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Abstract

It is hard to overestimate the ubiquity and importance of secure communica-
tions and information processing in modern society. From private individuals
to industry or governments — they all rely on technology guaranteering
the confidentiality, integrity and authenticity of their communication. To
realise these security goals, one relies on cryptographic algorithms, often totally
transparent to their users.

For a cryptographic algorithm to be useful, it is important to have a good
understanding to which extent it actually achieves the intended security goals.
Progress in understanding how to analyse (“break”) cryptographic algorithms is
going to improve our understanding of how to design them, and vice versa. At
the same time, obtaining rigorous statements about the security guarantees
offered by algorithms on the one hand, and the power of attacks on the
other hand is an important complement to the perpetual interplay between
cryptanalysis and design.

This thesis is dedicated to the study of symmetric-key cryptographic algorithms,
which form the backbone of virtually all security systems. It aims at improving
the understanding of these algorithms by extending the mathematical founda-
tions regarding design, analysis, and security proofs of symmetric algorithms.

As a first contribution, we propose nonsmooth cryptanalysis, a novel technique
for the analysis of symmetric algorithms based on the application of methods
from nonsmooth optimisation to the solving of equations over finite fields of
characteristic two. We then focus on rebound attacks, a powerful recent method
for the cryptanalysis of hash functions. In this context, we demonstrate new
extensions of this attack on the hash function Grøstl-0, and analyse how to
design a hash function which is resistant to rebound attacks, leading to the
new hash function Whirlwind.

Incorporating the advances in cryptanalysis into new design criteria also
requires a rigorous understanding of the exact power of these attacks. We study
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iv ABSTRACT

two important cryptanalysis methods, linear cryptanalysis and differential
attacks using structures, and obtain more precise and realistic mathematical
models for the complexity analysis of these attacks. In both cases, we base our
study on a deepened analysis of the statistical phenomena exploited by these
attacks.

Complementing this analysis, we consider the question of ideal statistical
behaviour with regard to linear and differential cryptanalysis and some of
their extensions, providing an explicit characterisation of a reference point for
resistance against these attacks.

Finally, we study key-alternating ciphers from a structural point of view. With
the ubiquitous Advanced Encryption Standard (AES) belonging to this class,
key-alternating ciphers are a particularly important way of constructing a block
cipher. We prove that key-alternating ciphers can be considered a sound
construction principle. In the context of its resistance to linear attacks, our
study especially highlights the constructive effect of having multiple, but not
too many rounds in such a design.



Beknopte samenvatting

Het belang van veilige communicatie en informatieverwerking voor de moderne
maatschappij is moeilijk te overschatten. Particulieren, bedrijven, overheden –
vrijwel iedereen vertrouwt op beveiligingstechnologie om de vertrouwelijkheid,
integriteit en authenticiteit van hun communicatie te waarborgen. Voor het
realiseren van deze doelen worden cryptografische algoritmes gebruikt, vaak
zonder dat de gebruikers zich dat realiseren.

Opdat een cryptografisch algoritme zijn doelstelling goed vervult, is het
cruciaal om te kunnen bepalen in hoeverre het algoritme aan het gewenste
veiligheidsniveau voldoet. Elke vooruitgang in de analysemogelijkheden voor
cryptografische algoritmes gaat ons begrip van het ontwerpen van deze
algoritmes verbeteren, en vice versa. Tegelijkertijd is het bepalen van
rigoureuze bewijzen voor de veiligheidsgaranties van algoritmes enerzijds en de
kracht van aanvallen anderzijds een belangrijke aanvulling op de voortdurende
wisselwerking tussen cryptanalyse en ontwerp van cryptografische algoritmes.

Dit proefschrift is gewijd aan het bestuderen van symmetrische cryptografische
algoritmes. Deze vormen de basis van vrijwel elk beveiligingssysteem. De
doelstelling van dit proefschrift is het vergroten van de kennis over deze
algoritmes door middel van het uitbreiden van het wiskundige fundament voor
ontwerp, analyse en veiligheidsbewijzen van symmetrische algoritmes.

Als eerste bijdrage stellen we niet-gladde cryptanalyse voor, een nieuwe methode
voor de cryptanalyse van symmetrische algoritmes gebaseerd op de toepassing
van niet-gladde optimisatiemethodes op het oplossen van stelsels vergelijkingen
over eindige velden van karakteristiek twee. We focussen verder op rebound-
aanvallen, een krachtige recente methode voor de cryptanalyse van hashfuncties.
In deze context stellen we nieuwe varianten van rebound-aanvallen op de
hashfunctie Grøstl-0 voor en tonen een ontwerpstrategie aan voor hashfuncties
die bestand zijn tegen rebound-aanvallen. Dit leidt tot het ontwerp van de
nieuwe hashfunctie Whirlwind.
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Voor het ontwikkelen van nieuwe ontwerpcriteria op basis van verbeterde
cryptanalysemethodes is het van cruciaal belang om de kracht van deze
aanvallen zo precies mogelijk te kunnen inschatten. We bestuderen twee be-
langrijke cryptanalysemethodes, namelijk lineaire cryptanalyse en differentiële
cryptanalyse met structuren, en ontwikkelen nieuwe wiskundige modellen voor
de complexiteitsanalyse van deze aanvallen die naukeuriger en realistischer zijn
dan reeds gekende modellen. In beide gevallen is onze studie gebaseerd op
een diepere analyse van de statistische eigenschappen die door deze aanvallen
uitgebuit worden.

Deze analyse wordt aangevuld met een studie van het ideale statistische gedrag
ten opzichte van lineaire en differentiële cryptanalyse. We leiden een expliciete
beschrijving af van een referentiepunt voor weerstand tegen deze aanvallen.

Ten slotte richten we onze aandacht op een structurele analyse van key-
alternating cijfers. Aangezien de alomtegenwoordige Advanced Encryption
Standard (AES) tot deze categorie behoort, zijn key-alternating cijfers een
bijzonder belangrijke ontwerpmethode voor blokcijfers. Wij bewijzen in dit
proefschrift dat key-alternating cijfers vanuit de structurele oogpunt als een
veilige ontwerpstrategie kunnen worden beschouwd. Bovendien tonen wij
aan dat meerdere (maar niet té veel) ronden te hebben in zo’n ontwerp een
constructief effect heeft op de weerstand tegen lineaire cryptanalyse.



Zusammenfassung

Sichere Kommunikation und Datenverarbeitung haben in der modernen
Gesellschaft eine derartige Allgegenwart erreicht, dass ihre Bedeutung kaum
überschätzt werden kann. Ob Privatleute, Firmen oder Regierungen — sie
alle sind auf Technologien angewiesen, die die Vertraulichkeit, Integrität und
Authentizität ihrer Kommunikation sicherstellen. Zur Realisierung dieser
Sicherheitsziele setzt man kryptografische Algorithmen ein, oft sogar ohne dass
die Nutzer sich dessen explizit bewusst sind.

Um sinnvoll einsetzbar zu sein, ist es wichtig, einschätzen zu können, ob
und in welchem Umfang ein kryptografischer Algorithmus die beabsichtigten
Sicherheitsziele erreicht. Jeglicher Fortschritt bezüglich unserer Möglichkeiten,
kryptografische Algorithmen zu analysieren (“brechen”) hat seinerseits ein
verbessertes Verständnis der Entwurfsmöglichkeiten zur Folge, und umgekehrt.
Gleichzeitig ist die Möglichkeit, mathematisch präzise Aussagen über einerseits
die von Algorithmen gebotenen Sicherheitsgarantien, und andererseits die
Mächtigkeit von Angriffen treffen zu können, eine wichtige Ergänzung dieses
andauernden Wechselspiels zwischen Angreifern und Designern.

Die vorliegende Dissertation beschäftigt sich mit symmetrischen kryptogra-
fischen Algorithmen, welche in nahezu jedem Sicherheitssystem Verwendung
finden. Sie hat ein verbessertes Verständnis dieser Algorithmen durch eine
Erweiterung des mathematischen Fundaments von Entwurf, Analyse und
Sicherheitsbeweisen von symmetrischen Algorithmen zum Ziel.

Als ersten Beitrag schlagen wir nichtglatte Kryptoanalyse vor, eine neue
Methode zur Kryptoanalyse symmetrischer Algorithmen, welche auf der
Anwendung nichtglatter Optimierungsverfahren zur Lösung von Boole’schen
Gleichungssystemen basiert. Wir wenden uns dann den Rebound-Angriffen
zu, einer wichtigen modernen Technik zur Kryptoanalyse von Hashfunktionen.
In diesem Zusammenhang stellen wir neue Erweiterungen dieses Angriffes auf
die Hashfunktion Grøstl-0 vor. Des Weiteren untersuchen wir Möglichkeiten
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zum Entwurf einer Rebound-resistenten Hashfunktion und schlagen darauf
basierend die neue Hashfunktion Whirlwind vor.

Um Fortschritte in der Kryptoanalyse sinnvoll in neue Entwurfskriterien
umsetzen zu können, ist es unerlässlich, die Mächtigkeit von Angriffen genau
einschätzen zu können. Im Rahmen dieser Dissertation wenden wir uns
hier zwei wichtigen Analysemethoden für symmetrische Algorithmen zu: der
linearen Kryptoanalyse und differentiellen Angriffen mit Strukturen. Für
beide Angriffe entwickeln wir ein verbessertes und realitätsnäheres Modell für
die Komplexitätsanalyse, basierend auf einer vertieften Analyse der diesen
Angriffen zu Grunde liegenden statistischen Eigenschaften.

Komplementär zu dieser Analyse untersuchen wir, was ideal sicheres statisti-
sches Verhalten bezüglich linearer und differenzieller Kryptoanalyse bedeutet,
und geben eine explizite Charakterisierung eines Referenzpunktes für das
Widerstehen dieser Angriffe.

Schließlich wenden wir uns der bis dato weitgehend offenen Frage zu, was
sich zur Sicherheit von sogenannten schlüsselalternierenden Chiffren vom
strukturellen Standpunkt aus herleiten lässt. Da der universell verwendete
Advanced Encryption Standard (AES) zu dieser Klasse gehört, sind schlüs-
selalternierende Chiffren eine besonders wichtige Konstruktionsmethode für
Blockchiffren. Wir beweisen, dass schlüsselalternierende Chiffren als strukturell
stichhaltiges Entwurfsprinzip gelten können. Bezüglich der Resistenz gegen
lineare Angriffe etabliert unsere Analyse die Bedeutung mehrerer, aber nicht
zu vieler Runden in solchen Chiffren.
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Chapter 1

Introduction

Sicher ist, dass nichts sicher ist.
Selbst das nicht.

Joachim Ringelnatz, 1883–1934

Communication, the interchange of information, has always been a central
aspect of human society. While direct oral or non-verbal communication from
person to person is subject only to social barriers, the historical development of
indirect forms of communication — from writing systems to telecommunication,
culminating in the development of computer networks — has soon led to
certain unavoidable complications. Already in the simple example of sending
a hand-written letter, the intended communication with the recipient can
go wrong in a number of ways that are of no concern in the case of direct
personal communication: Will anybody except the intended recipient read the
letter? Will the letter actually be delivered to the correct recipient? Could its
contents be changed in transit, either accidentally or with malicious intent? In
modern terms, indirect communication makes it harder to ensure confidentialty,
authenticity or integrity of messages.

These concerns very naturally lead to the development of techniques alleviating
them. Traditionally, problems with authenticity and integrity were usually
solved by trusted messengers, while the confidentiality issue was adressed by
algorithmic and/or technological means. This is where the name cryptography
stems from: the practice of secret writing. The contemporary use of the

1



2 INTRODUCTION

term cryptography also includes techniques for authenticity and integrity of
communications. Modern cryptography captures the objective of achieving
confidentiality in the notion of cryptosystems:

Definition 1.1 (Cryptosystem). A cryptosystem is a tuple (P, C,K, E ,D)
satisfying the following properties:

1. P is the (finite) set of plaintexts;

2. C is the (finite) set of ciphertexts;

3. K is the (finite) set of keys;

4. E = {Ek : k ∈ K} is a family of encryption functions Ek : P → C;

5. D = {Dk : k ∈ K} is a family of decryption functions Dk : C → P;

6. For all e ∈ K there exists a d ∈ K such that we have

Dd(Ee(p)) = p for all plaintexts p ∈ P. (1.1)

The key idea here is that only the knowledge of the decryption key
corresponding to the key used for the encryption of a plaintext into its
ciphertext determines which element of the function family D has to be used
to obtain the plaintext again. If we always have d = e in (1.1), one speaks of
a symmetric-key or simply symmetric cryptosystem. In this case, two parties
wishing to communicate using the cryptosystem have to agree a-priori which
shared secret key they are going to use. We will describe symmetric algorithms
in more detail in Section 2.2.

An important second class of cryptosystems is defined by the case that d
cannot be derived from e with feasible computational effort. In this case, the
encryption key e can be public, while the decryption key has to be kept secret.
These are called public-key or asymmetric-key cryptosystems.

The study of how to attack a cryptographic algorithm is called cryptanalysis. In
this context, the security of a cryptosystem can be defined in different ways [124,
144]. In the information-theoretic sense, “secure” means unconditionally secure:
Even with unlimited computational resources, no adversary can break the
scheme.

If a scheme is not unconditionally secure, it is always possible to break it by
what is known as brute force: simple exhaustive search.

In the complexity-theoretic sense, “secure” means security against an adversary
performing arbitrary computations within certain limits (ideally, exponential
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in the size of the key space). Lastly, in the practical sense of the word, a scheme
can be considered secure if there is no known way of breaking it faster than
exhaustive search. While this interpretation is necessarily somewhat loose,
it has led to the development of practically usable algorithms that are still
considered secure after years of cryptanalysis [57].

In order to make a clear distinction between cryptography and cryptanalysis,
the term cryptology is sometimes used for the “combined” science of devising
and analysing cryptographic algorithms. We will however follow the common
convention and use cryptography and cryptology interchangeably [124].

1.1 Scope of this thesis

In the past decades, significant progress has been made in providing solid
foundations for the analysis and design of symmetric cryptographic algorithms.
The goal of obtaining rigorous arguments for a certain scheme has been
pursued from both the practical and the complexity-theoretic point of view.
In the practical security approach, methods have been developed to prove that
concrete algorithms resist certain classes of attacks [56, 117, 135, 158]. This
implies that in order to obtain even only a slight advantage over exhaustive
search for contemporary symmetric algorithms such as the AES [57], the
invention of new a cryptanalytic technique is required [31]. On the other
hand, the complexity-theoretic approach has led to generic designs for a secure
cipher [113], and also concrete proposals provably basing their security on a
hard computational problem [49].

However, the current level of understanding still leaves a lot to be desired,
especially concerning the analysis of generalised constructions, as opposed to
concrete algorithm proposals.

In this context, this thesis aims at studying the interplay between new
cryptanalysis techniques and the design of symmetric algorithms. Additionally,
formal security arguments against known attacks are analysed based on more
rigorous mathematical models, and special focus is given to the question
what the insights gained from proving security for concrete algorithms can
tell us about the security of generalised constructions, i.e. whole families of
algorithms.
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1.2 Contributions and outline

We review some basic definitions and techniques in Chapter 2. The first part of
the thesis then explores the impact of new attack techniques on design strategies
(and vice versa) at the example of algorithms for solving non-linear equations
over finite fields of characteristic two. In theory, any cryptographic algorithm
can be broken by solving a corresponding system of nonlinear equations. In
Chapter 3, we present a novel approach to solving these equations over the real
domain by modeling them as a continuous optimisation problem. Applying it
to the stream cipher MICKEY, we analyse advantages and limitations of this
approach and compare it to classical pseudo-Boolean programming. This work
has been published in [156].

In contrast to this continuous equation-solving strategy, Chapter 4 deals with
a dedicated discrete technique for solving typical non-linear equations arising
in cryptographic applications, the Rebound technique [122]. We outline the
power of this technique when applied to a cryptographic hash function secure
against basic differential collision attacks and analyse which design changes are
necessary to counter this cryptanalysis technique, leading to the hash function
Whirlwind. Finally, we demonstrate that a new variant of the Rebound
technique can improve its applicability even to the hash function Grøstl-0 which
was designed to resist this attack. This cryptanalysis in turn prompted design
changes, which lucidly demonstrates the importance of the interplay between
advances in cryptanalysis and design. The Whirlwind hash function proposal is
a joint work with Paulo Barreto, Ventzislav Nikov, Svetla Nikova and Vincent
Rijmen, and has been published in [11]. The results on Grøstl-0 were developed
in collaboration with Kota Ideguchi and Bart Preneel and have been published
in [90] and [91].

Some of the most powerful cryptanalytic techniques in symmetric cryptography
are statistical in nature, and many proposed attacks have time and data
complexities lower than exhaustive search, but beyond what can be practically
implemented and verified. Being able to accurately estimate their complexities
is therefore of great importance to the evaluation of symmetric algorithms.
In Chapter 5, we propose extended mathematical models for the complexity
analysis of both linear cryptanalysis and differential cryptanalysis with
structures by taking a more complete statistical picture into account. The work
on linear cryptanalysis was done jointly with Andrey Bogdanov and is currently
in submission [36]. The results on differential cryptanalysis are a joint work
with Meiqin Wang, Yue Sun and Bart Preneel and published in [161].

In Chapter 6, we take a generic look at the design of block ciphers. For any
key, a block cipher should behave like a random permutation. By obtaining
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a statement about the distribution of linear and differential properties in a
randomly chosen permutation, we are able to define a reference point for
statistical attacks. We then turn to the question of constructing a block
cipher from a small set of public permutations. Specifically, we provide
a theoretical analysis of key-alternating block ciphers with regard to their
statistical properties, quantifying the constructive effect of having multiple, but
not too many, rounds in such a design. Finally, the generic resistance against
information-theoretic adversaries limited to a certain number of queries to the
permutations and the cipher is analysed. This is a joint work with Andrey
Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert and
John Steinberger and has been published in [33,34].

Chapter 7 concludes and lists some starting points for future work.





Chapter 2

Foundations

2.1 Mathematical foundations

2.1.1 Finite fields and Boolean functions

Finite fields are a fundamental mathematical structure for symmetric-key
cryptography. Nearly all algorithms and operations are defined on F2, the
finite field of order 2, or some field extension thereof.

For every prime p and every positive integer n, there exists a finite field with
pn elements. We denote the finite field of order pn by Fpn or equivalently as
GF(pn).

Let q = pn be any prime power (including the case n = 1). The finite field
GF(qm) is isomorphic to an m-dimensional vector space over its subfield GF(q).
This means that one can construct a basis for GF(qm) over GF(q). Any such
basis consists of m elements β0, β1, . . . , βm−1 ∈ GF(qm) such that all elements
of GF(qm) can be written as a linear combination of the elements βj , with all
coefficients being elements of GF(q). There are many different choices possible
for the basis.

7
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Viewing the field extension GF(qm) as a vector space over GF(q), the trace of
an element a ∈ GF(qm) over GF(q) is defined as

TrGF(qm)/GF(q)(a)
def
= a+ aq + · · ·+ aqm−1

.

If q is prime, this trace is called the absolute trace of a.

We will often deal with F2 = {0, 1}, the finite field with two elements and the
n-dimensional vector space over F2, denoted F

n
2 . The canonical scalar product

of two vectors a, b ∈ F
n
2 is denoted by aT b.

A function f : F
n
2 → F2 with domain F

n
2 and range F2 is called a Boolean

function. A mapping f : Fn
2 → F

m
2 is called a vectorial Boolean function. We

usually omit the prefix “vectorial” if it is clear from the context. In the case of
a vectorial Boolean function with n = m, we speak of a Boolean transformation.
A special case of transformations are Boolean permutations, bijective mappings
of Fn

2 . We denote the set of all such permutations by Sn, the symmetric group
of degree n.

A fundamental tool in the theory of Boolean functions is the Walsh-Hadamard
transform, the discrete Fourier transform for fields of characteristic two. It is
defined for functions with domain F

n
2 and range R (note that this includes a

Boolean domain by field embedding). We denote the set of all such functions
by R

F
n
2 . The Walsh-Hadamard transform (Walsh transform for short)

W : RF
n
2 → R

F
n
2 , f 7→ f̂

is then defined as

W(f)(u) = f̂(u) :=
∑

x∈Fn
2

f(x) · (−1)uT x. (2.1)

The Walsh transform ϑ̂f of f ’s characteristic function ϑf : F
n
2 × F

q
2 → R,

ϑf (x, y) = 1 ⇔ y = f(x), is called the Walsh or Fourier spectrum of f , its
value at point (α, β) the Walsh or Fourier coefficient of f at (α, β). We denote
this value by

W f
α,β

def
=
∑

x∈Fn
2

(−1)αT x+βT f(x).

2.1.2 Discrete and continuous probability distributions

We denote by Bern(p) the Bernoulli distribution with success probability
p, by Bin(N, p) the binomial distribution with N experiments and success
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probability p, and by N (µ, σ2) the normal distribution with mean µ and
variance σ2. The probability density and cumulative distribution function
of the standard normal distribution N (0, 1) are denoted by φ(x) and Φ(x),
respectively. For a normal random variable X, the distribution of |X| follows
the folded normal distribution [110] with probability density function fφ(x) and
cumulative distribution function FΦ(x).

By X ∼v D, we denote a random variable X following a distribution D taken
over all values of v. The expectation of X with respect to v is denoted by
Ev[X], its variance (with respect to v) by Varv[X].

If the probability distribution of a discrete random variable X taking on integer
multiples of ǫ is approximated by a continuous distribution with cumulative
distribution function D(x), a continuity correction is required, which yields [60]

Pr(X = x) ≈ ǫdD(x)

dx
,

Pr(X < x) ≈ D(x− ǫ/2).

The Central limit theorem (CLT) states under which conditions the mean
of a sufficiently large number of independent random variables will be
approximately normally distributed. There are many variants of the central
limit theorem. We will use the Chebyshev formulation of the CLT:

Theorem 2.1 (Chebyshev’s CLT, [154, p. 488]). Let {Xn}∞
n=1 be a sequence

of independent random variables satisfying the following conditions:

1. E[Xk]2 <∞ for k = 1, 2, . . . and

lim
n→∞

Pr(|Xn| < b) = 1 for b > 0,

s2
n := Var[

n∑

i=1

Xi] −→∞ as n→∞;

2. E[Xk] = µk, Var[Xk] = σ2
k, k = 1, 2, . . . .

Then it holds that

lim
n→∞

Pr

([
1

sn

n∑

k=1

(Xk − µk)

]
≤ z
)

=
1√
2π

∫ z

−∞
e− 1

2 u2

du

for all z ∈ R.
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2.2 Symmetric primitives

Symmetric algorithms include symmetric-key encryption algorithms (cryptosys-
tems as defined in Chapter 1), and cryptographic hash functions. Symmetric
encryption algorithms can usually be categorized as either stream or block
ciphers; hash functions can be keyed (message authentication codes) or unkeyed.
This thesis deals with stream ciphers, block ciphers, and unkeyed hash
functions. They will be described in turn.

2.2.1 Stream ciphers

Stream ciphers are symmetric encryption algorithms that encrypt by combining
the plaintext with a pseudo-random sequence. They typically operate on small
units of plaintext at a time, usually bits or bytes. Stream ciphers take a key
k and an initial value IV to generate a pseudo-random sequence called the
key stream which is used to encrypt and decrypt data using the bitwise XOR
operation. The IV is used as a randomisation parameter to be able to generate
multiple key streams from the same key. Contrary to the key, it does not have
to be kept secret.

Stream ciphers come in two flavours: synchronous or self-synchronising. Self-
synchronising stream ciphers generate the key stream based on k, the IV and
some feedback from the last couple of ciphertext bits. By contrast, the key
stream generated by synchronous stream ciphers is completely defined by k and
the IV only and independent of the plaintext. Synchronous stream ciphers are
far more common than self-synchronising, some important examples being the
ubiquitous RC4 or the eSTREAM finalists, e.g. Trivium [42,43].

2.2.2 Block ciphers

A block cipher is a mapping E : Fn
2 × F

κ
2 → F

n
2 with the property that Ek

def
=

E(·, k) is a bijection of Fn
2 for every k ∈ F

κ
2 . If y = Ek(x), we refer to x as the

plaintext, k as the key and y as the ciphertext of x under the key k. We call n
the block length and κ the key size of the cipher. An alternative interpretation
is to view a block cipher as a family of permutations of Fn

2 indexed by the key.

Block ciphers are often constructed as iterated mappings based on round
functions ρi[ki]. Let R denote the number of rounds. A key scheduling

algorithm expands the encryption key k into R round keys K
def
= (k0, . . . , kR−1).

The ciphertext y is then obtained as y = xR with xi+1 = ρi[ki](xi). If the
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Li−1 Ri−1

Li Ri

f

ki

...

...

Figure 2.1: One round of a Feistel network.

iteration can be written as a sequence of unkeyed rounds and bitwise addition
of the round keys by XOR, the cipher is called a key-alternating cipher [54,57].
If all round functions ρi are identical, we speak of an iterated block cipher.

Two widespread paradigms for the construction of iterated block ciphers are
Feistel networks and Substitution-permutation networks (SPN)s, depicted in
Figures 2.1 and 2.2 , respectively. Note that ciphers using the SPN construction
are key-alternating by definition. However, also some Feistel ciphers [71] can
be written as key-alternating ciphers [58].

In an SPN, one often uses a linear mapping fp to provide diffusion. This
has become increasingly common since the invention of the wide trail design
strategy [55–57, 144]. Let n = ml. The diffusion performance of such a linear
mapping fp : Fm

2
l → F

m
2

l can be expressed by means of its branch number

B(fp) := min
0 6=a∈Fml

2

w(a) + w(fp(a)),

with w denoting the weight (number of nonzero components) of the l-component
vector a. We note that B(fp) ≤ l + 1.



12 FOUNDATIONS

fs fs fs fs

fp

xi

xi−1

ki

...

...

· · ·

Figure 2.2: One round of a Substitution-Permutation network.

2.2.3 Hash functions

In this thesis, we deal with unkeyed hash functions only. An unkeyed
cryptographic hash function is a function h : F

∗
2 → F

n
2 mapping sequences

of arbitrary length to a fixed-length output. A cryptographically secure hash
function should fulfill the following three informal security properties:

• Collision resistance: Finding any two inputs m 6= m′ such that h(m) =
h(m′) should require at least 2n/2 operations;

• Second preimage resistance: Given m such that h(m) = v, finding a
second input m′ 6= m such that h(m) = h(m′) should require at least 2n

operations;

• Preimage resistance: Given any hash value v, finding an input m such
that h(m) = v should require at least 2n operations.

In the scope of this thesis, we will deal with collision resistance only. Like block
ciphers, hash functions are often constructed in an iterated way by utilising a
compression function φ taking fixed-length inputs. For a message of t fixed-
length blocks, one sets h0 := IV and hi = φ(hi−1,mi) for i = 1, . . . , t, where
mi denotes the i-th block of the input and IV is some fixed initial value. The
hash value is then ht or some function thereof.
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For iterated hash functions, one can consider two weaker attack scenarios: A
free-start collision is a pair of (m, I) and (m′, I ′) with m 6= m′ and I 6= I ′

such that m and m′ collide when I resp. I ′ are used as initial values. In a
semi-free-start collision, I = I ′ (but can be different from the specified IV).

2.3 Symmetric cryptanalysis methods

Cryptanalytic attacks can greatly vary in their requirements regarding the
attacker’s abilities in the interaction with the communicating parties. Attacks
on symmetric cryptosystems are typically classified as follows [124]:

Ciphertext-only. The attacker only knows a set of ciphertexts.

Known plaintext. The attacker has plaintexts P1, . . . , Ps and the correspond-
ing ciphertexts C1, . . . , Cs at their disposal.

Chosen plaintext. Prior to the attack, the attacker chooses fixed plaintexts
P1, . . . , Ps and obtains their corresponding encryptions C1, . . . , Cs.

Adaptively chosen plaintext. In an extension of the chosen-plaintext set-
ting, the attacker can choose the plaintexts interactively during the attack,
that is, he chooses P1, receives C1, chooses P2, receives C2, and so on.

In all cases, the attacker’s goal is to either derive the decryption key or to
be able to perform operations that should only be possible with knowledge of
the key, for instance determining the encryptions or decryptions of messages
previously unknown to the attacker.

In this section, we briefly describe the theoretical foundations of the two most
important statistical analysis methods for symmetric primitives. We will turn
back to these attacks in more detail in Chapters 4 to 6.

2.3.1 Differential cryptanalysis

Differential cryptanalysis was proposed by Biham and Shamir [22]. To date,
it is one of the most influential analysis methods for symmetric primitives, for
ciphers as well as for hash functions.

Its main idea is to analyse the propagation of differences through mappings.
Throughout this thesis, we will deal with XOR differences between Boolean
vectors: if u⊕ v = α, then the difference between u and v is said to be α.
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The propagation of differences through mappings is captured in the notion of
differentials: A differential over an n-bit vectorial Boolean function consists
of an input difference α and an output difference β and is denoted by (α, β).
Furthermore, we denote by Nf

α,β the cardinality of the differential (α, β) for f ,
which is defined as the number of unordered pairs {v, u} with input difference α

and output difference β: Nf
α,β

def
= {{v, u} | v⊕u = α and f(v)⊕f(u) = β}. The

probability DPf
α,β of the differential (α, β) over f is related to its cardinality

via DPf
α,β = Nf

α,β/2
n−1.

For iterated mappings f = f t◦· · ·◦f1, a differential (α, β) gives rise to at least t
connected differentials for each step function. A differential trail, characteristic
or path through f is a vector Q = (α0, . . . , αt) with αi specifying the difference
at the i-th intermediate step. The differential probability of Q now is the
fraction of unordered pairs satisfying each intermediate difference. By contrast,
the differential (α0, αt) over the iterated map f encompasses all unordered pairs
with input difference α0 and output difference αt, with arbitrary intermediate
differences. Therefore, the probability of a differential will always be at least
as high as that of a trail belonging to the differential.

In an iterated symmetric algorithm based on substitution boxes, we call an
S-boxes (differentially) active if it has an nonzero input difference.

2.3.2 Linear cryptanalysis

Linear cryptanalysis was proposed by Matsui [115, 116]. Alongside differential
cryptanalysis, it is one of the most powerful methods for the analysis of
symmetric algorithms.

Its main idea is to exploit the presence of linear approximations (linear
relations of selected input and output bits) that occur with some bias, i.e.
their probability is different from 1/2.

A linear approximation (α, β) of a vectorial Boolean function f : F
n
2 →

F
n
2 is said to hold with probability p

def
= Prx∈Fn

2
(αTx = βT f(x)). The

deviation of p from 1/2 is called the bias ǫ
def
= p − 1/2. The correlation

of a linear approximation (α, β) is Cα,β
def
= 2p − 1 = 2ǫ. The quantity

LP
def
= C2

α,β is called the linear probability of (α, β). Another related
quantity is the imbalance of the linear approximation, which is given by
Iα,β = 1/2

(
#{x | αTx⊕ βT f(x) = 0} −#{x | αTx⊕ βT f(x) = 1}

)
= 2n−1 ·
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Cα,β . This also establishes the following relation to the Walsh transform:

2n · Cα,β = 2 · Iα,β =
∑

x∈Fn
2

(−1)αT x+βT f(x) = Wα,β .

As in differential cryptanalysis, a linear approximation (α, β) for an iterated
map can actually be decomposed into connecting linear approximations for the
intermediate steps. For each fixed value of the intermediate masks αi, such
a sequence is called a linear trail [57] or linear characteristic [115, 116]. The
approximation (α, β) can permit many trails with the same input mask α and
output mask β, but different intermediate masks. The collection of all such
trails is called the linear hull (α, β) [133,134].





Chapter 3

Stream ciphers and
nonsmooth cryptanalysis

In contrast to public-key cryptography, where the security of a scheme is usually
based on an—ideally tight—reduction or even equivalence to a well-known
“hard” computational problem, the security of symmetric encryption algorithms
is based on withstanding continuous cryptanalytic evaluation. Therefore, the
evolution of cryptanalytic techniques has great impact on commonly accepted
construction criteria for symmetric primitives. A prominent example of
this evolution are differential and linear cryptanalysis and their refinements,
which were successfully applied to many symmetric primitives, while as well
motivating research into construction strategies providing resistance against
these attacks.

In this chapter, we present a novel approach to the cryptanalysis of symmetric
algorithms based on nonsmooth optimisation. We develop this technique as
a novel way of dealing with nonlinearity over F2 by modeling the equations
corresponding to the algorithm as a continuous optimisation problem that
avoids terms of higher degree. The resulting problems are not continuously
differentiable, but can be approached with techniques from nonsmooth analysis,
the crucial property being that the resulting expressions are still Lipschitz-
continuous. To the best of our knowledge, this is the first application of
methods from nonsmooth optimisation in cryptanalysis.

While the approach presented in this chapter is applicable to generally all kinds

17
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of symmetric primitives (block ciphers, hash functions, message authentication
codes), we focus on its application to the cryptanalysis of stream ciphers, more
specifically the stream cipher MICKEY, which is part of the eSTREAM final
portfolio.

Stream ciphers are a particularly attractive target for the numerical cryptanal-
ysis approach since typically one bit of keystream is generated per state update,
whereas block ciphers and hash functions commonly apply many iterations of
a transformation to each plaintext or message block, which results in larger
systems of equations. Analyzing the stream cipher MICKEY is particularly
interesting since it has a relatively small state size of 200 bits and is the only
algorithm in the hardware-oriented eSTREAM portfolio without any published
cryptanalytic results.

First, we review the approach of cryptanalysing symmetric algorithms by
equation solving. In general, direct attempts to solving the resulting equations
have had very limited success; see for instance [46] for a comprehensive
treatment in the case of contemporary block ciphers. We then turn to the
idea of reformulating the arising discrete optimisation problems as continuous
ones. In symmetric cryptanalysis, this approach has met with considerably
more success than the discrete methods [37–39, 127]. However, when applied
to full-scale stream ciphers such as Trivium [42, 43], their complexity greatly
exceeded the effort of brute-force key search.

Since all of these methods were using polynomial models for Boolean equations,
and issues with the inherently high degree of the expressions were encountered,
it seems promising to investigate alternative approaches.

One of the classical frameworks in the context of solving discrete problems in
a continuous way is pseudo-Boolean optimisation [40]. However, we prove that
its principal algorithm, the DDT heuristic, generally does not approximate the
optimum by a constant factor, making it unsuitable for our purposes.

We then develop our main tool, which we call nonsmooth cryptanalysis. Exper-
imental results incidate that our method can solve instances corresponding to
the full MICKEY stream cipher, although with time complexity slightly greater
than brute force. These results have been published in [156].

3.1 The equation-solving approach in cryptanalysis

As seen in Chapter 2, the operation of symmetric encryption algorithms (both
block and stream ciphers) can be viewed as the action of Boolean functions
on vector spaces over the binary field F2. If an attacker is able to efficiently
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solve these equations (either deterministically or with non-negligible success
probability), he can break the corresponding cryptographic algorithm: In the
case of block ciphers, stream ciphers or message authentication codes, this
enables a known-plaintext attack by solving for the variables representing the
key; for hash functions, obtaining a characterisation of the set of solutions will
enable the attacker to construct collisions or even (second) preimages. It is
worth noting that even the ability to solve a particular subsystem or simplified
variant of the system of equations – for example with some variables assumed to
have particularly useful constant values – might lead to significant cryptanalytic
progress, since then all plaintexts, keys or to-be-hashed messages exhibiting this
very structure will be susceptible to attack.

With nonlinearity being a fundamental requirement for a cryptographic
primitive, the resulting systems of equations are typically highly nonlinear
and hence difficult to solve directly. Solving even quadratic equations over
finite fields is known to be an NP-complete problem, and approaches based on
Gröbner bases [46] or linearisation techniques [50] have had limited success so
far, especially when applied to full algorithms, as opposed to reduced and/or
simplified variants.

On the other hand, there exists a rich theory and supporting experimental
evidence for solving real-valued systems of equations or optimising continuous
objective functions [76, 131]. It therefore seems promising to apply the well-
established algorithms from numerical optimisation to the cryptanalysis of
symmetric primitives. This approach has been introduced by [127], considering
polynomial models of the Boolean equations. Alternative approaches such as
Mixed Integer Programming or Simulated Annealing have been investigated
in [39] and [38].

3.1.1 Formulation as continuous optimisation problems

Since numerical optimisation algorithms generally operate on (vector spaces
over) the reals, a natural approach to applying them to systems of Boolean
equations is to represent these systems as equations over the reals. First of all,
the two Boolean values have to be mapped to two distinct real numbers, two
natural mappings being the following [37,127].

Definition 3.1 (Standard representation). The mapping from {False, True} ∼=
F2 to R given by

False 7→ 0,

True 7→ 1
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is called the standard representation of the Booleans.

Definition 3.2 (Fourier representation). The mapping from {False, True} ∼=
F2 to R given by

False 7→ 1,

True 7→ −1

is called the Fourier representation of the Booleans.

By exchanging False and True in these mappings, we obtain the dual and sign
representations, respectively [37,127].

There also exist efficient conversion mappings between these representations.
Having fixed the conversion method, any Boolean function can be expressed in
terms of polynomials with real coefficients by means of polynomial interpolation
of its truth table [37]. Choosing different representations for elements and
Boolean operations can result in significantly different systems of equations
exhibiting different numerical behaviour [127].

A clear advantage of polynomial representations of Boolean functions is
the immediate applicability of well-established equation solving techniques.
However, a drawback of the polynomial approach is that addition in F2 is
necessarily converted into a nonlinear operation: for instance, using Fourier
representation, a+b over F2 becomes a×b over the reals. Higher degrees usually
have negative impact on the effectiveness of optimisation algorithms [37, p. 133].

While approaches such as the adapted standard conversion method exist to
mitigate this effect to some extent [127], the approach proposed here seeks to
avoid higher degrees altogether by means of a nonsmooth model of Boolean
equations.

Note that instead of solving a system of equations F (x) = 0 with F : Rm → R
n,

one can alternatively solve the optimisation problem

min
x∈Rm

‖F (x)‖, (3.1)

where ‖ · ‖ is any norm, since for all y, ‖y‖ ≥ 0 and ‖y‖ = 0 if and only if y = 0.
Therefore, both numerical algorithms for solving equations and minimisation
algorithms from nonlinear optimisation can be used. Since we are interested in
solutions that can be mapped back to Boolean values, additional box constraints
of the form xi ∈ [0, 1] can be added.

