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Abstract

Evaluation of predictive models is a ubiq-
uitous task in machine learning and data
mining. Cross-validation is often used as
a means for evaluating models. There
appears to be some confusion among re-
searchers, however, about best practices for
cross-validation, and about the interpreta-
tion of cross-validation results. In particular,
repeated cross-validation is often advocated,
and so is the reporting of standard devia-
tions, confidence intervals, or an indication of
”significance”. In this paper, we argue that,
under many practical circumstances, when
the goal of the experiments is to see how well
the model returned by a learner will perform
in practice in a particular domain, repeated
cross-validation is not useful, and the report-
ing of confidence intervals or significance is
misleading. Our arguments are supported by
experimental results.

1. Introduction

Evaluation of predictive models is a ubiquitous task
in machine learning and data mining. The task is
not as trivial as it may seem. It is generally known
that, to get an unbiased estimate of the accuracy of
a model learned via machine learning, one should test
the model on unseen data, not on the training set. In
some cases, the population accuracy can be estimated
from the training error using mathematical formulas.
For instance, in linear regression, no separate test set
is needed to estimate the error of the model: This error
can be estimated accurately from the training data, us-
ing the concept of “degrees of freedom” to transform a
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training error into an unbiased estimate for the popula-
tion error. For many advanced data analysis methods,
however, one can not mathematically derive an unbi-
ased estimate of population accuracy from training set
accuracy, and more empirical methods are needed.

A basic approach is to use hold-out sampling which
splits the available data set into a training set to learn
a model, and a test set to estimate the accuracy of
this model on. This requires that the training and test
sets are disjoint, and that the training set is no more
representative for this test set than for the population
as a whole.

Often, when a limited set of data is available, one
wants to learn a model from the whole data set, in
order to maximally exploit the available information.
Unfortunately, that leaves no unseen data to evaluate
the accuracy of the model. In this case, an often used
procedure is to learn a model f̂ from the whole data
set, and estimate the population accuracy of f̂ by us-
ing a resampling technique, such as cross-validation.
Like any estimator, cross-validation has some bias and
variance. The non-zero bias has been pointed out be-
fore by, for example, Hastie et al. (2011). Because
its variance is known to be relatively high, it is often
advocated to repeat the cross-validation a number of
times and average out the results, or to add confidence
intervals that indicate how accurate the estimates are.

There are obvious statistical problems with estimates
based on repeated subsampling of one data set, and
for this reason, one may doubt whether repeated cross-
validation is all that useful. In this paper, we investi-
gate this question. We start with clearly defining some
concepts and terminology, showing that several types
of experimental questions need to be distinguished,
and results of cross-validation need to be interpreted
carefully. Next, we show experimentally that for the
questions that are most important in practice, it is not
useful to conduct repeated cross-validation.
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2. Cross-validation based estimates

Consider the following problem. We have a data set
S from some domain D. S is typically assumed to be
a random sample drawn from a population P . The
data consists of a set of predictor variables X which
are in relation to a target variable Y as Y = f(X).
We also have a learner L, which, given a data set S,
returns a model f̂(X). The loss function l(Y, f̂(X))

measures how well f̂ approximates f and is a measure
of the accuracy of L. We use the one-zero loss func-
tion which equals 0 if for a given x, f̂(x) equals the real
value f(x), and which equals 1 otherwise. We can now

consider several questions about L or f̂(X). Focusing
on accuracy as the most important performance mea-
sure, we may be interested in estimating the following
population parameters:

• α1 = E[l(Y, f̂(X))]: the mean accuracy of f̂(X)
on P , taken over all data sets S′ of the same size
as S

• α2 = E[l(Y, f̂(X)|S]: the accuracy of f̂(X) on P
for a fixed sample S

α1 is computed by computing the mean accuracy over
all models f̂(X) that can be learned from data sets
S′ of the same size as S. For α2 on the other hand,
f̂(X) is a fixed model determined by the chosen S.
α1 is known as the unconditional prediction error, and
indicates to some extent how well learner L is suited for
this problem domain. α2 is known as the conditional
prediction error, and it indicates how well the specific
model obtained by running L on the available data
can be expected to perform. When it is the intention
to deploy the model learned from S in practice, α2 is
the most relevant parameter. Therefore, we focus on
estimating α2.

