
Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Computer Science

Algorithms for Multi-target Learning

Beau PICCART

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

June 2012

Algorithms for Multi-target Learning

Beau PICCART

Jury:
Prof. dr. Herman Neuckermans, chair
Prof. dr. Hendrik Blockeel, promotor
Prof. dr. Maurice Bruynooghe
Prof. dr. Marie-Francine Moens, secretary
Prof. dr. Lieven Eeckhout
(Universiteit Gent)

Prof. dr. Stefan Kramer
(Universität Mainz)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

June 2012

© Katholieke Universiteit Leuven – Faculty of Engineering
Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/7515/72
ISBN 978-94-6018-536-6

Preface

This work contains the results of research conducted at the Department of
Computer Science at the University of Leuven. Funding was provided by the
FWO, without which this research would not have been possible. I would like
to thank the many inspiring people who contributed in the realization of this
work. In particular: Hendrik for being an excellent supervisor (and one of the
nicest persons I know) throughout the years and the constructive feedback in
relation to this and other work. Jan for giving me an excellent kick-start in
the PhD-process. Maurice Bruynooghe, Sien Moens and Stefan Kramer for
the excellent feedback on my dissertation text. Lieven and the rest of the
UGent-group for the fruitful cooperation we had. My colleagues for creating
a fun and intellectually stimulating environment. Katrien for the language
corrections she made. My mom and dad, without whom I couldn’t even have
started my studies and for stimulating my curiosity since I was a kid. My
sista/homie for the support while writing my text and just for being a great
sister. And last but not least, all of my friends!

i

Abstract

In this work we will investigate multi-target Learning, also called multi-task
learning, a branch of Machine Learning. A multi-target learner builds a model
which, given some input, returns/predicts multiple variables simultaneously.
This stand in contrast with the usual Single-Target model which predicts only
one variable. We will see that MT-models have numerous advantages and that
many real world applications can benefit from using a multi-target approach.

We observe that when multiple targets are predicted simultaneously by a MT-
model, the predictive accuracy might increase in comparison to the single-target
model. This is a result of inductive transfer which we discuss in depth in chapter
3. An algorithm is proposed which tries to maximally exploit this effect in order
to increase the predictive accuracy of the model for one specific target (the
main target).

Next, we focus our attention to a different problem: Collaborative Filtering, a
type of recommender system. Such a system tries to predict user preferences, for
items such as books or movies, based on already known preferences of the users.
We demonstrate how this problem fits the multi-target setting and propose
a graph based algorithm to alleviate two common problems inherent to the
Collaborative Filtering setting: the Cold Start and the Sparsity problem.

Finally, we propose a new learning setting called Two-Way learning. A specific
type of multi-target learning where we try to predict an attribute of a relation
between two types of objects. We propose data transposition as an effective
method to solve a Two-Way learning problem. This method is applied and
studied in depth on the problem of processor performance prediction.

iii

Beknopte samenvatting

Dit werk handelt over multi-target Learning, een tak van Machine Learning.
Een multi-target algoritme bouwt een model dat, gegeven een zekere invoer,
meerdere variabelen gelijktijdig voorspelt. Dit staat in sterk contrast met
het gebruikelijke single-target model dat slechts één variabele voorspelt. We
bespreken de voordelen van deze multi-target modellen en zullen zien dat een
multi-target aanpak zinvol is voor talrijke toepassingen.

We observeren dat het simultaan voorspellen van meerdere variabelen een
positief effect kan hebben op de nauwkeurigheid van de voorspellingen. Dit
effect, Inductive Transfer, bespreken we in detail in Hoofdstuk 3. We stellen
een algoritme voor dat Inductive Transfer gebruikt om de nauwkeurigheid van
ons voorspellingsmodel significant te verbeteren.

Vervolgens bespreken we Collaborative Filtering, een type van aanbevelings-
systemen. Zo een systeem tracht de voorkeur van gebruikers te voorspellen
voor bijvoorbeeld boeken of films. Dit gebeurt aan de hand van reeds
gekende gebruikersvoorkeuren. We tonen aan dat dit een multi-target
probleem vormt en ontwikkelen een algoritme dat twee problemen inherent
aan aanbevelingssystemen tracht te minimaliseren: het Cold Start en het
Sparsity probleem.

Ten slotte stellen we een nieuwe setting voor: Two-Way learning. Dit is een
specifiek type multi-target probleem waarbij we een attribuut van een relatie
tussen twee types van objecten trachten te voorspellen. We tonen aan hoe deze
problemen effectief opgelost kunnen worden door middel van datatranspositie en
we passen de voorgestelde methode toe om processorperformantie te voorspellen.

v

List of abbreviations

AUC Area Under Curve
CF Collaborative Filtering
DT Decision Tree
EAST Empirical Assymetric Selective Transfer
EMD Expected Manhattan Distance
GD Global Distribution
ILP Inductive Logic Programming
kNN k-Nearest Neighbor
LR Linear Regression
MAE Mean Average Error
MAP Mean Average Precision
MD Manhattan Distance
MF Matrix Factorization
MLP Multi-Layer Perceptron
MT Multi-Target
MTL Multi-Target Learner
MTRT Multi-Target Regression Tree
NN Neural Network
PC Pearson Correlation
PCP Physico-Chemical Parameters
PGBCF Probabilistic Graph Based Collaborative Filter
SMO Sequential Minimal Optimization
SRC Spearman Rank Correlation
ST Single-Target
STL Single-Target Learner
STRT Single-Target Regression Tree
SVM Support Vector Machine
Uni Uniform

vii

Contents

Abstract iii

Contents ix

1 Introduction 1

2 Multi-target models 7

2.1 Multi-target models . 7

2.1.1 Definition . 7

2.1.2 Multi-Target Decision Trees 8

2.1.3 Neural Networks . 9

2.1.4 Kernel Methods . 10

2.1.5 Nearest Neighbor . 10

2.1.6 Multi-Label classification 11

3 Inductive transfer in multi-target models 12

3.1 The accuracy of multi-target models 12

3.2 Problem Setting . 13

3.2.1 The Transfer Matrix . 14

3.3 Selective Inductive Transfer . 16

ix

x CONTENTS

3.4 Experimental Evaluation . 18

3.4.1 Data Sets . 18

3.4.2 Experimental Procedure 19

3.4.3 Results & Discussion . 20

3.5 Conclusions . 22

4 Collaborative Filtering 24

4.1 Introduction . 24

4.2 Collaborative Filtering as a multi-target problem 26

4.3 Related Work . 26

4.4 Distance Measures and Representation 28

4.4.1 Distance Measures . 28

4.4.2 Probabilistic Representation 29

4.5 Probabilistic Graph-based collaborative filtering 31

4.5.1 The User Graph . 31

4.5.2 Nearest Neighbor Graph Completion 32

4.5.3 PGCF . 32

4.6 Experimental results . 37

4.6.1 Distance Measure Evaluation 38

4.6.2 Performance of PGBCF 39

4.6.3 Robustness Against Cold Start Problem 41

4.7 Context-Aware Recommendation 41

4.7.1 Evaluation . 44

4.8 Conclusions and Further Work 45

5 Learning in two-way datasets 46

5.1 Introduction . 46

5.2 Two-way learning . 48

CONTENTS xi

5.2.1 Bare two-way learning 49

5.2.2 Single-decorated two-way learning 51

5.2.3 Double-decorated two-way learning 51

5.2.4 Relational learning with deterministic background knowl-
edge . 52

5.3 Different types of predictive learning 53

5.4 The effects of transposition . 56

5.4.1 What are examples, what are attributes? 57

5.4.2 Multi-target prediction and inductive transfer 58

5.4.3 Transposition switches single-target and multi-target . . 59

5.4.4 Summary . 59

5.5 Applications . 59

5.5.1 Microprocessor-data . 59

5.5.2 Ecological data . 62

5.6 Conclusions . 63

6 Application: Processor Performance Prediction 65

6.1 Introduction . 65

6.2 Prior Work . 68

6.3 Data Transposition . 69

6.3.1 Data set and definitions 69

6.3.2 Models for performance prediction 70

6.4 Potential Applications . 73

6.5 Experimental Setup . 74

6.5.1 Benchmarks and platforms 74

6.6 Evaluation . 76

6.6.1 Metrics . 77

6.6.2 Predicting another processor family 77

xii CONTENTS

6.6.3 Predicting future machines 79

6.6.4 Limited number of predictive machines 81

6.6.5 Selecting predictive machines 81

6.7 Other Related Work . 82

6.7.1 Empirical performance modeling 82

6.7.2 Program similarity . 83

6.8 Conclusion . 83

7 Conclusion 88

Bibliography 95

Biography 103

Chapter 1

Introduction

In this work we will investigate Multi-Target learning (MTL), also called multi-
task learning, a branch of Machine Learning. We start this introduction by
describing classic single-target learning and extend this towards multi-target
learning.

A (single-target) machine learning algorithm is concerned with the creation of a
model that predicts missing or future data. Take for example a linear regression
between two variables A and B. This can be used as a predictive model that
maps one variable to the other. The regression is based on known data points,
sample instances of variable A for which the corresponding value of variable B
is known. In the predictive phase, only the value of A is known and the value
of B is predicted by the regression which models the relation between A and B.

In general, the model consists of a function that maps (multiple) input variables
to the desired output. The learner builds this function by taking advantage of
examples (training data) which allows it to determine the unknown underlying
probability distribution of the data. As such, the data is used to illustrate
relations between observed variables. These examples cannot cover all possible
inputs for the model. Hence, the machine learning algorithm generalizes over
the examples in order to predict new instances. This results in the following
definition of a machine learning algorithm:

Assume we have a data set S containing pairs (x, y) with x ∈ X the input
vector and y ∈ Y the corresponding target value.

A learner AST learns from a data set S = {(x, y)} a function fi : X → Y such
that

∑
(x,y)∈S Li(fi(x), y) is minimized, with Li some loss function over Y .

1

2 INTRODUCTION

Table 1.1: Training data for the Play Tennis problem.

ID Outlook Temperature Humidity Wind Tennis
1 Sunny High Low Low YES
2 Overcast High Low Low YES
3 Sunny Low High High NO
4 Overcast Low Low Low YES
5 Overcast High Low High NO

Numerous such learning algorithms have been developed. Each with its own
strengths and weaknesses. No single algorithm is able to outperform all others
(Radcliffe and Surry 1995).

Multi-target learning: an example

We demonstrate these concepts with a decision tree learner which builds a
model for the play-tennis problem. The goal is to build a model, a decision tree
with this learner, which predicts whether a person will play tennis or not given
a number of conditions like the current temperature, humidity, etcetera.

For this problem, the training data consists of the data in Table 1.1. Each row
describes one training example. The variables Outlook, Temperature, Humidity
and Wind are the input-variables. Tennis is the output or target-variable. This
is the variable which the model has to predict for an unseen example which
contains only the input-variables.

Figure 1.1 gives a possible decision tree (DT) model for the play tennis model.
To evaluate the tree on a new example, one answers each question until an
end-node is reached. For example: the model predicts a person would not play
tennis on an overcast and humid day, regardless of the temperature or wind
conditions.

This model predicts only one variable: the Tennis target variable. Therefore
we call this a single-target model. Suppose we want to predict if a person will
read a book, besides predicting whether he will play tennis or not. The training
data might look like the data in table 1.2

The usual approach to this problem is to built two separate models: one
which predicts Tennis and another one predicting Book. The alternative to
this approach is to build one multi-target model which predicts both variables

INTRODUCTION 3

Outlook=?

Wind=? Humidity=?

Temp.=? YES

NO

Sunny Overcast

High

YES

YES NO

Low
LowHigh

LowHigh

Figure 1.1: A single-target decision tree model for the play tennis problem.

Table 1.2: Training data for the Play Tennis / Read Book problem.

ID Outlook Temperature Humidity Wind Tennis Book
1 Sunny High Low Low YES NO
2 Overcast High Low Low YES NO
3 Sunny Low High High NO YES
4 Overcast Low Low Low YES YES
5 Overcast High Low High NO YES

simultaneously. Figure 1.2 shows such a model, a multi-target decision tree in
this case.

We formally define multi-target learning in Section 2.1.1. These multi-target
models have a number of benefits over single-target models. They can lead
to more accurate models due to their ability to exploit potential dependencies
among the target variables, they can be faster to learn, lead to faster prediction
times and have the ability to show relations between the different target variables
[Caruana 1993].

4 INTRODUCTION

Outlook=?

Wind=? Humidity=?

Temp.=?

[NO,YES]

Sunny Overcast

High

[YES,NO]

Low
LowHigh

LowHigh

[YES,NO]

[YES,YES] [NO,YES]

[TENNIS,BOOK]

Figure 1.2: A multi-target decision tree model for the play tennis / read book
problem.

Applications

Multi-target prediction is encountered for instance in ecological modelling where
the domain expert is interested in (simultaneously) predicting the frequencies
of different organisms in river water (Blockeel, Džeroski, and Grbović 1999)
or agricultural soil (Demšar et al. 2006). It can also be applied in multi-
label classification tasks (Clare and King 2001), where a set of labels is to be
predicted for each instance instead of a single label; in prediction tasks with
a structured output space (Tsochantaridis et al. 2005), such as hierarchical
multi-label classification (Blockeel et al. 2006), where the output is structured as
a taxonomy of labels (e.g., newsgroups); and in multi-task or transfer learning,
where knowledge gained from learning one task is reused to better learn related
tasks (Caruana 1997a). Chapter 4 discusses how recommender systems can
be build using multi-target learners. The following chapter introduces 2Way
learning, a multi-target settings which fits a number of problems, including
processor performance prediction which we will discuss in detail in Chapter 6.

Contributions and structure of this text

Chapter 2 formally defines multi-target learning and gives an overview of existing
multi-target algorithms.

INTRODUCTION 5

Subsequent chapters discuss a number of different problems related to Multi-
Target Learning to which we propose effective solutions.

Chapter 3 discusses inductive transfer in multi-target algorithms. We show
that a multi-target model is able to outperform a set of single-target models in
which each model predicts a different target. This is a consequence of inductive
transfer. The different targets are related, resulting in additional information
available to the learner. This brings us to the question of how to maximally
exploit this additional information. We propose an algorithm called EAST
(Piccart, Struyf, and Blockeel 2008a; Piccart, Struyf, and Blockeel 2008b) which
tries to maximally exploit this additional information.

In Chapter 4 we demonstrate how Recommender Systems(Adomavicius and
Tuzhilin 2005b) can be build using a multi-target learner for Collaborative
Filtering (CF). Such a system recommends users items of a certain type, for
example books or movies. The dataset consists of the item selection history
(often purchases) of all users. The predictive model takes as input variables the
previously selected items by the user for which we’re making a recommendation.
The output variables correspond to al the possible items. The variables are
binary: a positive prediction means we include the item in the recommendation, a
negative outcome means the item is not recommended for that user. Multi-target
algorithms are very suitable for this problem given the often very large number
of items/output variables. Straight application of multi-target algorithms to the
recommender system setting does not result in great performance. The setting
has some properties which makes effective generalization difficult; notably the
sparsity of the dataset. We develop a number of methods (Piccart, Blockeel, and
Struyf 2010; Piccart et al. 2010) which alleviate the problem of data sparsity in
Collaborative Filtering in Chapter 4.

Chapter 5 introduces a new setting: Two-Way learning. This class of problems
consists of learning the relation between two types of objects. Many problems
fit this setting, including the previously discussed recommender system. The
Two-Way setting can be reduced to a normal Multi-Target setting but this would
disregard the special structure of the problem. The following question arises: is
it possible to exploit the special structure of a Two-Way problem in order to
build a more accurate predictive model. We propose a method (Piccart et al.
2012) which is able to do so and can greatly improve the predictive accuracy of
multi-target algorithms in this setting, yet is very simple to implement. The
method is applied to two diverse applications and its behaviour is analysed in
depth.

Finally, in Chapter 6, we apply the previously proposed methods to a practical
application. The application consists of predicting the run-time speed of a certain
application of interest on a large number of different machine architectures.

6 INTRODUCTION

Hence, each machine for which we want to predict the run-time of our application
corresponds to a target. We use the measured performance on a small set of
(predictive) machines to predict the performance of our application on each
machine in the target set. This leads to the problem selecting which machines
to include in the set of predictive machines. We propose a solution (Piccart
et al. 2011) which improves significantly over the current state-of-the-art. The
method selects a given number of machines which are as predictive as possible.
Furthermore, we demonstrate that a small number of predictive machines is
sufficient to accurately predict the performance of the application of interest on
the target machines.

Chapter 2

Multi-target models

2.1 Multi-target models

The majority of single-target learning algorithms has been extended towards
multi-target algorithms. In this section we will give a formal definition of
multi-target models followed by an overview of existing multi-target approaches.

2.1.1 Definition

Assume we have a data set S containing couples (x,y) with x ∈ X the input
vector and y ∈ Y = Y1 × · · · × Yn the target vector. Denote with yi ∈ Yi the
i’th component of y.

A single-target learner AST learns from a data set S = {(x, yi)}, with yi ∈ Yi

a scalar variable, a function fi : X → Yi such that
∑

(x,yi)∈S Li(fi(x), yi) is
minimized, with Li some loss function over Yi.

A multi-target learner AMT learns from a data set S = {(x,y)}, with y ∈ Y
an n-dimensional vector, a function F : X → Y such that

∑
(x,y)∈S L(F (x),y)

is minimized, with L a loss function over Y . In the following, we will use
L(y,y′) =

∑
i Li(yi, y

′
i).

We say that the multi-target approach gives better predictive performance
than the single-target approach if for any (x,y), drawn randomly from the
population, on average, L(F (x),y) <

∑
i Li(fi(x), yi).

7

8 MULTI-TARGET MODELS

2

8

2 8
2.5

1.5 3.5

yes no

yes no

[2,2] [8,2]

yes no

[2,8] [8,8]

y1

y2

x1

x2

x2 < 2.5

x1 < 1.5 x1 < 3.5

Figure 2.1: A multi-target regression tree together with its mapping from the
input to the target space.

2.1.2 Multi-Target Decision Trees

Most descriptions of decision tree learning assume a single target, which may
be nominal (classification) or numerical (regression). Blockeel, De Raedt, and
Ramon (1998) argued that decision tree learning can easily be extended towards
the case of multi-target prediction, by extending the notion of class entropy
or variance towards the multi-dimensional case. They define the variance of a
set as the mean squared distance between any element of a set and a centroid
of the set. Depending on the definition of distance, which could be Euclidean
distance in a multidimensional target space, a decision tree will be built that
gives accurate predictions for multiple target variables.

Fig. 2.1 shows an example of a decision tree with two numeric target variables.
It also illustrates that multi-target regression trees work well if the training
data maps hyper-rectangles in the input space to compact clusters in the target
space.

Similar to other multi-target models, it has been shown that multi-target trees
can be more accurate than single-target trees. This holds for both multi-label
classification trees (Blockeel et al. 2006) and for multi-objective regression trees
(Struyf and Džeroski 2006).

Suzuki, Gotoh, and Choki (2001) introduced bloomy decision trees. Flower
nodes are added to the tree, giving predictions for the different targets. The
nodes appear not only at the fringe of a tree but also inside a tree. The method
has been implemented as D3-B (Decision tree in Bloom), and experimentally
demonstrated to outperform C4.5.

MULTI-TARGET MODELS 9

Multi-variate regression trees were introduced by Sain and Carmack (2001) . In
such a tree, the distribution of the target variables is assumed to be a mixture
distribution. No comparison to other methods was made.

2.1.3 Neural Networks

Richard Caruana et al. introduced a number of multi-target (multi-task) neural
network approaches. Caruana (1993) presented the first MT neural network.
They argue that generalization is improved by leveraging the domain-specific
information in training-signals of related tasks and coined the term multitask
inductive transfer. From the point of view of the main task, the other tasks may
serve as bias. An experimental validation demonstrated the multi-target model
outperforming the single-target model 8 out of 10 times. We study inductive
transfer in detail in Chapter 3 and propose a method to maximally exploit this
inductive transfer.

The proposed neural network uses a shared hidden layer for all targets but
target-specific weights at the output layer. The hidden layer can be interpreted
as a form of feature selection or domain representation for all targets. The
hidden layer thus learns the features common to all tasks. This may lead to
improved performance as the learner can use the information available for all
targets, enabling targets with limited available data to benefit from the data
available for other related targets. This approach creates a representation bias
towards the intersection of what would be learned by the individual tasks.
Caruana et al. argue that we may never find an answer to the question ”what
are related tasks?” and that the only solution to find out which tasks/targets
are beneficial to each other is empirical validation. This is the approach we
take in Chapter 3.

Silver and Mercer (1996) introduces a method for the parallel transfer of task
knowledge using dynamic learning rates. This method improves upon the work
of Caruana et al. The ηMTL algorithm is introduced which uses a higher
learning speed for targets which are more related. Relatedness between the
targets is based on the “weight space distance”, a dynamic measure. The
method performs as well as standard MTL when the targets are related and is
able to outperform MTL when the set of targets contains one or more unrelated
targets, in relation to the main target.

In Silver and Mercer (2001), a number of distance measures are evaluated using
the ηMTL algorithm. These include the dynamic “weight space distance”,
static measures like linear correlation and mutual information, and hybrid
combinations of these relatedness measures. The hybrid measures performs the
best, followed by the static measures. The dynamic measure performs the worst,

10 MULTI-TARGET MODELS

presumably because it is not a well-behaved proper distance metric. Correlation
outperforms mutual information, most likely because the outcome lies between
−1 and 1. The static measures tend to perform worse when the output is
uncorrelated while the input is correlated. Note that all these measures are
symmetric: hence the inductive transfer is assumed to be symmetric as well.
That is, when target A is beneficial towards target B, i.e. they are related, it is
assumed that target B is equally beneficial towards A. We will see in Chapter
3 that this rarely holds. This observation led us to developed an asymmetric
empirical measure of relatedness which forms the basis of our algorithm proposed
in Section 3.3.

Ghosn and Bengio (2003) proposes bias learning, a knowledge sharing method.
The approach is based on Affine Manifold Learning, a generalization of the
Nearest Neighbor method. The experimental results demonstrate that the
approach performs similar to the one proposed by Caruana. They observe that
the performance difference between a MTL and an STL method decreases with
an increase of the dataset size.

2.1.4 Kernel Methods

A number of kernel methods has been proposed, mostly adaptations of Support
Vector Machines (SVM).

Evgeniou and Pontil (2004) proposed Regularized MTL. The adaptation to
MTL is straightforward. The method is equal or better to the STL model up
to 30 targets but performance degrades significantly above 100 targets. No
comparison to other MTL methods was made.

