
Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Mechanical Engineering

Model Predictive Control of Ground Coupled
Heat Pump Systems for Office Buildings

Clara VERHELST

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

April 2012





Model Predictive Control of Ground Coupled Heat
Pump Systems for Office Buildings

Clara VERHELST

Jury:
Prof. dr. ir. P. Van Houtte, chair
Prof. dr. ir. L. Helsen, promotor
Prof. dr. ir. J. Berghmans
Prof. dr. ir. H. Hens
Prof. dr. ir. J. Swevers
Prof. dr. ir. E. Van den Bulck

Prof. dr. G. Vandersteen
(Vrije Universiteit Brussel)

Prof. dr. J. Spitler
(Oklahoma State University)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
of Engineering

April 2012



© Katholieke Universiteit Leuven – Faculty of Engineering
Celestijnenlaan 300A box 2421, B-3001 Heverlee(Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/7515/33
ISBN 978-94-6018-497-0



i

Universe loves simplicity.

Albert Einstein
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Beknopte samenvatting

Grondgekoppelde warmtepompsystemen (GGWP) in combinatie met lage-
temperatuur-afgiftesystemen zoals betonkernactivering (BKA) hebben een
primair energiebesparingspotentieel van ruim 50% in vergelijking met klassieke
verwarmings- en koelinstallaties. In koudere klimaten zoals België, kan de bodem
benut worden als warmtebron voor de warmtepomp (WP) en als koudebron voor
passieve koeling (PK). Om de investering in grondwarmtewisselaars te beperken,
wordt de GGWP vaak ontworpen voor het dekken van de basislast, met een
conventionele back-up installatie voor het opvangen van de piekvermogens.

In de praktijk blijkt het energiebesparingspotentieel van BKA-GGWP systemen
met huidige regelstrategieën moeilijk te realizeren. Dit is te wijten aan een
statische benadering van het systeemgedrag en een niet-optimale afstemming
van de drie subsystemen (gebouw, installatie en bodem). Dit doctoraat stelt
het ontwerp van een modelgebaseerde predictieve regelaar (MPC) voor die de
werking van het systeem optimaliseert vanuit een integrale systeembenadering,
rekening houdend met thermisch comfort, energiekost en thermische balans
in de bodem. Een belangrijk aspect hierbij is het definiëren van een zowel
nauwkeurig als eenvoudig regelaarmodel voor de drie subsystemen.

De resultaten tonen aan dat MPC een energiekostbesparing van 20% tot 40%
kan realizeren in vergelijking met huidige stookcurve/koelcurve regelstrategiëen.
MPC benut de thermische massa van BKA om optimaal gebruik te maken van
variaties in de elektriciteitsprijs en om piekvermogens - en dus het gebruik van de
duurdere back-up installatie(s) – tot een minimum te herleiden. De voornaamste
beperking op de thermische vermogens van en naar de bodem is hierbij de
temperatuursgrenzen in de grondwarmtewisselaars. De bodem fungeert daarom
optimaliter als dissipator van warmte en koude, niet als opslagmedium. Reductie
van het piekvermogen door MPC laat bovendien een kleinere dimensionering
toe, wat leidt tot significante besparingen in de investeringskost.
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Abstract

Ground coupled heat pump (GCHP) systems combined with low-temperature
heat emission systems such as concrete core activation (CCA) have a primary
energy savings potential of more than 50% compared to conventional installations
for space heating and cooling. In colder climates, such as in Belgium, the ground
is used as a heat source for the heat pump (HP) and as a heat sink for passive
cooling (PC). Because of the high investment cost of the ground loop heat
exchangers, GCHP systems are often designed for base load operation. A
conventional backup installation is added to cover the peak loads.

Currently, however, the energy savings potential of CCA-GCHP systems is
rarely realized in practice. This is mainly due to the fact that current control
strategies are based on a static system representation and do not optimally
combine the different sublevels (building, installation and ground). This work
presents a model predictive control (MPC) strategy which optimizes the system
operation from an integrated system’s perspective with maximization of thermal
comfort, minimization of energy cost and a long term sustainable use of the
ground as control objectives.

Within the development of MPC the definition of an adequate system controller
model is crucial. For each sublevel (building, installation and ground) a controller
model is identified which yields good control performance while being as simple
as possible.

With respect to building dynamics modeling, we addressed the question how
to describe the response of the operative temperature in the presence of solar
gains and internal gains. It was found that a simple grey box model structure,
combined with an online prediction error compensation method, fits this purpose.
This prediction error is found to be highly correlated with the solar and internal
gains, indicating that the impact of these gains on the operative temperature
can be represented in a rather static way, at least for the investigated landscape
office building. Further research is needed to define good excitation signals for
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identifying the model parameters, as well as to decrease the sensitivity of the
MPC performance towards disturbance prediction errors.

With respect to heat pump characteristics modeling, we addressed the question
how to deal with the nonlinearities caused by the temperature dependency of
the heat pump coefficient of performance (COP). Since these nonlinearities give
rise to a non-convex optimization problem, we investigated the performance loss
caused by the use of a simplified COP representation giving rise to a convex
optimization problem. Both approaches are found in the literature, but had
apparently not been compared before. The comparative study reveals that
simplified models can be used if the cost function penalizes power peaks. This
way, the control strategy obtained resembles the one found with the accurate
COP representations, namely a smooth operation at part load.

With respect to borefield modeling, we addressed the question to which extent
the number of states in the model can be reduced while still capturing both
the short and long term borefield dynamics. Three approaches, i.e. white-
box modeling followed by model reduction, grey-box modeling with parameter
estimation and black-box modeling in the Laplace variable s and the Warburg
variable

√
s, have been evaluated. The white-box models are found to best

describe the long term dynamics, the gray-box models yield the best validation
results for typical borefield operation profiles, evaluated over a time frame of
10 years, and this with very low model orders (3 to 6). The black-box models
in s yield inferior validation results which could be explained by numerical
artifacts in the identification data sets used. Finally, the black-box models in√
s have a better prediction performance than the models in s, indicating that

they are effectively better suited for describing thermal diffusion phenomena.
For incorporation in the optimal control framework, we selected the low-order
grey-box models and the initial white box model. A sensitivity analysis of the
control performance as a function of the model order indicates that a 3rd order
borefield model, based on parameter estimation, is sufficient. Compared to
the initial 11th order white box model, the computation time is reduced by
approximately a factor 7.

The final question addressed is how to incorporate both the short and long
term objectives in the optimal control problem formulation. The former are
related to the thermal comfort requirements, the day-night variations in the
electricity price and the diurnal variation of the ambient air temperature which
influence the efficiency of the backup chiller. The latter are related to the
requirement of a long term sustainable use of the borefield which implies that
– after the transient phase after start up – an optimal equilibrium solution
should be reached. To this end, as a first step, the optimal control problem
was solved open loop, i.e. outside the MPC framework. From the analysis of
the optimal long term HyGCHP operation, following insights are gained: first,
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as long as the brine fluid temperature remains within its limits, i.e. above
0 ◦C and below the supply water temperature of 20 ◦C for passive cooling, it is
more cost effective to use the heat pump than the gas boiler, and more cost
effective to use passive cooling than the chiller. In other words, maximizing the
COP of the heat pump for heating dominated buildings (by striving towards
higher source temperatures), or maximizing the COP for passive cooling for
cooling dominated buildings (by striving towards lower source temperatures),
is not the driving factor of the optimization. Instead, the optimization tries
to maximize the share of heat pump operation and passive cooling within the
brine fluid temperature limits. As a natural consequence, this results in a
net heat extraction on annual basis for the heating dominated buildings and
vice versa for the cooling dominated buildings. At equilibrium, this net heat
injection/extraction is compensated by the heat exchange between the borefield
and the surrounding ground. From this it is clear that the borefield actually
serves as a heat and cold dissipater rather than as a heat and cold storage device.
From this point of view, the term ‘seasonal storage’, often used in this context,
does not seem adequate. Second, switching between the heat pump/passive
cooling on the one hand, and the backup gas boiler/chiller on the other hand,
does not seem to be motivated by any long term cost optimization strategy.
Switching from the borefield system to the backup system only occurs when the
constraints on the brine fluid temperature are active. Third, to maximize the
share of the heat pump and passive cooling given the brine fluid temperature
limits, the heat injection and extraction rates should be kept as low as possible.
The lower the heat transfer rate inside the borehole heat exchanger, the smaller
the temperature difference between the brine fluid and the surrounding ground.

These insights have important consequences for the formulation of the MPC
strategy. First, we conclude that it is not required to add a long term constraint
in the MPC formulation to impose thermal balance of the borefield. Second, a
long term horizon to guarantee a cost optimal operation on an annual basis, is
not required neither. Third, guaranteeing a cost optimal operation definitely
requires incorporating the building dynamics in the optimization. This way,
the peak shaving capacity of the building thermal mass in general, and of the
CCA in specific, can be exploited to flatten the power profile of the heating and
cooling loads. The latter is the key to increase the use of the heat pump and
passive cooling while remaining within the brine fluid temperature limits.

The strengths of MPC, being its ability to account for the system dynamics, state
and input constraints, suggest that MPC is ideally suited to fulfill this control
task. The results in this work confirm this: MPC can realize energy cost savings
of up to 20-40% compared to the conventional heating curve/cooling curve-based
control strategies. MPC uses the CCA thermal mass to make optimal use of the
variations in electricity price (through load shifting) and to minimize the use of
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the expensive backup system (through peak load reduction), as discussed above.
The upper bound of the cost savings potential of 40% corresponds to HyGCHP
designs with very compact borefields. This is explained by the fact that the
smaller the borefield size, the smaller the heat pump capacity and the passive
cooling capacity. In order to satisfy the thermal comfort requirements with a
large share of heat pump and passive cooling operation, a better anticipative
behavior of the controller is needed, as well as an accurate estimation of the
available heat pump/passive cooling capacity. As indicated by the results, MPC
enables us to fully exploit the energy savings potential of very compact – and
therefore economically competitive – HyGCHP designs.
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Chapter 1

Introduction

1.1 Motivation

The building sector represents about 30-40% of the total end energy consumption
in Europe, 50% of which is related to heating and cooling [129]. Climate change
concerns and shrinking fossil fuel reserves push governments to work on demand
side management. Rising electricity prices incite end users to lower their energy
consumption as well. The first and most important step remains the quality
of the building design with attention to the compactness of the building, air
tightness and degree of insulation of the building envelope. Most often, the
heating, cooling and ventilation systems are selected at the end of the design
phase of the building. Incorporating the design of the installation at an early
phase, however, can be very interesting to achieve very low-energy buildings.
The integration of concrete core activation (CCA) or other so-called ’low-exergy
heat emission systems’ makes low-temperature heating and high-temperature
cooling possible. This yields the potential to deliver this low-exergy heat or
cold with a minimal amount of external work [58].

The three operation modes of a ground coupled heat pump (GCHP) system,
i.e. heating, active cooling and/or passive cooling, are presented in Figure 1.1.
In the heating mode, a heat pump is used to extract heat from the ground
through ground loop heat exchangers. In the cooling mode, heat can be injected
to the ground by an active cooling device or by a heat exchanger. The latter
way of cooling, referred to as ’passive cooling’, requires the ground temperature
around the ground loop heat exchangers to be relatively low and is therefore
mainly restricted to the moderate and colder climates. The primary energy
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Figure 1.1: Operation modes of a ground coupled heat pump system

savings of the combination of a CCA system with a GCHP system compared to
conventional systems may reach 50% [1]. To achieve these savings in practice, a
good integration of the building design, installation design and system control
is needed.

In the early ’70s heat pumps started to enter the European market due to
the high oil prices after the first oil crises. The heat pump market boomed,
especially in Sweden and also in the United States [112, 151]. Huge research
budgets were allocated to the field of energy technologies, which resulted in
substantial research efforts, not only in the field of solar thermal power but in
the field of heat pumps as well. However, once the oil prices stabilized in the
early ’80s, the heat pump sales figures dropped quickly. The main reason for
this collapse was the poor actual heat pump performance. This was due to
both low performance of the heat pump component itself, and to the lack of
knowledge on the side of architects and installers about how to integrate the
heat pump in the building.

The tendency to install large glazing areas has resulted in increased need for
cooling in summer. The sales of air conditioning units grows exponentially [34].
In countries like the United States, this causes peaks in the electricity demand in
summer, with electricity black outs as a result. By incorporating thermal energy
storage in the design of the heating and cooling installation, the peak electricity
demand for cooling can be reduced and shifted towards low-electricity price
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periods. In countries that apply predominantly air conditioning systems, such
as North-America, South-America and Asia, ice storage was and is the most
used thermal energy storage system. In European countries, where hydronic
systems prevail [129], the heat and cold emission system itself could be used
as a short-term thermal buffer. Instead of using air coils for cooling and high-
temperature radiators for heating, both having low thermal inertia, one could
shift towards floor heating, with higher thermal inertia, or even towards concrete
core activation, where the entire concrete slab is being thermally activated.
These heat emission systems not only make it possible to lower the peak heating
and cooling load due to their thermal energy storage capacity, they also enable
decreasing the water supply temperature for heating and to increase the water
supply temperature for cooling. The reason for this is the large surface area
available for heat exchange. Technologies such as cogeneration of heat and
power (or trigeneration) and heat pumps are ideally suited to deliver this low
exergy heat and cold in the most efficient way.

For buildings requiring both heating and cooling, ground-coupled heat pumps
(GCHP) have a high primary energy savings potential. In winter, the ground
temperature is higher than the ambient air temperature, such that the heat
pump operates at a higher coefficient of performance (COP). In summer, the
opposite is true. If the ground temperature is low enough, it is possible to
directly cool the building through passive heat exchange (passive cooling). In
this case no active cooling is required and the only electricity consumption is
related to the circulation pumps. GCHP are ideally suited for buildings with a
balanced heating and cooling load, as the heat injection during passive cooling
in summer regenerates the ground. At the start of the heating season, the
ground is ’fully charged’. At building level, the energy savings potential is due
to the low-exergy heating and cooling demand and the thermal storage capacity
(small time scale) of the CCA. At installation level, the savings potential is
due to the coupling with the ground, enabling high heat pump performance
for heating and passive cooling for cooling. How good the opportunities for
synergies of the entire system may be, it is difficult to fully exploit this potential
in practice. Problems arise during both the design phase and the operation
phase.

At building side, the main question is how to guarantee thermal comfort
with a slow reacting system such as CCA, knowing that the disturbances
due to internal gains and solar gains, act much faster on the building zone
temperature [58, 65, 169, 183]. With current control strategies the thermal
comfort requirements are often not met with CCA is the only heat and cold
emission system. In case there is a fast reacting heat emission system (such as fan
coils), current controllers are able to satisfy the thermal comfort requirements
but often at a high energy cost [163]. The fast reacting heat emission system
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tends to overrule the operation of the CCA. The question arises whether it is
possible to guarantee thermal comfort in the CCA-building by means of an
optimal control strategy. In that case, the investment cost in a fast reacting
heat emission system can be avoided.

At installation level, the main question is how to size the ground coupled heat
pump system and the backup system to guarantee that the heating and cooling
demand can always be met, without oversizing the system. Oversizing the
GCHP system should by all means be avoided as the cost related to the drilling
of the borefield constitutes the main part of the investment cost. To improve the
economical feasibility of GCHP systems, design guidelines suggest to size the
borefield to cover only the smallest of both loads. This results in smaller and
thus cheaper borefields. Current control strategies however, assume that the
borefield is large and can be continuously operated. If the borefield temperatures
exceeds the lower or upper temperature bounds, the backup system is used.
While this is a sound operation in case of large borefields, for compact borefields
this may not the case. Such a strategy could result in borefield thermal depletion
or thermal build-up. The operation should guarantee a long term sustainable
operation with the annual building heating and cooling demand being delivered
at the lowest cost [35, 177]. This requires an optimal use of the limited resources,
i.e. of the amount of heat and cold stored in the borefield. The decision on when
to switch between the ground coupled system and the backup system should
thus depend on the available amount of heat and cold in the borefield, the
future heating and cooling load, the efficiency of the heat and cold production
devices and the electricity price profiles.

The discussion above reveals the need for the development of a control strategy
for buildings with a CCA-GCHP in general, and CCA-HyGCHP systems in
particular, which enables to guarantee thermal comfort at the lowest cost. To
this end, the thermal energy storage capacity of the CCA at building side and
the seasonal energy storage capacity of the borefield at source side, should be
optimally exploited. Current control strategies are not suited for this purpose.
They are based on static building models. The time delay of the system response
is accounted for by heuristic rules, requiring a lot of trial-and-error to tune
the control parameters. Model predictive control (MPC), however, has the
potential to deal with the numerous control requirements. With MPC, the
control variables are optimized online. Each control time step the control
variables are selected which minimize a given cost function, taking into account
the system dynamics and constraints. In this case, the cost function could be a
weighted sum of energy cost and thermal discomfort. The controller model could
include both the dynamics of the building and the dynamics of the borefield.

MPC is already well-established in the chemical industry, where it has originally
been developed. The first report on MPC is found in the ’70s and is applied
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to the control of a distillation column. The main advantage of MPC in this
application is its ability to actively incorporate constraints, both on the input
variables and on the state variables. Meanwhile, MPC has been proven successful
in the areas of aerospace, automotive, power systems... [144]. The basis
of MPC is the solution of an optimal control problem at each time step,
using updated system information obtained by monitoring. Whereas MPC
popped up in the ’70s, optimal control theory was already developed and
implemented in the ’50s for use in the space industry. In these early years, the
optimal solution was found analytically, requiring substantial simplifications
of the system description and boundary conditions. With the introduction of
computers, numerical optimization solvers have been developed. Most of them
are gradient-based methods: the minimum is found iteratively, by moving into
a descent direction. The most well-known methods are the steepest-gradient
and the Newton-based methods, which are very successful for solving convex
optimization problems [125]. For problems where the gradients are difficult to
derive, direct optimization methods are used as well [98]. Some examples of
direct optimization problems are particle swarm optimization [93], Nelder-Mead-
Simplex [123] and genetic algorithms [63] ... which are available in commercial
software.

The development of MPC for CCA-GCHP systems faces a large number of
challenges. First, a dynamic system model must be developed, both for the
building and for the borefield. A lot of simulation environments exist to model
the building and/or the borefield in detail, based on first principles [e.g. 30, 155].
Those are, however, far too complex to be incorporated in the optimal control
problem (OCP) formulation. One needs to develop simple dynamic models for
control. The challenge in system identification of a building lies in the large
amount of unmeasured disturbances acting on the system (solar gains, internal
gains, ventilation losses), the small number of sensors and limited space for
applying good excitation signals when the building is occupied. The challenge
in system identification of a borefield lies in the very broad dynamic range,
with time constants ranging from hours to multiple years. The broad range in
time constants in the system constitutes also a challenge for the optimal control
part. It is computationally impossible to guarantee thermal comfort with a
hourly time scale while optimizing the use of a seasonal energy storage with
a time scale of several years. How to formulate the optimal control problem
in order to take both the short term and the long term control objectives into
account, constitutes a second challenge. Third, due to the dependency of the
heat pump COP on the temperatures of the heat source and the heat sink,
the optimization problem becomes nonlinear. This temperature dependency
of the COP is often neglected to make the optimization problem convex. The
performance loss resulting from this simplification has not yet been assessed.
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1.2 Research objectives

This works aims at developing MPC for GCHP systems with seasonal energy
storage, with the focus on office buildings with CCA in the West-European
climate. The motivation for this application is fivefold. First, the savings
potential of GCHP, both in terms of primary energy consumption and in terms
of monetary costs, is the largest for buildings with both heating and cooling
demand. This is because the borefield can be sized smaller thanks to the
thermal regeneration of the ground in summer by passive cooling. Contrary
to residential buildings in the West-European climate, office buildings have
substantial cooling loads due to high internal and solar gains. Second, from a
control point of view the potential of MPC, both in terms of energy savings and
in terms of thermal comfort, may be largest for slowly reacting systems such
as CCA. Conventional controllers are based on the assumption of steady-state
system operation, which is far from reality for CCA. On top of that, MPC
can account for future disturbances by incorporating weather predictions and
occupancy profile predictions in the optimization. The latter brings us to the
third reason why we focus on office buildings. Compared to residential buildings,
the occupancy profiles of office buildings are more predictable. Fourth, thermal
comfort requirements are usually more stringent in working environments than
at home. Finally, the investment cost of an MPC is more likely to be justified
for large buildings than for small buildings, as the absolute savings are higher
for larger buildings.

Specifically, the following questions are addressed:

• At building level: How to describe the building dynamics in the optimal
control problem formulation (OCP), and how to identify this model?

• At installation level: How to deal with the nonlinearity introduced by the
heat pump performance?

• At borefield level: How to describe the borefield dynamics?

• At system level: How to deal with the combination of short and long term
time scales?

• How does the resulting MPC compare to current rule-based control (RBC)
strategies?

• How can MPC contribute to improving the economical feasibility of CCA-
HyGCHP systems?
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1.3 Overview of the dissertation

The dissertation consists of 9 chapters which are briefly discussed below.

Chapter 2 introduces the methodologies being central in this work, being optimal
control, model predictive control and system identification.

Chapter 3 gives a concise overview of the literature on optimal control of HVAC
systems in buildings, with the focus moving from the building level, towards the
installation level, to conclude with examples of integrated system approaches.

Chapter 4 describes the reference system, implemented in the TRNSYS
simulation environment, which consists of a two-zone office with CCA connected
to a HyGCHP system. Additionally, this chapter describes the reference control
strategy and the installation sizing.

The next three chapters define the controller model requirements for the three
subsystems.

Chapter 5 focuses on the controller building model. The impact of the model
structure and the identification data set used for parameter estimation is assessed.
The evaluation is performed in an MPC framework, with the detailed 2-zone
office model, described in Chapter 4, as simulator.

Chapter 6 incorporates the heat pump characteristics in the optimal control
problem formulation and evaluates the impact of a detailed heat pump model,
yielding a nonlinear optimization problem, versus a simplified model, yielding a
convex optimization problem. The analysis is performed for an air-to-water heat
pump system connected to a floor heating system. The choice for an air-source
heat pump allows one to focus on the time horizon of one day. Nevertheless, the
results provide useful insights for the control of ground coupled heat pumps.

Chapter 7 focuses on the controller borefield model. Different techniques to
obtain a low-order borefield model are described in detail. The impact of the
borefield model is illustrated for the optimization of the operation of a HyGCHP
system which guarantees long term thermal balance. In this step, the building
loads are assumed known.

Chapter 8 integrates the insights obtained at component level to develop an
MPC strategy for the integrated CCA-HyGCHP system. The potential of
MPC to contribute to the design and operation of cost-efficient CCA-HyGCHP
systems is evaluated.

Chapter 9 summarizes the main conclusions and suggestions for future research.





Chapter 2

Concepts

This chapter introduces the concepts central in this work: optimal control,
optimization, MPC and system identification.

2.1 Optimal control

2.1.1 General description

Optimal control deals with problems in which a time variable control profile u(t)
is sought for a dynamic system such that a certain optimality criterion is met
[96]. To this end, an optimization problem is solved over a chosen time horizon
tend, which comprises (i) the definition of the objective function J , (ii) the
system dynamics ẋ, (iii) the state and control path constraints cpath and (iv)
the boundary conditions cboundary. A general optimal control problem (OCP)
formulation has the format represented by Equations (2.1)-(2.4).

min
u(t)

J =
∫ tend

0
L (u(t), x(t), t) dt+M(u(tend), x(tend), tend) (2.1)

ẋ = f(x, u, t) (2.2)

cpath(x(t), u(t)) ≤ 0 (2.3)

cboundary(x(t0), x(tend)) = 0 (2.4)

9
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2.1.2 Classification

Finding an optimal control input trajectory boils down to finding the solution to
a constrained optimization problem. Optimization problems can be categorized
into two broad categories, being the convex and the non-convex problems. The
latter category can be further divided into nonlinear and mixed-integer problems.
The optimization problem is convex if (i) the cost function J is convex and (ii)
if the feasible set is convex. The latter requires all inequality constraints (<= 0)
to be convex and all equality constraints to be linear. For convex optimization
problems fast and efficient algorithms to find a global optimal solution exist [23].
However, if one of the above mentioned conditions for convexity is not satisfied,
the OCP can be expected to be non-convex. Non-convexity may arise from
nonlinearity in the objective function or the constraints, or from a non-convex
search domain, such as a discrete variable. The former category is often denoted
as nonlinear optimization problem, while the latter is denoted as a mixed integer
problem. Both types of optimization problems are harder to solve than convex
problems and convergence to global optimality is not guaranteed due to the
existence of multiple local minima. An overview of the different optimization
problem classes is presented by e.g., Nocedal and Wright [125].

2.1.3 Solution methods

In the former paragraph three types of optimization problems were distinguished.
For convex problems, fast and efficient convex solvers exist [23]. Most of them
are direct methods, based on a gradient-search or Newton-search methods
[125], categorized under the family of quadratic programming (QP) problems.
A special class consists of the linear-quadratic regulator problems, for which
a closed-loop formulation for the control input u∗ can be derived from the
Riccati-equations.

For nonlinear problems, it is less evident to find a suitable solution method.
Three basic families are distinguished [39]:

• the Hamilton-Jacobi-Bellman equation / Dynamic Programming

• the indirect methods / calculus of variations/ Pontryagin

• the direct methods (control discretization)

The first two methods are based on the Hamiltonian-Bellman principle of
optimality, namely ’any subarc of an optimal trajectory is also optimal’. The
indirect method, yields an analytical solution for the u∗(t) as a function of the
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current state x0 and the adjoint variable k [154]. The advantage is that insight
is gained in the parameters and variables determining the u∗(t)-profile. The
disadvantage is that it requires solving a boundary value problem which is only
tractable, i.e. computationally feasible, if the number of state variables nx, input
variables nu and constraints neq and nieq is limited. Dynamic Programming
(DP) [15, 19] also suffers from this so-called ’curse of dimensionality’ [142], but
it is conceptually easier to implement. It results in a look-up table which can
be determined off-line, avoiding an online optimization problem solving.

Contrary to the first two families of methods, the direct methods are suitable
for large-scale nonlinear optimal control problems. The control input profile
u∗(t) is discretized with a control time step ∆tc, dividing the control horizon
t = [0Hc] into Nc control intervals k in which u∗(k) is assumed to be constant.
The smaller ∆tc, the more the discrete-time solution approaches the optimal
continuous time signal, but the larger the number of optimization variables. To
determine the corresponding state trajectories x∗(t), advanced nonlinear solvers
such as MUSCOD and ACADO [80] adopt a variable discretization time step,
such that the discretization error remains below a user-defined tolerance level.
Different implementations of direct methods are the single shooting and direct
multiple shooting [40], the latter being more computationally robust in case of
highly nonlinear dynamics.

For mixed-integer problems, one can rely on very powerful commercial solvers,
such as CPLEX [29]. Löfberg [111] gives an overview of currently available
numerical solvers for the different types of optimization problems.

2.2 Model predictive control

The repeated solution of an optimal control problem in an online framework
forms the basis of model predictive control (MPC). MPC combines the benefits of
feedforward and feedback control. At each control time step, the control profile
for the next Hc control time steps is optimized using knowledge of the current
state (= feedback), the building dynamics and future disturbance predictions
(= feedforward). Only the first control time step is applied, and after this time
step the optimization process is repeated, using updated system information
and disturbance predictions. A schematic view of the MPC framework is given
in Figure 2.1.

