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Abstract

1 This paper demonstrates the merits of loss reserving using detailed informa-

tion on the development of individual claims. Apart from few exceptions, the vast

literature on stochastic loss reserving is developed for data aggregated in run–off

triangles. However, a triangle is a summary of an underlying, more detailed, data

set. We refer to this data set at individual claim level as ‘micro–level’ data. A re-

alistic micro–level data set on liability claims from a European insurance company

is analyzed. We specify a stochastic model for each event in the development of

a claim: the time of occurrence of the claim, the delay between occurrence and

reporting of the claim to the insurance company, the occurrence of payments and

their size and the final settlement of the claim. We calibrate the resulting model

to historical data and use it to project the future development of open claims.

Through an out–of–sample prediction exercise we show that the micro–level ap-

proach provides the actuary with detailed and valuable reserve calculations. For

the case–study developed in this paper, the micro–level model outperforms the

results obtained using traditional loss reserving methods based on aggregate data.

Key words: loss reserving, general insurance, poisson process, recurrent events,

survival analysis, prediction.

∗University of Amsterdam and KU Leuven (Belgium), email: k.antonio@uva.nl. Katrien Antonio ac-
knowledges financial support from the Casualty Actuarial Society, Actuarial Foundation and the Com-
mittee on Knowledge Extension Research of the Society of Actuaries, and from NWO through a Veni
2009 grant.

†University of Amsterdam and Richard Plat Consultancy, email: rplatconsultancy@gmail.com
1The authors would like to thank Jan–Willem Vulto and Joris van Kempen for supplying and ex-

plaining the data. Please note that the original frequency and severity data have been transformed for
reasons of confidentiality.

1



1 Introduction

We develop a stochastic model for the run–off of general insurance (also called ‘non–

life’ or ‘property and casualty’) claims. Our paper demonstrates the merits of a loss

reserving model designed for the development of individual claims (as depicted on a

time line in Figure 1). This micro–level loss reserving model is a valuable alternative

for traditional loss reserving techniques using data aggregated in run-off triangles. We

motivate that our micro–level model is able to deal with many of the problems that

arise when analyzing data aggregated in triangles. Moreover, an out–of–sample pre-

diction exercise (see Section 6) shows that the predictive distributions obtained from

the micro-level model reflect reality more accurately than models based on run–off

triangles do.

Figure 1 illustrates the run–off (or development) process of a general insurance

claim. The structure in Figure 1 is generic for the kind of information that is available

and is labeled here as ‘micro–level’. A claim occurs at a certain point in time (t1),

consequently it is declared to the insurer (t2) (possibly after a period of delay) and one

or several payments follow until the settlement (or closing) of the claim. Depending

on the nature of the business and claim, the claim can re–open and payments follow

until the claim finally settles. At the present moment (say τ) the insurer has to set

reserves aside to fulfill his liabilities in the future. This actuarial exercise is known as

‘loss’ or ‘claims reserving’. General insurers distinguish between reserves for RBNS

and IBNR claims. ‘RBNS’ claims are claims that are Reported to the insurer But Not

Settled, whereas ‘IBNR’ claims Incurred But are Not Reported to the company. For

an RBNS claim occurrence and declaration take place before the present moment and

settlement occurs afterwards (i.e. τ ≥ t2 and τ < t6 (or τ < t9) in Figure 1). An

IBNR claim has occurred before the present moment, but its declaration and settlement

follow afterwards (i.e. τ ∈ [t1, t2) in Figure 1). The interval [t1, t2] represents the so–

called reporting delay. The interval [t2, t6] (or [t2, t9]) represents the settlement delay.

With the introduction of Solvency 2 and IFRS 4 Phase 2 insurers face major chal-

lenges. IFRS 4 Phase 2 will define a new accounting framework for insurance con-

tracts, based on the market value of liabilities. This framework requires the insurer

to measure its liabilities (for reserving) using ‘best estimates’ of the contractual cash

flows, discounted with current market discount rates. A margin is added to compen-

sate market participants for bearing risk. Under Solvency 2 the so–called Solvency

Capital Requirement (‘SCR’) will be risk–based, and market values of assets and lia-

bilities will be the basis for these calculations. Therefore, in light of the introduction

of these new guidelines, the measurement of future cash flows and their uncertainty

is gaining importance. The question naturally rises whether current techniques can be
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Figure 1: Development of a general insurance claim

t1 t2 t3 t4 t5 t6 t7 t8 t9

Occurrence

Notification

Loss payments

Closure

Re–opening

Payment

Closure

IBNR
RBNS

improved. Reserving for general insurance is nowadays based on data aggregated in

run–off triangles. A run–off triangle summarizes observable variables per arrival and

development year combination. The arrival year (‘AY’) or year of occurrence is the year

in which the accident takes place. For a claim from AY t the first development year is

year t itself, the second development year is t + 1 and so on. An example of a run–off

triangle is given in Table 3 and 4 below. An overview of techniques for loss reserving

based on triangles is given in England and Verrall (2002), Wüthrich and Merz (2008) or

Kaas et al. (2008).