Trafalis and Oladunni (2005) proposes an alternative MTL-SVM algorithm.
The rationale behind its performance increase, with relation to STL, is based
on the assumption that the error terms, i.e. noise, for each target are correlated
and that learning these targets together tends to cancel out noise.

2.1.5 Nearest Neighbor

Nearest Neighbor methods can be adapted to MTL by using a weighted distance
measure with weights chosen to minimize the error for all targets in the training
set. Thrun and O’Sullivan (1996) performed a number of experiments around
clustering tasks which were then predicted with such a Nearest Neighbor method
for each cluster. Relatedness,inductive transfer, was measured empirically by
constructing a matrix of all target pairs, similar to our approach in Section 3.2.1.
Subsequently, the targets are clustered according to the data in this matrix.

MULTI-TARGET MODELS 11

This approach assumes the transfer to be symmetric, even though the data
presented by Thrun and O’Sullivan (1996) shows the matrix to be asymmetric.

2.1.6 Multi-Label classification

A multi-label classifier tries to assign to each instance a subset of a set of possible
labels. Such a classifier can be constructed using a multi-target with a binary
output target for each possible label. Hence, the field of multi-label classification
is closely related to the field of multi-target learning. The multi-label learner
tries to exploit relations among the labels in order to improve the predictive
performance of the model (Wicker, Pfahringer, and Kramer 2012), similar to how
a multi-target model exploits relations among the different targets. A multitude
of multi-label classifiers has been proposed. These range from applications in
text mining (Read et al. 2009; Godbole and Sarawagi 2004; Fürnkranz et al.
2008), to multi-media classification (Boutell et al. 2004; Dimou et al. 2009) and
bioinformatics (Elisseeff and Weston 2005; Vens et al. 2008) .

Chapter 3

Inductive transfer in
multi-target models

We observe that the predictive accuracy of a multi-target model (a) can
outperform the accuracy of a single-target model (b). That is, for a given
target, either (a) or (b) can yield the most accurate model. The multi-target
model is able to exploit potential dependencies among the targets. This is a
form of inductive transfer between the different targets which may be beneficial
as well as detrimental to accuracy.

In this chapter we will discuss this transfer in depth and propose an algorithm
to maximize the inductive transfer towards a specific target.

3.1 The accuracy of multi-target models

It has been shown that multi-target models, which predict multiple target
variables simultaneously, can be more accurate than predicting each target
individually with a separate single-target model (Caruana 1997a). This is
a consequence of the fact that when the targets are related, they can carry
information about each other; the single-target approach is unable to exploit
that information, while multi-target models naturally exploit it. This effect
is known as inductive transfer: the information a target carries about the
other targets is transferred to those other targets. Note the connection with
collective classification (Jensen, Neville, and Gallagher 2004): the latter exploits

12

PROBLEM SETTING 13

dependencies among targets of different instances, while multi-target models
exploit dependencies among the multiple targets of the same instance.

Multi-target models do, however, not always lead to more accurate prediction.
As we will show, for a given target variable, the variable’s single-target model may
be more accurate than the multi-target model. That is, inductive transfer from
other variables can be beneficial for one target, but it may also be detrimental
to the accuracy of another target. Let us focus on one particular target and call
this the main target. The subset of targets that, when combined with the main
target in a multi-target model, results in the most accurate model for the main
target, may be non-trivial, i.e., different from the empty set and from the set
of all targets. We call this set the optimal support set for the main target. In
this chapter we investigate how to best approximate this set. Note that the two
natural extremes of this approach are the single-target model (the support set
is empty) and the full multi-target model (the support set includes all targets).

3.2 Problem Setting

Under the monotonicity assumption given in 2.1, obtaining better predictive
performance on average implies that there must be individual targets for which
the predictive performance, as measured on this single target, must improve.
That is, there must be at least one i for which Li(Fi(x), yi) < Li(fi(x), yi),
with Fi(x) the i’th component of F (x).

This observation leads to the question whether single-target models could be
improved by following the multi-target approach. That is: even when there is
only one single target that we want to predict, we may be able to build a better
model for predicting that target if we can exploit the information present in
other, related, variables.

Thus, the problem setting becomes as follows. We are given a training set
S = {(x,y)}, and are interested in predicting yn from x. The variables yi, i 6= n
need not be predicted, and will not be available at prediction time, but we
can use them during the learning phase. We call this setting the single-target
setting with support targets: one single target yn (the main target) needs to be
predicted, but a number of additional support targets yi, i 6= n are available at
induction time, and can be used to improve the model for yn.

One approach to tackle the single-target with support targets setting is to build
a multi-target model F for y1, . . . , yn and project that model on the main target,
that is, return as single-target model for yn the model Fn(x). We here propose

14 INDUCTIVE TRANSFER IN MULTI-TARGET MODELS

a more refined approach that, as we will see, tries to identify the “best” subset
of support targets.

Note the following important point: while the support targets are used during
learning, they are not assumed to be available during the prediction phase. If
they were, then an alternative to the method proposed here would be to learn a
model that also uses the support targets as inputs (e.g., in the case of decision
tree learning, to learn a tree that is allowed to test these attributes). It is quite
likely that that would lead to better prediction. The model that we will try to
learn here, is one that will make predictions without having that information;
we use the support targets to learn a model that maps x onto a target attribute
more accurately, even though the model itself has no access to the support
targets. This is a form of inductive transfer, or transfer learning. We apply
knowledge gained while solving one problem (the support targets) and apply it
to a different but related problem in order to increase the predictive accuracy.

3.2.1 The Transfer Matrix

To gain insight in the effect of applying multi-target models to single-target
prediction, we construct a transfer matrix (Thrun and O’Sullivan 1996) C =
(ci,j), where ci,j is the expected gain in predictive performance for target yi

that the two-target model with targets yi and yj yields over the single-target
model for yi. In other words, ci,j indicates if inductive transfer from yj to yi is
useful. In the following, we call ci,j the transfer from yj to yi.

Table 3.1 shows the transfer matrix for one of the data sets that we will use
in the experimental evaluation. The multi- and single-target models on which
the matrix is based are regression trees. We use Pearson Correlation as our
performance measure. It’s often used in regression problems and defined as:

pc(p,q) =
∑

i(pi − p)(qi − q)√∑
i(pi − p)2∑

i(qi − q)2
,

in which u denotes the average of u’s components.

The matrix elements are the relative differences in 10-fold cross-validated Pearson
correlation between the multi- and single-target model for yi, averaged over 5
runs with different random folds; each row corresponds to a different support
target yj in the multi-target model.

From the transfer matrix, we see that transfer is an asymmetric quantity: it is
possible that yi can be predicted more accurately if yj is included as support

PROBLEM SETTING 15

Table 3.1: Transfer matrix for the Soil Quality 1, Collembola groups data set
(a subset of S2, see experimental setup).

j \ i 1 2 3 4 5
1 0 0.01 0.04 0.13 0
2 0 0 0.06 0.13 0
3 0.07 0.01 0 0.13 0
4 0.03 0 -0.02 0 -0.01
5 0.1 0.03 0.31 0.18 0

Table 3.2: Correlation matrix for Soil Quality 1, Collembola groups.

j \ i 1 2 3 4 5
1 1 0.03 0.12 0.05 0.07
2 0.03 1 0.08 0.27 0.45
3 0.12 0.08 1 0.31 0.14
4 0.05 0.27 0.31 1 0.19
5 0.07 0.45 0.14 0.19 1

target (ci,j > 0), whereas the prediction for yj actually deteriorates when yi is
included (cj,i < 0).

While empirically measuring transfer as defined above is the most direct way of
deciding which support target to use for predicting a given target, two important
approximations to this approach have been used in previous work: (1) converting
transfer into a symmetric quantity (Thrun and O’Sullivan 1996), and (2) using
other measures, such as correlation, to somehow approximate transfer (Silver
and Mercer 2001). The advantage of such approximations is that they reduce
the computational cost of the approach. For example, by combining (1) and (2),
one could use the pairwise linear correlation between the targets to cluster the
targets and then build a multi-target model for each cluster in the partition.

The disadvantage of (1) is that, because transfer is really asymmetric, replacing
it by a symmetric approximation will result in suboptimal models for certain
targets. Consider again Table 3.1. Clustering y3 and y4 together will result in
a suboptimal model for y3, while putting y3 and y4 in different multi-target
models may result in a suboptimal model for y4.

The disadvantage of (2) is that correlation is often not a good approximation for
transfer or relatedness. Table 3.2 shows the targets’ correlation matrix for our

16 INDUCTIVE TRANSFER IN MULTI-TARGET MODELS

example. y2 and y5 have the highest correlation. Nevertheless, the transfer from
y2 to y5 is zero and that from y5 and y2 is small. One reason is that transfer
does not only depend on the values of the target variables. It also depends on
other factors, such as the mapping that the data represents between input and
output. Measures that only depend on the targets, may therefore approximate
transfer poorly. Fig. 2.1 illustrates this: the correlation between the targets is
zero, yet the multi-target regression tree predicts both targets accurately.

These two disadvantages are alleviated by our approach, which we discuss next.

3.3 Selective Inductive Transfer

Since addition of extra support targets may increase the predictive accuracy
for the main target, but is not guaranteed to do so, and moreover some target
variables may help while others are detrimental, we can consider the following
procedure: add extra target variables one by one, always selecting that target
variable that appears to give the largest improvement; and continue doing this
until it does not result in any further improvement.

There is the question of how we can select the “best” target to add to our current
set of support targets. As explained before, any measure which is symmetric or
takes only relations among the target values into account will be suboptimal.
Therefore, we directly measure the increase in predictive performance that a
candidate support target yields using (internal) cross-validation. This takes
into account all possible effects of including a certain support target.

Our “Empirical Asymmetric Selective Transfer (EAST)” procedure is described
in Algorithm 1. It essentially implements the approach outlined above. The
internal loop finds the next best candidate support target that can be added to
the multi-target model. To do so, it calls the procedure cross-validate(T , Ln,
S), which computes the 10-fold cross-validated loss Ln with regard to the main
target yn of a multi-target model with targets T constructed from S. The outer
loop repeats this process until no candidate support target further improves
predictive performance. The method is depicted in figure 3.1.

The computational cost of EAST compares as follows to building a single-target
regression tree. If TST is the execution time required for building a single-target
tree, then iteration i of EAST’s outer loop costs 9 ·TST · (i+ 1) · (n− i), because
it tries (n− i) candidate support targets and cross-validates for each candidate
a (i+ 1)-target tree. Building one single (i+ 1)-target tree costs ≈ TST · (i+ 1);
cross-validating it costs 9 times more (10 folds, each with a training set of
0.9 · |S|). m iterations of EAST therefore cost 9 · TST

∑m
i=1(i + 1)(n − i),

SELECTIVE INDUCTIVE TRANSFER 17

Algorithm 1 Empirical Asymmetric Selective Transfer (EAST).
input: data set S, main target t = yn,

support targets Ts := {yi | i 6= n}.
T := {t}
L∗ := cross-validate(T , Ln, S)
repeat

found := false
for each ts ∈ (Ts − T) do
L := cross-validate(T ∪ {ts}, Ln, S)
if L < L∗ then
L∗ := L; found := true; t∗s := ts

end if
end for
if found then
T := T ∪ {t∗s}

end if
until not found
return induce(T , S)

X

AX BX CX DX

ABX ACX ADX BCX BDX CDX

ABCX ABDX ACDX BCDX

ABCDX

(ST-Model)

(MT-Model)X main target

BDX

evaluated

path followed

best set

Figure 3.1: The EAST procedure.

i.e., EAST is a factor O(nm2/2 −m3/3) slower than building a single-target
regression tree. For example, for a data set with 10 candidate support targets,
of which EAST selects 5, EAST will be roughly 150 times slower.

18 INDUCTIVE TRANSFER IN MULTI-TARGET MODELS

In our experiments, EAST’s runtime proved to be acceptable because TST was
relatively small (e.g., less than one minute). For large data sets, an alternative
is to replace the cross-validation in EAST’s internal loop by a single train/test
split. This would make it about a factor 10 faster.

3.4 Experimental Evaluation

The aim of our experiments is to test to which extent EAST, for a given main
target, succeeds in finding a good set of support targets.

Comparing the accuracy of EAST to the accuracy of the multi-target model
with the best subset of support targets is difficult because computing the best
subset would require us to enumerate all possible subsets (which is intractable
for large n) and to compute the predictive accuracy of the multi-target model
corresponding to a each subset exactly. Therefore, we compare EAST to two
common baseline models instead: a single-target model for the main target
(ST), and a multi-target model that includes all targets (MT).

Note that EAST is identical to ST if the set of selected support targets is empty,
and identical to MT if the set includes all available targets. From this, it follows
that if EAST successfully finds the best set of support targets, the following
must hold:

1. EAST must be at least as accurate as ST. If EAST is more accurate than
ST, then it selects a set of support targets that is beneficial to the main
target’s accuracy. Conversely, if EAST is less accurate than ST, then it
incorrectly selects a set of support targets that is detrimental to the main
target’s accuracy.

2. EAST must be at least as accurate as MT. If EAST is more accurate than
MT, then it successfully excludes a set of targets that is detrimental to
the main target’s accuracy. On the other hand, if EAST is less accurate
than MT, then EAST selects too few support targets or a suboptimal
subset of the targets.

3.4.1 Data Sets

The data sets that we use are listed, together with their properties, in Table 3.3.
Most data sets are of ecological nature. We omit the description of each data
set; the interested reader can find details in the following publications: Demšar
et al. 2005 for S1, Demšar et al. 2006 for S2 and S3, Kampichler, Džeroski, and

EXPERIMENTAL EVALUATION 19

Table 3.3: Data set properties. N is the number of examples, |x| the number of
input variables, and |y| is the number of target variables.

Domain/Task N |x| |y|
S1 Sigmea Real 817 4 2

Soil Quality 1 1944 139
S2 Acari/Coll. groups ” ” 9
S3 Coll. species ” ” 39
S4 Soil Quality 2 393 48 3

Water quality 1060
S5 Plants/Animals ” 16 14
S6 Chemical ” 836 16

Wieland 2000 for S4, and Blockeel, Džeroski, and Grbović 1999 for S5 and S6.
Each data set represents a multi-target regression problem and the number of
target variables varies from 2 to 39.

3.4.2 Experimental Procedure

EAST has been implemented in decision tree induction system Clus, which is
available as open source software from http://dtai.cs.kuleuven.be/clus/.
Clus also implements single- and multi-target regression trees, so all results
that we present next are obtained with the same system and parameter settings.
All parameters are set to their default values. To avoid overfitting we prune
the trees using Cart validation set based pruning, i.e., we use 70% training
data for tree building and 30% for pruning (as suggested by Torgo 1998). We
normalize each target variable to zero mean and unit variance.

We compare for each data set and target variable, the predictive performance of
a traditional single-target regression tree (STRT), a tree constructed by EAST
with all other targets as candidate support targets, and a multi-target tree
including all targets (MTRT). We estimate predictive performance as the 10-fold
cross-validated Pearson correlation, averaged over five runs. We report average
correlation together with the standard deviation of the individual estimates.
To compare the algorithms on a given target or data set, we use the corrected
resampled t-test statistic with significance level 0.01 (as implemented in Weka).

http://dtai.cs.kuleuven.be/clus/

20 INDUCTIVE TRANSFER IN MULTI-TARGET MODELS

Table 3.4: Cross-validated Pearson correlation averaged over all targets. •,◦
denote a statistically significant improvement or degradation of EAST or MTRT
over STRT. �,� denote a statistically significant improvement or degradation of
EAST over MTRT.

Data set STRT EAST MTRT
S1 0.63±0.40 0.64±0.40 0.64±0.40
S2 0.60±0.18 0.63±0.13• 0.64±0.13•
S3 0.34±0.40 0.41±0.35•� 0.48±0.29•
S4 0.19±0.23 0.24±0.23• 0.26±0.22•
S5 0.26±0.17 0.29±0.15•� 0.27±0.15
S6 0.37±0.27 0.41±0.25•� 0.39±0.23

3.4.3 Results & Discussion

Table 3.4 shows for each method, cross-validated Pearson correlation, averaged
over all targets. EAST performs significantly better than STRT for 5 out of 6
data sets and never performs significantly worse. MTRT, on the other hand,
only significantly outperforms STRT in 3 out of 6 data sets. On the two data
sets where only EAST is significantly better than STRT, it is also significantly
better than MTRT. For one data set (S3), EAST still significantly outperforms
STRT, yet it is also significantly worse than MTRT. We discuss S3 in more
detail below.

The above results support that EAST, for a given target, is able to select a
good subset of the other targets as support targets. For 5/6 data sets it finds
on average subsets that are better than selecting the empty subset, i.e., STRT.
Also looking at individual targets (Table 3.5) shows that EAST selects helpful
support targets: for 18 targets it finds a subset that is significantly better
than the empty set; for two it selects a subset that is worse (one that actually
decreases predictive performance).

For S5 and S6 EAST finds on average a subset that works better than using
all targets, i.e., MTRT. This can also be seen at the level of individual
targets (Table 3.5): EAST performs significantly better than MTRT on 8
and significantly worse on 3 of the targets of S5 and S6.

Table 3.6 shows detailed results for S5. These results are consistent with our
earlier observations. EAST performs always at least as good as STRT and is
significantly better on four targets. The same does not hold for MTRT, which
does significantly worse than STRT on four targets. So, there are clearly targets
where using all other targets as support targets is suboptimal. For these targets,

EXPERIMENTAL EVALUATION 21

Table 3.5: Pairwise comparison of methods. For each pair A/B, the number of
targets are given that represent significant wins or losses for A when compared
to B.

Data set EAST/STRT EAST/MTRT MTRT/STRT
#win #loss #win #loss #win #loss

S1 1 0 0 0 1 0
S2 1 0 0 0 2 0
S3 7 1 0 11 23 1
S4 1 0 0 0 1 0
S5 4 0 4 2 4 4
S6 4 1 4 1 4 4

Table 3.6: Detailed results for data set S5. •,◦ denote a statistically significant
improvement or degradation of EAST or MTRT over STRT. �,� denote a
statistically significant improvement or degradation of EAST over MTRT.

Target STRT EAST MTRT
1 0.23±0.11 0.23±0.09 � 0.19±0.10◦
2 0.04±0.09 0.11±0.10• 0.10±0.09•
3 0.25±0.11 0.26±0.09 � 0.17±0.10◦
4 0.24±0.17 0.32±0.13•� 0.36±0.13•
5 0.26±0.15 0.27±0.12 0.27±0.11
6 0.47±0.08 0.45±0.09 0.46±0.08
7 0.06±0.14 0.14±0.15•� 0.23±0.13•
8 0.29±0.11 0.31±0.10 0.28±0.10
9 0.46±0.09 0.46±0.11 � 0.40±0.10◦
10 0.32±0.11 0.30±0.10 � 0.22±0.09◦
11 0.23±0.09 0.24±0.10 0.23±0.09
12 0.29±0.10 0.32±0.10• 0.33±0.08•
13 0.12±0.13 0.15±0.12 0.12±0.08
14 0.44±0.11 0.46±0.11 0.45±0.10

EAST significantly outperforms MTRT (and performs comparable to STRT).
While EAST avoids the losses of MTRT over STRT, it is also significantly worse
than MTRT for two targets. For these it either selected too few support targets
or a suboptimal subset of support targets.

As can be seen from Table 3.4, the only data set where EAST performs
significantly worse than MTRT is S3. Here, EAST on average is able to
find a set of support targets that performs better than always selecting the

22 INDUCTIVE TRANSFER IN MULTI-TARGET MODELS

Table 3.7: Number of support targets chosen by EAST. #ST shows the average
and standard deviation of the number of selected support targets. |y| − 1 is the
maximum number of support targets (the total number of targets minus one).

Data set #ST |y| − 1
S1 0.64±0.48 1
S2 1.95±1.23 8
S3 4.15±2.31 38
S4 1.04±1.45 2
S5 2.15±1.37 13
S6 3.05±0.72 15

empty set, but this increase in accuracy is clearly suboptimal as EAST still
performs less good than MTRT. This can also be seen from its losses for 11
targets over MTRT (Table 3.5). For such targets, EAST either selected too few
or a suboptimal subset of the targets. We conjecture that the former is the case,
i.e., that EAST selects too few targets: on average it only selects 4.15± 2.31 out
of the 38 targets available in S3 (Table 3.7). The most likely cause is the large
number of targets in this data set. EAST implements a greedy hill-climbing
search, which ends if the estimated loss of the next series of candidate subsets is
higher than the estimate for the current set. So, if the loss of the current subset
is under-estimated, EAST might stop too early. The risk that this happens
increases with the number of iterations, i.e., with the optimal number of support
targets. A second possible cause is that EAST may end up in a local optimum.
Note that this never happens for the data sets with fewer than 10 targets (S1,
S2 and S4) and rarely for those with a medium number of targets (S5, S6), as
can be seen in Table 3.5.

3.5 Conclusions

This chapter addresses the single-target with support targets prediction task,
where the goal is to build a model for the main target (or one model for
each target in case of multiple targets), and where a number of candidate
support targets are available (only) at model induction time, which may carry
information about the main target. The chief contribution is Selective Inductive
Transfer (EAST), an algorithm that searches for the subset of support targets
that, when predicted together with the main target in a multi-target model,
maximally improves predictive performance of the main target. Experiments
show that EAST, on top of a multi-target regression tree learner, performs

CONCLUSIONS 23

significantly better than single-target regression trees in 5/6 data sets and
comparable in 1/6 data set. With regard to multi-target regression trees, it
performs significantly better in 2/6, comparable in 3/6, and worse in 1/6 data
sets.

EAST implements a greedy hill-climbing search algorithm to find the best set
of support targets. As we discussed earlier, in data sets with many candidate
support targets, this has two potential drawbacks: (1) it may stop adding
targets too early because it relies on an empirical loss estimate (internal cross-
validation), which may under-estimate the loss of the current subset, and (2) it
may end up in a local optimum. Future research includes alternative strategies
such as back-wards elimination of support targets and genetic search strategies.

Chapter 4

Collaborative Filtering

4.1 Introduction

Recommender systems (Adomavicius and Tuzhilin 2005b) are software systems
designed to propose, given a large set of available items (books, movies, music
pieces, news articles, . . .), the items that are most likely of interest to the
user. Two common classes of algorithms used in recommender systems are
content-based algorithms and collaborative filtering (CF) algorithms. Content-
based algorithms base their recommendations on the content of the items (e.g.,
the text of a news article), while collaborative filtering algorithms base their
recommendations on information recorded by the system about the preferences
of other users.