As said, cross-validation is often used to estimate
the performance of learners or models. k-fold cross-
validation works as follows. The available data S is
divided into k equally sized subsections Si, also called
folds. For each fold, a training set Ti is defined as S\Si,
from which a model Mi is learned. Next, the accuracy
of this model is computed on Si, and finally the mean
of all these accuracies is returned as an estimate Â.

Â is usually interpreted as an estimate of the predictive
accuracy of the model f̂(X) learned from the whole
data set S. This estimate is pessimistically biased, be-
cause it really estimates the average accuracy of mod-
els learned from a subset of (k−1)/k ·100% of the data,
which is likely to be slightly less good than the accu-
racy of the more informed model that is learned from

the whole data set. This type of bias can be min-
imized by performing leave-one-out cross-validation,
which sets k to the number of instances in the data
set.

In addition to bias, the results of a k-fold cross-
validation also have high variance. If we run two dif-
ferent tenfold cross-validations for the same learner
on the same data set S, but with a different ran-
dom partitioning of S into subsets Si, these two cross-
validations can give quite different results. An esti-
mate with smaller variance can be obtained by repeat-
ing the cross-validation several times, with different
partitionings, and taking the average of the results ob-
tained during each cross-validation.

Repeated cross-validation is often advocated, using as
an argument the high variance of the result of a single
cross-validation. However, while this procedure indeed
reduces the variance of the estimates, it does not re-
move the bias. We now try to make this more precise.

We introduce the following notation:

• Â: the result returned by a single k-fold cross-
validation

• Ck: the population of all possible k-fold cross-
validations over this particular data set S.

• µk: the mean of Â taken over all possible k-fold
cross-validations over S (i.e., taken over Ck)

• α3: the mean accuracy of L(S′) on P , taken over
all S′ of size (k − 1)/k|S|

Repeated cross-validation boils down to repeatedly
drawing an element from Ck, say n times, and com-
puting the average of all these results. It is clear that
this average, Ā =

∑n
i=1 Âi/n, approximates µk as n

goes to infinity: E(Ā) = µk and Var(Ā) = σ2
k/n with

σ2
k the variance of Â taken over Ck.

Consequently, repeated cross-validation allows us to
accurately estimate µk, the mean of all possible k-fold
cross-validations over the given data set S. However,
the parameter we are really interested in is α2. It is
unclear whether µk is a good estimator for α2 and if it
is not, whether this is because of bias or large variance.

One could argue that the estimator is biased due to
the fact that Ā reflects the accuracy of models learned
from only a proportion (k − 1)/k of the data. It es-
timates the accuracy of models learned using slightly
less data than available in S. But this is perhaps only
part of the truth: α3 is the mean accuracy of models
learned from equally few data, and it would be inter-
esting to investigate whether, for a particular S, µk is
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equal to α3 (though there is no prior reason to believe
it is higher or lower).

Thus, given a data set S, Ā asymptotically approxi-
mates µk, but not necessarily α1, α2 or α3. It is un-
certain whether it approximates any of the parameters
we may be interested in, even the α3 parameter that
explicitly takes into account the differences in size of
the training sets for the individual models.

Confidence intervals around Ā are sometimes con-
structed. When using the standard formula for con-
fidence intervals, they are constructed so that they
contain µk with a certain confidence, not any other
parameter. It would be erroneous to interpret confi-
dence intervals, based on repeated cross-validation, as
“almost certainly containing α2” (or any of the other
parameters one might be interested in).