England and Verrall (2002) and Taylor et al. (2008) question the use of aggregate

loss data. With aggregate data, lots of useful information about the claims develop-

ment process remain unused. Information from policy, policy holder or the past de-

velopment process is not taken into account, because each cell in the run–off triangle

is an aggregate figure. Quoting England and Verrall (2002) (page 507) “[. . . ] it has to

be borne in mind that traditional techniques were developed before the advent of desktop com-

puters, using methods which could be evaluated using pencil and paper. With the continuing

increase in computer power, it has to be questioned whether it would not be better to examine

individual claims rather than use aggregate data”. Many problems or issues may arise with

triangular data. Kunkler (2004) discusses the problem of zero or negative cells in the

triangle. Verdonck et al. (2009) put focus on robustness properties and the influence of

outliers on triangular methods. The number of observations in a run–off triangle is typ-

ically small, and for recent accident years only very few observations are available. In

that respect Wright (1990) and Renshaw (1994) discuss the over–parametrization of the

chain–ladder method, which is a well known method for analyzing data in triangles.

Bornhuetter and Ferguson (1972) discuss the instability in ultimate claims for recent

arrival years. The separate assessment of true IBNR and RBNS claims in a run–off tri-
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angle is not straightforward, see Schnieper (1991) and Liu and Verrall (2009). Neither is

the combination of different sources of information, like paid and incurred losses (i.e.

paid losses plus case estimates set by experts), see the different approaches presented

in Quarg and Mack (2008), Posthuma et al. (2008) and Merz and Wüthrich (2010). All

these references present useful adjustments to the chain-ladder method, but they have

not been applied simultaneously. The existence of this substantial literature illustrates

that a chain–ladder type analysis of aggregate data is not always adequately capturing

the complexities of stochastic reserving for general insurance.

A small stream of literature has emerged with focus on stochastic loss reserving at

individual claim level. Arjas (1989), Norberg (1993) and Norberg (1999) formulate a

mathematical framework for the development of individual claims. Using ideas from

martingale theory and point processes, these authors present a probabilistic, rather

than statistical, framework for individual claims reserving. Haastrup and Arjas (1996)

continue their work and present a detailed implementation of a micro–level stochastic

model for loss reserving. Their use of non–parametric Bayesian statistics complicates

the accessibility of their approach. Furthermore, their case study is based on a small

data set with fixed claim amounts. Recently, Larsen (2007) revisits the work of Norberg,

Haastrup and Arjas with a small case–study. Zhao et al. (2009) and Zhao and Zhou

(2010) present a model for individual claims development using (semi–parametric)

techniques from survival analysis and copula methods. However, a case study is lack-

ing in their work.

Our work is an extensive case–study developed in the probabilistic framework of

Norberg (1993) and Norberg (1999). We analyze a realistic data base from practice. We

motivate our distributional assumptions and derive predictive distributions for quan-

tities of interest. Finally, we check the performance of the micro–level model through

an out–of–sample prediction exercise and compare our approach with triangular meth-

ods.

Our approach specifies stochastic models for the occurrence of claims, the report-

ing delay, the development process and the payments made during the development

of a claim. This allows explicit quantification of the Incurred But Not Reported (IBNR)

reserve as well as the Reported But Not Settled (RBNS) reserve. We show that the

quality of reserves improves when using micro–level data. Moreover, the problems

encountered when analyzing data in run–off triangles will no longer exist. The large

data set available at micro–level allows flexible modeling of the claims development

process. For example, covariate information (like deductibles, policy limits, calendar

year) can be included in the projection of the cash flows. The use of individual data

avoids robustness problems and over parametrization. Problems with negative or zero

cells in the triangle are avoided, and small and large claims can be handled simultane-
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ously. Furthermore, individual claim modeling can provide a natural solution for the

dilemma whether to use triangles with paid or incurred losses. We propose using the

initial case reserve as a covariate in the projection process of future cash flows.

2 Data

The data come from a general liability insurance portfolio (for private individuals)

of a European insurance company. The exposure per month is given from January

2000 till August 2009, as well as a detailed track record of each claim filed with the

insurer between January 1997 and August 2009. We are missing exposure information

between January 1997 and December 1999, but the impact of this lack on our reserve

calculations is negligible. We present the data and focus on the different pieces of

information available. Each of these will be used in the micro–level model.

Exposure. Exposure is expressed as ‘earned’ exposure. A policy covered during

the whole month of January will contribute 31/365th to the exposure of that month,

10/365th if it’s only covered during 10 days, and so on. Figure 2 shows the exposure

per month. Note that the downward spikes correspond to the month February.

Figure 2: Available exposure per month from January 2000 till August 2009.
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Type and number of claims. We distinguish two types of claims: material damage

(‘material’) and bodily injury (‘injury’). Figure 3 shows the total number of claims
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per arrival year (solid line), as well as the number of open claims at the end of the

observation period (i.e. end of August 2009). We analyze material damage and bodily

injury claims separately, because their development pattern and corresponding loss

distributions are very different (see further for some descriptive statistics).