Collaborative filtering systems may rely on ratings that users have explicitly
assigned to (a subset of) the items, or on binary data, which records for each
user the items that he or she has previously bought (e.g., in the context of an
e-commerce system). We consider the former setting. Here, the input data can
be represented in terms of a ratings matrix, which has one row for each user and
one column for each item and in which the elements indicate the ratings given
by the users to the various items. We assume that a rating is a natural number
taken from a fixed range (e.g., 1 . . . 5). If there are m users and n items, then
the ratings matrix A is an m by n matrix and the element Ai,j is either the
rating assigned by user i to item j, or it is equal to the missing value indicator
if user i has not rated item j.

Given the ratings matrix, a collaborative filtering algorithm can recommend
a number of items to a particular user by first predicting ratings for all items

24

INTRODUCTION 25

that the user has not rated yet, and by subsequently proposing the items with
a high predicted rating. Consequently, we have a multi-target problem with
each target corresponding to an unrated item. For example, to predict user
i’s rating for item j, a k-nearest neighbor based CI algorithm would consider
the set of all other users who rated item j, among these search for the k most
similar ones (in terms of their other ratings), and subsequently take the most
frequently occurring value among the neighbors’ ratings for item j as prediction.
If predicted ratings are allowed to be real numbers, it may alternatively compute
the mean instead of the most frequent value.

One of the most important issues in collaborative filtering is how to deal with
data sparsity (Huang, Zeng, and Chen 2007; Sarwar et al. 2000; Huang et al.
2002; Huang, Chen, and Zeng 2004; Papagelis, Plexousakis, and Kutsuras 2005;
Nanopoulos 2007; Hofmann 2004). Typically, users only rate a small percentage
of the items and the ratings matrix is very sparse (includes many missing values).
Data sparsity may be detrimental to accuracy because of the following two
reasons. First, reliably estimating the similarity between two users becomes
difficult because, due to the many missing values, there may be few items
that are rated by both (and hence contain some information regarding their
similarity). Second, to predict a rating Ai,j , one needs sufficient users different
from user i who also rated item j. Because of data sparsity there will be a
relatively small number of such users resulting in a small input set for nearest
neighbor.

We propose two approaches that deal with unknown values by switching to a
probabilistic representation of the problem. That is, instead of working with
ratings, our algorithms work with probability distributions over the domain of
possible ratings. If a user’s rating for an item is known, then the corresponding
probability distribution has zero variance and places all probability mass on
that particular rating. If it is unknown, then the algorithms make use of a
uniform, global, or predicted distribution.

On top of this probabilistic representation, we propose an estimated distance
measure to compute the similarity between the rating profiles of two users. This
measure can be used in nearest neighbor style collaborative filtering algorithms.
As we will see, this greatly improves the performance of the nearest neighbor
(kNN) approach.

Our second approach to improve upon the kNN approach consists of a graph-
based algorithm called probabilistic graph-based collaborative filtering (PGBCF).
This algorithm works on a user graph in which the users are nodes and the edges
are labeled based on the distance measure. The algorithm seeks to improve
uppon the classic kNN method by using information present in indirect neigbors.
PGBCF achieves this by propagating probabilistic predictions along the edges

26 COLLABORATIVE FILTERING

of the user graph.

Finally, we present an approach which uses additional contextual information
to increase the predictive performance of the recommendation system. More
specifically do we use the social user graph, a graph representing known relations
between the users, as context. In contrast to the previous approach, the relations
between users are known and the user-graph does not need to be constructed.

The rest of this chapter is organized as follows. We start with a discussion
of how the problem relates to the multi-target problem setting. Frequent
approaches are presented in Section 4.3. Next, we discuss variations on the
Manhattan distance measure and propose the probabilistic representation in
Section 4.4. Section 4.5 introduces probabilistic graph-based collaborative
filtering. We present experiments comparing these approaches for various
datasets and sparsity levels in Section 4.6. Next, we discuss and evaluate
a variation on this approach for which the relations between the users is
known in Section 4.7. Finally, Section 4.8 states the main conclusions and lists
opportunities for further research.

4.2 Collaborative Filtering as a multi-target prob-
lem

The standard multi-target setting, as defined in section 2.1.1, makes a clear
distinction between input and output (target) variables. It learns a a function
F : X → Y , mapping the input variables X to the target variables Y . This
function is learned from a dataset for which the target variables Y are known,
the training set, and tested on a separate test dataset. In the Collaborative
Filtering setting, these restrictions are dropped: each variable is a potential
input as well as output variable and there’s no clear distinction between training-
and test-set. This is demonstrated in Figure 4.1. We will see that this setting
corresponds to a two-way learning problem which we define and discuss in the
following chapter.

4.3 Related Work

A number of different general collaborative filtering techniques are described and
compared in (Adomavicius and Tuzhilin 2005b), including the nearest neighbor
approach (Resnick et al. 1994) that we will use to evaluate our proposed distance
measure.

RELATED WORK 27

Input variables X Targets Y

Tr
ai

n
Te

st ? ? ? ?
? ? ? ?

Target and Input variables are mixed

N
o

cl
ea

r d
is

tin
ct

io
n

be
tw

ee
n

tra
in

 a
nd

 te
st

? ?

?

?
?

?

?

Standard Multi-Target Setting Generalized Multi-Target Setting

Figure 4.1: The left matrix demonstrates the standard multi-target setting.
Input/output and train/test are clearly seperated. These restrictions are
dropped for the Collaborative Filtering setting. The general MT setting is
visualized by the right matrix.

Methods specifically designed to alleviate the sparsity and cold start problem
usually consist of a hybrid method between a collaborative filter and a content-
based recommender (Schein et al. 2002a; Nanopoulos 2007; Huang, Chen, and
Zeng 2004). A content-based recommender uses additional information about
the recommendable items. That is, items similar to those previously liked by
the user are recommended. The content-based approach partially avoids the
sparsity problem but at the expense of needing additional information about
the items, which is not always available. Our approach differs in that it remains
a pure collaborative filter.

Our proposed method uses a probabilistic representation. Probabilistic
representations have previously been used successfully in Bayesian approaches
(Su and Khoshgoftaar 2006; Miyahara and Pazzani 2000).

A number of different graph based approaches have been proposed in the past as
well, some of which were specifically designed to alleviate the sparsity problem.

Huang, Chen, and Zeng (2004) construct a bi-partite graph, containing users
on one side and items on the other side. An edge between a user and an item is
added when the user likes the item. An item is then ranked for a user based
on the number of paths between that item and the user. Although the system
gives good results, it is limited in use because it can only handle binary data.
A user either likes or dislikes an item, edges have no weight.

Papagelis, Plexousakis, and Kutsuras (2005) proposes another graph based
algorithm in which the graph contains only users. The system uses only binary
data: edges are weighted based on the number of co-ratings between two users.

28 COLLABORATIVE FILTERING

In Nanopoulos (2007) a method is described which exploits the transitive
correlations between items. i.e., some items might be heavily correlated and
thus a given rating for one item might tell us something about the rating
for other items as well. The algorithm recommends the top-k (transitively)
correlated items. This can be seen as a hybrid approach to the sparsity problem.

Huang et al. (2002) presents a graph based recommender system. Unlike our
system, the system only recommends a number of items. No predictions are
made for the other items. This system uses a two-layer graph, containing
user-user, item-item and user-item edges. This graph is then searched for
recommendable items.

Note that none of these graph based methods can be directly compared
experimentally to our method either because they predict a ranking instead of
an absolute value or because they can only handle binary data.

4.4 Distance Measures and Representation

In this section, we first discuss a popular method to deal with missing ratings
when computing the similarity between two users’ profiles. Next, we define a
probabilistic profile representation, and define the notion of expected distance
based on this representation, which leads to several natural ways to better
handle missing ratings.

4.4.1 Distance Measures

The similarity between two users’ profiles (rows in the rating matrix) can be
estimated in terms of a similarity measure or a distance measure. This chapter
considers the correlation coefficient (a similarity measure) and the Manhattan
distance; both are frequently used in collaborative filtering (Candillier, Meyer,
and Fessant 2008). To simplify notation, we first assume that no ratings are
missing and then define how both measures are extended to handle missing
ratings.

Given two user profiles p and q, i.e., n-dimensional vectors of which the
components are ratings taken from the set of possible ratings R (e.g., R =
{1, 2, 3, 4, 5}). For convenience, we repeat the definition of Pearson correlation:

pc(p,q) =
∑

i(pi − p)(qi − q)√∑
i(pi − p)2∑

i(qi − q)2
,

DISTANCE MEASURES AND REPRESENTATION 29

in which u denotes the average of u’s components. The Manhattan distance is
defined as

dMD(p,q) = ||p− q||1 =
n∑

i=1
|pi − qi| ,

with || · ||1 the 1-norm.

In the presence of missing ratings, correlation is computed only over the
components that are known in both p and q. This approach does not apply
to the Manhattan distance since the range of this measure depends on the
number of components. Assuming the same distance along each dimension, this
would result in a smaller value if more ratings are missing, which is not what
we intend. Therefore, we compute the scaled Manhattan distance (MD-Scaled)
instead, which is defined as

dMD-Scaled(p,q) = n

|K(p) ∩K(q)|
∑

i∈(K(p)∩K(q))

|pi − qi|

with K(u) = {i | ui 6= ?} the set of indices for which u’s values are known.
E.g., assume that p = (3, 1, ?, 0, ?) and q = (1, 2, ?, ?, ?), then K(p) = {1, 2, 4},
K(q) = {1, 2} and dMD-Scaled(p,q) = 5/2(|3− 1|+ |1− 2|) = 5.

As we will see in Section 4.6, the above measure’s performance does not scale
well with sparsity. If we have a sparsity of 50%, i.e., the probability of a value
being known is p = 0.5, then the average fraction of overlap |K(p) ∩K(q)|/n
between two vectors p and q is only p2 = 0.25. That is, as the proportion
of known values decreases linearly, the number of usable, overlapping values
decreases quadratically. This in turn causes rapid performance degradation
when the number of known values goes down. Both correlation and MD-Scaled
are undefined when K(p) ∩K(q) = ∅, i.e., when the users do not have co-rated
items.

4.4.2 Probabilistic Representation

To address the aforementioned difficult scalability of the similarity and distance
measures, we propose a probabilistic representation with probabilistic user
profiles, in which crisp ratings are replaced by probability distributions over
the domain of possible ratings. That is, we replace each vector component pi

by its marginal probability distribution Pr(pi) (
∑

u∈R Pr(pi = u) = 1).

30 COLLABORATIVE FILTERING

We can compute the expected Manhattan distance (EMD) between two
probabilistic user profiles as

dEMD(p,q)

= E[||p− q||1]

=
n∑

i=1

∑
up∈R

∑
uq∈R

|up − uq|Pr(pi = up)Pr(qi = uq) .

We assume here that the random variables corresponding to different ratings
are independent.

For known ratings pi = p 6= ?, Pr(pi) is defined as

Pr(pi = u) =
{

1 if u = p
0 if u 6= p

.

The distribution for vector components that correspond to unknown ratings
will be different. We will now consider several ways to define a distribution for
this case.

Distribution for Unknown Ratings Which distribution should we use to
calculate the EMD if a rating for an item is unknown? We consider the
following two possibilities.

• Assume that the item’s rating follows the uniform distribution Pr(pi =
u) = 1/|R|, with u ∈ R. We call the expected Manhattan distance
computed based on this assumption the expected Manhattan distance -
uniform or EMD-Uni for short.

• Suppose that the rating for item i for user j is unknown. Assuming that
user j rates similar to all other users, we can use the global distribution
of all known ratings for that particular item i instead of the uniform
distribution. We will refer to the resulting distance as the expected
Manhattan distance - global distribution or EMD-GD for short.

Consider the first option. If both users did not rate a given item, then the term
in the formula for dEMD that corresponds to this item only depends on the rating
domain R. It does not depend on the user or on the actual item. For example,

PROBABILISTIC GRAPH-BASED COLLABORATIVE FILTERING 31

if R = {1, . . . , r} then this value is the constant c =
∑

up

∑
uq
|up − uq|Pr(pi =

up)Pr(qi = uq) = 1
r2

∑
up

∑
uq
|up − uq| = r(r2 − 1)/(3r2). This value can be

seen as a penalty that is added to the Manhattan distance for each item not
rated by both users. This motivates the following distance measure definition:
compute the Manhattan distance over the items that are known for both users
and add for each item that is not rated by both users the penalty c. We call
this distance measure Manhattan distance - penalty or MD-Penalty. The main
difference between EMD-Uni and EMD-Penalty lies in the items that are rated
by only one of the users: for these items MD-Penalty also assigns a penalty of c,
while EMD-Uni computes the expected distance based on the given distributions.
MD-Penalty can be computed a factor |R| faster than EMD-Uni and EMD-GD.

4.5 Probabilistic Graph-based collaborative filter-
ing

In this section we will explain how the proposed distances measure can be used
as the basis for graph based collaborative filtering approach..

4.5.1 The User Graph

We represent the data by a so called user graph G = (V,E). Each node v ∈ V
represents a user. If a distance d between two users/nodes can be computed, a
weighted edge e ∈ E between those nodes is added to the graph. The weight
w of that edge is inversely proportional to the distance between the nodes it
connects:

we(v1,v2) = 1
d(v1,v2)

The graph will not contain edges between users without co-rated items when
using Pearson Correlation or MD-Scaled, When using EMD or MD-Penalty,
this procedure will result in a fully connected graph. An example of such a
graph can be seen in Figure 4.4.

To use the graph in a collaborative filtering method, we have to complete
information in each node, based on the information present in the connected
nodes.

We start by translating the classic nearest neighbor approach to a graph based
method. This method is then extended to make explicit use of the graph
structure.

32 COLLABORATIVE FILTERING

Algorithm 2 kNN predicts the missing ratings in the ratings in a matrix A.
E is the set of edges defining the user graph, w is the edge weight function, and
k is the number of neighbors to consider.
procedure kNN(A,E,w, k)

1: for each (i, j) such that Ai,j = ? do
2: N := kNN-Users(i, j, A,E,w, k)
3: Ratings := {Ax,j | x ∈ N}
4: Ai,j := Mean values in Ratings
5: end for

procedure kNN-Users(i, j, A,E,w, k)
1: N := {(x,wx) | (i, x) ∈ E ∧ wx = w(i, x) ∧Ax,j 6= ?}
2: return Top-k users from N sorted by wx

4.5.2 Nearest Neighbor Graph Completion

Suppose we have a node v = (3,−1, ?, 0, ?). Our goal then consists of predicting
the missing values v3 and v4. We can use the constructed graph to make these
predictions. Since a higher edge-weight means a higher similarity, that is a closer
neighbor, the missing values are more likely to be equal to the corresponding
values of connected nodes for which the edge-weight of the connecting edge is
high. A missing value can then be predicted as follows: select the k connected
nodes with the highest edge weights, for which the value to be predicted is
known, and take the average of those known values. This corresponds to the k
nearest neighbors approach(Resnick et al. 1994) given in Algorithm 2.

While this method gives good results in most cases (Adomavicius and Tuzhilin
2005b), it suffers from the so called Cold Start problem (Schein et al. 2002b).
Users who only rated a few items will be given bad ratings, and new items, only
rated by a few users, will rarely be recommended.

4.5.3 PGCF

To alleviate the cold start and the sparsity problem (see Figure 4.2) we propose
to use close but indirect neighbors instead of almost unrelated neighbors. This

PROBABILISTIC GRAPH-BASED COLLABORATIVE FILTERING 33

Figure 4.2: The sparsity problem. Red users have a known rating for item 1.
Although user A has 3 close neigbors (B,C and D), none of them has a known
rating for item 1. To make a prediction for item 1, user A has to rely on distant
users E,F and G, resulting in a not so accurate prediction. Edge lengths are
proportional to the distance between users.

Figure 4.3: Using indirect neigbors. Users C and D gave a rating to item 1.
But only D is a (distant) neighbor of user A.

is illustrated in figures 4.4 and 4.3. In Figure 4.3 the goal is to predict a rating
for item 1, the red question mark, for user A. The only direct neighbor who
rated this item too is user D. The resulting prediction would be 0 since user
D gave the first item a rating of zero. If we take a closer look at the common
ratings between users A and D, we notice that they gave completely opposite
ratings. User A rated items 2 and 3 with a 1 while D gave them both a 0. It is
therefore unlikely that the prediction we made was very accurate. If we look at
the common ratings between A and B, the common ratings are identical and
we can assume that they would rate other items similarly as well. The same is
true for B and C. We can thus argue that B would rate item 1 with a 1 since
user C did so, and if B would rate item 1 with a 1, user A would do so too. By

34 COLLABORATIVE FILTERING

A

B
C

D

E

Figure 4.4: A user-graph. Each node represents a user in the dataset. When a
distance between two users can be computed, a weighted edge is placed between
those users. The arc lengths correspond to distances. Known values (in C,D
and E) can be propagated, e.g., from C and D to B and to A subsequently.
Without propagation, the predicted value for user A would be based solely on
user E, resulting in a bad prediction due to the large distance between A and
E.

making the prediction for user B first and subsequently using this prediction to
predict item 1 for user A, we can largely avoid the sparsity problem and obtain
a more accurate prediction.

This method of propagating predictions will form the basis of our graph based
collaborative filtering algorithm and is illustrated in Figure 4.4. One problem
with this approach is the following. Making predictions and regarding them as
known values is prone to divergence. Errors would be propagated and start to
accumulate. To remedy this we have to take two measures:

• make the most certain prediction first

• take the uncertainty of previous predictions into account when using them
for other predictions

The Prediction Order Our goal is to fill in first the predictions we can make
most confidently. To this end, we need a way to determine the confidence we
have in a prediction. Suppose we make a prediction based on k neighbors and
all of those neighbors rated the item for which we are predicting a rating exactly
the same. This will give us a prediction with a maximum confidence. If, on the

PROBABILISTIC GRAPH-BASED COLLABORATIVE FILTERING 35

Algorithm 3 PGBCF predicts the missing ratings in the ratings in a matrix A.
E is the set of edges defining the user graph, w is the edge weight function, k is
the number of neighbors to consider, and R is the rating domain. See Alg. 2
for kNN-Users.
procedure PGBCF(A,E,w, k,R)

1: { Find prediction order }
2: Todo := ∅
3: for each (i, j) such that Ai,j = ? do
4: N := kNN-Users(i, j, A,E,w, k)
5: v := Variance({Ax,j | x ∈ N})
6: Todo := Todo ∪ { (i, j, |N |, v) }
7: end for
8: Sort Todo by decreasing |N | and increasing v
9: { Initialize distributions for known ratings }

10: for each (i, j) such that Ai,j 6= ? do
11: for each r ∈ R do
12: Pr(Ai,j = r) =

{
1 if r = Ai,j

0 if r 6= Ai,j

13: end for
14: end for
15: { Propagate (predicted) distributions }
16: for each (i, j, ·, ·) ∈ Todo do
17: N := kNN-Users(i, j, A,E,w, k)
18: Pr(Ai,j) := 1

|N |
∑

x∈N Pr(Ax,j)
19: Ai,j := Median Pr(Ai,j)
20: end for

other hand, all the neighbors rate the item differently, we will not be able to
make a confident prediction.

The variance of the neighbor-ratings used to make the prediction gives us thus
a measure of confidence of the prediction. A low variance tells us the prediction
is most likely correct. A high variance tells us we have low confidence in the
prediction.

We can now use the variance to order the sequence in which we will fill in
predictions in the graph.

Propagating Uncertainty Suppose our users can only rate an item positive or
negative and we are making a prediction for some item for user A based on the
three nearest neighbors. Two out of three neigbors rated the item positively

36 COLLABORATIVE FILTERING

and one neighbor gave the item a negative rating. In this case, we would predict
that user A would rate the item positive but we would not be very confident in
this prediction. Only 2/3 neighbors gave a positive rating, i.e. we would assign
a confidence level of 2/3 to the prediction.

In our algorithm, predicted values are used for subsequent predictions. For
example: when making a prediction for user B, this user might have user A
as one of its neigbors. If the neighbors of B (other than A) all rate the item
positively, and since our prediction for A was positive, the prediction for B
would be positive too. Assigning a confidence value to this prediction is now a
little harder. If we regard the predicted value for A as a known value, all of
B’s neighbors would have rated the item positively and the resulting confidence
value would be 1. Doing so disregards the fact that we were not completely
confident in our prediction for user A.

As a solution to this shortcoming, we propose to store the distribution of ratings
among the neigbors instead of the prediction resulting from this distribution, i.e.
instead of storing a positive prediction for user A, we would store (⊕2/3,	1/3).
When making the prediction for user B, we use this distribution instead of the
prediction. This is accomplished by splitting A’s vote in the prediction for B
according to the distribution. i.e. if B has two neigbors with a positive vote
and the distribution of user A, we would get the following predicted distribution
for user B: (⊕ = 1+1+2/3

3 = 8
9 ,	 = 1/3

3 = 1
9) or a positive prediction for B

with a confidence of 8/9. The fact that we were not completely confident in
our prediction for A is now taken into account when making the prediction for
B and is reflected in the confidence we have in the prediction for user B. A
second benefit from this method is that a low confidence prediction has less
influence on a subsequent prediction as its vote is split up more evenly.

As our algorithm works on non-binary data, the method described above is
extended to discrete distributions. E.g., suppose we have ratings between 1
and 5 and 5 neighbors rating 3, 4, 3, 5 and 2 respectively, we would get the
following distribution Pr = (0, 1

5 ,
2
5 ,

1
5 ,

1
5) Since a rating could be the result of

a prediction, it is possible that the rating is represented as a distribution. A
distribution D, based on the distributions Pri of n neighbors is then calculated
as follows:

Prj =
∑

i=1..n D
i
j/n

The final prediction is made by taking the median of this distribution. To
compare the confidence we have in a prediction we can use the variance of the
distribution. The lower the variance, the more confident we are in a prediction.
i.e. D = (0, 1, 0, 0, 0) has a variance of 0, all neighbors gave the same rating (2
in this case) and thus the prediction would be accurate.

EXPERIMENTAL RESULTS 37

Figure 4.5: Number of users (vertical axis) who rated n items (horizontal axis)

4.6 Experimental results

We have run a number of experiments in order to evaluate the performance of
the proposed distance measures and graph based algorithms.

The first dataset used in these experiments is the well known MovieLens (Resnick
et al. 1994) dataset which consists of 100000 movie ratings. The second one is
the subset of a subset of this dataset consisting of the top 100 most rated movies
and the top 100 users who gave the most ratings as used in Srebro, Rennie, and
Jaakkola (2005). The third dataset is the Jester joke database, consisting of a
number of rated jokes. The details of these datasets can be found in Table 4.1
and Figure 4.5 shows the distribution of the number of rated items by the users.