Furthermore, unless the cipher has equivalent keys (which would be a weakness
on its own), the systems of equations are expected to have precisely one solution
over F2 which is not the case for optimisation problems in general.
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3.2 Pseudo-Boolean optimisation and the DDT

heuristic

The idea of modeling discrete optimisation problems as continuous ones
and subjecting the real-valued models to techniques inspired from nonlinear
optimisation has previously been applied in the context of so-called pseudo-
Boolean functions [81]. While this area is mostly aiming at efficient dedicated
heuristics for NP-hard problems, the possibility of applying methods of convex
analysis and nonlinear programming in general to problems which are otherwise
discrete in nature is explicitly mentioned in [40].

We briefly outline the main concepts of pseudo-Boolean optimisation. Let B =
{0, 1} and denote the unit interval by U = [0, 1]. Functions of the type f :
B

n → R are called pseudo-Boolean functions. They can be uniquely written as
multi-linear polynomials, that is, as

f(x1, . . . , xn) =
∑

S⊆{1,...,n}
cS

∏

j∈S

xj (3.2)

with cS ∈ R. If one allows both the variables xi and their complements xi
def
=

1 − xi to appear as literals, pseudo-Boolean functions can alternatively be
written as posiforms, i.e. as

φ(x1, . . . , xn) =
∑

T ⊆L

aT

∏

u∈T

u, (3.3)

with L = {x1, x1, . . . , xn, xn} and nonnegative coefficients, i.e. aT ≥ 0 if T 6= ∅.
For T = ∅, aT can be negative, and by convention,

∏
u∈∅ u = 1.

The following property allows us to view the optimisation of a pseudo-
Boolean function as a continuous nonlinear optimisation problem over the unit
hypercube U

n:

Theorem 3.3 ([40]). For any pseudo-Boolean function f ,

min
x∈Bn

f(x) = min
a∈Un

f(a).

By means of the derivative of a pseudo-Boolean function:

∆i(x)
def
=

∂f

∂xi
(x)

= f(x1, . . . , xi = 1, . . . , xn)− f(x1, . . . , xi = 0, . . . , xn), (3.4)

a simple characterisation of local optima can be given:
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Theorem 3.4 ([40]). Let f : B
n → R be a pseudo-Boolean function. The

vector x is a local minimum of f if and only if

xi =

{
1 if ∆i(x) < 0,

0 if ∆i(x) > 0
(3.5)

for all i = 1, . . . , n.

This criterion can be used to obtain a characterisation of the i-th component
of all local minima in terms of the other components of the vector. If this is
successively done for all components in an elimination-like scheme, it results
in a global minimum. If all successive derivatives of f and its transformations
during the elimination process depend only on some bounded number n′ < n of
variables, this algorithm can be shown to run in polynomial time of the input
size and 2n′

(see [51]). However, in general the execution time is exponential
in the input size.

An alternative practical approach is to exploit the fact that the optimisation of a
pseudo-Boolean function can be reduced in polynomial time to the optimisation
of a quadratic pseudo-Boolean function [148] and design heuristics for the
minimisation of this subtype of pseudo-Boolean functions.

One widely employed heuristic based on this fact is the DDT heuristic
(“devour, digest, tidy up”), which is a greedy algorithm successively restricting
the Boolean cube to smaller subcubes in which the terms with the highest
remaining coefficient vanish [40]. It is described in Algorithm 3.1.

Algorithm 3.1 The DDT heuristic for pseudo-Boolean optimisation.

Input: Quadratic posiform φ(x) =
∑

T ⊂L
aT

∏
u∈T u.

Output: Approximation x̃ of a minimum of φ.
1: S ← ∅, φ̃← φ
2: [Devour] Find term T with largest coefficient aT and set S = S ∪ {T}.
3: [Digest] Draw all logical conclusions C from the Boolean equation∨

T ∈S
T (x) = 0. (3.6)

4: [Tidy up] Substitute the consequences C into φ̃ and simplify the result.
5: if φ̃ ≡ const then

6: return a solution x̃ of equation (3.6).
7: else

8: go to step 2.
9: end if
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Due to the special form of the quadratic Boolean equation (3.6), the conclusions
can be determined in polynomial time [40]. However, while reported to work
well in practice, this heuristic does not provide strong guarantees about the
quality of the solution it determines. In particular, we show that it does not
always approximate the optimum by a constant factor.

Definition 3.5. Let P a minimisation problem and denote by P(i) the
optimum of problem instance i . A heuristic H for P is called a constant-factor

approximation algorithm for P if there exists an ε ≥ 0 such that H(i)
P(i) ≤ 1 + ε

for all problem instances i.

Theorem 3.6. The DDT heuristic is not a constant-factor approximation
algorithm for the pseudo-Boolean minimisation problem PBO.

Proof. We will prove the statement by explicitly constructing a family of
problem instances for which the DDT heuristic fails to provide a constant-factor
approximation. Specifically, for any dimension n ≥ 3, define the following
problem instance in the variables x1, . . . , xn:

f(x1, . . . , xn) = (a+ 1)x1 +
∑

1<i≤n

axi +
∑

1<j≤n

bx1xj (3.7)

for positive integers a, b satisfying the conditions

a > b (3.8)

and a+ 1 < (n− 1)b. (3.9)

Note that inequalities (3.8) and (3.9) are not contradictory, for example, a =
4, b = 3 is a valid choice for all n ≥ 3.

The DDT heuristic, applied to this posiform, will take the following steps:

1. Select literal x1, set C := {x1 = 1} and φ̃ :=
∑

1<i≤n axi +
∑

1<j≤n bxj .

2. This step is repeated n−2 times for k = 2, . . . , n−1: Select literal xk, set
C := {x1 = 1, . . . , xk = 1} and φ̃ :=

∑
k<i≤n axi +

∑
k<j≤n bxj + (k− 1)b.

3. Now, φ̃ is simplified to axn + bxn + (n − 2)b. Select literal xn, set C :=
{x1 = · · · = xn = 1} and φ̃ := (n− 1)b, which is a constant expression in
the xi.

4. Output the solution x = (1, . . . , 1) with f(x) = (n− 1)b.
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However, f does not have a minimum at x = (1, . . . , 1) for any n ≥ 3. To see
this, note that expression (3.7) can be characterised in terms of the Hamming
weight wh(·) of the vector (x2, . . . , xn): We have

f(x1, . . . , xn) =

{
(a+ 1) + (n− 1− wh(x2, . . . , xn)) · a if x1 = 0,

(n− 1− wh(x2, . . . , xn)) · a+ wh(x2, . . . , xn) · b if x1 = 1.
(3.10)

Suppose first that x1 = 0. Abbreviating the weight of (x2, . . . , xn) by w,
equation (3.10) becomes g(w) = a+ 1 + (n− 1− w)a and since

min
(x2,...,xn)∈Bn−1

f(0, x2, . . . , xn) = min
w∈{0,...,n−1}

g(w),

the minimum of f(x)
∣∣
x1=0

is given by

arg min
w∈{0,...,n−1}

g(w) = arg min
w∈{0,...,n−1}

−aw + na+ 1

= n− 1,

and we have g(n− 1) = f(0, 1, . . . , 1) = a+ 1 for all n.

If, on the other hand, x1 = 1, then equation (3.10) becomes h(w) = (n − 1 −
w)a+ wb and the minimum of f(x)

∣∣
x1=1

is given by

arg min
w∈{1,...,n−1}

h(w) = arg min
w∈{1,...,n−1}

(b− a)w + (n− 1)a

= n− 1,

since b− a < 0 because of condition (3.8). We have h(n− 1) = f(1, 1, . . . , 1) =
(n−1)b, which is strictly greater than a+1 per assumption (3.9). Consequently,
f attains its minimum value a + 1 at x = (0, 1, . . . , 1). Furthermore, this
minimum is unique since there is only one binary vector of length n − 1 with
Hamming weight n− 1.

Comparing the output of the DDT heuristic with the actual minimum, we find
that

DDT (f)

PBO(f)
=
b(n− 1)

a+ 1
,

which is not a constant since it still depends on the problem size. This proves
the claim.

This result by itself does not imply that the DDT heuristic cannot be useful
in some practical applications. As we will see, however, it constitutes a
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significant theoretical disadvantage in comparison to nonsmooth algorithms.
Experimental results for the application of the DDT heuristic to pseudo-
Boolean models of state and key recovery for the stream cipher MICKEY are
given in Section 3.4.6.

3.3 Nonsmooth cryptanalysis

Approaches to converting systems of equations corresponding to cryptanalytic
problems such as recovering a previous internal state or the key to the reals
and subjecting them to numerical optimisation have so far been focusing on
polynomial representations [39, 127]. The success of this approach has been
shown to significantly rely on both the overall dimension and the individual
degree of the expressions not becoming prohibitively high [37, 127]. While
degree can be traded for dimensionality and vice versa, especially the models
for full-scale algorithms turned out to be too big for most solvers.

3.3.1 A nonsmooth model of Boolean equations

An alternative approach to reducing the problems associated with the degree
is to choose another real-valued representation that inherently avoids higher
degrees. We propose the following representation providing this property:

Definition 3.7 (Nonsmooth representation and conversion). Consider arbi-
trary expressions T over F2 using the operations · (negation), ∧ (logical
AND), ∨ (logical OR) and ⊕ (EXOR). Their conversion ψ(T ) into nonsmooth
representation over the reals is recursively defined as

ψ(T ) =





0 ∈ R, if T = 0 ∈ F2, (3.11)

1 ∈ R, if T = 1 ∈ F2, (3.12)

1− ψ(a), if T = a, (3.13)

min{ψ(a), ψ(b)}, if T = a ∧ b, (3.14)

max{ψ(a), ψ(b)}, if T = a ∨ b, (3.15)

max{ψ(a), ψ(b)} −min{ψ(a), ψ(b)}

= |ψ(a)− ψ(b)|. if T = a⊕ b. (3.16)
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It is easy to see that for a, b ∈ B, the roots of the Boolean expressions
correspond to the roots of their real-valued counterparts. However, while this
correspondence also holds vice versa in the case of ·,∧ and ∨ (e.g. min{a, b} = 0
if and only if a or b are zero), |a− b| = 0 holds for any a = b ∈ R, so specifically
also for all values in the unit interval. This implies that while any solution in
the Boolean domain is also a solution over the reals, there does not necessarily
have to be a Boolean counterpart to all solutions of the real-valued model.

We refer to the maximum number of nested nonsmooth operations min,max
and | · | in an expression as its “nonsmooth degree”, or just “degree” if the
context is clear:

Definition 3.8. Consider the nonsmooth representation TN = ψ(T ) of a
Boolean expression T over variables x1, . . . , xm as in Definition 3.7. The
nonsmooth degree d(TN ) of TN is recursively given by

d(TN ) =





1 + max{d(a), d(b)}, if TN = min{a, b} or TN = max{a, b}
or TN = |a− b|,

d(a) if TN = 1− a,

0 if TN = xi, 0, 1.

For example, the nonsmooth degree of the expression x is zero, and max{1 −
x, |x− y|} has degree two.

A visual depiction of the nonsmooth function FN (x, y) = 1 −max{x, |x − y|}
resulting from the conversion of the Boolean expression F (x, y) = x ∨ (x⊕ y)
can be found in Figure 3.1, along with the polynomial conversion of F (x, y)
according to the standard representation method of Definition 3.1. In order
to provide a more complete picture, the unit hypercube has been extended to
[−1, 1]2 in this figure.

Definition 3.9 (Polytope). For fixed 0 6= a ∈ R
n and α ∈ R, we denote the

closed half-space defined by a and α by

Ha,α
def
= {x ∈ R

n | aTx ≥ α}.

A set P ⊆ R
n is called a convex polytope (or polytope for short) if it can be

written as the intersection of a finite number of closed half-spaces.

As can be seen in Figure 3.1a, the resulting expressions are actually piecewise
linear on different subsets partitioning the whole R

n. However, the objective
function is usually not linear due to the use of a norm (3.1). When used in an
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(a) Nonsmooth conversion. (b) Polynomial conversion (standard
representation).

Figure 3.1: Conversion of the Boolean function F (x, y) = x ∨ (x⊕ y) to the
reals.

equation-solving (instead of minimisation) context, the problem of obtaining a
solution could be rewritten as a feasibility problem, that is, as determining an
element of a complex intersection of cutting hyperplanes in R

n. This seems to
suggest that standard linear programming techniques could be used to solve
this problem. However, linear programming requires the optimum to be in a
vertex of the resulting polytope, which need not to be the case for our model.
Therefore, linear programming and related techniques are not applicable in the
nonsmooth model.

It is also worth noting that in most applications of nonsmooth optimisation, the
nonsmoothness arises as an inherent property of the problem that is difficult
to overcome. By contrast, in our case, we deliberately choose a nonsmooth
representation for a discrete problem.

3.3.2 Minimising nonsmooth functions: The Bundle method

Naturally, this nonsmooth representation is unsuitable for most numerical
solvers, since they expect differentiable functions to calculate descent directions.
However, nonsmooth analysis is a branch of calculus dealing with this type of
functions [64]. The crucial observation is that those functions and compositions
of them are still locally Lipschitz-continuous:
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Definition 3.10 (Local Lipschitz continuity). A function f : R
n → R

m is
called locally Lipschitz-continuous in a point x if there exist L > 0 and δ > 0
such that

‖f(y)− f(x)‖ ≤ L‖y − x‖ ∀y ∈ Bδ(x),

where Bδ(x) := {y ∈ R
n : ‖y − x‖ < δ} denotes the open ball of radius δ

centered at x.

Informally, this means that the slope of all secants of the function’s graph in
some neighbourhood of x is bounded by the Lipschitz constant L (which may
depend on x); f cannot change arbitrarily fast around x. This property enables
local line-search based techniques.

Convex functions are a particularly convenient subclass of locally Lipschitz-
continuous functions:

Definition 3.11 (Convex function). A function f : X ⊆ R
n → R is convex in

X if and only if X is a convex set and for all x, y ∈ X and all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Intuitively, convex functions have the property that any line segment connect-
ing two points on its graph lies on or above the graph. It follows from the
definition that a local minimum of a convex function is automatically also a
global minimum.

For the sake of a clearer exposition, we will first deal with the convex case,
but the developed concepts readily carry over to the Lipschitzian case. The
only major differences concern guarantees regarding global optimisation and,
sometimes, the rate of convergence. An outline of how to adapt the algorithms
to the nonconvex case is given in Section 3.3.3.

A second prerequisite for a nonsmooth optimisation algorithm is a characteri-
sation of descent directions.

Definition 3.12 (Direction of descent). Let f : R
n → R. A direction s ∈

R
n \ {0} is called a direction of descent (or descent direction) of f at point x if

the directional derivative of f in x exists and is negative:

f ′(x, s) := lim
λ→0+

f(x+ λs)− f(x)

λ
< 0.

A steepest descent direction of f at point x is a direction s such that

f ′(x,
s

‖s‖ ) = min
‖t‖=1

f ′(x, t).
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Figure 3.2: Example illustrating the inapplicability of gradient descent search
to nonsmooth objective functions.

If f is differentiable in x, then

s := −λ · ∇f(x)

gives a direction of steepest descent.

Since the expressions arising from equations (3.11)–(3.16) are only nondifferen-
tiable at a finite number of points, the computation of directional derivatives
(and therefore descent directions) is possible in most cases. A straightforward
application of a line-search strategy to find steepest directions of descent is
however not guaranteed to succeed. One can construct functions (see e.g. [47])
which are only nonsmooth at one point and still cause the gradient descent
method to fail. A contour map of such an example is depicted in Figure 3.2,
where the objective function is smooth on R

2\{(0, 0)}. The sequence of steepest
descent directions (depicted in green) converges to the nonsmooth point (0, 0),
without taking into account that (−σ, 0) still is a direction of steepest descent
in the origin.

In nonsmooth analysis, the role of the gradient is replaced by the notion of
subgradients:

Definition 3.13 (Subgradient, subdifferential). Let X ⊆ R
n and f : X → R

convex. The vector g ∈ R
n is called a subgradient of f in x if

f(y)− f(x) ≥ gT (y − x) ∀y ∈ X.
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The subdifferential ∂f(x) is defined as the set of all subgradients of f at point
x.

However, subgradients cannot directly be used to calculate descent directions.
In contrast to the smooth case, −g for g ∈ ∂f(x) is not necessarily a direction
of descent.

An intuitive way of using the subdifferential for optimisation is the following:
Consider the convex minimisation problem minx∈X f(x) with X ⊂ R

n a
compact set. Given pairs (xk, gk) with xk ∈ X and gk ∈ ∂f(xk), observe
that the linear mapping

lk(x) := f(xk) + gkT
(x− xk) (3.17)

is a minorant of f for each k. Consequently, an underestimation of f is given
by the piecewise linear model

F cp
k (x) := max

0≤j≤k
lj(x), (3.18)

called the cutting plane model of f . By determining the next point of iteration
xk+1 as the minimum of F cp

k (x) subject to x ∈ X, this model is incrementally
refined by inclusion of another linear minorant lk+1 given by the subgradient
gk+1 at xk+1. The gap between f and lk is called the linearisation error
and denoted αk. By the extreme value and Heine-Borel theorems [162], the
minimisation of F cp

k (x) is well-defined. This idea is illustrated in Figure 3.3
(note that in this figure, the bundle has already been pruned, so that y1, y2 and
y3 do not correspond to three successive iterations).

There are two main issues with this method. First, it only applies to compact
sets X which means that it cannot be used for unconstrained minimisation.
Second, it can require a very large number of iterations which also causes an
intolerable growth of the size of the cutting plane model. An example of this
is provided in [87], where a minimisation problem over the unit ball in only 25
variables with nonsmooth degree 2 is shown to require at least 259 iterations of
the cutting plane method (and, accordingly, a model of 259 planes).

The first issue can be resolved by adding a quadratic regularisation term and
determining the next point of iteration by minimising F cp

k (x) + 1
γk
‖x− xk‖2

instead, where γk > 0 is a parameter that can be adaptively chosen during the
iteration. The second issue can be addressed by removing old and potentially
irrelevant parts of the cutting plane model. This leads to the so-called bundle
idea [126].

The idea of the Bundle method can be interpreted in two alternative ways:
First, as a refinement of the cutting plane method which dynamically adapts
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Figure 3.3: The idea of the Bundle method: approximate f from below by a
cutting plane model. x̃ denotes the minimum of f on X.

the model to the progress of the iteration: If the improvement suggested by the
next step is too small, a “null step” is made to improve the model by sampling
more subgradient information before proceeding; otherwise, a “serious step” is
performed in which old and potentially irrelevant parts of the cutting plane
model are removed. This ensures that the size of the model does not increase
arbitrarily.

Its second – dual – interpretation, views the set of all convex combinations
of the subgradients in the bundle as an approximation of the so-called ε-
subdifferential:

Definition 3.14 (ε-subgradient, ε-subdifferential). Let f : R
n → R convex

and ε ≥ 0. A vector g ∈ R
n is called ε-subgradient of f in x if

f(y)− f(x) ≥ gT (y − x)− ε ∀y ∈ R
n.

The ε-subdifferential ∂εf(x) is the set of all subgradients of f in x.

The advantage of the ε-subdifferential in a point x0 is that it contains
information about subdifferentials in the neighbourhood of x0 in the sense
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that for any ε > 0, there exists a δ > 0 such that

⋃

y∈Bδ(x0)

∂f(y) ⊂ ∂εf(x0).

Furthermore, it is easy to see that stationary points with respect to the ε-
subdifferential are necessarily ε-optimal:

Proposition 3.15. For a convex function f : Rn → R and ε ≥ 0, the following
statements are equivalent:

(1) x̄ is ε-optimal, i.e. f(x̄) ≤ f(x) + ε for all x.

(2) 0 ∈ ∂εf(x̄).

Let PX : x 7→ arg miny∈X ‖y − x‖ denote the orthogonal projection onto a
convex closed set X ⊆ R

n. It can be shown that the negative of the orthogonal
projection of the origin onto ∂εf(x) is a direction of steepest descent for all
non-ε-optimal points [87]. The main problem with exploiting this, however,
is that ∂εf(x) as a whole (in contrast to finding a single subgradient) and
therefore also −P∂εf(x)(0) are difficult to determine. The Bundle method
therefore approximates ∂εf(x) by the convex hull of a bundle of subgradients
to determine directions of descent, see Figure 3.4.

G

0

∂εf(x)

g0

g2

g4

PG(0) = g1

g3

−γ · g1

Figure 3.4: Determining descent directions via projection on the convex
approximation of the ε-subdifferential. G = conv{g0, . . . , gk} denotes the
convex hull of the subgradients in the bundle.

A simplified version [157] of the Bundle method for the convex real-valued case
is described in Algorithm 3.2. The parameter γ combines the Bundle method
with ideas from trust-region algorithms [151] by specifying a trust region radius
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for the cutting plane subproblem (3.19). The version presented here does put
relatively little effort into fine-tuning the trust region. In [151], for instance, an
extensive inner iteration is performed to assess the trust region. The parameter
η ∈ (0, 1) specifies how big the improvement of the objective function compared
to the improvement predicted by the cutting plane model has to be in order to
carry out a serious step. Finally, ε specifies an acceptable (additive) defect for
the approximation of the minimum.

We briefly outline the operation of Algorithm 3.2. Throughout the description,
vectors are indicated with Latin, and real numbers with Greek characters. The
algorithm keeps a bundle of points yj and corresponding subgradients gj for
j ∈ Jk. In each step, first the trust region radius γk is assessed and a new
step vector s is determined by solving subproblem (3.19). This subproblem is a
simple reformulation of the nonsmooth problem of minimising (3.18): Instead
of minimising a piecewise linear max-type function, we find a simultaneous
minimum upper bound for all the linear functions. Due to the regularisation
term ‖s‖2, this is a quadratic optimisation problem with linear inequality
constraints, which can be efficiently solved, for instance with the active set
strategy [131].

Then, the stop criterion is evaluated: If the previous step and the sum of the
linearisation errors with respect to the cutting planes with active Lagrange
multipliers (λk

j > 0) was small, we have reached an ε-optimal point and stop.
If this is not the case, the algorithm compares the actual improvement of
the objective function to the prediction by the cutting plane model. If the
improvement is significant enough, the iteration moves forward and prunes
the bundle by only keeping those points yj and subgradients gj with nonzero
Lagrange multipliers (i.e. those cutting planes that support f from below).
Otherwise, more subgradient information is sampled around the current point
of iteration.

For convex objective functions, this method converges globally. If f is not
convex, a few modifications to the algorithm are necessary, and additional
assumptions (i.e. requiring f to be semi-smooth) are required for a global
convergence result [151]. This is detailed in the following section.

3.3.3 Dealing with nonconvex objective functions

The main advantage in convex (and dually, concave) optimisation is that
local optima are global optima by definition. If the objective function is
merely locally Lipschitz-continuous, a more general notion of subdifferential
is required. While there exist many proposals for subdifferentials of locally
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Algorithm 3.2 The Bundle method for nonsmooth optimisation (convex case).

Input: f : Rn → R convex.
Output: Approximation x̃ of a minimum of f .

1: Choose starting point x0 and parameters γ+ ≥ γ− > 0, η ∈ (0, 1) and
ε ≥ 0.

2: Determine g0 ∈ ∂f(x0) and set y0 ← x0, α0 ← 0, J0 ← {0}.
3: for k = 0, 1, . . . do

4: Choose γk ∈ [γ−, γ+] and determine a KKT tuple (sk, ξk, λk) of the
problem

min
s,ξ

ξ +
1

2γk
‖s‖2

s.t. gjT
s− αk

j ≤ ξ (∀j ∈ Jk)

(3.19)

5: Set vk ← − 1
γk s

k, εk ←
∑

j∈Jk

λk
jα

k
j .

6: if ‖vk‖ ≤ ε and εk ≤ ε then

7: return x̃← xk

8: end if

9: if f(xk + sk)− f(xk) ≤ ηξk then ⊲ serious step
10: Set

yk+1 ← xk + sk

xk+1 ← xk + sk

Jk+1 ← {j ∈ Jk | λk
i > 0} ∪ {k + 1}

11: else ⊲ null step
12: Set

yk+1 ← xk + sk

xk+1 ← xk

Jk+1 ← {j ∈ Jk | λk
i > 0} ∪ {j | yj = xk} ∪ {k + 1}

13: end if

14: Calculate

fk+1 ← f(yk+1)

gk+1 ∈ ∂f(yk+1)

αk+1
j ← f(xk)− lj(xk) ∀j ∈ Jk+1.

15: end for
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Lipschitz-continuous functions, the Clarke subdifferential [47] is most widely
used:

Definition 3.16 (Clarke subdifferential). Let f : X ⊂ R
n → R be locally

Lipschitz-continuous and denote by Xd ⊂ X the set of points where f is
differentiable. The Clarke subdifferential of f at point x ∈ X is the set

∂clf(x) := conv{v ∈ R
n | ∃ (xk) with xk ∈ Xd and

xk → x,∇f(xk)→ v for k →∞}.

For instance, the Clarke subdifferential of the absolute value function f(x) = |x|
at x = 0 is ∂clf(0) = conv{−1, 1} = [−1, 1]. Another commonly used notion
of subdifferential is the Demyanov-Rubinov quasidifferential [65].

Unlike the convex case, 0 ∈ ∂clf(x̄) is only a necessary, not a sufficient condition
for x̄ to be a local or global minimizer of f . The same holds for maximizers.
Consequently, the algorithms can only search for stationary points that are not
guaranteed to be even locally optimal.

When applying the bundle idea to nonconvex nonsmooth optimisation, one
major issue arises: The cutting plane model (3.18) is not any more an
underestimate for f , the linearisation error αk

j can become very small or
even negative, which is especially problematic for very distant trial points yj

because the corresponding subgradients do not improve the model. A possible
solution to this problem is to replace the linearisation error αk

j by the so-called
subgradient locality measure [151]:

βk
j := max{ak

j , µ‖xk − yj‖2} (3.20)

with µ ≥ 0 parametrising the distance measure. Alternatively, the cutting
plane model can be split in an under- and an overestimation of f . The next
point in the bundle is then selected in a way that both under- and overestimates
predict a significant improvement. This has recently been proposed by [73].

Due to Rademacher’s famous theorem [18], a locally Lipschitz-continuous
function f is differentiable almost everywhere. This implies that the set of
points where f is not smooth has (Lebesgue) measure zero. If, additionally,
∂clf(x) is a point-based approximation of f , that is, if

sup
v∈∂clf(x+s)

‖f(x+ s)− f(x)− vT s‖ = o(‖s‖) for s→ 0,

f is called semi-smooth and the rate of convergence is comparable to the
convex case [18, 151]. It is worth noting that this only applies to the rate
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of convergence towards a stationary point which does not necessarily have to
be a global minimum.

The expressions used in our nonsmooth model of Boolean equations given by
equations (3.11)–(3.16) and arbitrary compositions of them are semi-smooth.

3.4 Applying techniques from nonsmooth optimisa-
tion to MICKEY

3.4.1 The stream cipher MICKEY

The stream cipher MICKEY is a hardware-oriented stream cipher designed
by Babbage and Dodd with a security level of 80 bits [4]. It was submitted
to the eSTREAM stream cipher competition and selected as one of three
hardware-oriented algorithms in the final portfolio. While its first version
could be attacked by a time-memory tradeoff with online complexity smaller
than exhaustive key search (albeit more expensive precomputation, see [88]),
no cryptanalysis results have been published for the current version 2.0.

MICKEY consists of two registers R and S of 100 bits each, R being a linear
feedback shift register (LFSR) with maximum period, and S being a nonlinear

feedback shift register. A cell s(t)
i of S at time t is updated by the rule

s
(t+1)
i = s

(t)
i−1 ⊕

(
f (t) ∧ F cS

i

)
⊕
((
C0

i ⊕ s(t)
i

)
∧
(
C1

i ⊕ s(t)
i+1

))
,

where f (t) is the feedback bit, (F 0,1)i are constant binary sequences, and the
complementation of si and si+1 depends on the value of the constant binary
sequences (C0)i and (C1)i, respectively.

The clocking of both registers is done in a way that depends on bits from both
registers. More specifically, if the control bit cR := s34 ⊕ r67 is equal to one,
the linear register R is clocked 250 − 157 times ahead by XOR-ing each bit
back into the current stage while shifting. Otherwise, R is clocked normally.
Analogously, the control bit cS := s67 ⊕ r33 determines whether the sequence
F 0 or F 1 is used in the update of S.

During the setup phase, R and S are initialised with all zeros, afterwards the
IV and the key are clocked in bit by bit, followed by 100 steps of preclocking
with the input bit set to zero. The input procedure consists of XOR-ing the
input bit to the feedback bits of both registers. Additionally, the cell s50 of the
S register is XOR-ed into the feedback of the R register. After the setup phase,
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keystream bits are generated by first outputting the XOR of the leftmost bits
s0 and r0 of both registers and then clocking both registers (without the mixing
of s50 into the feedback of R).

3.4.2 A scalable variant

For cryptanalysis purposes, it is often useful to work with reduced or weakened
versions of the algorithm in consideration. This can also provide a useful
indication about the security margin of the full algorithm. Besides the
obvious way of weakening MICKEY by reducing the number of steps during
the preclocking, we have defined a scalable variant of MICKEY called Mini-
MICKEY where both the key length k and the register size n can be varied
independently. The structure of Mini-MICKEY has been chosen to resemble
that of MICKEY as closely as possible.

The size of each register of Mini-MICKEY can be varied according to 4 ≤
n ≤ 100; for the key length we require 4 ≤ k ≤ min{80, 2n} bits, but k can
be arbitrary in principle. Mini-MICKEY’s S register is a truncated version of
MICKEY’s S register, that is, the sequences (C0)i, (C

1)i and (F 0)i, (F
1)i are

simply restricted to their first n elements. The LFSR R is defined by the first
primitive polynomial of degree n in Table D in chapter 10 of [111], with one
exception: if n = 100, MICKEY’s original feedback polynomial is used. The
control bits for the irregular mutual clocking are defined by

cR := s⌊n/3⌋ ⊕ r⌊2n/3⌋ and (3.21)

cS := s⌊2n/3⌋ ⊕ r⌊n/3⌋. (3.22)

As in MICKEY, keystream bits are generated by the output function s0 ⊕ r0.
The mixing during the setup phase is done by XOR-ing s⌊n/2⌋ into the feedback
bit of R. After the loading of the IV and the key, a preclocking of n steps is
applied. A general overview of the structure of Mini-MICKEY is given in
Figure 3.5.

It should be noted that this does not exactly yield the full MICKEY when
parameters k = 80 and n = 100 are selected. The differences lie in the selection
of indices for the control bits: In (3.21) and (3.22), s⌈n/3⌉, s⌈2n/3⌉ and r⌈2n/3⌉
would have to be used instead of their floor function variants to match the
indices used in the full MICKEY. However, the use of the ceiling function
would imply that in the important small cases n = 4, 5, the control bits would
depend on the first and the feedback bit, in contrast to MICKEY’s design
choice to determine the control bits as the XOR of “inner” register cells. On
the other hand, we verified that selecting bits 33 and 66 instead of 34 and 67 in
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Figure 3.5: Architectural overview of Mini-MICKEY.

this variant with n = 100 does not cause Mini-MICKEY to behave numerically
different than the original MICKEY.

3.4.3 Equations representing Mini-MICKEY

The state update in both of MICKEY’s registers is usually dense in the sense
that in each clocking step, potentially all bits of both registers can require an
update. In this case, the LFSR performs the “jumping” operation described
in Section 3.4.1. Due to the mutual clocking, this occurs depending on bits
from both the linear and the nonlinear register. Consequently, about 2nc new
equations are generated for c clockings.

As an illustration, using the standard nonsmooth representation according
to equations (3.11)–(3.16), the following equations are generated for Mini-
MICKEY with n = k = 4:

First clock:

r
(1)
0,1,3 = k0

r2 = 0

s
(1)
0,1,2,3 = k0
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i-th clock (i > 1):
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Here, the parts of the register update depending on the control bits (“if cs then
A, else B”) have to be expressed by (cs ∧ A) ∨ (¬cs ∧ B). For equations not
covering the key setup phase, the mixing of s2 into R and the XOR-ing of the
key bits is omitted. Otherwise, the equations are structurally equivalent.

Due to the local updating behaviour of feedback shift registers, the nonsmooth
degree of the individual equations ranges between 1 and 5. In particular,
this local updating behaviour implies that the degree does not depend on the
register length n. By substitution, the number of new equations per clocking
can be reduced, thereby trading lower dimensionality for higher degree.
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Properties of the Mini-MICKEY equations

By direct calculation, one can verify that the MICKEY equations are not
convex. However, as instantiations of the model described by equations (3.11)–
(3.16), they are semi-smooth (see also Section 3.3.3). Consequently, it is to be
expected that while the optimisation algorithms will quite efficiently converge
to stationary points, they need not necessarily be global extrema.

Since most efficient algorithms for estimation of Lipschitz constants only work
in the univariate case, we only estimate an upper bound for the Lipschitz
constant of the nonsmooth expressions: Each individual expression in the
model is Lipschitz-continuous with constant L = 1, so for an expression with
nonsmooth degree d, the Lipschitz constant is approximated by L′ = 2d.

3.4.4 Attack scenarios

We considered the following attack scenarios, with the main focus being on the
first and third scenario. All scenarios are in a known-plaintext setting, where a
sequence of keystream bits can be determined by XOR-ing the known plaintext
to the ciphertext.

Scenario 1: Recovering a previous state

In this scenario, given a sequence of keystream bits, the task is to recover
the internal state of the stream cipher before the generation of this keystream.
This should be infeasible for a secure stream cipher, since knowledge of the full
internal state at some point allows the attacker to decrypt all future ciphertexts
that are encrypted with keystream derived from this internal state.

From the attacker’s point of view, state recovery has the advantage that the
loading of the IV and the key can be neglected, which leads to simpler equations.
The challenge is that this scenario implies a higher dimension of the equation
systems since we need to recover all 2n state bits which is typically larger than
the length of the key. At least 2n bits of keystream are required to carry out
this attack.

Scenario 2: Recovering the key

Probably the most obvious target, this scenario encompasses the reconstruction
of the k-bit key that was clocked into the cipher during the setup phase from
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the knowledge of a sequence of keystream bits.

Since for most sensible variants of Mini-MICKEY, k < 2n, this has the
advantage of a smaller problem dimension, but the disadvantage of higher
equation complexity due to the loading of the IV and the key and the
preclocking process. At least k bits of keystream are required for this attack.

Scenario 3: Guess and determine the key

This scenario is a special case of the second where a guess for part of the
key (say k0 out of the k bits) is used to simplify the system of equations
representing the key loading, preclocking, and the generation of the first k−k0

keystream bits. Since there are only k − k0 unknowns left, the keystream bits
are expressed in terms of minimised Boolean functions of the unknown key bits.
If this number is sufficiently small, Boolean minimisation algorithms such as
the Quine-McCluskey [120] (QMC) or the Espresso method [41] can be applied
to simplify the Boolean functions.

In this scenario, very few very complex equations have to be solved.
Additionally, the minimisation process is specific to – and therefore has to
be repeated for – each key guess. Note also that in this scenario, the overall
time complexity can be estimated even if it would be impractical to carry out
the attack in practice: If t0 denotes the time complexity of the minimisation
and solving process for one key guess, the total attack complexity is given by
2k0 ·t0. The attack is faster than a generic attack if t0 is less than the complexity
of k − k0 trial decryptions.

3.4.5 Experimental results

We have subjected the nonsmooth systems of equations corresponding to
various versions of Mini-MICKEY and the full MICKEY in the three attack
scenarios to different solving algorithms using various approaches to model
or adapt the Boolean system of equations. The results are summarised in
Tables 3.1 to 3.3 on pages 46–48. The experiments were carried out on a
machine with two Intel Xeon dual-core 2.8 GHz processors and 2 GB of memory.
Only one core was used, and memory usage was negligible.
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Algorithms

The nonsmooth optimisation algorithms used in the experiments were a bundle
method (DFBM), the cutting angle method (ECAM), and a dynamical-systems
based method (DSO). All algorithms only require the objective function to be
Lipschitz, so they are suitable for our nonconvex models of Boolean equations.

DFBM (“Derivative-Free Bundle Method”) is a variant of the Bundle algorithm
developed by Bagirov and Ugon [8] which uses the method of [7] to approximate
the subdifferential. This method yields a particularly efficient procedure
for calculating subgradients, so that the running time of the algorithm is
commonly dominated by solving the quadratic subproblem (3.19) instead [8].
This algorithm was developed as an extension of [5], especially improving
the performance for problem instances of larger dimension. Like all Bundle
methods, it converges to local minima. In our experiments, it was combined
with random start as a globalisation strategy.

The ECAM (“Extended Cutting Angle Method”) intends to improve on
DFBM for global optimisation by using the Lipschitz constant of the objective
function to estimate its smallest conceivable minimum. Then, a sawtooth-like
underestimation of the objective function is constructed [13, 112]. While this
method is theoretically guaranteed to find an ε-optimal approximation of the
global minimum, it has the disadvantage of typically requiring a large number
of function evaluations, and being very sensitive to increases in the dimension
of the problem.

The third algorithm, DSO (“Dynamical Systems Based Optimisation”), is a
heuristic obtaining descent directions by balancing samples of the objective
function according to a physical model of forces [114].

Those algorithms and combinations of them are implemented in the GANSO
library for general nonsmooth optimisation developed at the University of
Ballarat [6, 14].

Choice of representation

In the case of polynomial models, the choice of representation can have decisive
influence on the success of an experiment [127]. By contrast, this has little
effect in the nonsmooth case, where the different nonsmooth representations
corresponding to standard and Fourier representation and their respective duals
all caused very comparable behaviour of the algorithms. Specifically, they all
exhibit the property that there is no one-to-one correspondence of solutions to
a⊕ b = 0 between Boolean values and the unit interval, frequently leading the
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solvers to suggest non-Boolean values as “improvements” over non-matching
Boolean points of iteration.

We therefore focus on the standard representation given by equations (3.11)–
(3.16).

Choice of norm

While the choice of representation had little effect on the behaviour of the
minimisation algorithms, the choice of norm has a much greater impact. For
all of the algorithms in the GANSO library, the maximum norm turned out to
be the best choice.

Equation preprocessing

The success of the solvers can depend significantly on how an optimisation prob-
lem is formulated. We investigated the effect of some equation preprocessing
techniques to adapt the system of equations to the solver.