The conclusion is that statistical inference can easily
be done for µk, but µk itself is of little interest; on the
other hand, for the parameters we are interested in, the
αi, there is no guarantee that they will be estimated
with higher precision as the number of cross-validation
repetitions increases.

3. Related work

Several authors have discussed the experimental eval-
uation of learners, comparative or otherwise. We focus
on those contributions that are most relevant for this
work.

The fact that cross-validation based estimators have
high variance and non-zero bias has been pointed out
several times. Kohavi (1995) considers the goal of
selecting the best learner among a set of possible
learners, and, in this context, experimentally com-
pares bootstrapping and cross-validation for varying
numbers of folds. He studies the bias and variance
of these methods, shows that k-fold cross-validation
has smaller bias but higher variance as k increases,
and concludes that, from the point of view of select-
ing the most suitable learner, stratified tenfold cross-
validation is overall the best method, even when it is
computationally possible to use more folds. He sug-
gests that repeated stratified tenfold cross-validation
may work even better, as it is likely to reduce vari-
ance, but he does not experiment with this.

Braga-Neto and Dougherty (2004) investigate cross-
validation for estimating α2 in the context of small-
sample microarray classification. They provide a
formal definition of the bias and variance of cross-
validation estimates by looking at the deviation dis-
tribution of α2 − Â for a certain data distribution. A

k-fold cross-validation estimator is unbiased if µk,=
E[α2 − Â] = 0. A large spread of the variance
Var [α2 − Â] of the deviation distribution indicates a
large variance of the estimator. Bias and variance are

combined in the root-mean-square error

√
E[α2 − Â]

of the distribution. The focus of the paper lies on an
investigation of the variance of cross-validation. The
conclusion is that cross-validation estimators typically
have high variance for small samples, which makes
their use problematic for analysis on small microarray
samples.

Hastie et al. (2011) also discuss the bias and variance
of cross-validation, and the fallacies when using it for
estimating model accuracy. They draw attention to
the fact that dependencies are often unknowingly in-
troduced between the training and the test set by first
using test points to design the learner, and performing
cross-validation afterwards. This leads to an overly
optimistic accuracy estimate. The authors also empir-
ically investigate that cross-validation typically results
in a good estimate for α1, but it does not for α2.

Schaffer (1993) specifically views cross-validation as a
meta-learning technique that allows us to choose which
among a given set of learners is likely to give the best
predictive model. He concludes that cross-validation
selects the best learner in most cases. However, similar
to any other learning technique, performance depends
on the setting the learner is used in.

Dietterich (1998), in a very influential paper, showed
that comparing learners on the basis of repeated re-
sampling of the same data set can lead to very high
Type-I errors. This result is quite generally known,
and the paired t-test methods discussed in that pa-
per are generally considered discredited. Still, based
on current practice in cross-validation, it would seem
that the underlying reasons for this result are less gen-
erally understood, since the construction of confidence
intervals on the basis of repeated cross-validation can
be expected to suffer from similar problems.

Repeated cross-validation is used quite frequently in
the literature. Also, in the experience of the authors,
reviewers sometimes insist that cross-validation ex-
periments be based on repeated cross-validation, that
confidence intervals are shown, or that it is indicated
which of the cross–validation results are “significantly
better” than previously published results. In the light
of the above work, it would seem obvious that such
information, at best, is not very informative, needs
careful interpretation by the reader, and is prone to
misinterpretation.

Since Dietterich’s paper, there has been a series of re-
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Table 1. Overview of the data sets and their properties.

data set instances attributes classes
adult 48842 15 2
kropt 28056 7 18
letter 20000 17 26

krvskp 3196 37 2
mushroom 8124 23 2

nursery 12960 9 5
optdigits 5620 65 10

pageblocks 5473 11 5
pendigits 9737 17 10

sults where people propose more advanced methods for
comparing learners (Alpaydin, 1999; Bouckaert, 2003;
Demsar, 2006). While these methods are carefully de-
signed, and are shown to improve upon previous meth-
ods in a number of ways, they suffer from the same risk
as previous methods, namely that, the more complex
a method is, the higher the risk that researchers will
use it incorrectly, or interpret the result incorrectly.