The combination of feedforward and feedback results in a good control
performance even in the presence of model mismatch and prediction errors [116].
This is an important asset for practical implementation, as it allows the use of



12 Concepts

Figure 2.1: Block Diagram of the information flows for a general model predictive
control scheme [118].

simple controller models and simple disturbance prediction methods. Robust
MPC is a specific type of MPC which explicitly accounts for the impact of non-
idealities (noise in the feedback signal, model mismatch and prediction errors)
on the optimality of the solution [see e.g. 21, 119]. Stochastic MPC focuses on
applications which are characterized by stochastic disturbances, such as solar
radiation [see e.g. 127]. The formulation incorporates the future MPC action in
the predictions to obtain a less conservative control. Nonlinear MPC deals with
applications where the performance loss due to a convex approximation is not
tolerated [see e.g. 4, 38, 50].

2.3 System identification

System identification (SI) in the framework of MPC aims at identifying a model
which captures the control relevant system dynamics. Ideally, this model is as
simple as possible. SI comprises following steps:

1. Defining the model requirements

2. Defining the model type

3. Defining an appropriate set of model structures

4. Obtaining a persistent identification data set

5. Parameter estimation

6. Model validation

7. Model selection
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The presentation below is written from a users’ perspective. For a comprehensive
study on system identification, the reader is referred to the work of Ljung [110]
and the work of Pintelon and Schoukens [140] .

2.3.1 Step 1: Model requirements

The first step in the system identification procedure is to define the model
requirements:

• Which input/output-relationship(s) do we want to describe?

• Which time scales are we interested in?

For the application of control, the model needs to describe the response of the
controlled variables (CV) to the manipulated variables (MV) and to uncontrolled
variables or disturbances. The time scale of interest depends on the control
objectives and on the time constants of the system.

We will illustrate this with two straightforward examples. First, consider the
case where we want to control the compressor power of a heat pump to guarantee
thermal comfort in a building with floor heating. The compressor power is the
MV, the zone temperature the CV and the ambient air temperature, internal
gains and solar gains are the disturbances. The response of the zone temperature
to the compressor power is dominated by the dynamics of the floor heating
which has a dominant time constant of the order of hours. The control relevant
time scale then ranges from, let’s say, one hour to one day. The time constant
related to the response of the zone temperature to the ambient air temperature,
lies within this range. Therefore, the controller building model should also
incorporate a dynamic description of the heat transfer through the building
envelope. The dominant time constant of the heat pump, by contrast, is of the
order of minutes. Since this is far smaller than the control relevant dynamics,
the heat pump dynamics can in this case be neglected: a static representation
of the heat pump characteristics is sufficient.

If the same building is heated by a heat pump connected to an air-conditioning
system, the controller model requirements differ. Since air-conditioning systems
react much faster to a change in the compressor power than a floor heating
system does, the control relevant dynamics are shifted towards the subhourly
time scale. In this case, it might be that the heat pump dynamics can not be
neglected by the controller (requiring a dynamic instead of a static heat pump
description), while the dynamics related to the building envelope thermal mass
may be neglected (and thus replaced by a static model), since the outer wall is
quasi-static within the time frame of one hour.
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Figure 2.2: Illustration of how to distinguish between the processes which
can be represented by a static model on the one hand, and the ones which
require a dynamic description, on the other hand, based on the response of the
system variables to a step excitation of the manipulated variables (MV). For the
depicted example, the normalized response of 5 system variables (y1,y2,y3,y4,y5)
is shown. If y4 is the controlled variable, with a dominant time constant τ4 with
respect to the MV, y1 can be described by a static model in the optimization
and y5 by a constant value. y2, y3 and y4 require a dynamic representation.

To summarize: a dynamic model is required for the processes with time
constants of the same order of magnitude as the control relevant ones, i.e.
the ones characterizing the relation between the controlled variable(s) and the
manipulated variable(s). Processes with significantly smaller or with significantly
larger time constants, can be represented by a static model. This is illustrated
in Figure 2.2. The response of the controlled variable, y4, to a step excitation of
the manipulated variable is dominated by a time constant τ4. The response of
the variables y1, y2, y3 and y5 which influence y4, is characterized by respectively
τ1, τ2, τ3 and τ5. For this example, one could judge that the dynamics related
to y1 (τ1 << τ4) and to y5 (τ5 >> τ4) can be neglected: y1 can be represented
as an algebraic instead of a differential state, while y5 can simply be considered
constant (within the time horizon of the optimization).

The dynamic range of interest can be expressed in terms of time constants i.e.
τmin (s) and τmax(s) - or in terms of frequencies, i.e. fmin (Hz) and fmax (Hz):

Control relevant dynamics =


fmin ≤ f ≤ fmax
or
τmin ≤ τ ≤ τmax

(2.5)
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2.3.2 Step 2: Model type

The entire system identification procedure is determined by the amount, the
nature and the quality of the system information available. Information can
be available in the format of physical insight and/or measurement data. The
choice of the model type depends on the answer to a first question: Do we have
enough system knowledge to describe it by first-principles equations? If so, do
we know the corresponding model parameters?

• If the answer to both the first and the second question is positive, a
first-principles model or ’white-box’ model can be developed.

• If the first principle equations can be written down, but the numerical
values of the corresponding model parameters are unknown, experimental
data are required to estimate these parameters. The combination of
a first-principles-based model structure with ’parameter estimation’, is
denoted by the term ’grey-box modeling’.

• If the system is too complex to be described by first-principle equations,
we have to rely on black-box modeling. The black-box modeling
approach aims at describing the input/output-relation by fitting the
model parameters (which in this case do not necessarily have a physical
meaning) to the measured input/output data. Different black-box model
structures exist. The most well-known black-box model structures are the
ARX, ARMAX, Box-Jenskin and OE-models [see e.g., 110, 171], which
differ mainly in the way they deal with unmeasured inputs (system noise)
and with measurement errors (measurement noise).

The different steps of the white-box, grey-box and black-box modeling
approaches are visualized in Figure 2.3. White-box models generally require a
significant amount of physical insight and information. They also tend to be
more complex and are therefore less suitable for incorporation in an optimization
framework. The black-box modeling approach, by contrast, allows to minimize
the amount of prior system knowledge. The drawback of a black-box model
is that the model quality is only guaranteed for the frequency range covered
by the identification data set (see Step 3). The grey-box modeling approach
combines the strengths of both approaches: compared to the white-box modeling
approach, the required amount of prior knowledge and the model structure
complexity are reduced. Compared to the black-box modeling approach, the
model structure and the corresponding model parameters have a physical
meaning. This alleviates the task of determining the appropriate number of
model parameters.
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Figure 2.3: Comparison of the white-box modeling approach (left) with the
black-box modeling approach (right).

2.3.3 Step 3: Model structures

The term ’model structure’ is traditionally used to distinguish between transfer
models on the one hand, and state space models on the other hand. In this
work, the term refers to the imposed information flow path between the input(s)
and the output(s). For white-box and grey-box models, the model structure
defines the level of detail with which the processes are described. For black-box
models it defines the variable (e.g. transfer function in Laplace variable s
versus transfer function in Warburg variable

√
s) and the way noise is dealt

with. The higher the complexity level, in general, the larger the number of
parameters. This in turn increases the required amount of system knowledge
and/or information contained in the identification data set. The procedure of
selecting an appropriate model structure, illustrated by the identification of a
controller building model, is well described by Bacher and Madsen [9].

Step 4 and Step 5 focus on respectively the conditions to be fulfilled by the
identification data set and on the parameter estimation procedure. These two
steps only apply to the grey-box and the black-box modeling approach.

2.3.4 Step 4: Identification data

The quality of the experimental data, also referred to as the ’persistency’ of the
identification data set, roughly depends on four factors: the frequency content
of the excitation signal, the signal-to-noise ratio, the measurement length and
the measurement time step. These four factors are not entirely independent, as
discussed below.
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Frequency content of the excitation signal The frequency range covered by
the data set should match the frequency range of interest (defined by fmin and
fmax), or, in other words, the excitation signal should excite the control relevant
dynamics identified in Step 1. The frequency content of the excitation signal,
found by the Fourier transform of the time domain signal, can be visualized in
a Bode-diagram which shows the amplitude and the phase of each frequency
contained in the signal. For instance, if we are interested in the control relevant
dynamics of a floor heating system (with a dominant time constant of a couple
of hours), a heating/cooling signal with an switching time of 5 minutes, will not
provide any useful information. Applying a step heat input of a couple of hours,
by contrast, will. Typical excitation signals are for instance: step functions,
block functions, pseudo-random binary functions (PRBF), multisine functions
and white noise. These signals are interesting as they cover a wide frequency
spectrum (step function, block functions, PRBF, white noise) or as they excite
a limited number of well-chosen frequencies (multisine function). The latter
is interesting in the presence of unmodelled disturbances and measurement
noise since the frequencies in the output signal which are not contained in the
excitation signal, and which thus correspond to system noise and measurement
noise, can be filtered out. This brings us to the next factor determining the
richness of the data set, namely the signal-to-noise ratio.

Signal-to-noise-ratio The signal-to-noise-ratio is proportional to the ampli-
tude of the response of the output to the excited input, and inversely proportional
to the amplitude of the response of the output to unmodelled disturbances and
to measurement noise. Therefore, there are three ways to increase the signal-
to-noise-ratio: increase the amplitude of the excited input (e.g. apply a higher
heating power or by increasing the crest-factor of the signal), minimize the
presence of disturbances (e.g. avoid unmodelled internal gains due to stochastic
occupancy behavior) and use well-calibrated sensors. The signal-to-noise-ratio
can also be decreased by repeating the same experiment a number of times and
use the averaged values to filter out (the white fraction of) measurement noise.
This brings us to the third factor, being the impact of the measurement length.
Note that most processes are to less or more extent nonlinear. Therefore, the
magnitude of the signals should correspond to typical values during operation.

Measurement length In the ideal case, i.e., (1) an excitation signal covering
the entire frequency range of interest and (2) the absence of system and
measurement noise, the required measurement length tm(s) equals the largest
time constant τmax. In practice, longer time intervals are needed to compensate
for the lack of information contained in the input signal and to compensate for
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the presence of noise:
tm ≥ τmax (2.6)

Sampling frequency The measurement frequency fs or the sampling time
interval ∆ts is defined by the Nyquist criterion:

fs ≥ 2fmax or ∆ts ≤
τmin

2 (2.7)

In practice, again to compensate for measurement errors, an even smaller
sampling time (∆ts ≤ τmin

5 ) is advised. The combination of the above mentioned
4 factors (the frequency content of the excitation signal, the signal-to-noise-ratio,
the measurement length and the sampling time) defines the richness of the
data set. As discussed in Step 6, the fitness of the data set to estimate the
parameters of a certain model structure, can be assessed after the parameter
estimation procedure, based on the magnitude of the uncertainty interval for
the parameter values found. If the uncertainty interval is too large, the system
identification procedure can be repeated for a richer data set based on Design of
Experiments (DOE). A very interesting paper describing the different steps in
DOE, illustrated with an example on the identification of a biochemical process,
is the paper of Balsa-Canto et al. [12].

2.3.5 Step 5: Parameter estimation

Parameter estimation (PE) boils down to solving an optimization problem,
namely finding the parameter set θ which minimizes a scalar function l of
the model error evaluated over the entire identification data set. For a given
estimate of the parameter set θ̂, the prediction error ε(t, θ̂) can be presented as
follows [110]:

ε(t, θ̂) = y(t)− y(t|θ̂) (2.8)

with y(t) representing the measured output at time step t and y(t|θ̂) the model
output at that time step with the given parameter estimate θ̂.

The cost function to be minimized is then represented by:

θ∗ = argminVN (θ, ZN ) (2.9)

where
VN (θ, ZN ) = 1

N

∑N

t=1
l(ε(t, θ)) (2.10)

with N denoting the number of measurement time steps and Z the input signal
applied during the measurements.
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The family of methods which correspond to Eq.(2.13) is referred to as Prediction
Error Methods (PEM). Different PEM methods exist, which differ (among
others) in the way ε(t, θ̂) and VN (θ, ZN ) are defined [171].

With the so-called 1-step-ahead prediction, ε(t, θ̂) is calculated using the
measured output at the previous time step y(t−1), see Eq.(2.11). In the general
PEM case ε(t, θ̂) only uses the measured output at time t0, see Eq.(2.12).

ε(t, θ̂) = y(t)− y(t|t− 1, θ̂) (2.11)

ε(t, θ̂) = y(t)− y(t|t0, θ̂) (2.12)

The most common choice for the scalar function l is the sum of squared errors.
With substitution of Eq.(2.8), Eq.(2.10) becomes:

VN (θ, ZN ) = 1
2N
∑N

t=1
l(y(k)− y(θ̂, k))2 (2.13)

For a linear model, the combination of the one-step-ahead prediction (Eq.(2.11))
with Eq.(2.13) results in a simple linear regression (LR) problem, which has
a unique solution. In the other cases, PEM requires solving a nonlinear
optimization problem since the cost function VN (θ) is nonlinear in the
parameters. As a consequence, these methods need a good initial guess to
guarantee convergence to the global minimum. The impact of the PE method on
the quality of the obtained models, is very well illustrated in the work of Bianchi
[20]. He compared different PEM for both the offline and online identification of
a controller building model. As an example, the LR technique fails in all cases
where solar radiation is present, while the PEM with Eq.(2.12) yields good results.
In this study, the latter approach is used (see Chapter 5 and Chapter 7). The
resulting nonlinear problem is solved with the Levenberg-Marquard method [125]
(Chapter 7) or with the exact Newton method implemented in ACADO [80].

The uncertainty on the parameter values can be estimated from the Fisher
Information matrix (under some hypothesis on the estimator properties), which
in turn is determined from the Hessian (i.e. the matrix with the second order
derivatives) of the cost function in the optimum. To put it simply: the flatter the
cost function in the optimum, the larger the uncertainty on the parameter values
found, the steeper the cost function, the smaller the uncertainty. The shape of
the cost function depends on both the model structure and the identification
data set. An appropriate combination of model structure and data set will yield
a well-conditioned optimization problem. Problems arise when the dynamics
related to a certain parameter are not excited. In that case, the identification
data set does not contain the information required to define the value of this
parameter - or - from the view of the optimization: the cost function is not
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sensitive to the value of this parameter. This problem arises in case (a) the
model structure is too complex (and thus contains redundant parameters)
and/or (b) the identification data set is not sufficiently rich. In both cases, the
system identification procedure has to be repeated (see Step 2 and Step 3). This
explains why, in general, system identification requires an iterative procedure.
A systematic approach to iteratively improve the excitation signal for a given
model structure, and given the existing constraints (e.g. limited measurement
time, limited number of measurements, limited power, limited energy use) is
design of experiments [51].

Note that besides the Fisher Information matrix there are other PE performance
indicators, such as the Akaike Information Criterion (AIC), expressed in
Eq.(2.14), and the Rissanen’s Minimum Description Length Criterion (MDL).
Low AIC values and MDL values indicate good model accuracy (i.e. low
VN (θ, ZN )) and acceptable number of parameters (i.e. low dim(θ)).

AIC = VN (θ, ZN ) + dim(θ)
N

(2.14)

Both AIC and MDL assist the selection of an appropriate model structure,
which is neither too simple nor too complex. The smaller the data set (small
N), the more dim(θ) is penalized. This is important to avoid overfitting,
especially for small data sets (small N). Over-fitting means that an amount of
(redundant) model parameters are fitted to describe the noise content of the
identification data set - rather than the system dynamics. This is reflected in
bad cross-validation results (see Step 6).

2.3.6 Step 6: Model validation

Broadly speaking, there are five ways to validate a given model [176]:

1. checking if the parameter values are physically meaningful (in the case of
a grey-box model) (see Step 4),

2. quantifying the uncertainty on the parameter values (see Step 4),

3. validation in the time domain,

4. validation in the frequency domain,

5. residual analysis.

The latter three techniques compare the model output to the measured output
for a validation data set, i.e. a data set which differs from the identification
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data set and which is -by preference- representative for the conditions to
which the system is submitted in reality. The validation data are obtained
from measurements on the actual system (’experimental validation’) or from
simulations with a detailed model (’intermodel comparison’).

The model error is often quantified in terms of the root mean square error
(RMSE) of the model output, which in the time domain is defined as:

RMSE =

√∑N
k=1(y(θ, k)− ym(k))2

N
(2.15)

With the residual analysis, the frequency spectrum of the prediction error
ε(t, θ̂) is analyzed. In the case of a perfect model, the frequency spectrum of
the residuals equals the one of the measurement noise, which, in general, is
considered to be white noise. If, by contrast, the model structure neglects
important dynamics, the error will be correlated with the input (or with
unmodeled input). This will result in a ’colored noise’ spectrum.

2.3.7 Step 7: Model selection

For the purpose of control, the model fitness should finally be evaluated within
the optimal control framework. If the model is found to yield unsatisfactory
control performance, the system identification procedure has to restart from
Step 1.





Chapter 3

Literature review

Optimization-based control strategies such as model predictive control (MPC),
have shown to outperform traditional control strategies for a variety of
heating and cooling systems, building types and climates. Those systems are
characterized by the presence of thermal mass which acts as active or passive
energy storage, limited installed capacity and/or time dependent efficiencies
or costs. Thermal mass can be included at the building level (e.g. heavy-
weight building envelope, floor heating and concrete core activation) or at the
installation level (e.g. buffer tank, ice storage tank and ground thermal energy
storage). Time dependency of the efficiency holds for devices such as chillers,
heat pumps, cooling towers and dry coolers, where the heat or cold production
efficiency depend on the operation conditions. Time dependent energy costs (on
the short term) are restricted to electricity driven devices. This chapter gives a
non-exhaustive overview of research on optimal control of building heating and
cooling. The overview is clustered in five sections. Section 3.1, Section 3.2 and
Section 3.3 each focus on one of the sublevels, respectively the building, the
installation and the borefield. Section 3.4 deals with optimal control from an
integrated systems’ perspective. Finally, Section 3.5 deals with the interaction
between control and design. Each section ends with the related research question
addressed in this work.

3.1 Optimal control at building level

Research on optimal control of heating systems has in particular focused on
the building level, see e.g. [27, 64, 66, 68, 90, 103, 161, 195–197]. For fossil
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fuel driven devices such as gas boilers, the optimization potential primarily
lies in accurately predicting the heating load. This way the right amount of
heat is produced at the right time to satisfy the thermal comfort requirements
with minimal primary energy consumption. As confirmed by earlier studies
[27, 150, 186] and by practice [161], the potential benefits for optimal control
compared to conventional PI-control strategies are the highest for heavy-weight
buildings in mild climates with large daily temperature swings, i.e. situations
in which prediction and anticipation can make a difference.

Whereas the concept of MPC for energy and comfort management has proven to
have clear advantages over other control strategies, it also has drawbacks which
currently hamper its widespread implementation. Dounis and Caraiscos [41]
identified different problems, among which (1) the need for an adequate controller
model structure, (2) the need for online estimation of the corresponding
parameters which is robust in the presence of noise, (3) the fact that the
adopted thermal comfort models do not reflect the complex, nonlinear features
which characterize thermal comfort and (4) the lack of user friendliness, user
interaction and learning methods. The identification of the system dynamics
is indeed perceived as a major challenge for a successful implementation of
MPC. This explains the large research effort in the field of system identification
of controller building models, weather predictions and occupancy prediction.
Two distinct approaches are observed here. The first one is to incorporate
highly detailed models for the building (see, e.g.[28, 170]) and the installation
[58]. This approach allows reusing simulation models used in the design
phase. However, the complexity of the resulting optimal control problem
(OCP) becomes prohibitively large. The alternative is to use simplified building
control models. Those can be achieved by model reduction of a detailed physical
model [see e.g., 131]), parameter estimation of an RC-model based on the
electrical analogy [see e.g., 9, 11, 53, 101]) or by system identification using
black box models [see e.g., 49]). This approach requires the selection of a model
structure which is as simple as possible but still catches the control relevant
processes. Thanks to their simple structure, those models can be identified or
fine-tuned online, as stressed by Kummert [102] and Bianchi [20]. Moreover,
the computational power to run the optimization can be significantly reduced.
The standard MPC framework, with a receding horizon procedure, incorporates
a feedback mechanism which allows - to a great extent - compensating for
model and prediction errors [116]. Additionally, low-level local proportional-
integral controllers can compensate for small modeling and prediction errors
to ensure stable and robust zone temperature control [197]. It is indisputable
that for implementation in low-level devices with limited computational power,
simplified optimal control formulations are highly desirable. On the other hand,
the benefits from a simplified formulation have to be outweighed against the
performance loss caused by the approximations made.
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On the building model level, the use of simplified models for the optimal control
of floor heating systems is found to be acceptable. The building model should
enable predicting both the thermal comfort and the heating load. Thermal
comfort is a function of the operative temperature Top, which in turn is a
weighted sum of the room air temperature and the radiative temperature
[47]. An accurate prediction of Top requires a detailed building model which
distinguishes between convective and radiation heat transfer processes into
and inside the building zones. However, in the case of floor heating, the fast
fluctuations of the operative temperature Top caused by solar radiation or
internal gains can not be compensated by the heat production system due to
the high thermal inertia of floor heating. This explains why low order building
models, which only capture the slow dynamics needed to predict the building
load, are found to be adequate for optimal control of floor heating systems.
The studies of Wimmer [186] and Bianchi [20] indicate that a third-order or
even a second-order lumped capacitance model is able to capture the control
relevant dynamics imposed by the floor heating time constant in a well-insulated
heavy-weight residential building. The capacity of the zone air, inner walls
and outer walls are all lumped to one capacity at an average zone temperature
Tz. The impact of the solar gains on the heating load are taken into account
by adding a positive ∆T to the ambient air temperature Tamb. The study of
Karlsson and Hagentoft [90], dealing with the application of MPC for controlling
a floor heating system in a well-insulated light-weight building, also shows that
a second-order lumped-capacitance model is a good approximation for a detailed
numerical step-response model derived from a Simulink model of the reference
room. Similarly, the study of Peeters et al. [137] shows that an accurate
prediction of the solar gains has only a minor impact on the total daily heat
demand of a floor heating system.

Kummert [102] investigated the impact of simplifications on the level of thermal
discomfort evaluation. The optimization was performed with a quadratic
approximation of the discomfort based solely on the operative temperature. The
actual thermal discomfort level was evaluated with a detailed simulation model,
using the simulated mean radiative and air temperature, as well as the humidity.
The results indicate that the use of more detailed thermal discomfort models
does not alter the relative control performance of the investigated optimal
control formulations.

Contrary to residential buildings, office buildings are characterized by the
presence of large solar gains and internal gains. The controller model should
be able to predict the heating and cooling loads in the presence of these high
gains. First, the question arises which model structure is required for buildings
with high solar and internal gains and second, which measurement data are
needed to perform the system identification? Should the solar gains and internal
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gains be in the identification data set? Third, how should this model be
used in an MPC framework? Is prediction of the solar and internal gains
required or not? It is indisputable that for low-cost implementation of MPC,
minimizing the effort and amount of data required for system identification is
highly desirable. On the other hand, the practical and economical benefits of a
simplified building model have to be outweighed against the performance loss
caused by the approximations made.

Objective 1 A first objective in this work is to investigate the impact of
the controller building model and the identification data used for parameter
estimation, on the performance of an MPC controller for office buildings with
CCA in the presence of large solar and internal gains. This objective is addressed
in Chapter 5.

3.2 Optimal control at installation level

For electricity-driven devices such as heat pumps and chillers there is additional
opportunity for optimization due to the structure of the electricity cost, namely
the time-of-day price dependency and the additional charge on peak power
demand. This explains the extensive research effort in the field of optimal control
of cooling dominated, air-conditioned buildings, e.g. [3, 88, 95, 114, 115, 170].
For this type of buildings, the optimization potential primarily lies at the
installation level, namely in optimizing the charging and discharging of active
thermal energy storage devices (e.g., ice storage) as well as in optimizing the
switching between active cooling, free cooling and night ventilation. Also for
heat pump systems in heating dominated buildings, the first investigations
of optimal control focused on the installation level. Heat pump operation
and electrical backup heating were optimized for charging a buffer tank for a
day-night electricity price profile [149, 198].

On the heat pump model level, the influence of simplifications has not yet
been investigated. Several representations are found in the literature. Gayeski
et al. [58] represent the heat pump thermal power Q̇hp and the compressor
power Php as quadratic polynomials in the compressor frequency f , the ambient
temperature Tamb and the supply water temperature Tws. Because of the model
complexity, a simple form of direct search, called a pattern search, was selected
as optimization method (see e.g., [174]). Rink et al. [149] and Zaheeruddin et al.
[198] did not incorporate the part load efficiency in their studies. The heat
pump was characterized by the COP, which was represented by a linear function
of the mean storage tank temperature. The resulting nonlinear problem was first
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solved analytically, using the Maximum Principle [96]. This solution method
yields a global optimal solution but is restricted to theoretical studies as it limits
the number of dynamic states, constraints and boundary conditions. Next, the
nonlinear problem was solved numerically, inducing problems of convergence
and local minima. Wimmer [186] and Bianchi [20], on the contrary, used a
predefined COP profile based on the forecast of Tamb and a constant value for
Tws. Thanks to this simplification, i.e. neglecting the Tws dependency of the
COP in the OCP formulation, a convex optimization problem was obtained
which could be solved with a standard quadratic programming solver [125].

Objective 2 A second objective is to assess the impact of the controller heat
pump model in OCP formulation. The aim is to quantify how much can be
gained by explicitly integrating the temperature dependency of the COP into the
optimization (yielding a nonlinear problem), versus solving an approximated,
but convex formulation. This objective is addressed in Chapter 6.

3.3 Optimal control at borefield level

When the GCHP system is designed to cover the entire heating and cooling
demand, the control at borefield level is straightforward. The borefield size is
then determined such that the temperature limits are only met at the end of
the design life time, normally chosen 20 to 25 years. In this case, the borefield
can be used permanently.

Such large borefield design is however suboptimal from a life cycle cost point
of view. The economical feasibility of GCHP systems largely depends on the
required ground heat exchanger (GHE) length. This explains why research in
the domain of GCHP systems, contrary to research in the domain of CCA, has
mainly focused on the design level. Compared to the other components of the
heating and cooling installation, the sizing of the GHE is critical. Oversizing
compromises the economical feasibility of the GCHP system, while undersizing
may result in operation failure [31, 194]. The GHE length depends on roughly
four factors: (1) the thermal properties of the ground, the borehole and the
circulating fluid, (2) the borefield heat injection and extraction loads, (3) the
borefield heat injection and extraction power rates, (4) the heat injection and
extraction imbalance. The first factor explains the importance of conducting
an in-situ Thermal Response Test (TRT) for determining the ground thermal
conductivity and the borehole thermal resistance [see e.g., 60, 152, 158, 187]. The
sensitivity on the next two factors explains the need for a dynamic building load
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calculation [126, 168]. Such a dynamic simulation however requires incorporation
of a control strategy. As such, system operation influences the installation sizing
and thus the required GHE length. The impact of the control strategy on the
building load calculation, and thus on the borefield size, is especially true for
GCHP systems connected to slowly reacting heat emission systems such as
CCA, as will be discussed in Section 3.4. Finally, the larger the imbalance
between heat injection and extraction, the larger the required GHE length.

Various studies have shown that - from a life cycle cost point of view - a hybrid
ground-coupled heat pump (HyGCHP) configuration is optimal [31, 69, 71, 108,
146, 191]. The borefield is then sized to entirely cover the smallest of the two
loads, and only a fraction of the dominant load. This fraction is determined
such that the amount of injected and extracted heat are more or less in balance.
The remaining part of the dominant load is then covered by a supplementary
heater or cooler. For HyGCHP two additional control tasks arise. First, the
operation should fulfill the design condition for borefield long term thermal
balance. Second, switching between the different devices, i.e. the GCHP system
on the one hand, and the supplementary heater/cooler on the other hand, should
be such that the total annual running costs are minimized. As clearly explained
by De Ridder et al. [35], this is the only way to realize the potential of HyGCHP
to decrease the total life cycle cost in practice.