Figure 3: Number of open and closed claims of type material (left) and injury (right).
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Development processes (overview). The claim file consists of 1,525,376 records cor-

responding with 491,912 claims. Figure 4 shows the development of three claims, taken

at random from our data set. It shows the timing of events (namely: occurrence, decla-

ration, payments and settlement) as well as the size of payments (if any). Payments are

indicated as jumps in the figure. Starting point of the development process is the acci-

dent date. This is indicated with a sub-title in each of the plots and corresponds with

the point x = 0. The x-axis is in months since the accident date. The y-axis represents

the cumulative amount paid for the claim.

Reporting and settlement delay. Important drivers of the IBNR and RBNS reserves

are the reporting and settlement delays. Figure 5 (upper) shows the reporting delay

registered for material and injury claims. This delay is measured in months since oc-

currence of the claim. Obviously, it is only available for claims that have been reported

to the insurance company before the end of the observation period. Figure 5 (lower)

shows the settlement delay registered for injury and material claims. It is measured

in months since the reporting of the claim and only available for closed claims. These

figures show that the empirical distribution of observed reporting delays is similar for

material and injury claims. However, the distribution of observed settlement delays is

far more skewed to the right for injury than for material claims.
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Figure 4: Development of 3 random claims from the data set. The x-axis is in months since the
accident date. The y-axis represents the cumulative amount paid for the claim.
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Figure 5: Upper: reporting delay for material (left) and injury (right) claims. Lower: settle-
ment delay for material (left) and injury (right) claims.
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Events in the development. We distinguish three types of events that can occur dur-

ing the development of a claim. ‘Type 1’ events imply settlement of the claim without a

payment. A ‘type 2’ event is a payment with settlement at the same time. Intermediate

payments (without settlement) are ‘type 3’ events. Figure 6 gives the cumulative num-

ber of events observed over the development of individual claims. The graph shows

that injury claims settle more slowly than material claims. Injury claims typically re-

7



quire more intermediate payments before settlement than material claims do.

Figure 6: Cumulative number of events over development years: material (left) and injury
(right).
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Payments. Events of type 2 and type 3 come with a payment. The distribution of

these payments differs materially for the different types of claims. Figure 7 shows

the distribution of payments with respect to material damage (left) and injury claims

(right). The payments are discounted to 1-1-1997 with the Dutch consumer price in-

flation, to exclude the impact of inflation on the distribution of the payments. The

figures suggest a lognormal distribution for the distribution of the payments (see Sec-

tion 4 for further discussion). Table 1 gives characteristics of the observed payments

for both material and injury losses. As expected, the distribution of injury payments

has a heavier right tail than the distribution of material damage payments. The table

reveals the presence of a very large injury payment (namely, 779,398 euro versus the

empirical 99% quantile of 16,664 euro). We will discuss this further in Section 6.

Table 1: Characteristics observed payments.

Mean Median Min. Max. 1% 5% 25% 75% 95% 99%

Material 277 129 8 × 10−4 198,931 12 25 69 334 890 1,768
Injury 1,395 361 0.4875 779,398 16 25 89 967 4,927 16,664

Initial case estimates. As explained in Section 1, the joint modelling of incurred and

paid losses is documented in the literature on stochastic loss reserving. It is worthwhile
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Figure 7: Distribution of payments for material (right) and injury (left) claims. Normal den-
sity reference line is included.
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investigating the added value of case reserves when projecting future payments. We

categorize the initial case reserve (for material damage and injury claims separately)

and use it as an explanatory variable when modeling the distribution of payments.

For each category, Table 2 shows the number of claims, the average settlement delay

(in months) and the average cumulative paid amount for these categories. The table

clearly reveals that claims initially set as ‘large’, have large settlement delays and lead

to high ultimate cumulative amounts.

Table 2: Initial reserve categories: number of claims per category, average settlement delay and
average cumulative paid amount.

Material Injury
Initial Average Average Cum. Initial Average Average Cum.

Case Reserve # claims settl. delay payments Case Reserve # claims settl. delay payments
(months) (months)

≤ 10, 000 465,015 1.87 252 ≤ 1, 000 3,709 9.87 2,570
> 10, 000 385 10.88 7,950 (1,000 -15,000] 5,165 15.17 3,872

> 15, 000 360 35.2 33,840

3 The statistical model

By a claim i is understood a combination of an occurrence time Ti, a reporting delay

Ui and a development process Xi. The development process Xi is a jump process. It is

modeled here using two separate building blocks: the timing and type of events and
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their corresponding severities. The different types of events are specified in Section 2.

Xi is short for (Ei(v), Pi(v))v∈[0,Vi ]
. Ei(vij) := Eij is the type of the jth event in the devel-

opment of claim i; it occurs at time vij, expressed in time units after notification of the

claim. Vi is the total waiting time from notification to settlement of claim i. If the event

at time vij includes a payment, its corresponding severity is given by Pi(vij) := P
ij
′

where j
′

runs over all payments in the development of this claim. Denote the present

moment with τ. IBNR, RBNS and settled claims can be distinguished as follows:

• for an IBNR claim: Ti + Ui > τ and Ti < τ;

• for an RBNS claim: Ti + Ui ≤ τ and the development of the claim is censored at

(τ − Ti − Ui), i.e. only (Ei(v), Pi(v))v∈[0,τ−Ti−Ui]
is observed;

• for a settled claim: Ti + Ui ≤ τ and (Ei(v), Pi(v))v∈[0,Vi ]
is observed.