Table 4.1: Description of the MovieLens100k, the top100 subset and the Jester
dataset. Sparsity is defined as the ratio of known ratings to the number of
possible ratings: sparsity = #rateditems

#users∗#items

ML-100K ML-Top100 Jester
users 943 100 73,421
items 1682 100 100

rated items 100,000 7086 4.1 Million
sparsity 0.93 0.29 0.44

38 COLLABORATIVE FILTERING

Figure 4.6: Cross-validated MAE versus dataset sparsity (sampled from full
dataset) for 10NN in combination with different distance measures.

To evaluate the performance, the dataset is split in 5 disjoint train/test splits,
with 80% of the data in each training set. Performance is measured using the
mean average error (MAE). We will discuss the performance under varying
sparsity levels and analyze in depth the performance of the algorithm for a new
user, i.e., the effect of the cold start performance.

4.6.1 Distance Measure Evaluation

Figure 4.6 shows the cross-validated mean absolute error as a function of
training set sparsity for nearest neighbor (Algorithm 2) in combination with
the distance measures discussed in Section 4.4. These include the Pearson
correlation (PC), scaled Manhattan distance (MD-Scaled), Manhattan distance
with penalty (MD-Penalty), and the expected Manhattan distance based on
the global (EMD-GD) and uniform (EMD-Uni) distribution. The figure also
indicates the default MAE, which corresponds to always predicting the overall
median of the rankings in the dataset. Other methods of alleviating the sparsity
problem are not considered in this comparison because their performance has
little influence on the usefulness of our proposed distance measure. For example,
using a hybrid method (Schein et al. 2002a) to alleviate the sparsity problem
could very well be combined with our distance measures. Note that the default
MAE is not useful in practice as it cannot be used to rank items.

EXPERIMENTAL RESULTS 39

PC, which is frequently used in collaborative filtering, and EMD-Uni are
consistently outperformed by both MD-Penalty and EMD-GD across all datasets
and sparsity levels. MD-Scaled performs best or second-best for low dataset
sparsity. If sparsity increases, however, its performance significantly deteriorates;
MD-Scaled is the worst performing distance measure on sparse datasets. The
reason is that this distance measure becomes unstable if the overlap between the
users’ profiles is too small (Section 4.4.1). MD-Penalty and EMD-GD perform
well overall. They have similar performance on MovieLens-Top100. The results
on Jester, and to a lesser extent also those on MovieLens-100K, show that
MD-Penalty works best for low sparsity levels, while EMD-GD is better for
high sparsity levels. Based on these observations, we recommend EMD-GD for
sparse datasets and MD-Penalty for less sparse datasets.

Recall that MD-Penalty adds a fixed penalty to the Manhattan distance for
each item that is not rated by both users. As a result, MD-Penalty explicitly
takes the number of common ratings into account. A lower number of co-rated
items yields a higher distance. One might argue that users with a high number
of common ratings are more likely to have similar taste, irrespectively of the
ratings given. This is reflected in the MD-Penalty measure.

4.6.2 Performance of PGBCF

Figure 4.7 shows the performance of probabilistic graph based collaborative
filtering (PGBCF) compared to that of kNN. Both use MD-Scaled as distance
measure. Comparing to the graph based algorithms described in section 4.3 is
not possible due to them only working on binary datasets or directly predicting
a rank.

PGBCF performs comparable to kNN in most of the experiments. We expect
PGBCF to be most useful on sparse datasets. If the data is not sufficiently
sparse, then propagating predictions is less useful and may decrease accuracy
(this is known as the over activation effect (Huang, Chen, and Zeng 2004)).
This hypothesis is confirmed by the results: on MovieLens-100K, PGBCF
outperforms kNN on sparse datasets. The same is true for Jester. Therefore,
PGBCF should be considered for predicting ratings on sparse datasets.

PGBCF’s computational cost is about twice that of kNN (ignoring the time
required for sorting the unknown ratings). So, the overhead of propagating
predictions is relatively small. This is only the case if the goal is to compute
item ratings for all users. If we are interested in making predictions only for

40 COLLABORATIVE FILTERING

Figure 4.7: Cross-validated MAE of PGBCF and kNN, both using MD-Scaled,
across various sparsity levels. We use the original scaled distance measure to
study the performance using the graph based method.

Figure 4.8: Combing our distance measure and our graph based approach.

one user, then this can be easily accomplished with kNN, but not with PGBCF
because it makes predictions for all users in a pre-determined order.

Combining the MD-Penalty distance measure with the graph based method
gives a small additional improvement on the MovieLens dataset for high sparsity
levels (see Figure 4.8) . When the dataset gets less sparse, kNN-MD-Scaled
outperforms the combined method. This is a result of PGBCF performing
slightly worse than kNN-MD-Penalty on the not so sparse datasets. For the
Jester dataset, the combined method performs close to kNN-MD-Penalty, except
for when PGBCF outperforms kNN-MD-Penalty, in which case the combined
method also outperforms kNN-MD-Penalty.

CONTEXT-AWARE RECOMMENDATION 41

Figure 4.9: 5-fold Cross-validated average error across users who rated a given
number of items

4.6.3 Robustness Against Cold Start Problem

To analyze the robustness of the algorithms with regard to the cold start
problem, we measure the MAE over users of which the number of rated items
lies in a given interval. For example, the MAE of all users who rated only 2-3
items shows how the algorithms perform on new users. Figure 4.9 shows these
results for different intervals. We only show results for MovieLens-100K. For the
other datasets, there are no users who rated only this few items (See histograms
in Figure 4.5).

The results clearly show that the new distance measure outperforms the
commonly used Pearson correlation. Although the variance on the results
is high, we observe that PGBCF performs better than kNN for users who rated
a small number of items. Only for users who rated only 2 or 3 items, PGBCF
drops below kNN.

4.7 Context-Aware Recommendation

The approaches discussed so far only use the user ratings to make a prediction.
In the context-aware recommendation setting, we are given more information
about each user which can be used to further improve the predictions made by

42 COLLABORATIVE FILTERING

the recommendation system. This section presents a method, unrelated to the
previously discussed approach, which uses a user’s social neighborhood as the
context.

We propose a method which combines two similarity measures which each result
in a predicted rating; these are then averaged to obtain a final prediction for
each user/movie-pair.

Linear Regression based k-NN

Our first similarity consists of the fit of a linear regression between the ratings
given by two users. This is very similar to using correlation as a similarity
measure, but is more robust to differences in calibration. Suppose user u1 rated
some movies as (2, 3, 1, 4, 4, ?) (with ? the rating which we want to predict),
and u2 rated those movies as (3, 4, 2, 5, 5, 3). The known ratings of u1 and u2
correlate perfectly. Standard 1NN would use u2’s rating of 3 as prediction for
the unknown rating of u1. This does not make much sense, as u2 consistently
rates movies higher than u1. Performing a linear regression solves this problem:
it results in the equation y = x− 1, and filling in u2’s rating of 3 would give
the more likely result: a predicted rating of 2. The linear regression based
prediction is computed using

LR− Prediction(ui,mj) =
∑

uk∈MSU(ui,mj) LR(ui, uk,mj)
k

(4.1)

where MSU(ui,mj) is the set of most similar users, according to the fit of the
linear regression, among those who rated mj . LR(ui, uk,mj) is the prediction
for pair ui,mj based on the linear regression between ui and uk in which the
rating for mj given by ui is filled in.

We will see in Chapter 5 that this approach can be successfully applied to other
problems as well.

Social Neighborhood predictions

The second similarity measure is based on the social neighborhood of a user
to predict ratings. A prediction is made by averaging the ratings given to the
movie of interest by the user’s friends:

FriendsPred(ui,mj) =
∑

uk∈F riends(ui,mj) Ra(uk,mj)
k

(4.2)

where Friends(ui,mj) are ui’s friends who rated mj , and Ra(uk,mj) those
ratings. This approach can be extended to include friends-of-friends. More

CONTEXT-AWARE RECOMMENDATION 43

user of interest disconnected user

neighbors of degree one to five respectively

Figure 4.10: The social neighborhood of a user.

generally, we define the i-th-degree social neighborhood of uk as the set of all
people within a friend distance of at most i from uk. Figure 4.10 depicts such
a social neighborhood. This gives the following formula to make predictions
based on a user’s social neighborhood.

SocNeighPred(ui,mj , n) =
∑

uk∈SocNeigh(ui,mj ,n) Ra(uk,mj)
k

(4.3)

with n the degree of the social neighborhood. With a too low degree, we may
not have enough people, and thus ratings, in the neighborhood; with too high a
degree, we will overgeneralize.

The predictions from the linear regression method and the social neighborhood
method are averaged to give the final prediction.

Note that the social neighborhood graph is explicitly given. It is not constructed.
This stands in strong contrast with the graph of section 4.5.1 which, although
structurally very similar, is constructed from the known ratings.

Training

We tested social neighborhoods with degrees between 1 and 5. The performance
increased up to degree 3 and went back down thereafter. Table 4.2 gives the

44 COLLABORATIVE FILTERING

Second Third Fourth
p@5 0.107823 0.147738 0.135386
p@10 0.103589 0.123460 0.096503
MAP 0.077488 0.096026 0.075459
AUC 0.980484 0.982339 0.980253

Table 4.2: Evaluation metrics for predictions based on degree 2, 3, and 4 social
neighborhoods.

results for degrees 2 to 4.

4.7.1 Evaluation

Our results are obtained by evaluating the algorithm on all possible movie/user-
pairs. To make this computationally feasible, one extra rule was added to the
system: if a movie is not rated by at least 250 users, the prediction for that
movie, for any user, is the lowest rating possible, i.e. it will not be recommended.
As it turns out, this rule does not only make prediction more efficient, it also
increases predictive performance by a large margin. This caused us to evaluate
a trivially simple prediction method: recommend a movie, irregardless of the
user, if and only if it is rated by over 100 users. This gave us a remarkably high
AUC of 0.943. Thus, the simple rule “recommend a movie if many people have
seen it” seems to work well, and might be useful as a reference point.

We compare our method to two other approaches. The first consist of kNN -
approach using an elaborate distance measure. The second approach consists of
an inductive logic programming (ILP) method. Both algorithms are discussed
in Piccart et al. (2010).

The results of the three approaches are summarized in Table 4.3. For the first
approach, results for k = 100 and k = 3000 are reported. Between these values,
all evaluation criteria increase monotonically with k. LR performs worse in terms
of precision, but has a higher AUC. The ILP approach performs somewhat
similar to the first k-NN approaches, with higher AUC but comparable or
lower precisions. Our proposed social neighborhood based method performs
much better on all metrics, and combining it with LR gives a small further
improvement (results shown for n = 3).

These results are somewhat approximative. First, the P@5, P@10, MAP and
AUC values reported here are obtained based on a ranking over all user/movie
pairs; this gives a micro-average of the corresponding values per user. MAP
is usually defined as a macro-average of average precision. Second, P@5 and

CONCLUSIONS AND FURTHER WORK 45

100-NN 3000-NN LR Soc LR+Soc ILP
p@5 0.057 0.092 0.023 0.148 0.148 0.062
p@10 0.056 0.086 0.024 0.123 0.123 0.018
MAP 0.009 0.019 0.019 0.096 0.097 0.013
AUC 0.576 0.612 0.960 0.982 0.988 0.652

Table 4.3: Final results for the three approaches. LR+Soc evaluated on subset
only.

P@10 are actually approximated by P@R, where R is the smallest recall value
at least equal to 0.05 or 0.10, respectively. For micro-averaged values this gives
a good approximation. Generally, the results are such that we expect LR+Soc,
with n = 3, to make the best predictions on the evaluation set.

4.8 Conclusions and Further Work

This chapter addressed the sparsity and cold start problems by switching to
a probabilistic representation of the rankings. We first proposed a number of
variations on the Manhattan distance that make use of this representation (EMD-
GD and EMD-Uni) or that are inspired by it (MD-Penalty). Next, we employed
this representation in probabilistic graph based collaborative filtering (PGBCF),
an algorithm that propagates probabilistic ranking predictions through the user
graph.

Experiments show that the new distance measures (in particular, MD-Penalty
and EMD-GD) consistently outperform common similarity and distance
measures such as Pearson correlation and the scaled Manhattan distance. They
should definitely be considered in practical applications. Further results show
that PGBCF may outperform nearest neighbor on sparse datasets or on new
users who rated only a few items.

Finally, we proposed a simple but well performing method to handle Context-
Aware Movie recommendation. The method uses a user’s social neighborhood
and makes predictions on the assumption that friends have a preference for
similar movies.

Chapter 5

Learning in two-way datasets

5.1 Introduction

The standard multi-target setting (see section 2.1.1) learns a function F : X →
Y , mapping the input variables X to the target variables Y . This function is
learned using a dataset S containing pairs (x,y) with x ∈ X the input vector
and y ∈ Y = Y1 × · · · × Yn the target vector. Denote with yi ∈ Yi the i’th
component of y.

Now imagine that we have a set of objects A ⊆ A and a set of objects B ⊆ B,
and the data set contains pairs (a,b) with a ∈ A and b ∈ B, with a label
y ∈ Y assigned to each pair. We call this a two-way dataset. The corresponding
learning setting is called two-way predictive learning.

The task of two-way predictive learning is defined as follows:

Given: a data set D that consists of a set of objects A ⊆ A and B ⊆ B and
for some combinations of a and b a corresponding label y, that is,

D = {(a,b, y)|a ∈ A,b ∈ B, y ∈ Y } with A ⊆ A and B ⊆ B,

Find: a function f : (A,B) → Y , such that
∑

(a,b,y)∈D L(f(a,b), y) is
minimized, with L some loss function over Y .

This two-way setting can be reduced to the first setting. (see Figure 5.1 for an
example) However, this reduction hides the structure of the data: it hides the
fact that X is of the form A×B, that is, that each a is paired with each b in the
dataset. Because of this complete pairing, the data are not i.i.d. (independent

46

INTRODUCTION 47

and identically distributed): when (a,b) occurs in D, we know that there will
be other examples with the same a but a different b. The elements of A and B
may themselves be i.i.d., but the tuples in D are not. Some learning methods
assume data to be i.i.d.; the performance of such methods can deteriorate in
the presence of non-i.i.d. data (see, e.g., Jensen and Neville (2002)). Also
most theoretical work on computational learning assumes i.i.d. data; predictive
learning in the two-way setting has not been studied in much detail. Thus,
not everything we know about predictive learning will apply in the two-way
learning setting.

The two-way setting is clearly a special case of relational learning (De Raedt
2008). Indeed, we predict an attribute of a relation that connects two different
types of objects, based on the information available in those objects. Many
things known from relational learning do apply to two-way learning. However,
the two-way setting is more specific than the general relational learning setting,
and exploiting this specificity may lead to better predictive performance.

The two-way setting is relevant for many applications. We list but a few. First,
consider molecular biology. Microarray data form a full matrix that shows the
expression level of a set of genes A under a set of conditions B. Biclustering is
an example of a task that can be performed on such data: clusters have to be
found simultaneously on both rows and columns of the data. Biclustering is
an unsupervised learning problem, but predictive learning can just as well be
useful on such data (and in fact the biclustering is often a first step towards
prediction of, for instance, gene functions).

Second, consider recommender systems, which recommend items (A) to users
(B) by predicting a score for user-item-pairs, and recommending to a user the
items that score highest for her. This is a predictive two-way learning setting
and is visualized in figure 5.1.

Third, several toy examples in statistical relational learning, such as the student-
course-grade example (Getoor et al. 2001), are models that essentially describe
a two-way prediction problem such as the one stated above.

The above list is not exhaustive, but suffices to show that the two-way learning
setting occurs frequently, in very diverse application domains. Different types
of solutions have been proposed in different domains. Identifying two-way
predictive learning as a separate learning task may lead to more generally
applicable solutions, and to easier knowledge transfer between the different
domains.

In this chapter we initiate an investigation into two-way predictive learning.
We introduce the two-way setting in more detail in Section 2. We present some
thoughts and insights about learning in this setting in Sections 3 and 4. In

48 LEARNING IN TWO-WAY DATASETS

Movies

U
se

rs

? ?

?

?
?

?

?
? ?

Movies

U
se

rs

? ?

?

?
?

?

?
? ?

Known values

? Missing values

Training data

Target variables

Input variables

Figure 5.1: Recommender system as an example of a two-way dataset and how
it reduces to a multi-target problem. The objects A and B consist of the users
and movies and the values are the scores for each movie-user pair. To predict a
score for the last two movies, one could build a MT target model which takes
all but the last two variables as input and the last two as target variables, thus
reducing the two-way prediction problem to a MT prediction problem.

Section 5 we evaluate some of these ideas experimentally, showing that they
can lead to improved predictive performance. We conclude in Section 6.

5.2 Two-way learning

We consider two-way learning as a special case of relational learning. In general,
consider the following context: we are given two types of objects A and B,
and a relation R between them. The objects of type A have attributes Ai,
i = 1, . . . , nA; the objects of type B have attributes Bi, i = 1, . . . , nB; and
the tuples in R have attributes Ri, i = 1, . . . , nR as well as a special attribute
T called the target attribute. We denote the set of attributes of A, B, R as
Attr(A), Attr(B), Attr(R), and their respective extensions as A, B, R. The
relation R is complete: there is a relationship between each a ∈ A and each
b ∈ B. Figure 5.2 summarizes this in an entity-relationship diagram.

The task is to predict T from the other available information. We can consider
multiple settings here, depending on what attributes are available. Table 5.1
provides an overview. While the ER-diagram allows for R to have its own

TWO-WAY LEARNING 49

A BR

A1

A2 A3 B1 B2

B3

R2

R1 T

...

...

...
|B| |A|

Figure 5.2: ER-diagram summarizing the data types available for learning. T is
the target attribute.

Table 5.1: Overview of two-way learning settings. In the table, * means ‘non-
empty’.
Attr(A) Attr(B) Attr(R) \ {T}
∅ ∅ ∅ bare two-way learning
* ∅ ∅ single-decorated two-way learning
∅ * ∅ single-decorated two-way learning
* * ∅ double-decorated two-way learning
∅ ∅ * relational learning with deterministic background
* ∅ * relational learning with deterministic background
∅ * * relational learning with deterministic background
* * * relational learning with deterministic background

attributes, besides T , in this chapter we focus on cases where Attr(R) = {T}.
In those cases, the available data can be represented as illustrated in Figure
5.3. We know discuss the different settings from Table 5.1 in turn.

5.2.1 Bare two-way learning

When R is complete, Attr(A) = Attr(B) = ∅, and Attr(R) = {T}, the data set
D is essentially a matrix. For each ai and bj , we denote the corresponding T
value as tij . This is the type of data we get in microarray data. We call this
bare two-way learning, “bare” referring to the fact that the objects in A and B
are not decorated with attributes.

It may seem strange to try to predict T when Attr(A) = Attr(B) = ∅. How can
one predict a target attribute from objects that have no attributes themselves?
The point is that the values of T themselves carry information. We can predict

50 LEARNING IN TWO-WAY DATASETS

complete picture

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53

t11 t12 t13 t14 t15 t16

t21 t22 t23 t24 t25 t26

t31 t32 t33 t34 t35 t36

t41 t42 t43 t44 t45 t46

t51 t52 t53 t54 t55 t56

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46A1 A2 A3

B1

B2

B3

B4

Figure 5.3: Double-decorated two-way learning, illustrated for nA = 3, nB = 4,
|A| = 5 and |B| = 6. In single-decorated two-way learning, the B matrix would
be absent; in bare two-way learning, the A and B matrices are absent.

tij from the information in the tik, k 6= j, or from the tkj , k 6= i, or even from
the tkl, k 6= i, l 6= j.

As an example of this setting, take biclustering. Clusters are formed in A based
on the T values obtained when combining an a ∈ A with the objects in B, and
vice versa. In other words, given sets of objects A ⊆ A and B ⊆ B, the columns
T.j are seen as nB attributes describing the objects ai ∈ A, and, vice versa, the
rows Ti. are seen as nA attributes describing the objects in B.

Bare two-way predictive learning can be addressed in different ways. Suppose we
need to predict a single Tij element. We distinguish the following approaches:

Row-based, inductive: We learn a function f that predicts T.j from T.k, k 6= j.
That is, we reduce the task to a standard learning task, treating the rows as
instances and the columns as attributes. The target attribute is T.j , and the
predictive attributes are T.k with k 6= j.

Column-based, inductive: We learn a function f that predicts Ti. from
Tk., k 6= i. That is, we reduce the task to a standard learning task, treating the
columns as instances and the rows as attributes. The target attribute is Ti.,
and the predictive attributes are Tk., k 6= i. We call this transposed learning, as
it really corresponds to transposing the matrix that represents the data set and
then using a standard learning method.

TWO-WAY LEARNING 51

Transductive: In transductive learning, the task is not to learn a predictive
model, but simply make the predictions. Any tij can be predicted from any tkl,
(k, l) 6= (i, j).

Bare two-way predictive learning is encountered, for instance, in the context
of recommender systems (Adomavicius and Tuzhilin 2005a). The two types of
objects are users and items, and the T values are preference scores that users
may give to items.

5.2.2 Single-decorated two-way learning

When Attr(A) is not empty, but Attr(B) and Attr(R) \ {T} are, we talk about
single-decorated two-way learning. (The case where Attr(A) is empty but
Attr(B) is not, is of course equivalent; we do not treat it separately.)

The situation here is as follows: we have a data set with elements (a,b, f(a,b))
with a ∈ A and b ∈ B; the elements of A are described by attributes Ai but B
is just a set of elements without attributes. We then have |B| values associated
with each a, namely one for each bi, i = 1, . . . , |B|. We can create separate
attributes for each of them. This yields a dataset with the following schema:

A1 A2 . . . AnA
T1 T2 . . . T|B|

where for any a, Ti has the value f(a,bi) with B = {b1, . . . ,b|B|}.

By treating the f(a,bi) values as different targets Ti, we reduce the single-
decorated two-way learning setting to a multi-target prediction problem.
Problems of this type have been studied and methods exist for solving them
(Aho, Zenko, and Dzeroski 2009). Closely related settings are multi-task learning
(Caruana 1997b), multi-label classification (Tsoumakas, Katakis, and Vlahavas
2010) and structured output prediction (Tsochantaridis et al. 2005).

Placing these settings in the context of two-way predictive learning facilitates
transfer of solution strategies from these settings to general two-way predictive
learning, and vice versa. We will see in Section 5.5 how multi-target problems
can be solved in alternative ways, resulting in improved predictive performance.

5.2.3 Double-decorated two-way learning

When both Attr(A) and Attr(B) are non-empty, but Attr(R) \ {T} = ∅ is,
we have double-decorated two-way learning. This setting does not correspond

52 LEARNING IN TWO-WAY DATASETS

to any settings identified earlier, except that it is a special case of relational
learning. The most natural schema for this setting is the schema that results
from joining A, R and B, which gives

A1 A2 . . . AnA
B1 B2 . . . BnB

T

Figure 5.3 shows schematically the structure of the data in this setting. For
single-decorated or bare two-way learning, either the Ai or Bi, or both, are
absent.

