriate parameters were stored. Le-
sions in this specific region, then, would not irreparably
destroy the schema, but would greatly reduce the skill
with which it could be evoked. Similarly, in his research
on connectionist models for complex short-term inferen-
tial information-processing, Barnden (1985; 1986) maps
abstract connectivity among pieces of information to an
intermediate level in which there is a notion of relative
positions of data items in certain representational media.
These relative positions relate to hardware connectivity
in a complex way.

Brain lesions as constraints. Analysis at the task level, as
Mackworth observes, allows us to determine the natural
constraints that may be exploited by a system and the
structure of the equivalence classes of solutions to the
perceptual or motor task. We can determine whether a
solution is overconstrained or underconstrained by the
various potential information sources. If it is under-
constrained, then additional constraints or preferences
can be identified that may be imposed to select out a
particular solution (Mackworth 1983). I agree, but my
point is that these constraints may be either at the task
level or at the implementational level — as in the con-
straints revealed by lesion studies.

Marshall provides a fascination catalogue of data on
humans with brain lesions that dissociate different as-
pects of visual behavior but he confesses that he does not

know whether Rana computatrix will play a heuristic role

in elucidating disorders. Instead, he expresses the wish
that “more members of the simulation community would
take a look at the kinds of data provided by disorders of
human cognition.” Of use here is the book edited by
Arbib, Caplan, and Marshall (1982) in which I have three
chapters that build upon the BBS target article of Arbib
and Caplan (1979) to attempt to apply schema theory to
the neurology of human cognition. Marshall confesses
that my observation that different animals “may make
different use of visual cues” causes him to worry whether
Rana computatrix does it “our way.” But I think this is to
miss two points. First, my article offers schema theory as
a general methodology for cognitive analysis. For neuro-
psychology, we seek schemas that can be localized in the
brain by lesion studies, and this has nothing to do with
Rana computatrix. The second point, however, is that we
can learn about the human brain from Rana computatrix,
but not by simply plugging frog schemas into the human
brain. Of course the visual systems of frogs and humans
are different — this is already dramatically evident at the
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level of the retina. My claim is not that a model of the frog
is also 2 model of the human; it is rather that the study of
Rana computatrix enriches the vocabulary of organiza-
tional principles and model exemplars with which we may
approach the specific problems of human cognition. For
example, Arbib (1982c) contains a section, “From Prey
Selection to Object Naming,” which uses a model of the
neural circuitry underlying prey-selection in the frog to
offer novel hypotheses about Luria’s (1973) observations
on how certain lesions affect a patient’s ability to name
objects. It is at this level that I would show the rela-
tionship Marshall desires between my kind of modeling
and the problems his patients present. The appropriate
models here are at the level of schemas as constrained by
neurological lesion data, rather than at the level of de-
tailed neural circuitry.

Van Leeuwen argues that constraints on representa-
tions are at least as fundamental as those on processes,
and with this I certainly agree. But he then states that this
means that the constraints themselves should be formu-
lated independently of any semantic domain, and that
schemas are domain-dependent and therefore cannot be
expected to serve as a basis for understanding the neu-
rological constraints on computational theories. I do not
agree with this logic. The neurological constraints enter
when we have data on the effects of brain lesions (though
these are complicated by the brain’s ability to adapt), or
data from PET-scans or evoked potentials. These con-
straints cannot be brought to bear unless the schema
model is refined to a level where specific hypotheses can
be made as to the localization of subschemas in the brain.
As van Leeuwen indicates, however, they can also con-
strain the schemas by requiring that those which survive a
lesion be able to account for the representations then
exhibited by the patient. This is what Marshall was doing
for us when he demonstrated that different brain lesions
could fragment representations that might otherwise
have appeared unitary. We are then challenged to work
with a mosaic representation consistent with these data
(cf. the accommodation vs. disparity of the cue interaction
model), rather than with the unitary representation that
tempted us in the first place. This is precisely why I argue
that the functional level must be accountable to the
implementational level — our a priori choice of represen-
tation may not survive the provision of constraints from
lesion data or other “implementational levels.”