Guessing different subsets of key bits. If the attack scenario involves the
guessing of key bits, the key material can be selected in an anticipatory way
to maximise the simplifying effect on the system of equations. It turns out
that guessing key bits between k⌊n/3⌋ and k⌊2n/3⌋ has the biggest impact
regarding simplification, since on the one hand, the first key bits are clocked in
independently of the state, and on the other hand, the “avalanching” effect of
the simplifications is weaker for the last part of the key.

Trading equation complexity for dimensionality. The straightforward method
of generating equations representing the stream cipher clocking results in
far more individual equations than variables. In case of the nonsmooth
optimisation algorithms we applied, it usually turned out to be preferable
combining many equations by substitution to reduce the dimensionality of the
problem. Since only the expression nesting level (but not the degree) is affected,
the resulting increase in equation complexity is usually tolerable.

Experimentally, the optimal balance between dimensionality and equation
complexity was reached by organizing the individual subexpressions according
to a balanced tree structure such that a maximum substitution level of about
five subequations is not exceeded.
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Ensuring Booleanness of the solutions without affecting convergence. To
mitigate the issue with non-Boolean solutions suggested by the solvers, two
approaches were considered:

The first involves adding a penalisation Pα(x) to the objective function, which
then becomes ‖f(x)‖ + Pα(x), introducing a penalty increasing with the
distance to the corners of the hypercube [0, 1]n specified by the box constraints.
In particular, the following terms were considered, with α being a parameter
to fine-tune the weight of the penalty term:

a triangle-like function: x 7→ α · (1/2− |x− 1/2|) , (3.23)

a quadratic penalty term: x 7→ α ·
(
x− x2

)
, (3.24)

an exponential bell curve: x 7→ α ·
(
e−8·(2x−1)2

)
. (3.25)

As with the choice of norms, the maximum, sum, or average of all component
deviations from {0, 1} can be used in Pα(x). These penalty terms are illustrated
in Figure 3.6.

0

0.5
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0 0.5 1.0

Figure 3.6: Penalty terms to reward Booleanness.

All of the above can also be combined with multiplication by x or square
rooted, the latter resulting in a steeper penalisation. In most cases, a damped
exponential or a plain triangle penalizer were yielding the best results. This
approach has the obvious disavantage of causing convergence issues if the
penalty terms modify the notion of descent too much. Its main merit is that it
does not increase the dimension of the problem.

The second approach is to introduce a second set of equations of the form
x2 = x, directly forcing the variables to be Boolean. This has the advantage of
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not modifying the objective function, so that convergence is not affected by the
penalisation terms, but increases the dimension. Furthermore, those equations
introduce additional local optima which might hinder convergence to a global
optimum. For small instances with a dimension of less than 20, this approach
turned out to be superior to the penalty terms, which in turn start to yield
better results for greater dimensions.

3.4.6 The DDT heuristic and MICKEY

In addition to the nonsmooth algorithms, we applied the DDT heuristic to
the systems of equations of Mini-MICKEY. The implementation used was a
simplified variant of DDT as implemented by [78]. The experimental data from
Table 3.4 suggests that this approach is inferior to the nonsmooth algorithms.
However, extensions to this implementation of DDT are expected to improve
the results.

3.4.7 Discussion

Results

In the state recovery scenario, due to the comparatively high dimension of
this problem, only very small instances (n = 6, resulting in a 72-dimensional
instance) could be fully solved. For higher values of n, all solvers failed. In
most of those cases, non-Boolean coordinates were output which could not
be mapped back to a Boolean solution by rounding or similar procedures. A
closer inspection of the final points of iteration revealed that all of the solvers
got stuck in local optima. It is worth noting that longer keys do not have any
significant influence in this scenario since we attempt to recover the state after
the key has been clocked in.

Concerning key recovery, the results were more promising. The maximum
problem size that the nonsmooth algorithms could fully solve were n = 20 and
a 26-bit key. In those cases, additional equations of the form x2 = x were
required to ensure Booleanness, resulting in a total dimension of 52.

In both scenarios, the results are given for the maximum key length for a
particular state size for which the problems could still be solved. In particular,
this means that all instances involving the same state but smaller key sizes can
be successfully solved.
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n k Solver Preprocessing Execution Function Solvable
time eval.

4 4 DFBM – ≪ 1 s 29 noa

4 4 triangle penalty ≪ 1 s 210 yes
4 8 triangle penalty ≪ 1 s 211.5 yes
6 6 triangle penalty 15 s 213 yes
6 16 triangle penalty 15 s 213.2 yes
7 7 triangle penalty 28 s 216 nob

8 8 triangle penalty 149 s 217.5 nob

9 9 triangle penalty 3 min 219 }
noc9 9 exp. penalty 3 min 219

9 9 triangle penalty 3 min 219

+ balancing

4 4 ECAM – 2.2 s 210.5 nod

4 4 triangle penalty 2.3 s 210.7 yes
4 8 triangle penalty 2.3 s 211 yes
6 6 triangle penalty 52 s 214.4 yes
6 16 triangle penalty 52 s 215 yes
7 7 triangle penalty 7 min 217.6 noa

7 7 triangle penalty 12 min 219.5 noa

+ balancing

4 4 DSO – ≪ 1 s 28 yes
4 8 – ≪ 1 s 29 yes
6 6 – ≪ 1 s 212.1 yes
6 16 – ≪ 1 s 212.7 yes
7 7 – 17 s 215.4 noa

7 7 triangle penalty 17 s 216.2 noa

7 7 triangle penalty 17 s 217 noa

+ balancing
a Solutions not Boolean.
b Solvable for specific initial values only.
c No improvement if more iterations are used.
d Convergence is unreliable.

Table 3.1: State recovery for n bit registers and k bit key. Dimension is
2n.

In the case of combining key recovery with Boolean minimisation according to a
partial key guess, both the instances involving a key guess of 72 and 64 bits for
the full MICKEY could be solved. The DSO solver proved particularly suitable
for these problem instances. The increase in nonsmooth degree per equation
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n k Solver Preprocessing Execution Function Solvable
time eval.

4 4 DFBM triangle penalty ≪ 1 s 25 yes
4 8 triangle penalty ≪ 1 s 28.2 yes
8 8 triangle penalty 6 s 28.4 yes

12 12 triangle penalty 9 min 213.1 yes
12 20 triangle penalty 16 min 221.3 yes
16 20 triangle penalty 20 min 221.6 yes
20 20 exp. penalty 20 min 222.1 yes
20 26 exp. penalty 43 min 228.4 yes

+ x2 = x
20 27 exp. penalty 43 min 229 nob

+ x2 = x

4 4 ECAM exp. penalty 2 s 25.7 yes
8 8 exp. penalty 15 s 210.8 yes

16 20 exp. penalty 94 min 223.1 yes
+ balancing

20 22 exp. penalty 111 min 225.2 noc

+ balancing

4 4 DSO – ≪ 1 s 24.1 yes
8 8 – ≪ 1 s 28.4 yes

16 20 – 14 min 221.9 noa

a Solutions not Boolean.
b Solvable for specific initial values only.
c Convergence is unreliable.

Table 3.2: Key recovery for n bit registers and k bit key. Dimension is k.

turned out to be comparatively small: 8 for the 72-bit guess and 11 for the
64-bit guess. This is a result of the good Boolean minimisation performed by
the Quine-McCluskey and Espresso algorithms. Additionally, the success rate
was improved at the cost of running time by preprocessing the equations such
that the maximum degree of 5 per equation was not exceeded.

It should be noted that the success of the solver in those cases does not yield
a valid attack on the full MICKEY. The whole process of generating and
minimising the equations has to be repeated for each key guess, which is clearly
inferior to brute force. It is an open issue to extend this to more useful values
of the number of guessed key bits.
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k0 Solver Preprocessing Execution Function Solvable
time eval.

76 DFBM exp. penalty 26 s 25.4 yes
72 exp. penalty 13 min 29.8 yes
68 exp. penalty 24 min 213.1 yes
64 exp. penalty 59 min 218 noa

76 ECAM exp. penalty 33 s 25.2 yes
72 exp. penalty 1 min 29.5 yes
68 exp. penalty 7 min 212.8 noa

76 DSO – 17 s 25 yes
72 – 54 s 29.2 yes
68 – 2 min 212.2 yes
64 – 4 min 217.3 yes
60 – 11 min 222.5 noa

60 triangle penalty 11 min 223 noa

60 exp. penalty 11 min 223.1 noa

60 exp. penalty 11 min 225.5 noa

+ x2 = x

a Solutions not Boolean.

Table 3.3: Guess k0 out of 80 key bits and determine the remaining
key bits for the full MICKEY (n = 100 bit registers and k = 80 bit
key). Dimension is 80− k0. Balancing was used in all experiments.

Notes on the nonsmooth optimisation algorithms

The experimental results provided several insights about the applicability of
the different nonsmooth optimisation algorithms to this type of systems of
equations.

Generally, it could be observed that the dynamic systems based method (DSO)
was particularly efficient for instances of small dimension. This algorithm
was far less sensitive to the complexity of the individual expressions, while
increasing the dimension proved problematic. By contrast, the DFBM and
ECAM algorithms could still successfully solve some instances with higher
dimension. This is due to the fact that the equation systems in the state
and (full) key recovery scenarios had higher dimension but relatively small
nonsmooth degree, which particularly also bounded the Lipschitz constant to
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State recovery
n k Preprocessing Execution time Solvable

4 4 triangle penalty ≪ 1 s yes

Key recovery
n k Preprocessing Execution time Solvable

4 4 triangle penalty ≪ 1 s yes
4 8 triangle penalty ≪ 1 s yes

Key guess and determine (n = 100, k = 80)
k0 Preprocessing Execution time Solvable

76 exp. penalty 26 s yes
72 exp. penalty 3 min yes
68 exp. penalty 4 min no (local optimum)
64 exp. penalty 9 min no (local optimum)

Table 3.4: Experimental results applying the DDT heuristic to the three attack
scenarios.

a small value.

The DDT heuristic for pseudo-Boolean programming turned out to be an
algorithm with reliable running time polynomial in the problem dimension,
however at the expense of guarantees about the quality of the solution. The
Bundle and ECAM methods provided rather unreliable running times, but the
quality of the solution improved with the number of iterations. Especially
the ECAM method, however, can take a prohibitive number of steps before
reaching an ε-optimal solution, which in the context of cryptanalysis is only
then an advantage if the ε-optimal solution can be mapped back to the sought
Boolean solution.

3.5 Conclusions

Summarising, the concept of nonsmooth models of Boolean equations is a
generic approach that can be used in the cryptanalysis of any algorithm based
on arithmetic over F2, including most stream ciphers, block ciphers and hash
functions. The approach aims at avoiding real-valued expressions of higher
degree by using nondifferentiable but Lipschitz-continuous functions. The
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theory of and available numerical software for nonsmooth optimisation can
then be used to attempt solving the corresponding systems of equations.

Applied to the stream cipher MICKEY from the eSTREAM final portfolio, this
approach can recover the 80-bit key of the full algorithm in 264 iterations if 16
bits of keystream are available. However, while this attack requires very little
known plaintext, the total time complexity is slightly inferior to trying all 280

keys. Small-scale variants of MICKEY can be solved in practical time without
guessing key bits.

With the exception of the guess-and-determine scenario, one main issue with
this approach compared to statistical attacks is the lack of predictability beyond
practical attacks: An attack can only be shown to work if it can actually be
carried out in practice. Extrapolating results from small-scale experiments
to the full algorithms is an unreliable measure since the number of required
iterations for a global optimum could grow exponentially (ECAM), or the
algorithms could converge to local extrema without ever reaching the solution
corrresponding to the key or the previous state (DSO, DFBM).

However, these techniques could be applied to the various equation-solving
subproblems occurring in typical cryptanalytic attacks where ad hoc or guess-
and-determine techniques are currently used, for instance within collision
attacks on SHA-1 or SHA-2 [93]. Those subproblems typically have lower
dimensionality than full ciphers or hash functions, and improving the time
required to solve them would directly improve the full attack complexities. For
instance, [2] demonstrates several methods of how equation-solving techniques
over finite fields (using Gröbner bases and SAT solvers) can be used to enhance
differential attacks on block ciphers.



Chapter 4

Hash functions and the
rebound attack

This chapter is dedicated to the interplay between the design of hash functions
based on the wide trail design strategy [56] and the rebound attack [122], a
recent attack strategy specifically developed for such constructions.

4.1 Wildpool: Difference propagation in unaligned
diffusion layers

The most well-known hash function following the wide trail strategy is
Whirlpool by Barreto and Rijmen [12]. It features a compression function
built from a 512-bit block cipher W using the Miyaguchi-Preneel construction.
W itself is a 10-round iterated block cipher with a round function designed
according to the wide trail strategy, allowing bounds for its resistance against
differential and linear cryptanalysis to be proven.

In a design study by Nikova [129], a variant of Whirlpool was constructed
based on the idea of employing a larger S-box of 16 bits, versus 8 bits in
Whirlpool. Since in a typical wide trail design, the linear diffusion layer is an
MDS matrix [144] implemented using finite field arithmetic, it was considered
desirable to keep the diffusion layer operating on quantities of 8 bits for
efficiency. This leads to an unusual and new situation in wide trail designs:

51
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The confusion and diffusion layers are no longer operating on quantities of the
same size, they become “unaligned”. The consequences of this are studied in
this section.

4.1.1 Brief description of Wildpool

We give a brief description of the Wildpool specification [129], focusing on
the aspects relevant for our analysis. Most of its components are identical to
Whirlpool.

Wildpool produces a 512-bit hash value. Its compression function is based on
a dedicated block cipher V V , which operates on a 512-bit hash state using
a 512-bit chained key state, both of which are internally viewed as an 8 × 8
matrix over F

8
2, indexed as ai,j for 0 ≤ i, j < 8. Analogous to Whirlpool the

Miyaguchi-Preneel construction is used.

The round transformation of V V is defined by operating on a state matrix M
using the key matrix k as follows:

ρ[k] = σ[k] ◦ θ ◦ π ◦ γ.
σ[k] denotes the addition of the round keys via bitwise XOR. γ is a non-linear
substitution box S : F

16
2 → F

16
2 , defined by the inverse x 7→ x−1 in F

16
2 ,

operating on the two bytes i and i + 4 for i = 1, . . . , 4 in each row of the
state matrix, taken as a 16-bit quantity. An important property of S is that
it is defined using a special normal basis representation of F

16
2 over F

8
2. For

details on the normal basis representation, we refer to Section 4.5.

π is a cyclic permutation identical to the one in Whirlpool, cyclically shifting
each column of the state matrix independently, such that column j is cyclically
shifted downwards by j positions.

Like π, the linear diffusion layer θ is identical to Whirlpool and consists of the
application of an 8 × 8 circulant MDS matrix [144] to each row of the state.
Its branch number is B(θ) = 9. Together, π and θ form the diffusion layer of
Wildpool.

The internal block cipher V V consists of 10 repetitions of the round
transformation.

4.1.2 Difference cancellation in unaligned diffusion layers

The fact that both π and θ operate on halves of each S-box output implies
that from the perspective of the diffusion layer, every application of an S-box is
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Figure 4.1: Half-zero output difference causing deactivation of rows.

already combining two adjacent 8-bit cells, which can potentially have negative
impact on overall diffusion.

A first observation in that direction is that it is now conceivable to have a
nonzero difference in two 8-bit input cells to one S-box that turns into a zero
difference in one of the two output cells, consequently possibly deactivating one
row after the application of π, as illustrated in Figure 4.1. Note that such a
case is impossible in a standard wide trail design (such as Whirlpool) where
diffusion and confusion layer are operating on the same granularity, since a
bijective S-box has zero output difference precisely when the input difference
was already zero.

This observation motivates the definition of half-zero differences.

Definition 4.1. Let S : (a, b) 7→ (c, d) denote the inversion mapping in
GF(22m). We say that a pair (a1, b1) 6= (a2, b2) with a nonzero input difference
causes a half-zero output difference if either

S(a1, b1) + S(a2, b2) = (a′, 0) for some a′ 6= 0 (4.1)

or

S(a1, b1) + S(a2, b2) = (0, b′) for some b′ 6= 0 . (4.2)

The number of distinct pairs fulfilling (4.1) resp. (4.2) are denoted Nr(m) resp.
Nl(m).

It turns out that such patterns (with δ and δ′ both nonzero) exist in Wildpool’s
S-box. Additionally, there are patterns where a half-zero input difference maps
to some half-zero output difference, and for any given input difference (δ, δ′),
there is at least one possible output difference with a zero upper and one with
a zero lower half.

In general, the occurrence of half-zero difference propagations is an inherent
property of the inversion mapping in any finite field F

2m
2 . To analyse this, we
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make use of the following formula for the inverse of F2m
2 expressed over Fm

2 (see
Section 4.5.3):

(c, d) = (a, b)−1 ⇔
{
c =

(
(a+ b)2gq + q2ab

)−1 · b
d =

(
(a+ b)2gq + q2ab

)−1 · a
, (4.3)

with q and g denoting two constant elements of F
m
2 depending on the basis

choice (see Section 4.5.2). Here, we will only use the property that both q and
g are fixed nonzero elements of Fm

2 .

The number of cases where the difference in the right half attains zero given
a nonzero input difference can therefore be described as the number of pairs
(a1, b1) and (a2, b2) with (a1, b1) 6= (a2, b2) such that

(
(a1 + b1)2gq + q2a1b1

)−1
b1 =

(
(a2 + b2)2gq + q2a2b2

)−1
b2,

which is equivalent to

(
(a2 + b2)2gq + q2a2b2

)
b1 =

(
(a1 + b1)2gq + q2a1b1

)
b2 . (4.4)

Now fix a pair (a1, b1). To see how many pairs (a2, b2) satisfying equation (4.4)
exist, we set a := a2, b := b2, c := gq(a1 +b1)2 +q2a1b1 and d := b1 which yields

gqda2 + q2dba+ gqdb2 + bc = 0. (4.5)

For fixed b, this is a quadratic equation in a. Rewriting this in standard form:

a2 + a+ g(gbd+ c/q)︸ ︷︷ ︸
=:k

= 0, (4.6)

we see that (4.6) has two solutions a0, a1 if and only if Tr(k) = 0 and no
solutions otherwise [111].

To count the number of times the expression

Tr(k) = Tr
(
g2b1b2 + g2(a1 + b1)2 + gqa1b1

)
(4.7)

evaluates to zero when a1, b1, b2 range over GF(2m), we use the following
properties of the trace:

Lemma 4.2. Let m,n > 0, q = pn any prime power and denote F = GF(qm),
K = GF(q). Then the following holds.

(i) In any basis {b0, . . . , bm−1} of F over K, there exists at least one i, 0 ≤
i < m, such that TrF/K(bi) 6= 0.
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(ii) As x ranges over K = GF(pn), TrGF(pn)/GF(p)(x) takes on each element
of GF(p) equally often, namely pn−1 times.

Proof. (i) We first show that F must contain an element a1 such that
TrF/K(a1) 6= 0. To see this, note that TrF/K(x) = 0 if and only if x

is a root of the polynomial
∑m−1

i=0 xqj

which can have no more than qm−1

roots, whereas F contains qm elements.

To prove the claim, suppose that B := {b0, . . . , bm−1} is a basis of F over
K such that TrF/K(bi) = 0 for all i. Since B is a basis, any element a of F

can be written as a =
∑m−1

i=0 aibi with coefficients ai ∈ K. This however
implies

TrF/K(a) = TrF/K

(
m−1∑

i=0

aibi

)

= TrF/K(a0b0) + · · ·+ TrF/K(am−1bm−1)

= a0TrF/K(b0) + · · ·+ am−1TrF/K(bm−1)

= 0,

so that all linear combinations of the bi have a zero trace. Since F contains
at least one element with a nonzero trace, the bi do not span F and hence
cannot be a basis. Consequently, at least one of the basis elements must
have a nonzero trace.

(ii) Choose any basis {b0, . . . , bn−1} of GF(pn) over GF(p) and write each
x ∈ GF(pn) as x =

∑n−1
i=0 xibi. As above, we have

Tr(x) = x0Tr(b0) + · · ·+ xn−1Tr(bm−1) .

Define I0 := {i | Tr(bi) = 0} and I1 := {i | Tr(bi) 6= 0}. Because of
property (i), at least one of the bi must have a nonzero trace, so that I1

is nonempty. The trace of x is then

Tr(x) =
∑

i∈I1

xiTr(bi) , (4.8)

and as multiplication with a nonzero constant is a bijection, each of the
summands takes on all values of GF(p) exactly once when xi ranges over
GF(p). As (GF(p),+) is a finite group, its Cayley table is a latin square
and hence the sum (4.8) takes on all values of GF(p) exactly p|I1|−1

times when the xi (i ∈ I1) range over GF(p). As x ranges over GF(pn),
this is repeated p|I0| times, and since n = |I0| + |I1|, the result follows
immediately.
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For any fixed pair (a1, b1), the expression

g2b1b2 + g2(a1 + b1)2 + gqa1b1 (4.9)

is an affine mapping in b2, i.e. equal to g2b1 · b2 + C for a constant C. This
mapping is bijective if and only if b1 6= 0. In this case, according to Lemma 4.2,
there are 2m−1 values of b2 for each fixed choice of (a1, b1), b1 6= 0 where (4.7)
is zero, accounting for 2m · (2m − 1) · 2 · 2m−1 = 23m − 22m pairs causing a
half-zero output difference.

If, on the other hand, b1 = 0, expression (4.9) reduces to g2a2
1, and we have

Tr
(
g2a2

1

)
= Tr

(
(ga1)2

)
= Tr(ga1). Since g 6= 0 by construction, the mapping

a1 7→ ga1 is a permutation of GF(2m). By Lemma 4.2, Tr(ga1) = 0 for 2m−1

values of a1, and since this is independent of the value of b2, we have another
1 · 2m · 2 · 2m−1 = 22m pairs for the case b1 = 0.

Altogether, there are 23m − 22m + 22m = 23m pairs fulfilling condition (4.4),
whereof 22m pairs with a zero input difference (i.e. (a1, b1) = (a2, b2)) have to be
subtracted for our purposes. Consequently, the number of pairs with nonzero
input difference causing a zero output difference in the second output half is
23m − 22m. The case of a zero output difference in the first half is completely
analogous. This proves

Theorem 4.3. For the inversion mapping in any finite field GF(22m), the
number of distinct pairs (a1, b1) 6= (a2, b2) causing a half-zero output difference
verifies

Nr(m) = Nl(m) = 23m − 22m .

4.1.3 Proving bounds

The main consequence of observation of the previous section is that the security
analysis of Whirlpool cannot directly be applied to Wildpool due to the
existence of half-zero differences. In order to obtain a lower bound on the
number of active S-boxes, we reorder the columns such that the two cells
corresponding to one S-box become adjacent and consider the whole state as a
8×4 matrix A′: For 0 ≤ i < 8 and 0 ≤ j < 4, we have a′

i,j =
(
ai,j ai,j+4

)
, see

also Figure 4.2. Note that this just constitutes a modified view; the operations
remain the same.

In this modified view, it is clear that a active S-boxes in one row can correspond
to a, . . . , 2a active 8-bit cells, and c active cells imply at least ⌈c/2⌉ active S-
boxes in that row. The branch number B′(θ) with regard to the 8×4 structure
can now be determined as follows: Consider a (row) vector v ∈ (F16

2 )4. Suppose
its Hamming weight to be wh(v) = a > 0, so that there are a active S-boxes in
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Figure 4.2: Modified view on Wildpool’s state. The arrows indicate the
operation of π.

this row, corresponding to a number of c active cells, where a ≤ c ≤ 2a. Since
B(θ) = 9, there are at least 9 − c active cells and hence at least ⌈(9− c)/2⌉
active S-boxes in the image of v. Consequently,

wh(v) + wh(θ(v)) ≥ a+ ⌈(9− (2a))/2⌉ = 5

for any nonzero v. Since 5 is also an upper bound, we have B′(θ) = 5.

Since π distributes the output of different S-boxes to different rows also in
the modified setting, it fulfills the criterion of diffusion optimality formulated
in [55]. Hence, Theorem 2 of [55] is applicable, implying a lower bound of
B′(θ)2 = 25 for the number of active S-boxes in four rounds. Together with
the fact that the maximum differential probability of a 16-bit inversion S-box
is 2−14 [132], any differential trail over four-rounds has therefore a maximum

probability of (2−14)
25

= 2−350. This has to be compared to the four-round
bound of 2−5·81 = 2−405 in the case of Whirlpool: despite the bigger S-box, the
security bound that can be proven is lower than for Whirlpool. This is due to
the effect of the unaligned diffusion layer.

4.2 The rebound attack

In this section, we give a brief introduction to the rebound attack. It is
an advanced differential attack tailored towards the cryptanalysis of hash
functions, where there is no secret key, and the attacker can start computing
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anywhere in an iterated mapping. It has been published by Mendelet al. [122]
with applications to Whirlpool and Grøstl [75]. Since its invention, it has been
used in the cryptanalysis of many hash functions. Being especially suitable
for the analysis of wide trail designs, it has among others been applied to
Maelstrom [122], ECHO [94, 121, 150] and LANE [119]. But also designs
based on modular addition, rotation and XOR have been cryptanalysed using
Rebound techniques, for instance the hash function Skein [100].

In its basic form, the idea of a rebound attack is to split the algorithm F under
consideration (a compression function, an internal block cipher or an internal
permutation of a hash function) into three parts:

F = Ffwd ◦ Fin ◦ Fbwd.

The middle part is called inbound phase, the inner and outer part are called
outbound phases. This is due to the fact that the attacker starts at the
inbound phase, calculating “inwards” from both ends of the inbound phase
to generate solutions for a desired differential transition over the inbound part.
Those solutions are then probabilistically propagated forward through Ffwd

and backwards through Fbwd according to certain truncated differential paths.
Its main advantage is that by placing the most expensive part of the differential
trail in the middle (the inbound phase), the freedom stemming from the values
of the internal state variables can be efficiently used to obtain solutions to this
part with high probability. For a detailed description, we refer to the original
paper [122]. Moreover, variants of the basic rebound attack will be discussed
in Sections 4.4.3 and 4.6.3.

Note also that there exist advanced variants [119,150] that consist of multiple
inbound and multiple outbound phases.

The rebound attack has been successfully applied to Whirlpool [106, 122]: For
the hash function, near-collisions can be found for 7.5 of the 10 rounds using
2128 time and 264 memory. For all 10 rounds of the compression function,
there exists a distinguisher with complexity 2188 time and 28 time. Due to
the similarity between Whirlpool and Wildpool, all these attacks also apply to
Wildpool.

4.3 Whirlwind: Designing a rebound-resistant hash

function

Since both Whirlpool and the initial design study Wildpool can be successfully
attacked by rebound techniques, it remains an interesting problem to construct
a wide trail hash function that does not succumb to the rebound attack.
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It turns out that a decisive contributing factor to the success of rebound attacks
on Whirlpool (and thus Wildpool) is the presence of the key schedule [150]. It
provides a crucial opportunity to influence the state variables since it introduces
additional degrees of freedom available to the attacker.

Intuitively, long sequences of round transformations without influence on
intermediate values via the XOR of a key, a message or a feedforward makes
rebound attacks harder to apply. In a wide trail design, the inbound phase is
limited to 2-3 rounds [77,150], and the probability of the truncated differential
trails for the outbound phases quickly diminishes with an increased number
of rounds, since according to the optimal diffusion property of the wide trail
strategy, an additional state with all S-boxes active cannot be avoided for an
extended number of rounds.

This observation leads us to the design of the Whirlwind hash function [11]:
Whirlwind is a hash function that (somewhat loosely) follows the Sponge
model [16]. Its compression function is based on the repeated application of
a round transformation, similar to a block cipher, and designed according to
the wide trail strategy [56, 57], and inspired by Whirlpool. Like Wildpool, an
unaligned diffusion layer is being used, however, in a refined way that allows
better bounds on trails to be proven.

4.3.1 Description of Whirlwind

In this section, we give an overview of the Whirlwind specification [11].

Internal state and round transformation

Whirlwind has an internal state of 1024 bits, which can be represented by an
8× 8 array of 16-bit elements:

a = [ai,j ]
7
i,j=0 .

Each of the 16-bit elements of the state can in turn be represented by a 2× 2
array of 4-bit elements:

∀i, j : ai,j =

[
ai,j,0,0 ai,j,0,1

ai,j,1,0 ai,j,1,1

]

The i-th row of the state is denoted by ai or equivalently by ai,∗,∗,∗. These
4-bit elements are the smallest entity used in Whirlwind.

The 4-bit elements in Whirlwind are expressed as elements of GF(24) in terms
of a tower field decomposition to GF(22) and GF(22) using normal bases at
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each level. For the exact specification of this decomposition, we refer to the
paper [11].

The round transformation comprises four maps, which we describe in turn
below.

The nonlinear substitution layer γ. The nonlinear layer operates in parallel
on the 64 elements of 16 bits by replacing each 16-bit element by its
multiplicative inverse:

γ : GF(216)8×8 → GF(216)8×8 : [ai,j ]
7
i,j=0 7→

[
(ai,j)−1

]7
i,j=0

.

We additionally define the inverse of zero to be zero.

The linear maps θ and τ . The first linear map τ is defined as a transposition
of the 8× 8 state matrix:

τ : GF(216)8×8 → GF(216)8×8 : [ai,j ]
7
i,j=0 7→ [aj,i]

7
i,j=0

Note that the explicit implementation of τ can be avoided by implementing
two different round transformations: one where θ acts on the rows, and one
where θ acts on the columns.

The second linear map θ operates on the 8 rows of the state in parallel by
applying a linear function λ to each row.

θ : GF(216)8×8 → GF(216)8×8 : [ai,j ]
7
i,j=0 7→ [λ(ai)|j ]

7
i,j=0 .

Furthermore, λ acts in parallel on the 4-bit subcomponents of the ai,j :

λ(ai) = bi ⇔





λ0(ai,∗,0,0) = bi,∗,0,0

λ1(ai,∗,0,1) = bi,∗,0,1

λ1(ai,∗,1,0) = bi,∗,1,0

λ0(ai,∗,1,1) = bi,∗,1,1

The maps λ0, λ1 are defined as follows:

λ0 : GF(24)1×8 → GF(24)1×8 : ai,∗,k,k 7→ ai,∗,k,k ·M0

λ1 : GF(24)1×8 → GF(24)1×8 : ai,∗,k,1−k 7→ ai,∗,k,k ·M1

with
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M0 = dyadic (5x, 4x, Ax, 6x, 2x, Dx, 8x, 3x) and

M1 = dyadic (5x, Ex, 4x, 7x, 1x, 3x, Fx, 8x) ,

where dyadic (s) denotes the dyadic matrix S corresponding to the sequence s
over GF(24), i.e. Si,j = si⊕j .

This form of an unaligned diffusion layer ensures that the functions λ, θ inherit
the optimal diffusion properties of the λi maps. Note however, that when they
are described as acting on elements of GF(216), like the other components of the
round transformation, then this requires the use of a linearised polynomial [111],
instead of a simple matrix multiplication. This has the effect of making the
algebraic description of the round transformation over GF(216) more complex.

The affine layer σr. In this layer, a round-dependent constant cr is added to
the state, in order to break the symmetry between different positions in the
state.

σr : GF(216)8×8 → GF(216)8×8 : [ai,j ]
7
i,j=0 7→

[
ai,j + cr

i,j

]7
i,j=0

,

with cr = γ(sr) and

sr
0,j = 8(r − 1) + j, 0 ≤ j ≤ 7,
sr

i,j = 0, 1 ≤ i ≤ 7, 0 ≤ j ≤ 7.

The compression function

The compression function ϕ processes a 512-bit chaining value h and a 512-bit
message block m and outputs the updated chaining value g. Both the chaining
value and the message blocks are organised as 8× 4 arrays of 16-bit elements.

ϕ : GF(216)8×4 ×GF(216)8×4 → GF(216)8×4 : (h,m) 7→ g = ϕ(h,m)

The updated chaining variable is computed as follows.

1. Initialize the state a: The first 4 columns of a are set h, the last 4 columns
of a to m.

2. Apply 12 iterations of the round transformation, which consists of the
sequence γ, θ, τ, σr:

b =
(
©r=12

1 (σr ◦ τ ◦ θ ◦ γ)
)

(a).



62 HASH FUNCTIONS AND THE REBOUND ATTACK

3. Truncate and add the feed-forward: XOR the input chaining value h with
the first four columns of b to produce the output chaining value g.

The compression function is depicted in Figure 4.3.

h m

? ?

12 rounds

?i

?
g

-

Figure 4.3: ϕ(h,m), the compression function of Whirlwind.

For the detailed specification of how the compression function is iterated in the
hash function, we refer to the paper [11].

4.4 Security analysis

In this section, we provide security arguments for Whirlwind by subjecting it to
the most important contemporary methods of cryptanalysis and investigating
to which extent they apply to Whirlwind.

4.4.1 On basic differential attacks

The design of Whirlwind follows the Wide Trail design strategy [57]. By
Theorem 2 of [55], the linear maps θ and τ ensure that a differential trail over
R rounds contains at least ⌊R/4⌋B2 active S-boxes, where B is the differential
branch number of θ, i.e. 9. In this way, an upper bound of the probability
of any differential trail Q through 4 rounds of Whirlwind can be obtained as
follows:

DP(Q) ≤
(
2−14

)B2

= 2−1134.

Given the fact the Whirlwind has a state size of 1024 bits, only a negligible
fraction of pairs follows any given differential trail over four rounds or more.
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Under the assumption that rare events are hard to reproduce, finding actual
conforming pairs for these trails involves a comprehensive computational effort.

4.4.2 Related differentials and algebraic attacks

Without the feedforward, the compression function of Whirlwind can be
considered as a block cipher with zero round keys. In this setting, the
bound obtained in the previous section can be misleading if the distribution
of differential probabilities for the all-zero key significantly deviates from the
mean, the EDP.

In the case of AES, Daemen and Rijmen [59] demonstrated that for AES
reduced to four rounds, there is a significant fraction of differential trails,
called plateau trails, for which the distribution of DP[k](Q) has a large variance,
potentially leading to the above-mentioned problem.

The existence of these plateau trails was shown to be caused by the presence of
so-called related differentials in the linear diffusion layer [61]. Let L be a linear
function L : (GF(2n))4t → (GF(2n))4t, and let a, b ∈ (GF(2n))4t. Then the
differentials (a, L(a)), (b, L(b)), (a+ b, L(a) +L(b)) are related differentials [61]
over L if and only if

ajbj(aj + bj) = 0, ∀j

L(a)|jL(b)|j (L(a)|j + L(b)|j) = 0, ∀j .

It can be proved that related differentials are unavoidable in diffusion layers
constructed from 4t× 4t circulant matrices:

Theorem 4.4. A linear map

L : (GF(2n))4t → (GF(2n))4t : x 7→ L(x) = xL

with L a circulant matrix of dimensions 4t× 4t, has related differentials.

The proof can be found in [11].

Therefore, any choice of a 8× 8 circulant matrix for θ leads to the existence of
related differentials. For this reason, Whirlwind uses dyadic matrices instead.

4.4.3 Rebound attacks

In this section, we analyse the applicability of the rebound attack to Whirlwind.
First, we discuss some preliminaries specific to rebound attacks on Whirlwind.
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Finding a match for γ. The match-in-the-middle step of the inbound phase
is commonly making use of a precomputed table to determine values actually
following the chosen differential through the S-boxes. For each a and b, this
table contains the solutions to the equation s(x) ⊕ s(x ⊕ a) = b. In case
of the inversion mapping, either two or four solutions exist for each possible
differential (a, b) and the probability that a particular differential exists is about
1/2.

For Whirlwind’s 16-bit S-box, the size of this table is 237 bits, which is not
always practical. However, the storage requirement can be lowered without
significant increase in computational cost by using a lookup table of 216 × 216

bits just specifying whether a particular differential exists or not. Once a
differential match for all S-boxes has been found, only the solutions for the
up to 64 different S-box differentials that are actually present have to be
calculated. Doing this by brute force takes 222 time, which is negligible
since this immediately yields 264 combinations of the two solutions found per
individual S-box. In total, 264 values of the state following the differential are
expected to be found in 264 + 222 time, so the average cost for one match is
still about 1.

In comparison with the designs using 8-bit inversion S-boxes, it is interesting to
note that merely doubling the size of an individual S-box does not contribute
significantly to the average cost of the match-in-the-middle step.

Propagation characteristics of θ. As stated before, the probability of
the outbound phase essentially depends on the propagation of truncated
differentials through θ. Since each λi is an MDS mapping, the sum of active
and inputs and outputs is at least equal to 9. Any admissible transition of a
active inputs and b active outputs (denoted a→ b) in fixed positions requiring
b0 of the b components to be zero occurs with a probability of about 2−4b0 .
Consequently, the probability of a a→ b transition of θ with b0 zero components
in fixed positions is lower bounded by 2−16b0 .

The basic differential trail

In what follows, we are using the description of the round function where
the explicit calculation of τ is replaced by alternatingly applying θ to the
rows (denoted θR) and the columns (denoted θC). Also note that in terms
of differences, σr can be neglected and is therefore omitted from the sequence
of operations.



SECURITY ANALYSIS 65

In order to obtain a collision for the compression function of Whirlwind, we
have to find a differential mapping differences only in the left half of the state
(i.e., differences in the message) to a zero difference in the left half of the state
(i.e., the output chaining value).

The basic trail of truncated differentials has the following pattern of active
S-boxes which is also illustrated in Figure 4.4:

4
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8. (4.10)

γ, θR

r1

γ, θC

r2

γ, θR

r3

γ, θC

r4

Figure 4.4: Basic truncated differential trail covering 4 rounds.

While this trail does not have the minimum number of active S-boxes according
to the wide trail strategy, it minimizes the cost of the outbound phases of the
attacks.

Semi-free-start collision on 4.5 rounds

The differential trail (4.10) can be directly used in a rebound attack to obtain a
semi-free-start collision for Whirlwind reduced to 4.5 rounds. The attack (see
also Figure 4.5) goes as follows.

Inbound phase. The inbound phase of the attack covers the expensive fully
active state in the middle of the trail. First, we choose a random difference
for the 8 cells of the first row at the input of θC in the second round. By
the MDS property, we obtain a fully active state at the beginning of round 3.
Analogously, we choose another random difference of 8 cells for the fifth column

γ, θR

r1

γ

r2

θC

r2

γ

r3

θR

r3

γ, θC

r4

γ
r4.5

inbound phaseoutbound phase outbound phase
Figure 4.5: The collision attack on 4.5 rounds.
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γ, θR

r1

γ

r2

θC

r2

γ

r3

θR

r3

γ, θC

r4

γ, θR

r5

γ
r5.5

inbound phaseoutbound phase outbound phase

Figure 4.6: The near-collision attack on 5.5 rounds.

at the output of θR in round 3 and propagate backwards to obtain another fully
active state at the output of γ in round 3.