5.2.4 Relational learning with deterministic background knowl-
edge

When Attr(R) \ {T} is non-empty, we have a setting that we call relational
learning with deterministic background knowledge. Joining A, B and R gives
the following schema:

A1 A2 . . . AnA
B1 B2 . . . BnB

R1 R2 . . . RnR
T

As the Ri attributes have unique values for each (a,b) pair, there is no possibility
to reduce the number of tuples in this case, though redundancy in the table
(because of repeated a and b values) can be avoided by adopting a relational
representation, e.g.,:

a(ida, a1, a2, ..., an).
. . .
b(idb, b1, b2, ..., bm).
. . .
r(ida,idb,r1, r2, ..., rk, t).
. . .

Note that the relationship between R and A (and also between R and B) is
many-to-one: with each R-tuple exactly one A-tuple and B-tuple is associated.
As a result, the join contains as many tuples as the original R table. In inductive
logic programming terminology (Lavrač and Džeroski 1994), R contains the
examples and A and B constitute background knowledge. The background
knowledge is deterministic because each R-tuple matches with exactly one tuple
in each background relation.

DIFFERENT TYPES OF PREDICTIVE LEARNING 53

One could argue that this setting does not really require a relational learner,
since the relations can simply be joined into one table without loss of information,
after which a standard (non-relational, or propositional) learner can be applied.
This is only partially true; two issues arise.

First, the tuples in the joint table are no longer i.i.d.: when a value occurs for
some attribute in one tuple, it will occur in other tuples as well. It is in general
not a good idea to treat data as i.i.d. (which propositional learners naturally
do) when they are not; it can lead to undesired bias (Jensen and Neville 2002).

Second, although the join does not cause loss of information from the relational
database point of view, a propositional learner will still have no access to
information that may be relevant for a tuple, but is not included in that tuple.
As an example, consider the possibility of adding to R’s attributes a new
attribute that contains the mean value of all the t values in R-tuples with the
same ida value as the current tuple. Such an attribute might be relevant for
prediction, but it cannot be deduced from the information included in a single
tuple in the attribute-value representation.

Thus, even though this type of data can easily be transformed into the
propositional format (a table with one row per instance) and a propositional
learner used afterwards (this approach is taken by, for instance, the ILP system
DINUS (Džeroski, Muggleton, and Russell 1992)), such a transformation may
destroy important information.

5.3 Different types of predictive learning

Apart from having different types of input data, we can consider different types
of learning as well. Let us first distinguish transductive from inductive learning.
In transductive learning, the result of the learning process is a set of predictions.
In inductive learning, the result is a function that takes certain inputs and
produces predictions from that. Such functions can differ strongly with respect
to the type of inputs they take, and hence, the conditions under which they are
applicable (as their input must be available at prediction time).

Transductive learning

The transductive learning task is defined as follows: given a data set where
some values for a given target attribute are missing, predict those values.

54 LEARNING IN TWO-WAY DATASETScomplete: transduction

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53

t11 t12 t13 t14 t15 t16

t21 ? t23 t24 t25 t26

t31 t32 t33 t34 ? t36

t41 t42 t43 t44 t45 t46

t51 t52 ? t54 t55 t56

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

Figure 5.4: In transductive learning, we can predict any missing values from
any known data.

Transductive learning can fill in missing values in a given dataset, but does not
generalize to other datasets. It is flexible in the sense that any set of missing
values can be predicted from any set of known values. E.g., given a matrix T ,
whenever the value of Tij is missing, we can use all the known values of Tkl to
predict it. Figure 5.4 illustrates this setting.

Inductive learning

In inductive learning, we learn a function f : I → O with I the input space for
the function and O its output space. We then need to commit to a specific I
and O before learning starts.

Let us first look at bare two-way prediction. We can distinguish row-based
and column-based learning. In row-based learning, we can predict a number of
target columns from the other columns; without loss of generality we assume
I = T.1 × · · · × T.d and O = T.d+1 × · · · × T.n. We then predict the values of
the last n − d columns from those in the first d columns. This is a standard
multitarget learning task, or a standard single target learning task if d = n− 1.

We can do exactly the same on the transposed matrix. This corresponds to
column-based learning on the original matrix.

In single-decorated two-way prediction, assuming we have Ai attributes but
no Bi attributes, with row-based learning we can choose I = A1 × · · · × AnA

and O = T.1 × · · · × T.n, but also I = A1 × · · · × AnA
× T.1 × · · · × T.d and

DIFFERENT TYPES OF PREDICTIVE LEARNING 55complete: new example

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53

t11 t12 t13 t14 t15 t16

t21 t22 t23 t24 t25 t26

t31 t32 t33 t34 t35 t36

t41 t42 t43 t44 t45 t46

t51 t52 t53 t54 t55 t56

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

a61 a62 a63 t61 t62 t63 ? ? ?

f

Figure 5.5: We can learn a function f that generalizes over A, predicting target
values t.i from a.j and t.k. The shaded area indicates the training data for f .

O = T.d+1 × · · · × T.n. (In the latter case, we assume that some Tij will be
available at prediction time to predict the others.) Alternatively, we can perform
column-based learning here, but then the Ai attributes cannot be used.

In double-decorated two-way prediction, we can choose either row-based or
column-based learning. In one case we are able to include the Ai attributes as
well as the T.i attributes; in the other case we can include the Bi attributes
as well as the Ti. attributes. Figures 5.5 and 5.6 illustrate the row-based and
column-based prediction options.

It may not seem obvious how a single learner can use both the Ai and Bi

attributes, and both column- and row-based T attributes. But in fact there is a
simple solution: one can simply learn a row-based function fA, a column-based
function fB, and then combine these models or their predictions using standard
methods from the literature on ensembles and information fusion (Brown et al.
2005).

Another natural way of combining both types of learning is to use propositional
learning on the double-decorated two-way learning schema mentioned in
Section 5.2.3; we then have I = A1 × · · · ×AnA

×B1 × . . .×BnB
and O = T .

56 LEARNING IN TWO-WAY DATASETScomplete: ind -> transd

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53

t11 t12 t13 t14 t15 t16

t21 t22 t23 t24 t25 t26

t31 t32 t33 t34 t35 t36

t41 t42 t43 t44 t45 t46

t51 t52 t53 t54 t55 t56

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

a61 a62 a63 t61 t62 t63 ? ? ?

f

Figure 5.6: We can learn a function f that generalizes over B, predicting target
values ti. from bj. and tk.. The shaded area indicates the training data for f .
In this case, the ti. targets will only become available when the new example
becomes available.

Note that the T.i or Ti. values cannot be incorporated here (they are not part
of the schema). Further, this learning approach makes different assumptions
about the structure of the data. This is easiest to see for the degenerate case
Attr(B) = ∅: a propositional learner that uses the schema from Section 5.2.3
learns a function that maps a single ai to a single t value, when in fact multiple
t values should be predicted for ai, namely ti1, ti2, . . . , ti|B|. This shows that
the most natural schema from the point of view of data representation is not
necessarily the most suitable one for learning.

5.4 The effects of transposition

In the two-way learning setting, rows and columns are to some extent
interchangeable. We now discuss some of the implications of this.

THE EFFECTS OF TRANSPOSITION 57

5.4.1 What are examples, what are attributes?

A first remark is that, due to the symmetry in the problem, the distinction
between examples and attributes becomes blurred. Depending on our view,
we can consider rows as examples and columns as attributes, or the other way
around. It is worthwhile thinking about how and why we define something to
be an example or an attribute.

Arguably, the most natural way of defining attributes and examples is as follows.
We learn a function f that will predict certain attributes of new (hitherto
unseen) instances. At prediction time, the data schema is unchanged (we have
the same input and output attributes), but there are new instances. Thus, if
we expect to have to make predictions for new objects of type A, it is natural
to see the A objects as the examples, and the B objects as the attributes.

An alternative argument is the following. In single-decorated learning, only
one type of objects, say, A, have attributes. It is natural, then, to consider
these objects the examples. The Ai, possibly together with the Tj , can then be
used as predictive attributes, as in Figure 5.5. In the transposed view, where
the A-objects are attributes, the information in the Ai can only be interpreted
as background information about these attributes. Such information is not
handled naturally by most learners.

Thus, in many cases, the problem description naturally decides what is
considered an example and what is considered an attribute. However, the
fact that this is our natural notion of examples does not imply that the learner
must also be used in this way. This is an important observation. In the next
section, we discuss several applications where a natural view exists on what are
the examples, yet a major improvement in predictive accuracy may be obtained
by deviating from this view and using a learner in a transposed way.

Let us now look at what happens if we consider the A-objects examples and
the B-objects attributes, but have the learner learn from B-objects, using the
A-objects as the attributes.

Consider again Figures 5.5 and 5.6. Given a new object a, we need to predict
the Tj values for it. First consider the user’s point of view: rows are examples,
columns are attributes. We get a new example and need to fill in some target
values. If we have already learned a function f in the standard way, we can
now apply it to predict those values.

Now consider a learner using the transposed view on the data. To this learner,
a is a new attribute, more specifically a target attribute. The goal of this
learner is to learn a function f that predicts the components of a from the
corresponding components of other A-objects. The known components of a are

58 LEARNING IN TWO-WAY DATASETS

used as known target values for this learner. Because these components are
known only when a is given, i.e., at prediction time, training this function can
only be done at that time. In other words, the inductive learner is used lazily
(or, transductively): we need to wait until we see the new example before we
can start training. Once the function has been learned, we use it to predict a,
and after that we can disregard the function f , since for a new example (in the
user’s view) a′, a new function will need to be learned (since to the learner this
is a new target attribute).

Thus, an inductive learner becomes transductive when we use it on the
transposed version of the matrix. Conversely, a transductive method becomes
inductive. For instance, a transposed nearest neighbor method, given a column,
finds the k nearest neighbors of that column (in user terminology: the nearest
attributes). The results of this process can be stored as a model. When a new
row a is presented, any attribute of a can be predicted by looking up its k
nearest attributes (these are stored in the model) and using a’s values for these
attributes to compute the prediction.

5.4.2 Multi-target prediction and inductive transfer

Consider the single-decorated learning setting; we repeat the data schema here:

A1 A2 . . . AnA
T1 T2 . . . T|B|

We can handle this in a number of ways. Option 1 is to learn |B| different
models, with the i’th model predicting Ti from the Aj . Option 2 is to learn
one multi-target model that predicts all Ti at the same time. Option 3 is to
construct models that predict one or more Ti from the Aj and (some of) the
remaining Tj with j 6= i.

If we see the Ti as different learning tasks, then there can be inductive transfer
between the tasks in the second and third setting. In the second setting, this
transfer is implicit; it is exploited while learning the model (Piccart, Struyf,
and Blockeel 2008a). In the third setting, it is explicit: a function that predicts
one Ti may use as input another Tj . Of course, this requires that values for Tj

will be available at prediction time, since the model uses them as inputs.

Thus, in two-way learning, row-based learning achieves generalization over A and
inductive transfer over B, whereas column-based learning achieves generalization
over B and inductive transfer over A. In two-way learning, generalization and
inductive transfer are very similar notions: which term we use depends on what
we call examples and tasks.

APPLICATIONS 59

5.4.3 Transposition switches single-target and multi-target

Assume we have a data matrix, the last row of which is incomplete; we want
to predict missing values Tnj for j = k, . . . ,m. We could learn a row-based
function that predicts all Tnj from Tnl, l < k, using a multi-target learner that
learns from the data in the first n− 1 rows (this is Option 1). Alternatively, we
could learn a column-based function that predicts Tnj from Tij , i < n, using the
first k − 1 columns as training examples (Option 2). Depending on the option
chosen, we use a multi-target function to predict the multiple labels of a single
example, or a single-target function to predict the label of multiple examples.
Which of these two works best, may depend on the application. Therefore, in
any given application, it is useful to keep these different options in mind.

5.4.4 Summary

This discussion shows that, even when the user has a clear view on what
are examples and what are attributes, it may be possible to use a learning
system in the transposed way. This has several consequences: (1) inductive
learners become transductive and vice versa; (2) attributes describing examples
become background information about target attributes, and vice versa; (3)
generalization becomes inductive transfer and vice versa; (4) multi-target
becomes single-target learning and vice versa.

5.5 Applications

5.5.1 Microprocessor-data

We applied our proposed methods for solving a 2-Way learning problem
to Microprocessor data. For this application, the data consists of a set of
performance numbers obtained by executing 26 benchmark programs1 on a
number of (different) machines. Based on these data, we wish to predict the
performance of each of the machines for new programs. In earlier work (Hoste
et al. 2006b), microarchitecture-independent descriptors were used to describe
the programs (put in our setting, these form the attributes Ai), and performance
was predicted from these descriptors. We here try an alternative approach.
When a new program becomes available, the idea is to execute it on a limited
number of machines (“predictive machines”) and use this information together
with the data about the benchmark programs to predict the performance of the

1From the SPEC CPU20006 suite, http://spec.org/cpu2006.

http://spec.org/cpu2006

60 LEARNING IN TWO-WAY DATASETS

target machines

be
nc

hm
ar

ks

be
nc

hm
ar

ks

predictive machines

program of interest

? ? ? ? ? ?

Known data - used to build model Unknown?

Figure 5.7: Problem statement and terminology

remaining machines (“target machines”). Figure 5.7 illustrates the task. Since
we use no descriptors of the machines or the programs, besides the performance
numbers, this is a bare two-way learning problem.

As explained in Section 5.2.1, such a problem can be solved in different ways.
We here compare row-based and column-based inductive learning. Our goal is
to see whether the less natural column-based approach can offer an advantage
over straightforward row-based learning.

We used 3 different machine learning algorithms from the Weka collection (Hall
et al. 2009): a multi-layer perceptron (MLP), a Support Vector Machine using
Sequential Minimal Optimization (SVM-SMO), and linear regression (Linear
Regression). The fourth algorithm to which we compare our results consist of
non-negative matrix factorization as proposed by Lee and Seung (2000).

This method factorizes the matrix T in two non-negative matrices: T ≈W ·H,
minimizing a cost function such as the euclidean distance ‖ T −WH ‖. The
matrices express latent factors that explain observed ratings and the method is
relatively robust for sparse data (Zhang et al. 2006).

Each algorithm was run both row-based and column-based. Default parameters
were used for each algorithm.

The machines in the data set are grouped by processor type, e.g. AMD Turion,
Intel Core 2, etc. There are 17 such groups. Because machines in one group are
very similar, we use a leave-one-group-out approach: we run 17 experiments,
each times using the machines in one group as target machines and the others

APPLICATIONS 61

Table 5.2: Spearman Rank correlation for the predicted microprocessor data.
Row-based Column-based

Neural Network 0.82 0.93
SVM 0.77 0.90
Linear Regression 0.82 0.91
Matrix Factorization 0.85 0.85

as predictive machines.

Each experiment itself uses a leave-1-benchmark-out evaluation: full information
on 25 benchmarks is used to predict the performance of the target machines for
the remaining benchmark.

We report the Spearman Rank Correlation coefficient, averaged over the
benchmarks. This shows how well the method is able to rank the machines;
it is relevant when we want to select the fastest machine for a given program,
which is indeed the goal of this work.

Table 5.2 shows that column-based prediction yields much better results than
row-based prediction. One way to interpret this is that generalization over
machines (or inductive transfer, in the multi-task learning interpretation) is
easier than generalization over programs. Put differently, given a number of
benchmarks and machines, it is difficult to predict how well the machines will
perform for a new benchmark, but it is relatively easy to predict how well a
new machine will perform on the given benchmarks. Until now, this problem
had not been addressed in this manner.

Of particular interest is the result of the Matrix Factorization, which can only
be applied to two-way datasets. As can be seen in table 5.2, the MF algorithm
outperforms all other algorithms for the row-based approach but the MF method
is outperformed by the other algorithms in the column-based approach. The
MF method does not benefit from a transposition.

When we make the link with the multitask framework and the notion of inductive
transfer (see Chapter 3), we can see that inductive transfer among different
tasks is very strong here, the extent that the “signal” (the amount of relevant
information) in related tasks is stronger than the “signal” in the inputs.

This application has a few other peculiarities and problems. For example, the
selection of the set of predictive machines is important for the accuracy of the
model. This brings us to the task of selecting an optimal set of predictive
machines. We discuss the application in detail in the following chapter.

62 LEARNING IN TWO-WAY DATASETS

Table 5.3: Mean Squared Error (MSE) for the ecological dataset.
Row-based Column-based

Neural Network 1.127 0.9
SVM-SMO 2.43 1.46
Linear Regression 3.07 4.04
Matrix Factorization 1.40 1.40

5.5.2 Ecological data

Next, we consider an ecological application (Blockeel, Džeroski, and Grbović
1999). Biologists take samples of river water to measure its quality, recording
quantities of a number of micro-organisms, and physico-chemical parameters
(such as oxygen concentration) in these samples. The goal is to learn to predict
the physico-chemical parameters (PCP, for short) from the micro-organism
quantities.

The data matrix consists of 1060 rows that represent samples, and 852 columns
that represent measurements (836 on an ordinal scale, for micro-organisms, and
16 on an interval scale, for PCP). The natural view is to consider the samples
as examples. Even then, we have two interpretations in our two-way learning
framework: (1) we can see the organism data as Ai attributes and the PCP
as targets, or (2) we can see all of them as targets (then Attr(A) = ∅ and the
B-objects are simply “measurements of any type”).

The original work used interpretation 1, which gives a standard multi-target
problem with 836 predictive variables and 16 target variables. Here, we use
interpretation 2; we then have a bare two-way learning problem, and we can
perform both row-based and column-based learning.

We use the same three algorithms as for the micro-processor data. We randomly
assign rows to the training (80%) and test (20%) set. In row-based learning,
we learn (on the training set) 16 single-target functions f that predict a PCP
from the organism data, and validate their predictions on the test set. In
column-based learning, we learn single-target functions f (each targeting a
separate row in the test set) on the organisms, and validate them on the PCP.
Figure 5.8 illustrates the setup. Results are shown in Table 5.3.

We see that column-based predictions outperforms row-based prediction for the
MLP and SVM, while row-based prediction works better for linear regression.
This shows that which direction works best for prediction may depend on
the inductive bias of the learner. The transposed view gives more informed
predictions here, but only relatively complex models can exploit this.

CONCLUSIONS 63

?

?

Micro-organisms Chemicals

Tr
ai

n
Te

st

Known data - used to build model Known data - used at prediction time Unknown

Micro-organisms Chemicals

Tr
ai

n
Te

st

Row-based prediction Column-based prediction

? ? ?
? ? ? ?

? ? ? ?
? ? ? ?

Figure 5.8: Problem statement and evaluation method

5.6 Conclusions

We propose a new setting for machine learning that we call two-way predictive
learning. The setting is characterized by the existence of two types of data
elements, pairs of which are labeled with target values, and it is these target
values that we need to predict. The two-way learning setting is encountered in
many application domains, including recommender systems, microarray data
analysis, microprocessor design, and ecological data mining. It covers multi-
target learning as a special case, and is itself a special case of relational learning.
The two-way learning setting has many pecularities that motivate a separate
study of this setting, as opposed to simply transforming such learning problems
into standard learning problems. It forces us to think about the meaning of
examples and attributes, which itself sheds new light on a number of other
concepts, such as inductive transfer, or the difference between inductive and
transductive learning.

Experiments on two different application domains demonstrate the usefulness of
this discussion: by running an inductive learner on the transposed data matrix,
one can obtain better predictive results. While this approach is practically very
simple, it is not straightforward to practitioners, partially because it requires a
view of the data that is often unnatural (thinking of attributes as examples and
vice versa), and partially because it requires one to use an inductive learner
transductively (the learning process can only be started once a new test instance
has arrived). Our experimental results show, however, that this alternative
approach can yield important performance gains.

There are many opportunities for future work. Apart from the already

64 LEARNING IN TWO-WAY DATASETS

demonstrated potential advantage of transposing the data matrix, the new
setting may make it possible to: use background knowledge about attributes in
a principled way; combine row-based and column-based prediction for even better
performance; develop new transductive learners based on existing inductive
learners; develop new methods for achieving inductive transfer between tasks;
transfer solutions between areas that up till now seemed unrelated; and more.
Also, two-way learning could be generalized to n-way learning, making it directly
applicable to the star schemas that are popular in data warehousing.

Chapter 6

Application: Processor
Performance Prediction

6.1 Introduction

We concluded the previous chapter with a short description of two 2Way
problems and how they can benefit from data transposition. This chapter takes
a closer look at the first application: predicting the performance of CPU’s.

Current practice in benchmarking commercial machines is to run industry-
standard benchmarks and report their performance numbers. This practice
is adopted by various benchmarking consortia and corporations such as
EEMBC1 for embedded systems, TPC2 for database systems, and SPEC3

for high-performance computer systems. The information obtained from these
benchmarking experiments provides valuable information for comparing existing
commercial machines across a broad range of applications. For example, SPEC
provides performance results for various benchmarks from several application
domains such as compute-intensive workloads, Java workloads, graphics, web
servers, mail servers, network file systems, etc.

Although these benchmarking efforts enable users to compare computer system
performance across vendors for different types of workloads, they do not provide
insight with respect to which computer system performs best for a given

1http://www.eembc.org
2http://www.tpc.org
3http://www.spec.org

65

66 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

application of interest that is not part of the benchmark suite. In particular, it
is unclear which performance numbers to base a purchasing decision on, i.e., it
is unclear which benchmark is most similar to an application of interest. This
is a ubiquitous and long-standing problem in benchmarking that affects various
markets of the computer industry. For example, a phone company needs to
decide which processor to include in its next-generation cell phone, however,
its software may be very different from what the EEMBC benchmark suite
provides. In addition, the phone company most likely will not be willing to
distribute its proprietary software to third-party hardware vendors. Similarly,
an Internet-service provider or a supercomputer host needs to decide which
processors to provide in the data center, however, the software that will be run
may be very different from what SPEC provides.

(a) Approach in prior work
target machines

be
nc

hm
ar

ks

application of interest ?
which benchmark is most similar
to the application of interest for
predicting performance on the
target machine of interest?

(b) Data transposition
benchmarks

ta
rg

et
 m

ac
hi

ne
s

machine of interest ?
which target machine is most
similar to the machine of interest
for predicting the performance
of the application of interest?

Figure 6.1: High-level conceptual comparison between (a) the approach in the
work of Hoste et al. (2006a) and (b) data transposition.