Yavuzturk and Spitler [191] and Xiaowei [189] compared different rule-based
control (RBC) algorithms for HyGCHP in cooling dominated climates with focus
on the control settings for switching between the GCHP and the supplementary
cooling tower. Optimizing these settings has shown to be a complex task due
to the large number of decision variables. Moreover, none of these control
algorithms balance the loads in the ground [69]. In practice, these parameters
are defined heuristically, leaving a large potential for operation improvement
[126]. In a nutshell: the actual system efficiency of HyGCHP systems with
today’s control strategies may not fulfill the expectations formulated in the
HyGCHP design phase.

A long term sustainable and energy efficient operation of a HyGCHP system
requires to take the temperature dependency of the heat and cold production
efficiencies into account, as well as the long term borefield thermal balance
condition. These control objectives could be formulated as an optimal control
task, allowing to additionally take into account the installed capacities of the
heating and cooling devices, and the electricity price time dependency. The
application of optimal control theory to HyGCHP is still a research area to be
explored [165]. According to the authors’ knowledge, only two publications on
optimal control of borefield thermal energy storage on a seasonal time scale are
available, namely by Franke [54] and De Ridder et al. [35]. The former deals
with borefields for solar energy storage, while the latter focuses on HyGCHP
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systems. De Ridder et al. [35] clearly explain why an optimal control approach is
required to realize the cost savings potential of HyGCHP. The entire concept of
HyGCHP is based on sizing the borefield as compact as possible. To maximize
the use of the borefield, the operation will hit both the upper and lower bounds
set on the borefield and/or brine fluid temperature. The fact that optimal
control allows operating the system near its boundaries, was identified as a
crucial asset compared to rule-based controllers.

De Ridder et al. [35] proposed an optimization based control strategy which
explicitly incorporates the condition for long term borefield thermal balance.
At each time step, the optimal power rates of the different HyGCHP devices
are taken from a look-up table, as a function of (a) the building load and (b)
the mean borefield temperature. The optimization method used is Dynamic
Programming (DP), which allows explicitly accounting for the stochasticity
of the weather. The method guarantees that - for a given borefield size - the
seasonal energy storage capacity is fully exploited, i.e. the borefield is fully
regenerated at the start of the heating season, and fully depleted at the start of
the cooling season. The drawback of DP is the practical limitation of the number
of state variables. The presented DP approach was formulated as a function
of one single state variable, namely the mean borefield temperature. If the
number of state variables is restricted to one, this is a good choice as it enables
us to impose somehow long term borefield thermal balance. As will be shown in
Chapter 7, however, a first-order borefield model is not sufficient to adequately
describe the heat exchange between the borefield and the surrounding ground,
being an important term in the borefield thermal balance equation. Moreover,
for determining the optimal switching between the different devices, the mean
borefield temperature is not the right variable. The actual heat pump efficiency
and the availability of passive cooling depend on the brine fluid temperature,
not on the mean borefield temperature. Finally, the mean borefield temperature
can not be directly measured. To summarize, a general framework to optimize
HyGCHP operation requires a dynamic borefield model which (1) predicts the
response of the brine fluid temperature to a time-varying borefield load - such
that the heat pump COP and passive cooling efficiency can be quantified - and
(2) accurately captures the long term borefield dynamics - such that long term
sustainability can be imposed.

Objectives 3 and 4 A third objective is to develop a borefield model which can
be used to optimize the operation of a HyGCHP system. The model should be
able to predict the response of the brine fluid temperature to typical borefield loads
in order to assess the heat pump COP and the availability of passive cooling.
To impose long term borefield thermal balance, the model should additionally
capture the long term borefield dynamics. The aim is to investigate the minimum
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required model order to capture these control relevant dynamics as well as the
methodology to derive such a low-order borefield model. A fourth objective is
to analyze the optimal HyGCHP operation for a given building heating and
cooling load profile, such that the total annual energy cost is minimized while
guaranteeing a long term sustainable operation. These objectives are addressed
in Chapter 7.

3.4 Optimal control at system level

Optimal control at system level has started only recently with the introduction
of low-exergy heating systems combining heat pump systems to floor heating
[20, 186] or concrete core activation [57, 58, 78, 107]. The integrated system
approach allows to exploit the thermal capacity of the heat emission system to
shift the heat and cold production to time periods with higher heat and cold
production efficiency or lower electricity prices (load shifting), or to decrease
the power peak demand (peak shaving) in case of a peak electricity demand
charging scheme. The incorporated controller building models are dynamic,
while the incorporated installation models are static. The latter is allowed as
the time constants of heat pumps, chillers or cooling towers are in the order of
magnitude of minutes, being much smaller than the time constants at building
level. This is not the case for GCHP systems. As discussed in the previous
paragraph, the COP of the heat pump and the availability of passive cooling
depend on the brine fluid temperature, which in turn depends on the borefield
temperature distribution. System level optimization of building climate control
with a GCHP system therefore adds a new time scale to the optimization, as
the borefield time constants range up to tens of years. It is computationally not
feasible to solve an optimization problem explicitly integrating both the short
and the long term time scales. The formulation of a computationally efficient
optimal control problem for the integrated CCA-HyGCHP system is therefore
to be investigated.

Objective 5 A fifth objective is the development of an MPC strategy which
optimizes the operation of a CCA-HyGCHP system from an integrated system
perspective. To this end, a computationally efficient formulation should be found
which enables capturing both the control relevant dynamics at building side and
at borefield side. This objective is addressed in Chapter 8.
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3.5 Integration of control and design

The CCA dynamics and borefield dynamics do not only increase the control
complexity but also the complexity of sizing of the heating and cooling
installation. In practice, design and control are carried out in two consecutive
steps. However, as discussed below, both CCA systems and GCHP systems
benefit from an integrated approach of control and design. For systems
combining CCA and a GCHP system, the interaction between control and
design is even more pronounced.

As stated in Section 3.1, the thermal capacity of CCA not only allows load
shifting but also load shaving. The latter in turn allows to reduce the installed
heating and cooling power and thus to reduce the investment cost. The potential
of CCA for peak load reduction has, however, not yet received much attention
[148]. The smaller the production capacity, namely, the more challenging
it is to satisfy thermal comfort as lower power rates require the controller
to better anticipate on the future building loads. Therefore, for buildings
with CCA, installation sizing should be based on a dynamic building load
calculation incorporating the control strategy that will be implemented. The
benefits of an integrated approach for the design and control of CCA and its
installation are well illustrated by the study of Tödtli et al. [173] for the case of
a heating curve/cooling curve based control strategy. An additional advantage
of MPC, regarding this design issue, is that MPC explicitly takes input and
state constraints into account. The potential of MPC to minimize energy use
thanks to knowledge of the building dynamics, system characteristics and future
disturbances, together with the ability to incorporate knowledge about the
input constraints, explains why MPC allows to reduce the heating and cooling
installation size without compromising thermal comfort.

Recalling the fact that the borefield investment cost is the main bottleneck for
the implementation of GCHP systems, as well as the fact that the required
GHE length scales almost linearly with the peak borefield load [69], revealed
that MPC can really make a difference for CCA-GCHP systems, and not only
from energy cost point of view. The potential of MPC to exploit the thermal
capacity of CCA for load shifting and peak shaving could entail large investment
cost savings, at least if an MPC control strategy is incorporated in the design
phase as suggested by Tödtli et al. [173].

Objective 6 A sixth objective is to integrate the use of MPC in both the design
and operation phase of HyGCHP systems and to assess the benefits on the Net
Present Value compared to conventional design and control strategies. This
objective is also addressed in Chapter 8.
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3.6 Summary

To summarize, MPC for the application of CCA-HyGCHP systems has the
potential to:

• solve the controllability problems of CCA related to its thermal inertia -
by incorporating a dynamic building model

• minimize the energy costs - by considering the efficiency of the different
heat and cold production systems and the time dependency of the
electricity price,

• guarantee long term sustainable operation of the borefield - by incorpo-
rating the long term thermal balance condition in the optimization,

• decrease the investment cost - by exploiting the thermal capacity of CCA
for load shifting and peak shaving to reduce the required installation size.



Chapter 4

System description

4.1 Introduction

This chapter describes the office building with concrete core activation (CCA)
and a hybrid ground coupled heat pump (HyGCHP) installation which is used
as a reference. The chapter starts with a description of the building emulator
model in TRNSYS, the occupancy and weather profiles and the defined thermal
comfort requirements. Next, the heating curve/cooling curve-based control
strategy used as reference, is presented. The chapter concludes with the sizing
of the components of the HyGCHP system.

4.2 Overview

Figure 4.1 gives a schematic presentation of the system, comprising the two
zone office building, the heat and cold at distribution and production level and
the borefield thermal energy storage. Each level is treated in more detail below.

4.2.1 Two zone office building with concrete core activation

The building considered in this study is an office building with concrete core
activation (CCA), controlled ventilation and solar shading. The office is North-
South oriented. The North (N) and South (S) zone offices are separated by a

33
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Figure 4.1: Schematic presentation of the system with indication of the two
zone office, the heat and cold distribution, the heat and cold production and the
borefield. Top,S and Top,N denote the zone operative temperature in respectively
the South and North zone, Tws,S and Tws,N the corresponding supply water
temperatures and Twr,S and Twr,N the corresponding return water temperatures.
The heat and cold production system comprises a gas boiler (GB), a heat pump
(HP), a heat exchanger for passive cooling (PC) and a chiller (CH). The heating
power is Q̇h = Q̇HP + Q̇GB and the cooling power Q̇c = Q̇PC + Q̇CH . Q̇bf
represents the thermal power extracted from or injected in the borefield by
means of the HP and the PC.

central corridor. A cross section is shown in Figure 4.2. Table 4.1 summarizes
the properties of a representative unit of the building. The offices have a raised
floor and only in the corridor a suspended ceiling is placed. The outer wall has
0.1 m mineral wool insulation and high quality windows. The solar shading has
a g-value of 25%. Table 4.2 presents the building characteristic values, with
the heating load calculated according to EN12831 [25] and the cooling load to
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Figure 4.2: Schematic presentation of the two zone (South and North) office
building with the disturbances ambient temperature Tamb, solar radiation
Q̇sol and internal gains Q̇int, the inputs water supply temperature Tws and
ventilation temperature Tvs and the measured outputs operative temperature
Top and concrete core temperature Tc.

Table 4.1: Wall and window properties [164].
Wall U (W/m2K) Remark

Outer wall 0.41 0.1 m mineral wool
Internal wall 0.79 Gypsum board
Floor/Ceiling 1.38 Uncovered ceiling - raised floor
Suspended ceiling 1.11
Window U (W/m2K) g-value

Window 1.29 0.36
Solar shading 0.25

VDI2078 [178].

Solar shading The South zone of the office building is equipped with an
automated solar shading system. It has a controller with hysteresis which
lowers the shading device when Q̇sol > 250 W/m2, and pulls it up again when
Q̇sol < 150 W/m2. The North zone has no solar shading.

Ventilation The air handling unit (AHU) provides hygienic supply air at a
flow rate of 36 m3/h pers between 7AM and 7PM [164]. The ventilation air
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Table 4.2: Building characteristics [164].
two zone office building parameters

Heated office volume (m3) 72
Heated office area (m2) 24
Transmission area (m2) 8.6
U-value total façade (W/m2K) 0.85
Percentage of glazing (%) 50
Heating power w/o reheat capacity (W/m2) 26
Cooling power South zone (peak at 5 PM) (W/m2) 31

supply temperature Tvs equals the lower value of the thermal comfort band, i.e.
Tvs = 20 ◦C in winter and Tvs = 22 ◦C in summer. In this study, the use of the
AHU to assist temperature control, is not investigated. The developed MPC
only optimizes the production of heat and cold supplied to the TABS.

Occupation profile The office is occupied on weekdays between 8AM - 12PM
and 1PM - 6PM. The internal gains are based on a scheduled occupancy model
and comprise the sensible heat gains from the people Q̇people, from the electrical
appliances Q̇appl, and from the lighting Q̇light. The values are taken from
the ASHRAE Fundamentals, Chapter 18 [72]: Q̇people = 75 W/person (63%
convective, 27% radiative), Q̇light = 7 W/m2 (80% convective, 20% radiative)
and Q̇appl = 13.8 W/m2 (50% convective, 50% radiative). The resulting profiles
per zone, calculated for an occupancy density of 1 person per 10 m2 and a zone
floor area of 12 m2, are shown in Figure 4.3. Note that also during non-occupied
hours and weekends, there is still a small amount of internal gains due to
appliances and lighting, respectively of 2 W/m2 and 3 W/m2.
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Figure 4.3: Internal gains per zone for a week day.
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Implementation in TRNSYS The two zone office building is implemented in
TRNSYS [155] by means of the TYPE56 building model. The CCA ceiling and
CCA floor are integrated in TYPE56 by means of the EMPA-model [100].

4.2.2 Heat and cold distribution

As shown in Figure 4.1, the implemented heat and cold distribution system is
kept very simple entailing some important control limitations. First, as there
is only one supply collector, simultaneous space heating and space cooling is
not possible. Second, as there are no 3 way mixing valves, the supply water
temperature to the North and the South zones, Tws,N and Tws,S , are equal
to the temperature at collector level. Third, the flow rates through the CCA
are constant. By consequence, as both the flow rates and the supply water
temperatures to the zones are equal, no zone-level control is implemented in this
work for the CCA-HyGCHP system (see Chapter 8). Note that in Chapter 5,
where the focus is on the building level, 3-way-valves are incorporated and Tws,N
and Tws,S are individually controlled. The impact of zone-level control versus
the here described ’lumped-building-level’ control on the system performance is
assessed for the case of an idealized boiler/chiller in Chapter 8.

4.2.3 Heat and cold production

The heating installation comprises a heat pump (HP) and a gas boiler (GB).
The cooling installation comprises a heat exchanger (HE) for passive cooling
(PC) and a chiller (CH) for active cooling. The heat exchanger and the chiller
are connected in series with the chiller coming first. This configuration results
in a smaller temperature difference to be bridged by the chiller, resulting in
a better performance of this component. However, it also requires a larger
HE as the temperature difference over the latter is also reduced. The HP
and the PC heat exchanger are connected to the borefield. The sizing of the
devices and of the borefield is based on a dynamic building load calculation, as
will be discussed in Section 4.6. The installation is sized for a office building
comprising 150 modules of the above described two zone office module, resulting
in a total conditioned floor area of 3600 m2. To this end, the two zone office
model loads are simply scaled. Since the CCA floor and ceiling of the two zone
model condition a surface of 48 m2 (there is transmission to the upper and
lower zones), the scaling factor is 75. Note that this is a theoretical building:
abstraction is made of the ground floor (different floor boundary conditions),
the upper floor (different ceiling boundary conditions), non-office spaces (e.g.
service rooms) and heat and cold distribution losses.
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Figure 4.4: View of the installation model in the TRNSYS simulation
environment, with annotation of the most important variables.

Implementation in TRNSYS Table 4.3 gives an overview of the TRNSYS
components used to model the HyGCHP installation. Each component is
characterized by its Type number. The table lists the input and output
variables, indicated on the printscreen of the TRNSYS simulation environment
in Figure 4.4: the water mass flow rate at building level ṁw (kg/s) with
corresponding supply water temperature Tws (◦C) and return water temperature
Twr (◦C), the brine mass flow rate through the borefield ṁf (kg/s) with
corresponding borefield fluid inlet temperature Tf,i (◦C) and borefield fluid
outlet temperature Tf,o (◦C), the water mass flow rate between the condenser
of the chiller and the cooling tower (CT) ṁw2 (kg/s) with corresponding chiller
inlet and outlet temperatures Tw2,i (◦C) and Tw2,o (◦C) and the air mass flow
rate through the cooling tower, ṁa (kg/s) and the corresponding inlet and
outlet air temperatures Ta,i (◦C) and Ta,o (◦C). Note the calculator component
at the top, which scales the heating and cooling loads of the two zone office to
the loads for the total office building (scaling factor 75).
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Table 4.3: TRNSYS implementation of installation components.
TRNSYS Description Control Input Output Parameter

GB Type6 aux. heater on/off ṁw, Tw,i Tw,o heating power Q̇GB

HP Type668 WWHP on/off ṁw, Tw,i Tw,o look-up table Q̇HP

ṁf , Tf,o Tf,i look-up table PHP

PC Type5b contour on/off ṁw, Tw,i Tw,o (UA)P C

flow HE ṁf , Tf,i Tf,o

CH Type668 WWHP on/off ṁw, Tw,i Tw,o look-up table Q̇CH

ṁw2, Tw2,i Tw2,o look-up table PCH

CT Type5b contour on/off ṁw2, Tw2,o Tw2,i (UA)CT

flow HE ṁa, Ta,i Ta,o

Borefield Type557a duct storage on/off ṁf , Tf,i Tf,o see Section 4.8

4.3 Weather data

The Typical Meteorological Year of Uccle (Belgium) is used as input to the
building zone, as provided by the Meteonorm weather database in TRNSYS.
This moderate sea climate is representative for the European Atlantic climate.
Figure 4.5(a) shows the ambient temperature profile, Figure 4.5(b) shows the
solar radiation Q̇sol,N (kW/m2) on a North oriented facade, Figure 4.5(c) the
solar radiation Q̇sol,S (kW/m2) on a South oriented facade and Figure 4.5(d)
illustrates the impact of the proposed solar shading control scheme on
Q̇sol,S (kW/m2) reaching the window.

4.4 Thermal comfort requirements

The main objective of building climate control is to satisfy thermal comfort
at a minimal energy cost. Quantifying thermal comfort is not straightforward,
not only because of the large number of variables that influence the thermal
comfort sensation, but also because it is to a great extent person dependent.

Fanger [47] defined the concepts of Percentage of People Dissatisfied (PPD)
and Predicted Mean Vote (PMV) to quantify thermal comfort while taking its
subjective character into account. The PPD is an estimation of the percentage
of occupants who would not be satisfied by the thermal environment [101],
while the PMV is an estimation of the average vote of a large group of persons
submitted to a given thermal environment. The appreciation ranges from -3 (too
cold), over 0 (neutral), to +3 (too warm). Based on statistical data, Fanger [47]
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Figure 4.5: (a) Reference year ambient air temperature profile for Uccle
(Belgium), Meteonorm data TRNSYS SEL-University of Wisconsin-USA and
TRANSSOLAR-Stuttgart [155], (b) Solar radiation on a North-oriented facade,
(c) Solar radiation on the South-oriented facade, (d) Solar radiation on the
South-oriented facade - effect of solar shading.

expressed the PPD and the PMV as a function of four environmental variables
(the indoor air temperature Ta, the mean radiative temperature Tmr, the air
velocity and the relative humidity) and two individual parameters (clothing
factor and metabolic rate). Tmr is a weighted sum of the surface temperatures
of the zone, i.e. the inner walls, the ceiling, the floor and the windows, and
is important in the thermal comfort sensation as it determines the radiative
heat transfer between the body and the zone. As PMV and PPD both express
thermal comfort as a function of the same variables, there is a one-to-one -
although non-linear - relation between both.

The influence of Ta and Tmr can be lumped into one value, the operative
temperature Top. Top is defined as the average of both temperatures, weighted
by their respective heat transfer coefficients hc and hr [73]. For typical values
of hr and hc, the relative weight of Tmr and Ta on Top is respectively 0.45 and
0.55. By consequence, Top is often calculated as the mean value of Ta and Tmr,
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as expressed in Eq.(4.1) [76].

Top = hrTmr + hcTa
hr + hc

≈ Tmr + Ta
2 (4.1)

Air velocity, clothing factor and metabolic activity affect thermal comfort,
however, they are usually non-controlled and even non-simulated aspects.
Controllable parameters are air humidity and operative temperature. The
ASHRAE standard 55 [6] defines a comfort zone as a function of both variables,
represented in the psychometric chart shown in Figure 4.6(a). The graph shows
two regions, respectively for summer (red) and winter (blue) weather conditions,
as the clothing factor is assumed to be adapted to the weather. The graph shows
that the comfort zone is almost uniquely determined by Top for humidity ratios
below 50%. For higher humidity levels, the maximum allowed Top is negatively
correlated with the humidity ratio. This graph explains why in hot and humid
climates air humidity control is crucial, contrary to relatively colder (and thus
less humid) climates such as the European Atlantic climate considered in this
work. By consequence the requirement for thermal comfort can, for the climate
investigated, be translated to a requirement on the operative temperature Top.

(a) (b)

Figure 4.6: (a)ASHRAE thermal comfort zones for winter and summer
conditions, indicated by respectively the blue and the red surface [6]. (b)
PPD and PMV with weather adapted clothing value [101].

Figure 4.6(b) shows the PPD as a function of Top (as Ta = Tmr). The graph is
made using constant values for the relative humidity, air velocity and metabolic
rate, while the clothing factor is varied. This graph is very useful for the purpose
of control, as it expresses thermal comfort as a function of the controllable
variable, i.e. Top. The graph shows that there is a temperature interval for
which the PPD remains low, i.e. about 5%, while outside this interval the PPD
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Table 4.4: Categories for global thermal comfort environment from ISO7730,
Annex A (PPD: Predicted Percentage Dissatisfied; PMV: Predicted Mean Vote).

Thermal state of the body as a whole

Comfort class PPD (%) PMV (-)

A ≤ 6 -0.2 ≤ PMV ≤ +0.2
B ≤ 10 -0.5 ≤ PMV ≤ +0.5
C ≤ 15 -0.7 ≤ PMV ≤ +0.7

increases almost quadratically. Most thermal discomfort cost representations
for implementation in optimal control, are based on this shape of the PPD
as a function of Top. The optimal Top depends on the clothing factor. Most
standards assume that people gradually adapt their clothing to the weather. To
express this adaptation, the concept of a running mean ambient temperature
Trm (◦C) is introduced. The definition for Trm adopted in this study, expressed
in Eq.(4.2), follows the EN15251 standard [26]. Subscript d denotes this day,
d− 1 denotes yesterday and so forth.

Trm = T̄amb,d + 0.8T̄amb,d−1 + 0.4T̄amb,d−2 + 0.2T̄amb,d−3

2.4 (4.2)

The thermal comfort requirements can be expressed in terms of the PPD and
PMV and depend on the building comfort class, characterized by respectively
the labels A, B and C, as listed in Table 4.4. Alternatively, the PPD and
PMV limits can be translated into an allowable temperature interval for Top
as a function of Trm. This relation between the Top-range and Trm, as defined
by ISO7730 for buildings of Class B, is shown in Figure 4.7 (a). This band
defines the lower and upper band on Top, denoted by respectively Tcomf,min
and Tcomf,max, and is clearly season dependent. For the Uccle weather profile
considered in this work, shown in Figure 4.5, the corresponding thermal comfort
bound as a function of the time of the year, is shown in Figure 4.7 (b).

The standards allow Top to exceed the comfort bounds if the peaks are limited
in time. For a Class B building, ISO7730 restricts the total annual number of
Kelvin exceeding hours (Khtot) (Kh/year) to 100 Kh per year. This is equivalent
to the temperature being 1 ◦C outside the thermal comfort range during 6% of
the occupation time, evaluated over an entire year for a typical office occupation
profile. Khtot is calculated according to Eq.(4.3) with Khu and Kho expressing
the number of temperature exceeding hours respectively below Tcomf,min (under)
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Figure 4.7: (a) Operative temperature range as a function of the running mean
ambient air temperature Trm for a Class B building, according to ISO7730 [85],
(b) Corresponding operative temperature range for the reference year.

and above Tcomf,max (over) during office hours, evaluated over the entire year.

Khtot = Khu +Kho (4.3)

with

Khu =
∫ 1y

0
Occ(t) max(0 , Tcomf,min(t)− Top(t)) dt (4.4)

Kho =
∫ 1y

0
Occ(t) max(0 , Top(t)− Tcomf,max(t)) dt (4.5)

The variable Occ is 1 during office hours and 0 otherwise. In this work, a control
strategy is judged to be satisfactory with respect to thermal comfort if the
condition Khtot ≤ 100 Kh is fulfilled.

Besides the requirements on the relative humidity and on Top, there are following
requirements with respect to the floor surface temperature Tfloor,s (◦C), the
ceiling surface temperature Tceiling,s (◦C) and the temperature gradient Ṫop
(◦C/h) [77]:

19oC < Tfloor,s < 27oC (4.6)

Tceiling,s < Top + 6oC (4.7)

Ṫop < 3.3oC/h (4.8)
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The condition on Tfloor,s is always respected since we have a raised floor which
represents an insulation layer between the CCA and the zone air. Sourbron
[164] showed that Tws must remain between 7.5 ◦C and 45 ◦C to satisfy the
condition on Tceiling,s. The lower limit on Tws is to prevent condensation at
the ceiling surface. For a HP/PC system with low temperature heating and
high temperature cooling these Tws-limits are satisfied. Ṫop appears to be close
to the upper bound of 3.3 ◦C/4h in the morning if the internal gains profile is
represented by a block function. This means that for a more representative
profile, with a smoother distribution of the loads in time, condition Eq.(4.8) is
definitely met as well.

4.5 Reference control strategy

4.5.1 Methodology

The reference control strategy is a rule-based controller using a heating curve
(HC) and cooling curve (CC) corresponding to today’s current practice. The
methodology is described below in 4 steps (A, B, C and D). A flow chart with
the first three steps is presented in Figure 4.8.

Step A: Temperature limits for the control variable Tcv First, the thermal
comfort bounds for the operative temperature, Tcomf,min and Tcomf,max, are
determined based on the actual running mean outdoor temperature Trm(t).
Next, the temperature limits for the controlled variable Tcv (◦C), denoted by
Tcv,min(t) and Tcv,max(t) are determined. This requires the definition of the
following control parameters, which are also indicated in Figure 4.8:

1. the choice of the controlled variable Tcv

2. the start time tS (h) and the stop or end time tE (h) for the installation.
Together, tS and tE determine the period for which the Tcv-limits are
more stringent. It can be compared to the switching times between day
operation (here denoted by the term HVACON) and night setback (denoted
by the term HVACOFF)

3. the temperature limits for Tcv, defined by the control parameters ∆Tmin
and ∆Tmax for the HVACON-period and by ∆Tmin,n and ∆Tmax,n for
the HVACOFF-period.
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Figure 4.8: Flow chart of the rule-based control strategy used as a reference. In
step A the temperature limits on the control variable Tcv are defined. Based
on this, the heating request from the zone (ZH) or cooling request from the
zone (ZC) is determined in step B. In step C the supply water temperature
Tws is defined from the heating curve (HC) or from the cooling curve (CC) as
a function of the running mean outdoor temperature Trm which also defines
the system modus (heating season/mid season/cooling season). The control
parameters are indicated in blue.
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Step B: Zone heating or cooling request The actual Tcv(t) is measured and
fed back to the controller. Tcv(t) is compared to Tcv,min(t) and Tcv,max(t). If
Tcv(t) is higher than Tcv,max(t), the signal zone cooling (ZC) request is set to 1.
If Tcv(t) is lower than Tcv,min(t), the signal zone heating request (ZH) is set to
1. If Tcv(t) lies between the bounds, both ZH and ZC are set to zero.