Computer experimentation and modeling style. The com-
mentary of Langley expresses the faith that it is possible
to offer functional analyses that have value despite all lack
of neural grounding. How might this be? Perhaps be-
cause different schemas may be functionally equivalent
with respect to such criteria as predicting a frog’s behav-
ior or teaching a child a new skill (cf. Anderson’s target
article in this issue). For many cognitive scientists, such a
grain of explanation may suffice. For the neuroscientist,
however, schemas are to provide hypotheses as to the
function of specific neural circuits; these are falsifiable;
new hypotheses (and the record of mistaken hypotheses)
then lead on to new understanding. Lloyd states that a
complex neural model should be complete in two senses:
The behavioral capacities should be given neurally plausi-
ble implementations, and the pathways modeled should
extend without break from sensory input to motor input.
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Since the depth and detour studies are still mainly top-
down, they may be undermined by later data on localized
brain functions.

Since there are many parameters to be tuned in the
tectal column model, Lloyd wonders what guides the
choice of adjustments. Simplifications may have ramify-
ing effects: Increments have more than incremental con-
sequences. This is true, and I regard future attempts to
combine tectal column modeling with depth and detour
modeling as posing a major challenge to both models. Ido
not have an algorithm to guide this merger. Initially ad
hoc methods may be required to get the new model to
meet a barrage of constraints provided by experimental
data. Lloyd suggests that there is a trade-off between
accuracy and completeness and argues that, if one must
choose, completeness is the more useful goal. I sym-
pathize with the move to completeness, stressing visu-
omotor coordination rather than vision per se, but I must
note that many experimentalists focus successfully on
specific regions in the brain, rather than following
through to each periphery. Thus, much modeling de-
signed to make contact with neuroscientific data must
sacrifice completeness for accuracy.

It is in the spirit of his call for completeness that Lloyd
finds Rana computatrix of cognitive interest, irrespective
of its accuracy as a model of living anurans. Dennett
(1978) proposed that one approach the complexity of
humans by looking at simpler systems — both living
systems, and artefactual systems born of engineering
imagination. Braitenberg’s (1984) “vehicles” exemplify
the latter approach, a synthetic psychology, and Lloyd
suggests that Rana computatrix be located in the same
phylum of Gedanken beasts, “the most advanced of its
kind yet to evolve.” Dewdney (1987) has also made the
point that Rana computatrix should be seen as a sophisti-
cated “vehicle” in Braitenberg’s sense.!

Noting that I view the animal’s internal model of the
world as an assemblage of instantiated schemas that
correspond to “domains of interaction,” Lloyd asks
whether the instantiated schemas in the brain of Rana
computatrix represent flies, small distal objects, or small
patches of retinal stimulation? Similarly, under what
conditions will we say that Rana computatrix’s model of
the world is false? These are central issues for cognitive
science, and complete models like mine can help their
resolution (cf. Lloyd 1987). Such questions are addressed
in my discussion of pattern recognition in my commen-
tary on Ewert’s accompanying target article. I suspect
that a model of the world is not so much true or false as it is
more or less useful — the frog’s model is useful if it gets
enough to eat, and does not expend too much energy
snapping at false flies. [See also Dennett’s accompanying
commentary on Ewert, this issue.]