3.1 Position dependent marked Poisson process

Following the approach in Arjas (1989) and Norberg (1993) we treat the claims process

as a Position Dependent Marked Poisson Process (PDMPP), see Karr (1991). In this

application, a point is an occurrence time and the associated mark is the combined re-

porting delay and development of the claim. We denote the intensity measure of this

Poisson process by λ and the associated mark distribution by (PZ|t)t≥0 with t the oc-

currence time of the claim. The mark distribution PZ|t is specified by the distribution

PU|t of the reporting delay (given occurrence time t) and the distribution PX |t,u of the

development (given occurrence time t and reporting delay u). The complete develop-

ment process is a Poisson process on claim space C = [0, ∞)× [0, ∞)× χ with intensity

measure:

λ(dt) × PU|t(du)× PX |t,u(dx) with (t, u, x) ∈ C. (1)

The reported claims (which are not necessarily settled) belong to the set:

Cr = {(t, u, x) ∈ C|t + u ≤ τ}, (2)

whereas the IBNR claims belong to:

C i = {(t, u, x) ∈ C|t ≤ τ, t + u > τ}. (3)

Since both sets are disjoint, both processes are independent (see Karr (1991)). The pro-
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cess of reported claims is a Poisson process on C with measure

λ(dt) × PU|t(du)× PX |t,u(dx)× 1[(t,u,x)∈Cr]

= λ(dt)PU|t(τ − t)1(t∈[0,τ])
︸ ︷︷ ︸

(a)

×
PU|t(du)1(u≤τ−t)

PU|t(τ − t)
︸ ︷︷ ︸

(b)

× PX |t,u(dx)
︸ ︷︷ ︸

(c)

. (4)

Three parts can be identified in (4). The occurrence measure for reported claims is

in (a). This is the intensity of the Poisson process driving the occurrence of claims,

λ(dt), adjusted for the fact that focus is only on reported claims. (b) refers to the

distribution of the reporting delay, conditioned on the fact that reporting should take

place. (c) represents the distribution of the development process, given occurrence

time t and reporting delay u of the claim. Similarly, the process of IBNR claims is a

Poisson process with measure:

λ(dt)
(

1 − PU|t(τ − t)
)

1(t∈[0,τ])
︸ ︷︷ ︸

(a)

×
PU|t(du)1u>τ−t

1− PU|t(τ − t)
︸ ︷︷ ︸

(b)

× PX |t,u(dx)
︸ ︷︷ ︸

(c)

, (5)

where similar components can be identified as in (4), conditioned on the fact that

claims have not been reported.

3.2 The likelihood

The observed part of the process consists of the development up to time τ of claims

reported before τ. We denote these observed claims as follows:

(To
i , Uo

i , X
o
i )i≥1, (6)

where the development of claim i is censored τ − To
i − Uo

i time units after notification.

The likelihood of the observed claim development process can be written as (see Cook

and Lawless (2007)):

Λ(obs) ∝

{

∏
i≥1

λ(To
i )PU|t(τ − To

i )

}

exp

(

−
∫ τ

0
w(t)λ(t)PU|t(τ − t)dt

)

×

{

∏
i≥1

PU|t(dUo
i )

PU|t(τ − To
i )

}

× ∏
i≥1

P
τ−To

i −Uo
i

X|t,u
(dX

o
i ). (7)

The superscript in the last term of this likelihood indicates the censoring of the devel-

opment of this claim τ − To
i − Uo

i time units after notification. w(t) gives the exposure
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at time t.

We use techniques from survival analysis to model the reporting delay and the

development process. The reporting of the claim is an event that only occurs once

during the existence of the claim. Therefore, reporting delay is modeled using standard

distributions from survival analysis. The statistical framework of recurrent events (see

Cook and Lawless (2007)) is suitable to model the development of a claim. A hazard

rate is specified for each type of event that can occur during the development. Denote

these hazard rates with hse, hsep and hp, corresponding to type 1 (settlement without

payment), type 2 (settlement with a payment at the same time) and type 3 (payment

without settlement) events, respectively.

Events of type 2 and 3 come with a payment. We denote the distribution of a sever-

ity payment with Pp. Using this notation the likelihood of the development process of

claim i is given by:

{

∏
j

(

h
δij1
se (Vij)× h

δij2
sep(Vij)× h

δij3
p (Vij)

)
}

× exp

(

−
∫ τi

0
(hse(u) + hsep(u) + hp(u))du

)

× ∏
j
′

Pp(dPij
′ ). (8)

Here δijk is an indicator variable that is 1 if the jth event in the development of claim i

is of type k. j runs over all events registered in the observation period for claim i. This

observation period is [0, τi] with τi = min (τ − Ti − Ui, Vi). j
′

runs over all payments

made during the development of this claim.