Prior work in this area by Hoste et al. (2006a) approached this problem by
identifying a benchmark or a number of benchmarks in the benchmark suite

INTRODUCTION 67

that are most similar to the application of interest, see Figure 6.1(a). An
inherent problem with this approach is that the application of interest may
exhibit execution characteristics that are very different from the benchmarks
included in the benchmark suite (i.e., the application of interest may be an
outlier with respect to the benchmark suite), hence, it is unclear how useful the
benchmark suite is for making an accurate performance prediction.

In this chapter, we propose a very different technique. The problem at hand
consists of a 2-Way learning problem. As discussed in Chapter 5, this allows us
to transpose the data-matrix. Such a data transposition results in solving the
dual problem of finding the machine that is most similar to the target machine
for predicting performance for an application of interest, see Figure 6.1(b).
In other words, instead of finding the benchmark that is most similar to the
application of interest for predicting performance on a target machine of interest,
data transposition aims at finding the predictive machine that is most similar
to the target machine of interest for predicting performance for the application
of interest. While both approaches basically solve the same problem, we
demonstrate that the data transposition leads to more accurate performance
predictions, the fundamental reason being that the data transposition enables
capturing outlier workload behavior better. Intuitively speaking, an application
of interest that exhibits outlier behavior on one machine is also likely to exhibit
outlier behavior on another machine. An empirical model then extrapolates
outlier behavior across machines.

Our approach assumes a (potentially large) set of target machines, to which the
user has no access but for which benchmarking results are available for a (limited)
set of benchmarks, e.g., performance numbers published by a benchmarking
consortium such as SPEC. Further, a limited number of so-called predictive
machines are assumed to be available to the user on which both the benchmarks
and the application of interest can be run. A model learned on the transposed
data then predicts the performance of the application of interest on each of
the target machines. It does so based on the published performance numbers
for the target machines and the benchmarks along with a limited number of
measurements that need to be done on the predictive machines using both
the benchmarks and the application of interest; the method does not require
executing the application of interest on the target machine.

Our experimental evaluation using SPEC CPU2006 and performance numbers
for 117 commercial machines demonstrates the method’s accuracy. Data
transposition predicts the ranking of the commercial machines with a correlation
coefficient of 0.93 compared to the ranking obtained with measured performance
numbers, whereas prior art achieves a ranking of 0.86. The top-1 machine
according to data transposition yields a 1.2% performance deficiency on average
(24.8% max) compared to the real top-1 machine for the given the application

68 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

of interest. Prior work in this area by Hoste et al. (2006a) is accurate as well for
most benchmarks, except for outlier workloads for which we observe deficiencies
over 100%. Furthermore, we demonstrate the method’s ease of use: we find that
only a few predictive machines are sufficient for making accurate performance
predictions.

This chapter is organized as follows. We briefly describe prior work in this area
in the next section. In Section 6.3, we then present how the data is a 2Way
dataset, hence enabling data transposition. We elaborate on how it advances
beyond prior work and discuss potential applications in Section 6.4. Section 6.5
discusses our experimental setup, and we presents the results on the accuracy of
data transposition in Section 6.6. Finally, we discuss related work in Section 6.7
and conclude in Section 6.8.

6.2 Prior Work

The problem that motivates this work can be summarized as follows. Assume
we have an application of interest for which we want to rank a set of commercial
machines and predict the best machine or the top-n best performing machines.
We therefore rely on an existing performance database that is comprised of
performance numbers for a number of benchmarks and machines. The approach
taken by prior work was to exploit the similarity between the application of
interest and the industry-standard benchmarks across these machines, so that
an informed estimate can be made for the performance of the application of
interest across the target machines.

In particular, Hoste et al. (2006a) use performance scores of a standardized
benchmark suite on the target machines of interest, and in addition, they measure
a set of microarchitecture-independent characteristics for the application of
interest which they relate to the benchmarks in the standardized benchmark
suite. These microarchitecture-independent characteristics capture the inherent
program behavior that is unbiased towards a particular microarchitecture. They
rely on the notion of similarity between the application of interest and the
benchmarks (in terms of their microarchitecture-independent characteristics)
to predict the performance of the application of interest. The key issue in
this approach is to determine how differences in microarchitecture-independent
characteristics translate into performance differences. They use a genetic
algorithm to learn this relationship across a variety of machines. In short, Hoste
et al. use the standardized benchmarks as proxies for the application of interest
based on behavioral similarity.

DATA TRANSPOSITION 69

The method proposed in this chapter is dual to Hoste et al.’s approach. Whereas
they identify the benchmark(s) most similar to the application of interest to
predict performance on a target machine, our approach transposes the problem
and identifies the predictive machine most similar to the target machine to
predict target machine performance for the application of interest. The intuition
behind Hoste et al.’s approach is that workloads exhibiting similar inherent
program behavior are likely to yield similar performance across a range of
machines. This approach is effective for applications of interest that show
similarity to the benchmarks in the benchmark suite, however, for applications
of interest that are dissimilar to any of the benchmarks, so-called outliers, the
method is unlikely to yield accurate performance predictions. Data transposition
on the other hand overcomes this inefficiency by building on the notion of
machine similarity: an application of interest that is dissimilar to any of the
benchmarks and that may yield different performance on a particular machine,
is also likely to yield different performance on other machines. In other words,
an application of interest exhibiting outlier performance on a predictive machine
is likely to exhibit outlier performance on the target machines.

In addition to the observation that data transposition leads to more accurate
predictions for applications of interest that are outliers compared to the
benchmarks in the benchmark suite, it does not require time-consuming profiling
runs for collecting microarchitecture-independent program characteristics as in
the Hoste et al. approach. Through data transposition, a limited number of
real hardware runs on the predictive machines is sufficient for making accurate
predictions on the target machines. This makes data transposition both faster
and more practical.

6.3 Data Transposition

We first introduce some terminology and definitions.

6.3.1 Data set and definitions

We starts from the data set as shown in Figure 6.2. In both data sets, the rows
represent the benchmarks and the columns represent the machines.

This is a 2Way data set, as defined in Section 5.2, with the benchmarks and
machines corresponding to the A and B objects respectively. Hence, we can
transpose the dataset to generalize over machines instead of benchmarks.

70 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

target machines

be
nc

hm
ar

ks
 application of interest

predictive machines

? ? ? ? ? ?

be
nc

hm
ar

ks

Figure 6.2: Problem statement and terminology

The part of the data set on the left in Figure 6.2 comprises performance numbers
for all the benchmarks as well as for the application of interest for the so-called
predictive machines. These machines are assumed to be available to the user,
i.e., the user can run the application of interest as well as the industry-standard
benchmarks on these predictive machines to collect performance numbers.
Typically, there are fewer predictive machines than target machines. The target
machines are not available to the user, hence we only have performance numbers
for the benchmarks on the target machines, and not for the application of
interest.

The part of the data set on the right in Figure 6.2 is provided by a benchmarking
consortium; in fact, we use performance numbers from SPEC CPU2006 in our
setup, as we will explain later. It comprises performance numbers for all
benchmarks and all target machines. The goal now is twofold. First, we want
to predict the performance of the application of interest on each of the target
machines. Second, we want to both rank these machines and identify the best
performing target machine(s) for the application of interest.

6.3.2 Models for performance prediction

We explore two flavors of empirical models to which we apply our data
transposition method, namely linear regression and neural networks.

Linear regression

Linear regression builds a linear regression model for each target machine with
each predictive machine, see also Figure 6.3. The regression model that yields
the best fit across the predictive machines for a given target machine is retained;
this model is subsequently used to predict the performance of the application

DATA TRANSPOSITION 71

target machines

be
nc

hm
ar

ks

be
nc

hm
ar

ks

predictive machines

application of interest ? ? ? ? ? ?

predictive machine #1

predictive machine #2

predictive machine #3 ta
rg

et
 m

ac
hi

ne

ta
rg

et
 m

ac
hi

ne

ta
rg

et
 m

ac
hi

ne

predictive machine #1

ta
rg

et
 m

ac
hi

ne

performance of the application
of interest on predictive machine #1

predicted performance for
the application of interest

on the target machine

Figure 6.3: Performance prediction through data transposition using linear
regression.

of interest on that particular target machine. Put differently, the performance
for that target machine correlates best with the performance of the chosen
predictive machine. Figure 6.3 illustrates the methodology through an example:
three regression models — since there are three predictive machines — are
built for target machine #3. In this example, we predict the performance for
target machine #3 with the regression model obtained using predictive machine
#1 — because predictive machine #1 yields the most accurate linear model for
target machine #3. This procedure is repeated for all target machines, which
enables us to rank the target machines based on the predicted performance
numbers. This ranking provides the relative ordering of target machines for
the application of interest; the top-1 machine is predicted to yield the highest
relative performance.

Note that this approach is very similar to the one described in Section 4.7.

72 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

Neural networks

target machines

be
nc

hm
ar

ks

be
nc

hm
ar

ks

predictive machines

application of interest ? ? ? ? ? ?

predicted performance for
the application of interest

on the target machine

...

...

(1) training phase:
learn neural network using the

predictive machines
(2) prediction phase:

predict performance of application
of interest on target machine

Figure 6.4: Performance prediction through data transposition using neural
networks.

Neural networks can also be used for performance prediction through data
transposition. Neural networks have the advantage over linear regression models
that they can model non-linear relationships. Figure 6.4 illustrates how this is
done. The input to the neural network is the performance of the benchmark
applications, and the output is the predicted performance for the application
of interest, on the target machine. We consider a multi-level perceptron in
this work. We train a neural network using the set of predictive machines.
Training the neural network involves inputting the performance numbers of
the benchmarks on the predictive machines, and expecting the performance for
the application of interest at the output. The training algorithm then learns

POTENTIAL APPLICATIONS 73

the neural network to predict the performance for the application of interest
based on the performance numbers for the benchmarks. Model training is done
using performance data on the predictive machines only. Once the model is
trained, it is used to predict performance for the application of interest on each
of the target machines. Intuitively speaking, the neural network learns how the
performance of the application of interest relates to the other benchmarks. The
implicit assumption is that this relationship is similar on the target machines
as it is on the predictive machines.

6.4 Potential Applications

We envision several potential applications for data transposition.

Guiding purchasing decisions When purchasing a new computer system,
the customer has to rely on published performance numbers as provided
by benchmarking consortia and corporations such as SPEC, EEMBC and
TPC. These numbers however only quantify performance for a number of a
standardized benchmarks. As a result, it is unclear to which benchmark(s)
the application of interest is most similar, and by consequence it is unclear
which performance number(s) to base a purchasing decision on. Typically, these
decisions are driven by average performance figures across the entire benchmark
suite, or they are typically based on presumed similarities across applications
from the same application domain. Data transposition provides a methodology
for ranking machines, which enables making better purchasing decisions, as we
will demonstrate later in the evaluation section of this chapter.

Performance prediction of unavailable hardware Prototype hardware or
expensive hardware may be hard to obtain for experimentation and measurement.
Data transposition provides a solution to performance evaluation on unavailable
hardware, i.e., by comparing the performance for the application(s) of interest
against a benchmark suite (which is to be run only once on the expensive
prototype hardware), useful performance predictions and assessments can be
obtained.

Fast design space exploration Simulation-based processor design space
exploration is extremely time consuming. Cycle-accurate simulators typically
incur a slowdown compared to real hardware of at least 5 orders of magnitude.
Hence, simulating one minute of real execution time takes at least two months of

74 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

simulation time for evaluating a single microarchitecture design point. Obviously,
exploring and refining a microarchitecture design at these speeds is infeasible.
Data transposition may help speedup design space exploration: simulating a
number of representative benchmarks in detail on the slow simulator is sufficient
to predict the performance of other benchmarks and applications.

Task scheduling on heterogeneous systems Research into heterogeneous
computer systems is gaining importance at different levels in the computing
range. For example, the composition of computing nodes in a grid or data center
may be heterogeneous due to upgrades or by design; heterogeneity may also
be considered to increase the energy efficiency of a multi-core processor design
(Kumar et al. 2003); or, heterogeneity may emerge because of chip technology
process variability in a homogeneous multi-core processor (Teodorescu and
Torrellas 2008). An important question in heterogeneous system design is
how to schedule the applications for maximizing overall system performance.
Data transposition may be an enabler to drive the scheduling algorithm on
heterogeneous systems by providing performance predictions for each of the
computing nodes; the scheduling algorithm can then use these performance
predictions to yield better schedules.

6.5 Experimental Setup

6.5.1 Benchmarks and platforms

Our data set contains reported performance numbers for a set of industry-
standard benchmarks on a number of commercial machines. In particu-
lar, for this study, we use performance numbers reported for the SPEC
CPU2006 benchmark suite4 which includes 29 integer and floating-point
performance benchmarks. We use the speed ratios with base optimization,
i.e., SPECint_base2006 and SPECfp_base2006; these speedup numbers are
relative to a reference SUN Ultra5_10 workstation with a 296MHz SPARC
processor.

We selected 117 commercial machines out of the 1K+ machines that are available
on the SPEC website as of Dec 2009. These 117 machines were chosen such that
they are as diverse as possible in terms of their (micro)architecture, instruction-
set architecture, technology node, etc., see Table 6.1. For each family of
architecturally similar processors, we pick a number of machines by CPU
nickname — different CPU nicknames reflect differences in microarchitecture,

4http://www.spec.org/cpu2006/

EXPERIMENTAL SETUP 75

Processor family CPU nickname
AMD Opteron (K10) Barcelona, Istanbul, Shanghai
AMD Opteron (K8) Santa Rosa, Troy
AMD Phenom Agena, Deneb
AMD Turion Trinidad
IBM POWER 5 POWER5+
IBM POWER 6 POWER6
Intel Core 2 Allendale, Conroe, Kentsfield, Merom-

2M, Penryn-3M, Wolfdale, Yorkfield
Intel Core Duo Yonah
Intel Core i7 Bloomfield XE
Intel Itanium Montecito
Intel Pentium D Presler
Intel Pentium Dual-Core Allendale
Intel Pentium M Dothan
Intel Xeon Bloomfield, Clovertown, Conroe, Dun-

nington, Gainestown, Harpertown,
Kentsfield, Lynnfield, Tigerton, Tulsa,
Wolfdale-DP, Woodcrest, Yorkfield

SPARC64 VI Olympus-C
SPARC64 VII Jupiter
UltraSPARC III Cheetah+

Table 6.1: The machines considered in this study sorted by processor family.
Our selection contains 3 machines of each CPU nickname.

chip technology, cache sizes, bus speed, etc. For each nickname we include three
machines. For example, our dataset includes 9 AMD Opteron K10 machines in
total, see also the first line in Table 6.1: 3 machines with a Barcelona CPU, 3
with an Istanbul CPU, and 3 machines with a Shanghai CPU.

As we have outlined in Section 6.3, we require the data set to be split into two
groups: a set of predictive machines versus a set of target machines. Because
the selection of predictive machines may have significant impact on the overall
accuracy, we will consider different sets of predictive machines throughout our
experiments. In all of our experiments, we use a cross-validation setup to
allow for a fair evaluation of our methodology. This means there is no overlap
between the set of predictive versus target machines: for a given set of predictive
machines — a processor family in this study — we remove those machine types
from the set of target machines, see also Figure 6.5.

Additionally, we also consider a leave-one-out methodology with respect to the

76 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

machines

be
nc

hm
ar

ks

target processor family

application of interest

Figure 6.5: Cross-validation and leave-one-out setup: we eliminate the target
machine and application of interest from the dataset when training the empirical
performance models.

benchmarks. This means we pick a single benchmark out of the benchmark
suite — this is our application of interest — and we build a prediction model
using the remaining 28 benchmarks, see also Figure 6.5. Once the model is built,
we compare the predicted performance for the application of interest against its
measured performance on each of the target machines.

6.6 Evaluation

We evaluate performance prediction through data transposition in three different
settings: (i) targeting a processor family based on performance numbers for
other processor families, (ii) targeting newer machines based on a predictive set
of older machines, and (iii) limiting the set of predictive machines. Throughout
the evaluation we refer to the prior work proposed by Hoste et al. (2006a)
as GA-kNN, as it involves a genetic algorithm (GA) to learn how to weight
microarchitecture-independent workload differences to performance differences
and then derives a performance prediction based on the k nearest neighbors
(NN) in the workload space; we assume 10 neighbors in our setup (k = 10). We
use the WEKA5 v3 Multilayer Perceptron implementation with default settings
as the neural network. We refer to the data transposition approach using the T

superscript, and we refer to the linear regression approach as NNT (it selects
the best fitting predictive machine or ‘nearest neighbor’ for making a prediction)
and the neural network approach as MLPT (as it uses a multi-level perceptron).

5http://www.cs.waikato.ac.nz/ml/weka/

EVALUATION 77

NNT MLPT GA-kNN

Rank correlation 0.85 (0.67) 0.93 (0.71) 0.86 (0.59)
Top-1 error 11.9 (156.7) 1.21 (24.8) 7.30 (104)
Mean error 4.04 (31.81) 1.59 (19.4) 6.25 (51.34)

Table 6.2: Performance comparison for the different methods using processor-
family cross-validation. Numbers in bold represent cases where data
transposition outperforms the previously proposed GA-kNN method. Average
numbers are presented; the numbers between brackets give the worst case.

6.6.1 Metrics

We use three different metrics to quantify the accuracy of data transposition:
(i) target machine ranking, (ii) the top-1 performance prediction error, and (iii)
the average performance prediction error. We now briefly discuss each of these
metrics.

Ranking measures the ability of the method to predict the relative ranking of
the target machines. This is done by first predicting the performance for the
application of interest on each target machine. We then rank the machines
according to the predicted performance for the application of interest. The
predicted ranking is then compared to the actual ranking using the Spearman
rank correlation coefficient. The correlation coefficient ranges between 0 and 1;
a correlation coefficient of one means a perfectly predicted ranking.

Once a predicted ranking has been obtained, we compare the speedup of its top
machine with the speedup of the actual top machine, yielding the top-1 error.
In Section 6.4, we discussed various applications, including the case for guiding
purchase decisions. The top-1 error indicates what the loss in performance
would be if a purchase is following the performance prediction.

The third metric is the average prediction error across all target machines and
benchmarks.

6.6.2 Predicting another processor family

In the first experiment, we consider a single processor family as the set of
target machines, and we use the machines from the other families as predictive
machines. Following the cross-validation approach outlined in Section 6.5, we
have 17 predictive/target pairs on top of the leave-one-out cross-validation at the
benchmark level. The results are summarized in Table 6.2; we aggregated the
results across both the target machines and the benchmarks. Average numbers

78 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

are reported as well as worst-case results; the worst case numbers reports the
worst-case result across all target machines and benchmarks, and are shown
between brackets. The MLPT approach beats the other approaches on all three
metrics. Compared to GA-kNN, the NNT approach has a slightly lower average
rank correlation (0.85 vs. 0.86), but does significantly better in the worst case
(0.67 vs. 0.59). We obtain a similar result for the average error, where NNT

outperforms GA-kNN (4.04 vs. 6.25). These results indicate that approaches
based on data transposition are able to outperform the state-of-the-art when
predicting the performance of machines with an unseen architecture.

Figures 6.6 and 6.7 show the same data on a per-benchmark basis for the
rank correlation coefficient and the top-1 prediction error, respectively. These
results show that data transposition is better capable of accurately predicting
performance of outlier benchmarks compared to the previously proposed GA-
kNN approach (Hoste et al. 2006a). In particular, the leslie3d benchmark is an
outlier benchmark compared to the other benchmarks in the benchmark suite,
and the GA-kNN method has difficulty making an accurate prediction (i.e., rank
correlation coefficient of 0.59). Data transposition on the other hand improves
the predicted ranking to 0.92. Similarly, for the cactusADM and libquantum
benchmarks, data transposition using neural networks is the most accurate
approach for predicting the top-1 performing machine, see also Figure 6.7; data
transposition using linear regression and the prior state-of-the-art approach
are highly inaccurate. These benchmarks are outliers with higher-than-average
SPEC scores, and yields the highest performance on an Intel Xeon Gainestown
system. The namd and hmmer are outliers at the opposite side of the spectrum:
these benchmarks have lower-than-average SPEC scores, and yield the highest
performance on Intel Montecito processor systems. Both data transposition and
the prior work are accurate at estimating performance for these benchmarks.

Data transposition using neural networks is more accurate than using linear
regression. This is apparent from both Figures 6.6 and 6.7. The reason is
that neural networks can model non-linear relationships, as mentioned before.
Both the average and minimum rank correlation coefficients are higher for
the neural networks compared to linear regression. Also, data transposition
using neural networks is very accurate when it comes to predicting the top-1
machine. Whereas GA-kNN and data transposition through linear regression
yields prediction errors that are higher than 100%, data transposition using
neural networks brings the error down to 25% at most for one of the benchmarks;
for the other benchmarks, data transposition using neural networks predicts
the top-1 machine with (near) perfect accuracy.

EVALUATION 79

MLPˆT
2008 2007 older

Rank correlation 0.93 (0.71) 0.80 (0) 0.77 (0.49)
Top-1 error 3.78 (50) 9.23 (119) 6.84 (43)
Mean error 5.50 (65.61) 8.10 (70.79) 8.36 (64.89)

NNˆT
2008 2007 older

Rank correlation 0.92 (0.76) 0.82 (0.37) 0.74 (0.31)
Top-1 error 2.17 (43) 4.31 (92) 2.07 (29.3)
Mean error 4.38 (35.16) 9.22 (82.13) 9.22 (53.34)

Table 6.3: Performance comparison for the different methods predicting the
performance for machines from 2009 using older machines. Numbers in bold
outperform the previously proposed GA-kNN method; the numbers between
brackets report the worst case result.

6.6.3 Predicting future machines

The previous experiment did not take into account the release date of the
different machines and aimed at predicting the performance of a processor
family based on other processor families, irrespective of their release date.
A relevant case in practice might be to predict the performance for a future
processor family. To this end, we now limit the target machines to those released
in 2009, using machines that were released before 2009 only as the predictive set.
We distinguish three possibilities for the predictive set: the machines released
in 2008, 2007 and pre-2007. This distinction allows us to see how far into the
future a set of predictive machines can reliably predict performance. The results
are summarized in Table 6.3, and we briefly discuss them now.

Predicting one year into the future, (i.e., using the 2008 machines to predict the
2009 machines), works best using the proposed data transposition approaches.
On all three metrics, data transposition outperforms the previous state-of-the-
art GA-kNN. We obtain an increase in the Spearman rank correlation from 0.87
to 0.93 and a reduction in top-1 and mean error from 6.84 and 10.75 to 2.17
and 4.38, respectively. NNT does somewhat better than MLPT , which seems to
suggest that MLPT is more sensitive to the training data than NNT .