I think such concerns prompt Johannesma’s commen-
tary, but he seems to reject completeness, offering in-
stead what appears to be a methodology for considering a
sensory system in isolation. Johannesma asks how Rana
computatrix may gain access to the biotope of Rana
naturalis. 1 thought I had done this by offering simula-
tions (such as the Lara et al. 1984 model) that went all the
way from visual input to behavioral output. Thus, though
I find Johannesma’s ideas of interest, I am not sure they
advance the notion of task-analysis or action-oriented
perception, which seems central to his “sharing of the




biotope.” He analyzes neural representation of sensory
activity as a map P from sensory space into neural space,
and the sensory interpretation as the inverse map IT of
neural space into sensory space. We must immediately
note that there may not be a unique inverse, This need
not be a problem for Johannesma, however, who stresses
probabilistic interpretations, for he later asserts that if
sensory stimulus x induces the activity pattern z, z = Px,
and y is the sensory interpretation of z, y = I1 z, then the
sensory interpretation of x is y = IIPx, where IIP is “a
deterministic or stochastic mapping of sensory space onto
itself.” However, we should note here the well-known
fact that IT is so underdetermined by P that extra con-
straints must be imposed if IIP is to be a useful
interpretation.

TRANSFORMATION
P Q

sensory space-—sneural space—smotor space

REPRESENTATION
I Q

sensory space—sneural space—emotor space

Johannesma states that transformations P and Q can be
divided into subtransformations or schemas, but I do not
think this quite captures the full richness of a system that
includes feedback, relaxation, or other cooperative and
competitive processes. Johannesma asserts that the for-
mal description of the nervous system should be in terms
of the forward mappings P and Q, whereas the under-
standing of function should be based on the representa-
tion given by IT and Q. Again, I do not see why P and Q
(and thus the simulation of animal behavior) are less
functional than II and Q.

In the cue interaction model, the activity of the accom-
modation field and the interaction field form an internal
variable of Rana computatrix. Johannesma asserts that no
appropriate metric has been or can be defined to compare
internal variables of model and animal. Even neural
variables of different animals cannot be compared di-
rectly. But neurophysiologists certainly compare classes
of receptive fields across animals, as in the work of Ewert
cited in my target article. Application of a sensory in-
terpretation of the internal variables by an inverse map of
neural space into sensory space would result in a struc-
ture of the visual space of Rana computatrix, which then
could be compared to the visual space of Rana naturalis.
The map ITP sets limits to the frog’s perception. The map
IT allows an external observer to compare perceptual
abilities of Rana computatrix and Rana naturalis. Ar-
tificial and natural frogs would then be compared not with
respect to their internal variables, but as companions
sharing a common biotope. But as already stated, I think
our action-oriented approach does create a common bio-
tope. Correlation of internal variables then provides a
structural/process constraint,

Johannesma does seem to be addressing a crucial
question for the sensory neurophysiologist, however:
How do we make sense of neural activity in sensory
systems? His answer, in a symbol, is II. On the basis of
studies with his coworkers, he states that in sensory parts
ofthe nervous system I1 can be derived from the response
of single neurons to sensory stimuli usually in terms of the
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spatio-spectral-temporal receptive field of the neuron.
He further states that, since receptive fields are defined
in sensory space, II, being approximated as a superposi-
tion of the receptive fields of active neurons, will be
defined as a distribution in sensory space. However, one
must set against this the caution of Baird that a cell may
exhibit very different receptive fields when in different
behavior states. He suggests that single-cell “receptive
field” or “trigger feature” investigations can be mislead-
ing or even incoherent when a network is cross-correlat-
ing its inputs. In his work on the olfactory system, he finds
that apparent receptive fields may exist in such a netin a
restricted experimental situation in which it always relax-
es to the same attractor, but experimental conditions may
change the attractor, and thus the relation of unit activity
to input may be completely altered. Can Johannesma’s
methodology be adapted to the separation of these differ-
ent maps II,, one for each attractor a?