4. Experiments

In order to test how accurate cross-validation based es-
timates are, we compare these estimates with the ‘real’
population accuracy α2 of the model learned from the
whole data set. To this purpose, we set up experiments
as follows. We take a large data set D from an exist-
ing data repository; D will serve as our population P .
Next, we create a data set S by randomly sampling
n elements from D. We now act as if the learner has
only the data set S available. Nevertheless, because
we know the population P , we can evaluate any model
learned from S on the population.

Two learners, C4.5, and Naive Bayes, are applied
on the nine data sets shown in Table 1, which were
selected from the UCI repository (Frank & Asun-
cion, 2010). We perform two experiments, with the
size of S equal to 200 instances, and 1000 instances.
An accuracy estimate Â is computed by performing
tenfold cross-validation, 10× repeated tenfold cross-
validation, and 30× repeated tenfold cross-validation.
We also construct a 95% confidence interval CI around
Â and investigate whether CI is a good interval esti-
mate of α2 by examining whether α2 ∈ CI.

Tables 2 and 3 show the results of these experiments.
The symbol + indicates that α2 is larger than the up-
per bound of CI, while − indicates it is smaller than
the lower bound of CI.

As can be seen from both tables, the length of the
confidence interval decreases with the number of repe-

titions of cross-validation. However, this does not im-
ply Â converges to α2. On the contrary, while most of
the confidence intervals for Â contain α2 when using
a single cross-validation, most of them do not when
using repeated cross-validation. In fact, the number
of intervals containing α2 decreases with the number
of repetitions. As mentioned before, repeated cross-
validation improves the estimate of µk and this result
demonstrates that µk is not necessarily close to α2.

Another observation is that in most cases where α2 /∈
CI, α2 lies to the right of CI. This shows that there is
a pessimistic bias, which is consistent with our expec-
tations (as cross-validation models are learned from a
subset of the data, they tend to be less accurate). It
also shows that, for repeated cross-validation, this bias
is often larger than half the width of the confidence in-
terval; for a single cross-validation this is typically not
the case.

One might argue that this problem can be avoided by
giving the confidence intervals the same width as those
constructed from a single cross-validation. In this case,
one would expect the confidence intervals to contain α2

about as frequently as when a single cross-validation
is used, or even slightly more frequently, if the point
estimates obtained are closer to α2. However, when
inspecting the tables, we see that this is certainly not
always, and often only marginally, the case.

Lastly, we look at the influence of the sample size on
the estimates. The slope of a learning curve is typ-
ically high around small training set sizes, and de-
creases with an increasing training set size. As a result,
the pessimistic bias caused by not using all the avail-
able data should be large for small sample sizes and
decreases with increasing sample size. Table 4 con-
firms this by showing that the difference between Â
and α2 is in most cases smaller for a sample size of
1000. However, a comparison of Table 2 and Table 3
shows that increasing the size of S from 200 instances
to 1000 instances does not substantially increase the
number of correct confidence intervals.

5. Conclusions

Repeated cross-validation is often advocated for the
evaluation of models in machine learning, the argu-
ment being that cross-validation estimates have high
variance, which can be reduced by using the mean of
multiple cross-validations as an estimate. In this pa-
per, we have argued that, due to the fact that the same
data set is continuously resampled in cross-validation,
this mean converges to another value than any of the
values one might really be interested in estimating.
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Table 2. The accuracy results for C4.5 and Naive Bayes (N.B.) with the sample size of S equal to 200 instances, computed
on different data sets by tenfold cross-validation, 10× repeated tenfold cross-validation, and 30× repeated tenfold cross-
validation. The last column shows the population accuracy α2 computed on D \ S.