If we go back one more year (i.e., using the 2007 machines to predict performance
of the 2009 machines), GA-kNN achieves a better ranking. Note however that

80 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

MLPˆT
10 5 3

Rank correlation 0.9 0.89 0.89
Top-1 error 6.17 2.79 3.04
Mean error 5.53 4.93 5.16

NNˆT
10 5 3

Rank correlation 0.87 0.81 0.81
Top-1 error 2.17 5.49 5.49
Mean error 5.17 6.00 6.05

Table 6.4: Performance comparison for the different methods predicting the
performance for machines from 2009 using a small subset from the 2008 machines.
The numbers in bold indicate cases where data transposition outperforms the
previously proposed GA-kNN method.

this method does not rely on data from these predictive machines, and takes
only the target machines and the benchmark characteristics into account. Even
though the predicted ranking correlates better with the actual ranking under
GA-kNN, data transposition does better on the mean error score. This is the case
even for machines predating 2007. The reason why GA-kNN performs relatively
better than data transposition when predicting further in the future is that GA-
kNN bases its prediction on a microarchitecture-independent characterization
of the workloads only, which is independent of time. Data transposition on the
other hand makes a prediction based on historic performance numbers from
older machines..

From this we conclude that data transposition (both NNT and MLPT) are
more accurate when predicting into the near future than GA-kNN. However,
when predicting in the distant future (two years and more ahead), then data
transposition using linear regression (NNT) is more accurate than using neural
networks. Even though GA-kNN achieves a better ranking when predicting
in the distant future, both the top-1 and mean error are smaller for data
transposition using linear regression (NNT).

EVALUATION 81

6.6.4 Limited number of predictive machines

We now consider the case where we need to make a performance prediction based
on a limited number of predictive machines. The reason is that we need to run
benchmarking experiments on the predictive machines for data transposition
to work, as explained previously. Limiting the number of predictive machines
increases the practicality of method. To evaluate how well data transposition
works considering a limited number of predictive machines, we set up the
following experiment. The target machines all have been released in 2009,
whereas the predictive machine are a subset of the machines released in 2008.
We use three subset sizes: 10, 5 and 3.

The results of this experiment are summarized in Table 6.4. As expected,
prediction accuracy decreases with a limited number of predictive machines,
however the effect is relatively small. The MLPT method is most robust to
a decrease in the number of predictive machines: even with three predictive
machines only does MLPT outperform GA-kNN. NNT suffers more from a
limited number of predictive machines. GA-kNN is able to rank the machines
better than NNT when we use 5 or less predictive machines, but performs worse
compared to NNT based on the mean error and the top-1-error. These results
demonstrate that data transposition (using neural networks) is accurate even
when having access to a limited set of predictive machines only, which makes
the method practical to use.

6.6.5 Selecting predictive machines

Now that we know that a limited number of predictive machines is sufficient,
the question is how to select these predictive machines. An easy-to-implement
approach is to select predictive machines randomly. Another approach may be
to select predictive machines such that they maximize the coverage relative to
the target machines. In other words, by choosing a diverse set of predictive
machines one may maximize the likelihood of finding a similar (close-enough)
(set of) predictive machine(s) for each target machine. This may improve the
accuracy of the performance prediction, and hence, it could be viewed of as the
best possible approach. We implement this approach by choosing the predictive
machines through k-medoid clustering, which randomly selects k cluster centers
(predictive machines), initially, and groups all the remaining machines to their
closest cluster. Assigning machines to clusters changes the centroids of the
clusters, hence, different machines emerge as cluster centers (i.e., a new set of
predictive machines is constructed), after which new cluster centers need to be
determined, etc. This process is iterated until convergence or steady-state, i.e.,
all machines are assigned to a cluster and cluster membership does not change

82 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

across iterations of the algorithm. The cluster centers then are the predictive
machines. This results in a diverse set of machines, for example an Intel Core 2,
Pentium D Presler, Xeon Gainestown and a SPARC 64 VII when selecting 4
predictive machines. Figure 6.8 shows the goodness of fit for random selection
versus k-mediod clustering as a function of the number of predictive machines
for MLPT . The key observation from this graph is that k-medoid clustering
outperforms random selection by over a factor two, e.g., two predictive machines
selected by k-medoid clustering achieve a better fit (0.714) than five randomly
selected machines (0.705).

6.7 Other Related Work

We now discuss other related work beyond the prior work discussed in Section 6.2.

6.7.1 Empirical performance modeling

Empirical modeling leverages statistical inference and machine learning
techniques such as regression modeling or neural networks to automatically learn
a performance model from training data. Joseph, Vaswani, and Thazhuthaveetil
(2006b) apply linear regression to processor performance analysis: they build
linear regression models that relate micro-architectural parameters (along with
some of their interactions) to overall processor performance. Joseph et al. only
use linear regression to test microarchitecture design parameters for significance,
i.e., they do not use linear regression for predictive modeling.

Linear regression assumes that the response variable behaves linearly with its
input variables. This assumption is often too restrictive. Lee and Brooks (2006)
advocate spline-based regression modeling in order to capture non-linearity. A
spline function is a piecewise polynomial used in curve fitting. A spline function
is partitioned in a number of intervals with different continuous polynomials.

An artificial neural network is an alternative approach for building an empirical
model. Neural networks are machine learning models that automatically
learn to predict (a) target(s) from a set of inputs. The target typically is
performance and/or power or any other metric of interest, and the inputs
typically are microarchitecture parameters. Neural networks could be viewed of
as a generalized non-linear regression model. Several groups have explored
the idea of using neural networks to build performance models, see for
example Ipek et al. (2006), Dubach, Jones, and O’Boyle (2007) and Joseph,
Vaswani, and Thazhuthaveetil (2006a). Lee et al. (2007) compare spline-based

CONCLUSION 83

regression modeling against artificial neural networks and conclude that both
approaches are equally accurate; regression modeling provides better statistical
understanding while neural networks offer greater automation.

All of this prior work shares the commonality that it aims at predicting
performance for a target machine for a given set of benchmarks. Their goal is to
drive architecture design space exploration. We are addressing a related but very
different problem: we aim at predicting performance for a target machine for a
novel workload; this could be viewed as joint workload/architecture exploration.

6.7.2 Program similarity

Several researchers have proposed methods for quantifying program similarity.
Saavedra and Smith (1996) use the squared Euclidean distance computed in
a benchmark space built up using dynamic program characteristics at the
Fortran programming language level such as operation mix, number of function
calls, number of address computations, etc. Yi, Lilja, and Hawkins (2003)
use a Plackett-Burman design for classifying benchmarks based on how the
benchmarks stress the same processor components to similar degrees. Eeckhout,
Vandierendonck, and De Bosschere (2003) use principal component analysis
to identify similarities across programs. The input given to the principal
component analysis can be microarchitecture-dependent (Eeckhout, Georges,
and De Bosschere 2003), microarchitecture-independent (Phansalkar et al.
2005) or mixed of both (Eeckhout, Vandierendonck, and De Bosschere 2003).
The work described in this chapter goes one step further and aims at exploiting
program similarity and dissimilarity to make performance predictions for new
workloads.

6.8 Conclusion

The ubiquitous problem in benchmarking is to predict the performance of an
application of interest on a set of target machines the user does not have access
to. This chapter presented data transposition, feasible because of the 2Way
structure of the data. It builds empirical models for predicting performance
across machines using a standard set of benchmarks. By building such models
for a limited number of predictive machines and a (potentially) large set of
target machines, data transposition allows for predicting performance of an
application of interest on a set of target machines by running it on the predictive
machines only. The intuition behind data transposition is that if a workload is
(dis)similar to a set of benchmarks on (a) predictive machine(s), it is likely to be

84 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

proportionally (dis)similar on a target machine. An empirical model is trained
to learn how workload (dis)similarity translates into performance differences on
actual hardware.

Our experimental results demonstrate the method’s accuracy: the ranking
achieved through data transposition correlates well with the real ranking (average
rank correlation coefficient of 0.93) across a set of 117 commercial machines using
the SPEC CPU2006 benchmark suite. We also found that only a few predictive
machines are sufficient for achieving accurate predictions. Further, the top-1
machine can be predicted with a 1.2% average prediction error (and 24.8% max
error for one workload); in contrast, state-of-the-art method proposed by Hoste
et al. (2006a) leads to errors above 100% for some workloads. A key benefit of
data transposition is that it can better predict outlier workload performance.

CONCLUSION 85

0.5

0.6

0.7

0.8

0.9

1.0

astar

bwaves

bzip2

cactusADM

calculix

dealII

gamess

gcc

GemsFDTD

gobmk

gromacs

h264ref

hmmer

lbm

leslie3d

libquantum

mcf

milc

namd

omnetpp

perlbench

povray

sjeng

soplex

sphinx3

tonto

wrf

xalancbmk

zeusmp

Minimum

Average

Spearman Rank Correlation

N
N

^T
M

LP^T
G

A-10N
N

Figure 6.6: Spearman rank correlation coefficient for data transposition (NNT

and MLPT) versus prior work (GA-kNN).

86 APPLICATION: PROCESSOR PERFORMANCE PREDICTION

0 20 40 60 80
100
120
140
160
180

astar

bwaves

bzip2

cactusADM

calculix

dealII

gamess

gcc

GemsFDTD

gobmk

gromacs

h264ref

hmmer

lbm

leslie3d

libquantum

mcf

milc

namd

omnetpp

perlbench

povray

sjeng

soplex

sphinx3

tonto

wrf

xalancbmk

zeusmp

Maximum

Average

Error for top-1 prediction

N
N

^T
M

LP^T
G

A-10N
N

Figure 6.7: Top-1 prediction error for data transposition (NNT and MLPT)
versus prior work (GA-kNN).

CONCLUSION 87

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

G
oo

dn
es

s
of

 fi
t R

^2

k-medoids random

Figure 6.8: Comparing random selection versus k-medoid clustering for selecting
predictive machines through MLPT . For the random case, 50 random selections
were averaged.

Chapter 7

Conclusion

During the course of this text, we explored a diverse set of multi-target
problems and properties. After giving an overview of existing multi-target
approaches, we study inductive transfer in multi-target algorithms and propose
an algorithm to maximally exploit this inductive transfer. Next, we demonstrate
how recommender systems consist, at the core, out of a multi-target problem.
Some application specific problems exist in this setting to which we propose
some effective solutions. Finally, we propose a new setting: 2Way learning.
This setting turns out to occur often in practice and can be effectively solved
using multi-target learning. The usefulness of the 2Way setting is demonstrated
with an in depth study of its application to processor performance prediction.
We here present an overview of the observations made in the various chapters
of this text, and the conclusions arising from them.

Chapter 3 demonstrates how we can effectively use multi-target algorithms
to perform transfer learning. We observe that a multi-target algorithm often
outperforms a single-target algorithm for some of the targets while the single-
target algorithm works better for the remaining targets. From this we conclude
that the targets for which the multi-target algorithm performed the best were
able to exploit the additional information present in the data for the other
targets. That is, there exists a form of inductive transfer between the targets.
In order to study this transfer in more depth, we construct a transfer matrix
(see 3.2.1). The matrix consists of the performance values for each target when
predicted together with each other possible target, i.e., it describes the inductive
transfer between each pair of targets. This matrix can be highly asymmetric:
it is possible that some target A has a beneficial influence on the predictive
accuracy for target B when A and B are predicted simultaneously, while at the

88

CONCLUSION 89

same time, the accuracy for target B goes down. That is, the inductive transfer
from A to B is positive, while the inductive transfer from B to A is negative.
Hence, clustering related targets (Thrun and O’Sullivan 1996) will result in a
suboptimal prediction.

The asymmetric behaviour of inductive transfer in multi-target algorithms leads
us to a different approach: select one target, the main target, for which we want
to maximize the predictive accuracy. The goal now becomes to select those
targets, the support targets, which when predicted simultaneously with our
main-target will result in the highest predictive accuracy for the main-target, i.e.
those targets which as a set have the biggest positive inductive transfer towards
the main-target. We propose the EAST algorithm: a heuristic search for the
optimal set of support targets. Targets are added to the set of support targets
one by one, each iteration selecting the target which results in the biggest
increase in predictive accuracy. Experimental results demonstrate that this
approach significantly outperforms both the single-target and full multi-target
algorithm.

In the following chapter, we redirect our attention to Collaborative Filtering
and Recommender Systems. The underlying problem in these systems consist
of a multi-target problem: predict a score for each item (target) for a specific
user. They are, however, rarely discussed from a multi-target point of view.
Direct application of existing multi-target algorithms did not lead to improved
accuracies in comparison to existing state-of-the-art collaborative filtering
algorithms. This is the result of the inability of the multi-target algorithms to
handle two problems which are specific to the collaborative filtering setting: the
sparsity problem and the cold start problem. The former is a result of users
rating only a small portion of all items. Hence, the odds of two users rating
a large number of the same items are small. Most algorithms use a distance
measure based on these co-rated items. Consequently, the distance measure’s
usefulness, and subsequently the algorithm’s performance deteriorate fast due
to the large data sparsity. The related cold start problem exists for new users.
Those users have rated only a small number of items, making it difficult to
make accurate predictions for them.

We propose a graph based solution to alleviate these shortcomings. A user-graph
is created with each node representing a user and weighted edges between users
are added based on how similarly they co-rate certain items. Suppose user A
and B rate some items in a very similar way, user B and C rate some different
set of items in a very similar way but A and C did not co-rate any item. The
constructed graph would have highly weighted edges between A and B and
between B and C but no edge between A and C. We can now use this graph
to make more informed recommendations. Suppose we want to predict how
well user A likes item X, user B did not rate the item either but C did rate

90 CONCLUSION

the item. Most recommender systems would be unable to make a prediction
for user A’s rating for X because A and C did not co-rate any items, due to
the sparsity of the data. Our solution consists of propagating values through
the graph. For this example, we would first propagate the known rating from
C to B and finally from B to A. The algorithm, described in Section 4.5,
uses a probabilistic representation which takes the weights of the edges and
the possibly conflicting values of neighboring nodes into account. We ran a
number of experiments which demonstrated the effectiveness of our method. As
expected, our approach out-performed the other systems when the data set is
extremely sparse. As the data gets less sparse, the advantage of our method
disappears and the propagated values might even be detrimental to the accuracy
of the system.

In some cases, the user-graph is given. For example, the social network of
a user might be known by the recommender system. This simplifies making
predictions since we do not have to create the user-graph. The rationale for
making predictions changes to "friends like the same items", compared to the
previous rationale "users who liked the same items will like the same items in the
future". We propose a method which recommends items to a user which are liked
by other users in the user’s so called social-neighborhood. This neigborhood
includes immediate friends and friends-of-friends, up to a certain degree of
indirect friendship. Experimental evaluation demonstrated that this relatively
simple method achieves state-of-the-art performance.

Chapter 5 introduces a new learning setting: 2Way learning. In this setting,
we want to learn the attribute of a relation between two types of objects A
and B. This structure is present in many applications, among which: ecological
applications, the previously discussed collaborative filtering and processor
performance prediction. The training data associated with a 2Way setting
can be placed in a matrix format with each row representing an A object and
each column representing a Bobject. This matrix can be interpreted in a number
of ways. The first interpretation consists of considering each row a training
example. This results in a setting which adheres to a normal multi-target
problem setting. Alternatively, we can consider each column a training example.
This is possible due to the interchangeability of the type A and type B objects
in the relation. Finally, a hybrid interpretation can be made.

The alternative, column-based approach can be transformed to a normal row-
based setting by a simple transposition of the data matrix. As a result, we can
apply any multi-target algorithm to solve for the column-based interpretation.
This data transposition has a number of peculiar effects. First, examples and
attributes are switched. Depending on the direction in which we use the data,
either the rows represent training examples and the columns represent attributes;
or vice versa. Hence, their exists no clear distinction between examples and

CONCLUSION 91

attributes in a 2Way learning setting. Second, as described in Section 5.2,
transposing the data will use an inductive learner in a transductive way. That
is, a model is build when the prediction is requested, when the input data is
known. Third, row-based learning achieves generalization over A and inductive
transfer over B, whereas column-based learning achieves generalization over B
and inductive transfer over A. Finally, multi-target and single-target prediction
can be switched by transposing the data. A single-target problem for which we
need to predict one value for n test-instances becomes a multi-target problem
with n targets which we need to complete for only one test-instance; and vice
versa.

We ran experiments with both approaches in two domains: one ecological
problem, the other concerning processor performance prediction. From these
experiments we conclude that the optimal direction to use the data is dependent
on the multi-target learning algorithm. Relatively complex learners, such as
a neural network and a support vector machine, achieve better accuracy with
transposed approach. For the ecological dataset, the linear regression works
better in the normal row-based approach but is still less accurate than the other
algorithms using a column-based approach.

Chapter 6, discusses the aforementioned processor performance prediction
problem in-depth. Previous work in this area used micro-architecture
independent characteristics to describe the behaviour of a certain application.
The training dataset consisted of a number of benchmark applications for which
the characteristics were measured and of the performance values for these
applications on a large number of CPU architectures. Given a new application
of interest, the approach consisted of finding the benchmark application which
resembles that application the most. The performance values of the most similar
application would subsequently be used as predictions for the application of
interest.

We propose a different method which improves on prior work in a number of
ways. We run the application of interest on a small number of (predictive)
machines to determine the performance values of our application on those
machines. This results in a 2Way setting: one type of object being the machines,
the other type being the applications, and the performance values the attribute
of the relation between those two types of objects. Hence, we can apply data
transposition. Experimental evaluation showed that for this problem, the
column-based approach consistently results in more accurate predictions. This
is consistent with the following intuition: if an application is (dis)similar to
a set of benchmarks applications on (a) predictive machine(s), it is likely to
be proportionally (dis)similar on a target machine. Prior work was based on
program similarity, whereas our approach is based on machine similarity.

92 CONCLUSION

Our experimental results lead us to the following conclusions: the data
transposition approach is able to make predictions for new architectures for
which no examples occur in the training data; the method is able to predict
the performance of future machines; works accurate with a small number of
predictive machines; and performs well at predicting outlier performance.

From these observations and applications concerning multi-target algorithms,
it should be clear that they can provide an excellent solution to many real
world problems. Although we covered many multi-target related topics and
provided effective solutions to a number of problems, there is always room for
improvement. Future work includes improving our support set search algorithm
(EAST); efficient implementation of our graph based collaborative filter; hybrid
row-based, column-based approaches and so on. We hope to address these, and
more, questions in future work.

We briefly summarize the main contributions made in this work.

we have shown that inductive transfer is asymmetric, and that
acknowledging this fact can lead to better multi-target or multi-task
learners

we have shown that multi-target learners can be used for building
recommender systems

we have proposed a novel solution for the cold-start and sparsity problems
in recommender systems

we have proposed a new viewpoint on multi-target learning, which we call
two-way learning

we have proposed a novel method for microprocessor performance
prediction that is more accurate than the state of the art

List of publications

• Piccart, B.,H. Blockeel, A. Georges and L. Eeckhout (2012). “Predictive
learning in two-way datasets” In: Latest advances in inductive logic pro-
gramming 21st International Conference on Inductive Logic Programming

• Piccart, B., A. Georges, H. Blockeel and L. Eeckhout (2011). “Ranking
commercial machines through data transposition” In: Proceedings of the
IEEE International Symposium on Workload Characterization (IISWC)
pp. 3-14

• Piccart, B., H. Rahmani, D. Fierens and H. Blockeel (2010). “Three
complementary approaches to context aware movie recommendation” In:
Proceedings of the Workshop on Context-Aware Movie Recommendation
pp. 57-60

• Piccart, B., J. Struyf, H. Blockeel (2010). “Alleviating the sparsity
problem in collaborative filtering by using an adapted distance and a
graph-based method” In: Proceedings of the Tenth SIAM International
Conference on Data Mining pp. 189-199

• Piccart, B., J. Struyf, H. Blockeel (2008). “Empirical asymmetric selective
transfer in multi-objective decision trees” International conference on
Discovery Science In: Lecture Notes in Computer Science vol. 5255 pp.
64-75

• Piccart, B., J. Struyf, H. Blockeel (2008). “Selective inductive transfer”
In: Proceedings of Benelearn’08: The Annual Belgian-Dutch Machine
Learning Conference pp. 63-64

93

Bibliography

Adomavicius, G. and A. Tuzhilin (2005a). “Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible
extensions”. In: IEEE Transactions on Knowledge and Data Engineering
17.6, pp. 734–749.

Adomavicius, G. and A. Tuzhilin (2005b). “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions”. In: IEEE Transactions on Knowledge and Data Engineering
17.6, pp. 734–749. issn: 1041-4347. doi: 10.1109/TKDE.2005.99. url:
http://dx.doi.org/10.1109/TKDE.2005.99.

Aho, T., B. Zenko, and S. Dzeroski (2009). “Rule Ensembles for Multi-target
Regression”. In: ICDM 2009, The Ninth IEEE International Conference on
Data Mining, Miami, Florida, USA, 6-9 December 2009. Ed. by W. Wang,
H. Kargupta, S. Ranka, P. S. Yu, and X. Wu. IEEE Computer Society,
pp. 21–30. isbn: 978-0-7695-3895-2.

Blockeel, H., L. De Raedt, and J. Ramon (1998). “Top-down Induction of
Clustering Trees”. In: 15th Int’l Conf. on Machine Learning, pp. 55–63.

Blockeel, H., L. Schietgat, J. Struyf, S. Džeroski, and A. Clare (2006). “Decision
Trees for Hierarchical Multilabel Classification: A Case Study in Functional
Genomics”. In: 10th European Conf. on Principles and Practice of Knowledge
Discovery in Databases, pp. 18–29.

Blockeel, H., S. Džeroski, and J. Grbović (1999). “Simultaneous prediction of
multiple chemical parameters of river water quality with TILDE”. In: 3rd
European Conf. on Principles of Data Mining and Knowledge Discovery,
pp. 32–40.

Boutell, M. R., J. Luo, X. Shen, and C. M. Brown (2004). “Learning multi-label
scene classification”. In: Pattern Recognition, pp. 1757–1771.

Brown, G., J. L. Wyatt, R. Harris, and X. Yao (2005). “Diversity creation
methods: a survey and categorisation”. In: Information Fusion 6.1, pp. 5–20.

95

http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2005.99

96 BIBLIOGRAPHY

Candillier, L., F. Meyer, and F. Fessant (2008). “Designing Specific Weighted
Similarity Measures to Improve Collaborative Filtering Systems”. In: ICDM
’08: Proceedings of the 8th industrial conference on Advances in Data Mining.
Leipzig, Germany: Springer-Verlag, pp. 242–255. isbn: 978-3-540-70717-2.
doi: http://dx.doi.org/10.1007/978-3-540-70720-2_19.