Székely notes that even the experimentalist makes
conceptual models when he describes and interprets the
results of his study of so complex a structure as the
nervous system. He thus warns the modeler that the
tectal column of Székely and Ldzar (1976) is but one of the
many possibilities as to how the neuronal interconnec-
tions may be organized in the optic tectum, Similarly, von
Seelen questions the column structure of neuronal net-
works, asserting that it has not been detected neu-
roanatomically and may be misleading functionally. In a
layered structure, neurophysiological recordings suggest
columns, but feedback within a layer or between layers
negates the functional limitations of columns. Von Seelen
prefers to view a neuronal layer as a basic system comple-
mented — if needed — by discrete, geometrically arranged
grids to which input is directed or where specific internal
processing takes place (e.g., the “blobs” in visual cortex).
The various types of network must be well analyzed and
implemented as completely as possible. Investigation of
the coordinate transformation of the retina onto the
tectum may considerably simplify processing, especially
with moving stimuli.

Székely urges the modeler to become a computer
experimentalist to see what networks other than those
sanctioned by current experiments can give better or
worse results in terms of some arbitrary criteria. He can
then point out to the biological experimentalist his faulty
conclusions, overlooked data, or “emergent” properties
that remain unnoticed in biological experiments. My
discussion of the cue interaction model does in fact
provide “attentional input” of this kind for the experi-
mentalist. A model need not be a compendium of every
shred of available data to be of conceptual value in helping
us understand a class of neural circuits or in guiding new
experiments. Székely finds the 8 X8 array model of tec-
tum “disappointingly trivial in showing the retino-pretec-
tal-tectal interaction exactly in the same way as Ewert
would unambiguously describe in three sentences.” But
Ewert’s description is not unambiguous — it leaves a wide
range of parameters unconstrained (recall Mackworth’s
discussion of constraints). It takes intense computer ex-
periments to find parameter ranges that fit the data,
whereas, as Ewert notes in his commentary, other ranges
do not fit. A given model network contains many different
models depending on the choice of parameters. Cer-
vantes-Perez (1985) showed that for specific parameter
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settings in our model changes in velocity could yield
inversion of W/A (worm/antiworm) preference, a phe-
nomenon not observed by Ewert and others. The interac-
tion between theory and experiment thus allows one to
constrain the operating range of certain parameters of the
model, This variability of function within a given struc-
ture, even after the loci of excitation and inhibition have
been determined, is one that few experimentalists appre-
ciate, and is a vital one when we turn to neural modeling.
For this reason, Ewert points out that the modeler can
provide assumptions and approximations that are a source
of hypotheses and predictions for the experimentalist.

Von Seelen illuminates the insights that may be
gleaned from Rana computatrix for the general study of
neural mechanisms of cognition when he asks: Why
model simple toads that do simple things in simple
experiments? His answer is that, given the conditions of
the real world, the equations of physics are approxima-
tions that are frequently inadequate when boundary
conditions occur. To describe brain functions, a certain
level of abstraction has to be determined. He approves of
my choice of basic schemas, which have to be constructi-
ble in neuronal architecture that can be measured with
technical means, and then goes on to suggest that, as a
help in finding and defining basic schemas, they should
be interpreted as “basic situations,” sensory or motor
cues, or both, that the animal must perceive and handle.
More complex behavior can be generated by combining
basic situations. The spatiotemporal behavior of layered
feedback structures can be used to encode and combine
such representations. This approach assumes that brains
are not universal computers but rather systems that have
to solve concrete problems in a specific environment, that
must be capable of evolution, and that can be constructed
reliably under the constraints of ontogeny. The develop-
ment of one new schema allows a large number of com-
binations with already existing ones. With all this I
certainly agree.

Although advocating this approach, von Seelen notes
that it raises problems, to which I now attempt brief
answers:

1. How can basic schemas or situations be defined and
systematically detected? We seek to model a complex
behavior in terms of interactions among more simple
behaviors represented by schemas. As I showed in Sec-
tion 3.1, such a decomposition is successful to the extent
that it passes the test of, for example, lesion studies. I do
not know of any methodology guaranteed to yield the
“right” decomposition, however.