C4.5 cross-validation 10×cross-validation 30×cross-validation Pop.

data set Â (%) 95% CI Â (%) 95% CI Â (%) 95% CI α2 (%)
adult 72.0 (65.78, 78.22) 71.85 (69.88, 73.82) + 72.13 (71.0, 73.27) + 76.08
kropt 18.0 (12.68, 23.32) 17.4 (15.74, 19.06) 17.57 (16.6, 18.53) 16.68
letter 38.5 (31.76, 45.24) 39.7 (37.56, 41.84) + 39.12 (37.88, 40.35) + 44.81

krvskp 97.0 (94.64, 99.36) - 96.9 (96.14, 97.66) - 96.68 (96.23, 97.14) - 93.93
mushroom 97.0 (94.64, 99.36) 97.0 (96.25, 97.75) + 96.78 (96.34, 97.23) + 98.56

nursery 85.0 (80.05, 89.95) 84.8 (83.23, 86.37) - 84.75 (83.84, 85.66) - 83.06
optdigits 63.5 (56.83, 70.17) + 68.3 (66.26, 70.34) + 68.47 (67.29, 69.64) + 75.59

pageblocks 92.0 (88.24, 95.76) 92.25 (91.08, 93.42) 92.18 (91.5, 92.86) + 92.89
pendigits 73.5 (67.38, 79.62) 74.75 (72.85, 76.65) + 74.58 (73.48, 75.69) + 76.87

N.B. cross-validation 10×cross-validation 30×cross-validation Pop.

data set Â (%) 95% CI Â (%) 95% CI Â (%) 95% CI α2 (%)
adult 78.0 (72.26, 83.74) + 79.0 (77.21, 80.79) + 79.1 (78.07, 80.13) + 84.06
kropt 24.0 (18.08, 29.92) 23.7 (21.84, 25.56) 23.37 (22.3, 24.44) 23.83
letter 42.5 (35.65, 49.35) 44.0 (41.82, 46.18) + 44.58 (43.33, 45.84) + 47.28

krvskp 92.5 (88.85, 96.15) - 90.9 (89.64, 92.16) - 90.53 (89.79, 91.27) - 85.58
mushroom 90.5 (86.44, 94.56) 90.15 (88.84, 91.46) 90.12 (89.36, 90.87) + 91.12

nursery 83.5 (78.36, 88.64) 83.35 (81.72, 84.98) + 82.97 (82.02, 83.92) + 87.08
optdigits 84.0 (78.92, 89.08) 85.5 (83.96, 87.04) 85.13 (84.23, 86.03) + 86.53

pageblocks 90.5 (86.44, 94.56) 89.1 (87.73, 90.47) + 89.62 (88.84, 90.39) + 92.98
pendigits 81.5 (76.12, 86.88) 81.25 (79.54, 82.96) + 81.32 (80.33, 82.3) + 83.8

Table 3. The accuracy results with the sample size of S equal to 1000 instances.

C4.5 cross-validation 10×cross-validation 30×cross-validation Pop.

data set Â (%) 95% CI Â (%) 95% CI Â (%) 95% CI α2 (%)
adult 80.7 (78.25, 83.15) 80.52 (79.74, 81.3) + 80.41 (79.96, 80.86) + 82.3
kropt 27.5 (24.73, 30.27) + 26.68 (25.81, 27.55) + 26.46 (25.96, 26.96) + 30.53
letter 63.3 (60.31, 66.29) 61.85 (60.9, 62.8) 61.7 (61.15, 62.25) 61.44

krvskp 97.6 (96.65, 98.55) 97.82 (97.53, 98.1) - 97.83 (97.66, 97.99) - 97.41
mushroom 98.7 (98.0, 99.4) 99.01 (98.82, 99.2) 98.96 (98.85, 99.07) 99.07

nursery 88.09 (86.08, 90.09) + 87.54 (86.89, 88.19) + 87.51 (87.13, 87.88) + 91.21
optdigits 83.6 (81.31, 85.89) 83.3 (82.57, 84.03) - 83.53 (83.11, 83.95) - 82.42

pageblocks 95.9 (94.67, 97.13) 96.08 (95.7, 96.46) 95.9 (95.68, 96.12) 95.98
pendigits 86.6 (84.49, 88.71) 87.6 (86.95, 88.25) 87.65 (87.28, 88.03) 87.41