Using the procedure described above, now a match-in-the-middle is performed
to obtain values at the input and output of the S-box layer in round 3 matching
the differential. After trying about 264 differences, we can expect to find one
existing differential and 264 conforming values.

Outbound phase. The differences and state values obtained in the previous
step are now propagated outwards through the γ layers. From now on, we
require those to follow certain truncated differential trails. In the backward
direction, we require θR of round 1 to propagate the 8 active cells of the first
row to 4 active cells in the right half of the row. The probability of this is lower
bounded by 2−64, since four out of eight cells in specific positions must have a
zero difference. In the forward direction, θC needs to propagate a fully active
column into a fully active column, which happens with a probability of at least

1−
(∑7

i=1 2−16i
)

, which is about 1. At the end, half a round (consisting of γ)

can be appended for free since this does not change the activity pattern of the
truncated differential.

Summarizing, we need to fulfill one 8→ 4 transition in the backward direction.
The probability of the outbound phase is thus 2−64 so that the 264 values
provided by 264 iterations of the inbound phase are just sufficient to get one
pair following the trail. A semi-free-start collision for 4.5 rounds can hence be
found with complexity 264.

Semi-free-start near-collision on 5.5 rounds

The semi-free-start collision attack on 4.5 rounds of Whirlwind can be extended
to a semi-free-start near-collision attack on 5.5 rounds (see Figure 4.6). Instead
of the 8 → 8 transition in θC of round 4, we require a propagation of 8 to 1
active S-box in the first row. After θR in round 5, this expands to a fully active
first row with probability 1 due to the MDS property. Since the output chaining
value consists of the left half of the state, we obtain a near-collision on 448 of
the 512 bits. The inbound phase and the backwards propagation part of the
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Figure 4.7: The near-collision attack on 6.5 rounds.

outbound phase are exactly the same as in the attack on 4.5 rounds, but the
probability of the forwards propagation part decreases: It is now lower bounded
by 2−112 since we require seven out of eight cells to have a zero difference.

In total, the outbound phase has a probability of 2−176 and the complexity
of obtaining a near-collision pair for 5.5 rounds is 2176, which is already quite
close to a generic birthday attack on 448 bits.

Extension to 5.5/6.5 rounds

Both the collision and near-collision attacks previously described can be
extended by prepending one round. In this round, θ is operating on the
columns, so that the four active cells in the right half of the first row propagate
to four fully active columns in the backwards part of the outbound phase
with probability 1. The complexities of the previous attacks hence do not
change when extended by one round at the beginning. Note however that such
attacks only apply when starting at even round numbers, since we require a
zero difference in the left half of the state, a constraint which is violated by
having θ operate on rows in the first round. The near-collision attack on 6.5
rounds is illustrated in Figure 4.7.

Extensions to more rounds

Rebound attacks on other wide-trail hash functions have basically used two
strategies to extend attacks beyond the basic trail. Either a key or message
schedule was used to afford more fully active states by exploiting the freedom
available from there (e.g. Whirlpool [122]) or multiple independent inbound
phases were efficiently connected by exploiting insufficient diffusion, for instance
between parallel states (e.g. Lane [119]).

Both strategies seem inapplicable to Whirlwind due to the absence of influence
on intermediate rounds via a key schedule and due to the fact that diffusion is
performed according to the wide trail strategy on the whole state and not only
on less interconnected parts of it.
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4.5 Normal basis decomposition for efficient imple-

mentations

Whirlwind makes use of a normal basis tower field decomposition to implement
its confusion and diffusion layers.

4.5.1 Properties of normal bases in finite fields

A normal basis is constructed by choosing an element v ∈ GF(2mp) and setting
v2mj

, 0 ≤ j ≤ p− 1. Representing a finite field using normal bases leads to a
number of important properties.

Property 4.5 ([111]). If the elements of the finite field GF(2mp) are
represented by p-dimensional vectors over GF(2m) using a normal basis, then
raising an element to the power 2m corresponds to rotating the coordinates of
the element by one position.

Property 4.6 ([130]). If the elements of the finite field GF(2mp) are
represented in a normal basis, then any power map power(x) is rotation
invariant:

rot(power(x)) = power(rot(x)).

We make use of another property of normal bases.

Property 4.7 ([140]). If v is a normal element of GF(qmp) with respect to
(w.r.t.) GF(q) then w = TrGF(qmp)/GF(qm)(v) is a normal element of GF(qm)

w.r.t. GF(q).

Proof. Recall that w = TrGF(qmp)/GF(qm)(v) =
∑p−1

i=0 v
qmi

. We will show that

the conjugates wqj

(j = 0 . . . p− 1) are linearly independent. Indeed

wqj

=

(
p−1∑

i=0

vqmi

)qj

=

p−1∑

i=0

(vqmi

)qj

=

p−1∑

i=0

vqmi+j

so each of the conjugates of w is a sum of p different conjugates of v, and all
the mp conjugates of v appear exactly once in the m sums of p summands
each. Since v was chosen to be a normal element of GF(qmp) over GF(q), the
conjugates of v are linearly independent over GF(q). Consequently, w is a
normal element of GF(qm) w.r.t. GF(q).
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4.5.2 Normal bases in Whirlwind

Since in our case, we are dealing with a decomposition of GF(216) to GF(28)
to GF(24), we consider the case p = 4. Let v2 be an element of GF(22m), such
that {v2, v

ℓ1
2 } with ℓ1 = 2m is a normal basis of GF(22m) over GF(2m). Set

• q2
def
= TrGF(22m)/GF(2m)(v2) = v2 + vℓ1

2 , so q2(6= 0) ∈ GF(2m) and

• g2
def
= q−1

2 v2
2 + v2 = q−1

2 vℓ1+1
2 , i.e. g2(6= 0) ∈ GF(2m).

Let v4 be an element of GF(24m) such that {v4, v
ℓ2
4 } with ℓ2 = 22m be a normal

basis of GF(24m) over GF(22m). Define

• q4
def
= TrGF(24m)/GF(22m)(v4) = v4 + vℓ2

4 , so q4(6= 0) ∈ GF(22m) and

• g4
def
= q−1

4 v2
4 + v4 = q−1

4 vℓ2+1
4 , i.e. g4 ∈ GF(22m).

The elements v2 and v4 can be chosen independently or we can choose a normal
element v4 ∈ GF(24m) and then derive v2 = TrGF(24m)/GF(22m)(v) ∈ GF(22m).

Using Property 4.7 it follows that v2 is a normal element in GF(22m). Note
that in this case we have q4 = v2 and q2 = TrGF(22m)/GF(2m)(v2) =

TrGF(24m)/GF(2m)(v) (using trace transitivity) and hence q4, q2 6= 1 (Property

4.7 implies that q2 is a normal element in GF(2m)).

4.5.3 Multiplication and inversion using normal bases

Analogously to [130], using a normal basis decomposition leads to simple and
efficiently implementable formulas for products and inverses of elements.

Let (a, b) and (c, d) be the coordinates of two elements of GF(22m). Then the
coordinates of the product are given by the following formula [11]:

(e, f) = (a, b)× (c, d) ⇔
{

e = (a+ b)(c+ d)g2 + q2ac
f = (a+ b)(c+ d)g2 + q2bd

In an analogous fashion, let now (a, b) and (c, d) be the coordinates of two
elements of GF(24m). The formula for the product in this case then given by:

(e, f) = (a, b)× (c, d) ⇔
{

e = (a+ b)(c+ d)g4 + q4ac
f = (a+ b)(c+ d)g4 + q4bd
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For the inversion, a similar formula can be derived [11]. With (a, b) the
coordinates of an element of GF(22m), the coordinates of the inverse element
are given by the following formula:

(c, d) = (a, b)−1 ⇔
{
c = ((a+ b)2g2q2 + q2

2ab)
−1b

d = ((a+ b)2g2q2 + q2
2ab)

−1a

Analogously let (a, b) be the coordinates of an element of GF(24m). The inverse
can then be computed by the following formula:

(c, d) = (a, b)−1 ⇔
{
c = ((a+ b)2g4q4 + q2

4ab)
−1b

d = ((a+ b)2g4q4 + q2
4ab)

−1a
(4.11)

In this way we can decompose the inversion map from GF(24m) → GF(22m)
→ GF(2m). For the Whirlwind proposal m = 4 so we get the decomposition
GF(216) → GF(28) → GF(24).

4.5.4 Basis choice for Whirlwind

In Whirlwind, GF(216) is recursively decomposed into smaller subfields
according to Section 4.5.2 by choosing a normal element of GF(216) and using
the traces of this element into the subfields to construct the normal bases. This
decomposition is employed uniformly at each level, so that all individual field
extensions have degree two:

GF(216)→ GF(28)→ GF(24)→ GF(22)→ GF(2).

In order to describe our choice for the normal bases unambiguously, we use the
field representations given in Table 4.1(a) as a reference. The normal bases used
in Whirlwind, together with the elements qi, gi used for the field arithmetic are
summarised in Table 4.1(b).

4.5.5 Practical implementation considerations

The square shape of its state and the fact that it is designed according to the
wide trail strategy imply that Whirlwind can be implemented using approaches
developed for the AES [57] and especially Whirlpool [12]. We briefly recall the
techniques here and discuss how to apply them to Whirlwind.
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Table 4.1: Overview of the normal bases decomposition in Whirlwind.

(a) Field representations used for unique reference.

Field Defining polynomial

GF(216)∼= GF(2)(z) X16 +X5 +X3 +X2 + 1
GF(28) ∼= GF(2)(y) X8 +X4 +X3 +X2 + 1
GF(24) ∼= GF(2)(x) X4 +X + 1
GF(22) ∼= GF(2)(w) X2 +X + 1

(b) Normal basis decomposition.

Field Normal element qi gi

GF(216) v4 = z101 — —
basis over GF(28): {v4, v

256
4 }

GF(28) v2 = y101 q4 = v2 g4 = 1
basis over GF(24): {v2, v

16
2 }

GF(24) v1 = x7 q2 = v1 g2 = x4

basis over GF(22): {v1, v
4
1}

GF(22) v0 = w q1 = v0 g1 = 1
basis over GF(2): {v0, v

2
0}

GF(2)

Software implementation on standard microprocessors

The standard approach to implement the linear layer θ is to use lookup
tables containing all scalar products with each of the rows, where the S-box
application is integrated on the scalars.

For Whirlwind, θ consists of the parallel application of four matrix multiplica-
tions over GF(24)8×8 on the rows of the state. Combining their contribution
to one output row into a single table, both γ and θ can be implemented with
eight table lookups. Denote by Mik the k-th row of the dyadic matrices M0

and M1 and define the table Tk, 0 ≤ k ≤ 7 by

Tk

[(
x0,0 x0,1

x1,0 x1,1

)]
= s

[(
x0,0 x0,1

x1,0 x1,1

)]
·
((

M0k,0 M1k,0

M1k,0 M0k,0

)
, . . . ,

(
M0k,7 M1k,7

M1k,7 M0k,7

))
.

(4.12)
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Each row bi of b = (θ ◦ γ)(a) is then equal to

bi =

7⊕

k=0

Tk[ai,k]. (4.13)

Due to the larger S-box, the memory requirements of each table is 216 ·128 bits,
i.e. one megabyte.

Impact of τ . In practice, each of the 2×2 submatrices comprising one element
of the state will be identified by the vector (x0,0, x0,1, x1,0, x1,1) and both a
row of the state and the entries of the Tk will be organized in machine-sized
words. For Whirlwind, each row then comprises two 64-bit or four 32-bit words.
However, this layout of the state implies that operations across rows become
significantly more efficient than operations across columns.

In designs using cyclic shifts to diffuse across second dimension, this operation
can be implemented by a simple reordering of indices in (4.13), so that only
row operations need to be performed. This is however not possible for a matrix
transposition.

As noted in Section 4.3.1, the calculation of τ can be avoided by letting θ
operate on rows and columns of the state alternatingly. The normal description
of Whirlwind’s round transformation:

b = (σr ◦ τ ◦ θ ◦ γ)(a)

then turns into

b =

{(
(σr)T ◦ θ ◦ γ

)
(a) for odd r,

( σr ◦ θC ◦ γ) (a) for even r

where (σr)T denotes the application of the transpose of the r-th round constant
and θC is θ operating on the columns.

In a state layout representing a row using machine words, the computation of
θC still involves one matrix transposition, but the tables for θ can be reused
and the number of transpositions is reduced to R/2, with R being the total
number of rounds.

The transpose can for example be efficiently implemented using a recursive
decomposition of the 8 × 8 transpose into transpositions of 4 × 4 and 2 × 2
matrices using SIMD instructions such as shuffle and unpack in Intel’s SSE
instruction set.
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Table 4.2: Performance figures for software implementations of Whirlwind on
Intel processors. All numbers are given in cycles per byte (cpb).

Xeon E5540 Core 2 X9650 Xeon E5335
2.53 GHz, 3 GHz, 2 GHz,

8 MB L3 cache 6 MB L2 cache 4 MB L2 cache

Large lookup tables 151.31 cpb 210.32 cpb 217.86 cpb
Compressed inverse 129.43 cpb 135.61 cpb 207.74 cpb
Medium lookup tables 99.58 cpb 124.35 cpb 145.18 cpb
Bitsliced (2 blocks) 63.22 cpb 63.14 cpb 67.79 cpb

Whirlpool 54.60 cpb 38.15 cpb 56.31 cpb

Performance of the table-based approach. While arguably being an efficient
method to implement Whirlwind in theory, the memory required to store all
eight lookup tables is 8 MB, which exceeds the L2 cache size available to a
single core in most contemporary processors. As a result, parts of the table
are constantly cached in and out, resulting in a significant performance penalty.
As indicated in Table 4.2, the performance greatly varies with the size of the
L2/L3 cache. A significant speedup is expected on CPUs with 12 or 16 MB of
cache such as Intel’s Xeon 7400 series.

Using smaller tables. In order to avoid L2/L3 cache pressure, the Whirlwind
round transformation can also be implemented using smaller lookup tables.
In this cases, γ has to be implemented by separate table lookups requiring a
table of 216 · 2 bytes. Since the λi are applied independently, the approach
described in equation (4.12) can be generalized to lookup tables for one, two
or four λi mapping scalars of 4, 8 or 16 bits to complete 128-bit rows with
the individual contributions shifted to the final location. Then an output row
can be obtained by XOR-ing 4, 2 or 1 partial rows together 8 times. The best
trade-off for contemporary machines is offered by combining two λi per table.
In total, this implementation needs 217 + 216 bytes (192 KB) of lookup tables,
which easily fits in most L2 caches.

As seen in Table 4.2, this implementation (“medium lookup tables”), albeit
needing three times as many lookups per round transformation as in the big
tables approach, improves performance especially on CPUs with smaller cache
size. The speedup this implementation receives on the machines with bigger
cache sizes are explained by them also featuring more recent microarchitectures.
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Using the symmetry of the inverse. The use of normal bases in Whirlwind
permits another implementation variant based on the following symmetry
property: If (a, b)−1 = (c, d), then (b, a)−1 = (d, c) and (a, a)−1 = (c, c). This
can be directly verified by equation (4.11) and suggests the following procedure
for computing the inverse of (a, b) in GF(24m):

(a, b)−1 =





S[a, b] if a < b,

(S[a, a], S[a, a]) if a = b,

S[b, a] if a > b;

with a table S storing only the inverses (c, d) of (a, b) with a < b and the value
c for the inverse of (a, a)−1 = (c, c). This table then only requires 22m · (22m −
1)/2 ·4m+ 2m ·22m = 2m ·24m bits of memory, which is half the size of the full
lookup table. For Whirlwind, m = 4, so this implies a table of 64 KB instead
of 128 KB.

However, this reduction comes at the expense of conditional processing. So
while this technique can also be used to halve the size of the tables described
by (4.12), the cost of the additional processing practically compensates for
this, as seen in Table 4.2. On the other hand, table-based implementations on
platforms where memory is the primary concern will benefit from the reduction
provided by this technique (see also Section 4.5.5).

Bitslicing. In order to obtain a constant-time implementation resistant to
side-channel attacks, Whirlwind can also be implemented in a bitsliced manner.
Similar to the recent very fast bitsliced implementation of the AES [99], the
normal basis decomposition of the field arithmetic presented in Section 4.5
leads to compact formulations on the level of individual bits. The current
implementation is using Intel’s SSE3 instruction set and processes two blocks
of two independent hashing operations in parallel to fully utilize the register
width. Improving this implementation and deriving a representation for single
block hashing that still leads to efficient computations is an interesting target
for future work.

Embedded platforms and hardware

At the moment, there are no implementations for 8-bit processors or in
hardware. However, by making use of the tower field decomposition employed
in Whirlwind, the implementation techniques described in [130] can be
applied. Also, we expect the compactness estimations from this paper to
carry over proportionally, resulting in competitive implementations for resource-
constrained platforms.
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Memory requirements on 8-bit platforms. For implementations on 8-bit
microcontrollers, the requirements in terms of RAM and ROM are generally
a far greater concern than execution speed. We estimated those requirements
for Whirlwind according to the criteria mentioned in [89], which in particular
implies that the IV is stored in ROM and that the memory used for the message
block is considered external to the hash algorithm and hence not taken into
account.

An implementation of Whirlwind needs 512 bits of ROM for the IV and
at least 512 bits of RAM to store the previous chaining value for the feed-
forward and 1024 bits of RAM for the internal state. The round constants
can either be implemented using 768 bits of ROM or via a counter using 8
bits of RAM. As described in Section 4.5.3, the finite field arithmetic can
be recursively decomposed down to binary operations. While this comes at
a performance penalty on 8-bit platforms, it eliminates the need for lookup
tables. Alternatively, the technique from Section 4.5.5 can be used to speed up
the implementation at the cost of 216 bytes of ROM for a lookup table of the
compressed inverse. Combined approaches are possible, for instance using the
normal basis arithmetic for the first level of decomposition and then employing
lookup tables for the smaller subfields.

Summarising, we estimate that Whirlwind can be implemented on 8-bit
platforms using either 192 bytes of RAM and 160 bytes of ROM, or 193 bytes
of RAM and 64 bytes of ROM. Compared to the SHA-3 candidates analyzed
in [89], this places Whirlwind in the “Middle” class of algorithms with regard to
memory requirements, for instance being significantly smaller than the Round 2
candidates ECHO and SIMD, comparable to BMW, Shabal and the finalist
Keccak, and larger than the finalist BLAKE and the Round 2 candidates Hamsi
and Luffa.

4.6 Grøstl-0: Attacking a rebound-resistant hash
function

Since the rebound attack was discovered by its designers [122], the hash function
Grøstl[75] is designed to resist it to a large extent. The evaluation to which
extent rebound techniques can provide attacks on reduced-round versions of
Grøstl is the subject of the remainder of this chapter.

The Grøstl hash function was selected as a finalist of the NIST SHA-3
competition. Since the designers tweaked the specification before the final
round of the competition, partially also in response to the attacks presented
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Target Digest Size Rounds Time Memory Type Reference

hash function 224, 256 4 264 264 coll. [123]
(10 rounds) 256 5 248 232 coll. Sect. 4.7.2

256 6 2112 232 coll. Sect. 4.7.2
224 5 248 232 coll. Sect. 4.7.2

compression 224, 256 10 2170.7 2170.7 FSC [74]
function 256 7 2120 264 SFSC [77,123]
(512-bit CV) 224, 256 7 280 264 SFSC Sect. 4.7.2

224, 256 8 2192 264 SFSC Sect. 4.7.2

hash function 384, 512 5 2176 264 coll. [123]
(14 rounds) 512 6 2183 264 coll. Sect. 4.7.3

compression 384, 512 14 2341.3 2341.3 FSC [74]
function 384, 512 7 2152 264 SFSC [123]
(1024-bit CV) 384, 512 7 2152 256 SFSC [20]

384, 512 8 2224 296 SFSC Sect. 4.7.3
384, 512 9 2504 2128 SFSC Sect. 4.7.3

permutation 224, 256 7 255 −− dist. [121]
224, 256 7 219 −− dist. Sect. 4.8.2
224, 256 8 2112 264 dist. [77]]
224, 256 8 248 28 dist. [149]
224, 256 8 264 264 dist. Sect. 4.8.1

Table 4.3: Summary of results for Grøstl-0. “coll.”, “FSC”, “SFSC”, and “dist.”
are abbreviations for collision, free-start collision, semi-free-start collision, and
distinguisher, respectively.

here, there are two versions of Grøstl: the original version for round 1 and
2 [74], called Grøstl-0, and the tweaked version for the final round [75]. Our
target is Grøstl-0.

Grøstl-0 has been extensively cryptanalysed [77, 121–123, 141, 149]. We give a
short overview of cryptanalysis results on Grøstl-0 together with an overview
of our results presented in the next sections in Table 4.3. These results have
been published jointly with Kota Ideguchi and Bart Preneel in [90] and [91].

4.6.1 Description of Grøstl-0

We give a short explanation of the specification of Grøstl-0. For a detailed
explanation, we refer to the original paper [74]. Grøstl-0 is an iterated hash
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mi

hi−1

Q

P hi

Figure 4.8: The compression function of Grøstl

function with an SPN structure following the wide trail design strategy. There
are two variants of Grøstl-0: one for hash lengths of 224 and 256 bits, and one
for 384 and 512 bits.

The size of the chaining values are 512-bit for Grøstl-0-224 and -256; they
are stored as an 8 by 8 matrix whose elements are bytes. The compression
function takes a 512-bit chaining value (CV) and a 512-bit message block as
inputs and generates a new 512-bit CV. The compression function uses two 512-
bit permutations P and Q. The compression function G is defined as follows
(see also Figure 4.8):

hi = G(hi−1,mi)
def
= P (hi−1 ⊕mi)⊕Q(mi)⊕ hi−1.

A message is padded and divided into 512-bit message blocks m1, . . . ,mb and
processed as follows to generate a hash value h:

h0 = IV,

hi = G(hi−1,mi) i = 1, . . . , b

h = = P (hb)⊕ hb.

The initial value IV is the binary representation of the hash length. For
example, the IV of Grøstl-0-256 is IV = 00 ...0100x, its matrix representation
is depicted in Figure 4.9a.

We denote by MBn the MixBytes-n operation used in the Grøstl-0-n
permutations; similarly SBn denotes SubBytes-n, ShBn denotes ShiftBytes-n
, and ACn denotes AddConstants-n. Here SBn is a non-linear transformation
using the AES S-box. ShBn consists of a byte-wise cyclic shift of rows. In the
case of n = 256, the i-th row is cyclically rotated to the left by i bytes. MBn
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(a) IV of
Grøstl-0-
256

j

j ⊕ ffx

P Q

(b) AddConstant operation of
Grøstl-0-256

Figure 4.9: IV and AddConstant in Grøstl-0-256

(a) IV of Grøstl-0-
512

j

P Q
j ⊕ ffx

(b) AddConstant operation of Grøstl-0-512

Figure 4.10: IV and AddConstant in Grøstl-0-512

is a matrix multiplication, where a constant MDS matrix is multiplied from
the left to all columns independently. ACn of P XORs the round number to
the first bytes of the internal state. ACn of Q xors the negation of the round
number to the eighth byte of the internal state. These functions are depicted
in Figure 4.9b. The permutation P is a wide-trail [56] round function with
10 rounds, where a round consists of MB256 ◦ ShB256 ◦ SB256 ◦ AC256. The
permutation Q has the same structure; it uses the same MB256, ShB256 and
SB256 but another AC256.

For Grøstl-0-384 and Grøstl-0-512, the chaining values are 1024-bit in size and
are stored as an 8 by 16 byte matrix. The compression function has the same
form as Grøstl-0-256, except that the lengths of the permutations P and Q are
1024 bits. Again, the IV is the binary representation of the hash length; the
matrix representation of the IV of Grøstl-0-512 is depicted in Figure 4.10a. The
number of rounds is 14 and each round consists of MB512, ShB512, SB512 and
AC512, which are the natural 1024-bit equivalents of their 512-bit counterparts,
except for ShB512, which moves each row left cyclically by i bytes except for
the last row, which is moved left cyclically by 11 bytes. AC512 of P xors the
round number to the first bytes of the internal state. AC512 of Q xors the
negation of the round number to the eighth byte of the internal state. These
functions are depicted in Figure 4.10b.

In the remainder of this chapter, we will omit the suffix n of each function, if
it is clear from the context.
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4.6.2 The internal differential attack

The internal differential attack was introduced by Peyrin [141] for the
cryptanalysis of the Grøstl-0 permutation. It is a general technique that can
apply to algorithms using parallelly executed components (e.g., permutations)
that are very similar. Instead of tracing the propagation of differences of a pair
(x, x∗) through the same function F , it traces the propagation of differences of
x through two functions F and F ∗. Here, similarity is measured in terms of
XOR differences.

It is obvious that this approach can be suitable for Grøstl-0, since the difference
between the two parallel permutations calls P (x) and Q(x) only lies in the
AddConstant operation, which only modifies one byte per round.

The internal differential attack has been used by Peyrin to construct
distinguishers for the internal permutation of Grøstl-0 [141]. However,
his approach cannot be used to obtain (semi-free-start) collisions on the
compression of hash function due to lack of degrees of freedom. In the sequel, we
will study how the internal differential attack can be used in collision attacks.

4.6.3 Variants of the rebound attack

In this section, we outline the start-from-the-middle and Super-Sbox variants
of the rebound attack. For a detailed explanation, we refer to the original
papers [77,106,121].

We recall two properties of the MDS matrix used in MB which we will frequently
use in the sequel. First, the MDS property implies that the sum of the number
of active bytes of the truncated difference at the input and at the output
is always at least 9. Furthermore, the property implies that the probability
of a transition where the input (output) difference is randomly chosen and
the number of active bytes of the output (input) difference is k is about
2−8(8−k) [123].

The start-from-the-middle rebound technique

The start-from-the-middle variant of the rebound attack is due to Mendel et
al. [121]. We outline this technique using a small example with a 4-round path
of Grøstl-0-256 depicted in Figure 4.11. We split the path into a controlled
(“inbound”) phase and an uncontrolled (“outbound”) phase. The controlled
phase consists of the middle part of the path and comprises the most costly
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1st round 2nd

4th3rd

SB ShB MB SB ShB MB

MBShBSBMBShBSB

Figure 4.11: Example path for the start-from-the-middle rebound attack.

differential transitions. In Figure 4.11, the controlled phase is shown by solid
arrows and the uncontrolled one is shown by dashed arrows.

First, the difference distribution table (DDT) of the Sbox it built; this is
a two-dimensional table whose rows and columns are labeled by the input
differences and the output differences, respectively, and an element contains
the corresponding input pairs. It takes 216 time to construct the table of size
216. Next, the controlled phase is executed:

1. We fix the input difference of the 4th round SB, then calculate the output
difference of the 3rd round SB.

2. We fix the input difference of the 2nd round MB and calculate the input
difference of the 3rd round SB. Then, for each column of the output of
the 3rd round SB, we determine pairs of values of the column by using
the precomputed difference distribution table such that the fixed input
and output differences of the 3rd-round SB are complied with. Note that
this can be done for each column independently. By repeating this step
with different input differences of the 2nd-round MB, we obtain a set of
solutions for each column, hence eight sets of solutions.

3. For each of the solutions obtained in the previous step, the differences
of the input of the 2nd-round SB are determined. We then select these
solutions that cause the difference of the input of the 2nd-round SB to be
transformed to a one-byte difference by the 1st-round inverse MB. These
are the solutions of the controlled phase. We can repeat the procedure
from Step 1 to 3 by changing the input difference of the 4th round SB.

Note that while we described the procedure starting from the end of the 3rd
round backwards, following it in the opposite direction is possible as well. In
both cases, the average time complexity to find one solution of the controlled
phase is equal to one, with negligible memory complexity.

The uncontrolled phase is probabilistic. In the backward direction (from the
input of the 1st-round ShB to the beginning of the path), the probability to
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Figure 4.12: Example path for the Super-Sbox rebound attack.

follow the path is almost one. In the forward direction (from the input of the
4th-round SB to the end of the path), it requires 256 solutions of the controlled
phase in order to follow a 8→ 1 transition for the 4th-round MB. This implies
that in total, generating one solution of the whole path takes time 256.

The available degrees of freedom can be counted based on the method of [141].
For the path in Figure 4.11, we can find about 215 solutions following the whole
path. Note that if we consider differential paths between P (m+IV ) and Q(m),
we do no need to halve the overall degrees of freedom at the middle point. Hence
in our case, the degrees of freedom can actually be doubled compared to the
method of Peyrin [141].

The Super-Sbox rebound technique

The Super-Sbox rebound technique [77, 106] combines the super box concept
with the rebound attack. The super box concept [59] considers the S-box
layers of two consecutive rounds as one big S-box layer. More precisely, by
exchanging the order of the first SB and the first ShB, we have a composition
of SB ◦ AC ◦MB ◦ SB. This composition is considered as eight independent
64-bit to 64-bit Sboxes, which are called super boxes, or Super-Sboxes as in [77].
We explain the Super-Sbox rebound technique by an example in Figure 4.12.
Similar to the start-from-the-middle rebound technique, we split the path into
a controlled phase and an uncontrolled phase.

For the controlled phase, we follow the following steps:

1. Fixing the input difference of the 2nd round MB, we calculate the input
difference of the 3rd round SB. For each Super-Sbox, we compute the
output differences of the Super-Sbox for all possible input pairs which
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have a fixed input difference and construct tables of the output difference
and the corresponding input pairs. This takes time and memory 264.

2. We fix the output difference of the 4th round MB and calculate the output
difference of the 4th round SB.

3. For each Super-Sbox, we search for the pairs of the inputs of the Super-
Sbox by using the partial difference distribution table of Step 1 such
that the output difference of the 4th-round SB equals the one of Step 2.
This can be done for each Super-Sbox independently. In case we do not
obtain enough solutions for the controlled phase, steps 2 and 3 can be
repeated until the output differences of the 4th round MB are exhausted.
After exhausting the differences at Step 2, we can backtrack to Step 1 by
changing the input difference of the 2nd round MB.

Although we described the attack proceeding forward from the 2nd round MB,
starting in the 4th round and computing backwards is equally possible.

The uncontrolled outbound phase is again probabilistic. Since there are two
8 → 1 transitions (the 1st-round MB and the 5th-round MB), we need 256·2

solutions of the controlled phase to expect one remaining solution after the
outbound phase. Consequently, the time complexity to generate a solution for
the whole path is 2112. The memory complexity is 264. The degrees of freedom
can be counted as in the case of the start-from-the-middle rebound attack.

4.7 Collisions for round-reduced Grøstl-0

4.7.1 Attack strategy

We will apply the previously outlined techniques to obtain collision and semi-
free-start collision attacks on the reduced-round Grøstl-0 hash function and
compression function.

In all our attacks, we consider differential paths between P (m ⊕ IV ) and
Q(m). The key observation is that in Grøstl-0, the permutations P and Q only
differ in the AC functions. Furthermore, each AC operation only introduces a
two-byte difference per round. This means that we can construct differential
paths between P and Q which hold with high probability. This strategy was
introduced by [141] to construct distinguishers for the compression function.

In our attacks on the hash function, we construct a message pair in which each
padded message has the same number b of blocks with b ≥ 2. Consider the
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(a) diagonal column (b) off-diagonal column (c) anti-diagonal column (d) anti-off-diagonal column

Figure 4.13: Truncated difference patterns for the analysis of Grøstl.

minimal case b = 2. We first find a pair of the first blocks m1 and m′
1 that

generates an internal collision of the chaining value after processing the first
block:

hi = G(IV,m1) = G(IV,m′
1). (4.14)

Then, the same message block m2 is appended to both blocks such that the
padding rule is satisfied. We call the resulting padded messages M and M ′,
respectively. They now generate the same hash value, producing a collision
for the hash function. As finding the second message blocks is easy, we can
concentrate on finding the first blocks.

For our attacks on the compression function, finding the first blocks is sufficient.

In our analysis, we will make use of certain specific truncated difference patterns
in the Grøstl state. A diagonal column denotes 8 diagonal bytes, which are
aligned to the first column by ShB, and a off-diagonal column denotes 8 bytes
which are aligned to a column other than the first column by ShB. An anti-
diagonal column denotes 8 anti-diagonal bytes, which are aligned to the eighth
column by inverse ShB, and an anti-off-diagonal column denotes 8 bytes which
are aligned to a column other than the eighth column by inverse ShB. These
terms are illustrated in Figure 4.13.

4.7.2 Attacks on Grøstl-0-256

Collisions for 5-round Grøstl-0-256

We describe a collision attack on the Grøstl-0-256 hash function reduced to
5 rounds. Our differential path between P (m ⊕ IV ) and Q(m) of the first
message block is shown in Figure 4.14. The controlled phase is shown by solid
arrows and the uncontrolled phase by dashed arrows. The internal states at
the boundaries between the controlled and uncontrolled phases are denoted by
A and B, respectively, as indicated in Figure 4.14.

For the controlled (inbound) phase, we start at state A and calculate backwards
to state B. Using the start-from-the-middle technique, this can be done with
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Figure 4.14: Differential path between P and Q of 5-round Grøstl-0-256

average time complexity one. The outbound phase is uncontrolled and has to
be followed probabilistically.

In the forward direction (from state A to the end of compression function), the
probability to follow the path is almost one. In the backward direction (from
state B to the beginning of the compression function), we need 216 repetitions
to follow the inverse AC and addition of the IV in the 1st round (two 8-bit
conditions). In total, the time complexity to find a message block following the
whole path is 216.

As the differences of the chaining value at the end of the path are determined
by the 8-byte difference before the final MB, by the birthday paradox we need
to have 232 message blocks following the path in order to obtain a pair (m1,m

′
1)

whose CVs collide; P (m1 ⊕ IV )⊕Q(m1)⊕ IV = P (m′
1 ⊕ IV )⊕Q(m′

1)⊕ IV .
Therefore, the total complexity of the attack is 216+32 = 248 time and 232

memory.

By counting the degrees of freedom, we observe that we can generate at most
264 message blocks following the path. Because the attack requires 232 message
blocks following the path, we have enough degrees of freedom for the purposes
of our attack.
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Figure 4.15: Differential path between P and Q of 6-round Grøstl-0-256

Collisions for 6-round Grøstl-0-256

One more round of Grøstl-0-256 can be attacked using the differential path
depicted in Figure 4.15.

Again, we denote the internal states at the boundaries between the controlled
and uncontrolled phases A and B. Additionally, we denote three more states in
the controlled phase by C, D, and E; as indicated in Figure 4.15.

The controlled phase (solid line) proceeds forward from state A to state B.
forwards and ends at the state B. Using the start-from-the-middle technique,
this can be done with average time complexity one.

For the outbound phase, we have the following probabilistic transitions: In the
forward direction (from state B onwards), the probability to follow the path is
almost one, while in the backward direction (from state A backwards), it takes
216 repetitions to find a solution following the 2nd round inverse AC, 248 for
the 2nd round inverse MB, and 216 for the inverse AC and addition of the IV
in the 1st round. With 80 bits of conditions in total, the overall time is about
280.
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Compared to the description of the standard start-from-the-middle algorithm in
Section 4.6.3, controlling the transitions from states C to E requires additional
steps: In the following, we describe an algorithm to generate 232 solutions of
the controlled phase with time and memory 232, hence still achieving an average
cost of one to find one solution.

First, steps 1 and 2 of the start-from-the-middle algorithm are executed
normally. We then prepare 232 solutions for each column at the state C
independently. Then, we perform the following steps:

1. For each of the solutions obtained in Step 2, we calculate forwards until
state D. We now have 232 solutions for each anti-diagonal or anti-off-
diagonal column at state D.

2. We pick one solution corresponding to the anti-diagonal column in state
D, thereby determining 4 bytes of the anti-diagonal 8-byte difference at
the state D. Since the transition pattern of the 4th round MB in the
path imposes 28 bytes linear equations on the input difference, the other
28-byte difference at state D is fixed by solving these 28 bytes equations.
Then, we can verify whether this 28-byte difference is included in the
other sets of the solutions (corresponding to anti-off-diagonal columns).
This procedure is then repeated for all 232 elements of the solutions
corresponding to the anti-diagonal column.

This algorithm requires 232 time and 232 memory. Since there are 232·8

candidates for solutions at the state D, we obtain 232·8/228·8 = 232 solutions at
state E by this algorithm. Consequently, we can generate one solution of the
controlled phase with average complexity one.

Similar to the 5-round collision attack, we need 232 message blocks following
the path in order to obtain a pair (m1,m

′
1) with colliding CVs. Hence, the

total complexity of the attack is 280+32 = 2112 time and 232 memory.

By counting the degrees of freedom, we find that we can generate at most 232

message blocks following the path, which is sufficient since our attack requires
just 232 message blocks following the path to obtain one collision of CV with
high probability.

Semi-free start collisions for 8-round Grøstl-0-224 and -256

We now describe how to obtain semi-free-start collisions for 8 rounds of the
Grøstl-0-224 and -256 compressions functions using the Super-Sbox rebound
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Figure 4.16: Differential path between P and Q of 8-round Grøstl-0-224 and
-256

technique. The differential path between P (m⊕ IV ) and Q(m) of the message
block is shown in Figure 4.16.

We again denote the start of the controlled phase by A and the end by B. By
the Super-Sbox technique, we can generate a solution for the controlled phase
with complexity one on average.

For the probabilistic uncontrolled transitions, we observe that in the forward
direction (from state B to the end), the path is followed with probability almost
one. In the backward direction (from state A to the beginning), we need to
follow two 8→ 1 transitions at the 3rd round inverse MB (accounting for 2112

computations), and 216 time to follow the 3rd round inverse AC. The overall
time complexity to find a message block following the whole path is hence 2128.
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In order to obtain such a pair with colliding CVs, we need to obtain a collision
on the 8 active bytes before the final MB and the 8 active bytes in the IV.
Consequently, about 264 message blocks have to be generated to obtain a
collision. This determines the total attack complexity as 2128+64 = 2192 for
time and 264 for memory.

By counting the degrees of freedom, we find that we can generate at most 264

message blocks following the path, which is sufficient since our attack requires
just 264 message blocks following the path to obtain one collision of CV with
good probability.

4.7.3 Attacks on Grøstl-0-512

In this section, we demonstrate collision attacks on the 512-bit hash length
variant of the Grøstl-0 family.

Collisions for 6-round Grøstl-0-512

The internal differential path for our collision attack on 6 rounds of the Grøstl-
0-512 hash function is shown in Figure 4.17.