Step C: Supply water temperature setpoint Tws,set(t) The HC defines the
setpoint in heating mode, denoted by Tws,h. The CC defines the setpoint in
cooling mode, denoted by Tws,c. In both cases, the setpoint is determined
from the actual Trm and for this reason, control strategies based on this
kind are referred to as ’weather compensated HC/CC-based control strategies’.
Additionally, Trm defines three regions (see Figure 4.7(a)):

1. heating season for Trm ≤ Trm,H

2. cooling season for Trm ≥ Trm,C

3. mid season for Trm,H ≤ Trm ≤ Trm,C

During the heating season and the mid season Tws,set = Tws,h if a heating
request signal is sent from the zone (ZH = 1). During the cooling season and
the mid season Tws,set = Tws,c if a cooling request signal is sent from the zone
(ZC = 1).

Step D: On/off status of HP, GB, PC and CH Modulating heating and
cooling devices allow to closely track Tws,set(t) defined by the HC/CC. For
on/off-controlled devices, such as the ones considered here, an extra step is
required to translate the setpoint for Tws into an appropriate on/off-signal.
This translation is a trade-off between two conflicting objectives: tracking the
setpoint as closely as possible to avoid large temperature swings of the operative
temperature on the one hand, and avoiding on/off-cycling on the other hand.
Because of the latter, systems with only one heating or cooling device, often
translate the setpoint on the supply water temperature Tws to a setpoint on
the return water temperature Twr since Twr changes far slower to a step heat
or cold input than Tws. The on/off-control is then defined based on a hysteresis
control on Twr with the dead band ∆Twr (◦C) as tuning parameter. Here, a
slightly different approach is adopted. First, the heating power Q̇h,dem (W)
required to achieve Tws,h or the cooling power Q̇c,dem (W) to achieve Tws,c are
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determined:

Q̇h,dem(t) = ṁw

(
Tws,h(t) − Twr(t)

)
(4.9)

Q̇c,dem(t) = ṁw

(
Twr(t) − Tws,c(t)

)
(4.10)

The heat pump is switched on when Q̇h,dem(t) is larger than a fraction fh1 (-) of
the heat pump thermal power Q̇HP (t) at the operation conditions. If Q̇h,dem(t)
exceeds a fraction fh2 of Q̇HP (t), the gas boiler is additionally switched on.
The same approach is adopted for defining the status of passive cooling and
the chiller. The circulation pumps for passive cooling are switched on when
Q̇c,dem(t) exceeds a fraction fc1 (-) of the actual passive cooling capacity Q̇PC(t)
and the chiller is switched on if the cooling demand exceeds a fraction fc2 of
Q̇PC(t):

HP = ON if Q̇h,dem(t) ≥ fh1 Q̇HP (t) else HP = OFF (4.11)

GB = ON if Q̇h,dem(t) ≥ fh2 Q̇HP (t) else GB = OFF (4.12)

PC = ON if Q̇c,dem(t) ≥ fc1 Q̇PC(t) else PC = OFF (4.13)

CH = ON if Q̇c,dem(t) ≥ fc2 Q̇PC(t) else CH = OFF (4.14)

Note that Eqs.(4.11)-(4.14) imply priority for HP operation in heating mode
and priority for PC operation in cooling mode. The operation is very sensitive
to the value of fh1, fh2, fc1 and fc2. They influence the thermal comfort, the
total delivered heating and cooling energy as well as the relative share of the
HP and the GB for heating and of the PC and the CH for cooling.

4.5.2 Settings

Overview Table 4.5 lists the control parameters for the 2 reference control
strategies, from now on referred to as the ’HC/CC-control strategies’. The
parameters have been manually tuned for two choices for the control variable Tcv.
The first HC/CC-control strategy is based on feedback of the zone operation
temperature Top. While the common choice is to feed back the zone air
temperature Ta, since this variable is easily measured, Top is chosen since
it is the variable we really want to control. The second implementation of the
HC/CC-control strategy uses the CCA surface temperature Tc,s as feedback
signal. This choice is motivated by the findings of Sourbron and Helsen [162].
Based on an extensive search over the entire parameter space, the choice of
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Table 4.5: Control parameter settings for the 2 considered reference HC/CC-
based control strategies.
Tcv tS tE ∆Tmin ∆Tmax ∆Tmin,n ∆Tmax,n fh1 fh2 fc1 fc2

(h) (h) (◦C) (◦C) (◦C) (◦C) (-) (-) (-) (-)

Top 4AM 5PM -1.0 +0.5 +5 +5 0.5 2 0.5 1
Tc,s 4AM 5PM 0.0 +2.0 +5 +5 0.5 2 0.5 1

Tc,s as controlled variable was found to be able to yield both better thermal
comfort and lower energy cost than the feedback of Top. In this work it is
chosen to keep both HC/CC-implementations in order to distinguish between a
standard HC/CC-controller and a more advanced one. They are referred to as
respectively the HC/CC-Top and HC/CC-Tc,s to distinguish between both.

To avoid cycling, the status of the devices is updated only once an hour. An
exception to this rule is the use of the GB: if switched on, it maximally operates
during 12 minutes. This was done to avoid excessive use of the GB at the start
of the day.

Supply water temperature setpoint The slope and the offset of the heating
curve (HC) and the cooling curve (CC) are based on a static description of the
building. The idea behind this approach is to compensate for the building heat
losses (or gains) in steady state conditions.

Q̇supply,ss = Q̇loss,ss (4.15)

The steady state building losses Q̇loss,ss (W), depend on the heat transfer
coefficient of the overall building envelope (UA)b (W/K) and on the difference
between the operative temperature Top and the ambient temperature Tamb:

Q̇loss,ss = (UA)b (Top − Tamb) . (4.16)

The heating or cooling power supplied to the zone through the CCA, Q̇supply,ss
(W), can be approximated as follows:

Q̇supply,ss = (UA)CCA (Tws − Top) (4.17)

with (UA)CCA (W/K) the heat transfer coefficient between the supply water
and the zone. Substituting Eqs.(4.16) and (4.17) in Eq.(4.15) yields:

(UA)CCA (Tws − Top) = (UA)b (Top − Tamb) . (4.18)
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and after rearranging the terms:

Tws = Top + (UA)b
(UA)CCA

(Top − Tamb) . (4.19)

The steady state assumption thus yields an explicit expression for the setpoint
for Tws which depends on the operative temperature Top, the temperature
difference with the surroundings, Top − Tamb and on the ratio between the heat
transfer coefficient from the zone to the surroundings, (UA)b, and the heat
transfer coefficient from the supply water to the zone, (UA)CCA. Following
this reasoning, the slope of the heating curve, optimally determined as the
ratio between (UA)b and (UA)CCA, is the only tuning parameter in a heating
curve. However, due to ventilation losses Q̇vent, to solar gains Q̇sol and to
internal gains Q̇int, the net heat demand will differ from the transmission losses
calculated in Eq.(4.16). The expression for the setpoint for Tws then becomes:

Tws = Top + 1
(UA)CCA

(
(UA)b(Top − Tamb) + Q̇vent − Q̇sol − Q̇int

)
, (4.20)

which can be rewritten as:

Tws = Top + (UA)b
(UA)CCA

(Top − Tamb) + ∆T. (4.21)

The offset of the heating curve, determined by ∆T , is then a second tuning
parameter. For the geometrical data and material properties of the zone
considered, the calculated values for (UA)b and (UA)CCA amount to respectively
29 W/K and 126 W/K, resulting in a slope of −0.227 ◦C/◦C. The transmission
losses at design operation temperatures (DOT), i.e. Tamb = -8◦C and Top =
20◦C, amount to approximately 800 W per office zone. The tuning parameter
∆T , which accounts for the presence of internal gains, solar gains and ventilation
losses, is based on the TRNSYS simulation results. The resulting expressions
for the HC and the CC are given by Eq.(4.22) and Eq.(4.23).

Tws,h = −0.2Trm + 26.7 (4.22)

Tws,c = −0.15Trm + 22.2 (4.23)

Note that, in practice, the slope and the offset of the heating curve are most
often determined by trial-and-error.
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4.6 Reference design

The installation is sized according to current design guidelines, presented in a
flowchart in Figure 4.9. It consists of roughly three steps. The first step is the
building load calculation, from which the heating and cooling demand profile
and the corresponding load duration curves (LDC) are determined. This serves
as input for the second step, where the capacity of the heat and cold production
devices, in this case the HP, the GB, the PC heat exchanger and the CH, are
determined. The third step is the borefield sizing, based on the borefield loads.
In the case of a stand-alone GCHP system (i.e., no supplementary heater or
cooler), the latter are equal to the building heating and cooling loads. In the case
of HyGCHP systems, by contrast, the building loads are first ’processed’, before
passing them to the borefield design software. The three steps are discussed in
more detail below.

Figure 4.9: Overview of steps in ground-coupled heat pump design procedure

4.6.1 Building load calculation

For the design of conventional heating and cooling installations (e.g. GB
and CH), where the installed capacity does not dominate the investment
cost, the heating loads are often based on a static building load calculation,
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e.g., the EN12831 standard [25]. Calculation of the cooling loads is less
straightforward due to the time-dependent character of the solar and internal
gains and by consequence the impact of the building thermal mass on the
operative temperature response. The insights gained from dynamic cooling
load calculations have been translated to ’cooling load factors’ incorporated in
the cooling load calculation guidelines of e.g., the VDI2078 standard [178] and
Spitler et al. [167].

For the design of a (Hy)GCHP installation, however, where the installed capacity
dominates the investment cost, a dynamic load calculation is recommended
[70, 139]. Building simulation environments such as TRNSYS and EnergyPlus,
are well suited for this purpose, since they provide a library with, among others,
detailed building components and weather data files. Since the actual heating
and cooling installation is not yet defined at this stage, the installation is at
this stage often idealized. This idealized heater/cooler is often a perfectly
modulating device which allows to track the supply water temperature setpoint
defined by the controller. Therefore, as indicated on top of Figure 4.9, a dynamic
load calculation requires to define a control strategy which actually ’operates’
the system.

The building load calculation is performed with the TRNSYS two zone office
model, presented in Figure 4.2. The weather profile corresponds to the Uccle
(Belgium) reference year (Meteonorm data, TRNSYS). The corresponding
Tamb, Q̇sol,N and Q̇sol,S,schad-profiles are depicted in respectively Figure 4.5(a),
Figure 4.5(b) and Figure 4.5(d). Note that the load calculation is performed
with inclusion of the automated solar shading for the South office. Also the
internal gains, depicted in Figure 4.3, are incorporated. The heating and cooling
installation are represented by an ideal heater (TRNSYS Type 6) and cooler
(TRNSYS Type 92). The control input to these components is the setpoint
of the supply water temperature. The power of the ideal heater and cooler
is twice the static design heating and cooling load, calculated according to
respectively the standards EN12831 [25] and VDI2078 [178] [164]. The factor
two was chosen to ensure that the supply water temperature setpoint set by
the controller, discussed next, can be achieved most of the times. Contrary
to the hydraulic network of the HyGCHP system, shown in Figure 4.1, there
are three-way-valves at zone level, which allow individual control of the North
and the South zone. This way, the loads for the North and South zone can be
quantified independently.

The control settings are listed in Table 4.6. Both HC/CC-control strategies
have individually been tuned to obtain good control performance (both in terms
of thermal comfort and in terms of energy). The control parameters listed in
Table 4.6 have slightly different values compared to the ones for the HyGCHP
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Table 4.6: Control parameter settings of the HC/CC-control strategies used for
building load calculation (see Figure 4.8).

tS tE ∆Tmin ∆Tmax ∆Tmin,n ∆Tmax,n

(h) (h) (◦C) (◦C) (◦C) (◦C)

HC/CC - Top 4AM 5PM +1 +1 +5 +5
HC/CC - Tc,s 4AM 5PM +3 +3 +5 +5

Table 4.7: Results building load calculation with the HC/CC-control strategy.
Thermal comfort Specific loads
Khtot,N Khtot,S Qh,tot Qc,tot Q̇h,max Q̇c,max

(Kh) (Kh) ( kWh
m2a ) ( kWh

m2a ) ( W
m2 ) ( W

m2 )

HC/CC - Top 31 30 17 -29 54 -51
HC/CC - Tc,s 35 27 13 -27 54 -51

installation, listed in Table 4.5. The former are tuned for the boiler/chiller with
modulating power, the latter for the HyGCHP system with on/off-switching
devices. The results of the building load calculation for both HC/CC-control
strategies are presented in Figure 4.10. Figure 4.10(a) and Figure 4.10(b) show
the profiles for Top,N and Top,S , with indication of the Tcomf,min and Tcomf,max.
Figure 4.10(c) and (d) show the heating and cooling power profiles Q̇h(t) (W/m2)
and Q̇c(t) (W/m2) and Figure 4.10(e) and (f) show the corresponding load
duration curves (LDC). The results are summarized in Table 4.7. For both
HC/CC-control strategies, the total number of temperature exceeding hours
remains below the maximum of 100 Kh. The peak power demands, Q̇h,max
(W/m2) and Q̇c,max (W/m2), correspond to the maximal power of the boiler
and the chiller. However, the annual specific heat demand Qh,tot (kWh/m2)
and cold demand Qc,tot (kWh/m2) obtained with HC/CC-Top is respectively
30% and 7% higher than with HC/CC-Tc,s. This confirms the observation of
Sourbron and Helsen [162] that the control performance obtained with simple
HC/CC-based control strategies can drastically be improved by an appropriate
choice for the controlled variable Tc,v. The installation sizing, discussed in the
next paragraph, is illustrated for the building loads obtained with HC/CC-Tc,s.
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(b) HC/CC-Tc,s
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0 500 1000 1500
0

10

20

30

40

50

60

Time (h)

T
he

rm
al

 p
ow

er
 (

W
/m

²)

 

 
LDCh

LDCc

(e) HC/CC-Top

0 500 1000 1500
0

10

20

30

40

50

60

Time (h)

T
he

rm
al

 p
ow

er
 (

W
/m

²)

 

 
LDCh

LDCc

(f) HC/CC-Tc,s

Figure 4.10: TRNSYS-simulation results for the two zone office building with a
boiler/chiller installation, controlled with a standard HC/CC-control strategy
’HC/CC-Top’ (left) and an advanced HC/CC-control strategy ’HC/CC-Tc,s’
(right). (Top) Zone operative temperature in the North and South office zone,
(middle) heating loads and cooling loads and (bottom) corresponding heating
and cooling load duration curves.
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4.6.2 Installation sizing

The building load calculation obtained with the control strategy HC/CC-Tc,s
serves as input for the installation sizing. First, the capacity of the HP, GB, CH,
and PC heat exchanger is calculated. Next, the borefield loads are determined.
According to current HyGCHP design guidelines, the borefield is sized to cover
the smallest of the two loads entirely [31, 70, 71]. Since the building is clearly
cooling dominated, the borefield is sized to cover the heating load. The fraction
of the cooling demand which can not be covered by passive cooling, is met by
the chiller. This fraction is determined from balancing the heating and cooling
loads at borefield level, which means that the total annual amount of heat
injected and extracted to the borefield are imposed to be equal. This condition,
imposed at design level, avoids borefield thermal build-up or thermal depletion
which would in turn require a larger GHE length. Note that during operation,
however, this condition is currently not considered.

The loads for the two zone office building module are scaled to obtain the values
for the total office building (3600 m2), see Figure 4.11(a). The corresponding
heating and cooling load duration curves, which indicate the number of hours
the load trespasses a certain power, are shown in Figure 4.11(b). The total
annual heat demand amounts to 47 MWh and the total annual cooling demand
to 97 MWh, which indicates that the building is strongly cooling dominated.
The meaning of the horizontal line on the left and right figure, is explained
further in the text.

Heating power The heat pump nominal thermal power Q̇HP,nom (W) is chosen
such that an a priori defined fraction GEOh (-) of the total heating demand is
covered by the heat pump:∫ 1 y

0
min(Q̇h, Q̇HP,nom)dt = GEOh

∫ 1 y

0
Q̇hdt (4.24)

Since the building is cooling dominated, the heat pump is sized to cover the
heat demand. In this study, GEOh is taken 0.98 of the design heating load.
For the considered design loads, this means that the HP delivers 47 MWh of
heating.

The gas boiler nominal power, denoted by Q̇GB,nom (W), is such that - in
combination with the heat pump - the peak heating demand is covered:

Q̇GB,nom = Q̇h,max − Q̇HP,nom (4.25)
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Cooling power The heat extracted from the building by passive cooling,
Q̇PC(W), is directly injected to the borefield by means of the PC heat exchanger.
The total heat injection rate to the borefield, Q̇bf,in (W), calculated according
to Eq.(4.26), additionally includes the electricity consumption of the primary
circulation pumps Ṗprim (W) since the latter is eventually converted to heat
through friction. COPPC is defined as the ratio between the passive cooling
power Q̇PC and Pprim.

Q̇bf,in = Q̇PC + Pprim =
(
1 + 1

COPPC

)
Q̇PC (4.26)

The heat exchange rate per unit borehole length q̇b (W/m) is physically
constrained by the borehole and ground thermal properties. The required
GHE length therefore scales almost linearly with the maximal heat exchange
rate Q̇bf,max. To maximize the passive cooling power without increasing the
required GHE length, the maximal heat injection rate Q̇bf,in,max is constrained
by Q̇bf,ex,max (W):

Q̇bf,in,max ≤ Q̇bf,ex,max with Q̇bf,ex,max ≈
COPHP − 1
COPHP

Q̇HP,nom (4.27)

The UA-value of the PC heat exchanger (UA)PC (W/K) is sized for this heat
transfer rate:

(UA)PC = Q̇bf,in,max
∆Tlm

(4.28)

with ∆Tlm (◦C) the logarithmic mean temperature difference over the PC heat
exchanger. To avoid that the amount of PC is constrained by the size of the PC
heat exchanger (instead of by the size of the borefield), the PC heat exchanger
is sized large enough: ∆Tlm is set to 1.5 ◦C.

The chiller is sized such that - in combination with PC - the peak cooling
demand Q̇c,max(W) can be covered:

Q̇CH,nom ≥ Q̇c,max − Q̇PC,nom (4.29)

4.6.3 Borefield sizing

The parameter which determines the borefield investment cost is the GHE
length (roughly 50 e/m GHE). A first quick estimate of the GHE length is
found by dividing the peak load to be covered, by the maximal heat transfer rate
per unit GLE length q′b (W/m), which varies between 30 to 50 W/m for typical
borefield and ground properties. The sizing equation proposed by Kavanaugh
and Rafferty [92], translated to user-friendly calculation spread sheets [17, 139],
yields a more accurate first estimate.
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A precise GHE length calculation, however, requires a dynamic building load
calculation together with the use of borefield design tools, such as EED [42]
and GLHEPRO [166]. These design tools determine the GHE length which
covers the user defined borefield loads. The GHE length is iterated until the
upper limit (in the case of excess heat injection) or the lower limit (in the case
of excess heat extraction) on the fluid brine temperature Tf is reached at the
end of the simulation time. Usually, the number of simulation years is set to
20, which is long enough to observe the impact of borefield thermal build up
(in the case of excess heat injection) or thermal depletion (in the case of excess
heat extraction). To this end, EED [42] and GLHEPRO [166] require following
inputs:

1. the ground, borehole and brine thermal properties,

2. the minimum and maximum brine fluid temperature,

3. the borefield configuration,

4. the monthly HP heating energy and PC cooling energy (kWh/month),

5. the monthly HP and PC peak power (kW),

6. the monthly HP and PC peak power duration (h),

7. the number of simulation years (year).

Based on these inputs, the response of Tf is determined by means of
dimensionless step response functions or g-functions (see Chapter 7 on p. 145).

The focus in this study is on the following inputs (4) defining the monthly HP
and PC energy, (5) peak powers and peak power durations which serve as input
to the borefield design tool. The ground, borehole and brine thermal properties
and the borefield configuration, are taken as given values and listed in Table 4.8.
The simulation time is 20 years.

Heat pump loads Since the HP covers almost the entire heating demand
(GEOh=0.98), the monthly heating loads covered by the heat pump,
QHP (kWh/month), peak powers Q̇HP,peak (kW) and peak power durations
∆tHP,peak (h) can directly be determined from the building heating loads. The
values, scaled for the entire office building (3600 m2), are listed in Table 4.9.
These values are directly translated into borefield heat extraction loads Qbf,ex
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Table 4.8: Inputs to the borefield design software
Ground thermal conductivity kg (W/mK) 2.4
Ground thermal capacity cg (J/kg K) 2343
Grout thermal conductivity kgr (W/mK) 0.7
BHE radius rb (m) 0.075
Tube radius r0 (m) 0.02
BHE spacing B (m) 5
Brine freezing point Tf,fr (◦C) -2.0
Maximum brine temp. Tf,max (◦C) 20
Number of simulation years tsim (year) 20

and heat extraction powers Q̇bf,ex, according to Eq.(4.30). For the design
calculation, COPHP is assumed to be constant.

Q̇bf,ex(t) = COPHP − 1
COPHP

Q̇HP (t) (4.30)

Here, we assumed COPHP equal to 6. To deliver 47 MWh of heat at building
level, 39 MWh of heat must then be extracted from the borefield.

Passive cooling loads The fraction of the cooling load covered by passive
cooling, GEOc (-), is constrained by the condition for a long term sustainable
system operation. To avoid thermal build-up, the annual rise of the mean
borefield temperature, ∆Tbf , should be limited. The temperature change of a
borefield with a total thermal capacity Cbf (J/K) can be found by Eq.(4.31).

Cbf∆Tbf =
∫ 1 y

0
(Q̇bf,in(t)− Q̇bf,ex(t)− Q̇bf,∞(t))dt (4.31)

The second term on the right hand side, Q̇bf,in, defined by Eq.(4.26) represents
the heat injected to the borefield by the use of passive cooling. The second
term, Q̇bf,ex, represents the heat extracted from the borefield by the heat
pump as defined by Eq.(4.30). The term Q̇bf,∞ represents the heat loss to the
surroundings, comprising the heat exchange with the ambient at the surface
and the heat exchange with the ground far field (the latter having by far the
major contribution [44]). Q̇bf,∞ can be a heat loss term or a heat gain term,
depending on the temperature difference between the borefield and the ambient
air temperature on the one hand, and the borefield and the undisturbed ground
temperature on the other hand. As the borefield temperature is time varying,
Q̇bf,∞ also varies in time.

Excess heat injection, which causes Tbf to rise, will at a certain Tbf -level be
balanced by the increased thermal losses to the surroundings, i.e., Q̇bf,∞ will
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be negative in sign. At this Tbf -level, the annual mean Tbf -variation ∆Tbf will
equal zero. As long as this equilibrium temperature does not jeopardize the use
of passive cooling, there is no problem. The more compact the borefield and
the lower the ground thermal conductivity, however, the smaller the tolerated
amount of excess heat injection will be. To determine the annually amount of
passive cooling which balances the borefield, following conservative assumption
is made:

Q̇bf,∞ = 0 (4.32)

Substituting Eq.(4.32) in Eq.(4.31), the annual amount of heat which can be
injected by passive cooling, is calculated based on the following equation:

∆Tbf = 1
Cbf

∫ 1 y

0

((COPPC + 1
COPPC

)
Q̇PC −

COPHP − 1
COPHP

)
Q̇HP

)
dt = 0 (4.33)

Since the values for COPPC are high, typically between 10 and 20, the annual
amount of heat injection allowed is almost equal to the 39 MWh extracted by
the heat pump. For the given office building, which - with the HC/CC-control
strategy - has an annual cooling demand of 97 MWh, this means that 40% of
the design cooling load is realized through passive cooling.

Note, first, that Eq.(4.33) is too conservative - and thus suboptimal - for
borefields with large BHE spacing B and highly conducting soils, since in
those cases, the approximation made by Eq.(4.32) definitely does not hold. For
compact borefields, however, Eq.(4.33) provides a good (still conservative) guess
for the allowed annual amount of heat rejection. Second, Eq.(4.33), imposed at
the design phase, is not fulfilled with current HyGCHP control algorithms.

While the total amount of passive cooling may be more or less prescribed by
Eq.(4.31), the distribution over the year is not. In the design phase, passive
cooling is usually assumed to operate in base load. This base load power,
PPC,base, presented by the horizontal line in Figure 4.11, is then determined
such that the surface below the LDC for cooling equals the total annual ’passive
cooling budget’. The fraction of the cooling load above PPC,base, is then to be
covered by the chiller.

Based on this base-load-cooling assumption, the monthly cooling loads covered
by passive cooling QPC (kWh/month), monthly peak power Q̇PC,peak (kW)
and corresponding peak power duration ∆tPC,peak (h) are determined. The
results are graphically presented in Figure 4.12. The graphs clearly shows that,
while almost the entire building heating demand (Qh) is covered by the heat
pump (QHP ), only half of the cooling demand (Qc) is covered by passive cooling
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Figure 4.11: Annual office heating and cooling load profile (left) and
corresponding load duration curves (LDC) (right). The horizontal line at the
thermal power PPC,base (kW) defines the fraction of the cooling load covered
by PC on the one hand (surface of the LDC below PPC,base) and the fraction
covered by the CH on the other hand (surface of the LDC above PPC,base).
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Figure 4.12: Borefield design values (a) Monthly HP heating energy QHP (>0)
and PC cooling energy QPC (<0), compared to the total monthly heating and
cooling demand of the office (grey bars). (b) Monthly peak HP and PC peak
power.

(QPC). The numerical values, given as input to the borefield design software
GLHEPRO [166], are tabulated in Table 4.9.
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Table 4.9: Borefield design values
Month QHP QP C Q̇HP,peak Q̇P C,peak ∆tHP,peak ∆tP C,peak

(kWh) (kWh) (kW) (kW) (h) (h)

Jan 14175 115 192 19 7.6 0.2
Feb 10916 415 192 20 5.8 0.2
Mrt 6200 1262 190 39 4.4 0.2
Apr 1793 5084 170 96 0.2 7.4
Mei 1 13118 1 160 0.2 10.6
Jun 74 17937 16 179 0.2 12
Jul 68 21558 11 182 0.2 12
Aug 261 19455 29 181 0.2 12
Sep 1403 13377 59 157 0.2 7.6
Okt 2417 6777 189 94 3.8 7
Nov 6901 799 191 26 4.8 0.2
Dec 13379 210 192 21 5.6 0.2

Table 4.10: Reference design heating and cooling installation
Q̇HP,nom Q̇GB,nom Q̇P C,nom Q̇CH,nom GEOh GEOc nb

(kW) (kW) (kW) (kW) (%) (%) (-)

179 8 124 51 98 47 26

4.6.4 Result

Table 4.10 summarizes the results for the installation sizing: the thermal
power capacity of the HP, GB, PC and CH, denoted by respectively Q̇HP,nom,
Q̇GB,nom, Q̇PC,nom and Q̇CH,nom. For the borefield characteristics listed in
Table 4.8 and the load values listed in Table 4.9, the required GHE length
determined with GLHPRO amounts to almost 3600 m, equivalent to 26 BHEs
with a depth of 125 m. Assuming a specific investment cost of 50 e/m GHE (a
rough first estimate which includes the costs of piping and engineering [62]),
the borefield investment cost amounts to 180 000 e. This is a major term in
the total heating and cooling installation cost (see Chapter 8).

4.7 Chapter highlights

This chapter presented the system used as a reference, with description of:

• the two zone office building with concrete core activation (CCA),
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• the lay-out of the HyGCHP installation with HP, GB, PC and CH,

• the occupancy profiles and weather profiles,

• the thermal comfort requirements,

• the reference HC/CC-control strategies which serve as comparison for
MPC

• the installation and borefield sizing

– based on a dynamic building load calculation with a HC/CC-control
strategy

– using current HyGCHP design guidelines





Chapter 5

Building level control

5.1 Introduction

The question addressed in this chapter is: What is the impact of the controller
building model and the identification data set used for parameter estimation, on
the performance of MPC for office buildings with CCA in the presence of solar
and internal gains?