9. What strategy is used to couple the basic schemas
when a target function has to be defined? Is there a
general and workable data format for such systems? As
pointed out in the section on probing the schema for
schemas, above, we now have several formal languages
(e.g., Appendices A and B) for composing schemas into
schema-assemblages and coordinated control programs,
but these are subject to great improvement as a result of
future research.

3. Is self-organization possible? Yes, although I have
not addressed it in the target article. Such organization
may involve adaptation either at the level of schemas and
their interactions or at that of the neural or connectionist
networks that implement the individual schemas (cf. the
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discussion of program synthesis and visuomotor coordina-
tion in the closing section of Arbib 1981).

Frogs and toads revisited. We have discussed the utility
of schemas as providing a level of analysis that is useful to
cognitive scientists even if they do not concern them-
selves with neural or connectionistic network implemen-
tations. We saw that Rana computatrix serves as a testbed
for the understanding of organizational principles both at
the level of schemas and at the level of (in many cases
layered) networks. However, a number of commentaries
focus on Rana computatrix not for its broader implica-
tions but to weigh its success as a model of the neural
mechanisms underlying visuomotor coordination in the
frog and toad per se. It s clear (as was already pointed out
in the target article) that many new data have been
accumulated of late, and that the time is now ripe for a
vigorous round of new modeling.

Matsumoto notes that the original tectal column circuit
was based on anatomical studies. He summarizes subse-
quent physiological data, which will surely contribute to
further modeling. He is concerned that having dendritic
endings of different cell types in the same glomerulus
may be a poor simplification when discussing the time
sequence of excitatory and inhibitory potentials. Where-
as the original tectal column excluded large ganglionic
neurons, Matsumoto et al. (1986) show that these neurons
play an important physiological role in the tectum and
exhibit a wide variety of morphology and physiology.

Matsumoto and Bando (1978; 1980) have observed
interaction between myelinated and unmyelinated fiber
systems in many tectal neurons. They identify the prey-
selective efferent neuron as the pyramidal neuron and
find that it receives a strong inhibitory input from class 3
retinal fibers. As in Ewert (1984), the current Rana
computatrix involves thalamic inhibition, but no data are
yet available as to whether the thalamic neurons directly
inhibit pyramidal neurons or whether they do so through
tectal interneurons.

If the optic nerve is electrically stimulated, large pear
cells produce a monosynaptic and disynaptic EPSP (excit-
atory postsynaptic potential) followed by an IPSP (inhib-
itory postsynaptic potential). Matsumoto and Bando
(1980) recorded the same response from large ganglionic
neurons and found that the presynaptic fibers were mye-
linated. When large ganglionic cells were visually stimu-
lated, some showed reverberatory responses (Matsumoto
et al. 1986). If the stimulus suddenly stops in the recep-
tive field, EPSP amplitudes are greatly enhanced, proba-
bly because of focal stimulation of the excitatory receptive
field. This effect was greatest for a wormlike stimulus,
which produces the smallest inhibitory effect on the
neuron. We do not know, however, whether the rever-
beratory response seen in large ganglionic neurons is
dependent on the positive feedback circuit in the tectal
column.

Even in its present state, Rana computatriz calls for
more detailed correlative morphological investigations,
such as those cited in Matsumoto’s commentary. In his
laboratory, Székely and colleagues are using serial elec-
tron microscopic investigations and immunohistochemis-
try to trace neuronal connections. Lara et al. (1982) have
already conducted the kind of computer experiments he




advocates on, for example, the attribution of inhibitory
characteristics to different neuron types, but the simula-
tion of the modulatory effects of various peptides has yet
to be attempted.