Using the start-from-the-middle technique, the controlled rounds from state A
to state B can be followed with average complexity one. The uncontrolled
rounds require time 216, 2112 and 216 to follow the transitions at the 2nd
round inverse AC, the 1st round inverse MB, and the 1st round inverse AC,
respectively. In the forward direction, the probability to follow the path is
almost one.

For message blocks following the path, the output of the compression function
depends only on the 10-byte difference at the input of the 6th round MB. The
2-byte difference among the 10 bytes comes from the 6th round AC. We observe
that these 2-byte differences at the output of the 6th round AC are fixed, the
number of possible differences of each byte at the output of the 6th round
SB is only 27. Therefore, the output of the compression function lives in a
2 · 7 + 8 · 8 = 78-bit vector space. In order to obtain a collision of CVs, we
therefore need 239 messages following the path. This implies that the total
complexity of the attack is 2183 for time and 264 for memory. By counting the
degrees of freedom, we find that we can generate 264 messages following the
path, which is more than enough for the purposes of our attack.
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Figure 4.17: Differential path between P and Q of 6-round Grøstl-0-512

Semi-free start collisions for 8- and 9-round Grøstl-0-512

The path used for the collision attack on 6 rounds of the Grøstl-0-512 hash
function can be extended to obtain semi-free-start collisions on the compression
function reduced to 8 and 9 rounds. Both attacks use the Super-Sbox technique
to span more active states in the middle.

The path which is used in the 8-round attack is depicted in Figure 4.18. For
the uncontrolled phase, we need to follow the 3rd round inverse MB and inverse
AC backwards (requiring 2112 and 216 time, respectively), while the forward
transitions occur with probability almost one. In order to obtain a collision of
the chaining value, we need a collision on 24 bytes (8 from the difference in the
IV and 16 from the active bytes before the last MB). Therefore, 296 message
blocks are required for a collision, accounting for a total attack complexity of
2128+96 = 2224 time and 296 memory. Since the available degrees of freedom
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-512
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allow the generation of 2128 different message blocks following the path, our
attack works.

By affording a fully active state in the middle and one more active column
before the last MB, this attack can be extended to 9 rounds. The resulting
path is shown in Figure 4.19. The uncontrolled phase has the same probability
in the backward direction, accounting for a complexity of 2128. In the forward
direction, it takes 2240 time for the 7th-round MB and 28 time for the 8th-round
AC. A message block following the path can therefore be generated with time
complexity 2376. The CV lives in a 256-bit vector space, implying that we need
2128 solutions for the path in order to obtain one collision. The available degrees
of freedom allow for the construction of 2136 solutions, which is sufficient for our
purposes. In total, this attack has a complexity of 2504 time and 2128 memory.

4.7.4 On memoryless collisions

Even though the collision attack on 5 rounds of Grøstl-0 has practical time
complexity, the memory requirement of 232 512-bit blocks for finding two
colliding message blocks is still substantial. A straightforward application
of memoryless collision search seems to fail since the start-from-the-middle
algorithm requires randomized iterations.

However, memoryless algorithms for the birthday problem such as Floyd’s
cycle finding algorithm [104] can be combined with the start-from-the-middle
algorithm outlined in Sect. 3.1 as follows. We start with a randomly chosen
8-byte input difference in step 1. For the required repetitions of steps 1 and 2
before step 3 succeeds, we apply a “random” single-cycle bijection of Z/(264

Z)
to the previous differences, for instance f(x) = 2x2 + x + 1. This is repeated
until the first message block is obtained. Starting from the computation of the
second message block, 8 diagonal bytes from the difference between P and Q
from the previously obtained message block will be used as initial differences for
step 1 instead of random values. Since those bytes have been processed through
several SubBytes applications, it is reasonable to assume that they will behave
as random data. In this way, the start-from-the-middle procedure itself acts
as a deterministic mapping for the collision search. Under those assumptions,
a colliding message block is expected to be found in a small multiple of 232

iterations with constant memory.

In this case, the memory requirements of the collision attacks on 5 rounds
and the semi-free-start collision attacks on 7 rounds of the Grøstl-0-224 and
-256 hash functions become negligible without significant increase in time
complexity.
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Figure 4.20: Differential path for the 7-round distinguisher of the Grøstl
permutation.
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Figure 4.21: Differential path for the 8-round distinguisher of the Grøstl
permutation.

Likewise, the memory requirements of the semi-free-start collision attacks on
8 rounds and 9 rounds of Grøstl-0-384 and -512 become 264. The memory
requirements of the other attacks remain unchanged.

4.8 Distinguishers for the round-reduced Grøstl-0-

256 permutation

In this section, we show improved distinguishers for 7 and 8 rounds of the Grøstl
permutations, applicable to both P and Q. The distinguisher for seven rounds
has practical time and memory requirements. Our distinguishers work in
both the limited-birthday [77] and the stronger Subspace Problem model [106].
Before going into detail about the different notions of distinguishing, we
describe the differential paths and attack procedures.

The truncated differential path for the Grøstl permutation reduced to 7 rounds
is depicted in Figure 4.20. We use the start-from-the-middle technique to
create a pair for this path with a complexity of about 28 compression function
calls and negligible memory. Starting from the input to SubBytes in the 5th
round, we can create a pair following the path back to the output of SubBytes

in Round 2 with a complexity of about one. The remaining steps in both
directions are uncontrolled. Except for the transition from 8 to 7 active bytes
in the 5th round (which happens with probability 2−8), they are followed with
probability of almost one, hence about 28 repetitions are sufficient to generate
one pair following the entire path.

For eight rounds, we use the truncated differential path illustrated in
Figure 4.21. In order to afford the two fully active states in the middle, we
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a b

1005d35dd6ae67e7 6905d35dd6ae67e7

be596c8193d8ca75 be536c8193d8ca75

cf8110ef1700dcab cf8133ef1700dcab

be37b4d7581c2f2a be37b49f581c2f2a

e5bd7afc7531c99d e5bd7afc9831c99d

5073a23cf2065561 5073a23cf2b85561

341edf8988424101 341edf898842f501

d989073be1cb0af7 d989073be1cb0ace

Table 4.4: Input pair (a, b) of Grøstl’s P permutation following the trail used
in the 7-round distinguisher.

employ the Super-Sbox technique. Starting from the output of MixBytes in
round 3, 264 pairs following the path until the input of MixBytes in round 6
can be generated at a cost of 264 computations and 264 memory. Out of these
264 pairs, a fraction of about 2−2·32 are expected to follow the required 8→ 4
transitions in both backward and forward direction. The remaining transitions
have a probability of about one, so that one pair following the entire 8-round
path can be found with 264 time and memory.

4.8.1 Distinguishers in the limited-birthday model

A limited-birthday distinguisher for a keyed permutation consists of an efficient
procedure to obtain pairs of inputs and outputs such that the input and output
differences are zero at i and j bit positions, respectively. If this procedure is
more efficient than the conceived best generic algorithm based on the birthday
paradox, it is considered a valid distinguisher [77]. Although primarily targeted
for a known-key setting for keyed permuations, limited-birthday distinguishers
have been applied to the Grøstl permutation and compression function [77].

In this setting, obtaining input/output pairs for the seven-round Grøstl
permutation (barring the last MixBytes) with a zero difference at 448 input
and 64 output bits as depicted in Figure 4.20 should ideally take 232 operations,
while following our procedure has a complexity of 28. We have implemented
the algorithm for the seven-round distinguisher. An example pair of inputs to
the P permutation following the entire path can be found in Table 4.4.

Likewise, in the eight-round case (Figure 4.21), the ideal complexity is 2128,
while our procedure takes 264 time and memory.



CONCLUSIONS 95

4.8.2 Distinguishers in the subspace problem model

Distinguishers based on the Subspace Problem [106] consider the problem of
obtaining t difference pairs for an N -bit permutation such that the output
differences span a vector space of dimension less than or equal to n (provided
the input differences span a vector space of dimension less than or equal to n
too). Contrary to the limited-birthday model, lower bounds for the number
of permutation queries needed in the generic case can be proven [106], so this
provides a stronger distinguishing setting. According to Corollary 4 of [106],
the number of queries to the permutation and its inverse to solve the subspace
problem is lower bounded by

Q ≥
{√

2K if K < 22n−1,

2−n ·K if K ≥ 22n−1
(4.15)

with

K =
t

e

(
p
√

2πt
)1/t

· 2 (N−n)(t−2n)−2(n+1)
t . (4.16)

Note that the conditions on t and N stated in Proposition 2 of [106] can actually
be relaxed to t > 2n and N ≥ n.

For the Grøstl permutation, we have N = 512. Our procedure to generate
pairs for the seven round trail of Figure 4.20 has to be compared to the generic
lower bound given by (4.15) with n = 448. Starting from t = 211, our method
is more efficient (28+11 = 219 computations) than the generic algorithm (223

queries), yielding a valid distinguisher.

For eight rounds, we have n = 256, and again choosing t = 211 gives a
complexity of 2101 for the generic case, while our method has a complexity
of 264+11 = 275 time and 264 memory.

4.9 Conclusions

In this chapter, we studied hash functions based on the wide trail strategy with
a special focus on their resistance to the powerful class of rebound attacks.

First, we described the analysis of Wildpool, a design study intended to evaluate
the consequences of introducing bigger S-boxes in wide-trail designs. We
observed that the interplay between the S-box and the diffusion layer restricted
the usefulness of the construction and also obstructed its analyzability.
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Furthermore, Wildpool succumbs to the rebound attack as much as its role
model, Whirlpool.

Second, we presented the Whirlwind hash function design which takes into
account recent developments in hash function cryptanalysis, in particular the
rebound attack. It uses larger 16-bit S-boxes for low-probability differential
trails. An implementation can still be efficient due to a special choice of basis
for the finite field GF(216) speeding up implementations that compute the S-
box entries instead of storing them in a large lookup table.

Third, we analyzed the Grøstl-0 hash function family, which is the original
untweaked submission to the NIST SHA-3 competition. We presented improved
collision attacks for 6 out of 10 rounds of Grøstl-0-224 and Grøstl-0-256 and
6 out of 14 rounds of Grøstl-0-512. We also identify weaknesses in reduced
round versions of the compression function and the permutation. In part also to
preclude our attacks, the Grøstl hash function was tweaked for the final rounds.
Consequently, our results do not threaten the version of Grøstl contending in
the SHA-3 final. More precisely, the tweaked version of Grøstl exhibits bigger
differences between the permutations P and Q than Grøstl-0. These tweaks
seem to make our attack strategy a lot less powerful.



Chapter 5

Block ciphers and statistical
cryptanalysis

Statistical cryptanalysis techniques, most prominently including linear and
differential cryptanalysis as described in Section 2.3, are among the most
powerful and versatile analysis methods for symmetric algorithms. This
particularly holds for block ciphers, not the least because these attacks were
initially developed for the cryptanalysis of block ciphers [22,115,116], the most
well-understood symmetric primitive at the time of their invention.

Since their discovery, they have received a lot of attention from the research
community. Many successful [19, 21, 109] and even practically implementable
attacks [23,26,116] on block ciphers are based on those two strategies and their
refinements.

Also from a theoretical point of view, significant advances have been made
in their understanding. The current state-of-the-art allows cryptographers to
design ciphers that can be shown to resist at least the basic forms of these
attacks [53,56,101,117,135,144,159].

However, despite these advances, our theoretical understanding of both linear
and differential cryptanalysis still leaves a lot to be desired. For instance, the
success probabilities and data complexities of linear and differential attacks
are usually determined in a model based on several important assumptions to
simplify the analysis [27, 29,30,152,153], with a greatly varying level to which
these assumptions and simplifications are backed up by supporting theoretical

97
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or experimental evidence [30,152].

Additionally, little is known about precise success probability and data complex-
ity estimates for extensions of basic differential and linear cryptanalysis such as
differential-linear [107], truncated differential [102] and impossible differential
cryptanalysis [19, 103], linear cryptanalysis with multiple approximations [24,
116] and multidimensional linear cryptanalysis [85]. Only recently, Blondeau,
Gérard and Tillich provided the first theoretically founded estimates for the
data complexity of differential-linear, truncated and impossible differential
cryptanalysis [30]. However, these estimates are entirely asymptotic in nature
and usually do not provide the necessary level of precision for the evaluation
of a concrete attack with parameters used in the real world.

In order to remedy some of the limitations of previous studies, we note that
while the correlation of linear approximations and the cardinality of differentials
— the nonlinearity measures on which differential and linear attacks are based
(see Sections 2.3.1 and 2.3.2) – are very well studied in the context of Boolean
functions, it was only recently that their full distributions over the set of all
Boolean functions or permutations of an arbitrary but fixed dimension were
systematically studied by Daemen and Rijmen [58, 60], based on important
earlier work by O’Connor [136–138].

Since both linear and differential cryptanalysis are statistical in nature in the
sense that they use these nonlinearity measures — correlation and differential
cardinality, respectively — to distinguish the concrete symmetric-key algorithm
at hand from a randomly chosen Boolean function or permutation, the
knowledge of these distributions is crucial for evaluating linear and differential
attacks. In a word, they define the “ideal” behaviour that the designer is
attempting to achieve, and deviations from which can be only exploited by the
attacker if they are statistically significant enough to yield a valid distinguisher
from the random case. However, to the best of our knowledge, the consequences
of taking these full probability distributions into account when analysing
statistical attacks on block ciphers, have not been studied so far. Previous
analyses [27, 29, 30, 152, 153] have always assumed some notion of “average
behaviour” instead of dealing with the full distributions. Similarly, the fact
that correlation and differential probability typically vary over the key space,
has often been neglected.

As we demonstrate in this chapter, the impact of the knowledge of these
distributions in statistical cryptanalysis is vast. The complexity of a statistical
attack exploiting a certain deviation from the ideal “random” behaviour
intimately depends on them, a fact that was previously not taken into account.
By working with these distributions instead of with simplifying assumptions,
we are able to obtain a more accurate and deeper statement about how to
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evaluate linear attacks on block ciphers (Section 5.2).

At the same time, they enable us to provide a comprehensive model for the
evaluation of so-called structure attacks, a sophisticated variant of differential
cryptanalysis. Notably, this model, developed in Section 5.6, takes the varying
differential probabilities over the keys into account.

5.1 Analysing the complexity of linear attacks

5.1.1 Problem statement

When speaking of linear cryptanalysis, we refer to Matsui’s “Algorithm 2” [115],
as outlined in Section 2.3.2.

Consider a linear attack on an iterative block cipher with a block length of n
bits and R rounds, using a linear approximation (α, β) with bias ǫ 6= 0 covering
r < R inner rounds (more specifically, rounds (i, . . . , i + r) for some 0 ≤ i ≤
R− r). Suppose the attacker has obtained a number N of plaintext/ciphertext
pairs encrypted under the same cipher key K (also called samples), and that
the attacker wants to recover a subset of m key bits of the round subkeys
involved in the rounds not covered by the linear approximation. By partially
de- and/or encrypting the ciphertext and/or plaintext from each pair with each
possible value of the m subkey bits, the approximation (α, β) is evaluated, and
a counter Ti is maintained for each key candidate ki, 0 ≤ i < 2m. After this
step, the key candidates are ranked in increasing order of the absolute value of

the sample bias |ǫ̂i| def
= |Ti/N − 1/2|. Let ζ̂i denote the |ǫ̂i| sorted in increasing

order.

Following the terminology of [152], we consider the attack successful if the
correct key kr is ranked among the highest 2l out of the 2m key candidates
with some probability PS :

Definition 5.1. A linear attack using Matsui’s Algorithm 2 recovering m
subkey bits provides an advantage of

a
def
= m− l (5.1)

bits over exhaustive search if the absolute sample bias ζ̂r corresponding to the
counter Tr associated with the correct key kr is among the 2l largest of the 2m

counters Ti, 0 ≤ i < 2m. The probability of this event:

PS
def
= Pr

(
ǫ̂r > ζ̂2m−2l

)
, (5.2)
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advantage a = m − l bits
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Figure 5.1: Advantage of a linear attack

is called the success probability of the attack.

Note that the advantage a and the success probability PS are tightly related by
equations (5.1) and (5.2): An attack provides a certain advantage with a certain
success probability; the same attack on the same number of subkey bits can
(and typically will) have a different success probability when a different level
of advantage over exhaustive search is sought. This terminology is illustrated
in Figure 5.1.

Due to the stochastic nature of linear cryptanalysis, the counters Ti can be
viewed as discrete random variables taking on values between 0 and N , the
number of samples processed for each key guess k. Let Ej [k], 1 ≤ j ≤ N ,
denote the binary random variable taking on the value one if and only if the
linear approximation (α, β) used in the attack holds for the j-th of the N
plaintext/ciphertext pairs with key guess k. The counter Ti corresponding to
key guess i is then given by

Ti =

N∑

j=1

Ej [i]. (5.3)

The execution of Matsui’s Algorithm 2 can now be viewed as a method of
distinguishing the distribution of the Ti, i 6= r, arising for each of the 2m − 1
wrong key guesses from the distribution of the right key counter Tr. In this
context, Junod and Vaudenay [98] have proved that the key ranking procedure
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EII = 2−a−1EI = 1− PS

wrong keys right key

τ

Figure 5.2: Relation between the type I and II error probabilities, success
probability PS and advantage a.

provided by Matsui’s Algorithm 2 is optimal in the case of standard linear
cryptanalysis.

Fixing the advantage a corresponds to a certain threshold τ such that key
candidates i with counters Ti ≥ τ will be included in the list of 2l key candidates.
As in standard hypothesis testing, two kinds of errors are possible:

• Type I error: This error occurs if the correct key kr remains undetected.
We denote the type I error probability by EI .

• Type II error: Symmetrically, this error occurs if a wrong key is
suggested to be correct. We denote the type II error probability by EII .

These error probabilities can directly be related to the terminology of advantage
and success probability: The success probability PS is given by PS = 1 − EI ,
and the advantage a is related to the type II error probability by EII = 2−a−1.
This also confirms the intuition that, for instance, an advantage of a = 1
bits corresponds to an attack suggesting a wrong key with a probability of
2−1−1 = 1/4, which is a factor of (1/2)a = 1/2 (“one bit”) better than random
guessing.

The type I and type II error probabilities, and correspondingly a and PS , can
be interpreted graphically as the overlapping areas between the probability
density functions of the Ti for a wrong key ki and the right key kr. This is
depicted in Figure 5.2.
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5.1.2 Common assumptions

In order to obtain a meaningful statement about the distribution of the counters
Ti for both the right key and the wrong keys, the general formulation of the
counters as sum of binary random variables (5.3) has to be instantiated with
concrete probability distributions. Additionally, further assumptions might be
required to simplify the analysis.

First of all, the ranking of the key candidates by absolute sample bias depends
on what is known as the wrong-key randomisation hypothesis [82, 96]:

Definition 5.2 (Wrong key randomisation hypothesis). Consider a nontrivial
linear approximation L = (α, β) with absolute bias |ǫ| ≫ 0 for virtually all
possible cipher keys. Let kr be the right subkey guess. Then, for virtually all
cipher keys and for all wrong subkey guesses kw 6= kr:

∣∣∣Pr(L holds
∣∣ kr)− 1

2

∣∣∣
∣∣∣Pr(L holds

∣∣ kw)− 1
2

∣∣∣
≫ 1.

This assumption basically requires the absolute sample bias for all wrong key
guesses to be lower than for the right key guess. The intuition behind it is that
partially de- and/or encrypting a small number of rounds with a wrong key
is resulting in essentially random behaviour, a common interpretation being
that the linear approximation is going to hold with a bias of zero for all wrong
keys [30, 115, 152]. We call this stronger version of Definition 5.2 the standard
wrong key randomisation hypothesis:

Definition 5.3 (Standard wrong key randomisation hypothesis). Consider
a nontrivial linear approximation L = (α, β) with absolute bias |ǫ| ≫ 0 for
virtually all possible cipher keys. Let kr be the right subkey guess. Then, for
virtually all cipher keys and for all wrong subkey guesses kw 6= kr:

∣∣∣Pr(L holds
∣∣ kw)− 1

2

∣∣∣ ≈ 1

2
.

A second consequence of the wrong-key randomisation hypothesis is that it is
commonly assumed [30] that for all wrong keys kw and all plaintext/ciphertext
samples j, the binary random variables Ej [kw] follow the same Bernoulli prob-
ability distribution Bern(p0) (with p0 = 1/2 being the common assumption).
Since the individual plaintext/ciphertexts pairs are assumed to be statistically
independent, this results in a binomial distribution Bin(N, p0) for the counters
Tkw

for all wrong key guesses kw. For N ≥ 5 and p0 close to 1/2, this can be
tightly approximated by a normal distribution N (Np0, Np0(1− p0)) [154].
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Dually to the wrong key randomisation hypothesis, a common assumption for
the statistical behaviour when partially de- and/or encrypting with the right
key is that the bias of the resulting linear approximation does not deviate
significantly from its average over all keys [82,96]:

Definition 5.4 (Key equivalence hypothesis). Consider a nontrivial linear
approximation L = (α, β) with absolute bias |ǫ| ≫ 0 for virtually all of the |K|
possible cipher keys. Then, the key-dependent bias of L is virtually independent
of the choice of the key:

∣∣∣∣Pr(L holds
∣∣ k0)− 1

2

∣∣∣∣ ≈ 2−|K| ∑

k∈K

∣∣∣∣Pr(L holds
∣∣ k)− 1

2

∣∣∣∣ ∀k0.

5.1.3 Previous work

The fact that many published linear attacks have data and time requirements
beyond practical reach (see for instance [139] and [109]) implies that the
question of how to accurately estimate their complexity — and hence determine
which attack actually is a valid attack — is of great importance to the security
of block ciphers.

As a result, the data complexity of both Matsui’s Algorithm 2 and the more
general problem of distinguishing the distributions for the right and the wrong
keys have been extensively studied in the literature [9,10,30,96–98,115,116,152].

In his original papers, using a normal approximation to the binomial
distribution, Matsui [115,116] estimates the data complexity to be of the order
1
4ǫ

−2 and gives estimations which multiple of this is required to obtain a certain
success probability. This analysis has been systematised and deepened by
Junod [96]. Furthermore, Junod and Vaudenay [98] have proven that Matsui’s
key ranking procedure is optimal for the case of Algorithm 2 using a single
linear approximation.

In his important work, Selçuk [152] presented a thorough statistical analysis
of the data complexity of linear and differential attacks based on a model
of Junod [96] and a normal approximation for order statistics. This yields
practical closed formulas for the success probability PS and data complexity N
of a linear attack when an advantage of a bits is sought:

Theorem 5.5 ([152, Theorem 2]). Let PS be the probability that a linear attack
on an m-bit subkey, with a linear approximation of probability p, with N known
plaintext blocks, delivers an a-bit or higher advantage. Assuming that the linear
approximation’s probability to hold is independent for each key tried and is equal
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to 1/2 for all wrong keys, one has for sufficiently large m and N :

PS = Φ
(

2
√
N |p− 1/2| − Φ−1(1− 2−a−1)

)
. (5.4)

Corollary 5.6 ([152, Corollary 1]). With the assumptions of Theorem 5.5,

N =
(
(Φ−1(PS) + Φ−1(1− 2−a−1))/2

)2 · |p− 1/2|−2 (5.5)

plaintext blocks are needed in a linear attack to accomplish an a-bit advantage
with a success probability of PS.

Generalizing linear attacks based on Matsui’s Algorithm 2 and other statistical
cryptanalyses, Junod [97], Baignères, Junod and Vaudenay [9] and Baignères
and Vaudenay [10] have derived asymptotic formulas for the required data
complexity of optimal distinguishers between distributions. In this setting, the
error probabilities of the statistical test are related to our terminology as follows.
As noted in Section 5.1.1, the type I error is equal to 1 − PS , while the type
II error probability is given by 2−a−1. Theorem 6 of [9] essentially yields the
following estimate for the data complexity:

N ≈
2Φ−1

(
(1−PS)+2−a−1

2

)2

D(p||0.5)
, (5.6)

with p denoting the probability of the linear approximation and D(p||0.5) de-
noting the Kullback-Leibler divergence [30] between two binomial distributions
with respective probabilities p and 0.5. Corollary 4 of [10] essentially gives the
following asymptotic estimate for N :

N ≈ − ln max{1− PS , 2
−a−1}

D(p||0.5)
. (5.7)

Recently, Blondeau, Gérard and Tillich [30] have developed a unified framework
for estimating the data complexity of various statistical attacks. This
framework is based on a more precise estimation of binomial tails, which is
especially relevant in the case of differential cryptanalysis [30, 152]. (In the
case of linear cryptanalysis, the normal approximation is very precise already
for small N .) For the evaluation of N , a numerical procedure called “Algorithm
1”, and first and second order estimates N ′ and N ′′ for PS = 1/2 are provided
in [30]. We restate the estimate N ′ for the case of linear cryptanalysis [30,
Theorem 2]:

N ′ = − 1

D(p||0.5)

(
ln

(
ν · 2−a−1

√
D(p||0.5)

)
+ 0.5 ln (− ln (ν · 2−a−1))

)
, (5.8)
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where ν =
(

(p− 0.5)
√

2π(1− p)
)
/
(√
p/2
)
.

Note that throughout the literature, the assumption is made that decrypting
with a wrong key results in a zero bias for the linear approximation. As we will
see, this constitutes a simplified view of the problem.

5.1.4 Distribution of biases in Boolean permutations

Daemen and Rijmen [60] have proved the following characterisation of the
distribution of correlation of a fixed linear approximation over the set of all
n-bit permutations:

Theorem 5.7 ([60, Theorem 4.7]). Consider a fixed nontrivial linear ap-
proximation (α, β) with α, β 6= 0. When n ≥ 5, the distribution of the
correlation Cα,β over all n-bit permutations can be approximated by the
following distribution up to continuity correction:

Cα,β ∼ N (0, 2−n). (5.9)

Since C = 2ǫ, this immediately implies

Corollary 5.8. With the assumptions of Theorem 5.7,

ǫα,β ∼ N (0, 2−n−2). (5.10)

We therefore note that if we fix an arbitrary nontrivial linear approximation,
its bias will be normally distributed over all n-bit Boolean permutations with
mean 0 and variance 2−n−2.

5.1.5 Motivation for a re-evaluation

Being the basis of all previous analyses of linear attacks using Matsui’s
Algorithm 2, the assumptions listed in Section 5.1.2 can be considered standard
practice. Even more importantly, they seem to provide an adequate basis
for practical evaluations of the success probability and data complexity of
concrete linear attacks. Especially the framework developed by Selçuk [152],
yielding convenient closed formulae, is very suitable for this purpose, with the
additional benefit of being supported by experimental evidence on small-scale
linear attacks.

The intuition behind the common form of the wrong key randomisation
hypothesis (Definition 5.3) is that partial de- and encryption with the wrong
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key yields the evaluation of the linear approximation on a randomly drawn
permutation. It is then assumed that this will result in a zero bias most of the
time. While Corollary 5.8 confirms that zero is the most likely single value of
the bias to occur, this is merely the expected value of a Gaussian distribution.
Previous analysis has therefore replaced the full distribution by its mean. While
some form of wrong key randomisation assumption seems inevitable, it remains
open to what extent this simplification is justified. We will study this question
in detail in Sections 5.2 and 5.3.

Additionally, the experiments conforming the adequacy of the wrong key
randomisation hypothesis in its simplest (and coincidentally, also most extreme)
form all deal with linear approximations with very high bias compared to the
block size n. With a data complexity of roughly 1

4ǫ
−2, the minimum exploitable

bias would be of the order 2−n/2−1 before the attacker exceeds the available
plaintext space. In practice, attacks are usually pushed to cover the maximum
number of rounds of a cipher, implying a bias that is much closer to this
limit than in the experiments. We can therefore conclude that, somewhat
surprisingly, the implications of the standard interpretation of the wrong key
randomisation hypothesis have not been tested in the range of parameters that
is of the greatest practical interest.

Compared to the standard wrong key randomisation assumption, the validity
of the key equivalence hypothesis is clearly more contested. Since the discovery
of the linear hull effect by Nyberg [133, 134], it is known that the bias can
heavily depend on the key. The impact of this has recently been confirmed by
Leander [109]. As a result, it becomes virtually infeasible to predict the exact
bias for the right key for block ciphers with real-world parameters. At the
same time, however, every framework for the analysis of linear attacks needs to
assume that this bias can be computed reliably. In Section 5.4, we will study a
heuristic that aims at making the complexity estimation in linear cryptanalysis
more realistic by taking the linear hull effect into account.

5.2 An improved model for the analysis of linear

attacks

5.2.1 More accurate wrong key randomisation

For the analysis of linear attacks using Matsui’s Algorithm 2, we use the
notation introduced in Section 5.1.1: In an attack on an n-bit block cipher
using a linear approximation (α, β) using N known plaintexts, a counter Ti is
maintained for each key candidate ki.
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The distribution of Ti has a critical impact on the precision of estimating the
data complexity of Matsui’s Algorithm 2. First of all, the distribution of the
Ti for the wrong keys has to be determined.

Standard wrong key randomisation hypothesis

To the best of our knowledge, all previous complexity evaluations of Matsui’s
Algorithm 2 are based on the wrong key randomisation hypothesis in its form
of Definition 5.3, assuming zero bias for all wrong keys. Note that since this
minimises overlap between the distributions for the wrong and for the right
keys, this constitutes the best-case scenario from the attacker’s point of view.

In this case, making the usual independence assumption, the distribution of
the wrong key counters Tw is given by a binomial distribution with probability
p = 1/2 and N repetitions. For sufficiently large N , this can be very closely
approximated by a normal distribution with mean Np = N/2 and variance
Np(1 − p) = N/4. The sample bias ǫ̂w = Tw/N − 1/2 of the wrong keys is
therefore assumed to be approximately distributed as N (0, 1/(4N)).

Adjusted wrong key randomisation hypothesis

Though the standard formulation of the wrong key randomisation hypothesis
is inspired by the intention to make the approximation (α, β) behave as for a
randomly drawn n-bit permutation, the distribution of the ǫ̂w is not completely
adequate. In fact, it is known (see Theorem 5.7 and Corollary 5.8) that the
bias of (α, β) over the n-bit permutations is not constantly zero, but instead
follows a known distribution over the wrong keys. The following lemma, which
is a new result, takes this into account.

Lemma 5.9. In a linear attack with Matsui’s Algorithm 2 on an n-bit
block cipher using N known plaintexts, the sample bias ǫ̂w of the wrong
keys approximately follows a normal distribution with mean zero and variance
1/4 · (1/N + 1/2n):

ǫ̂w ∼ N (0, 1/4

(
1

N
+

1

2n

)
). (5.11)

Proof. For the decryption with a wrong key kw, the linear approximation is
expected to behave as in the case of a randomly drawn n-bit permutation.
According to Corollary 5.8, for each of the N samples, we therefore obtain a
bias ǫw drawn from the normal distribution N (0, 2−n−2). For the bias over N
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samples, we therefore have

ǫ̂w ∼ N (ǫw,
1

4N
)

with ǫw ∼ N (0, 2−n−2). Consequently,

ǫ̂w ∼ N (0, 2−n−2) +N (0,
1

4N
) = N (0, 1/4

(
1

N
+

1

2n

)
),

as claimed.

The impact of the new wrong key randomisation hypothesis is illustrated in
Figure 5.3.

Previous interpretations of the wrong key randomisation hypothesis have
therefore used the mean zero instead of the full distribution N (0, 2−n−2) for the
bias when decrypting with a wrong key. For the sample bias of the wrong keys,
this resulted in using N (0, 1/(4N)) instead of N (0, 1/4

(
1
N + 1

2n

)
), implying

that the distributions for the right key and the wrong keys were assumed to only
differ in the mean, but had the same variance. While this arguably simplifies
the analysis, the possible impact of this simplification has to be investigated.

Experimental verification

Even in the new form presented in Lemma 5.9, the wrong key randomisation
hypothesis remains an idealisation. In order to verify that it reflects the reality
with reasonable accuracy, we have experimentally determined the distribution
of the sample bias over 216 wrong keys for two structurally very different small-
scale ciphers with a block length of 20 bits: SmallPresent-20 [108] with 8
rounds, and RC6-5/6/10 with four 5-bit words, 6 rounds and an 80-bit key. In
both cases, the number of samples was N = 216. As illustrated in Figure 5.4
the resulting distributions follow the theoretical estimate of (5.11) quite closely
in both cases. Note that the scattering of data points occurs due to the fact
that we are basically using a histogram with bin size one, and deal with raw
data instead of averaging.

5.2.2 Probability of success

In this section, we study the implications of Lemma 5.9 for the success
probability in linear cryptanalysis with Matsui’s Algorithm 2. This leads to a
new formula for the success probability of a linear attack.
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ǫr0

wrong keys

N (0, 1
4N

)

right key

N (ǫr,
1

4N
)

(a) Standard WKRH

ǫr0

wrong keys

N (0, 1
4

(
1
N

+ 1
2n

)
)

right key

N (ǫr,
1

4N
)

(b) Adjusted WKRH

Figure 5.3: Comparison of the standard and new wrong key randomisation
hypotheses (WKRH).
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(a) SmallPresent-20, 8 rounds
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(b) RC6-5/6/10

Figure 5.4: Experimental distribution of the sample bias over 216 wrong keys
and 216 texts for SmallPresent and small-scale RC6.



AN IMPROVED MODEL FOR THE ANALYSIS OF LINEAR ATTACKS 111

Theorem 5.10. Consider a linear attack with Matsui’s Algorithm 2 on an
n-bit block cipher (n ≥ 5) using a linear approximation with bias ǫ 6= 0 and
sufficiently large N ≤ 2n known plaintexts. Denote by PS the probability that
this attack succeeds with an advantage of a > 0 bits over exhaustive key search.
Then

PS ≈ Φ

(
2
√
N |ǫ| −

√
1 +

N

2n
Φ−1(1− 2−a−1)

)
. (5.12)

Proof. We follow the approach of [152] and recall some notation from
Sections 2.3.2 and 5.1.1. The advantage a = m − l, with m the number
of key bits recovered by the attack, and l the length of the list of the top-
ranking key candidates kept by the adversary. Let Ti, 0 ≤ i < 2m, denote
the counter associated with the key candidate ki. Let Tr be the counter of
the right key kr, and denote an arbitrary wrong key counter by Tw. The
attack then ranks the keys based on the absolute sample biases of the key
candidates |ǫ̂i| = |Ti/N − 1/2|. Let ζ̂i denote the |ǫ̂i| sorted in increasing order.

Define L
def
= 2m − 2l = 2m − 2m−a. An a-bit advantage is now achieved if

ǫ̂r > ζ̂L = ζ̂2m−2l , that is, if the sample bias of the right key is large enough to
be in the list of 2l highest ranking candidates. In other words,

PS = Pr
(
ǫ̂r − ζ̂L > 0

)
. (5.13)

The sample bias of the right key approximately follows a normal distribution
N (µr, σ

2
r) with µr = ǫ and σ2

r = 1/(4N). According to Lemma 5.9, the
absolute values of the sample biases for the wrong keys follow a folded normal
distribution with mean µw = 0 and variance σ2

w = 1/4·(1/N+2−n). Theorem 1
of [152] now yields that ζ̂L = ζ̂2m−2l is approximately normal distributed with

µL = µw + σwΦ−1(1− 2−a−1)

and

σ2
L =

σ2
w

(2φ(Φ−1(1− 2−a−1)))
2 · 2−m−a.

Consequently, the random variable
(
ǫ̂r − ζ̂L

)
follows a normal distribution

N (µr − µL, σ
2
r + σ2

L). As noted in [152], the influence of σ2
L is negligible, and

we can therefore express the success probability (5.13) in terms of a standard
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normal distribution as follows:

PS = Pr
(
ǫ̂r − ζ̂L > 0

)

≈
∫ ∞

− µr−µL√
σ2

r +σ2
L

φ(x)dx

≈
∫ ∞

− µr−µL
σr

φ(x)dx

= 1−
∫ − µr−µL

σr

−∞
φ(x)dx

= Φ(
µr − µL

σr
)

= Φ



|ǫ| − 1/2

√
1
N + 1

2n Φ−1(1− 2−a−1)

1/(2
√
N)




= Φ

(
2
√
N |ǫ| −

√
1 +

N

2n
Φ−1(1− 2−a−1)

)
,

which establishes (5.12).

Note that the difference between (5.12) and Selçuk’s formula (5.4) lies in the

factor
√

1 + N
2n of the term Φ−1(1−2−a−1). Since Φ is monotonously increasing,

our estimate for PS is always smaller or equal to (5.4), and the resulting data
complexity required for a certain advantage and PS will always be at least as
big as the one of (5.5).

The biggest deviations between both models occur when the influence of the

second term
√

1 + N
2n ·Φ−1(1−2−a−1) grows. This can happen if the adversary

seeks a particularly big advantage a, or when the number of known plaintexts
gets close to 2n. Both cases typically occur when the cryptanalyst is aiming for
the maximum possible number of rounds that can be broken by his respective
linear attack.
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5.2.3 Non-monotonicity of success rate as function of data
complexity

Consider any fixed given combination of the bias ǫ, the block length n and the
advantage a. The success probability of a linear attack is then a function of
the number of known plaintexts N only and can hence be expressed as PS(N).
Even though our estimate for PS(N) given by Theorem 5.10 is always smaller
or equal to Selçuk’s formula (5.4), the addition of the second term results in a
function that is not necessarily monotonously increasing in N anymore.

Proposition 5.11. For fixed ǫ, a and n, the success probability PS(N) with
respect to the data complexity as given by Eq. (5.12) attains a relative maximum
at

N̂
def
=

4|ǫ|2 · 22n

(Φ−1(1− 2−a−1))
2 − 4|ǫ|2 · 22n

. (5.14)

Proof. Elementary calculus shows that (5.12) has a stationary point at N̂ as
defined above, and since its derivative changes sign from negative to positive
at N̂ , this stationary point is a relative maximum of PS(N).

Proposition 5.11 implies that our model can in certain cases predict a decrease
in success probability for an increased number of known plaintexts. While this
may seem counterintuitive at first, one has to take into account that the success
probability depends on the overlapping area between two approximately normal
distributions, namely N (ǫ, 1

4N ) for the right key and N (0, 1
4

(
1
N + 1

2n

)
) for the

wrong keys. In the context of small ǫ and large N of the order 2n, increasing
N can actually result in increasing the overlapping area, and hence decrease
the success probability. An attack exploiting a fixed linear approximation with
fewer known plaintexts could therefore be more efficient than with more given
samples.