While the theoretical savings of MPC for building climate control compared
to conventional control strategies are promising, the practical savings largely
depend on the level of model mismatch and the quality of the disturbance
predictions. Obtaining a suitable controller building model constitutes a major
bottleneck and is currently an active research domain. Questions to be answered
are: Which model structure is adequate? Which variables should be measured
to identify the corresponding model parameters? Which information should be
contained in the identification data set? The more detailed the model, the larger
the number of parameters to be identified and thus the more information needed.
While detailed models theoretically allow better control performance, simpler
models may be better suited for practical implementation. Evaluation of the
suitability of the building model for incorporation within an MPC framework
therefore requires consideration of the complexity of the system identification
task, as well as the actual control performance within the MPC framework.
With respect to prediction errors, especially for buildings with high solar gains,
the stochastic character of solar radiation may jeopardize the MPC performance.

In this chapter, the performance of an MPC for the 2-zone office building
described in Chapter 4 is evaluated for different controller building models

63
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and prediction errors. As stated in Section 3.1, optimal control at building
level has already received significant research attention. Section 5.2 covers the
lessons learned from the literature which serve as input for the OCP formulation
presented in Section 5.3.3. Based on the insights gained, a grey-box modeling
approach is put forward. To answer the questions what the grey box model
structure should look like and which identification data are required to estimate
the corresponding parameters, different controller building models are identified
in Section 5.4. In Section 5.5 these models are evaluated within the MPC
framework. The simulations are performed for the reference design year using
the TRNSYS building model as simulator. The first part evaluates the impact of
the controller building model in the case of perfect disturbance predictions. The
second part evaluates the MPC performance in case of imperfect disturbance
predictions: the predictions are simply based on the past weather and occupancy
data, denoted by the term ’persistence prediction’. In both the first and the
second part, the supply water temperature of the North and South zone are
optimized individually. The third part evaluates the impact of optimizing only
one setpoint temperature - equal for both zones. This way, the performance
loss of lumped building level control versus zone level control is quantified. In
each part, MPC is compared to a reference rule based control (RBC) strategy.

5.2 Literature study

5.2.1 Choice of cost function

The main objective of building climate control is to satisfy thermal comfort at a
minimal energy cost. The OCP formulation should be such that the solution of
the optimization problem also optimizes the actual control performance. This
section starts with the lessons learned from the literature with respect to the
formulation of the cost function.

Thermal discomfort representation

As explained in Section 4.4, the requirement for thermal comfort for climates
such as the European Atlantic climate, can be translated in a requirement
for the operative temperature Top. Karlsson and Hagentoft [90], Kummert
[101] and Gayeski [59] incorporated a representation which closely matches the
PPD function as depicted in Figure 4.6, shown in Chapter 4, Section 4.4. The
temperature interval for which the PPD is close to 5%, is considered as the
tolerated thermal comfort band. When Top lies inside this temperature interval,
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the thermal discomfort cost is zero. Below the lower temperature bound
Tcomf,min and above the upper temperature bound Tcomf,max, the thermal
discomfort cost increases quadratically. Mathematically this is translated into
so-called soft constraints on Top, represented by the set of Eq.(5.1). Soft
constraints require introduction of slack variables, here denoted εc (K) and εh
(K), which are penalized quadratically in the cost function term Jd (K2h). Hc

(h) is the time horizon over which the thermal discomfort cost is evaluated. In
this chapter, this thermal discomfort representation is adopted.

Jd =
∫ Hc

0

(
ε2h + ε2c

)
dt with

{
εh ≥ Tz − Tcomf,max
εc ≥ Tcomf,min − Tz

(5.1)

Based on a detailed PPD evaluation using a detailed building simulator model,
Kummert and André [103] showed that the control profile minimizing this
approximated PPD representation (based on Top evaluation only) indeed
minimizes the actual PPD (including relative humidity). This observation
is important as it allows one to restrict the controller building model in the
OCP formulation to a thermal model. Evidently, building climate control in hot
and humid climates requires incorporation of a hygrothermal model [55, 56].

Based on the quadratic shape of the PPD-curve, a simplified approach is
to represent the thermal discomfort cost by a quadratic penalization of the
deviation of Top from the zone temperature setpoint [see e.g., 20, 186]:

Jd =
∫ Hc

0

(
Top − Top,ref

)2
dt (5.2)

This discomfort representation is adopted in Chapter 6, where the focus is more
on the installation level than on the building level, or, expressed in terms of
objectives, more on the energy cost than on the thermal discomfort cost.

Energy cost representation

If abstraction is made of the heat and cold production efficiency, a linear energy
cost representation Je (Wh) is a straightforward choice to minimize the total
heating and cooling energy demand [67, 101]:

Je =
∫ Hc

0

(
Q̇h + |Q̇c|

)
dt with

{
Q̇h ≥ 0
Q̇c ≤ 0

(5.3)
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where Q̇h (W) denotes the heating power and Q̇c (W) the cooling power.
However, also quadratic expressions, penalizing the time integral of the square
of the predicted power demand, i.e. Je (W2h), are found [see e.g. 143]:

Je =
∫ Hc

0

(
Q̇2
h + Q̇2

c

)
dt (5.4)

The benefit of a quadratic cost compared to a linear one, is that the resulting
optimization problem is better conditioned and thus in practice easier to
implement. Moreover, in Chapter 6 it it shown that the quadratic Je-
representation, which gives rise to a smooth and continuous heating and cooling
power profile, is beneficial for the control performance of modulating heat pump
systems. In this chapter, which deals with a modulating heating and cooling
device, we will therefore adopt the quadratic energy cost representation. In
Chapter 8, by contrast, dealing with on/off-controlled devices, the linear Je-
representation will be adopted. Note that if the efficiency of the heat and cold
production is taken into account, as well as the specific energy cost (e/Wh),
Je is expressed in terms of (e) or (e2) for respectively the linear and quadratic
Je- representation.

Single-objective versus multi-objective optimization

Thermal comfort can be maximized irrespective of the corresponding energy cost
[see e.g., 90]. Alternatively, cost functions containing only the energy cost, with
the thermal comfort requirement translated into hard constraints, are found [see
e.g., 128]. These approaches are often too conservative and might entail more
than proportional energy costs compared to a less stringent formulation. A
smarter way to deal with these conflicting objectives is to include both thermal
discomfort and energy cost in the cost function:

J = αeJe + αdJd (5.5)

This multi-objective representation suggests that thermal discomfort, just like
energy, has a monetary value. This is indeed the case. Seppanen et al. [156],
for instance, set up correlations expressing the effect of temperature on the
task performance in office environments. Fisk and Seppanen [52] translated
the impact of temperature and air quality to the costs related to health care,
absence rate and task performance.

Such a multi-objective approach is adopted by most researchers [see e.g., 20, 101,
103, 179, 186] and is also adopted in this work. The ratio between the weighting
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factors αe and αd (the units of which depend on the definition of Je, respectively
Jd) allows to determine the relative weight between both objectives. The trade-
off between thermal comfort and energy cost can be left to the occupant. To
assist this choice, a trade-off curve which visualizes Jd as a function of Je would
thus be helpful. The performance for the different MPC formulations in this
work is therefore - in most cases - analyzed by means of the trade-off curves
which are obtained by varying the ratio between αe and αd.

5.2.2 Choice of controller building model

Various model structures, ranging from black-box models to detailed first-
principle models, in what follows referred to as ’white-box models’, are discussed
in the literature. The quality of a black-box model largely depends on the quality
of the identification data set. As a consequence, this modeling approach is very
sensitive to measurement errors and unmodelled or unmeasured inputs. For the
application in buildings this is an important drawback due to the significant
presence of these non-idealities, as recognized by Rabl [145]. Complex statistical
tools to suppress all kinds of noise are required to obtain a satisfactory model
quality [49]. White-box models, by contrast, are solely based on prior physical
knowledge. While this may be an optimal choice in theory, it is not practical
for the application in buildings. Incorporating a detailed building model such
as TRNSYS Type56, in the optimization, yields an optimization problem which
is computationally expensive to solve [28]. Instead, a simplified building model
structure, such as a lumped resistance-capacitance (RC)-network representing
the most important thermal processes, is preferred. Not only they allow to
solve the optimal control problem much faster (and with more efficient solvers),
they also require significantly less data for determining the model parameters
and require significantly less input data to predict the model output. The
parameters of such a lumped model can be determined from physical insight, as
investigated by among others Fraisse et al. [53], Kummert [101], Ngendakumana
[124] and Masy [117]. This approach requires a considerable amount of physical
insight in the control relevant dynamics to concentrate all available information
on the building structure and material properties into a few number of model
parameters. For large-scale application of MPC, this step of concentrating the
control relevant dynamics into a few number of model parameters should be
automatized to reduce the required amount of physical knowledge and insight.
This results in the so-called grey-box modeling approach: the model structure
is based on physical insight, while the corresponding model parameters are
determined from measurement data. Compared to the black-box approach,
the grey-box approach is less sensitive to measurement noise and unmodelled
disturbances as the relation between the different states is a priori defined.
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Compared to the white-box approach, the required amount of data and physical
insight is reduced. Grey-box modeling for building climate control purpose has
been studied by a Bacher and Madsen [9] and applied in an MPC framework
by Bianchi [20] and Gayeski [59].

5.3 System description

5.3.1 System

Tws,S Twr,S Tws,N Twr,N

S N

1 1

TvsTvs

Figure 5.1: two zone office model with hydraulic network layout and indication
of the control variables Tws,N , Tws,S and Tvs.

This chapter focuses on the control at building level. The layout of the hydraulic
network is shown in Figure 5.1. Contrary to the reference case described in
Chapter 4, the 3-way-valves at zone level allow individual control of the supply
water temperature to the North and to the South zone, denoted by respectively
Tws,S and Tws,N . The heat and cold production system is represented by the
combination of an ideal boiler/chiller. The supply water temperature setpoint
for the ideal boiler/chiller is calculated in a post-processing step according to



System description 69

Eq.(5.6). Tws,set equals the maximum of Tws,N and Tws,S in heating mode,
respectively the minimum of both in cooling mode.

Tws,set =
{
max(Tws,N , Tws,S) if heating
min(Tws,N , Tws,S) if cooling

(5.6)

These are ideal devices in the sense that the setpoint for Tws,set is perfectly
tracked, at least if the required power does not trespass the maximum installed
heating power Q̇h,max (W) or cooling power Q̇c,max(W):

Tws,prod =

min(Tws,set, Twr + Q̇h,max

ṁprodcp,w
) if heating

max(Tws,set, Twr −
|Q̇c,max|
ṁprodcp,w

) if cooling
(5.7)

with ṁprod the water mass flow rate returning to the heat and cold production
system and cp,w (J/kgK) the specific thermal capacity of water. Q̇h,max and
Q̇c,max are equal to twice the static design load (see Chapter 4). The ventilation
air supply temperature Tvs is equal for both zones and determined by the
rules described in Chapter 4. Besides these controlled inputs, there are the
following uncontrolled inputs or ’disturbances’: Tamb, Q̇int and Q̇sol. The
controller should define the setpoints for Tws,N and Tws,S such that the operative
temperatures, Top,N and Top,S , lie within the defined thermal comfort interval.

The interaction between the TRNSYS simulation model used as emulator and
the controller implemented in Matlab, is shown in Figure 5.2. At each TRNSYS
simulation time step (0.2 h), Matlab is called (through the TRNSYS Type
155) to provide the values for Tws,N and Tws,S . With the reference control
strategy, presented in Section 5.3.2, Tws,N and Tws,S are determined by a
heating curve/cooling curve (HC/CC). The operation mode (heating, neutral or
cooling), in turn, is based on feedback of the controlled variable Tcv, for which
two choices are evaluated. With the MPC strategy presented in Section 5.3.3,
an optimal profile for Tws,N (t) and Tws,S(t) is determined based on predictions
of Tamb(t), Q̇int(t) and Q̇sol(t) and on a dynamic controller building model
which relates the Top,N (t) and Top,S(t) to all input variables. The dynamic
controller building model development is discussed in Section 5.4.

5.3.2 Reference control strategy

The control strategies used as reference are the two HC/CC-based control
strategies used for the building load calculation, presented in Section 4.6.1 on



70 Building level control

Meteo 
file 

Occupancy 
schedule 

solQ
intQ

ambT

AHU 
control 

vsT

NopNc TT ,, ,

SopSc TT ,, ,

Ideal boiler 
Ideal chiller 

NsolQ ,


SsolQ ,


NwsT , SwsT ,

wsT

wrT
,,NwsT SwsT ,

every TRNSYS simulation time step 

Controller 
Matlab  

Trnsys Type 155 

(MPC or HC/CC-control) 

2-zone-office 
TRNBUILD 
Trnsys Type56 

TRNSYS simulator 

Figure 5.2: Block diagram representing the information flows between the
simulator model implemented in TRNSYS and the controller implemented in
Matlab (HC/CC-control or MPC).

p.51. The first one, denoted by HC/CC-Top, uses feedback of the operative
temperatures Top,N and Top,S . The second one, denoted by HC/CC-Top, uses
feedback of the concrete core surface temperatures Tc,s,N and Tc,s,S . For
HC/CC-Top, 2 different sets of control parameter values are evaluated. The first
one yields better thermal comfort, the second one, denoted by HC/CC-Top(2),
yields a lower annual electricity consumption.

5.3.3 MPC formulation

Figure 5.3 presents a flow chart of the MPC framework. The procedure contains
the following steps:

1. feedback of the TRNSYS-simulation results for Tc and Top to the MPC,

2. prediction of the controlled input Tvs and the disturbances Tamb, Q̇int
and Q̇sol for the entire control horizon Hc,

3. determination of the controller model initial state X0 by the observer,

4. solving the OCP,
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Figure 5.3: Overview of the MPC framework

5. returning the calculated control input variables Tws to TRNSYS.

Tws,N and Tws,S are separately optimized. This is allowed since there is little
thermal interaction between the zones: first, they are separated by the corridor
and, second, they are kept at the same temperature. The above described
procedure is thus simply repeated for both zones, as indicated in Figure 5.3. In
what follows, the supply water temperature is represented by Tws (which can
be either Tws,N or Tws,S).

The OCP formulation, comprising the definition of the cost function, the building
dynamics, state initialization and state and input constraints, is presented below,
followed by the receding horizon strategy.

Cost function Based on the literature study, discussed in Section 5.2.1, the
cost function J (e) is defined as a weighted sum of the predicted energy cost
Je and thermal discomfort cost Jd, both evaluated over the control horizon
Hc(h), see Eq.(5.8). Je (kW2h), see Eq.(5.9), penalizes the sum of squared
electric powers, a cost representation which is found to yield good performance
for low-exergy emission systems combined with heat pumps as will be shown
in Section 6. Jd (K2h), see Eq.(5.10), penalizes temperatures above and below
the comfort band presented in Figure 4.7 on p.44, through soft constraints on
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the operative temperature Top. The ratio between the weighting factors αe
(e/kW2h) and αd (e/K2h) allows to move along the trade-off curve of energy
cost versus thermal discomfort. The optimal profile is discretized with a control
time step ∆tc of 1 h and the control horizon Hc is 48 h. The relatively long
control horizon of 48 h is required due to the large dominant time constant of
the CCA (about 10 h), especially to optimize the transition between week days
and weekend days [13].

min
Tws

(
αeJe + αdJd

)
(5.8)

Je =
Hc∑
k=0

[( Q̇h
COPh

)2 +
( Q̇c
COPc

)2]∆tc (5.9)

Jd =
Hc∑
k=0

(
ε2h + ε2c

)
∆tc with

{
εh ≥ Tz − Tcomf,max
εc ≥ Tcomf,min − Tz

(5.10)

Controller building model To solve the above defined OCP problem with a
convex solver, a linear discrete-time representation of the building dynamics is
required. This way, the building dynamics are translated into a set of nx Hc

linear equality constraints. The state space matrix representation is expressed
by Eq.(5.11). X (nx by 1) denotes the state vector, A (nx by nx) the system
matrix related to the states and B (nx by nu) the system matrix related to the
inputs U .

X(k + 1) = AX(k) + BU(k) (5.11)

with U(k) =
[
Tws(k)Tvs(k)Tamb(k) Q̇int(k) Q̇sol(k)

]T
Section 5.4 will discuss the controller building model in more detail.

State initialization The state vector is initialized with X0. If all states are
measured, X0 is directly obtained from the measurement data fed back to the
MPC at the start of the optimization. If not, an observer is used to estimate the
unmeasured states. In this study, a Kalman filter [182] is used for this purpose.

X(0) = X0 (5.12)
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Input constraints The minimum and maximum supply water temperature
Tws,min and Tws,max are set to respectively 17 ◦C and 40 ◦C.

Tws,min ≤ Tws ≤ Tws,max (5.13)

Receding horizon strategy The solution of the OCP, defined by Eqs.(5.8)-
(5.13), yields a 48 h profile for the control input variables Tws,N and Tws,S , and
the corresponding prediction of the operative temperatures Top,N and Top,S .
The actual Top-profile obtained in TRNSYS will differ from the predicted one
due to model mismatch between the simplified building model and the detailed
TRNSYS model and due to errors on the disturbance predictions Tamb, Q̇int and
Q̇sol. Therefore, the optimization process should be repeated at regular time
intervals, using updated measurement feedback and disturbance predictions. In
this study, the optimization is performed only once a day, at 0AM: the first
24 h-values of the calculated Tws,N and Tws,S-profiles are directly applied to
TRNSYS. 0AM is a good point in time to perform the optimization, as at that
moment there are the least amount of disturbances acting on the building, the
fast transients related to the occupancy have died out, and the transients related
to the start up of the heating or cooling in the morning have not yet started.
The measurements are then the least prone to process and measurement noise.

5.3.4 Control performance criteria

The control performance is evaluated in terms of:

• the total number of temperature exceeding hoursKhtot (Kh) (see definition
Section 4.4)

• the annual specific electricity demand for cooling and heating Ptot
(kWh/m2/year).

Both performance indicators constitute the trade-off curves, used for analysis.
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Figure 5.4: Input-output description of the controller building model.

5.4 Controller building model

5.4.1 Model structure

The controller building model should describe the response of Top of a single
zone (see Figure 5.3) to the controllable inputs (Tws and Tvs) and to the
disturbances (Tamb, Q̇int and Q̇sol), schematically represented in Figure 5.4.
Note that one could define the heat power to the CCA Q̇ws as control input
instead of Tws without fundamentally altering the model structure. The choice
for Tws as control variable is motivated by the knowledge that current heat
pump controllers require a setpoint for Tws. Additionally, Tws is easier to
measure than Q̇ws and thus more practical for system identification purpose as
well.

Based on physical insight in the main heat transfer processes of a building
zone, two model structures are proposed. The first model structure, depicted in
Figure 5.5(a), describes the heat transfer between the supply water and the CCA,
between the CCA and the zone and between the zone and the ambient air. There
are only two states, respectively the mean CCA temperature, denoted by Tc
(◦C), and the mean zone temperature, denoted by Tz (◦C), with corresponding
thermal capacity Cc (J/K) and Cz (J/K). The thermal resistances between
the states and the model inputs Tws, Tvs and Tamb are represented by the
R-components (K/W). The internal heat gains Q̇int (W) and solar gains
Q̇sol (W) are assumed to directly apply to the Tz-node. Only the fraction
of Q̇sol that actually reaches the zone, i.e. gwdQ̇sol with gwd (-) denoting
the g-factor of the windows, is applied to Tz. The heat transfer arising from
ventilation is represented by a thermal resistance between the ventilation air
supply temperature Tvs and the zone temperature Tz.
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Figure 5.5: Simplified building representation by means of (a) a 2nd order model
and (b) a 4th order model

The second model structure, depicted in Figure 5.5(b), allows to describe the
heat transfer processes in more detail. First, the heat transfer from the building
zone to the ambient air is split into the transmission losses through the outer
wall on the one hand, and through the windows on the other hand. To this end,
Two (◦C), representing the outer wall temperature, is added as an extra state.
A second additional state, Tint, represents the thermal mass of the inner walls
and furniture. This state is added to distinguish between the radiative and
the convective heat transfer processes in the zone: while the convective gains
directly influence the zone air temperature, the radiative gains are first absorbed
by the surfaces. Assuming that the internal gains are mainly convective, and the
solar gains mainly radiative, the inputs Q̇int and Q̇sol are applied to respectively
the node Tz and the node Tint.

In both the 2nd and 4th order model, Tz is assumed to be a representative
measure for Top.
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5.4.2 Model equations

Writing down the energy balance equations for the 2nd order model represented
in Figure 5.5(a) gives rise to the following set of differential equations:

Ṫc =(R1Cc)−1 (Tz − Tc) + (R3Cc)−1 (Tws − Tc)

Ṫz =(R1Cz)−1 (Tc − Tz) + (R4Cz)−1 (Tvs − Tz)

+ (R2Cz)−1 (Tamb − Tz) + Cz
−1Q̇int + Cz

−1gwdQ̇sol (5.14)

with Ṫ (Kh) denoting the time derivative of T . The 7 physical parameters Cc,
Cz, R1, R2, R3, R4 and gwd are now lumped into 7 model parameters p1 to p7:

Ṫc =p1 (Tz − Tc) + p2 (Tws − Tc)

Ṫz =p3 (Tc − Tz) + p4 (Tvs − Tz) + p5 (Tamb − Tz) + p6Q̇int + p7Q̇sol
(5.15)

The corresponding state space formulation is:

[
Ṫc
Ṫz

]
=
[
−(p1 + p2) p1

p3 −(p3 + p4 + p5)

] [
Tc
Tz

]
+
[
p2 0 0 0 0
0 p4 p5 p6 p7

]
Tws
Tvs
Tamb
Q̇int
Q̇sol


(5.16)

For the 4th order model represented in Figure 5.5(b), the energy balance gives
rise to the following set of differential equations:

Ṫc =(R1Cc)−1 (Tz − Tc) + (R3Cc)−1 (Tws − Tc)

Ṫz =(R1Cz)−1 (Tc − Tz) + (R7Cz)−1 (Tint − Tz) + (R5Cz)−1 (Tow − Tz)

+R4Cz
−1 (Tvs − Tz) + (R2Cz)−1 (Tamb − Tz) + C−1

z Q̇int

Ṫint =(R7Cint)−1 (Tz − Tint) + Cint
−1gwdQ̇sol

Ṫow =(R5Cow)−1 (Tz − Tow) +R6Cow)−1 (Tamb − Tow) (5.17)
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The 12 physical parameters Cc, Cz, Cint, Cow, R1 to R7 and gwd are now
lumped into 12 model parameters p′1 to p′12:

Ṫc =p′1 (Tz − Tc) + p′2 (Tws − Tc) (5.18)

Ṫz =p′3 (Tc − Tz) + p′4 (Tint − Tz) + p′5 (Tow − Tz) (5.19)

+ p′6 (Tvs − Tz) + p′7 (Tamb − Tz) + p′8Q̇int (5.20)

Ṫint =p′9 (Tz − Tint) + p′10Q̇sol (5.21)

Ṫow =p′11 (Tz − Tow) + p′12 (Tamb − Tow) (5.22)

with corresponding state space formulation:


Ṫc
Ṫz
Ṫint
Ṫow

 =


−(p′1 + p′2) p′1 0 0

p′3 −(p′3 + p′4 + p′5 + p′6 + p′7) p′4 p′5
0 p′9 −p′9 0
0 p′11 0 −(p′11 + p′12)



Tc
Tz
Tint
Two



+


p′2 0 0 0 0
0 p′6 p′7 p′8 0
0 0 0 0 p′10
0 0 p′12 0 0



Tws
Tvs
Tamb
Q̇int
Q̇sol

 (5.23)

The model parameters pi and p′i are determined by parameter estimation (PE)
in Section 5.4.3.

5.4.3 Parameter estimation

Search region

Initial model ini As stated in Section 2.3, PE requires a good initial guess
as the optimization problem of finding the set of parameters minimizing the
sum of squared errors between the model output and the measurements, is
non-linear. Since the model parameters have a physical meaning, the initial
values can be determined from the material properties and geometry of the
surfaces surrounding the office zone. The resulting starting values for the 2nd
and 4th-order model are listed in Table 5.1. Following rules have been used to
define the initial values of the RC-network [164]:
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• material properties are typical values, in this case taken from the Belgian
building standard NBN62-002:2008,

• the CCA is modelled using the star network approach developed by EMPA
[100] with a fictitious concrete core node as central point,

• the surface convective heat transfer for floor and ceiling is modelled using
the correlation from Awbi and Hatton [8],

• the surface convective heat transfer for vertical walls is modelled as a
constant: hinside = 7.7 W/m2K and houtside = 25 W/m2K,

• the internal capacity Cint is the thermal capacity of the lightweight
separation wall of the office zone, while the thermal resistance R7 includes
convection and conduction to the center of this wall,

• the outer wall is modelled by an optimized RCR-network, following the
methodology proposed by Masy [117]: from outside to inside it is composed
as 0.96R− 0.79C − 0.04R with R = the total thermal resistance and C
the total capacity of the wall,

• the g-factor of the window, gwd, is assumed to be independent of the solar
incident angle, and taken equal to 0.36.

Table 5.1: Initial parameter values for the 2nd and the 4th-order model (ini).
nx2 nx4

p1 1.12e-1 [1/h] p′1 1.12e-1 [1/h] p′7 1.04e-3 [1/h]
p2 6.02e-2 [1/h] p′2 2.03e+0 [1/h] p′8 4.53e-3 [K/kJ]
p3 2.03e+0 [1/h] p′3 2.80e+0 [1/h] p′9 6.43e-1 [1/h]
p4 2.40e-1 [1/h] p′4 3.21e-1 [1/h] p′10 1.04e-3 [K/kJ]
p5 1.00e-1 [1/h] p′5 2.40e-1 [1/h] p′11 7.49e-2 [1/h]
p6 4.53e-3 [K/kJ] p′6 1.00e-1 [1/h] p′12 7.48e-3 [1/h]
p7 1.60e-3 [K/kJ]

Search region The search region, defined by the set of constraints given in
Eqs.(5.24-5.25), is chosen relatively large to minimize the impact of the initial
model (and thus of the amount of prior system knowledge required). The lower
bound for pi or p′i is set to 10% of the initial value listed in Table 5.1, while the
upper bound is 10 times larger:
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0.1 pi,ini ≤ pi ≤ 10 pi,ini (5.24)

0.1 p′i,ini ≤ p′i ≤ 10 p′i,ini (5.25)

Identification data sets

Measurement time step and measurement length Due to its simplified
model structure and thus limited number of parameters, the controller building
model can not capture all dynamics of the office zone. The aim is to select the
ID set such that the obtained model captures the dynamics relevant for control
purpose. While Top responds very rapidly to changes in Q̇sol, for instance, it
changes much slower to changes in the controlled input variable Tws. This means
that, even if an accurate thermal comfort assessment would require inclusion of
the Top response to the fast changes in Q̇sol, the CCA thermal inertia limits the
control relevant dynamics to the hourly time scale. The slowest dynamics, on
the other hand, are determined by the building inertia. Based on the eigenvalues
of the initial physical model, the dominant time constant of the building is
estimated to be about 100 h. Therefore an identification data length of 100 h
with a measurement time step of 1 h is chosen, yielding a total of 100 data
points. With the ACADO solver used, this is, for the given model structures
with respectively 7 and 12 parameters, approximately the upper limit.