One of the most exciting developments in the study of
the frog is the increasing availability of experimental data
on the motor systems, as exemplified in the BBS treat-
ment by Berkinblit et al. (1986) on the spinal mechanisms
of the wiping reflex. We also begin to learn something of
the sensorimotor codes in specific bulbar/spinal motor
pattern generators (MPGs) (cf. Figure 22 in Ewert’s
target article). The discovery (Ewert et al., submitted,;
Schwippert & Ewert, submitted) of bulbar neurons dis-
playing T5(4), T4, and cyclic bursting characteristics
suggests interactions among highly integrative cells in-
corporated in a relatively compact “reticular” network.
Ewert raises the question of whether different MPGs
share general bulbar circuitry, depending on input from
different “command releasing systems.”

In addition to the pretectal structure, two areas in the
anterior thalamus and one in the mesencephalic tegmen-
tum receive optic fibers. Except for the latter center, all
other areas receive a precise retinotopic projection of the
visual field and are reciprocally interconnected in a re-
markably organized fashion (L4zdr 1984; Székely 1971).
My target article does take some account of the highly
organized reciprocal interconnections between the tec-
tum and the nucleus isthmi. Székely would also like to see
the incremental evolution of Rana computatrix help us
understand the role of such highly organized intercon-
nections in the control of visually guided behavior. Thus,
pace Barnden, the theme of retinotopy is by no means
exhausted.

Baird regrets that I did not discuss neural models of
motor or motivational structures. Motivational effects are
modeled by Cervantes-Perez et al. (1985; cf. Lieblich &
Arbib 1982). He also laments the lack of schemas mapping
cooperatively discriminated features to motor output,
suggesting that there is mainly topographic mapping and
local neighborhood interactions. In his system, pre-
processing is followed by an associative network with
global cross-correlating interconnections for object rec-
ognition. Might not frog models need nontopographic
mapping to map object features to behaviorally, but not
structurally, related patterns of motor activation? In fact,
the model of Arbib and House (1987) allows widespread
interactions in determining the path of the toad, even
though those interactions take place in a retinotopic
network. Boylls (1975; 1976) offers an interestingly differ-
ent coordinate system for a network when he notes that
the cerebellum is divided into microzones and suggests
that each microzone is involved in setting parameters for
a different motor schema.

With this, we leave the realm of neuroscience, and turn
to the wider implications of our work, for cognitive
psychology and philopsophy, respectively.

Cognitive psychology. Whereas the classic ethology of
von Uexkiill, Tinbergen, and Lorenz studied behavior in
terms of single motor schemas, activated by specific
perceptual schemas (innate releasing patterns), schema
theory allows us to study the interpretation of the en-
vironment in terms of the interactions of perceptual
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schemas, yielding appropriate coordinated control pro-
grams of motor schemas. With the analysis of neuronal
implementation, these schemas share the advantage of
neuroethology as against classic ethology: We can come to
understand how the evolution of the brain constrains the
network implementation of schemas. Similarly, incre-
mental modeling gives insight into brain mechanisms as
we study how to change the model so it can accommodate
the function of more and more schemas and their interac-
tion. [See also Hoyle: “The Scope of Neuroethology” BBS
7(3) 1984.]

Newell and Simon’s (Newell et al. 1958) original argu-
ments for the computer simulation of human behavior
focused on the notion of a functional description, and
Langley sees me as reintroducing that concept in justifi-
cation of schema theory. He also sees me as arguing for
the linking of neural-level and functional-level explana-
tions, but he himself doubts that this is the best path for
cognitive science at this stage of its development. My
abstract states: “Intermediate constructs are required as
bridges between complex behaviors and realistic models
of neural circuitry. For cognitive scientists in general,
schemas are the appropriate functional units; brain theo-
rists can work with neural layers as units intermediate
between structures subserving schemas and small neural
circuits.” Perhaps this was not optimally phrased. My
intent was to argue that schemas can provide a bridge
from task analysis to neural analysis, but not to imply that
the user of schemas is committed to the study of their
neural implementation. I wanted to make two points:
First, that schemas provide the appropriate functional
language for all cognitive science; and second, that in
those areas of cognitive science for which a linkage to
neurophysiology is appropriate — vision and motor con-
trol are prime candidates — we may refine such a schema
analysis with data on brain lesions (recall the above
section on brain lesion data as constraints). Langley

-argues that we should not ignore the mechanisms in-

volved in problem solving and natural language process-
ing simply because we cannot yet explain them in neural
terms, and of course I agree, This is the strategy taken in
Arbib et al (1987). Meanwhile, note that the connec-
tionists are showing the relevance of parallel processing
for the study of a number of language problems for which
the search for detailed neural correlates is premature.