A given advantage a corresponds to a fixed threshold T for distinguishing the
distributions, with the type I error EI = 1−PS varying withN , and fixed type II
error EII = 2−a−1. Having PS(N) = PS(N ′) for N 6= N ′ is therefore equivalent
to having the same overlapping area EI + EII between the distributions for N
and N ′ samples. This is depicted in Figure 5.5: the overlapping area EI + EII

between the two Gaussian distributions in Figure 5.5a and 5.5b is the same for
different values of N .

We note that two conditions have to be fulfilled to be able to speak of
meaningful (i.e., practically relevant) non-monotonous behaviour: First, the
condition N̂ < 2n has to be satisfied (since N cannot exceed 2n); and second,
one must have PS ≥ 2−a, i.e. the success probability of the attack must be
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Figure 5.5: Example of an equal overlapping area between N (ǫ, 1
4N ) and

N (0, 1
4

(
1
N + 1

2n

)
) for n = 20 and different values of N .

higher than two times the false positive rate. Otherwise, the adversary would
have to repeat the attack 1/PS > 2a times and gain only a bits advantage over
the exhaustive search.

An example of a parameter combination fulfilling both conditions is |ǫ| =
2−10, n = 20 and a = 12, i.e., seeking a large advantage out of an approximation
with only marginal bias. In this case, N̂ ≈ 218.75 < 220, and PS(N̂) ≈ 2−9.89 >
2−12 = 2−a. With PS(220) ≈ 2−10.45, this constitutes a meaningful example
where using more samples actually decreases the success probability. This
theoretical prediction has been verified in the real world using experiments
with SmallPresent-20. The recovery of 10000 keys exhibiting exactly the
bias ǫ = 2−10 was attempted for different values of N . The results given in
Figure 5.6 confirm the non-monotonous behaviour.

5.2.4 Evaluation of the data complexity

In practice, when evaluating a particular linear attack (where n and ǫ are
fixed), it is often interesting to determine the number N of required known
plaintexts for certain success probabilities and advantages that are sought by
the attacker. In the case of PS = 1/2 and an arbitrary fixed advantage of a ≥ 1
bits, equation (5.12) yields a closed formula for N :

Corollary 5.12. With the assumptions of Theorem 5.10, using a linear
approximation with bias |ǫ| > Φ−1(1− 2−a−1)/2n/2−1, the number N of known
plaintexts required to obtain an advantage of a ≥ 1 bits with success probability
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N theoretical PS experimental PS

217 0.00072 0.0006
218 0.00096 0.0009
218.5 0.00104 0.0009
218.75 0.00105 0.0011
219 0.00104 0.0010
219.5 0.00093 0.0009
220 0.00071 0.0007

(a) Experimental success probability.
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(b) Plot of PS(N).

Figure 5.6: Experimental verification of non-monotonous behaviour for
SmallPresent-20 with ǫ = 2−10 and a = 12.

PS = 1/2 is given by

N ≈ 1/
((

2ǫ/Φ−1(1− 2−a−1)
)2 − 2−n

)
. (5.15)

Proof. Note that for PS = 1/2, Φ−1(PS) = 0. The claim then follows directly
from (5.12).

The condition |ǫ| > Φ−1(1−2−a−1)/2n/2−1 in Corollary 5.12 basically prevents
the estimate for N from becoming negative. This happens if the sought
advantage a is too big for the given bias |ǫ|, resulting in a data requirement of
N > 2n texts, which is clearly impossible and a step outside the model.
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For values of PS different from 1/2, we can determine N by means of an efficient
numerical procedure for given PS , a, |ǫ| and n. Note that this procedure is
equally applicable to the case PS = 1/2.

Proposition 5.13. With the assumptions of Theorem 5.10, for fixed ǫ, PS , n
and a, the data complexity N can be determined numerically using Algo-
rithm 5.1 up to an absolute error of 1− 2−n in linear time in the block length
n.

Proof. Denote N̂ as in (5.14) and write Nmax
def
= min{N̂ , 2n}. It then follows

from (5.14) that the function

N 7→ 2
√
Nǫ−

√
1 +

N

2n
Φ−1(1− 2−a−1)

is monotonously increasing on the interval [1, Nmax]. We can hence apply
bisection to find the value of N leading to this particular success probability
PS(N) as in (5.12). In the case of non-monotonous behaviour of PS(N) on
[Nmax, 2

n], this approach yields the optimal (lower) N resulting in the given
success probability. The algorithm is detailed in Algorithm 5.1.

Denote by l(i) and u(i) the interval bounds after the i-th iteration. Then
u(i) − l(i) ≤ 2n−1

2i−1 . Denoting the exact solution by Ñ and the i-th approximate

solution as N (i) = l(i)+u(i)

2 , we have

|N (n) − Ñ | ≤ u(n) − l(n)

2
≤ 2n − 1

2n
= 1− 2−n

after n iterations.

Algorithm 5.1 runs very efficiently even for large block sizes. For instance, a
straightforward Matlab implementation computes the value N = 2126.76 for
n = 128, |ǫ| = 2−61.9, a = 10 and PS = 0.95 in about 0.09 seconds on an Intel
Core2 Duo E8400.

5.3 Experimental results

In this section, we summarise the results of experiments carried out to verify
the accuracy of the estimate given by Theorem 5.10 and Proposition 5.13 and
compare it to other models.

The experiments were first carried out on SmallPresent-20, a small-scale
variant [108] of the block cipher present with block size n = 20 bits. The
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Algorithm 5.1 Numerical computation of the data complexity N

Input: Bias ǫ, block length n, success probability PS ≥ 2−a, precision bound
ν (∗)

Output: Data complexity N required for the given parameters.

1: Define f(N) = 2
√
N |ǫ| −

√
1 + N

2n Φ−1(1− 2−a−1)

2: Calculate N̂ ←
(
4|ǫ|2 · 22n

)
/
((

Φ−1(1− 2−a−1)
)2 − 4|ǫ|2 · 22n

)

3: lower← 1, upper← min{N̂ , 2n}, i← 0
4: while |f(lower)− PS | > 10−ν and i < n do

5: mid← lower+upper

2
6: if f(mid) < PS then

7: lower← mid
8: else

9: upper← mid
10: end if

11: i← i + 1
12: end while

13: return lower
∗The value of ν in step 4 is used to early-abort fast-converging iterations as
soon as an adequate precision is reached. A recommended value is ν = 15.

original key schedule algorithm was used. In all experiments, we fixed a linear
approximation with a certain bias ǫ and a success probability and then analysed
the data complexity N which is required to obtain different levels of advantage
with this PS . Each experiment for a certain combination of N and a was
averaged over 1000 times to obtain a reliable relation between N and a for this
fixed PS .

To verify the independence of our experimental findings from the structure
of SmallPresent, all experiments were repeated with RC6-5/r/10, an
instantiation of RC6 [145] with a block size of 20 bits and an 80-bit key. The
results on this small-scale variant of RC6 indicate that our model is equally
applicable to this substantially different block cipher structure.

5.3.1 Experiment 1: The impact of a low bias

In the first experiment on SmallPresent, a linear approximation with bias
ǫ = 2−8.22 was used. The success probability was fixed at 95%. From (5.12),
the influence of the new model for wrong keys is expected to manifest itself
already for small advantages given this relatively high PS and low ǫ (compared
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to the block length). The results are depicted in Figure 5.7. The curve with
squares was obtained using Proposition 5.13 with an estimation of the hull bias
averaged over 200 random keys. We can see that the experiments follow the
theoretical prediction very closely. The difference to the estimate of [152] is
also apparent as soon as a ≥ 6. For a = 11, Selçuk’s formula can result in
an underestimation of N of factor two. The line with crosses represents the
estimate based on Algorithm 1 of [30].

The results of an analogous experiment on RC6-5/8/10 are given in Figure 5.8.

5.3.2 Experiment 2: The impact of a high advantage

In fact, Figure 5.7 also reveals another important difference between the
experimental reality and Selçuk’s estimate: The estimate of [152] greatly
overestimates the maximum advantage that can be obtained even when using
the full codebook of N = 2n texts. In order to explore this in more detail,
a second experiment on SmallPresent with a higher bias of ǫ = 2−8 and a
bigger range of advantages was carried out. Again, the experiments match very
well the prediction of Proposition 5.13 based on the hull bias averaged over 200
random keys. As expected from (5.12), the difference between [152] and our
estimate is very small for advantages of up to 8 bits, but again increases to
a factor of about two for a = 15. Most importantly, however, our estimate
predicts the experimentally observed maximum advantage with 220 texts and
PS = 0.95 much more precisely than previous work: While an advantage of 31
bits with the full codebook seemed possible according to [152], the experiments
and the estimate of Proposition 5.13 limit the advantage to about 15 bits, which
is a significant improvement. Again, the line with crosses plots the estimate
based on Algorithm 1 of [30], which follows [152] very closely.

The results of an analogous experiment on RC6-5/6/10 can be found in
Figure 5.10.

It should be noted that these experimental results do not contradict those
in [152]: Selçuk’s formula was experimentally verified with an approximation
for 6 rounds of DES with bias ǫ = 1.95 · 2−9, which is so high compared to the
block length n = 64 that the influence of the distribution for the wrong keys is
negligible.

Our experiments indicate that Theorem 5.10 and its derivatives are unlikely to
decrease the precision in comparison to previous work, since our estimates
are more realistic for large a and/or low ǫ but very close to Selçuk’s for
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Figure 5.7: Theoretical and experimental evaluation of the data complexity
estimate of Proposition 1 for different levels of advantage. The cipher is
SmallPresent with 8 rounds, n = 20, |ǫ| = 2−8.22, PS = 0.95.
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Figure 5.8: Theoretical and experimental evaluation of the data complexity
estimate of Proposition 1 for RC6-5/8/10 and different levels of advantage.
n = 20, |ǫ| = 2−8.09, PS = 0.95.
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Figure 5.9: Theoretical and experimental evaluation of the data complexity
estimate of Proposition 1 for higher levels of advantage. The cipher is
SmallPresent with 8 rounds, n = 20, ǫ = 2−8, PS = 0.95.
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Figure 5.10: Theoretical and experimental evaluation of the data complexity
estimate of Proposition 1 for RC6-5/6/10 and higher levels of advantage. n =
20, ǫ = 2−7.88, PS = 0.95.
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Figure 5.11: Evaluation of the data complexity estimate of Proposition 1 for
bigger block length and marginal bias. n = 64, ǫ = 1.49 · 2−32, PS = 0.5.

small advantages and/or high biases. They can hence be used as a universal
replacement.

5.3.3 Larger block sizes

Given the experimental evidence supporting the accuracy of the estimates based
on Theorem 5.10, it remains to investigate the impact of the new model for
larger block sizes where no practical experiments can be carried out.

The estimated data complexity corresponding to different levels of advantage
for a n = 64 bit block length and a marginal bias of ǫ = 1.49 ·2−32 is plotted in
Figure 5.11. Again, even for a lower success probability of PS = 0.5, differences
of up to factor two occur between the estimate of Selçuk and this work. This
figure also includes comparisons to the first-order estimate of [30] and the
estimates (5.6) of [9] and (5.7) of [10].

Finally, we expect that increasing the bias improves the estimate of Selçuk for
lower advantages, but may again result in an overestimate of the maximum
achievable advantage. As shown in Figure 5.12, our estimate predicts a
maximum advantage of 52 bits with the full codebook, while an advantage
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of 105 bits was allowed by Selçuk’s estimate. Note also that the first-order
estimate N ′ of [30] very rapidly converges to Selçuk’s estimate here.

5.4 Impact of the linear hull effect

The general methodologies to evaluate the complexity of linear attacks at hand
assume the exact bias or its good estimate is given to the adversary. Practically
speaking, however, this is never the case for almost any real-world cipher. This
is due to the fact that for a relatively large block size (e.g. longer than 50 bits)
it is challenging to exactly evaluate the bias even for one fixed known key. That
is why most linear attacks base their complexity estimates on one or several
known characteristics (rather than on the entire linear hull bias). However, a
systematic methodology to estimate the complexity of Matsui’s Algorithm 2
based on a group of dominant characteristics rather than on the full linear hull
appears to be still lacking.

To address this, we propose a technique that takes the linear hull effect into
account. In this context, we make two observations. First, we propose to split
the linear hull into a signal part and a noise part. The signal part is then
sampled for random cipher keys to obtain a more reliable evaluation of the
impact of those trails. Second, we statistically model the noise part to make
the estimation of complexity more realistic.

5.4.1 Motivation

In order to accurately estimate the complexity of a linear attack, regardless
whether with the methods listed in Section 5.1.3 or with Corollary 5.12 and
Proposition 5.13, one has to know the (absolute value of) the bias ǫr of the
used linear approximation (α, β) for the right key kr.

Generally speaking, for a block cipher, it may not be feasible to evaluate
ǫr for any given key, even if it is known to the adversary (which is not the
case for the unknown kr to be determined in a linear attack). However, for
some classes of ciphers with structure, the situation is slightly different. For
key-alternating ciphers and some Feistel ciphers which can be written as key-
alternating ciphers (see Section 2.2.2), the absolute value of the bias of each
linear trail is independent of the key; only the sign depends on the key value.
Hence, the value of bias for each trail can be efficiently evaluated for any key,
once the trail is known. Now, if the approximation (α, β) contains only one
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trail, the exact value of |ǫr| is known and identical for any kr. Therefore, the
success probability and data complexity estimates are equally valid for all keys.

In most ciphers, however, practically interesting hulls (α, β) will contain more
than one trail, especially over many rounds. For realistic block lengths
and number of rounds, it is usually infeasible to compute the complete hull
(i.e., enumerate all its trails). In contrast to a hull with just one trail, the
contribution of the trail bias to the absolute hull bias now depends on the key
even for key-alternating ciphers. This is known as the linear hull effect, which
causes the trail biases to be added or subtracted depending on the value of the
key [86, 109, 125, 147]. As a consequence, even for key-alternating ciphers, it
usually becomes infeasible to compute the exact value of |ǫr| or even its average
over all keys.

Once the right key kr is fixed, the adversary faces an unknown fixed value of
ǫr. Since ǫr varies from one value of kr to another, this yields a distribution of
ǫr over the values of the right key kr. In this connection, the question arises
which value of ǫr to take for the evaluation of the attack complexity.

For instance, the work [139] fixes the expanded key of present to zero to
estimate ǫr. However, we note that taking a zero key as the reference point is
exactly as justified as choosing a random key for this purpose. And different
keys will provide different estimations of ǫr. Moreover, the key schedule of
present arguably does not allow for the zero expanded key. Though we do
believe that the resulting complexity claims of [139] for present are adequate,
one can actually estimate ǫr more accurately. Furthermore, for a cipher other
than present, fixing the expanded key to zero might be misleading in terms
of complexity estimates.

5.4.2 Decomposing linear hulls: signal and noise

To address these problems for key-alternating ciphers, we propose a two-fold
approach. First, we split ǫr into a signal part (resulting from the known
trails with high contribution) and a noise part (to account for the unknown
remainder of the hull). Note that previous approaches omitted the influence
of the unknown trails completely and as has been demonstrated [109,125], the
influence of the unknown part of the hull can be very significant. Second, we
average the data complexity estimate over a number of randomly drawn master
keys, as opposed to fixing one specific expanded key.

We now detail this procedure that aims at taking the impact of the linear hull
effect into account. Let (α, β) be the linear approximation under consideration.
Assume that only one or a small number of trails with high contribution to
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the absolute bias of the hull (α, β) are known. In a linear attack, to recover
(part of) the key kr, this hull has an unknown bias ǫr(kr), potentially varying
from key to key. For each fixed value of the key, the actual value of ǫr(kr) can
be decomposed into the contributions that stem from the biases of the known
trails and the biases of the remaining unknown trails in the hull. We define the
former to be the signal and the latter the noise:

Definition 5.14. Consider the linear approximation (α, β) over an R-round
iterative block cipher and a fixed cipher key kr. The bias ǫr(kr) of the hull
(α, β) is given by

ǫr(kr) =
∑

u0=α,uR=β

ǫU (kr),

with ǫU (kr) denoting the bias of the trail U with key kr. Suppose some t
dominant trails U = {U1, . . . , Ut} of the hull (α, β) are known. By defining

ǫUsignal
(kr)

def
=
∑

U∈U
ǫU (kr) (5.16)

ǫUnoise
(kr)

def
=

∑

(α,β)\U
ǫU (kr), (5.17)

we obtain a repartitioning of the above sum as follows:

ǫr(kr) = ǫUsignal
(kr) + ǫUnoise

(kr). (5.18)

Based on Corollary 5.8, the noise part ǫUnoise
(kr) of the trail contributions can

now be modeled to approximately follow a normal distribution N (0, 2−n−2)
over the right keys. This leads to a natural approach to estimate |ǫr(kr)|:
Sample and average N(kr) computed with (5.18) over a number of keys kr,
taking the noise from the unknown part of the hull into account by drawing
it from N (0, 2−n−2) afresh for each tried key. For computing the signal part,
the relation between the expanded key and the trail contributions has to be
efficiently computable.

The latter is the case for the numerous class of key-alternating ciphers. We
give an explicit procedure for key-alternating ciphers in the next subsection.

5.4.3 An explicit algorithm for key-alternating ciphers

We consider a linear approximation (α, β) over r rounds. Let K denote the key
expansion of the key k. In the case of key-alternating ciphers (or Feistel ciphers
which can be written as such), the contributions of the biases of the individual
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trails to the bias of the hull for a fixed key k can be explicitly computed [54,57]
as:

ǫ(k) =
∑

u0=α,ur=β

(−1)dU ⊕UT K |ǫU |. (5.19)

This leads to the following algorithm for estimating the data complexity N of
a linear attack on an n-bit block cipher using the linear approximation (α, β):
We know t trails from the hull and sample ǫUsignal

over a number of keys by
means of (5.19), each time adding ǫUnoise

sampled from N (0, 2−n−2). For each
tried key, we compute an estimate for N based on this value of ǫr. Then the
average over all tried keys is taken as the final estimate for N . This procedure
is described in Algorithm 5.2.

Algorithm 5.2 Computation of N using the signal-noise decomposition of the
hull for key-alternating ciphers.

Input: Trails Uj , 1 ≤ j ≤ t from the hull (α, β), their absolute biases |ǫUj
|,

number of keys ℓ to sample.
Input: Block length n, success probability PS ≥ 2−a.
Output: Estimate of the data complexity N required for the given parameters.

1: for i = 1, . . . , ℓ do

2: Select the master key ki uniformly at random and compute the expanded
key.

3: Sample noise(ki) from N (0, 2−n−2).
4: Compute

ǫ(ki) = ǫUsignal
(ki) + ǫUnoise

(ki)

=

t∑

j=1

(−1)dUj
⊕UT

j Ki |ǫUj
|+ noise(ki).

5: Compute N(ki) based on ǫ(ki) with Algorithm 5.1.
6: end for

7: return Average N = 1
ℓ

∑ℓ
i=1 N(ki).

5.4.4 Experimenting the signal/noise decomposition

We have performed experiments on SmallPresent-20 to illustrate the effect
of the signal/noise decomposition of a linear hull. With a block length of n = 20
bits, and an 80-bit key space, it is not feasible to compute the exact distribution
or even only the exact average bias of a hull (α, β) over the keys. Since n is
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small, sampling and averaging over some keys is possible here, but this is not
the case anymore for realistic block lengths.

Consider the hull (α, β) = (0x20400, 0x20000) over 3 rounds. A branch-and-
bound search for trails with |ǫ| ≥ 2−11 yields 8 trails from the hull: three with
absolute bias |ǫ| = 2−10 and five with |ǫ| = 2−11. Based on this data, the
following estimates for the data complexities of a linear attack with PS = 0.95
and varying advantages were computed based on Proposition 5.13:

1. N for ǫr(kr) of the known trails for one cipher key kr;

2. N determined with Algorithm 5.2 with κ = 200 keys, but without the
noise part;

3. N determined with Algorithm 5.2 with κ = 200 keys;

4. N for an estimation of the hull bias averaged over 200 random keys.

Additionally, the actual data complexity was determined experimentally. Each
experiment for a certain combination of N and a was averaged over 1000 times
to obtain a reliable relation between N and a for this fixed PS .

The results are depicted in Figure 5.13. One observes that summing the trail
biases for one key results in a far too optimistic estimation. Averaging the
data complexity estimates for the signal trails for 200 keys (but without the
noise part) improves the accuracy, but yields an overestimate here. This can
be attributed to the impact of two factors: First, the hull must contain more
signal trails that are missing in our set of eight trails; and second, the noise
impact of the remainder of the hull is not accounted for. Additionally taking
the noise into account yields a more realistic estimate. In this specific case
though, it is still an overestimate since here obviously the remainder of the hull
constructively helps to increase the bias for many keys.

We also observe that the average of the complete hull bias over 200 keys
quite accurately matches the biases that occurred in the experiments, but
note that this estimation is available only due to the small block length and
will not be available for most realistic block sizes. In the latter case, the
experiments suggest that our complexity estimate with sampling the signal
part and modelling the noise part of the hull still appears more adequate than
estimates not considering the linear hull effect.
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Figure 5.13: Theoretical and experimental evaluation of the data complexity
with the signal-noise decomposition of Alg 2. Cipher is SmallPresent with
5 rounds, n = 20, PS = 0.95, the signal part contains 8 trails Uj with 2−10 ≤
|ǫUj
| ≤ 2−11. Experimental value of ǫ is 2−8.02.

5.5 Analysing the complexity of differential attacks

with structures

As noted in the introduction to this chapter, comprehensive models for the
analysis of extended variants of basic linear and differential attacks are still
scarce. The work [30] provides a first step in this direction, albeit focusing
more on obtaining a unified framework for many extensions at the expense of
accuracy for each single variant. Furthermore, the estimates obtained in [30]
are asymptotic and as such cannot be used universally in practice.

5.5.1 Motivation: Using multiple differentials in an attack

Multiple differential cryptanalysis is an extension of basic differential cryptanal-
ysis. Instead of a single differential (δa, δb), it makes use of multiple differentials
with potentially more than one input and more than one output difference.
Since a given chosen plaintext pair is more likely to follow one of multiple
differentials, there is a higher probability of hitting a right pair for one of them
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Figure 5.14: Pairs of plaintext organised in a quartet.

than in a standard differential attack. This can reduce the data complexity
provided that the computational complexity of processing the set of all possible
pairs arising from multiple input and output differences can be controlled in
an efficient manner.

Historically, the idea of using more than one differential in an attack was
introduced in the restricted form of quartets in the original paper on differential
cryptanalysis [22]. A quartet is a structure of four chosen plaintexts
simultaneously containing two pairs with an input difference ∆1

0 and two pairs
with an input difference ∆2

0 6= ∆1
0. In this way, four pairs satisfying two input

differences can be derived from only four chosen plaintexts.

This has later been extended to “octets”, and so on. The natural generalisation
of this concept is called a structure [20,29], which provides an economic way of
organising the pairs for multiple input differences:

Definition 5.15. Let {∆1
0, . . . ,∆

t
0} be a set of t input differences. For an

arbitrary but fixed value of x, a collection of plaintexts of the form

⋃
{x⊕∆

∣∣ ∆ ∈ span{∆1
0, . . . ,∆

t
0}}, (5.20)

with span denoting the linear span operator, is called a structure.

We note that a more generalised type of difference (e.g., truncated differen-
tials [102]) can be used in the setting of Definition 5.15. An example of a
structure with t = 2 (hence, a quartet) is given in Figure 5.14. Note that
besides the two pairs with the original input differences ∆1

0 and ∆2
0, it implicitly

contains another two pairs with input difference ∆1
0⊕∆2

0 from span{∆1
0,∆

2
0}.

The concept of a structure can in principle be used in a general multiple
differential attack with multiple input and output differences. It is however
most efficient when used with a single output difference [20]. We therefore
restrict our discussion of differential attacks using structures to the case where
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multiple input differences, but a single output difference are used. We call such
attacks structure attacks [161].

Combining multiple differentials in a structure attack can obviously reduce the
data complexity compared to a classic single differential attack. In order to
reduce the overall time complexity, however, the differentials have to be chosen
in a careful way. Furthermore, it is usually not obvious a priori which choice of
differentials can actually lead to an improvement. In Section 5.6, we develop a
model that provides some guidance in this direction.

5.5.2 Previous work

A notable exception to the apparent lack of study of the complexity of
extensions of standard linear and differential cryptanalysis is the framework for
the analysis of multiple differential cryptanalysis by Blondeau and Gérard [27,
29]. This paper provides an explicit formula to compute the success probability
of multiple differential cryptanalysis. Traditionally, a normal approximation to
the binomial distribution was used to evaluate the success probability of a
differential attack [152,153]. However, this approximation is not very tight for
typical parameters in differential cryptanalysis, where the success probability
of a single Bernoulli experiment is very close to zero [154]. Then approximating
the sum of multiple differentials by a normal distribution, this issue becomes
even worse.

Blondeau and Gérard demonstrate that Selçuk’s method cannot be applied
to multiple differential cryptanalysis and express the distribution of key
counters instead in terms of a hybrid distribution including the Kullback-Leibler
divergence and a Poisson distribution [29]. Blondeau and Gérard obtain the
following formula for the success probability PS :

PS ≈ 1−G∗[G−1(1− l − 1

2nk − 2
)− 1], (5.21)

where nk is the number of key candidates, l is the size of the list of suggested key
candidates, and G−1 is defined by G−1(y) = min{x|G(x) ≥ y}. The functions
G and G∗ are defined as follows:

G∗(τ)
def
= G(τ, p∗) and G(τ)

def
= G(τ, p),

where p∗ =

∑
i,j

p
(i,j)
∗

|∆0| and p = |∆|
2n|∆0| . p

(i,j)
∗ is the probability for the differential

with the i-th input difference value and the j-th output difference value, n
is the block size, |∆0| is the number of input difference values and |∆| is
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the number of differentials. G(τ, p∗) and G(τ, p) can be calculated with the
following equations:

G(τ, q)
def
=





G−(τ, q) if τ < q − 3 ·
√
q/Ns,

1−G+(τ, q) if τ > q + 3 ·
√
q/Ns,

GP(τ, q) otherwise,

(5.22)

where GP(τ, q) is the cumulative distribution function of the Poisson distri-
bution with parameter qNs, and Ns is the number of samples. G−(τ, q) and
G+(τ, q) are defined as follows:

G−(τ, q)
def
= e−NsD(τ‖q) · [ q

√
1− τ

(q − τ)
√

2πτNs

+
1√

8πτNs

], (5.23)

G+(τ, q)
def
= e−NsD(τ‖q) · [ (1− q)√τ

(τ − q)
√

2πNs(1− τ)
+

1√
8πτNs

], (5.24)

where D(τ‖q) is the Kullback-Leibler divergence between two binomial
distributions with respective success probilities p and q which is defined by:

D(τ‖q) def
= τ ln

(
τ

q

)
+ (1− τ) ln

(
1− τ
1− q

)
. (5.25)

On the assumptions for this analysis

In the analysis of the key counters in multiple differential cryptanalysis [29], a
seemingly trivial complication arises: For a fixed key, when summing over all
possible values of x, both x and x⊕∆i

0 will be counted for any possible input
difference ∆i

0. In a standard differential attack with a single differential, the
set of plaintexts is implicitly partitioned in two disjoint sets by the structure
of the pairs. In the case of multiple differentials, this becomes nontrivial [29].

Therefore, in order to guarantee that each pair is counted only once in their
analysis, Blondeau and Gérard give Definition 5.16 as a necessary condition on
the set of the input differences ∆0:

Definition 5.16. The set of input differences ∆0 is admissible if there exists
a set χ of N/2 plaintexts that fulfils the condition:

∀δ(i)
0 ∈ ∆0,∀x ∈ χ, x⊕ δ(i)

0 /∈ χ, (5.26)

where N is the number of chosen plaintexts.
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However, this condition imposes a severe restriction on the freedom with which
the attacker can select suitable differentials. As a result, many potentially
valuable differentials have to be excluded. For example, independent of the
algorithm under consideration, the set of input differences ∆0 = {1x, 2x, 3x}
is never admissible in any substitution-permutation network because of this
condition, since the overlapping bits of 3x = 1x ⊕ 2x will always result in
double-counting.

5.6 A Model for structure attacks

Compared to approaches based on a normal approximation of Binomial
distributions, the method of [29] outlined in the previous section provides a
more accurate estimation of the success probability. Since structure attacks
are a special case of multiple differential cryptanalysis, these results also
immediately apply to them.

Due to the limitations implied by condition 5.16, it remains to investigate
whether they can be mitigated in a specialised model that is tailored for the
subclass of structure attacks.

5.6.1 Principle of the attack

The structure attack is a form of differential cryptanalysis which uses multiple
input differences and a single output difference. Structure attacks are a special
case of multiple differential cryptanalysis, but having only one output difference
and organising the chosen plaintexts in structures allows for a dedicated attack
procedure, which we describe in this section.

A structure attack is performed in three phases [161]:

1. Data Collection Phase: Collect a large number of ciphertext pairs with
the differences produced from the output difference of the differentials
and the corresponding plaintext differences belong to the set of the input
differences.

2. Distillation and Data Analysis Phase: Extract the differential
statistic from the data and derive the list of the best candidates for some
key bits from the collected ciphertext pairs.

3. Key Search Phase: Search the list of candidates and all the remaining
master key bits (i.e., the unexpanded key from which the round subkeys
are derived).
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For the first two phases, we can leverage structures to obtain the expected
number of right pairs with lower data complexity compared to a single
differential. Now we will give a model to choose the differentials to reduce the
complexity. For clarity of exposition, we describe the model for the case of a
substitution-permutation network (SPN); however, the concept can analogously
be applied to other block cipher constructions, most importantly Feistel ciphers.

Consider the following setting: We attack an R-round block cipher with a
block length of n bits and a k-bit (master) key using |∆0| r-round differentials
with a single output difference and multiple input differences, we denote these
differentials as follows:

∆i
0

r→ ∆r, with pi
def
= Pr(∆i

0
r→ ∆r), (1 ≤ i ≤ |∆0|), (5.27)

where ∆i
0 and ∆r are the i-th input difference and the output difference,

respectively. When dealing with SPNs, it turns out to be advantageous to
first use truncated differentials for the construction of the structures and then
use a set of concrete differences during the attack.

We denote the number of plaintexts bits involved in the active S-boxes in the
first round in any one of the differentials as Np and the number of ciphertexts
bits involved in the non-active S-boxes in the last round R by Nc. The number
of distinct structures used in the attack is 2Nst , and the size of the key candidate
list produced in phase 2 of the attack is denoted by ℓ. The amount of subkey
bits guessed for partially decrypting the last R− r rounds is denoted nk.

In the attack, 2Nst structures are constructed. In each structure, all the
input bits to non-active S-boxes in the first round are fixed to some random
value, while Np input bits of all active S-boxes take on all 2Np possible values.
Consequently, we ask for the encryptions of 2Nst+Np chosen plaintexts and
there are 2Nst · 2Np−1 = 2Nst+Np−1 pairs for each differential. It is expected
that about 2Nst+Np−1 ·∑|∆0|

i=1 pi of these pairs will produce the sought output
difference ∆r. These pairs are the right pairs needed to distinguish the correct
from the wrong key guesses.

The attack can be described as follows. It is structurally very similar and can
be seen as a generalisation of the differential attack on Serpent in [20].

1. For each structure:

(a) Insert all the ciphertexts into a hash table indexed by the Nc bits
corresponding to the non-active S-boxes in the last round.

(b) For each entry with the same Nc bits value, check whether the input
difference is any one of the total |∆0| possible input differences. If
a pair satisfies one input difference, then go to the next step.
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(c) For the pairs in each entry, check whether the output differences of
the active S-boxes in the last round is compatible with the input
differences resulting from ∆r. If the pair passes the test, then go to
the next step.

(d) Guess nk bits subkeys to decrypt the ciphertext pairs to round r and
check whether the obtained output difference at round r is equal to
∆r. If so, add one to the corresponding counter.

2. Choose the list of the ℓ best subkey candidates from the counters.

3. For each of the ℓ subkey candidates: Guess the remaining master key bits,
verify against one or two plaintext/ciphertext pairs.

5.6.2 Analysis of the attack

We now analyse the time and memory complexities of this attack.

Obviously, the time complexity of step 2 is negligible, so we denote by Ta, Tb, Tc,
Td and T3 the time complexities of steps (a), (b), (c), (d) and 3, respectively.
We make the further simplifying assumption that there are nk independent
subkey bits from the key schedule. If this is not fulfilled, the complexity of the
key search phase can increase.

In step (a), we need to store all 2Nst · 2Np ciphertexts, accounting for Ta =
2Nst+Np memory accesses. In step (b), we can assume that the ciphertexts
behave as random n-bit values, implying we have to check about 2Nst+2Np−Nc

hash table entries for collisions, out of which there are 2Nst+Np−Nc remaining to
be analysed for compatibility with ∆0 in step (c). Therefore, Tb = 2Nst+2Np−Nc

and Tc = |∆0| · 2Nst+Np−Nc memory accesses. For step (d), the 2nk repetitions
for the subkey guessing are to be balanced against the filter probability
according to the output differences. Td can therefore be approximated by
|∆0| · 2Nst+Np−Nc partial decryptions, leaving a complexity of T3 = ℓ · 2k−nk

for the key search phase.

Since |∆0| ≪ 2Np , we have Tc < Tb, and the overall time complexity can
consequently be expressed as follows:

Ta + Tb + Tc + Td + T3 ≈





Ta + T3 if Np < Nc,

Tb + T3 if Np > Nc,

2Ta + T3 = 2Tb + T3 if Np = Nc.

(5.28)

This expression now provides some guidance with regard to the question how
to choose the set of differentials, and in particular how many of them to afford.
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If the time complexity in the key searching process T3 is much smaller than the
time complexity of the data collection process and the data analysis process,
we can take Np = Nc to minimise the whole time complexity as the minimum
value 2Ta. Otherwise, we can try to take a larger value for Np to increase the
sum of the probabilities for differentials to further reduce the data complexity.

The latter case for instance applies in an attack scenario where the probability
of many differentials are close to 2−n, implying a low success rate PS . Therefore,
a large value for ℓ has to be chosen, which causes the complexity T3 of step
3 to increase. In this case, increasing the number of input differences (and
hence Np) can help improving the attack, whereas increasing the number of
output differences would not have this effect in the case of multiple differential
cryptanalysis.

If, on the other hand, the probabilities of the differentials are much larger than
2−n, we can choose more differentials without affecting the success probability.
In order to minimize the time complexity, we will aim for Np = Nc according
to our model.

5.6.3 Evaluating the success probability of structure attacks

Being a subclass of multiple differential attacks, the success probability PS of
a structure attack can be evaluated within the framework of Blondeau and
Gérard described in Section 5.5.2, provided that the set of input differences
fulfills condition 5.16. This is required to avoid counting both x and x⊕δ(i)

0 for

any δ(i)
0 ∈ ∆0, i.e. guarantee that Ns = N |∆0|/2 with Ns denoting the number

of samples derived from N chosen plaintexts as in Section 5.5.2. Note that in
this context, imposing condition 5.16 is sufficient for satisfying the intrinsic
requirement on Ns, but not necessary. It enforces avoiding double counting
per differential, while any other method of avoiding duplicates globally on the
set of all pairs would suffice just as well.

It turns out, that since in structure attacks we only deal with one possible
output difference, we can satisfy this condition on Ns even for sets of input
differences violating condition 5.16: In our setting, N = 2Nst+Np , and the
hash table will produce N/2 plaintext pairs with one input difference from N
plaintexts, in total therefore Ns = |∆0|N/2 plaintext pairs with |∆0| input
diffference values. For structure attacks, the complexity analysis of [29] is
therefore applicable independent of Def. 5.16.

This has additionally been verified by experiments on SmallPresent with
block length of 24 bits, 12 rounds, and a set of 11 differentials with input
differences violating Definition 5.16 and a single output difference.
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We stress that this condition and the general model of [29] are still necessary
for the analysis of the general case where one has multiple input and multiple
output differences.

5.6.4 Ratio of weak keys in a structure attack

In general, the differential probability is related to the value of the key. As we
use multiple differentials in the structure attack, we need to consider the ratio
of keys which can produce the expected number of right pairs. We call those
keys weak keys since the attacks are only expected to work for those.

Recall that a cipher is called key-alternating if it consists of an alternating
sequence of unkeyed rounds and simple bitwise key additions (see Section 2.2.2).
The fixed-key cardinality of a differential, denoted N [K](a, b), is the number of
pairs with input difference a and output difference b where the key K is fixed
to a specific value. In [58,60], Daemen and Rijmen give the following theorem.

Theorem 5.17. Assuming that the set of pairs following a characteristic for
a given key can be modeled by a sampling process, the fixed-key cardinality of a
differential in a key-alternating cipher is a stochastic variable with the following
distribution:

Pr(N [K](a, b) = i) ≈ Poisson(i, 2n−1EDP (a, b)),

where n is the block length, EDP (a, b) denotes the expected differential
probability of the differential (a, b), and the distribution function measures the
probability over all possible values of the key and all possible choices of the key
schedule.

For multiple differentials with multiple input differences and a single output
difference, we have pj = EDP(aj , b), 1 ≤ j ≤ |∆0|. We denote the fixed-key
cardinality of multiple differentials (aj , b) with a single output difference b by
N [K]

{
(aj , b)

}
j
. Based on Theorem 1, we can now derive

Theorem 5.18. Under the assumptions of Theorem 5.17, in a key-alternating
cipher, the fixed-key cardinality of multiple differentials with a single output
difference is a stochastic variable with the following distribution:

Pr
(
N [K]

{
(aj , b)

}
j

= i
)
≈ Poisson(i, 2n−1

∑

j

EDP(aj , b)),

where the distribution function measures the probability over all possible values
of the key and all possible choices of the key schedule.
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Proof. The cardinality of multiple differentials equals the sum of the cardinali-
ties of each differential (aj , b) for the iterative cipher, so we have

N [K]
{

(aj , b)
}

j
=
∑

j

N [K](aj , b).

From Theorem 1, the cardinality for each differential (aj , b) has Poisson
distribution. Making the standard assumption that the cardinalities of
the differentials are independent random variables, the sum still is Poisson
distributed with as λ-parameter the sum of the λ-parameters of the terms:

λ =
∑

j

2m−1EDP(aj , b).