Measured variables In this study measurements are replaced by detailed
TRNSYS simulations. It is assumed that all inputs are perfectly measured, as
well as the operative temperature Top and the mean concrete core temperature
Tc. Top and Tc are both an output of the TRNSYS building type Type56.
In practice, Top can be measured through a radiative/convective temperature
sensor, while measuring Tc requires monitoring of the concrete core temperature
at different locations.

Excitation signals Starting from a detailed building simulation model, virtually
all combinations of excitation signals for the inputs Tws, Tvs, Tamb, Q̇int and Q̇sol
are possible. In practice, these inputs are only to a limited extent controllable.
The changes in Tws and Tvs are limited by the installed heating and cooling
power, while the profiles for Tamb, Q̇int and Q̇sol largely depend on the choice of
the measurement period (i.e., summer/winter, week/weekend). In this study, 5
different identification data sets (DS) are proposed, each with a different building
excitation signal. The 5 data sets are summarized in Table 5.2. At time step
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Table 5.2: Data sets for parameter estimation (DS1 - DS3: theoretical input
profiles; set DS4 - DS5: more realistic input profiles)

HVAC Weather Occupancy
Data set Tws Tvs Tamb Q̇sol Q̇int

DS1 Step Step Step 0 0
DS2 Step Step Step 0 Step
DS3 Step Step Step Step Step
DS4 Block Block Summer Summer Block
DS5 Block Block Winter Winter Block

t = 0, the building is at a steady state temperature with the ambient air of
20 ◦C.

The first three data sets, DS1 to DS4, comprise step excitations of an increasing
number of inputs. DS1 to DS3 comprise the response of Top and Tc to a step
input of Tws and Tamb. In DS1 there is additionally a step excitation of Tvs, in
DS2 of Q̇int and finally in DS3 all 5 inputs are excited by a step signal. The last
two data sets, DS4 and DS5, represent the office zone under realistic conditions,
respectively a typical working week in summer and a typical working week in
winter: the profiles for Tamb and Q̇sol are extracted from the Uccle Meteo data,
the profiles for Tws and Tvs are block functions, representing the on-off behavior
of the heating and ventilation system during a typical working week, and Q̇int
is also represented by a block function, approximating the internal gains during
office hours. The main difference between DS4 and DS5 is the amplitude of Q̇sol,
which in DS4 amounts to 850 W/m2 and in DS5 26 W/m2). The first 3 data sets
are interesting in order to learn how to excite the zone for the purpose of PE
when a detailed building simulation model is available. This is often the case for
larger buildings for which there is a tendency towards simulation assisted design.
The results of DS4 and DS5 are useful to assess the model quality obtained from
measurement data of a building under operation. As an illustration the input
and output profiles for DS3 (step input of all 5 inputs) and DS4 (typical working
week in summer) are plotted in Fig. 5.6. The left graphs depict the profiles
for the temperature inputs (Tws, Tvs, Tamb), the graphs in the middle the heat
inputs (Q̇sol and Q̇int) and the graphs at the right the corresponding outputs
(Tc and Tz).
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Figure 5.6: Inputs Tws, Tvs, Tamb (left), inputs Q̇sol and Q̇int (middle), and
measured outputs Tc and Tz (right) for the identification sets DS3 (above) and
DS4 (below)

Parameter estimation

The PE results for the 2nd order models are summarized in Table 5.3. The last
5 columns list the ratio of the parameter found with the respective data set, to
the parameter of the initial model (nx2-ini). For DS1 to DS3, the parameter
values found lie within the search region defined by Eq.(5.25). For DS4 and DS5,
by contrast, the search region had to be enlarged as the constraint on p was
found to be active for, among others, p3, p4, p5 and p6. Note that DS1, which
contains neither Q̇int nor Q̇sol in the excitation signal (see Table 5.2), does not
allow to estimate the corresponding model parameters p6 and p7 (see Eq.5.15).
DS1, containing Q̇int in the excitation signal but not Q̇sol, allows to estimate
p6 but not p7. As p6 and p7 theoretically only differ by one factor, namely the
g-factor of the window gwd, p7 for DS1 is taken equal to p6 times the g-factor of
0.36, as was done to set up the initial models nx2-ini and nx4-ini.

The time constants τ of the resulting 2nd and 4th order building models,
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Table 5.3: Parameter estimation result for the 2nd order model.
Initial model Ratio pi/pi,ini

nx2-ini (ini) DS1 DS2 DS3 DS4 DS5

p1 1.12e-1 [1/h] (1) 0.7 0.7 0.7 0.6 1.1
p2 6.02e-2 [1/h] (1) 1.5 1.6 1.6 1.3 0.8
p3 2.03e+0 [1/h] (1) 0.7 0.7 1.6 15.6 14.4
p4 2.40e-1 [1/h] (1) 0.9 0.8 1.6 0.1 9.1
p5 1.00e-1 [1/h] (1) 1.1 1.2 1.6 0.1 15.6
p6 4.53e-3 [K/kJ] (1) x 0.7 0.7 12.1 11.7
p7 1.60e-3 [K/kJ] (1) x gwdp6 0.7 2.8 10.7

represented by respectively the ’x’ and the ’o’ markers in Figure 5.7, allow
a physical interpretation of the PE results. The relatively large difference in
time constants of the different models, indicate a significant impact of the
identification data set on the building dynamics captured by the model. For
the 2nd order model, the smallest time constant, referred to as τ1 and related
to the zone dynamics (Top), is about 0.4 h for DS1 and DS2. The largest one,
referred to as τ2 and related to the dynamics of the CCA (Tc) amounts to 9 h.
With DS4 and DS5, by contrast, τ1 is one order of magnitude smaller, i.e. 0.02 h.
τ2 is only a little higher, namely 11 h. The time constants obtained with DS3
lie somewhere in between.

The impact of the identification data set for the 4th order building models is
relatively smaller than for for the 2nd order models. Except for DS4, which
constitutes a clear exception, the following results are obtained. The smallest
time constant τ1, which can be attributed to the dynamics of the zone (Top), is
for all data sets (except from DS4) about 0.15 h. For τ2, which can be attributed
to the dynamics of the internal mass (Tint), the variation is larger: τ2 ranges
from 1.5 h to 3 h. For τ3, which can be attributed to the dynamics of the CCA
(Tc) and τ4, related to the dynamics of the outer wall (Two), there is again
considerable correspondence between the results. τ3 amounts to 9 to 10 h and
τ4 amounts to 80 h. In comparison with these results, the time constants of
the model obtained with DS4 (typical summer) are all shifted towards smaller
values, indicating that all the degrees of freedom have been used to match the
fast changes observed for Top in response to Q̇sol. As a consequence, the large
dynamics related to the building envelope are not captured by the model. The
largest time constant for nx4-DS4 amounts to 12 h, which is even less than the
dominant time constant of a typical Tamb-profile.

Comparison of the two model structures shows that both the 2nd and 4th order
models capture the dynamics of the CCA, which has a dominant time constant
of approximately 10 h. For the initial model (ini) and the data sets without solar
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gains (DS1 and DS2), the time constant related to Top in the 2nd order model
lies in between the time constants of Top and Tint of the 4th order model. This
well illustrates the lumping effect caused by model order reduction. With DS4
and DS5, by contrast, the time constant related to Top for the 2nd order model
is smaller than for the 4th order model. This should not be the case, as the
spread in the τ -values should decrease with decreasing model order. From this
we conclude that DS4 and DS5 are not well suited for estimating the parameters
of the 2nd order model.

The results are obtained with a measurement sampling time step of 1 h. As
a consequence, the uncertainty on the time constants below 2 h is very large
(cfr. the Nyquist criterion). To investigate the reliability of these values, the
sampling time should be reduced down to 0.1 h or even less.
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Figure 5.7: Time constants of the 2nd order building model (indicated by the
markers ’×’) and 4th order building model (indicated by the markers ’◦’ and
connected by lines for inter-model comparison) obtained with PE for the 5
different identification data sets (DS1 - DS5). The initial models are shown on
the first row (ini).

5.4.4 Validation results

Table 5.4 and Table 5.5 list the RMSE (◦C) for Top for respectively the 2nd
and 4th order models. The rows represent the models (identified by using the
5 data sets), while the columns contain the corresponding validation results
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for each of the 5 data sets. The RMSE is calculated according to Eq.(5.26),
with Tz being the zone temperature predicted by the model and Top the actual
measured operative temperature.

RMSE =

√∑N
k=1(Tz(k)− Top(k))2

N
(5.26)

The sum of squared errors between both temperatures is evaluated for the entire
validation set, comprising of N=100 data points. Note that the values of the
RMSE are here mainly used for comparing the relative accuracy of the different
models. The absolute value of the RMSE scales with the input signal as can be
seen from Eq.(5.26). The absolute value of the RMSE is therefore only relevant
for the validation results of DS4 and DS5 which correspond to realistic input
profiles.

The terminology used in this section is:

• val-DS1 refers to data set DS1 used for validation

• nx2-DS1 refers the 2nd order model with parameters estimated with data
set DS1

• nx4-DS1 refers the 4th order model with parameters estimated with data
set DS1

• nx-DS1 refers to both 2nd and 4th order model with parameters estimated
with data set DS1

Table 5.4: RMSE (◦C) on zone operative temperature Top (2nd order)
val-DS1 val-DS2 val-DS3 val-DS4 val-DS5

nx2-ini 0.4 0.7 6.5 3.1 0.8
nx2-DS1 0.4 2.8 12.0 5.1 2.6
nx2-DS2 0.5 0.2 2.1 2.3 0.9
nx2-DS3 1.3 0.7 0.8 1.8 0.9
nx2-DS4 4.3 0.9 3.1 1.3 2.1
nx2-DS5 0.6 0.2 3.8 2.9 0.6

The validation results show that the initial 2nd order model nx2-ini accurately
predicts the response of Top to a step change in Tws, Tvs and Tamb (see first
two columns). The response to Q̇int and Q̇sol, contained in DS3 and DS4, is not
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Table 5.5: RMSE (◦C) on zone operative Top (4th order)
val-DS1 val-DS2 val-DS3 val-DS4 val-DS5

nx4-ini 0.9 0.7 5.1 2.2 0.6
nx4-DS1 0.1 2.6 11.8 5.2 2.5
nx4-DS2 1.1 0.1 8.5 3.3 0.9
nx4-DS3 1.0 1.5 0.3 1.1 1.1
nx4-DS4 2.5 0.8 1.7 1.0 1.3
nx4-DS5 0.9 1.7 20.5 8.5 0.6

well described and results in unacceptably high RMSE values. Compared to
nx2-ini, nx4-ini performs less well for DS1 to DS2 and slightly better for DS3
and DS4. However, the RMSE for the latter two validation data sets remains
unacceptably high. These results indicate that, first, the typical rules of thumb
for determining the RC-values of a simplified building model are not suitable
for describing the response of Top to Q̇int and Q̇sol. Second, increasing the
complexity of the model structure does not guarantee improvement of the model
quality.

The models nx2-DS1 and nx4-DS1 do not include the response of the building
to the inputs Q̇int or Q̇sol (see e.g. Table 5.3: p6 and p7 are zero). The RMSE
for DS3 and DS4 (which both contain a significant amount of Q̇sol), however, are
decreased from resp. 31 ◦C and 13 ◦C to 12 ◦C and 5 ◦C for the 2nd order model,
and from resp. 25 ◦C and 10 ◦C to 12 ◦C and 5 ◦C for the 4th order model,
compared to the initial models. This indicates that it is better to not describe
the response to Q̇int or Q̇sol at all, than to describe it erroneously. However,
the RMSE remains unacceptably high. Moreover, the validation results for the
other data sets, i.e. DS1, DS2 and DS5, are not improved and in some cases even
deteriorated compared to the initial models. Therefore no general conclusion
can be drawn regarding the model quality improvement obtained through PE
with a step excitation of the temperature inputs Tws, Tvs and Tamb compared
to a well chosen initial model.

Compared to DS1, DS2 has additionally a step excitation of Q̇int. The validation
results for the models obtained with DS2 are now significantly improved
compared to the initial models, and this for all data sets. Contrary to nx2-DS1
and nx4-DS1, nx2-DS2 and nx4-DS2 do include the response of the building to
Q̇int and Q̇sol. For nx2-DS2, the RMSE for DS3 and DS4 amounts to respectively
2 and 1.5, compared to 12 and 5 for nx2-DS1. Since Q̇sol is not contained in the
identification data set, this improvement is explained by the fact that parameter
p7 of nx2-DS2 has been set equal to gwdp6 (see Table 5.3. This trick could not
be applied for nx4-DS1 (in the 4th-order model Q̇int and Q̇sol apply to different



86 Building level control

nodes), which explains why the validation results for nx4-DS2 are inferior to
the ones for nx2-DS2. Analogously to the initial models, the increased model
complexity of the 4th order model therefore does not yield an improved model
quality.

DS3 has a step excitation of the five inputs, including Q̇sol. The latter input is
treated as a pure radiative term in TRNSYS, and is there absorbed by the inner
wall surfaces. As a consequence, this data set should enable to further improve
the quality of the 4th order model compared to the previous data sets. The
validation results indicate that the prediction error for the data sets including
solar gains, DS3 to DS5, is indeed further reduced compared to the models
obtained with DS2. This improvement is at the expense of a slight deterioration
of the response prediction for DS1 and DS1.

DS4 is similar to DS3 as it excites all five inputs. The difference between both
data sets is the frequency contained in the excitation signal. Step functions
and block-functions contain a broad frequency range, contrary to a sinusoidal
function which has only one frequency. In DS3, the building is excited by a step
input of Tamb, while in DS4 it is excited by a sinusoidal input representing a
realistic profile of Tamb. DS4 therefore contains less information than DS3. This
is confirmed by the validation results, showing an increased RMSE with DS4
compared to DS3 for all data sets. The relatively high RMSE for the first data
set (val DS1) compared to the other models indicates that the deteriorated model
performance of nx-DS4 can indeed be attributed to a less good description of
the Tamb response.

DS5, finally, differs from DS4 only in the inputs Tamb and Q̇sol. Representing a
typical winter condition, the amplitude of Q̇sol is far smaller than in DS5. The
obtained model fails to predict Top for the data sets DS3 and DS4 containing large
Q̇sol-values. For the validation sets without Q̇sol (DS1 and DS2), on the contrary,
the model performs better than DS4. Compared to nx-DS1 and nx-DS2, on the
other hand, nx-DS5 performs worse.

From the validation results discussed above, following major trends are observed.
First, there is a clear distinction between the models identified with data
containing strong excitation of Q̇sol (DS3 and DS4) and those without (DS1,
DS2 and DS5). The latter are unable to predict the response of Top to Q̇sol,
impeding the use of these models for typical summer weather conditions (DS4).
The good validation results for nx2-DS2 are explained by the fact that the
model parameter p6, identified in the presence of input Q̇int, has been used to
estimate p7, the model parameter defining the response of Top to Q̇sol. That
this trick can be applied, can be regarded as an advantage of the grey-box
modeling approach over black-box system identification.
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Second, data sets with step input signals (DS1 to DS3) yield better models than
data sets representing a building under typical operation conditions (DS4 to
DS5). It may thus be worth to first identify an initial model off-line, based on a
detailed building simulation model, which can then be further fine tuned on-line.
Especially the lack of frequency content of a typical Tamb-profile may corrupt
the model quality.

Third, a 4th order model performs better than a 2nd order one only if the
identification data contain Q̇sol as excitation signal (DS3 and DS4). The
other data sets apparently do not contain enough information to estimate
the parameters of the 4th order model well. The satisfactory model accuracy
for nx2-DS2 even suggests that a 2nd order model is sufficient to describe the
response of Top to all inputs, including Q̇int and Q̇sol and that, at least for the
investigated data sets, the additional parameters of the 4th order model are
redundant.

In the next chapter we will investigate how these models perform in an MPC
framework. How sensitive is the control performance to the controller building
model used? And do we need a model which is able to predict the response of
Top to Q̇sol or not? The latter is important since, as we have seen, this requires
a richer identification data set with inclusion of the solar gains. For practical
implementation, measuring Q̇sol entails significant additional measurement
effort, so it would be interesting if this requirement for measuring Q̇sol could
be relaxed.

5.4.5 Incorporation of the model in the MPC framework

To solve the OCP (defined in Section 5.3.3) with a convex solver, a discrete-time
representation of the identified building models is required. The discretization
time equals the control time step ∆tc, namely 1 h. This way, the building
dynamics are translated into a set of nxHc linear equality constraints. The
model equations for the 2nd and 4th order model are shown in respectively
Eqs.(5.27) and (5.28). A (nx × nx) denotes the system matrix related to the
states, BT (nx × 3) the system matrix related to the temperature inputs Tws,
Tvs and Tamb, BQ (nx × 2) the system matrix related to the thermal power
inputs Q̇int and Q̇sol and ∆Tz an on-line updated term to compensate for model
mismatch. The distinction between BT and BQ is made to emphasize the
difference between the models which take the thermal power inputs into account
(ini, DS2, DS3, DS4 and DS5) and those which do not (DS1). In the latter case
BQ is equal to zero.
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Discrete-time representation of 2nd order model:

[
Tc(k + 1)
Tz(k + 1)

]
= A

[
Tc(k)
Tz(k)

]
+ BT

 Tws(k)
Tvs(k)
Tamb(k)

+ BQ

[
Q̇int(k)
Q̇sol(k)

]
+
[

0
∆Tz(k)

]
(5.27)

Discrete-time representation of 4th order model:


Tc(k + 1)
Tz(k + 1)
Tint(k + 1)
Tow(k + 1)

 = A


Tc(k)
Tz(k)
Tint(k)
Two(k)

+ BT

 Tws(k)
Tvs(k)
Tamb(k)

+ BQ

[
Q̇int(k)
Q̇sol(k)

]
+


0

∆Tz(k)
0
0


(5.28)

For the models obtained with data set DS1, the omission of the response of Top to
the inputs Q̇int and Q̇sol is the main source of model mismatch. The predicted
Tz will be lower than the actual Top, especially during occupancy hours and
periods with high solar gains. To compensate for this model mismatch, the MPC
will track the actual Top, fed back from the TRNSYS simulator, and compare
this to the one predicted by the optimization. Based on this comparison, two
simple error compensation strategies are presented and evaluated. The first
method, referred to as c1 and expressed by Eq.(5.29), is to update ∆Tz each
24 h: ∆Tz for the next day d, denoted by ∆Tz,d, updates the correction factor of
the previous day, ∆Tz,d−1, with the mean value of the prediction error over the
past 24 h. Top,MPC(d−1)(k) in Eq.(5.29) represents the prediction for Top made
within the MPC framework for the past 24 h, while Top(t) represents the actual
measured values. To prevent unstable control behavior, ∆Tz may not react too
quickly to the last observed prediction errors. Here, the learning factor β is
chosen equal to 5%.

c1 : ∆Tz,d = ∆Tz,d−1 + β
(
Top(t− 24 : t) − Top,MPC(d−1)(1 : 24)

)
(5.29)

The recorded prediction error profile, however, contains more information than
what is deployed by method c1. Given the origin of the model mismatch, we
know that the prediction error on Top will be correlated with the inputs Q̇int
and Q̇sol. The second method, referred to as c2, uses this information: the
correction term ∆Tz is updated for each time of the day individually, resulting
in a 24h-profile ∆Tz(k), see Eq.(5.30). The difference between week days (wd)
and weekend days (wknd) is acknowledged by storing two distinct ∆Tz-profiles,
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as expressed in Eq.(5.31).

c2 :
{

∆Tz(k) = ∆Tz(k)wd or ∆Tz(k)wknd for k = 1 : 24
∆Tz(k) = ∆Tz(k)wd or ∆Tz(k)wknd for k = 25 : Hc

(5.30)

with the vectors being updated as follows:

∆Tz(k)wd = ∆Tz(k)wd + β
(
Top(t− 24 + k)− Top,MPC(d−1)(k)

)
(5.31)

if d− 1 = week day

∆Tz(k)wknd = ∆Tz(k)wknd + β
(
Top(t− 24 + k)− Top,MPC(d−1)(k)

)
if d− 1 = weekend day

The models obtained with DS2 to DS5 are able to capture the influence of Q̇int
and Q̇sol on Top, at least to a certain extent (see validation results Section 5.4.4).
It will be investigated whether these models can also benefit from the prediction
correction methods c1 and c2. The results are compared to the case without
model correction, referred to as c0.
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5.5 Control performance evaluation

This chapter evaluates the sensitivity of the MPC performance on the controller
building model for the following three scenario’s: (1) perfect disturbance
predictions, (2) imperfect disturbance predictions, (3) lumped building level
instead of zone level control. MPC is each time compared to the reference
HC/CC controller described in Chapter 4.

5.5.1 Scenario 1: Perfect disturbance predictions

The assumption of perfect disturbance predictions allows us to isolate the impact
of model mismatch on the MPC performance. To include the effect of the solar
shading (for the South zone), the data vector with the Q̇sol,South prediction is
preprocessed for Hc before it is applied to the MPC: the prediction of Q̇sol,South
is corrected with gsolshade at times when the solar shading is down, according
to the device’s controller settings (see Chapter 4 on p.36).

Figure 5.8(a) and Figure 5.8(b) show the Top profile for the South zone obtained
with MPC using respectively the nx4-ini and nx4-DS4 models with Tws,
Tvs, Tamb, Q̇int and Q̇sol as inputs. The profiles for the nx4-ini model
illustrate how an incorrect description of the response of Top to Q̇int and
Q̇sol may result in an intolerably bad MPC performance. While MPC with the
nx4-DS4 model succeeds to keep Top within the comfort band, nx4-ini results
in too low temperatures. This result is explained by comparing the predicted
operative temperature Top,pred with the actual Top, depicted in Figure 5.8(c)
and Figure 5.8(d). While nx4-DS4 predicts Top relatively accurately, nx4-ini
significantly overestimates Top. The MPC therefore asks to start cooling at full
capacity for the next hours. As a consequence the actual Top drops significantly.
The next time the MPC is called, the optimization determines to first reheat
the building, before starting cooling again. As expected from the validation
results listed in Table 5.4 and Table 5.5, also the models which do not include
Q̇int and Q̇sol as inputs (nx2-DS1 and nx4-DS1), yield unsatisfactory control
performance. With these models, Top is underestimated. As a consequence, the
MPC proposes to start heating when not required - or does not start cooling
when required - which results in a high thermal discomfort cost. In summary,
models which do not well describe the response of Top to Q̇int and Q̇sol, are not
suited for implementation in MPC, at least not in this way. In what follows,
the impact of adding an adaptive correction term ∆Tz to the model equations,
as indicated by respectively Eq. (5.29) and Eq. (5.30), is investigated.
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Figure 5.8: (a),(b) Annual Top-profile obtained with MPC incorporating
respectively model nx4-ini and model nx4-DS4. (c),(d) Comparison of the
actual Top (full line) and the predicted one (dashed line) for a typical summer
week.

Figures 5.9(b),(c) and (d) allow a first qualitative comparison of the control
performance obtained with the different implementations of ∆Tz (see Eqs.(5.30)-
(5.31)). The specific annual electricity consumption Ptot (kWh/m2/year) for
space heating and cooling, is displayed on the x-axis. The total amount of
temperature exceeding (both positive and negative) hours (Kh) is displayed on
the y-axis. Distinction between the model structures is made by the markers,
distinction between the identification data sets is made by the colors. The
maximal thermal discomfort level is indicated by the horizontal line at 200 Kh,
which corresponds to a fraction of 10% of the office hours for the South and
North zone together (see Section 4.4). The performance obtained with the
HC/CC control is added as a reference.
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Figure 5.9: Comparison of the MPC control performance obtained with the
different model structures (nx2 (white) versus nx4 (colored)) and identification
data sets (DS1 - DS5) and this for the different choices for ∆Tz. The performance
of the HC/CC-Tc,s control strategy is indicated by the marker ’+’. The thermal
discomfort limit of 200 Kh for both zones together, is indicated by the dashed
horizontal line.
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Figure 5.9(a) shows the results if no correction term is added, i.e. ∆Tz = 0.
In this case, the nx2-DS2 and nx4-DS3 models are found to be the only ones
yielding a satisfactory thermal comfort level at an acceptable cost. When no
correction term is added, omitting Q̇int and Q̇sol in the ini and DS1 models
inevitably results in a systematic underestimation of Top. This results in an
overestimation of the heating loads and an underestimation of the cooling loads.
As illustrated by Figure 5.10(a), Top remains in winter between the thermal
comfort bounds, but its mean value is about 1 ◦C higher than required. In
summer, Top systematically exceeds the upper limit by more than 2 ◦C, which
results in an unacceptably high number of temperature exceeding hours.

Figure 5.9 (c) shows the MPC performance in case ∆Tz is constant over the
entire prediction horizon, namely equal to the running mean temperature
prediction error (see Eq.5.29). The actual and predicted Top for a typical
summer week are plotted in Figure 5.10(c) for the nx2-DS1 model. Compared
to the profile in Figure 5.9(a) the predicted Top comes closer to the actul Top,
which shows less exceeding hours in this summer week. Comparison of Figure
5.9(c) with Figure 5.9(a) shows that the correction term significantly improves
the control performance. In winter, thermal comfort is achieved with reduced
heat demand while in summer the number of temperature exceeding hours is
reduced. However, the latter still amounts to 2000 Kh, being far above the
tolerated limit of 200 Kh for the North and South zone together.

For the models nx-ini and nx-DS1 the prediction error is strongly correlated
with Q̇int and Q̇sol; the models nx-ini since they do not adequately describe
the response of Top tho those inputs, and the models nx-DS1 since they simply
do not incorporate these inputs. This correlation is illustrated for the model
nx4-ini in Figure 5.10(a) which depicts both the actual and predicted Top for a
typical summer week. This prediction error profile as a function of time contains
valuable information which should be deployed to improve the predictions of Top
and thus the MPC performance. A simple and straightforward way to capture
this information is to use the prediction error profile of the last 24 hours to
update the vector ∆Tz (see Eqs.(5.30)-(5.31)). To avoid instability resulting
from a too fast changing correction action, a low value for the learning factor β
is chosen, namely 0.05 and the ∆Tz-profile is each time smoothened to remove
peaks caused by random disturbances. Distinction is made between week days
and weekend days. Figure 5.10(e) reveals that with this approach the nx2-DS1
model achieves a good prediction of Top. Figures 5.10(b), 5.10(d) and 5.10(e)
show that the nx4-DS4-model, which was already good at the start, benefits
slightly from method c1, while no further improvement is realized with method
c2.
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Figure 5.10: Comparison of actual Top (full line) and predicted Top (dashed
line) for models nx2-DS1 (left) and nx4-DS4 (right) with correction c0 (top), c1
(middle) and c2 (bottom).
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Table 5.6: RMSE (◦C) on the prediction of the operative temperature of
the South zone Top,S as a function of the model order (nx2 and nx4), the
identification data set (DS1-DS5) and the error correction method (c0, c1, c2).
De initial models (ini) are added as a reference.

RMSE (◦C)
c0 c1 c2 c0 c1 c2

nx2-ini 2.8 1.8 1.1 nx4-ini 1.9 1.5 0.6
nx2-DS1 2.2 1.6 0.4 nx4-DS1 2.0 1.6 0.4
nx2-DS2 1.1 1.1 0.4 nx4-DS2 1.3 1.1 0.4
nx2-DS3 1.2 1.2 0.5 nx4-DS3 1.1 1.1 0.4
nx2-DS4 1.7 1.5 1.3 nx4-DS4 1.5 1.2 0.7
nx2-DS5 2.2 1.7 0.9 nx4-DS5 1.5 1.3 0.5

Table 5.7: Control performance (expressed as Khtot and Ptot) as a function
of the model order (nx2 and nx4), identification data set (DS1-DS5) and error
correction method (c0, c1, c2). De initial models (ini) and the HC/CC-control
strategies are added as a reference.