Langley found that the only processes I proposed were
vague and rather standard notions of schema “activation.”
He also regrets that I did not make more contact with
cognitive psychology: For example, to explain the limits
on short-term memory or the occasional inaccessibility of
long-term memory, or to explain whether separate re-
trieval mechanisms are used for declarative and pro-
cedural knowledge. For the first two questions I have no
theory; an attempt at the third will be presented in the
forthcoming second edition of Arbib (1972). In any case,
the title of the article is “Levels of Modeling of Mecha-
nisms of Visually Guided Behavior”; it was not my charter
to apply schemas to other problems in cognition, only to
indicate their relevance.

Although there is evidence for some parallelism at the
functional level (e.g., in retrieval and classification),
Langley notes that there is strong evidence for an atten-
tional bottleneck that requires serial processing on tasks
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such as problem solving and parsing. He notes that recent
production-system models (e.g., Rosenbloom & Newell
1987) have addressed this dual character of the human
information-processing system; he would welcome a con-
certed effort to handle these phenomena within a sche-
ma-based architecture. In fact, Arbib and Didday (1975)
offered a schema-based parallel computational model for
the control of serial eye movements — schemas are in-
stantiated to form an assemblage that represents the
current environment, and a mechanism like that in Did-
day’s prey-selection model (cf. Section 3.2) uses parallel
computation to select the next “focus of attention.” More
recently, Koch and Ullman (1985) have devised a related
model, but based on the internal “spotlight of attention”
(Treisman 1983) rather than on overt eye movements. It
is of interest that Crick’s (1984) model for this phe-
nomenon makes use of the “Malsburg synapses” alluded
to in the above section on instantiations.

Schemas and persons. It is the wish of Gunderson to
understand the relevance of the frog—toad story to the
study of human beings. He asks whether human visual-
cognitive competencies are to be characterized solely in
terms of behaviors and their underlying neurophysi-
ological causes or also in terms of whatever it is like to be
aware of making various perceptual discriminations. Asin
Anderson’s accompanying target article [this issue], the
use of protocols by Newell and Simon (1972) acknowl-
edges the relevance of introspective data, but a theory of
consciousness goes even further, for a nonsentient ma-
chine can exhibit measurements of its internal state on a
set of dials without in any sense being aware of them.
How is the first-person point of view to be “latched onto”
conceptually, or is it only a rhetorical starting point that
gets lost in the model-building shuffle? For my answer to
this, I must refer the reader to Arbib (1985) and Arbib and
Hesse (1986) for a schema-based theory of consciousness,
not just a theory of overt behavior.

Gunderson asks whether I would adapt Dennett’s
(1978b) views to construe schemas as hierarchically “ho-
muncularized,” with schemas at each level performing
diminishing amounts of cognitive donkey-work, thereby
accounting for our various intentionalized tasks without
spiraling into a regress. The answer is yes, and the
“evolutionary rebuttal” to Searle (1980) in Arbib and
Hesse (1986) is in the same spirit. Hesse and I explicitly
discuss Dennett’s views in our Chapter 5, noting the ways
in which a theist will find it lacking in offering an analysis
of free will. With respect to machine vision, Gunderson
asks whether the various levels of computation that al-
legedly underlie visual cognition are to be viewed as
equally psychological. As a crude first approximation, I
would answer that low-level vision is not psychological,
but that high-level vision is. That this is too crude is
suggested by the way the psychological level may influ-
ence early processing, as shown, for example, by Weis-
stein and Wong (1987). He asks how we are to distinguish
between processes that are mental even though not
introspectively available, and the purely noncognitive
physical processes underlying them. I am not sure there
is so sharp a dichotomy as the question suggests, but
perhaps a start can be made by distinguishing the in-
put/output differences in schemas which can affect our
awareness, from the internal workings (e.g., of rhodopsin
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or synaptic transmitters) which cannot affect it save
through their expression in such changed function.