From Theorem 2, in a structure attack based on the differentials

∆i
0

r→ ∆r, with pi
def
= Pr(∆i

0
r→ ∆r), (1 ≤ i ≤ |∆0|),

the ratio of the weak keys rw that can produce more than or equal to µ right
pairs can be computed as summing a tail of the above-mentioned Poisson
distribution:

rw
def
= 1−

µ−1∑

x=0

Poisson(x, 2m−1

|∆0|∑

j=1

pi).

Note that when evaluating the ratio of weak keys, we have a different setting
than when dealing with the distribution of the counters in a (multiple)
differential attack. While approximating the distribution of the counters
with either normal or Poisson distributions was shown to be problematic
for accurately estimating the tails [29, 152], the distribution of the weak
keys instead depends on the cardinality of the multiple differentials. In this
setting, using the Poisson distribution as in Theorem 5.18 also yields a good
approximation for the tails. This was also experimentally verified with small-
scale variants of the block cipher PRESENT [108], with block lengths ranging
from 8 to 24 bits.

Additionally, the accuracy of the weak key ratio rw based on Theorem 5.18 has
been verified by experiments on SmallPresent with a block length of 24 bits,
12 rounds and an master key with 8 bit entropy. 7 differentials with 7 different
input and a single output difference were used. The λ-parameter of the Poisson
distribution was 223 ·

(
5 · 2−23 + 2 · 2−22

)
= 23.17. The distribution of the ratio

of weak keys for different values of µ is listed in Table 5.1. The experimental
results very closely follow the theoretical estimate.



138 BLOCK CIPHERS AND STATISTICAL CRYPTANALYSIS

µ 2 4 6 8 16
theoretical rw 0.9988 0.9788 0.8843 0.6762 0.0220

experimental rw 1 0.98 0.89 0.68 0.02

Table 5.1: Theoretical and experimental weak key ratio for SmallPresent-24.
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Figure 5.15: One round of the PRESENT block cipher.

5.7 Applications: Attacking PRESENT and Ser-
pent

5.7.1 The block cipher PRESENT

The block cipher PRESENT is designed by Bogdanov et al. as a very
lightweight cipher [32]. It has a 31-round SPN structure in which the
S-box layer has 16 parallel 4-bit S-boxes and the diffusion layer is a bit
permutation [32]. The block size is 64 bits and the key size can be 80 bits
or 128 bits. One round of PRESENT is illustrated in Figure 5.15.

PRESENT is one of the few significant block cipher proposals after the
standardisation of the AES, and has recently been standardised by ISO.
As such, it has been extensively analysed. Wang presented a differential
attack on 16-round PRESENT [160]. Collard et al. proposed a new
cryptanalytic technique, the statistical saturation attack, to attack 24-round
PRESENT [48]. There are multiple papers presenting attacks based on linear
hulls for PRESENT [45, 128, 139], leading to linear attacks for up to 26
rounds [45], which is also the currently best known cryptanalytic result on
PRESENT. Since the S-box of PRESENT admits linear approximations with
single-bit linear masks, the attacker can exploit linear hulls containing many
single-bit linear trails over an arbitrary number of rounds [139]. However,
this property does not hold in the case of differential cryptanalysis, so for
differential attacks, paths in which two active S-boxes appear per round have
to be used. Hence, a linear attack on PRESENT will typically be more efficient
than differential attacks.
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Blondeau and Gérard use multiple differentials to attack 18 rounds of the
PRESENT block cipher [29]. The attack as presented in [29] however suffers
from a technical inaccuracy, invalidating the attack [28, 161]. Using different
sets of differentials, this has been corrected in [27]. However, as outlined in [161],
also this attack needs a minor correction which decreases its efficiency.

5.7.2 Identifying good differential paths for PRESENT

The diffusion layer of PRESENT partitions the 64 state bits in four groups
G0, G1, G2, G3 with Gi encompassing the state bits 16i, . . . , 16i+15. Due to the
properties of PRESENT’s S-box, we focus on finding differential characteristics
with two active S-boxes in each round. The foundation for this search is
formulated in Theorem 5.19. Based on this theorem, an efficient search
algorithm for differential characteristics with two active S-boxes per round can
be built.

Theorem 5.19. For the PRESENT block cipher, differential characteristics
with only two active S-boxes per round must have the following pattern:

1. If two active S-boxes are in the same group in round r, their output
difference will be equal and must have two non-zero bits to ensure that
only two active S-boxes appear in the (r+2)-nd round, and the two active
S-boxes in round r + 1 will be in the different groups;

2. If two active S-boxes are in different groups in round r, their output
difference will be equal and must have only one non-zero bit to ensure
that only two active S-boxes appear in the (r + 1)-st round, and the two
active S-boxes in round r + 1 will be in the same group.

For a proof of Theorem 3, we refer to [161].

Based on this observation, 91 16-round differentials with only two active S-
boxes in each round and a single output difference ∆16 = 00000500x||00000500x

with probabilities ranging from 2−62.13 to 2−63.95 have been identified. The full
list of these differentials can be found in [161].

5.7.3 Key recovery attack on 18-round PRESENT-80

In this section, we briefly describe how to use the 16-round differentials
identified in the last section to attack 18-round PRESENT with an 80-bit key.
The full attack procedure is detailed in [161].
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The first step is to choose the set of differentials. From the output difference
00000500x||00000500x at round 16, we can derive that the number of recovered
subkey bits in round 17 and round 18 is 8 + 32 = 40. Those 40 subkey bits
are independent according to the key schedule. In this attack, we will use
the whole codebook and set the size of the candidates of subkey counters ℓ
to 236. With Equation (5.21), we have nk = 40, ℓ = 236 and N = 264, and
the success probability is maximised at 85.95% as we take the 36 16-round
differentials with the highest probabilities of the 91 differentials found by the
search algorithm. Therefore, |∆0| = 36. Note that this is an example that it
is necessary to carefully evaluate the impact of choosing the set of differentials.
Simply adding more input differences to further decrease the data complexity
does not necessarily minimise the overall complexities.

We construct 224 structures of 240 chosen plaintexts each. In each structure, all
the inputs to the 6 non-active S-boxes in the first round take a fixed random
value, while 40 bits of input to 10 active S-boxes take 240 possible values. In
all structures, there are 224 · 239 = 263 pairs for each possible differential. The
sum of the probabilities for all 36 differentials is 2−57.97, so the number of right
pairs is 263 · 2−57.97 = 25.03. The filter probability for the ciphertext pairs β
according to active S-boxes can be estimated at β = 2−12.55 [161].

In the terminology of Section 5.6, we have |∆0| = 36,
∑|∆0|

i=1 pi = 2−57.97,
Nst = 24, Np = 40, Nc = 32, nk = 40 and ℓ = 236.

According to the model of Section 5.6.2, the total time complexity will be 276

18-round encryptions. The data complexity is 264 chosen plaintexts and the
memory requirements are 240 128-bit cells for the hash table, which can be
reused for the 240 counters. The success probability is 85.95%.

The ratio of weak key satisfying the sum of the probabilities of the 36
differentials is computed as follows:

rw = 1−
µ−1∑

x=0

Poisson(x, 2n−1

|∆0|∑

j=1

pi) = 1−
25.03−1∑

x=0

Poisson(x, 263 ·2−57.97) = 0.57.

This means that the number of weak keys for which our attack can succeed is
280 · 0.57 = 279.19 for PRESENT-80.

Comparison to previous attacks on 18-round PRESENT

As outlined in Section 5.7.1, the multiple differential attack of [29] does not
work as described. It has been superseded by [27], where another multiple
differential attack on 18-round PRESENT is presented. It can be seen from
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Attack of [27] Attack of Section 5.7.3

ℓ PS ℓ PS N time complexity

238 65.27% 236 85.94% 264 276

239 79.68% 237 92.30% 264 277

241 94.62% 239 98.36% 264 279

Table 5.2: Comparison of our attacks on PRESENT with the multiple
differential cryptanalysis of [27].
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Figure 5.16: The block cipher Serpent reduced to 8 rounds.

Table 4 of [27], that |∆0| = 17 (and not 16 as assumed in the paper). This
results in p∗ = 2−62.6765 (instead of 2−62.59) and p = 2−63.56 (instead of
p=263.47). Based on these values, we compare this attack to our attack from
Section 5.7.3 for different values of the number ℓ of remaining key candidates
(see Table 5.2). One can see that for the same data and time complexities,
the structure attack performs consistently better than multiple differential
cryptanalysis with multiple input differences and multiple output differences.

5.7.4 Attack on reduced-round Serpent

Serpent was one of the five AES candidates in the final round; it is a
substitution-permutation network 4-bit S-boxes, a linear diffusion layer and
32 rounds in total. For a full specification, we refer to [3]. Figure 5.16 depicts
Serpent reduced to 8 rounds, from round 4 to 11.

The best known cryptanalytic result is the differential-linear cryptanalysis on
12 rounds [68]. In [20], Biham et al. describe a differential attack for 7-round
Serpent with a data complexity of 284 chosen plaintexts and a time complexity
of 285 memory accesses. Biham et al. also give a differential attack on 8-round
Serpent-256 with 2213 memory accesses and 284 chosen plaintexts. Those are
the best known differential attacks on Serpent.

In [20], 214 differential characteristics for 1
2 + 5 rounds are constructed,

starting from the linear transformation with fewer active S-boxes (13 ac-
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tive S-boxes) in the first half round, then extending them backwards to
6 rounds. All differential characteristics have an output difference of
{0906b010x||00000080x||13000226x||06040030x}.
We now apply the structure attack to Serpent. We will use the same output
difference as [20], but since all differentials have high probability compared to
2−128, we will make use of all the possible non-zero input differences according
to the output differences for the S-boxes in the first round. This leads to
|∆0| = 235.32 and

∑|∆0|
i=1 pi = 2−65.

We construct 219 structures of 252 chosen plaintexts each. In each structure,
all the inputs to non-active S-boxes in the first round are fixed to some random
value, while the 52 bits of input to all the active S-boxes take all the 252 possible
values. There are 219 · 251 = 270 pairs for each differential characteristic. We
expect that about 270 · 2−65 = 25 pairs produce the output difference ∆6.

The success probability PS can be computed with Equation (5.21). Here N =
271, |∆0| = 235.32, p∗ = 2−65 · 2−35.32 · 252 = 2−48.32, Ns = 270 · 235.32 · 2−52 =
253.32, p = 2−52, nk = 52, l = 2, β = 2−26.22, hence we get PS = 89.87%.

The time complexity is 227.10 ·252 ·13/32 = 277.81 one-round encryptions which
is equivalent to 274.99 7-round encryptions, the data complexity is 271 chosen
plaintexts and the memory requirements are 252 hash cells of 256 bits and
252 32-bit counters storing 25 pairs each, hence using about 257 256-bit words.
This attack consequently applies to Serpent with all key sizes of 128,192 and
256 bits.

The attack can be further extended to 8-round Serpent-256. By exhaustively
searching the 128-bit subkey in the last round to decrypt to round 7, the
above attack for 7 rounds can be applied. The time complexity is 2203.81 8-
round encryptions, the data complexity is 271 chosen plaintexts and the memory
requirements are the same as for the 7-round attack. This attack therefore
applies only to Serpent with a 256-bit key.

In comparison, the previous differential attack for 7-round Serpent described
in [20] has a time complexity of 285 and a data complexity of 284 chosen
plaintexts. For the previous differential attack on 8-round Serpent, the time
complexity is 2213 and the data complexity is 284 chosen plaintexts. This
implies that our attacks require substantially less chosen plaintexts. This
comparison is summarised in Table 5.3.
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Biham et al (2001) Structure attack

rounds time data time data

7 285 284 275 271

8 2213 284 2203 271

Table 5.3: Comparison of our structure attacks to previous differential attacks
on Serpent.

The ratio of weak keys satisfying the probability of the multiple differentials is
computed as follows:

rw = 1−
µ−1∑

x=0

Poisson(x, 2n−1

|∆0|∑

j=1

pi) = 1−
25−1∑

x=0

Poisson(x, 270 · 2−65) = 0.52.

This means that this attack is expected to work with about half of all possible
keys, independent of the key size.

5.8 Conclusions

In this chapter, we studied two important statistical analysis techniques for
block ciphers: Linear cryptanalysis using Matsui’s Algorithm 2 and differential
cryptanalysis using structures.

In both cases, we analysed how to model and estimate the data and time
complexities of these attacks more accurately by applying the theory of
the probability distributions of correlations of linear approximations and
cardinality of differentials over Boolean permutations [60].

For linear cryptanalysis using Matsui’s Algorithm 2, we first formulated a
new wrong key randomisation hypothesis. Based on this result, we obtained
a new and more accurate formula for the probability of success in a linear
attack (Section 5.2). We demonstrated that this probability was previously
underestimated when the attacker tries to exploit a linear approximation with
low bias, to attain a high advantage over the brute force, or both. These cases
are very typical since cryptanalysts always try to break as many rounds of the
cipher as possible by pushing the attack to the limit.

As a surprising consequence of the adjusted wrong key randomisation
hypothesis, our analysis revealed that the success probability in general is not
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a monotonous function of the data complexity. This means that sometimes,
using less data can result in better success probability of a linear attack.

Furthermore, in Section 5.4, we studied the impact of the linear hull effect in
the context of the widely assumed hypothesis of key equivalence. To address
the conflict between these, we proposed a heuristic approach to split the linear
hull into a signal part (sampled for random keys) an a statistically modeled
noise part to make the complexity estimation more realistic.

All these theoretical observations and techniques have been verified by
experiments with structurally different small-scale ciphers.

In the context of differential cryptanalysis, we gave a general model for the
structure attack in Section 5.6, providing guidance on how to choose the set of
differentials to minimize the overall complexities. As concrete applications
of our model, we presented structure attacks on 18-round PRESENT and
improved the previous differential cryptanalytic results for the Serpent block
cipher. To the best of our knowledge, these attacks are the best known
differential attacks on those two block ciphers.

Comparing our model for structure attacks against the general model for
multiple differential cryptanalysis proposed in [29], we concluded that the
limitation for the set of input differences imposed by the model of [29]
excludes many valuable differentials. We show that in structure attacks, a very
important – and often particularly efficient – subclass of multiple differential
attacks, this restriction can be relaxed.



Chapter 6

Designing block ciphers:
Statistical and structural
aspects

In a certain sense, the question how to design a secure block cipher can be
considered “solved”. Since the publication of the Data Encryption Standard
DES [72], the cryptographic research community has developed a rich body
of studies on the design and cryptanalysis of block ciphers. Most prominently,
DES has provoked the discovery of differential [22] and linear cryptanalysis [115,
116], two of the most powerful attack techniques to date.

Soon after the publication of these attacks, study was initiated on the question
how to demonstrate resistance against them [53,56,101,117,135,144,159]. This
research culminated with the standardisation of the Advanced Encryption
Standard (AES) by the National Institute of Standards and Technology
(NIST). AES is designed according to the wide trail design strategy [56],
which provides strong guarantees against the powerful statistical attacks.
The works of Knudsen and Nyberg [101, 135], Daemen and Rijmen [56],
Matsui [117] Vaudenay [159] all have this “practical security” approach in
common: Demonstrate security against the most powerful known attacks (and
some generalisations).

Being able to show that a particular block cipher resists known attacks is
a great asset. However, the question naturally arises whether and to which

145
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extent generic resistance can be shown against attacks performing arbitrary
computations only limited by the resources (time, data, storage) that the
attacker has at their disposal. This approach commonly models the success (or:
advantage over the random case) of an attacker via his ability to break a security
notion based on having obtained a certain number of queries to the algorithm
under attack. The computational abilities of the attacker are modeled either as
a probabilistic polynomial time Turing machine (PPT) [79] (polynomial in the
security parameter), or information-theoretically, meaning that the adversary
is granted unlimited computational resources to process the limited number
of queries he has obtained during the interaction. In this model, commonly
referred to as “provable” or “reductionist security”, the security of a scheme is
not merely assessed with regard to specific attacks; however, the universality
of the model requires the analysis to be based on making assumptions about
the ideality of certain subcomponents of the algorithm.

Generally speaking, the practical security approach has led to a plethora of
efficient and (as far as we know, practically secure) block cipher designs, while
instantiating schemes for which reductionist security bounds can be proved,
has proven difficult.

In this chapter, we mainly address two open issues in this context. First, the
practical security approach heavily relies on the ability to preclude powerful
statistical attacks. In order to convert this into design requirements, it is
important to know a reference point, the ideal case that can be attained by any
block cipher. Somewhat surprisingly, such a reference point has not yet been
formulated for either differential or linear cryptanalysis. We propose such a
reference point in Section 6.2.

Second, the concept of a key-alternating cipher is omnipresent in symmetric
cryptography: Most block cipher proposals, including the AES, are key-
alternating ciphers. The question whether this is a sound design strategy for
block ciphers has not yet been studied theoretically, with the notable exception
of the Even-Mansour construction [70] (which is a key-alternating cipher limited
to only one round). This motivates a general study of the soundness of the
concept of key-alternating ciphers, which is carried out in Sections 6.5 to 6.8.

6.1 Distributions of linear and differential proper-
ties

The underlying nonlinearity measures of linear and differential cryptanalysis
are the correlation of linear approximations and cardinality of a differential,
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respectively. As outlined in Section 2.3, there are many equivalent ways of
expressing these quantities. In this chapter, we will mostly deal with the
discrete variants — imbalance of linear approximations and cardinality of
differentials – in order to avoid ambiguities due to continuity correction. Note
that statements about the derived quantities (correlation, Fourier coefficients,
linear probability, linear bias, and differential probability) can readily be
obtained by applying the relations mentioned in Sections 2.3.1 and 2.3.2.

6.1.1 Distributions over all functions and permutations

For vectorial Boolean functions, the following characterisations for the
distribution of linear and differential properties have been proven.

Theorem 6.1 ([60, Theorem 4.2]). The imbalance Iα0,β0
of a linear approxima-

tion (α0, β0) for an n-bit to m-bit vectorial Boolean function has the following
distribution, taken over all n-bit to m-bit vectorial Boolean functions:

Pr
f

(If
α0,β0

= x) = 2−2n

(
2n

2n−1 + x

)
, (6.1)

where x ranges from −2n−1 to 2n−1.

For the case of permutations, the following result is known:

Theorem 6.2 ([137, Theorem 1], [60, Lemma 4.5]). The imbalance Iα0,β0

of a linear approximation (α0, β0) for an n-bit permutation has the following
distribution, taken over all n-bit permutations:

Pr
π

(Iπ
α0,β0

= 2x) =

(
2n−1

2n−2+x

)2

(
2n

2n−1

) , (6.2)

with x ranging from −2n−1 to 2n−1.

The cardinality of differentials over vectorial Boolean functions is known to
have a binomial distribution:

Theorem 6.3 ([60, Lemma 3.3]). Over all n-bit to m-bit vectorial Boolean
functions, the distribution of Nα0,β0

for a fixed differential (α0, β0) follows a
Binomial distribution:

Pr
f

(Nf
α0,β0

= i) = (2−m)
i
(1− 2−m)

2n−1−i
(

2n−1

i

)
. (6.3)



148 DESIGNING BLOCK CIPHERS: STATISTICAL AND STRUCTURAL ASPECTS

For permutations, this distribution has been characterised in [136,138].

Theorem 6.4 ([138, Corollary 2.1]). Over all n-bit permutations, the
distribution of Nα0,β0

for a fixed differential (α0, β0) is as follows:

Pr
π∈S2n

(Nπ
α0,β0

= k) =

(
2n−1

k

)2

· k! · 2k · Φ(2m−1 − k)

2n!
(6.4)

with Φ(d) =
∑d

k=0(−1)k ·
(

d
k

)2 · 2k · k! · (2d− 2k)!.

For sufficiently large n, those distributions can be closely approximated by
either normal or Poisson distributions:

Theorem 6.5 ([60, Corollary 4.3, Lemma 4.6]). When n is sufficiently large,
the distributions of the imbalance for a fixed approximation (α0, β0) over all
n-bit to m-bit Boolean functions given by (6.1) and over all n-bit permutations
given by (6.2) can be approximated by continuous distributions as follows:

Pr
f

(If
α0,β0

= z) ≈ N (0, 2n−2), (6.5)

Pr
π

(Iπ
α0,β0

= 2z) ≈ N (0, 2n−4). (6.6)

Theorem 6.6 ([60, Corollary 3.6], [83, Lemma 5]). For sufficiently large n, the
distributions of cardinality of a fixed differential (α0, β0) over all n-bit to n-bit
Boolean functions given by (6.3) and over all n-bit permutations given by (6.4)
can be approximated by continuous distributions as follows:

Pr
g

(Ng(α0, β0) = z) ≈ (1/2)ze−1/2

z!
= Poisson(z, 1/2), (6.7)

Pr
π

(Nπ(α0, β0) = z) ≈ Poisson(z, 1/2). (6.8)

6.2 Distributions for a randomly drawn function or

permutation

6.2.1 Motivation

As seen in the results listed in the previous section, the distribution of the
imbalance of linear approximations and cardinality of differentials for vectorial
Boolean functions and permutations has previously been studied for fixed
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linear approximations or differentials, taking the probabilities over all Boolean
functions or permutations of the appropriate dimensions.

In this section, we demonstrate how to obtain a statement over the distribution
of these linear and differential properties for one randomly drawn instance (func-
tion or permutation), taking the probabilities over all linear approximations or
differentials. It turns out that the previous analysis can carry over to this case.

This has important applications in symmetric-key cryptography, since these
values are directly related to the complexity of linear and differential attacks.
The value of correlation attained for a given linear approximation of a
permutation or function determines the complexity of linear cryptanalysis.
Similarly, the value of the cardinality for a certain differential characterises
its probability and yields a complexity estimate of differential cryptanalysis.

The setting of randomly drawing a permutation and then studying the
distribution of the nonlinearity measures over all parameters, corresponds to
randomly choosing a key in an idealised block cipher or to randomly picking
a compression function for a hash function. Consequently, characterising
the distribution of correlation of linear approximations and cardinality of
differentials for a fixed yet randomly chosen permutation or function defines
the reference point for linear and differential cryptanalysis of block ciphers and
hash functions.

In the following, let (α, β) be either a linear approximation or a differential. For
each fixed value of (α, β), the results of Theorems 6.1–6.4 state the distribution
of the proportion of functions resp. permutations with Iα,β = z or Nα,β = z.
We now argue that the distribution of those quantities with respect to one
randomly drawn instance (function or permutation), where the probabilities
are taken over all (α, β), can be derived from those known distributions.

6.2.2 On the expected nature of our results

It should be noted that the following analysis provides the distributions for
a fixed but randomly drawn function or permutation, and not for any fixed
selected instance. The distributions provided by the following proposition can
be interpreted as the expected distributions when dealing with a fixed function
or permutation which has been drawn uniformly at random from the set of all
functions or permutations with the same dimensions.
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6.2.3 Main result

The following proposition provides the sought statement about the distribution
of imbalance of linear approximations and cardinality of differentials in a
randomly drawn Boolean function or permutation.

Proposition 6.7. Let f0 be a Boolean function, drawn uniformly at random
from the set of all n-bit to m-bit Boolean functions, and π0 an n-bit permutation,
drawn uniformly at random from the symmetric group S2n . Then we have

Pr
(α,β)

(If0

α,β = x) = 2−2n

(
2n

2n−1 + x

)
, (6.9)

Pr
(α,β)

(Nf0

α,β = i) = (2−m)
i
(1− 2−m)

2n−1−i
(

2n−1

i

)
, (6.10)

and

Pr
(α,β)

(Iπ0

α,β = 2x) =

(
2n−1

2n−2+x

)2

(
2n

2n−1

) , (6.11)

Pr
(α,β)

(Nπ0

α,β = k) =

(
2n−1

k

)2

· k! · 2k · Φ(2m−1 − k)

2n!
(6.12)

with Φ(d) =
∑d

k=0(−1)k ·
(

d
k

)2 · 2k · k! · (2d− 2k)!.

Proof. Let Qα,β denote either the imbalance Iα,β of an approximation (α, β)
or the cardinality Nα,β of the differential (α, β). Denote by F either the set
of all n to m-bit vectorial Boolean functions or n-bit permutations. We will
prove the statements (6.9)–(6.12) by showing that for all z, the probability that
Qα,β = z, taken over all (α, β) for one g0 ∈ F drawn uniformly and at random,
equals the probability that Qα,β = z for an arbitrary but fixed (α, β), taken
over all f ∈ F :

Pr
f∈F

(Qα,β = z) = Pr
(α,β)

(Qg0

α,β = z).

The claims then follow immediately from Theorems 6.1–6.4.

From Theorems 6.1–6.4, we know the probabilities

Pr
f∈F

(Qα,β = z) =
#{f | Qf

α,β = z}
#F

for fixed α, β. Now, we draw one g0 ∈ F uniformly at random and want to
determine the quantity

#{(α, β) | Qg0

α,β = z0}
#{(α, β)} = Pr

(α,β)
(Qg0

α,β = z0)
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for each z0. By the law of total probability, we can write

Pr
(α,β)

(Qg0

α,β = z0) =
∑

(α,β)

Pr((α, β)) Pr
(
Qg0

α,β = z0 | (α, β)
)

(1)
=
∑

(α,β)

Pr((α, β))
#{f | Qf

α,β = z0}
#F

(2)
=

#{f | Qf
α,β = z0}

#F
∑

(α,β)

Pr((α, β))

︸ ︷︷ ︸
=1

=
#{f | Qf

α,β = z0}
#F

= Pr
f∈F

(Qf
α,β = z0).

For step (1), we use the fact that g0 is drawn uniformly at random from F : For
fixed (α, β) and z0, the probability that Qα,β = z0 given (α, β) is equal to the
probability that g0 is equal to one of the elements of F for which (α, β) yields
Qα,β = z0, which is in turn equal to the proportion of elements in F for which
Qα,β = z0 for this fixed (α, β).

For step (2), we use that the distributions of Prf∈F (Qα,β = z), and therefore

the quantities #{f | Qf
α,β = z}, are identical for all (α, β).

We can also directly see that this forms a valid probability distribution: We
know that for all fixed (α, β),

∑
z Prf (Qα,β = z) = 1, so consequently for one

randomly drawn g0,
∑

z Pr(α,β)(Q
g0

α,β = z) = 1 as well.

Note also that the above derivation states that for each z0, Pr(α,β)(Qα,β = z0)
and therefore Prf∈F (Qα,β = z0) gives the expected value of the conditional
probability that Qα,β = z0 given (α, β):

Pr
(α,β)

(Qα,β = z0) = E(α,β) [Pr (Qα,β = z0 | (α, β))] .

We stress that for the statement of this proposition to hold, F is required
to be the complete set of either all n-bit to m-bit Boolean functions or all
n-bit permutations. Distributions over subsets will have related, but different
distributions. Similarly, our results hold for an instance g0 that has been drawn
uniformly at random from F .
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As in the case of distributions for fixed (α0, β0) over all functions or
permutations, the distributions of Proposition 6.7 can be closely approximated
by continuous distributions:

Corollary 6.8. Let f0 a randomly drawn n-bit to m-bit Boolean function, g0 a
randomly drawn n-bit Boolean transformation, and π0 a randomly drawn n-bit
permutation. For sufficiently large n, the distributions of the imbalance over all
approximations (α, β) and the distributions of cardinality over all differentials
(α, β) can be approximated by continuous distributions:

Pr
(α,β)

(If0

α,β = z) ≈ N (0, 2n−2), (6.13)

Pr
(α,β)

(Iπ0

α,β = 2z) ≈ N (0, 2n−4), (6.14)

Pr
(α,β)

(Ng0(α, β) = z) ≈ Poisson(z, 1/2), (6.15)

Pr
(α,β)

(Nπ0(α, β) = z) ≈ Poisson(z, 1/2). (6.16)

6.2.4 Discussion

The results of Section 6.1.1 provide a way of characterising the best conceivable
behaviour with regard to linear and differential cryptanalysis. In a word, they
define a reference point that a cryptographically good block cipher (for any
random choice of its secret key) or a cryptographically good permutation or
compression function for construction of a cryptographic hash function should
aim to attain in terms of resistance to differential and linear cryptanalysis.

An concrete example in the case of hash function design will be provided in
Section 6.2.6.

For the case of block cipher design, consider the situation when one wants to
build a cipher from a fixed set of underlying public (non-keyed) permutations.
One strategy to select this set of permutations is by selecting some keys in a
secure block cipher. The expected distributions of correlation and cardinality of
differentials for these permutations are then given by the results in this section.
If the designer can argue that his choice conforms with these distributions, this
constitutes a strong point for the design.

A further consequence of the results listed in Section 6.1.1 is that if an attacker
fixes any linear approximation or differential, there are very few functions
or permutations for which those yield good results. Dually, it follows from
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Figure 6.1: Experimental distribution of the imbalance for a single randomly
drawn permutation and its normal approximation.

Proposition 6.7 that in a randomly drawn function or permutation, there are
very few useful approximations or differentials.

6.2.5 Numerical illustration

We now illustrate the theoretical result of Proposition 6.7 by means of numerical
experiments. Firstly, a single 8-bit permutation was drawn uniformly at
random from the set of all 8-bit permutations, and the distributions of the
imbalances of all nontrivial linear approximations and the cardinality of all
nontrivial differentials were compiled. This experiment has been repeated
several times, always yielding stable results. The experimental and theoretical
distributions are depicted in Figures 6.1 and 6.2. It turns out that already
in the case of a single permutation, the experimentally observed distributions
match the continuous approximations to the theoretical distributions extremely
closely.

In a second experiment, the distributions of the average imbalance and
cardinality over 2000 randomly drawn permutations have been considered.
Besides improving the accuracy for the extreme tails, no significant difference
to the case of considering a single randomly drawn permutation was observed.

6.2.6 On related results

Even though to the best of our knowledge, the distributions of Proposition 6.7
have not previously been studied in their full generality, there are two important
related studies by Daemen et al. [15] and Daemen and Rijmen [60], which we
describe in the following.
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Figure 6.2: Experimental distribution of the cardinality of differentials for a
single randomly drawn permutation and its Poisson approximation.

Experimental analysis of the Keccak permutation reduced to 25 bits

The Keccak hash function is a design based on the Sponge construction and
currently a final round candidate for selection as SHA-3 standard by NIST [17].
It is based on a iterated permutation Keccak-f . After a sufficient number of
rounds, Keccak-f is expected to behave as a randomly drawn permutation.

The designers of the Keccak hash function have experimentally analysed these
distributions for the underlying permutation of their design. More precisely,
the distribution of correlation of linear approximations and cardinality of
differentials of the Keccak-f permutation reduced to 25 bits (denoted Keccak-
f [25]) have been analysed experimentally [17, Sect. 4.3.2 and 4.3.3]. Based on
sampling 241 of all (225 − 1)2 nontrivial differentials and 239 of all (225 − 1)2

nontrivial linear approximations, these experiments demonstrate that the
distributions for a single “random-looking” 25-bit permutation match the
theoretical distributions of a single differential or approximation over all 25-
bit permutations very closely.

Proposition 6.7 now explains this behaviour also theoretically. Conversely, the
experiments on Keccak-f [25] provide further support for the validity our results,
especially the continuous approximations of Corollary 6.8.

As described in Section 6.2.4, the results of Proposition 6.7 provide a theoretical
foundation for the experimental claim that the Keccak-f permutation behaves
close to the appropriate reference point (a randomly drawn permutation for
building a hash function) with regard to statistical attacks.
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Distribution of maxima

In [60, Sect. 5], the distributions of maximum cardinality maxα,β Nα,β and
linear probability maxα,β LPα,β over a large set of n-bit permutations are
shown to very closely resemble log-Weibull distributions with small standard
deviation. In particular, this implies that the distributions of the maxima are
very narrowly concentrated at two or three successive integer values (in the
case of cardinality) or multiples of 2−n (in the case of LP).

By comparison, our results state the shape of the complete distributions of the
imbalances and cardinalities for a single randomly drawn permutation over all
(α, β). Additionally, our experimental results closely match the experimental
data from [60]: As seen in Figure 6.1, the maximum cardinality observed for a
randomly drawn 8-bit permutation was N = 6, which coincides with the peak
value of the extreme value distribution in Fig. 2 of [60]. Similarly, the maximum
observed LP for one randomly drawn 8-bit permutation was 18

256 , which again
closely matches the peak value in Figure 3 of [60].

6.3 High-probability approximations and differen-
tials for a permutation

Linear and differential cryptanalysis exploit linear approximations with a high
correlation and differentials with large cardinalities. Recall that the complexity
of a linear attack using a linear approximation (α, β) is roughly proportional
to |Cα,β |−2, while the complexity of a differential attack using a differential
(α, β) is roughly proportional to DP−1

α,β . Using Proposition 6.7, we can now
explicitly determine the probabilities that a randomly drawn permutation has
linear approximations or differentials with high correlation resp. cardinality.

Proposition 6.9. For a randomly drawn permutation π0 and an integer x ≥ 0,
the probability of a correlation with absolute value higher than 2−n/2+x is

Pr
(α,β)

(|Cπ0

α,β | ≥ 2−n/2+x) ≈ erfc
(

2x−1/2
)
.
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Proof. We use the continuous normal approximation N (0, 2−n) to the discrete
distribution (6.11). Since the distribution is symmetric around zero, we have

Pr
(α,β)

(|Cπ0

α,β | ≥ 2−n/2+x) = 2 Pr
α,β

(Cπ0

α,β ≥ 2n/2+x)

= 2

∫ 2n−2

2n/2+x

1√
2π2

n−4
2

e
−z2

2n−3 dz,

see Proposition 2 of [35]. Since Pr(Cα,β = z) = 0 for z > 2n−2, we can write
this as

=
2√

2π2
n−4

2

∫ ∞

2n/2+x

e
−z2

2n−3 dz

=
2√

2π2
n−4

2

lim
a→∞

[√
π
√

2n−3

2
erf

(
z√

2n−3

)]a

z=2n/2+x

=
2√

2π2
n−4

2

·
√
π
√

2n−3

2
lim

a→∞
erf

(
a√

2n−3

)

︸ ︷︷ ︸
→1

− erf

(
2n/2−2+x

√
2n−3

)

=

√
2 · 2n−4

√
2 · 2(n−4)/2

·
(

1− erf
(

2n/2−2+x−(n−3)/2
))

= 1 · erfc
(

2x−1/2
)
.

For the differential case, we first prove a technical result:

Lemma 6.10. For any integer n ≥ 0 and x ∈ R,

Γ(2n, x) = (2n − 1)! · e−x
2n−1∑

i=0

xi

i!
. (6.17)

Proof. We prove the statement by induction. By definition of Γ(n, x),

Γ(2n, x) =

∫ ∞

x

e−tt2
n−1dt.

For n = 0, this yields

Γ(1, x) =

∫ ∞

x

e−tt1−1dt = −e−t
∣∣∣
∞

t=x
= e−x = 0! · e−x

0∑

i=0

xi

i!
,
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so the statement is true for n = 0. Assume now that (6.17) holds for some
n ≥ 0. Integrating by parts, we have

Γ
(
2n+1, x

)
=

∫ ∞

x

e−tt2
n

dt =
[
−e−tt2

n−1
]∞

t=x
−
∫ ∞

x

−e−t2n · t2n−1dt

= e−xx2n

+ 2n

∫ ∞

x

e−tt2
n−1dt

and using the induction hypothesis

= e−xx2n

+ 2n

(
(2n − 1)! · e−x

2n−1∑

i=0

xi

i!

)

= 2n! · e−x ·
(

2n−1∑

i=0

xi

i!
+
x2n

2n!

)

= 2n! · e−x
2n∑

i=0

xi

i!
,

as claimed.

Based on this lemma, we can derive

Proposition 6.11. Let x ≥ 0 be an integer. For a randomly drawn
permutation π0, the probability of a differential with cardinality greater or equal
to 2x is

Pr
(α,β)

(Nπ0

α,β ≥ 2x) ≈ 1− Γ
(
2x, 1

2

)

(2x − 1)!
.

Proof. Using the Poisson approximation for the binomial distribution (6.12),

we have Pr(α,β)(N
π0

α,β = k) ≈ e−1/2

2k·k!
and therefore

Pr
(α,β)

(Nπ0

α,β ≥ 2x) ≈
∞∑

z=2x

e−1/2

2z · z!

=
∞∑

z=0

e−1/2

2z · z!
︸ ︷︷ ︸

=1

−
2x−1∑

z=0

e−1/2

2z · z!

= 1− (2x − 1)! · e−1/2
∑2x−1

z=0
(1/2)z

z!

(2x − 1)!
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Table 6.1: Numerical illustration of propositions 6.9 and 6.11. (α, β) denotes
either a linear approximation or a differential for the randomly drawn n-bit
permutation π0.

Correlation c Pr(α,β)(|Cπ0

α,β | ≥ c) DP d Pr(α,β)(DPπ0

α,β ≥ d)

2−n/2 0.317 2−n 0.393
2(1−n)/2 2−2.67 21−n 2−3.47

2(2−n)/2 2−4.46 22−n 2−9.16

2(3−n)/2 2−7.74 23−n 2−23.94

2(4−n)/2 2−13.95 24−n 2−60.93

which can be reformulated by Lemma 6.10 as

= 1− Γ
(
2x, 1

2

)

(2x − 1)!

Note that in both cases, probabilities do not depend on the dimension n, but
only on x, which determines the fraction of the tail of the distribution we are
interested in.

Propositions 6.9 and 6.11 are numerically illustrated in Table 6.1. The table
lists the corresponding probabilities starting from the minimal values of the
correlation or differential probability that are usable in an attack, namely 2−n/2

for a linear and 2−n for a differential attack. The values given in one row
correspond to approximately the same attack complexity.

By Proposition 6.7, those results immediately carry over to the tails of the
distributions of correlation and cardinality of differentials for a fixed linear
approximation or differential, taken over all n-bit permutations:

Corollary 6.12. Consider a fixed linear approximation (α0, β0). Over all n-bit
permutations, the probability of a correlation Cα0,β0

with absolute value greater
or equal to 2−n/2+x is

Pr
π

(|Cπ
α0,β0

| ≥ 2−n/2+x) ≈ erfc
(

2x−1/2
)
. (6.18)

Corollary 6.13. Consider a fixed differential (α0, β0). Over all n-bit
permutations, the probability of a cardinality Nα0,β0

of (α0, β0) of at least 2x is

Pr
π

(Nπ
α0,β0

≥ 2x) ≈ 1− Γ
(
2x, 1

2

)

(2x − 1)!
. (6.19)
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Consequently, the values given in Table 6.1 also apply to the probabilities of
both corollaries.