Khtot Khtot Khtot Ptot Ptot Ptot

c0 c1 c2 c0 c1 c2
(Kh) (Kh) (Kh) [ kWh

m2y ] [ kWh
m2y ] [ kWh

m2y ]

HC/CC - Tc,s 62 62 62 13 13 13
HC/CC - Top 62 62 62 14 14 14
HC/CC - Top(2) 200 200 200 12 12 12

MPC nx2-ini 2281 144 208 29 41 19
MPC nx2-DS1 6679 3497 165 6 7 11
MPC nx2-DS2 25 24 88 13 13 11
MPC nx2-DS3 216 222 122 11 11 11
MPC nx2-DS4 895 697 1969 11 10 9
MPC nx2-DS5 1052 77 183 30 34 18

MPC nx4-ini 224 126 127 39 32 14
MPC nx4-DS1 5728 3199 139 7 8 11
MPC nx4-DS2 2339 624 115 9 10 11
MPC nx4-DS3 39 19 87 12 13 11
MPC nx4-DS4 383 204 388 11 11 11
MPC nx4-DS5 118 28 95 27 28 12

Figure 5.9 (d) indicates that, in general, introduction of the time-dependent
profile for ∆Tz significantly improves the MPC performance. For the DS4-
models, on the contrary, the thermal comfort level significantly deteriorates.
Analysis of the ∆Tz-profile shows that this is caused by instability of the
prediction correction profile, despite the low β-factor. This can be explained
by the fact that for these models, which explicitly take the effect of Q̇int and
Q̇sol into account, ∆Tz is less correlated to Q̇int and Q̇sol and therefore more
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sensitive to other sources of model mismatch with the TRNSYS-model. This
indicates that, if the model is already fairly good by itself, the simple approach
adopted here to capture the information contained in the prediction error
profile, is inadequate. In that case, the use of more sophisticated disturbance
prediction models should be investigated. However, for the majority of the
models investigated, the improvement obtained with this simple correction
approach is significant.

The impact of the model structure (nx2 versus nx4), the identification data set
(DS1-DS5) and the prediction correction method (c0, c1 and c2) on the prediction
error of Top is summarized in Table 5.6. The RMSE (◦C) is calculated using
the model within the MPC framework over an entire year, with the MPC being
called each 24h. The impact on the resulting MPC performance is summarized
in Table 5.7. Comparison of the two tables shows a strong correlation between
the prediction quality and the model performance.

From both Table 5.6 and Table 5.7 it is clear that the correction method c2
drastically improves the results for most models. Correction method c1 improves
the performance less and, moreover, only for the models nx-ini and nx-DS1
which not or badly describe the response of Top to Q̇sol.

The comparison reveals that the control performances achievable with the DS1-
models, which do not have Q̇int and Q̇sol as input, are comparable to the
control performances of the DS2, DS3, DS4 and DS5-models which make use of
perfect Q̇int and Q̇sol-predictions. This result is of huge practical relevance as
it indicates that one can avoid Q̇int and Q̇sol-predictions which in practice are
difficult to measure and hard to obtain. Instead, their effect can be taken into
account by simply compensating for the recorded model prediction error. An
additional benefit is that the MPC performance with the DS1- models using
correction method c2 does not seem to be very sensitive to the model structure.
With the DS2, DS3, DS4 and DS5-models incorporating Q̇int and Q̇sol-predictions,
on the contrary, the MPC performance seems to be more sensitive to both
the model structure and identification data set used. In this case, a 4th order
model is required and data set DS3, containing consecutive step-excitations of
the five inputs, yields by far the best performance. This was already indicated
by the analysis of the parameter estimation data, see Section 5.4.4. The results
obtained with DS4 and DS5, which are idealized representations of four typical
office days in respectively summer and winter, suggest that the winter period
- characterized by smaller solar gains - is better suited for performing system
identification.

Finally, comparison with the well-tuned HC/CC reference controller shows that
MPC has the potential to reduce the electricity consumption by over 15% for



Control performance evaluation 97

10 15 20 25
0

50

100

150

200

250

300

350

400

450

500

Specific electricity consumption (kWh/m2)

T
he

rm
al

 d
is

co
m

fo
rt

 (
K

h)

 

 
MPC nx2−DS1−c2
MPC nx2−DS2−c2
MPC nx2−DS3−c2
MPC nx2−DS5−c2
HC/CC−T

c,s

HC/CC−T
op

HC/CC−T
op

(2)

Figure 5.11: Evaluation of thermal discomfort versus electricity demand obtained
with MPC (Scenario 1: perfect disturbance prediction) with controller building
models nx2-DS1, nx2-DS2, nx2-DS3 and nx2-DS5, all evaluated with the
correction term c2. The results for nx2-DS4, having unsatisfactory control
performance, are not displayed. The control performance obtained for three
HC/CC-control strategies are shown as a reference. The thermal discomfort
limit of 200 Kh for both zones together, is indicated by the dashed horizontal
line.

the same or even a fewer number of temperature exceeding hours Khtot. One
of the reasons is that MPC makes use of the entire comfort temperature range
while the HC/CC control is more conservative. The fact that the optimal MPC
operation for the proposed cost function lies at the temperature boundaries, i.e.
at the lower limit in winter and at the upper limit in summer, explains why the
MPC performance is so sensitive to prediction errors on Top.

The prediction correction method c2 with the time-dependent profile for ∆Tz(k)
allows to a large extent to compensate for the model mismatch introduced by
the neglect of the inputs Q̇int and Q̇sol in the controller models obtained with
DS1. The question arises to which extent this correction method allows to avoid
the need for an accurate prediction of Q̇int and Q̇sol. The answer can be derived
from Figure 5.12. Figure 5.12(a) shows the trade-off curve between Khtot and
Ptot obtained with respectively the nx2-DS2 model (with all inputs perfectly
predicted) and the nx2-DS1 model(which only accounts for the inputs Tws, Tvs
and Tamb). For a thermal discomfort level corresponding to approximately
150 Kh (for the two zones together), the difference in total annual electricity
consumption is only 3%. Considering the difference in complexity, this is only
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a small energy cost increase. The problem with the nx2-DS1 model, however,
is that this 150 Kh is quasi the lowest thermal discomfort level that can be
achieved. Increasing the weight of the thermal discomfort cost Jd in the cost
function, does not result in a lower number of temperature exceeding hours.
The trade-off curves displayed in Figure 5.12(b) and Figure 5.12(c) suggest
that the problem lies in an underestimation of the cooling loads. This holds
for all models that are not able to incorporate the predictions of Q̇int and Q̇sol.
However, the question arises whether this problem originates from the neglect of
Q̇int and Q̇sol as inputs, or whether it rather originates from the fact that the
correction term ∆Tz is based on past data instead of exact future predictions.

The results of this first case, with perfect disturbance predictions, show that
the MPC performance is extremely sensitive to the controller building model.
If the model mismatch is too large, the MPC performs worse than a standard
HC/CC control (see Figure 5.9). Without model mismatch correction term (∆Tz
correction c0), MPC fails in 75% of the cases. Fortunately, model mismatch
compensation can significantly improve the MPC performance. Updating the
zone temperature prediction of the next 48 h with the recorded prediction error
of the last week day or weekend day (∆Tz correction c2) is shown to work
extremely well. MPC then outperforms the standard HC/CC control strategy
in 75% of the cases. For a comparable thermal comfort level, the energy cost
savings amount to almost 20%. With ∆Tz correction c2, the difference between a
2nd and a 4th order model is almost negligible. This is an important observation
as one would expect the 4th order model to be more accurate, especially under
the investigated assumption of perfect disturbance prediction. Contrary to the
model structure, the identification data set used for PE, however, remains an
important factor. An inadequate identification data set, such as DS4, results
in a bad control performance even in case of prediction error correction. To
conclude, using very simple 2nd order building models in an MPC framework,
with a correction term compensating for model mismatch, allows savings up
to 20% compared to conventional HC/CC control. In the next paragraph,
the energy savings potential is investigated in case the assumption of perfect
disturbance prediction is relaxed.
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Figure 5.12: Evaluation of thermal discomfort versus electricity demand
obtained with MPC (Scenario 2: persistent disturbance prediction) with
controller building models nx2-DS1, nx2-DS2 and nx2-DS3, all evaluated
with the correction term c2. The results for nx2-DS4 and nx2-DS5, having
unsatisfactory control performance, are not displayed. The control performance
obtained for three HC/CC-control strategies are shown as a reference. The
thermal discomfort limit of 200 Kh for both zones together, is indicated by the
dashed horizontal line.

5.5.2 Scenario 2: Imperfect disturbance predictions

Various studies suggest that a simple weather forecast, based on the past day,
yields satisfactory control performance [see e.g., 101, 186]. In this section,
we evaluate how this so-called ’persistent prediction’ compares to the case
with perfect disturbance prediction. This allows to quantify the impact of the
disturbance prediction quality on the MPC performance. The results also allow
to analyze whether the conclusions with respect to the controller building model,
formulated under the assumption of perfect disturbance prediction, still hold in
this more realistic scenario. A more detailed model may be more sensitive to
prediction errors than a simple model.

Figure 5.13 compares the control performance obtained by the persistent
disturbance prediction (’Scenario 2’) with the perfect prediction case (’Scenario
1’). The trade-off curves are evaluated with the controller building model
nx2-DS2 and prediction correction method c2. For this model, which is among
the best performing for Scenario 1, the annual specific electricity consumption
Pel increases with 0.8 kWh/m2year, which is a relative increase of 7%. The
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Figure 5.13: Comparison of the control performance in the Je-Jd-plane in the
case of perfect disturbance prediction (’Scenario 1’) and in case of persistent
prediction (’Scenario 2’) with controller building model nx2-DS2 and correction
method c2. The control performance obtained for three HC/CC-control
strategies are shown as a reference. The thermal discomfort limit of 200 Kh for
both zones together, is indicated by the dashed horizontal line.

electricity consumption reduction which as achieved by MPC compared to
a standard HC/CC-strategy (’HC/CC Top’ and ’HC/CC Top(2)’) is thereby
decreased from respectively 25% and 16% to 13% and 7%. Moreover, the
annual specific electricity consumption obtained with the best HC/CC-strategy
(’HC/CC Tc,s’), based on feedback of the concrete core surface temperature
Tc,s, is 1.6% less than with MPC Scenario 2 for the same thermal comfort level.
It should thus be concluded that good predictions are crucial to obtain high
MPC performance.
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Figure 5.14: Relative difference in heating demand (red) and cooling demand
(blue) between the North zone and South zone in case of zone-level MPC. The
results are obtained with the controller building model nx2-DS2 with correction
term c2. The South zone has automated solar shading.

5.5.3 Scenario 3: Zone-level versus lumped-building-level
control

In the above described cases, Tws,S and Tws,N have been optimized individually.
Such a zone-level control strategy requires measurement feedback from both
zones, as well as three-way mixing valves to enable a different supply water
temperature setpoint to each zone. If one of these conditions is not satisfied,
the above implemented zone-level control strategy is not realizable and only
one setpoint temperature - equal for both zones - can be defined:

Tws = Tws,N = Tws,S (5.32)

For this so-called lumped-building-level control scenario, the following questions
are addressed:

• Which temperatures should be monitored (and fed back to the MPC)
such that satisfactory thermal comfort is achieved in both zones?

• What is the performance loss of a lumped-building-level control compared
to a zone-level control?

To satisfy thermal comfort in both zones using only one zone as reference, it
is logical to select the most demanding zone as reference, i.e., for heating the
zone with the largest heating loads, for cooling the zone with the largest cooling
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loads. The relative difference between the heating, respectively cooling demand
for the North and South zone is plotted in Figure 5.14. In general, the difference
in heating load is less than 10% and the difference in cooling load less than 30%.
The heating load is larger for the North zone than for the South zone. With
respect to the cooling load, three periods are distinguished. In early spring and
autumn the South zone requires more cooling than the North zone, while in
summer the South zone requires less cooling. The latter is thanks to the solar
shading being activated once Q̇sol exceeds 250 W/m2 and until it drops below
150 W/m2 (see description solar shading control Section 4.2.1). As a result, the
North zone is in general more demanding, both for heating and cooling. Three
implementations of the lumped-building-level MPC are evaluated:

• MPCN: optimization based on Top,N and Tc,N

• MPCS: optimization based on Top,S and Tc,s

• MPCSN:optimization based on Tc,N +Tc,s

2 and Top,N +Top,S

2 .

Table 5.8: Control performance with zone-level MPC (MPCref) versus lumped-
building-level MPC (MPCN, MPCS and MPCSN). Thermal discomfort is
expressed in terms of annual number of temperature exceeding hours Kh for the
South and North zone separately. Energy cost is expressed in terms of specific
annual electricity consumption, Pel, evaluated for both zones together.

South zone North zone Total
Khu Kho Khtot Khu Kho Khtot Pel

(Kh) (Kh) (Kh) (Kh) (Kh) (Kh) (kWh/m2)

MPCref 19 13 32 21 7 28 11.0
MPCN 12 54 66 22 2 24 11.5
MPCS 39 9 48 101 12 113 11.7
MPCSN 11 507 518 30 413 443 9.3

The results of MPCN, MPCS and MPCSN are tabulated in Table 5.8. The
zone-level MPC, MPCref, is added as reference. All values are obtained with the
controller building model nx2-DS2, the correction method c2 and the same values
for the weighting factors αd and αe for the thermal discomfort cost and the
energy cost in the cost function. Thermal discomfort is evaluated for the North
and South zone separately, with distinction being made between the number of
temperature exceeding hours under Tcomf,min (Khu) and temperature exceeding
hours above Tcomf,max (Kho). The total number of temperature exceeding
hours (Khtot) should remain below the imposed limit of 100 Kh/y per zone. The
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corresponding specific electricity consumption Pel(kWh/m2), evaluated for both
zones together, is shown in the last column. The results show that, as expected
from the discussion above, MPCN yields satisfactory thermal comfort for both
zones. With MPCS the upper bound of 100 Kh/y is exceeded in the North
zone by 13 Kh/y. The problem arises from an underestimation of the heating
loads, resulting in a large number of Kh below Tcomf,min, namely KhN,tot=101.
As this is a relatively small violation of the thermal comfort requirement, this
problem might be solved by increasing the weighting of the thermal discomfort
cost, as will be investigated below. The thermal discomfort cost with MPCSN,
respectively 518 Kh/y and 443 Kh/y for the South and the North zone, however,
is significantly higher than the limit of 100 Kh/y per zone. This indicates that
the zone averaged temperatures are not suited for determining the required
heating and cooling demand, at least not with the given cost function which
pushes the predicted Top towards the upper limit Tcomf,max in summer, and
towards the lower limit Tcomf,min in winter.
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Figure 5.15: Evaluation of thermal discomfort versus annual specific electricity
demand obtained with respectively zone-level MPC, lumped-building-level MPC
with the North zone as reference (N) and lumped-building-level MPC with the
South zone as reference (S). The depicted results are obtained with controller
building model nx2-DS2 and the prediction correction method c2. The control
performance of three HC/CC-control strategies are shown as a reference. The
thermal discomfort limit of 200 Kh for both zones together, is indicated by the
dashed horizontal line.

Figure 5.15 compares the trade-off curves for MPCN and MPCS with the one
obtained with MPCref. The results for MPCSN are not shown as the resulting
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thermal discomfort levels are unacceptably high for the entire range of weighting
factors. Compared to the zone-level MPC, the electricity consumption increase
is less than 5% with MPCN and about 10% with MPCS.
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5.6 Summary and conclusions

The question addressed in this chapter is: What is the impact of the controller
building model and the identification data set used for parameter estimation,
on the performance of an MPC controller for office buildings with CCA in the
presence of large solar and internal gains?

For the application of MPC in residential floor heating systems, it was shown that
a second order building model was able to capture the control relevant dynamics
[20, 90], with the two model states representing the lumped capacity of the
floor heating and the lumped capacity of the zone. The main difference between
the office building considered here and the residential buildings considered
by Bianchi [20] and Karlsson and Hagentoft [90], is the presence of large
internal and solar gains and - by consequence - the need for cooling. To
minimize the energy cost related to space cooling, accurate prediction of the
cooling loads is needed. The model of Bianchi [20] did not include internal gains
or solar gains explicitly as a model input. The impact of the solar gains was
translated into an on-line identified positive term, ∆T , which was added to the
ambient air temperature input. This approximation was shown to be admissible
for determining the heating loads (the solar gains may not be so high during
the heating season). The search for an appropriate controller building model in
this chapter was motivated by the expectation that this approximation would
not be allowed in the case of cooling dominated buildings.

Two model structures have been proposed with following 5 inputs: the supply
water temperature Tws, the ventilation air temperature Tvs, the ambient air
temperature Tamb, the internal gains Q̇int and the solar gains Q̇sol. The first
model structure is a 2nd order model with the same structure as the one proposed
by Bianchi [20]. The other one is a 4th order model, with the temperature of
the internal thermal mass and the temperature of the outer wall as additional
states. The motivation for these extra states was to distinguish between the
inertia of the zone air, which is relatively small, and the inertia of the internal
thermal mass and the building envelope, which are relatively large. This way,
the 4th order model is able to capture the fast fluctuations of the operative
temperature as a response to the internal and solar gains.

While the 2nd order model identified by Bianchi [20] describes the response
of the zone temperature to 2 inputs, namely the heat pump thermal power
and the ambient air temperature, the 2nd order model here, is intended to
describe the response to the 5 inputs mentioned above, and this with the same
number of parameters. The 4th order model has more degrees of freedom to
describe the response of the operative temperature to these 5 inputs. On the
other hand: determining a larger number of parameters also requires a richer
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identification data set. A pertinent question for both the 2nd and the 4th order
model is therefore to define the identification data set which enables to
adequately determine the model parameter values. 5 identification data sets
were evaluated, each with a measurement time step of 1 h and a measurement
length of 100 h (measurements were mimicked by simulation data). The first
3 data sets comprise step excitations of the different inputs: data set 1 only
contains step excitations of the temperatures, while data set 2 and 3 also contain
step excitations of the internal and/or solar gains. Data sets 4 and 5 represent
a typical working week in respectively the summer and the winter season. For
each identification data set, the model parameters of the 2nd and 4th order
model were estimated, yielding a total of 10 building models.

A first evaluation of the model accuracy was performed off-line. For all 10
models, the Top-prediction error for the 5 data sets was quantified. The results
reveal a significant impact of the identification data: first, only the models
identified with a data set including internal and/or solar gains in the excitation
signal (i.e. DS2, DS3, DS4 and DS5) are able to reasonably well predict the
operative temperature for a typical office working week (i.e. with an RMSE
below 2◦C). Second, the operative temperature Top prediction accuracy varies
strongly between those data sets: the models obtained with DS3, with a step
excitation signal on the 5 inputs, clearly outperform the models obtained with
DS4 and DS5. This indicates that the model quality obtained with on-line
identification, i.e. based on measurement data of a typical working week, may
be unsatisfactory, at least with the proposed system identification strategy. The
validation results also revealed that the impact of the model structure is strongly
dependent on the identification data set used: for the data set with no solar
gains or internal gains (i.e., DS1), there was hardly any difference between the
2nd and the 4th order model. With DS5, corresponding to a typical working
week in winter, the quality of the 4th order model even deteriorated compared
to the 2nd order one. Only with the information-rich data sets (DS3 and DS4),
the prediction quality is improved with increased model order. These results
indicate that for on-line identification, where the quality of the identification
data set may not be as high as in the considered cases, it is recommended
to start with a very simple model. The model complexity may gradually be
increased if more data, i.e. from longer measurement periods, are available.
The question is, however, whether a more complex model is uberhaupt needed,
especially if the model is incorporated in an MPC framework.

The second evaluation of the models was performed within the MPC
framework. The impact of the building model on the control performance, i.e.
the obtained thermal comfort level and the associated energy cost, was assessed.
The evaluation was performed by a one-year simulation in TRNSYS with the
detailed office building model as emulator. The identified building models
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were used by the MPC to calculate the optimal supply water temperature
to both zones. The MPC was called only once a day, with a prediction
horizon of 48 h and a control time step of 1 h. Three cases were evaluated.
In the first case the MPC had perfect knowledge of the future disturbances.
Despite this assumption, however, the MPC outperformed the reference heating
curve/cooling curve control strategy for only 2 out of the 12 models (including
the initial models), respectively nx2-DS2 and nx4-DS3. This unsatisfactory
result can be explained by the combination of 2 factors: first, the fact that most
models do not accurately predict the operative temperature in the presence of
internal gains and solar gains and, second, the fact that the control performance
is very sensitive to prediction errors. The latter is due to choice of the thermal
discomfort cost representation in the MPC formulation. Thermal discomfort is
represented by soft constraints on the operative temperature: thermal discomfort
is considered zero within the thermal comfort band defined by the ISO7730
standard [85] and increases quadratically when the temperature exceeds these
bounds. The optimization will thus push the operative temperature towards
the upper temperature limit to minimize the cooling demand, and towards the
lower temperature limit to minimize the heating demand. A small prediction
error can then cause the actual temperature to lie outside the thermal comfort
band, resulting in the observed large annual thermal discomfort cost. One
could therefore opt to redefine the thermal discomfort cost, e.g. by penalizing
the deviation from a reference operative temperature lying in the middle of
the thermal comfort range. This conservative approach would however be
suboptimal as it would require higher heating and cooling demand compared to
operating at the temperature limits. The only way to achieve a superior control
performance with MPC compared to a well-tuned reference control strategy,
is thus to have an accurate prediction of the operative temperature. At first
instance only 2 out of the 12 identified models, as indicated above, seem to be
able to meet this requirement. By means of a relatively simple correction method,
however, the prediction quality - and by consequence the MPC performance -
of most models was shown to be significantly improved. The method consists of
exploiting the information contained in the prediction error profile to improve
the future predictions. This was accomplished by adding an error-compensation
term ∆Tz to the building model equations. As known a priori from physical
insight and as confirmed by the results, the prediction error is namely correlated
with the internal and solar gains. A time dependent error correction term,
based on the prediction error-profile of the past week day/weekend day (and
thus capturing the time-dependency of the internal and solar gains) was found
to significantly improve the control performance: the MPC performance was
superior to well-tuned heating curve/cooling curve-based strategies for 9 out
of the 12 models. An important observation was that also the models without
the internal gains and solar gains as inputs, were able to yield satisfactory
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control performance thanks to this on-line error correction method. In other
words, the impact of the internal and solar gains can be indirectly captured by
considering their impact on the operative temperature. For the implementation
of MPC in practice, this is an interesting result since tracking the prediction
error on the operative temperature is far easier than predicting the internal
and solar gains to each zone. However, 3 out of the 12 models do not perform
well despite this error-compensation method, namely nx2-DS4, nx2-DS5 and
nx4-DS4. These are the models which explicitly include the internal and solar
gains as inputs, but not accurately. For these models the MPC performance is
unsatisfactory - with or without prediction error compensation. By contrast, the
models which (a) accurately describe the response of the operative temperature
to the internal and solar gains, or (b) do not include the internal and solar gains
as inputs at all, clearly benefit from this online prediction correction. This is
an important result for practice: Since obtaining a model with (a) an accurate
response to the internal and solar gains is more difficult than (b) obtaining a
model which only captures the response to the inputs Tws, Tvs and Tamb, option
(b) seems the most robust choice. An additional advantage of this option, as
mentioned before, is that predictions of the internal gains and solar gains are
avoided. The results therefore indicate that following findings formulated by
Bianchi [20] for the residential buildings with floor heating, also hold for cooling
dominated buildings with CCA: first, a 2nd order model is able to capture the
control relevant dynamics and (2) solar gains (and in this case also the internal
gains) do not need to be explicitly included as input. Contrary to the approach
suggested by Bianchi [20], however, the impact of the gains should be translated
into a time-dependent correction term on the operative temperature, not as a
constant term for the entire prediction horizon. A promising subject for further
research, considering the large benefits gained by the relatively simple model
correction methods applied, may be the identification of dynamic models for the
prediction error. Future research is also needed to define the optimal excitation
profiles for the controllable inputs Tws and Tvs for a building in operation, for
instance by means of Design of Experiments [5].

The model impact on the MPC performance was also investigated for the case
without perfect disturbance prediction. Instead, a persistent disturbance
prediction was applied, based on the disturbances of the last 24 hours (for
Tamb and Q̇sol) and of the last week day/weekend day (for Q̇int). As expected,
the MPC performance of the models without the internal gains and solar gains
as inputs, are less affected than the other models.

A last question addressed in this chapter, was the performance of zone level
control versus lumped-building level control. Zone level control with MPC
has not yet received much attention, with most studies focusing on single
zone level control [e.g. 67] or lumped-building level control [e.g. 20, 101]. For
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buildings with an outspoken difference in internal and/or solar gains, treating
the building as a single zone may be, however, suboptimal, resulting in too high
thermal discomfort levels, or, with a conservative control strategy based on
the ’worst-case-zone’, high energy costs. The impact of lumped-building level
control versus zone level control for the studied office building was found to be
an increase in energy cost of about 5%. For buildings without automated solar
shading, this figure would of course be higher due to a more outspoken difference
in the heating and cooling loads. It should be noted that the gap between the
performance of a zone level MPC versus a lumped-building level MPC can be
decreased by adding low-level rule-based controllers, as investigated by Bax and
Krishnasing [13], which is here left for further research.

5.7 Chapter highlights

• Very simple, 2nd order models are found to yield satisfactory control
performance when incorporated in an MPC framework for the control of
office buildings with CCA in the presence of large solar and internal gains.
More detailed 4th order models do not necessarily yield better control
performance.

• The identification data (ID) set used for parameter estimation (PE) has a
crucial impact on the model accuracy. The best models are obtained with
step excitations of the 5 model inputs (Tws, Tvs, Tamb, Q̇int and Q̇sol).

• Within an MPC framework the impact of model mismatch (and thus of
the ID set used for PE) is significantly reduced through feedback of the
actual measured Top(t) to the MPC.

• In the case of perfect disturbance prediction, MPC realizes a primary
energy consumption reduction of 15% to 25% (compared to respectively
an advanced HC/CC-control strategy based on feedback of the concrete
core surface temperature Tc,s) and a conventional HC/CC-control strategy
based on feedback of Top)) while at the same time thermal comfort is
improved.

• In the case of persistent-disturbance prediction, the realized primary
energy consumption reduction ranges from 7% to 13%, revealing the
important impact of accurate disturbance predictions.

• The performance loss of a lumped-building-level optimization versus a
zone-level-optimization amounts to 5% (in the case of solar shading on
the south facing windows).





Chapter 6

Heat pump level control

6.1 Introduction

The aim of the study presented in this chapter is to assess the impact of the
controller heat pump model in optimal control problem (OCP) formulation. More
specifically, the aim is to quantify how much can be gained by explicitly integrating
the temperature dependency of the coefficient of performance (COP) into the
optimization (yielding a nonlinear problem), versus solving an approximated,
but convex formulation.