I claim that schemas become “more real” as their
functional analysis is refined to allow either a subtler
analysis of behavior or an improved mapping of function
to neural structure. Gunderson suspects that this makes
contact with “qualia” or “raw-feels” irrelevant or at most
highly covert. A choice of some overall animal behavior as
a starting point may be metaphysically theory laden. I
agree. In my target article, the focus is neuroethology.
When one is “in search of the person” (Arbib 1985), an
aspect of person-reality may as well serve as the starting
point. A major goal for Mary Hesse and myself in this
regard was the reconciliation of personal and social real-
ities. Our approach in Arbib and Hesse (1986) was to
analyze the extent to which schemas “within the head” of
the individual cohere with social schemas that are dis-
tributed across a community and provide part of the
external reality for each individual.

Gunderson asks about the mind-body problem. Do I
see my schema theory as potentially in the service of a
physicalism, but one with a special twist to it (two-way
reduction), or as more or less neutral across competing
metaphysical accountings of the mind? As described in
Arbib and Hesse (1986), schema theory is neutral in that a
dualist may see schemas in the mind interacting with, but
separate from, the schemas in the brain. However, my
own personal position is physicalist: The mind is not
separate from the brain but is rather a functional ex-
pression of it. Schemas provide the right level of analysis
not only for “mind-talk” but for a range of phenomena
beyond the range of consciousness (cf. the discussion of
Freud in Arbib and Hesse [1986]). We have not yet
encountered insuperable barriers to the implementation
of these schemas in neural networks. This is not to deny —
as the commentaries and this response have made abun-
dantly clear — that the analysis of these schemas and the
discovery of their neural underpinnings are still in their
early stages, and that we must expect many surprises
along the way. It is an exciting time!

NOTE
1. I would like to use this observation to record a hitherto

unacknowledged debt. I first coined the term Rana computatrix
in 1980 or 1981, believing that it “felt right” because I had
studied Latin for six years in the 1950s, although I never sat
down with a Latin grammar to check this coinage, and harbored
the concern that a classicist would one day identify Rana com-
putatrix as a Latin malapropism. However, in February 1987
someone (perhaps it was Walter Freeman) observed, “I assume
you coined Rana computatrix on analogy with W, Grey Walter’s
Machina speculatrix.” I immediately knew that I had, but had
never before realized this consciously. A quick trip to the Latin
dictionary then revealed that machina did indeed mean ma-
chine (but also a military engine, and a platform on which slaves
were exposed for salel), but that speculatrix meant a (female)

- observer or watcher — so that Machina speculatrix is not, as I

had thought, “the speculative machine” but rather “the ma-
chine that observes.” On this analogy, then, Rana computatrix
is not “the computational frog” but “the frog that computes,“ so
that, paying due respect to gender agreements, the creature
introduced at the end of Professor Ewert’s commentary should
be Bufo computator. However, our debt to Grey Walter (1953)
goes beyond etymology, for surely his M. docilis, M. laby-
rinthea, M. sopora, and M. speculatrix are the forerunners not
only of Rana computatrix but also of Braitenberg’s vehicles (first




encountered in Braitenberg 1965). In any case, though happily
accepting approval of its contribution to synthetic psychology, I
still see the need for Rana computatrix to evolve as a model for
the data of neuroethology (such as those presented by Ewert in
his accompanying target article).
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