Caruana, R. (1997a). “Multitask Learning”. In: Mach. Learn. 28, pp. 41–75.
— (1997b). “Multitask Learning”. In: Machine Learning 28 (1), pp. 41–75. issn:

0885-6125. doi: 10.1023/A:1007379606734. url: http://portal.acm.or
g/citation.cfm?id=262868.262872.

Caruana, R. (1993). “Multitask Learning: A Knowledge-Based Source of
Inductive Bias”. In: Int’l Conf. on Machine Learning, pp. 41–48.

Clare, A. and R. King (2001). “Knowledge discovery in multi-label phenotype
data”. In: 5th European Conf. on Principles of Data Mining and Knowledge
Discovery, pp. 42–53.

De Raedt, L. (2008). Logical and Relational Learning. Springer.
Demšar, D., M. Debeljak, C. Lavigne, and S. Džeroski (2005). Modelling

pollen dispersal of genetically modified oilseed rape within the field. Abstract
presented at The Annual Meeting of the Ecological Society of America.

Demšar, D., S. Džeroski, T. Larsen, J. Struyf, J. Axelsen, M. Bruus Pedersen,
and P. Henning Krogh (2006). “Using multi-objective classification to model
communities of soil microarthropods”. In: Ecol. Model. 191.1, pp. 131–143.

Dimou, A., G. Tsoumakas, V. Mezaris, I. Kompatsiaris, and I. Vlahavas
(2009). “An Empirical Study of Multi-label Learning Methods for Video
Annotation”. In: Proceedings of the 2009 Seventh International Workshop
on Content-Based Multimedia Indexing. CBMI ’09. Washington, DC, USA:
IEEE Computer Society, pp. 19–24. isbn: 978-0-7695-3662-0. doi: 10.110
9/CBMI.2009.37. url: http://dx.doi.org/10.1109/CBMI.2009.37.

Dubach, C., T. M. Jones, and M. F. P. O’Boyle (Dec. 2007). “Microarchitecture
Design Space Exploration Using An Architecture-Centric Approach”.
In: Proceedings of the IEEE/ACM Annual International Symposium on
Microarchitecture (MICRO), pp. 262–271.

Džeroski, S., S. Muggleton, and S. Russell (1992). “PAC-learnability of
determinate logic programs”. In: Proceedings of the 5th ACM Workshop
on Computational Learning Theory. ACM Press, pp. 128–135.

Eeckhout, L., A. Georges, and K. De Bosschere (Oct. 2003). “How Java
Programs Interact with Virtual Machines at the Microarchitectural Level”.
In: Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Languages, Applications and Systems (OOPSLA),
pp. 169–186.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-70720-2_19
http://dx.doi.org/10.1023/A:1007379606734
http://portal.acm.org/citation.cfm?id=262868.262872
http://portal.acm.org/citation.cfm?id=262868.262872
http://dx.doi.org/10.1109/CBMI.2009.37
http://dx.doi.org/10.1109/CBMI.2009.37
http://dx.doi.org/10.1109/CBMI.2009.37

BIBLIOGRAPHY 97

Eeckhout, L., H. Vandierendonck, and K. De Bosschere (Feb. 2003). “Quantifying
the Impact of Input Data Sets on Program Behavior and its Applications”.
In: Journal of Instruction-Level Parallelism 5. http://www.jilp.org/vol5.

Elisseeff, A. and J. Weston (2005). “A Kernel Method for Multi-Labelled
Classification”. In: Annual ACM Conference on Research and Development
in Information Retrieval, pp. 274–281. url: http://citeseerx.ist.psu.e
du/viewdoc/summary?doi=10.1.1.18.2423.

Evgeniou, T. and M. Pontil (2004). “Regularized multi–task learning”.
In: Proceedings of the 2004 ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 109–117.

Fürnkranz, J., E. Hüllermeier, E. Loza Mencía, and K. Brinker (Nov. 2008).
“Multilabel classification via calibrated label ranking”. In: Mach. Learn. 73.2,
pp. 133–153. issn: 0885-6125. doi: 10.1007/s10994-008-5064-8. url:
http://dx.doi.org/10.1007/s10994-008-5064-8.

Getoor, L., N. Friedman, D. Koller, and A. Pfeffer (2001). “Learning Probabilistic
Relational Models”. In: Relational Data Mining. Springer, pp. 307–334.

Ghosn, J. and Y. Bengio (2003). “Bias learning, knowledge sharing”. In: Neural
Networks, IEEE Transactions on 14.4, pp. 748–765.

Godbole, S. and S. Sarawagi (2004). “Discriminative Methods for Multi-labeled
Classification”. In: PAKDD, pp. 22–30.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten
(2009). “The WEKA Data Mining Software: An Update”. In: SIGKDD
Explorations 11.1.

Hofmann, T. (2004). “Latent semantic models for collaborative filtering”. In:
ACM Transactions on Information Systems 22.1, pp. 89–115.

Hoste, K., A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De
Bosschere (Sept. 2006a). “Performance Prediction based on Inherent Program
Similarity”. In: Proceedings of the 2006 International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 114–122.

Hoste, K., A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De
Bosschere (2006b). “Performance prediction based on inherent program
similarity”. In: Proceedings of the 15th international conference on Parallel
architectures and compilation techniques. PACT ’06. New York, NY, USA:
ACM, pp. 114–122. isbn: 1-59593-264-X. doi: http://doi.acm.org/10.11
45/1152154.1152174. url: http://doi.acm.org/10.1145/1152154.115
2174.

Huang, Z., H. Chen, and D. Zeng (2004). “Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering”. In:
ACM Trans. Inf. Syst. 22.1, pp. 116–142. issn: 1046-8188. doi: 10.1145/96
3770.963775. url: http://dx.doi.org/10.1145/963770.963775.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.2423
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.2423
http://dx.doi.org/10.1007/s10994-008-5064-8
http://dx.doi.org/10.1007/s10994-008-5064-8
http://dx.doi.org/http://doi.acm.org/10.1145/1152154.1152174
http://dx.doi.org/http://doi.acm.org/10.1145/1152154.1152174
http://doi.acm.org/10.1145/1152154.1152174
http://doi.acm.org/10.1145/1152154.1152174
http://dx.doi.org/10.1145/963770.963775
http://dx.doi.org/10.1145/963770.963775
http://dx.doi.org/10.1145/963770.963775

98 BIBLIOGRAPHY

Huang, Z., D. Zeng, and H. Chen (2007). “A Comparison of Collaborative-
Filtering Recommendation Algorithms for E-commerce”. In: Intelligent
Systems, IEEE 22.5, pp. 68–78. doi: 10.1109/MIS.2007.4338497. url:
http://dx.doi.org/10.1109/MIS.2007.4338497.

Huang, Z., W. Chung, T.-H. Ong, and H. Chen (2002). “A graph-based
recommender system for digital library”. In: JCDL ’02: Proceedings of the
2nd ACM/IEEE-CS joint conference on Digital libraries. Portland, Oregon,
USA: ACM, pp. 65–73. isbn: 1-58113-513-0. doi: http://doi.acm.org/10.
1145/544220.544231.

Ipek, E., S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caruana (Oct. 2006).
“Efficiently Exploring Architectural Design Spaces via Predictive Modeling”.
In: Proceedings of the Twelfth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pp. 195–206.

Jensen, D., J. Neville, and B. Gallagher (2004). “Why collective inference
improves relational classification”. In: 10th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining, pp. 593–598.

Jensen, D. and J. Neville (2002). “Linkage and Autocorrelation Cause Feature
Selection Bias in Relational Learning”. In: ICML. Ed. by C. Sammut and
A. G. Hoffmann. Morgan Kaufmann, pp. 259–266. isbn: 1-55860-873-7.

Joseph, P. J., K. Vaswani, and M. J. Thazhuthaveetil (Dec. 2006a). “A Predictive
Performance Model for Superscalar Processors”. In: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 161–170.

— (Feb. 2006b). “Construction and Use of Linear Regression Models for
Processor Performance Analysis”. In: Proceedings of the 12th International
Symposium on High-Performance Computer Architecture (HPCA), pp. 99–
108.

Kampichler, C., S. Džeroski, and R. Wieland (2000). “The application of machine
learning techniques to the analysis of soil ecological data bases: Relationships
between habitat features and Collembola community characteristics”. In:
Soil. Biol. Biochem. 32, pp. 197–209.

Kumar, R., K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen (Dec.
2003). “Single-ISA Heterogeneous Multi-Core Architectures: The Potential
for Processor Power Reduction”. In: Proceedings of the ACM/IEEE Annual
International Symposium on Microarchitecture (MICRO), pp. 81–92.

Lavrač, N. and S. Džeroski (1994). Inductive Logic Programming: Techniques
and Applications. Ellis Horwood, New York.

Lee, B. and D. Brooks (Oct. 2006). “Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction”. In:

http://dx.doi.org/10.1109/MIS.2007.4338497
http://dx.doi.org/10.1109/MIS.2007.4338497
http://dx.doi.org/http://doi.acm.org/10.1145/544220.544231
http://dx.doi.org/http://doi.acm.org/10.1145/544220.544231

BIBLIOGRAPHY 99

Proceedings of the Twelfth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pp. 185–194.

Lee, B., D. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A. McKee
(Mar. 2007). “Methods of Inference and Learning for Performance Modeling
of Parallel Applications”. In: Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP),
pp. 249–258.

Lee, D. D. and H. S. Seung (2000). “Algorithms for Non-negative Matrix
Factorization”. In: NIPS, pp. 556–562.

Miyahara, K. and M. J. Pazzani (2000). “Collaborative Filtering with the Simple
Bayesian Classifier”. In: In: Proceedings of the 6th Pacific Rim International
Conference on Artificial Intelligence, pp. 679–689.

Nanopoulos, A. (2007). “Collaborative Filtering Based on Transitive Correlations
Between Items”. In: Advances in Information Retrieval.

Papagelis, M., D. Plexousakis, and T. Kutsuras (2005). “Alleviating the sparsity
problem of collaborative filtering using trust inferences”. In: iTrust. Ed. by
P. Herrmann. Springer-Verlag Berlin Heidelberg, pp. 224–239.

Phansalkar, A., A. Joshi, L. Eeckhout, and L. K. John (Mar. 2005). “Measuring
Program Similarity: Experiments with SPEC CPU Benchmark Suites”. In:
Proceedings of the 2005 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 10–20.

Piccart, B., J. Struyf, and H. Blockeel (2008a). “Empirical Asymmetric Selective
Transfer in Multi-objective Decision Trees”. In: Discovery Science. Ed. by
J.-F. Boulicaut, M. R. Berthold, and T. Horváth. Vol. 5255. Lecture Notes
in Computer Science. Springer, pp. 64–75. isbn: 978-3-540-88410-1.

Piccart, B., H. Blockeel, and J. Struyf (Apr. 2010). “Alleviating the sparsity
problem in collaborative filtering by using an adapted distance and a graph-
based method”. In: Proceedings of the Tenth SIAM International Conference
on Data Mining, SIAM, pp. 189–199. url: https://lirias.kuleuven.be/
handle/123456789/297418.

Piccart, B., J. Struyf, and H. Blockeel (May 2008b). “Selective inductive
transfer”. Benelearn’08: : The Annual Belgian-Dutch Machine Learning
Conference, Spa, Belgium, 19-20 May 2008. url: https://lirias.kuleuv
en.be/handle/123456789/202004.

Piccart, B., H. Blockeel, H. Rhamani, and F. Daan (2010). “Three complemen-
tary approaches to context aware movie recommendation”. In: Proceedings of
the Workshop on Context-Aware Movie Recommendation. Barcelona, Spain,
pp. 57–60.

Piccart, B., A. Georges, H. Blockeel, and L. Eeckhout (2011). “Rank-
ing commercial machines through data transposition”. In: Proceedings

https://lirias.kuleuven.be/handle/123456789/297418
https://lirias.kuleuven.be/handle/123456789/297418
https://lirias.kuleuven.be/handle/123456789/202004
https://lirias.kuleuven.be/handle/123456789/202004

100 BIBLIOGRAPHY

of the IEEE International Symposium on Workload Characterization
(IISWC), pp. 3–14. doi: 10.1109/IISWC.2011.6114192. url: https:
//lirias.kuleuven.be/handle/123456789/332638.

Piccart, B., H. Blockeel, A. Georges, and L. Eeckhout (2012). “Predic-
tive learning in two-way datasets”. In: Latest Advances in Inductive
Logic Programming, Accepted. Imperial College Press. url: https :
//lirias.kuleuven.be/handle/123456789/332636.

Radcliffe, N. and P. D. Surry (1995). “Fundamental Limitations on Search
Algorithms: Evolutionary Computing in Perspective”. In: LECTURE NOTES
IN COMPUTER SCIENCE 1000. Springer-Verlag, pp. 275–291.

Read, J., B. Pfahringer, G. Holmes, and E. Frank (2009). “Classifier Chains for
Multi-label Classification”. In: ECML/PKDD (2), pp. 254–269.

Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl (1994).
“GroupLens: An Open Architecture for Collaborative Filtering of Netnews”.
In: ACM Press, pp. 175–186.

Saavedra, R. H. and A. J. Smith (Nov. 1996). “Analysis of Benchmark Charac-
teristics and Benchmark Performance Prediction”. In: ACM Transactions
on Computer Systems 14.4, pp. 344–384.

Sain, S. and P. Carmack (2001). “A MIXTURE APPROACH FOR MULTI-
VARIATE REGRESSION TREES”. In: Proceedings of the Annual Meeting
of the American Statistical Association.

Sarwar, B. M., G. Karypis, J. A. Konstan, and J. T. Riedl (2000). “Application
of Dimensionality Reduction in Recommender System - A Case Study”. In:
In ACM WebKDD Workshop.

Schein, A. I., A. Popescul, L. H., R. Popescul, L. H. Ungar, and D. M. Pennock
(2002a). “Methods and Metrics for Cold-Start Recommendations”. In: In
Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM Press, pp. 253–
260.

Schein, A. I., A. Popescul, L. H. Ungar, and D. M. Pennock (2002b). “Methods
and metrics for cold-start recommendations”. In: SIGIR ’02: Proceedings
of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval. Tampere, Finland: ACM, pp. 253–260.
isbn: 1-58113-561-0. doi: http://doi.acm.org/10.1145/564376.564421.

Silver, D. and R. Mercer (1996). “The parallel transfer of task knowledge using
dynamic learning rates based on a measure of relatedness”. In: Connect. Sci.
8.2, pp. 277–294.

Silver, D. L. and R. E. Mercer (2001). “Selective Functional Transfer: Inductive
Bias from Related Tasks”. In: IASTED Int’l Conf. on Artificial Intelligence
and Soft Computing, pp. 182–189.

http://dx.doi.org/10.1109/IISWC.2011.6114192
https://lirias.kuleuven.be/handle/123456789/332638
https://lirias.kuleuven.be/handle/123456789/332638
https://lirias.kuleuven.be/handle/123456789/332636
https://lirias.kuleuven.be/handle/123456789/332636
http://dx.doi.org/http://doi.acm.org/10.1145/564376.564421

BIBLIOGRAPHY 101

Srebro, N., J. D. M. Rennie, and T. S. Jaakkola (2005). “Maximum-margin
matrix factorization”. In: Advances in Neural Information Processing Systems
17, pp. 1329–1336. url: http://citeseerx.ist.psu.edu/viewdoc/summa
ry?doi=10.1.1.59.118.

Struyf, J. and S. Džeroski (2006). “Constraint based induction of multi-objective
regression trees”. In: Knowledge Discovery in Inductive Databases, 4th Int’l
Workshop, Revised, Selected and Invited Papers, pp. 222–233.

Su, X. and T. M. Khoshgoftaar (2006). “Collaborative Filtering for Multi-class
Data Using Belief Nets Algorithms”. In: ICTAI ’06: Proceedings of the
18th IEEE International Conference on Tools with Artificial Intelligence.
Washington, DC, USA: IEEE Computer Society, pp. 497–504. isbn: 0-7695-
2728-0. doi: http://dx.doi.org/10.1109/ICTAI.2006.41.

Suzuki, E., M. Gotoh, and Y. Choki (2001). “Bloomy Decision Tree for Multi-
objective Classification”. In: Principles of Data Mining and Knowledge
Discovery. Ed. by L. De Raedt and A. Siebes. Vol. 2168. Lecture Notes in
Computer Science. 10.1007/3-540-44794-636. Springer Berlin / Heidelberg,
pp. 436–447. isbn: 978-3-540-42534-2. url: http://dx.doi.org/10.1007/
3-540-44794-6_36.

Teodorescu, R. and J. Torrellas (June 2008). “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors”. In: Proceed-
ings of the International Symposium on Computer Architecture (ISCA),
pp. 363–374.

Thrun, S. and J. O’Sullivan (1996). “Discovering structure in multiple learning
tasks: The TC algorithm”. In: 13th Int’l Conf. on Machine Learning, pp. 489–
497.

Torgo, L. (1998). “Error estimators for pruning regression trees”. In: 10th
European Conf. on Machine Learning, pp. 125–130.

Trafalis, T. B. and O. Oladunni (2005). “Pairwise multi-classification support
vector machines: quadratic programming (QP-PAMSVM) formulations”. In:
Proceedings of the 6th WSEAS international conference on Neural networks.
World Scientific, Engineering Academy, and Society (WSEAS), pp. 205–210.
isbn: 960-8457-24-6.

Tsochantaridis, I., T. Joachims, T. Hofmann, and Y. Altun (2005). “Large
Margin Methods for Structured and Interdependent Output Variables”. In:
Journal of Machine Learning Research 6, pp. 1453–1484.

Tsoumakas, G., I. Katakis, and I. P. Vlahavas (2010). “Mining Multi-label Data”.
In: Data Mining and Knowledge Discovery Handbook. Ed. by O. Maimon
and L. Rokach. Springer, pp. 667–685. isbn: 978-0-387-09822-7.

Vens, C., J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel (Nov. 2008).
“Decision trees for hierarchical multi-label classification”. In: Mach. Learn.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.118
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.118
http://dx.doi.org/http://dx.doi.org/10.1109/ICTAI.2006.41
http://dx.doi.org/10.1007/3-540-44794-6_36
http://dx.doi.org/10.1007/3-540-44794-6_36

102 BIBLIOGRAPHY

73.2, pp. 185–214. issn: 0885-6125. doi: 10.1007/s10994-008-5077-3.
url: http://dx.doi.org/10.1007/s10994-008-5077-3.

Wicker, J., B. Pfahringer, and S. Kramer (2012). “Multi-label classification
using boolean matrix decomposition”. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing. SAC ’12. Trento, Italy: ACM,
pp. 179–186. isbn: 978-1-4503-0857-1. doi: 10.1145/2245276.2245311.
url: http://doi.acm.org/10.1145/2245276.2245311.

Yi, J. J., D. J. Lilja, and D. M. Hawkins (Feb. 2003). “A Statistically Rigorous
Approach for Improving Simulation Methodology”. In: Proceedings of the
Ninth International Symposium on High Performance Computer Architecture
(HPCA), pp. 281–291.

Zhang, S., W. Wang, J. Ford, and F. Makedon (2006). “Learning from Incomplete
Ratings Using Non-negative Matrix Factorization”. In: SDM.

http://dx.doi.org/10.1007/s10994-008-5077-3
http://dx.doi.org/10.1007/s10994-008-5077-3
http://dx.doi.org/10.1145/2245276.2245311
http://doi.acm.org/10.1145/2245276.2245311

Biography

Beau Piccart was born in Hasselt, Belgium, in 1983. As a little child already,
he showed great interest in technology. Clocks, radios and power plugs alike,
needed unscrewing to reveal their mystery, causing occasional distress to his
caretakers. However, this at first slightly destructive interest in exploring the
mechanics of machinery would later on prove to be particularly useful. Around
the age of twelve, a new ‘toy’ became available: the personal computer. Soon
enough, Beau was building his own PCs, he learnt the ways of the internet
and evolved into an adequate web-developer. At the age of just fifteen, he
received his first assignment as a professional web-developer. Aged seventeen,
he was invited to develop the website of local television station TV Limburg.
He continued working as a web-developer throughout high school. As a logical
next step, he decided to study Computer Science at the renowned University
of Leuven. He wrote his Master thesis in computer graphics on an interactive
BRDF-modeller and graduated cum laude. Beau then ambitioned a Ph.D. in
Engineering in Computer Science. This dissertation, on algorithms for Multi-
Task Learning, is presented in partial fulfilment of the requirements to obtain
that Ph.D. To date, Beau has published and presented at numerous conferences,
including: the International Conference on Inductive Logic Programming, the
IEEE International Symposium on Workload Characterization, the SIAM
International Conference on Data Mining and the International conference
on Discovery Science.

103

Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering

Department of Computer Science
Declarative Languages and Artificial Intelligence

Celestijnenlaan 200A box 2402
B-3001 Heverlee

	Abstract
	Contents
	Introduction
	Multi-target models
	Multi-target models
	Definition
	Multi-Target Decision Trees
	Neural Networks
	Kernel Methods
	Nearest Neighbor
	Multi-Label classification

	Inductive transfer in multi-target models
	The accuracy of multi-target models
	Problem Setting
	The Transfer Matrix

	Selective Inductive Transfer
	Experimental Evaluation
	Data Sets
	Experimental Procedure
	Results & Discussion

	Conclusions

	Collaborative Filtering
	Introduction
	Collaborative Filtering as a multi-target problem
	Related Work
	Distance Measures and Representation
	Distance Measures
	Probabilistic Representation

	Probabilistic Graph-based collaborative filtering
	The User Graph
	Nearest Neighbor Graph Completion
	PGCF

	Experimental results
	Distance Measure Evaluation
	Performance of PGBCF
	Robustness Against Cold Start Problem

	Context-Aware Recommendation
	Evaluation

	Conclusions and Further Work

	Learning in two-way datasets
	Introduction
	Two-way learning
	Bare two-way learning
	Single-decorated two-way learning
	Double-decorated two-way learning
	Relational learning with deterministic background knowledge

	Different types of predictive learning
	The effects of transposition
	What are examples, what are attributes?
	Multi-target prediction and inductive transfer
	Transposition switches single-target and multi-target
	Summary

	Applications
	Microprocessor-data
	Ecological data

	Conclusions

	Application: Processor Performance Prediction
	Introduction
	Prior Work
	Data Transposition
	Data set and definitions
	Models for performance prediction

	Potential Applications
	Experimental Setup
	Benchmarks and platforms

	Evaluation
	Metrics
	Predicting another processor family
	Predicting future machines
	Limited number of predictive machines
	Selecting predictive machines

	Other Related Work
	Empirical performance modeling
	Program similarity

	Conclusion

	Conclusion
	Bibliography
	Biography