Combining (7) and (8) gives the likelihood for the observed data:

Λ(obs) ∝

{

∏
i≥1

λ(To
i )PU|t(τ − To

i )

}

exp

(

−
∫ τ

0
w(t)λ(t)PU|t(τ − t)dt

)

×

{

∏
i≥1

PU|t(dUo
i )

PU|t(τ − To
i )

}

× ∏
i≥1

∏
j

(

h
δij1
se (Vij)× h

δij2
sep(Vij)× h

δij3
p (Vij)

)

× exp

(

−
∫ τi

0
(hse(u) + hsep(u) + hp(u))du

)

× ∏
i≥1

∏
j
′

Pp(dP
ij
′ ). (9)

3.3 Distributional assumptions

We discuss the likelihood in (9) in more detail and present distributional assumptions

for its building blocks. Our final choices and estimation results will be covered in

Section 4.
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Reporting delay. A large number of claims is reported in the days immediately fol-

lowing occurrence of the claim, see Figure 5. We use a mixture of one particular stan-

dard distribution ( fU) with n degenerate distributions for notification during these first

days:

n−1

∑
k=0

pk I{k}(u) +

(

1 −
n−1

∑
k=0

pk

)

fU|U>n−1(u), (10)

where I{k}(u) = 1 if reporting takes place on the kth day after occurrence and I{k}(u) =

0 otherwise.

Occurrence process. When optimizing the likelihood for the occurrence process, we

use the reporting delay distribution and its parameters (as obtained in the previous

step). The likelihood

{

∏
i≥1

λ(To
i )PU|t(τ − To

i )

}

exp

(

−
∫ τ

0
w(t)λ(t)PU|t(τ − t)dt

)

, (11)

needs to be optimized over λ(t). We use a piecewise constant specification for the

occurrence rate: λ(t) = λl for dl−1 ≤ t < dl , l = 1, . . . , m and d0 = 0. Hereby

τ ∈ [dm−1, dm) and w(t) := wl for dl−1 ≤ t < dl. Let the indicator variable δ1(l, ti)

be 1 if dl−1 ≤ ti < dl, with ti the occurrence time of claim i. The number of claims in

interval [dl−1, dl) is given by

Noc(l) := ∑
i

δ1(l, ti). (12)

The likelihood corresponding with the occurrence times then becomes

λ
Noc(1)
1 λ

Noc(2)
2 . . . λ

Noc(m)
m

{

∏
i≥1

PU|t(τ − ti)

}

× exp

(

−λ1w1

∫ d1

0
PU|t(τ − t)dt

)

exp

(

−λ2w2

∫ d2

d1

PU|t(τ − t)dt

)

× . . . exp

(

−λmwm

∫ dm

dm−1

PU|t(τ − t)dt

)

. (13)

Optimizing over λl (with l = 1, . . . , m) leads to:

λ̂l =
Noc(l)

wl

∫ dl

dl−1
PU|t(τ − t)dt

. (14)

13



Development process. A piecewise constant specification is used for the hazard rates.

This piecewise specification can be integrated in a straightforward way in likelihood

specification (9), although the resulting expression is complex in notation. The opti-

mization of the likelihood expression can be done analytically (which results in very

elegant and compact expressions) or numerically. It might be worthwhile to specify a

separate hazard rate for ‘first events’ in the development and ‘later events’. This will

be investigated in Section 4.

Payments Events of type 2 and type 3 come with a payment. We investigate a selec-

tion of univariate distributions suitable for modeling severities. Covariate information

(e.g. the initial reserve category and the development year) is taken into account.

4 Estimation results

We motivate our distributional assumptions and show the outcomes of the calibration

process. Optimization of all likelihood specifications was done with the Proc NLMixed

routine in SAS.

Reporting delay. A mixture of a Weibull distribution and 9 degenerate components

corresponding with settlement after 0, . . . , 8 days, is used. Figure 8 illustrates the fit of

this mixture of distributions to the actually observed reporting delays.

Figure 8: Observed reporting delays for material (left) and injury (right) claims and fit obtained
with 9 degenerate components combined with a truncated Weibull distribution.
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Occurrence process. Using the distribution for the reporting delay, we optimize the

likelihood (13) for the occurrence times. λ(t) is constant on monthly intervals, ranging

from January 2000 till August 2009. Figure 9 shows point estimates and corresponding

95% confidence intervals.

Figure 9: Estimates of piecewise specification for λ(t): (left) material and (right) injury claims.
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Development process. We compare the use of a Weibull as well as a piecewise con-

stant specification for the hazard rates hse, hsep and hp. For material claims, we assume

the hazard rate is constant on four month intervals: [0− 4) months, [4− 8) months, . . .,

[8 − 12) months and ≥ 12 months. For injury claims, the hazard rate is constant on in-

tervals of six months: [0 − 6) months, [6 − 12) months, . . ., [36 − 42) months and ≥ 42

months. Figure 10 shows estimates for Weibull and piecewise constant hazard rates.

Separate hazard rates are specified for ‘first events’ and ‘later events’. The piecewise

constant specification reflects the actual data. The figure shows that the Weibull dis-

tribution is reasonably close to the piecewise constant specification. In the rest of this

paper we use the piecewise constant specification. Section 5 includes brief discussion

of the use of the Weibull hazard rates in the simulation routine.