N.B. cross-validation 10×cross-validation 30×cross-validation Pop.

data set Â (%) 95% CI Â (%) 95% CI Â (%) 95% CI α2 (%)
adult 82.4 (80.04, 84.76) 82.48 (81.73, 83.23) + 82.48 (82.05, 82.91) + 83.55
kropt 28.1 (25.31, 30.89) 27.67 (26.79, 28.55) + 27.77 (27.26, 28.28) + 29.3
letter 59.8 (56.76, 62.84) 58.98 (58.02, 59.94) 59.1 (58.55, 59.66) - 58.5

krvskp 86.58 (84.47, 88.69) 86.69 (86.02, 87.35) + 86.9 (86.52, 87.28) + 87.8
mushroom 94.1 (92.64, 95.56) 94.02 (93.56, 94.48) 94.02 (93.75, 94.29) 94.02

nursery 88.48 (86.5, 90.46) + 88.65 (88.03, 89.27) + 88.75 (88.39, 89.11) + 90.67
optdigits 90.9 (89.12, 92.68) 90.46 (89.88, 91.04) - 90.59 (90.26, 90.92) - 89.48

pageblocks 93.29 (91.74, 94.85) 93.35 (92.87, 93.84) + 93.5 (93.22, 93.78) + 94.1
pendigits 87.3 (85.24, 89.36) 86.99 (86.33, 87.65) - 87.13 (86.75, 87.51) - 85.97
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Table 4. A comparison of the differences between Â and α2 for sample sizes 200 and 1000. The symbol ‘*’ indicates a
case where the difference is smallest for sample size 200.

C4.5
cross-validation 10×cross-validation 30×cross-validation

|Â− α2| (%) |Â− α2| (%) |Â− α2| (%)
|S| 200 1000 200 1000 200 1000

adult 4.08 1.08 4.23 0.41 3.95 1.91
kropt 1.32 3.02 * 0.72 3.81 * 0.89 1.66 *
letter 6.31 2.40 5.11 1.82 5.69 2.5

krvskp 3.07 1.18 2.97 0.9 2.75 1.35
mushroom 1.56 0.16 1.56 0.15 1.78 0.48

nursery 1.94 0.92 1.74 0.43 1.69 2.31 *
optdigits 12.09 0.42 7.29 0.55 7.12 0.45

pageblocks 0.89 0.58 0.64 0.85 * 0.71 0.28
pendigits 3.37 1.29 2.12 0.76 2.29 0.16

Naive Bayes
adult 6.06 0.84 5.06 0.99 4.96 0.96
kropt 0.17 1.25 * 5.06 1.21 0.46 2.98 *
letter 4.78 0.99 0.13 0.61 * 2.7 1.89

krvskp 6.92 0.80 3.28 0.42 4.95 0.3
mushroom 0.62 1.06 * 5.32 1.02 1 0.24

nursery 3.58 0.18 0.97 0.32 4.11 0.47
optdigits 2.53 0.67 3.73 0.06 1.4 0.76

pageblocks 2.48 2.27 1.03 2.02 * 3.36 12.03 *
pendigits 2.30 0.23 3.88 0.42 2.48 3.7 *

Repeated cross-validation should not be assumed to
give much more precise estimates of a model’s predic-
tive accuracy. The pessimistic bias due to the fact that
cross-validation models are learned from smaller data
sets (in the paper’s notation, α3 − α2), together with
the bias introduced by using a single data set (µk−α3),
can easily dominate the estimation error, which means
reducing the variance is, in many cases, not very use-
ful, and essentially a waste of computational resources.
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