The results of this section can be interpreted as follows. In the form of
Propositions 6.9 and 6.11, they are relevant from a designer’s point of view:
Even if a block cipher, compression function or underlying permutation satisfies
the reference points given by Proposition 6.7, high-probability differential and
linear properties will exist to the extent described here by Propositions 6.9
and 6.11.

Dually, in the form of Corollaries 6.12 and 6.13, they are relevant from the
cryptanalysts’ point of view: After picking a certain linear approximation of
differential in an attack, testing this against wrong guesses for the key will result
in false alarms from about this fraction of all n-bit permutations. The impact
of this in the success of a linear attack has been demonstrated in Section 5.2.

6.4 Impossible differentials and zero correlation
approximations for a permutation

Impossible differential [19] and zero-correlation cryptanalysis [35] are two
extensions of differential and linear cryptanalysis exploiting the impossibility of
certain differentials or linear approximations, in contrast to conventional differ-
ential and linear attacks, which exploit differentials and linear approximations
that have high probability.

The results of Proposition 6.7 immediately allow us to explicitly characterise the
probability that an impossible differential or a zero correlation approximation
occurs in a randomly drawn Boolean function or permutation. Analogously to
the case of conventional differential and linear cryptanalysis, this formulates a
reference point for the resistance against these extended attacks.

Proposition 6.14. Let f0 be a randomly drawn n-bit to m-bit Boolean function
and π0 a randomly drawn n-bit permutation. The probability of f0 or π0 to have
a linear approximation with zero correlation is approximately given by

Pr
α,β

(Cf0

α,β = 0) ≈ 1√
2π

2
2−n

2 (6.20)

and Pr
α,β

(Cπ0

α,β = 0) ≈ 1√
2π

2
4−n

2 , (6.21)

respectively.
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Table 6.2: Probability of a zero correlation approximation in a randomly drawn
n-bit permutation π0 for common values of n.

Permutation size n (bits) 8 32 64 128

Prα,β(Cπ0

α,β = 0) 2−3.33 2−15.33 2−31.33 2−63.33

Proof. Considering distributions for a fixed linear approximation (α, β), this
has been shown for permutations in Proposition 2 of [35]. The result for
functions follows analogously from Corollary 4.3 in [60]. In both cases,
invocation of Proposition 6.7 then establishes the claim for distributions over
all (α, β) for randomly drawn instances.

The probability of zero correlation for a randomly drawn permutation is
numerically illustrated in Table 6.2 for some common permutation sizes.

A similar statement can be made about impossible differentials. It should be
noted that the probability of an impossible differential to occur in a randomly
drawn function or permutation has to be greater or equal to one half, which is
significantly higher than in the case of zero correlation approximations:

Proposition 6.15 (Folklore). At least half of all differentials of an n-bit
Boolean transformation or permutation are impossible.

Proof. It is known that for all α,
∑

β∈Fn
2
N(α, β) = 2n−1, and since there are

2n summands, the fraction of differentials with cardinality zero cannot be less
than 2n−1/2n = 1/2.

Proposition 6.16. Let f0 be a randomly drawn n-bit to n-bit Boolean
transformation and π0 a randomly drawn n-bit permutation. The probability of
f0 or π0 to have an impossible differential (i.e., a differential with cardinality
zero) is approximately given by

Pr
α,β

(Nf0

α,β = 0) ≈ e−1/2 (6.22)

and Pr
α,β

(Nπ0

α,β = 0) ≈ e−1/2. (6.23)

Proof. This follows directly from Corollary 3.6 in [60] and an invocation of
Proposition 6.7.
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For a randomly drawn n-bit to m-bit Boolean function f0, the probability to
have an impossible differential can be calculated in an exact way by means of
Lemma 3.3 of [60]:

Pr
α,β

(Nf0

α,β = 0) =
(
1− 2−m

)2n−1

.

For a Boolean transformation (i.e., n = m) of sufficiently large dimension, this
probability is then equal to

(
1− 2−n

)2n−1

=

(
1− 2−1

2n−1

)2n−1

,

which rapidly converges to e−1/2 ≈ 0.6065 as n tends to infinity.

6.5 Structural properties of key-alternating ciphers

The remainder of this chapter is dedicated to the study of key-alternating
ciphers. Most block cipher proposals, including the AES, are key-alternating
ciphers [58]. However, the question whether this is a sound design strategy for
block ciphers has not yet been studied theoretically in full.

A natural setting to evaluate the soundness of key-alternating ciphers with t
rounds is to study whether it constitutes a secure way of constructing an n-bit
block cipher from t public unkeyed random permutations. We can consider
the key-alternating sound if it cannot be generically attacked with random
(=ideal) components, or if the cryptographically relevant statistical properties
of random permutations do carry over to the overall construction.

By modeling the round functions as public random permutations, we establish
an important difference of our setting to that of an idealised Feistel cipher,
the Luby-Rackoff construction [113]. For the Luby-Rackoff construction, it is
necessary that for each key, the F -function used in the Feistel network is chosen
afresh at random. This not only provides an immediate obstacle to practical
implementability, but also constitutes a stronger theoretical assumption for
achieving security.

6.5.1 Previous work

The key-alternating construction has been studied theoretically for the simplest
case of just one round by Even and Mansour [69, 70]. The Even-Mansour
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Figure 6.3: One-round key-alternating cipher: The Even-Mansour construction
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Figure 6.4: Key-alternating cipher with t rounds

construction is depicted in Figure 6.3. Even and Mansour proved that in order
to have a reasonable success probability in decrypting a previously unqueried
message, an attacker has to make at least about 2n/2 queries to the cipher, the
permutation P , and their inverses. Daemen [52] showed that this bound is tight
by presenting a differential attack on the Even-Mansour scheme that allows to
successfully recover the key with a good probability after 2n/2 evaluations of
both the permutation P and the encryption oracle.

6.5.2 The construction

In this section, we define the model of a key-alternating cipher (for a definition,
see Section 2.2.2) we consider for our analysis.

For the key-alternating cipher with t rounds, we model the round functions as
public, randomly chosen n-bit permutations Pi, with t+ 1 independent round
keys ki. In other words, for t n-bit permutations P1, . . . , Pt, (t ≥ 1), and t+ 1
n-bit keys k0, . . . , kt, the n-bit block cipher E = Ek0,...,kt

is defined by

E(x)
def
= Ek0···kt

(x) = Pt(. . . P2(P1(x⊕ k0)⊕ k1) . . .)⊕ kt. (6.24)

(See [33].) The construction is illustrated in Figure 6.4.

6.6 Generic attacks

In this section, we detail some generic (i.e., black box) attacks that apply to
the key-alternating cipher in general.
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6.6.1 Daemen’s attack for t = 1

For the original Even-Mansour construction (in our setting, this corresponds
to t = 1), a differential attack has been published by Daemen [52] meeting the
lower bound of 2n/2 evaluations of P proven by Even and Mansour. It can be
described as follows:

1. Choose s plaintext pairs (mi,m
∗
i ), 1 ≤ i ≤ s, with mi ⊕m∗

i = ∆ for any
nonzero constant ∆.

2. Get the encryptions (ci, c
∗
i ) of the s pairs.

3. For 2n/s values v:

(a) Compute w′ := P (v)⊕ P (v ⊕∆).

(b) If w′ = ci ⊕ c∗
i for some i: Output k0 := v ⊕ m1 and k1 := c1 ⊕

P (m1 ⊕ k0) and stop.

For a random permutation P , only very few values of v are expected to satisfy
P (v) + P (v + ∆) = ci ⊕ c∗

i . The wrong candidates can be easily filtered in
step (3b) by testing them on a few additional encryptions. After encrypting
s plaintext pairs, one has to perform about 2 · 2n/s evaluations of P . The
expression 2(s+2n/s) is minimal for s = 2n/2. In this case, the time complexity
is 2n/2 with a storage requirement of 2n/2 plaintext pairs.

6.6.2 A meet in the middle attack

The t-round key-alternating cipher can be attacked using a basic meet in the
middle technique which finds the (t+ 1) n-bit keys in time and space 2tn/2 for
t > 1. We briefly outline this attack for the case t = 2. In this case, we want
to recover the key (k0, k1, k2).

1. Fix a pair of plaintexts (m1,m2). Compute the values P1(m1 ⊕ k0) ⊕
P (m2 ⊕ k0) for all possible 2n values of k0 and save them in a sorted
table T .

2. Obtain the encryptions c1 and c2 of m1 respectively m2.

3. For all 2n possible values of k2 compute P−1
2 (c1⊕k2)⊕P−1

2 (c2⊕k2) and
look for a match in T .

4. Each match gives candidate values for (k0, k1, k2), which can be tested
against additional encryptions.
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For t = 2, both time and storage complexities are 2n. For general t, time and
storage 2tn/2 are required.

6.7 Statistical properties

A fundamental cryptographic property of a block cipher is its Fourier spectrum
that completely defines the cipher via the Fourier transform and whose
distribution is closely related to the resistance against linear cryptanalysis [44].

To support security claims, block cipher designs are usually accompanied by
arguments why these Fourier coefficients cannot take values exploitable by an
attacker (see for instance, [3, 32, 57]). In most cases, however, formal proofs
of these properties are technically infeasible and designers limit themselves to
demonstrating upper bounds on linear trail probabilities, while usually the
contributions of multiple trails has to be added to obtain the actual Fourier
coefficients. Such an approach, while practical, does not allow for an accurate
estimation of the data complexity of statistical attacks, that typically depends
on numerous trails [105,133], see also the discussion of the linear hull effect in
Section 5.4.

In contrast to this, in this section we study key alternating ciphers by directly
inspecting its Fourier coefficients. This provides a more informative analysis
than for standard block ciphers, as we study the distribution of the Fourier
coefficients for the cipher over all keys, as opposed to bounding the mean
value of this distribution. This is made possible by the use of fixed public
permutations in our construction. More precisely, in a key-alternating cipher
using t ≥ 2 fixed public permutations, we study the distribution of the Fourier
coefficients over all cipher keys. By comparing this distribution to that over
all permutations, we can determine and even quantify to which extent the key-
alternating construction is theoretically sound from the perspective of Fourier
analysis.

In this context, it is especially interesting to determine the effect of the number
of rounds in a key-alternating cipher. Folklore suggests that more rounds imply
higher security. Whether and to which extent this is true is subject to the
analysis described in this section.

6.7.1 Fourier coefficients and Fourier spectrum

The Fourier spectrum has been defined in Section 2.1. For a block cipher F ,
we denote the Fourier coefficient at point (α, β) as WF

α,β [K] to emphasize its
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dependency on key K. If F is the t-round key-alternating cipher, this is denoted
by WP1,...,Pt

α,β [K].

The Fourier coefficient at point (α, β) is related to the correlation of the linear
approximation (α, β) via Cα,β = 2−nWα,β . The following characterisation
for the distribution of Fourier coefficients in a Boolean permutation is a
reformulation of Theorem 5.7 in terms of Fourier coefficients:

Theorem 6.17 ([60, Corollary 4.3, Lemma 4.6]). When n ≥ 5, the distribution
of the Fourier coefficient WP

α0,β0
with α0, β0 6= 0 over all n-bit permutations

can be approximated by the following distribution up to continuity correction:

WP
α0,β0

∼P N (0, 2n). (6.25)

The distribution of Theorem 6.17 is the reference point throughout the section:
A block cipher cannot have a better distribution of Fourier coefficients than
that close to Theorem 6.17.

6.7.2 Fourier coefficients in the single-round key-alternating
cipher

Let F be the key-alternating cipher with t = 1, corresponding to the single-
round Even-Mansour cipher, that is, a fixed public permutation P bracketed
by two key additions k0 and k1, respectively (see Figure 6.3). Writing WP

β0,β1

for the Fourier coefficient for the underlying permutation P at point (β0, β1),
the Fourier coefficient for the whole cipher at this point is given by

WF
β0,β1

= (−1)βT
0 k0⊕βT

1 k1WP
β0,β1

. (6.26)

Now we determine the distribution of WF
β0,β1

(β0 6= 0, β1 6= 0) over all cipher
keys (k0, k1).

From (6.26), it is immediate that only the factor (−1)βT
0 k0⊕βT

1 k1 , namely the
sign of the expression, varies over the keys. Therefore, we obtain a distribution
with a support containing only two elements: −WP

β0,β1
and WP

β0,β1
. This means

that the value of the cipher’s Fourier coefficient WF
β0,β1

only varies in its sign
from key to key.

Note that this is structurally very different from the distribution of the Fourier
coefficients over all permutations from Theorem 6.17. We conclude that the
statistical behaviour of the single-round Even-Mansour construction can easily
be distinguished from a random permutation.
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6.7.3 Fourier coefficients in the t-round key-alternating cipher

In this section, we study the distribution of the Fourier coefficients over the
keys for the general key-alternating construction with t ≥ 2 rounds. Before
stating our main result on the statistical analysis of key-alternating ciphers, we
need a technical lemma:

Lemma 6.18. Consider two independent random variables X1 and X2 having
standard normal distributions N1(0, 1) and N2(0, 1), respectively. Then mean
and variance of their product Z = X1 ·X2 are given by µZ = 0 and σ2

Z = 1.

Proof. The probability density functions of X1 and X2 are 1√
2π
e− 1

2 x2
1 and

1√
2π
e− 1

2 x2
2 , respectively. Since they are continuous, the moment generating

function of the distribution of Z is given by the Riemann integral

MZ(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
e− 1

2 x2
1− 1

2 x2
2etx1x2 dx1 dx2 =

1√
1− t2

.

Expanding the logarithm of MZ(t) in a power series in t, we find

ln(MZ(t)) =

∞∑

n=0

mn
tn

n!
=

∞∑

k=1

1

2k
t2k =

1

2
t2 +

1

4
t4 + · · · ,

and, therefore, µZ = m1 = 0 and σ2
Z = m2 = 1, as claimed.

Theorem 6.19. Fix a point (β0, βt) with β0, βt 6= 0 in the Fourier spectrum
of the t-round key-alternating n-bit block cipher with round permutations
P1, . . . , Pt for t ≥ 2 and sufficiently high n. Then the distribution of the Fourier
coefficient WP1,...,Pt

β0,βt
at this point over all keys K is approximated by:

WP1,...,Pt

β0,βt
[K] ∼K N (0, (1 + ε)

(
2n − 1

2n

)t−1

2n), (6.27)

assuming that the distributions over points of the Fourier spectra of the
permutations Pi, 1 ≤ i ≤ t, have variances satisfying

Var
(βi−1,βi)

[
WPi

βi−1,βi

]
≥ 2n/2, (6.28)

and that for any given key K, the signs of the Fourier coefficients behave
independently for different points. The deviation of the permutations Pi from
the mean over all permutations Qi is quantified by factor (1 + ε):

∑
(β1,...,βt−1)

(
WP1

β0,β1
· · ·WPt

βt−1,βt

)2

= (1 + ε) ·EQ1,...,Qt

[∑
(β1,...,βt−1)

(
WQ1

β0,β1
· · ·WQt

βt−1,βt

)2
]
.

(6.29)
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Proof. Consider a fixed point (β0, βt), β0, βt 6= 0, in the Fourier spectrum for
the t-round key-alternating cipher with keys K := (k0, . . . , kt). Denote by βi,
1 ≤ i < t, the intermediate selection pattern at the addition of ki, and set
β := (β1, . . . , βt−1) and Γ := (β0, . . . , βt). By the theorem of trail composition
(Theorem 7.8.1 in [57]), we have

WP1,...,Pt

β0,βt
[K] = 2n(1−t)

∑

β

WP1

β0,β1
· · ·WPt

βt−1,βt
· (−1)ΓT K , (6.30)

with WPi

βi−1,βi
denoting the Fourier coefficient of Pi at point (βi−1, βi). For each

β 6= 0, define the random variable Xβ as

Xβ
def
= WP1

β0,β1
· · ·WPt

βt−1,βt
· (−1)ΓT K , (6.31)

so that
WP1,...,Pt

β0,βt
[K] =

∑

β

Xβ . (6.32)

If, for any given key K, the quantities ΓTK behave independently over different
β, as assumed in the claim of the theorem, we have that

Xβ ∼K WP1

β0,β1
· · ·WPt

βt−1,βt
· (−1)r, (6.33)

with r ∼ Bern( 1
2 ), where the distribution is taken over the keys, and Bern(p)

denotes the Bernoulli distribution with success probability p.

Note that E[Xβ ] = 1
2 (WP1

β0,β1
· · ·WPt

βt−1,βt
− WP1

β0,β1
· · ·WPt

βt−1,βt
) = 0. The

variance of Xβ is given by

Var[Xβ ] =
1

2

(
WP1

β0,β1
· · ·WPt

βt−1,βt

)2

+
1

2

(
−WP1

β0,β1
· · ·WPt

βt−1,βt

)2

=
(
WP1

β0,β1
· · ·WPt

βt−1,βt

)2

.

Furthermore, with b := 2tn + 1, we have

lim
m→∞

Pr(|Xm| < b) = 1, (6.34)

as each of the t multiplicands WPi

βi−1,βi
of Xm are bounded by 2n. On the other

hand, the variance of all partial sums is unbounded by assumption (6.28) that

Varβi−1,βi

[
WPi

βi−1,βi

]
≥ 2n/2 and a standard comparison test:

lim
m→∞

m∑

i=1

2n/2 =∞ =⇒ lim
m→∞

Var

[
m∑

i=1

Xi

]
= lim

m→∞

m∑

i=1

Var [Xi] =∞. (6.35)
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A sequence of independent (one can consider the Xβ as independent since the
signs are independent) random variables fulfilling (6.34) and (6.35) obeys the
Chebyshev formulation of the central limit theorem (Theorem 2.1. (Note that
though we operate with finite numbers of summands, the conditions at infinity
have to be checked for any application of the central limit theorem.) Therefore,
we have the following approximation, since the number of summands is high
(it is exponential in n and in all interesting cases n ≥ 32):

∑

β

Xβ ∼K N (0, s2) (6.36)

with s2 :=
∑

β Var[Xβ ]. The mean of s2 over all permutations Q1, . . . , Qt can

now be determined as EQ1,...,Qt
[s2] = EQ1,...,Qt

[∑
β

(
WQ1

β0,β1
· · ·WQt

βt−1,βt

)2
]

=

∑
β EQ1,...,Qt

[(
WQ1

β0,β1
· · ·WQt

βt−1,βt

)2
]

=
∑

β VarQ1,...,Qt

[
WQ1

β0,β1
· · ·WQt

βt−1,βt

]
+

(
EQ1,...,Qt

[
WQ1

β0,β1
· · ·WQt

βt−1,βt

])2

by linearity of expectation and definition of

variance. By Theorem 6.17, WQi

βi−1,βi
∼Qi

N (0, 2n) = 2n/2N (0, 1) for each i,

so WQ1

β0,β1
· · ·WQt

βt−1,βt
∼ 2t(n/2)N (0, 1) · · · N (0, 1), where the product is over t

standard normal distributions. The mean of this distribution is zero, and by
Lemma 6.18, the variance of the product of two independent standard normal
distributions Z := N (0, 1)N (0, 1) is given by Var[Z] = 1. The same applies

to t > 2. Consequently, VarQ1,...,Qt

[
WQ1

β0,β1
· · ·WQt

βt−1,βt

]
= (2t(n/2))

2 · 1 = 2tn

for each β. Note that we have (2n − 1)t−1 values of β with no βi = 0, so
E[s2] = (2n − 1)t−12nt.

Recall from (6.29) that for the t-round cipher with the permutations P1, . . . , Pt,
we have that s2 =

∑
β Var[Xβ ] = (1 + ε)EQ1,...,Qt

[s2]. The distribution of

WP1,...,Pt

β0,βt
over all keys is therefore given by

WP1,...,Pt

β0,βt
∼K 2n(1−t)N (0, (1 + ε)(2n − 1)t−12nt)

= N (0, (1 + ε)(2n − 1)t−122n−nt)

= N (0, (1 + ε)

(
2n − 1

2n

)t−1

2n), (6.37)

as claimed.
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6.7.4 Discussion

Theorem 6.19 basically says that once the fixed underlying permutations of a
t-round key-alternating cipher (t ≥ 2) are close to average (which is the case
for randomly drawn permutations with high probability), the distribution of
Fourier coefficients for the key-alternating cipher over all keys becomes close
to that over all permutations. This is in stark contrast to the single-round
Even-Mansour cipher, where the distribution over the keys was structurally
different.

We require condition (6.28) essentially to ensure that we sum over sufficiently
many possible selection patterns for β such that we can invoke the central limit
theorem. This in particular excludes the trivial case where all Pi are linear, in
which their variances would be zero, and the sum in (6.30) would only have
one summand.

The required notion of “close to average” is expressed in the factor 1 + ε in
equation (6.29) and essentially means that the sum of the squared Fourier
coefficients over all trails has to be within (1 + ε) of its mean over all
permutations.

Interestingly, the latter deviation ε from the mean in (6.29) is small for most
choices of the Pi. For instance, in case t = 2, it can be shown that over all
permutations, mean and variance of each summand in (6.29) are 22n and 24n+2,
respectively. The whole sum then approximately follows a normal distribution
N (23n−22n, 25n+2−24n+2). This means that for randomly drawn permutations

P1, P2, the sum
∑

β1

(
WP1

β0,β1
WP2

β1,β2

)2

will be within d standard deviations

from its mean with probability erf
(
d/
√

2
)
. Notably, this implies Pr(|ε| ≤

2−n/2+3) ≈ 0.9999, i.e. |ε| only very rarely exceeds 2−n/2+3.

While this theorem emphasizes the constructive effect of having two and more
rounds in a key-alternating cipher, we observe that the exponent t − 1 in
the variance of the resulting distribution of Fourier coefficients over the keys
indicates that excessively increasing the number of rounds t will result in a
smaller and smaller variance, which at some point will result in a noticable
difference from the reference distribution of Theorem 6.17.

Theorem 6.19 gives the distribution over all keys of the Fourier coefficient
WP1,...,Pt

β0,βt
individually for each nontrivial point (β0, βt). Appropriate choices

for the Pi should have distributions close to N (0, 2n) for each nontrivial point,
not only for some of them. Conversely, the distribution of the Fourier coefficient
at the (trivial) point (β0, 0) differs from (6.27) for any choice of the Pi, since it
is constant over the keys.
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Note also that the result of Theorem 6.19 does not require the underlying
permutations to be different. Moreover, it does not require the permutations
Pi to be randomly drawn from the set of all permutations, but holds for any
fixed choice of permutations satisfying (6.28). To obtain a distribution close
to ideal, however, the set of underlying permutations has to ensure a small
deviation ε in (6.29). As argued above, drawing the underlying permutations
at random from the set of all permutations is highly likely to result in a very
small deviation ε from the average.

Summarising, the results of Theorem 6.19 suggest that once the t ≥ 2
underlying permutations are carefully chosen and fixed, the t-round key-
alternating cipher for each secret key is likely to be statistically sound with
regard to linear attacks. More precisely, the distributions of the Fourier
coefficients for the t-round key-alternating cipher over all keys become close
to those over all permutations.

6.8 Indistinguishability analysis of key-alternating
ciphers

Complementing our analysis of the statistical behaviour of the key-alternating
cipher, we describe a study of its indistinguishability from a (pseudo-)random
permutation in this section. As outlined in Section 6.5, this is an important
open question in symmetric-key cryptography. Our discussion is based on the
publication [33].

6.8.1 The provable security setting

The provable security analysis of the t-round key-alternating construction
is carried out in the following setting: Considering the t randomly chosen
permutations Pi and the resulting t-round cipher defined by (6.24) as oracles
that A can query as blackboxes, we are interested in how many queries to the
oracles A will need to distinguish this construction from a random permutation.
We consider information-theoretic adversaries that are limited to making a
certain number of queries, but can use unlimited computational and storage
resources. Note that this constitutes a very strong adversarial model.

For the remainder of this chapter, we declare N = 2n. The provable security
setting is then defined as follows.

Definition 6.20 ([33]). The PRP (pseudorandom permutation) security of
the t-round key-alternating cipher E against an adversary querying the t
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World 1

Ek(·) P1 Pt

World 2

Q P1 Pt

Figure 6.5: The indistinguishability model for the key-alternating cipher [33].

permutations Pt and the encryption oracle E(·) and their inverses is defined as

AdvPRP
E,N,t(A) = Pr[k0 · · · kt ← {0, 1}n;AEk0···kt ,P1,...,Pt = 1]−Pr[AQ,P1,...,Pt = 1],

where Q,P1, . . . , Pt are independent permutations sampled uniformly at
random in each experiment.

The maximum advantage over all adversaries A limited to q queries is denoted

AdvPRP
E,N,t(q) = max

A
AdvPRP

E (A).

Graphically, the attacker has to distinguish the two worlds depicted in
Figure 6.5

6.8.2 An indistinguishability bound for key-alternating ciphers

A bound for AdvPRP
E,N,t(q) can be obtained by what is known as a hybrid

argument [79]: Instead of directly evaluating the distinguishing advantage
between two worlds (more formally, distributions) D0 and D2, a hybrid world
D1 is introduced which allows individually upper-bounding the adversary’s
advantage of distinguishing between D0 and D1, and D1 and D2. Adding up
the two advantages then yields an upper bound for the original problem.

In the case of the PRP security of key-alternating ciphers, this can be applied
as follows [33]: The hybrid is an oracle Õ(N, t) using a sampling procedure
for answering the queries to E and P1, . . . , Pt that is slightly modified in
comparison to world one. The following individual bounds are obtained:

Proposition 6.21. Let q < N/100. With Õ(N, t) the hybrid as above,

Pr[k0 · · · kt ← {0, 1}n;AEk0···kt ,P1,...,Pt = 1]

− Pr[k0, . . . , kt ← {0, 1}n;AÕ(N,t) = 1] ≤ 4.3q3t

N2

for every adversary A making at most q queries.
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Proposition 6.22. Let q = N
t

t+1 /Z for some Z ≥ 1 be such that q < N/3.
With Õ(N, t) as above,

Pr[k0, . . . , kt ← {0, 1}n;AÕ(N,t) = 1]

− Pr[AQ,P1,...,Pt = 1] ≤ t+ 1

Zt+1
.

for every adversary A making at most q queries.

Adding these inequalities yields the sought upper bound for AdvPRP
E,N,t(q):

Theorem 6.23. Let N = 2n and let q = N
t

t+1 /Z for some Z ≥ 1. Then, for
any t ≥ 1, and assuming q < N/100, we have

Adv
PRP
E,N,t(q) ≤

4.3q3t

N2
+
t+ 1

Zt
.

Observe that for t ≥ 2, the limiting term in the above bound is 4q3t/N2, and
4q3t/N2 = c for any constant 0 < c < 1

2 implies q ≈ N2/3. Therefore, a lower
bound on the number of queries that an information-theoretic adversary needs
to make in order to have non-negligible advantage in the PRP security game
is q ≈ N2/3.

This has to be compared against q ≈ N1/2 in the case of t = 1, the original
Even-Mansour construction. We however conjecture that this bound is not
optimal for t > 2, and that the real lower bound is increasing with t:

Conjecture 6.24. Let t ≥ 1. For a t-round key-alternating cipher with block
length n, an attacker needs to make at least about

q ≈ 2
t

t+1 n

queries before being able to distinguish the encryption oracle from a random
permutation with non-negligible probability.

The result of Even-Mansour [70] and Theorem 6.23 imply that this conjectured
bound is tight for t = 1, 2.

6.8.3 An attack meeting the conjectured bound

In this section, we demonstrate that there is a generic attack on the t-round
key-alternating cipher with a query complexity meeting the proved bound for
t = 2 and the bound of of Conjecture 6.24 for any t ≥ 2. This implies that
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the intrinsic query complexity of distinguishing this cipher from a random
permutation is upper bounded by the conjectured bound 2

t
t+1 n.

Similar to the proof of Proposition 6.22, the attack verifies key candidates by
attempting to construct a sequence of connected queries to the permutations
Pi that contradicts the corresponding query to the encryption oracle. It can
be described as follows [33]:

1. Make q queries to Ek and store them in the list M. Also make q queries
to each of the permutations P1 to Pt and store the queries to Pi in a list
Pi.

2. For each key candidate (k0, k1, . . . , kt) do:

(a) For each x1 ∈ M, find all sequences of values (x1, . . . , xt−1) such
that and xi ⊕ ki−1 ∈ Pi, ∀1 ≤ i ≤ t and Pi(xi ⊕ ki−1) = xi+1, ∀1 ≤
i ≤ t− 1.

(b) Check if
Pt(xt ⊕ kt−1)⊕ kt = E(x1) (6.38)

for all these sequences.

(c) If (6.38) holds for all sequences, suggest (k0, k1, . . . , kt) as correct
value of the key;

(d) otherwise, it is certainly the wrong value of the key.

Note that for any value of q ≥ 1, the right key will be suggested, whereas
increasing q will have the effect of reducing the number of false positives.

In order to determine how many queries are needed to determine the key
with good probability, we note that if the queries to Ek are random and non-
repeating, the total number s of sequences satisfying all conditions xk⊕ki−1 ∈
Pi in step (a) will be about s = q ·

(
q

2n

)t
= qt+1

2tn . Over all key candidates, each
will fulfill (6.38) with probability about 2−n, therefore the probability of a key
being suggested is roughly (2−n)s. To obtain a good reduction of the 2(t+1)n

key candidates, a small multiple of q = 2
t

t+1 n queries are sufficient. In total,
this implies a complexity of about t · 2 t

t+1 n queries to all oracles, which meets
the conjectured bound.

Also note that this not an attack in the practical meaning of the word, since
the time (as opposed to the query complexity) exceeds 2(t+1)n.
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6.9 Practically instantiating the construction

In this section, we discuss how the t-round key-alternating cipher can be
practically instantiated with t public permutations.

A natural approach to building a practical cipher following the t-permutation
construction is to base the t fixed permutations on a block cipher by fixing some
keys. With t = 1, this corresponds to the original Even-Mansour construction,
so the security level is limited to 2n/2 operations with n denoting the cipher’s
block length. We therefore require t > 1.

In the following we describe a sample construction with t = 2, that is, we
consider the 2-round key alternating construction with permutations P1 and
P2 and the keys k0, k1, k2.

6.9.1 AES2: a block cipher proposal based on AES

The construction is defined by fixing two randomly chosen 128-bit AES-128
keys, which specifies the permutations P1 and P2. The key is comprised by
three independently chosen 128-bit secret keys k0, k1, k2.

Let AES[k] denote the (10-round) AES-128 algorithm with the 128-bit key k
and the 128-bit quantities π1, π2 be defined based on the first 256 bits of the
binary digit expansion of π = 3.1415 . . . :

π1 := 0x243f6a8885a308d313198a2e03707344 and

π2 := 0xa4093822299f31d0082efa98ec4e6c89.

Then we denote the resulting 2-permutation construction by AES2[k0, k1, k2].
Its action on the 128-bit plaintext m is defined as:

AES2[k0, k1, k2](m) := AES[π2](AES[π1](m⊕ k0)⊕ k1)⊕ k2. (6.39)

On the security of AES2

The indistinguishability result of Theorem 6.23 implies that any attack on
AES2 in the single secret-key model with complexity below 2128·2/3 ≈ 285 will
necessarily have to exploit properties of AES with the fixed known keys in a
non-black box way.



PRACTICALLY INSTANTIATING THE CONSTRUCTION 175

Intel Xeon X5670 Intel Core i7 640M
2.93 GHz, 12 MB L3 cache 2.8 GHz, 4 MB L3 cache

AES2, AES-NI, ECB 2.54 cpb 2.69 cpb
AES2, AES-NI, CTR 2.65 cpb 2.76 cpb

AES-128, AES-NI, ECB 1.18 cpb 1.25 cpb
AES-128, AES-NI, CTR 1.32 cpb 1.36 cpb
AES-128, bitsliced, CTR 7.08 cpb 7.84 cpb
AES-128, OpenSSL, CTR 15.73 cpb 16.76 cpb

Table 6.3: Practical performance of AES2 using AES-NI instructions.

At the same time, to the best of our knowledge, the best known way to attack
AES2 would be the meet-in-the middle attack of Section 6.6.2 with a complexity
of 2128 time and 2128 data.

Concerning statistical attacks, if the distribution of Fourier coefficients for
AES[π1] and AES[π2] meets the assumption of average behaviour required by
Theorem 6.19, this theorem suggests that the Fourier coefficients for AES2 are
distributed close to ideal, implies resistance against linear cryptanalysis and
some of its variants.

Performance

AES2 can be implemented very efficiently in software on general-purpose
processors. Note that the two AES keys π1 and π2 are fixed and, therefore,
the round keys for the two AES transformations can be precomputed.

On the Westmere architecture generation of Intel general-purpose processors,
AES2 can be implemented using the AES-NI instruction set [80]. As the AES
round instructions are pipelined, we fully utilise the pipeline by processing
four independent plaintext blocks in parallel implementing the basic electronic
codebook mode (ECB) and counter mode (CTR). The performance of these
implementations on recent processors is demonstrated and compared to two
conventional implementations of AES-128 (i.e. without AES-NI instructions) –
the bitsliced implementation of [99] and the OpenSSL 1.0.0e implementation
based on lookup tables. The results are summarised in Table 6.3. All numbers
are given in cycles per byte (cpb).

It turns out that on both platforms, the performance of AES2 is almost equal
to half that of AES, indicating that the overhead is very low. Compared to the
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best implementations of the AES which are in widespread use now on standard
platforms, AES2 provides a performance improvement of almost factor three
and higher with the AES-NI instruction set.

6.10 Conclusions

In this chapter, we have studied two problems related to the design of block
ciphers.

First, we demonstrated in Section 6.2 how to obtain a statement over
the distribution of correlation of linear approximations and cardinality of
differentials for one randomly drawn Boolean function or permutation, taking
the probabilities over all linear approximations or differentials and showed that
this has important applications in symmetric-key cryptography.

Second, we studied key-alternating ciphers from a theoretical point of view. By
modeling the round functions as public random permutations, a lower bound
of 22n/3 on the number of queries an attacker needs to obtain in order to
distinguish the construction from a random permutation was established in
Section 6.8.

In Section 6.7, we gave an analysis of the security of this construction
with respect to statistical attacks based on the distribution of its Fourier
coefficients. This analysis revealed that under some plausible assumptions,
the key-alternating construction can be considered sound with regard to linear
attacks.



Chapter 7

Conclusion and outlook

Jede Wissenschaft bedarf der
Mathematik, die Mathematik
bedarf keiner.

Jakob Bernoulli, 1655–1705

In this chapter, we give a summary of the main results developed in this thesis
and outline open problems.

7.1 Summary of results

This thesis aims at viewing the analysis and the design of symmetric-
key algorithms: stream ciphers, hash functions, and block ciphers, from a
mathematical perspective.

New cryptanalytic ideas modify our conception of how to design cryptosystems,
and new designs inspire new techniques for attacking them. In Chapters 3
and 4, we looked at two different strategies to attack symmetric primitives,
both based on ideas of how to solve some non-linear equations over finite fields
of characteristic two.

First, in Chapter 3, we looked at this problem from the point of numerical
optimisation. Translating the equations over F2 into a continuous optimisation
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problem over the reals, we proposed nonsmooth cryptanalysis, a technique
aiming at avoiding real-valued expressions of higher degree by using nondif-
ferentiable but Lipschitz-continuous functions. Applied to the stream cipher
MICKEY from the eSTREAM final portfolio, we showed that this approach can
successfully recover the key requiring only very little known plaintext, albeit
with a total time complexity slightly inferior to brute force.

Chapter 4 was dedicated to the exploration of a discrete equation-solving
strategy, the Rebound attack on hash functions [122]. Based on the analysis
of the Wildpool design study, we presented and analysed the Whirlwind hash
function which aims at taking the Rebound attack into account in its design. At
the example of the Grøstl-0 hash function, we demonstrated that by extending
the Rebound attack idea, the security margin of a hash function specifically
designed to resist it, can be considerably lower than anticipated.

Even though any cryptanalysis with a complexity lower than brute force is
considered a perfectly valid attack, the best attacks on real-world block ciphers
very often require time and data complexities that make an experimental
verification of the attack strategy infeasible. It is therefore extremely important
to be able to accurately estimate these complexities using a mathematical
model. In Chapter 5, we studied how to model and estimate the data and
time complexities of linear cryptanalysis and differential attacks with structures
more accurately by applying the theory of the probability distributions of
correlations of linear approximations and cardinality of differentials over
Boolean permutations [60]. This resulted in more accurate and realistic
estimations for the complexities of these attacks. In the case of linear
cryptanalysis, our analysis revealed that the long-standing assumption that
using more data always improves the attack, does not hold in general.

Lastly, Chapter 6 studied two open problems related to the design of block
ciphers. First, we demonstrated how to obtain a statement over the distribution
of correlation of linear approximations and cardinality of differentials for one
randomly drawn Boolean function or permutation, taking the probabilities
over all linear approximations or differentials, providing us with a reference
point for resistance against these attacks and some extensions such as zero-
correlation and impossible differential cryptanalysis. Second, we studied key-
alternating ciphers from a theoretical point of view. From both the perspectives
of statistical attacks and indistinguishability from a random permutation, the
constructive effect of having two or more rounds in a key-alternating cipher
was proven.
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7.2 Open problems

In the following, we list a couple of open research problems regarding the results
and observations in this thesis.

In the context of nonsmooth cryptanalysis, a model for the estimation of the
attack complexity when exceeding the capabilities of practical experimentation,
is still lacking. Such an estimation would enable us to analyse the applicability
of this equation solving technique to real-world ciphers also in the cases where
only very few of the key bits have to be guessed.

Having explored rebound attacks, and some extensions of them, one can be
fairly confident that both Whirlwind and Grøstl in their current versions resist
these attacks with their proposed parameters. However, being able to prove
something about resistance against rebound attacks along the same lines as we
can prove resistance against basic differential attacks [56] would be a major
step forward.

While the impact of the wrong-key randomisation hypothesis was studied in
detail for linear cryptanalysis in this thesis, a similar study for differential
cryptanalysis seems anything but straightforward. First of all, for the
differential case, one has to avoid normal approximations to the Binomial
distribution. Second, the resulting sum of Poisson distributions cannot be
handled by an application of the Central Limit Theorem, since the sum of
variances is not unbounded. A deeper mathematical analysis of this situation
could provide an increase in our understanding of the complexity of differential
attacks.

This situation is actually similar for the statistical analysis of key-alternating
ciphers performed in Chapter 6. Unlike in linear cryptanalysis, for differential
trails, there is no closed formula describing the relation between the expanded
key bits and the individual probability contributions. Even though the
existence of such a closed description might be considered doubtful, a similar
statement to the one of Theorem 6.19 might be possible regardless of this
characterisation.
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