Payments. We examine the fit of a Burr, gamma and lognormal distribution, includ-

ing covariate information. Distributions for the payments are truncated at the coverage

limit of 2.5 million euro per claim. A comparison based on BIC shows that the lognor-

mal distribution achieves a better fit than the Burr and gamma distributions. When

including the initial reserve category as covariate or both the initial reserve category

and the development year, the fit further improves. The latter approach is used in the
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Figure 10: Estimates for Weibull and piecewise constant hazard rates driving the occurrence of
events in the development of claims: (upper) injury claims and (lower) material claims. ‘Type
1’ events represent settlement without payment, ‘type 2’ refers to settlement with payment and
‘type 3’ is for intermediate payments.
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prediction routine. We include covariate information in both mean (µi) and standard

deviation (σi) of the lognormal distribution for observation i:

µi = ∑
r

∑
s

µr,s IDYi=sIi∈r

σi = ∑
r

∑
s

σr,s IDYi=s Ii∈r. (15)

Hereby r is the initial reserve category and DYi is the development year corresponding

with observation i. IDYi=s and Ii∈r are indicator variables referring to observation i

belonging to DY s and reserve category r, respectively. Figure 11 shows corresponding

qqplots.

5 Predicting future cash–flows

Distinguishing IBNR and RBNS claims is necessary in the prediction routine. The fol-

lowing step by step approach is implemented.
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Figure 11: Normal qqplots for the fit of log(payments) including initial reserve and develop-
ment year as covariate information.
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Predicting IBNR claims. As noted in Section 3, an IBNR claim occurred already but

has not yet been reported to the insurer. Therefore, Ti + Ui > τ and Ti < τ with Ti the

occurrence time of the claim and Ui its reporting delay. The Tis are missing data: they

are determined in the development process but unknown to the actuary at time τ. The

prediction process for the IBNR claims requires the following steps:

(a) Simulate the number of IBNR claims in [0, τ] and their corresponding occur-

rence times.

IBNR claims are driven by a Poisson process with intensity:

w(t)λ(t)(1 − PU|t(τ − t)), (16)

where λ(t) is piecewise constant. With NIBNR(l) being the number of IBNR

claims occurring in time interval [dl−1, dl), we know

NIBNR(l) ∼ Poisson

(

λlwl

∫ dl

dl−1

(1 − PU|t(τ − t))dt

)

. (17)

Given the simulated number of IBNR claims nIBNR(l) for each interval [dl−1, dl),

the occurrence times of the claims are uniformly distributed in [dl−1, dl). These

are simulated as well.

(b) Simulate the reporting delay for each IBNR claim.

Given the simulated occurrence time t of an IBNR claim, its reporting delay is
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simulated by inverting the distribution:

P(U ≤ u|U > τ − t) =
P(τ − t < U ≤ u)

1 − P(U ≤ τ − t)
. (18)

Using a mixture of a Weibull distribution and 9 degenerate distributions requires

numerical evaluation of this expression.

(c) Simulate the initial reserve category.

For each IBNR claim an initial reserve category has to be simulated for use in the

development process. Given m initial reserve categories, we use the following

discrete probability density function:

f (c) =







pc for c = 1, 2, . . . , m − 1

1 − ∑
m−1
k=1 pk for c = m.

(19)

The probabilities used in (19) are the empirically observed percentages of claims

in a particular initial reserve category.

(d) Simulate the payment process for each IBNR claims.

This step is common with the procedure for RBNS claims and is explained in the

next paragraph.

Predicting RBNS claims Given the RBNS claims and the simulated IBNR claims, the

process proceeds as follows.

(e) Simulate the next event’s exact time.

In case of RBNS claims, the time of censoring c of claim is known. For IBNR

claims this censoring time is c := 0. The next event – at time vnext – can take

place at any time vnext > c. To simulate its exact time we need to invert: (with p

randomly drawn from a Unif(0, 1) distribution)

P(V < vnext|V > c) = p. (20)

From the relation between a hazard rate and cdf, we know

P(V ≤ vnext) = 1 − exp

(

−
∫ vnext

0
∑

e

he(t)dt

)

, (21)

with e ∈ {se, sep, p}. Numerical methods are required, for instance with a Weibull

specification for the hazard rates. With a piecewise constant specification for the

hazard rates numerical routines as well as closed–form solutions are available.
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(f) Simulate the event type. Given the exact time v of the next event, it is of type

e ∈ {se, sep, p} with probability:

he(v)

∑e he(v)
. (22)

(g) Simulate the corresponding payment (if any). Given a claim’s covariate infor-

mation, payments are drawn from the appropriate lognormal distribution. The

cumulative payment cannot exceed the coverage limit of 2.5 million per claim.

(h) Stop or continue. Depending on the simulated event type in step ( f ), the predic-

tion stops (in case of settlement) or continues.

In the next section, this prediction process will be applied separately for the material

claims and the injury claims.

Comment on parameter uncertainty. With respect to the uncertainty of predictions,

process as well as estimation or parameter uncertainty (see England and Verrall (2002))

should be taken into account. We cover process uncertainty by sampling from the dis-

tributions selected in Section 3 and 4. To include parameter uncertainty the bootstrap

technique or concepts from Bayesian statistics can be used. While a formal Bayesian

approach is very elegant, it generally leads to significantly more complexity, which is

not contributing to the accessibility and transparency of the techniques towards prac-

ticing actuaries. Applying a bootstrap procedure is very computer intensive in this ap-

plication, in light of the large sample size and the different stochastic processes used.

We deal with parameter uncertainty through the asymptotic normal distribution of

the maximum likelihood estimators. At every step in the routine, each parameter is

sampled from its corresponding asymptotic normal distribution. Note that –due to

our large sample size– confidence intervals for parameters are narrow. This is in con-

trast with run–off triangles where sample sizes are typically very small and parameter

uncertainty is an important point of concern.

6 Numerical results

We present the results of an out–of–sample prediction exercise. The micro–level results

are compared with the results of a triangular analysis (based on aggregate data). The

out–of–sample test estimates reserves per 1-1-2005. The available data are summarized

in run-off triangles (see Table 3 for material damage and Table 4 for bodily injury). The
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actual observations registered between January 2005 and August 2009 are displayed in

bold.

Table 3: Run–off triangle material claims (displayed in thousands), arrival years 1997-2004.

Arrival Development Year

Year 1 2 3 4 5 6 7 8

1997 4,380 972 82 9 36 27 34 11
1998 4,334 976 56 35 76 24 0.57 17
1999 5,225 1,218 59 108 108 12 0.39 0
2000 5,366 1,119 161 14 6 4 0.36 10
2001 5,535 1,620 118 119 13 3 0.35 2
2002 6,539 1,547 67 65 17 5 9 8.80
2003 6,535 1,601 90 21 31 7 1.7
2004 7,109 1,347 99 76 20 13

Table 4: Run–off triangle injury claims (displayed in thousands), arrival years 1997-2004.

Arrival Development Year

Year 1 2 3 4 5 6 7 8

1997 308 635 366 530 549 137 132 339
1998 257 482 312 336 269 56 179 78
1999 292 590 410 273 254 286 132 97
2000 317 601 439 498 407 371 247 275
2001 466 846 566 567 446 375 147 240
2002 314 615 540 449 133 131 332 1,082
2003 304 802 617 268 223 216 173
2004 333 864 412 245 273 100

Output from the micro–level model. We consider the different types of output com-

ing from the micro–level model. Figure 12 shows the results for injury payments made

in calendar year 2006, based on 10,000 simulations. In Table 4 calendar year 2006 cor-

responds with the diagonal going from 412, 268, . . . , up to 97. The first row in Fig-

ure 12 shows (from left to right): the number of IBNR claims reported in 2006, the total

amount paid in this calendar year and the total number of events occurring in 2006.

The IBNR claims are claims that occurred before 1-1-2005, but were reported to the in-

surer during calendar year 2006. The total amount paid in 2006 is the sum of payments

for RBNS and IBNR claims, which are separately available from the micro–model. In

the second row of plots we take a closer look at the events registered in 2006 by looking

separately at type 1, 2 and 3 events. In each of the plots the black solid line indicates
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what was actually observed. This figure shows that the predictive distributions from

the micro–level model are realistic. However, the actual number of IBNR claims is far

in the tail of the distribution, but note that this corresponds with a small number of

IBNR claims.

Figure 12: Out–of–sample exercise per 1-1-2005, injury claims. Results are for calendar year
2006, based on 10,000 simulations from the micro–level model. Top row (from left to right):
number of IBNR claims, total reserve (i.e. IBNR plus RBNS reserve), total number of events.
Bottom row (from left to right): number of type 1, 2 and 3 events. The black solid line indicates
actually observed quantities.
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Comparing reserves. We compare the results obtained with the micro–level model

with reserve calculations based on aggregate data. More specifically, we consider

Mack’s chain–ladder model, a stochastic overdispersed Poisson and lognormal chain–

ladder model. The model specifications for overdispersed Poisson (see (23)) and log-

normal (see (24)) are given below, where Yij denotes cell (i, j) in a run–off triangle (and

corresponds to arrival year i and development year j). The models specified in (23)
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and (24) are implemented in a Bayesian framework. 2

Yij = φMij

Mij ∼ Poi(µij/φ)

log (µij) = αi + β j; (23)

log (Yij) = µij + ǫij

µij = αi + β j

ǫij ∼ N(0, σ2). (24)

Figure 13 shows the reserves (in thousands) for material claims, as obtained with the

different methods (from left to right: micro–model, chain–ladder overdispersed Pois-

son and chain–ladder lognormal). The histograms are based on 10,000 simulations of

the total reserve. Corresponding numerical results are in Table 5. The total reserve

predicts the complete lower triangle (i.e. all bold numbers, plus the three missing cells

in Table 3). The solid black line in each plot indicates what has really been observed,

i.e. the sum of the numbers in bold in Table 3. We use the same scale on the x–axis

of the histograms representing the micro–level and the overdispersed Poisson model.

However, for the lognormal model a different scale on the x–axis is necessary, because

of the presence of a long right tail. These unrealistically high reserves (see Table 5) are a

disadvantage of the lognormal model for the portfolio of material claims. We conclude

from Figure 13 and Table 5 that the overdispersed Poisson as well as the lognormal

model overstate the reserve; the actually observed amount is in the left tail of the cor-

responding histogram. The predictive distribution obtained with the micro–model is

more realistic. The corresponding best estimate is closer to the true realization than the

best estimates from aggregate techniques.

Figure 14 shows the distribution of the reserve (in thousands of euro) obtained for

bodily injury claims (based on 10,000 simulations). In contrast to the plots in Figure 13

the plots in Figure 14 use the same x–axis. Corresponding numerical results are in

Table 5. The observed run–off triangle in Table 4 shows a very large total payment

(779,383 euro) in occurrence year 2002, development year 8. This payment is much

larger than all other payments in the data set (see the statistics in Table 1). The micro–

level model reflects this appropriately, i.e. the observed total amount is rather in the

right tail of the predictive distribution. The aggregate models again tend to overstate

the reserve.

We conclude that, for the case–study under consideration, the micro–model outper-

2The implementation of the overdispersed Poisson model is in fact empirically Bayesian. φ is esti-
mated beforehand and held fixed. We use vague normal priors for the regression parameters in both
models and a gamma prior for σ−1 in the lognormal model.

22



Figure 13: Out–of–sample exercise per 1-1-2005, material claims. Results are for the total
reserve (i.e. IBNR + RBNS reserve), based on 10,000 simulations. From left to right: reserve
calculations using the micro–level model, the aggregate overdispersed Poisson chain–ladder and
the aggregate lognormal chain–ladder model. The black solid line indicates the amount actually
paid.
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Figure 14: Out–of–sample exercise per 1-1-2005, injury claims. Results are for the total reserve
(i.e. IBNR + RBNS reserve), based on 10,000 simulations. From left to right: reserve calcu-
lations using the micro–level model, the aggregate overdispersed Poisson chain–ladder and the
aggregate lognormal chain–ladder model. The black solid line indicates actually observed quan-
tities.
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forms the aggregate models under consideration and reveals a more realistic predictive

distribution of the reserve.

7 Conclusion

Continuing the work by Arjas (1989), Norberg (1993) and Norberg (1999) this paper

demonstrates the usefulness of micro–level stochastic loss reserving as a way to quan-

tify the best estimate of the reserve and its uncertainty. Stochastic models for the occur-

rence time, the reporting delay and the development process (including intermediate
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Table 5: Out–of–sample prediction per 1-1-2005: numerical results for material damage and
injury claims (in thousands), as obtained with Mack’s chain–ladder model, an overdispersed
and lognormal stochastic chain–ladder model and the micro–level model. Real observed out-
comes are also displayed.

Model Type Expected value Median s.e. VaR0.95 VaR0.99

Total Reserve

Chain–ladder Mack MD 2,865 349

BI 9,562 1,154

Chain–ladder ODP MD 2,803 2,785 361 3,426 3,846

BI 9,611 9,533 1,214 11,700 13,230

Chain–ladder LogN MD 7,073 3,660 1,549 21,824 90,712

BI 10,246 10,030 1,931 13,651 17,590

Micro–model MD 2,208 2,054 596 3,305 5,074

BI 7,386 7,209 1,259 9,721 11,725

Observed MD > 1,861

BI > 7, 923

payments and settlement) of a claim are fit to a data set with the development of in-

dividual claims. A micro–level approach allows much closer modeling of the claims

process. The method is not restricted by limitations that exist when using aggregate

data.

We perform an out–of–sample test with respect to a general liability insurance port-

folio from a European insurance company. The paper shows that micro–level stochas-

tic modeling is feasible for real life portfolios. We compare prediction results from the

micro–level model with results obtained by analyzing a run–off triangle. Conclusion

of the out–of–sample test is that – at least for the comparisons made here – traditional

techniques tend to overestimate the real payments. Predictive distributions obtained

with the micro–model reflect reality in a more realistic way: ‘regular’ outcomes are

close to the median of the predictive distribution whereas pessimistic outcomes are in

the very right tail.

The results obtained in this paper make it worthwhile to further investigate the use

of this technique for loss reserving. Several directions for future research can be men-

tioned. One could try to refine the performance of the individual model with respect to

very pessimistic scenarios by using a combination of e.g. a lognormal distribution for
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losses below and a generalized Pareto distribution for losses above a certain threshold.

Connected to this suggestion, we intend to explore the possibilities of the micro–level

approach in a reinsurance context. Analyzing the performance of both the micro–level

model and techniques for aggregate data on simulated data sets and new case studies

will bring more insight in their performance. More careful modeling of inflation effects

and taking the ‘time value of money’ into account will be important in future research.

Studying the micro–level approach in light of the new solvency guidelines, is another

path to be explored.
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Mario V. Wüthrich and Michael Merz. Stochastic claims reserving methods in insurance.
Wiley Finance, 2008.

X. B. Zhao and X. Zhou. Applying copula models to individual claim loss reserving
methods. Insurance: Mathematics and Economics, 46(2):290–299, 2010.

X. B. Zhao, X. Zhou, and J. L. Wang. Semiparametric model for prediction of individual
claim loss reserving. Insurance: Mathematics and Economics, 45(1):1–8, 2009.

26


	Voorblad Onderzoeksrapport AFI.pdf
	AntonioPlatMay2012