The heat pump is a central component in a ground coupled heat pump
(GCHP) system. As the heat pump dynamics are much faster than the control
relevant dynamics at building level, a static representation of the heat pump
characteristics can be used within the OCP formulation [58]. The COP, which
determines the efficiency of the heat production, depends on both the heat
source and the heat supply temperature. The smaller the temperature gap to be
bridged by the heat pump, the larger the COP. The question arises whether it
is important to take this temperature dependency into account when optimizing
the system operation with respect to energy cost. One would assume the answer
to be positive, as a control strategy yielding very high supply temperatures, for
instance, is arguably an energy efficient one. However, explicitly accounting
for the temperature dependency of the COP requires to solve a nonlinear
optimization problem. Following the guideline ’keep the formulation as simple
as possible’, one should investigate whether a nonlinear formulation is necessary.
Despite the existence of efficient nonlinear solvers, a convex formulation is
still preferred as convergence to the global optimum is guaranteed. Also for
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Figure 6.1: Schematic representation of an air-to-water heat pump.

practical implementation on low-level controllers with limited computational
power, simplified OCP formulations are highly desirable. Therefore we need to
assess how much can be gained by solving the nonlinear optimization problem,
which explicitly takes the temperature dependency of the COP into account,
compared to solving a convex approximation.

In this chapter the impact of the heat pump model on the resulting control
performance is quantified. To exclude the impact of the long term dynamics
of the ground, a modulating air-to-water heat pump is considered. The study
is performed for a residential building with floor heating. The most detailed
model incorporates the dependence of the heat pump performance on the source
temperature, the supply temperature and the compressor frequency, while the
most simple one assumes a constant COP. The performance at the heat pump
level is assessed using performance maps from the heat pump manufacturer. The
control performance obtained with the different controller heat pump models is
compared through performance maps. These maps show the trade-off curves
obtained by varying the weighting factor between the energy cost term and the
thermal comfort term in the cost function. Finally, the insights obtained from
this study are translated to guidelines for the OCP formulation of a GCHP.

6.2 Physical background

Figure 6.1 gives a simplified representation of the operation of an air-to-water
heat pump. The compressor drives a thermodynamic cycle which extracts heat
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Q̇amb from the ambient air at evaporator side and supplies the heat Q̇hp to the
building at condenser side. The first law of thermodynamics yields following
relation between the thermal power delivered to the building Q̇hp, the thermal
power extracted at evaporator Q̇amb and the compressor power Php:

Q̇hp = Q̇amb + Php (6.1)

The heat pump coefficient of performance (COP) is defined as the ratio between
the delivered thermal power Q̇hp and the required compressor power Php:

COP = Q̇hp
Php

(6.2)

The second law of thermodynamics sets an upper bound for the COP, which is
referred to as the COPCarnot. This upper bound solely depends on the heat
source temperature Tsource (here Tamb) and the heat supply temperature Tsupply
(here Tws), both expressed in Kelvin.

COPCarnot = Tsupply
Tsupply − Tsource

(6.3)

The COP of a real heat pump is lower due to the irreversibilities in the
compressor, the heat exchangers and the expansion valve. The actual COP can
be estimated by means of a detailed first-principles heat pump model [see e.g.,
10, 87]. These models are however highly nonlinear, require a large number of
state variables and are thus too complex for incorporation in an optimal control
formulation. An alternative is to represent the heat pump characteristics by
polynomial fits based on experimental data [see e.g., 59, 157]. This approach
has been adopted here.

6.3 Optimal control problem formulation

In this paragraph the different parts of the OCP formulation proposed for
optimizing the operation of a modulating air-to-water heat pump connected to
a floor heating system in a residential building are presented, i.e. (i) the cost
function, (ii) the building model, (iii) the building temperature constraints, (iv)
the controller heat pump model and (v) the control variable or input constraints.
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Figure 6.2: Sketch of the building with indication of the model states: the
supply water temperature Tws, the return water temperature Twr, the floor
temperature Tf and the zone temperature Tz.

6.3.1 Cost function

The aim is to optimize the heat pump operation with respect to both thermal
comfort and energy cost. As those are conflicting objectives, a multi-objective
approach is put forward. The cost function, represented by Eq.(6.4) is a weight
sum of the energy cost Je and the thermal discomfort cost Jd, evaluated over a
time horizon [ 0 , tend ], which is taken as 1 day in the current study.

Jtot = (1−K)
∫ tend

0
Je(t)dt+K

∫ tend

0
Jd(t)dt (6.4)

The relative weight of these objectives is determined by the value of the weighting
factor K ( - ). For K = 1, the optimal control profile minimizes the thermal
discomfort cost, regardless of the corresponding energy cost. For K = 0, the
heat pump operation minimizes the energy cost under the given constraints. In
this study, Jd (K2), represented by Eq.(6.5), is defined as the squared difference
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between the zone temperature Tz (◦C) and the reference zone temperature,
represented by Tz,ref (◦C). Tz,ref is taken constant over the 24 hours.

Jd(t) = (Tz(t)− Tz,ref )2 (6.5)

The energy cost Je, represented by Eq.(6.6), is proportional to the electricity
price cel (e/kWh) and the heat pump compressor power Php (kW):

Je(t) = cel(t)Php(t) (6.6)

This expression for Je was also adopted by Rink et al. [149] and Gayeski [59].
However, also other expressions for Je are found in the literature. Wimmer [186]
and Bianchi [20], for instance, minimize the square of the predicted electricity
cost while Ferkl et al. [48] propose a hybrid formulation with a linear term for
representing the energy cost and an additional penalization of changes in the
controlled variable to smoothen the control action. Contrary to the former 2
studies [59, 149] which explicitly take the Tws-dependency of the COP into
account, the latter 3 studies [20, 48, 186] use a predefined COP-profile in the
OCP formulation. The impact of a quadratic penalization of the predicted
energy cost, as expressed by Eq.(6.7), will be investigated in Section 6.4.3.

J∗e (t) =
(
cel(t)Php(t)

)2 (6.7)

6.3.2 Controller building model

The building dynamics are defined by a set of ordinary differential equations,
Eqs. (6.8a)-(6.8d). They correspond to a single-zone model with four differential
states as indicated in Figure 6.2: the supply temperature of the water circuit
Tws, the return temperature of the water circuit Twr, the floor temperature
Tf and the zone temperature Tz. The inputs to the model are the thermal
power delivered by the heat pump, Q̇hp(W) and the ambient air temperature
Tamb(◦C). This model is based on the controller model for MPC of a heat pump
system in a residential building with floor heating, identified by Wimmer [186].
ṁw ( kg

s ) is the mass flow rate of the water circuit and cw ( J
kg K ) the specific heat

capacity of water. Cws, Cwr, Cf and Cb ( J
K ) represent the thermal capacity

of respectively the water at temperature Tws, the water at temperature Twr,
the floor at temperature Tf and the building at temperature Tz. κwf , κfz
and κb ( W

K ) represent the overall heat exchange coefficient between respectively
Twr and Tf , Tf and Tz and Tz and Tamb. The values for the building model
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Table 6.1: Building model parameters
Cws ( J

K ) 1.19× 105 ṁw ( kg
s ) 0.266

Cwr ( J
K ) 5.36× 106 κw,f ( W

K ) 1160
Cf ( J

K ) 4.55× 107 κf,z ( W
K ) 6155

Cb ( J
K ) 2.25× 108 κb ( W

K ) 260

parameters are listed in Table 6.1.

CwsṪws = ṁwcw(Twr − Tws) + Q̇hp (6.8a)

CwrṪwr = ṁwcw(Tws − Twr) + κwf (Tf − Twr) (6.8b)

Cf Ṫf = κwf (Twr − Tf ) + κfz(Tz − Tf ) (6.8c)

CbṪz = κwf (Tf − Tz) + κb(Tamb − Tz) (6.8d)

6.3.3 Initial condition and temperature constraints

Inspired by the daily cycle of the ambient air temperature, free periodic boundary
conditions are imposed on the model states T̄ = [Tws, Twr, Tf , Tz]T , see Eq.(6.9).
t0 (h) and tend (h) are respectively 0 AM and 12 PM. The combination of these
periodic boundary conditions with an ambient air temperature profile with a
period of one day (24h), depicted in Figure 6.5, eliminates boundary effects
which would otherwise dominate the solution.

T̄ (t0) = T̄ (tend) (6.9)

Eq.(6.10) sets lower and upper bounds on the building temperatures. The lower
bound T̄min and the upper bound T̄max are chosen as [10, 10, 15, 18]T ◦C and
[65, 50, 30, 22]T ◦C respectively.

T̄min ≤ T̄ (t) ≤ T̄max (6.10)

6.3.4 Controller heat pump model

To evaluate the energy cost, the OCP formulation requires a heat pump model
which relates the thermal power Q̇hp to the corresponding compressor power Php,
as shown in Figure 6.3. Here, we propose four different empirical approximations
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Figure 6.3: Input-output description of the controller heat pump model.

of the physical laws that govern heat pump operation, based on the heat pump
manufacturer data [32]. The models are discussed with increasing level of
simplification. The resulting OCP formulations are denoted as respectively
OCP A, OCP B, OCP C and OCP D, with OCP A including the most detailed
model and OCP D the most simplified one.

OCP A

In this first formulation the control variable is the compressor frequency f .
Modulation of f in the frequency inverter alters the compressor speed and
thus the compressor power Php. Php and thermal power Q̇hp are determined
from a quadratic fit in the compressor frequency f (Hz), the ambient air
temperature Tamb (◦C) and the supply water temperature Tws (◦C), represented
by respectively Eqs. (6.11a) and (6.11b).

Php = a0 + a1Tamb + a2Tws + a3f + a4T
2
amb + a5T

2
ws+

a6f
2 + a7TambTws + a8Tambf + a9Twsf (6.11a)

Q̇hp = b0 + b1Tamb + b2Tws + b3f + b4T
2
amb + b5T

2
ws+

b6f
2 + b7TambTws + b8Tambf + b9Twsf (6.11b)

The fits are derived from manufacturer data which include the data at part
load conditions. The numerical values of the coefficients ai and bi are listed in
Table 6.2.



118 Heat pump level control

OCP B

Formulation B neglects the influence of part load efficiency. Therefore, the
optimized variable is the thermal power Q̇hp instead of the compressor frequency
f . As given by Eq.(6.12), the compressor power Php is calculated as the ratio
between the thermal power Q̇hp and the COP. The dependency of the COP on
both the ambient air temperature Tamb and the supply water temperature Tws
is taken into account by a quadratic fit in these two variables, as represented
by Eq.(6.13).

Php = Q̇hp
COP (Tamb, Tws)

(6.12)

COP = c0 + c1Tamb + c2Tws + c3T
2
amb + c4T

2
ws + c5TambTws (6.13)

The coefficients ci, listed in Table 6.2, are based on the catalogue data at full
load [32], i.e., at the maximal frequency fmax. The deviation of the fit from
these catalogue data, both depicted in Figure 6.4, is maximally 3%.

OCP C

Formulation C further simplifies the heat pump model. Not only the impact of
the compressor frequency f on the heat pump efficiency is neglected, but also
the influence of the supply water temperature Tws. Only the dependency on
the ambient air temperature Tamb is taken into account. The control variable is
the thermal power Q̇hp. The compressor power Php is calculated according to
Eq.(6.14).

Php = Q̇hp
COP (Tamb)

(6.14)

The COP is found by evaluating the quadratic fit for the COP in Eq.(6.13) with
a constant value for Tws, namely the steady state temperature for the daily
mean value of the ambient air temperature Tamb and the zone temperature
setpoint Tz,set. This way, the COP can be defined prior to the optimization.
As a consequence, Je becomes linear and the resulting OCP convex.

OCP D

Compared to OCP C, Formulation D also neglects the dependency of the COP
on the ambient air temperature Tamb. The COP is assumed constant for the
entire horizon. As indicated by Eq.(6.15), this results in a constant ratio between
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Table 6.2: Coefficients of the fits for the compressor power Php (ai), the heat
pump thermal power Q̇hp (bi) representing the heat pump in OCP A, the COP
(ci) and the maximal heat pump thermal power Q̇hp,max (di).

a0 2.01 b0 −1.88 10−1 c0 8.24
a1 5.75 10−2 b1 −4.92 10−2 c1 1.58 10−1

a2 −1.22 10−1 b2 −1.16 10−2 c2 −1.95 10−1

a3 9.90 10−2 b3 1.80 10−2 c3 1.01 10−3

a4 3.00 10−3 b4 3.16 10−5 c4 1.48 10−3

a5 1.54 10−3 b5 3.75 10−4 c5 −2.33 10−3

a6 −3.42 10−8 b6 −2.99 10−6 d0 9.35
a7 −1.66 10−3 b7 4.50 10−5 d1 3.19 10−1

a8 2.44 10−3 b8 5.07 10−4 d2 −6.13 10−2

a9 −6.28 10−4 b9 2.60 10−4 d3 4.44 10−3

d4 2.45 10−3

the control variable Q̇hp and the compressor power Php.

Php = Q̇hp
COPcte

(6.15)

The COP is found by evaluating the expression for the COP in Eq.(6.13) with
the daily mean ambient air temperature for Tamb and the corresponding steady
state value for Tws.

6.3.5 Input constraints

In OCP A, the control variable f is allowed to take any value between 0 and
the maximal compressor frequency fmax which is equal to 100 Hz. The input
constraints are represented by Eq.(6.16).

0 ≤ f ≤ fmax (6.16)

In practice, however, the heat pump is switched off below a certain frequency
fmin, as the compressor losses become too large. This discontinuity is taken
into account in the simulator model, as indicated in the last row (symbol ’S’)
in Table 6.3 on p.122.

In OCP B, OCP C and OCP D, the control variable is the heat pump thermal
power Q̇hp. The original constraint on the compressor frequency f is replaced
by a constraint on the thermal power Q̇hp, given by Eq.(6.17). Q̇hp,max is
represented by an empirical fit with the catalogue data [32], see Eq.(6.18). The
coefficients di are listed in Table 6.2. The fit is taken linear in the supply water
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Figure 6.4: Catalogue data for the COP of a modulating air-to-water heat
pump as a function of the source temperature Tamb and the supply temperature
Tws at maximum compressor frequency, indicated by the markers [32]. The
quadratic fit (see Eq.(6.13)) is presented as dotted lines.

temperature Tws to ensure that all constraints are linear in the optimization
variables.

0 ≤ Q̇hp ≤ Q̇hp,max(Tamb, Tws) (6.17)

Q̇hp,max = d0 + d1Tamb + d2Tws + d3T
2
amb + d5TambTws (6.18)

Influence of heat pump model on OCP complexity

Simplifying the heat pump model may result in a suboptimal heat pump
operation, as will be discussed in Section 6.4. On the other hand, if the
approximations give rise to a convex OCP, the computational effort to solve
the OCP is significantly reduced. An overview of the discussed controller heat
pump models is given in Table 6.3.

• OCP A incorporates a detailed heat pump model. Q̇hp and Php are
described by a quadratic fit in the ambient air temperature Tamb,
the supply water temperature Tws and the compressor frequency f
(see Eqs. 6.11a -6.11b). Tws and f are both optimization variables,
respectively a state variable and a control variable. As the multiplication
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of optimization variables is a nonlinear operation, OCP A is nonlinear.

• OCP B does not include the effect of the compressor frequency f on
the efficiency. The COP is however still a function of the state variable
Tws. As a consequence, the calculation of the compressor power Php (see
Eq . 6.12) requires the division of two optimization variables, namely the
control variable Q̇hp and the state dependent COP. As this is a nonlinear
operation, the resulting OCP remains nonlinear. The advantage of OCP B
with respect to OCP A lies in the availability of heat pump data. OCP A
requires access to part load data, which are in practice hard to obtain.
OCP B, by contrast, only requires catalogue data to set up the heat pump
model.

• OCP C neglects the influence of the supply water temperature Tws on
the COP. This way, the COP can be predicted prior to the optimization,
based on the predictions of the ambient temperature only. Now, the
compressor power Php in Eq.(6.14) is linear in the optimization variable
Q̇hp. As all other constraints are linear, i.e. the equations discribing the
building dynamics (Eq.(6.8a) - (6.8d)), the state constraints (Eq.(6.10))
and input constraints (Eq.(6.16) or Eq.(6.17)), OCP C is convex.

• OCP D assumes a constant COP and is thus, for the same reason as
mentioned for OCP C, convex.

The evaluation of the optimal profiles in the simulator, denoted by ’S’ in
Table 6.3, is performed based on the manufacturer performance data (look-up
table).

Table 6.3: Overview of the controller heat pump models (A, B, C and D) and
the heat pump simulator (S).

Model Control input Model variables Required Resulting
Equation(s) constraint f Tws Tamb data OCP

A Php(f, Tws, Tamb) 0 ≤ f ≤ 100 × × × part load nonlinear
Q̇hp(f, Tws, Tamb)

B

Php =
Q̇hp
COP

0 ≤ Q̇hp ≤ Q̇hp,max

- × × catalogue nonlinear

C - - × catalogue convex

D - - - catalogue convex

S Lookup-table f ∈ {0, 30− 100} × × × part load -
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6.3.6 Solving the optimal control problem

The continuous optimal control problem has to be discretized for a direct
numerical solver. The control variable is discretized using a piece-wise constant
function, i.e. f or Q̇hp is constant during one discretization time step. The
smaller the discretization time step, the smaller the difference between the
continuous and the discretized optimal control profiles. Small discretization
time steps, however, involve more control variables to be optimized over the
given time horizon, which significantly increases the computation time. The
formulations discussed in this paper adopt a discretization time step of 30
minutes, which is found to be sufficiently small to approximate the continuous
optimal control profile. Given the time horizon of 24 hours, this yields 48 control
variables to be optimized. The Automatic Control And Dynamic Optimization
toolkit ACADO [80], used for this study, discretizes the OCP with the multiple
shooting method developed by Bock and Plitt [22]. While the control variables
are discretized with a fixed discretization time step, i.e., 30 minutes, the state
variables are discretized with a variable time step such that the discretization
error remains below a user-defined value. For this purpose, a standard Runge
-Kutta 45 integrator is used. The resulting discrete-time optimization problem
is solved with a Sequential Quadratic Programming approach using an exact
Hessian approximation [125].

6.3.7 Boundary conditions

The analysis and comparison of the different OCP formulations is made for two
scenarios: first, for a constant electricity price profile (the term cel is omitted
in the energy cost term) and second, for the day-night electricity price tariff
depicted in Figure 6.5(a). The electricity price amounts to 0.15 e/kWh during
on-peak (from 7 AM to 10 PM) and to 0.09 e/kWh during off-peak. The
predicted ambient air temperature profile is shown in Figure 6.5(b), which is a
periodic signal representing a winter day with a mean temperature of 0 ◦C.
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Figure 6.5: (a) Electricity price profile for the variable electricity price scenario,
(b) The predicted ambient air temperature for both scenarios.
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6.4 Control performance evaluation

First the optimization-based control strategies and the HC control strategy are
compared for the constant electricity price scenario. Next, the comparison is
performed for the day-night electricity price scenario. For both scenarios, the
results reveal that the convex approximations, i.e. OCP C and OCP D, result
in higher electricity consumption than OCP A, OCP B and the HC control
strategy due to high fluctuations in the proposed trajectories for the heat pump
thermal power. In a third part, the impact of penalizing power peaks in the cost
function of OCP C and OCP D, is investigated. The results reveal that with
this modified cost function, the control performance of all optimization-based
control strategies are almost identical. In a fourth and last part, a sensitivity
analysis of the ambient air temperature and the building model parameters is
performed to check the generality of the results.

6.4.1 Case 1: Constant electricity price scenario

The performance obtained with the different OCP formulations and the HC
control strategy is visualized by the trade-off curves, presented in Figure 6.6(a).
The points at the left end of the curves represent the results for the OCP
minimizing the energy cost term Je, i.e., the weighting factor K in the cost
function (see Eq.(6.4)) equals 0. The resulting thermal discomfort level amounts
to approximately 100 K2h which corresponds, for the adopted definition of Je
and the time horizon of 24 hours, to a root mean square temperature deviation
∆Tz of about 2◦C from the zone temperature setpoint of 20◦C. This is close to
the maximal tolerated thermal discomfort level as the lower limit on the zone
temperature is set to 18◦C by Eq.(6.10). The points at the right end of the
curves represent the results for the OCP minimizing the thermal discomfort
cost Jd, i.e., the weighting factor K is equal to 1. In this case, the setpoint zone
temperature Tz,ref is tracked as closely as possible, irrespective of the required
energy cost. The graph reveals that the control performance is greatly affected
by the heat pump model. As expected, OCP A yields the best performance
for the entire range of thermal discomfort. OCP B performs almost as good.
The difference in electricity consumption is only 1%. Surprisingly, the same
performance is achieved with the HC control strategy. OCP C and OCP D, on
the contrary, perform significantly worse. The electricity consumption is 1 to
7% higher for OCP D and up to 14% higher for OCP C.

To explain these results, we analyze the profiles for the compressor frequency
f , the supply temperature Tw,s and the zone temperature Tz obtained when
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Figure 6.6: Comparison of the solutions obtained for the different optimal
control problems (’OCP A’, ’OCP B’, ’OCP C’, ’OCP D’) and the heating curve
control strategy (’HC’) for the constant electricity price scenario: (a) Trade-off
curves obtained by varying the weighting factor K in the cost function (Eq. (6.4)
for OCP) or by varying the setpoint temperature for the zone (HC),(b) f -
trajectories yielding a daily mean zone temperature of approximately 19 ◦C,
(c) corresponding Tw,s - trajectories, (d) corresponding Tz - trajectories.

applying the calculated trajectories for f (OCP A), Q̇hp (OCP B, OCP C and
OCP D) or Tw,s (HC) to the simulator. The depicted profiles yield a daily
mean zone temperature of approximately 19 ◦C, as shown in Figure 6.6(d).
Figure 6.6(b) depicts the compressor frequency f . It is observed that OCP A
results in an almost constant trajectory for f . The variation of f in time is
slightly negatively correlated to the variation of the ambient air temperature,
depicted in Figure 6.5.
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This means that the compressor frequency is slightly higher at low ambient
air temperatures and slightly lower at high ambient air temperatures. The
resulting profile for Tw,s, depicted in Figure 6.6(c), is also relatively flath and,
because of the positive dependency of Q̇hp on Tamb, the variation in time is
slightly positively correlated with Tamb.

Compared to OCP A, OCP B tends to shift the heat pump operation more
towards the afternoon. This way, OCP B tries to take advantage of the higher
ambient air temperature. As shown in Figure 6.6(b), this results in an f -
trajectory which is positively correlated to Tamb. By consequence, the positive
correlation of Tw,s to Tamb is even more pronounced than for OCP A, as shown
in Figure 6.6(c). However, this results in a higher electricity consumption than
predicted by OCP B. This is explained by the fact that part load efficiency,
neglected by OCP B, is a function of Tamb. Figure 6.7 shows that at low Tamb,
the COP is positively correlated with the compressor frequency f . At high Tamb,
the COP is negatively correlated with f . This reflects that the compressor is
designed to operate at full capacity at colder outdoor conditions and at part
load at warmer outdoor conditions. OCP B does not incorporate this knowledge.
With OCP B, the calculated optimal profile for the heat pump thermal power
Q̇hp requires a higher compressor frequency at high Tamb and vice versa. This
explains the slightly higher actual electricity consumption with OCP B.

The use of a predicted COP-profile in OCP C results in an on-off operation,
concentrating the heat production in the period with high predicted COP. This
results in high values for Tw,s during operation. The fact that high Tw,s-values
deteriorate the COP is not taken into account in OCP C. As a consequence,
the actual electricity consumption is much higher than predicted. Moreover,
this operation strategy yields large fluctuations in the zone temperature Tz, as
can be seen in Figure 6.6(d). In the predictions made by OCP C, this higher
thermal discomfort level is compensated by a lower energy cost. In reality this
is not the case.

OCP D, which assumes a constant COP, has no incentive to shift the heat pump
operation to the afternoon. Minimization of the multi-objective cost function
results in a constant zone temperature, requiring the heat pump to operate
more at night to compensate for the higher building losses. Therefore, contrary
to the results obtained with OCP A, OCP B and OCP C, the Tw,s-trajectory
is negatively correlated to Tamb. This solution corresponds to the optimal
trajectory for Tw,s obtained for the case of a floor heating system connected to
a boiler studied by Zaheer-Uddin et al. [197].
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Figure 6.7: Manufacturer data for the COP as a function of the ambient air
temperature Tamb and the compressor frequency f for a constant supply water
temperature Tw,s of 40◦C [32].

The HC control strategy, finally, also requires the heat pump to operate at
higher frequency during the night than during the day to track the constant
setpoint for the supply water temperature, T ∗w,s. Night setback, i.e., decreasing
the setpoint temperature for Tz at night, could therefore push the operation
more towards the one proposed by OCP A.

Discussion The results illustrate that continuous heat pump operation at part
load, as proposed by OCP A, OCP B and the HC control, yields the best control
performance for the investigated case. There are two reasons why part load
is beneficial for the COP. First, spreading the required heat supply over the
entire day, enables low setpoints for the supply water temperature Tw,s which
is beneficial for the COP (see e.g. the catalogue data at maximal compressor
frequency fmax, depicted in Figure 6.4). Second, at part load the temperature
differences across the condensor and across the evaparator are smaller than at
full load, which again positively affects the COP. Comparison of the graphs
reveals that the cost function is very flat near the optimum. The f -profiles
resulting from the OCP A, OCP B and the HC control differ, but the resulting
energy cost is nearly the same. Large fluctuations in the heat pump power,
on the contrary, as obtained with OCP C and - to less extent- with OCP D,
is clearly suboptimal. This operation strategy causes high fluctuations in the
supply water temperature Tw,s which significantly affects the actual COP, as
also indictated by Karlsson and Fahlén [89].
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6.4.2 Case 2: Variable electricity price scenario

Figure 6.8(a) compares the trade-off curves obtained with the OCP formulations
and the HC control for the variable electricity price scenario. Similar to the
constant electricity price scenario, OCP A yields the best performance, closely
followed by OCP B. The difference in energy cost is about 1%. The difference
with the HC control strategy increases to 5%. The energy cost for both OCP C
and OCP D is now approximately 16% higher.

The trajectories for the compressor frequency f , the supply water temperature
Tw,s and the zone temperature Tz, are shown in respectively Figure 6.8(b),
Figure 6.8(c) and Figure 6.8(d). The depicted cases again correspond to the
choice of a weighting factor K yielding a mean zone temperature of 19 ◦C. The
different OCP formulations yield the same solution for the off-peak electricity
price period. For the given ambient air temperature profile, corresponding
to a cold day, the heat pump then operates at maximum frequency. During
on-peak, the profiles are similar to those obtained for the constant electricity
price scenario. OCP A and OCP B result in a continuous operation at part
load, characterized by a smooth f -profile which is slightly negatively correlated
to Tamb for OCP A and positively correlated to Tamb for OCP B. This results
in a respectively constant Tw,s-profile during on-peak for OCP A and a smooth
but positively correlated profile for Tw,s for OCP B. OCP C and OCP D again
result in an on/off-operation with high Tw,s values compared to the other OCP
formulations. The HC control strategy remains the same as for the constant
electricity price scenario. To make beneficial use of the off-peak electricity price,
the setpoint for Tw,s should be shifted upwards during off-peak and shifted
downwards during on-peak. The insights gained from the solution obtained
with OCP A, could thus be easily incorporated in the HC formulation.

Discussion For the investigated case with a day-night electricity price tariff,
the energy cost with OCP A and OCP B is approximately 5% lower than with
the HC control strategy. The heat pump operates at full capacity during the
off-peak electricity price period. During the on-peak electricity price period
the heat pump operates at part load, with an almost constant compressor
frequency. Compared to the constant electricity price scenario, the supply
water temperature trajectory is shifted upwards during off-peak and shifted
downwards during on-peak. OCP C and OCP D result in higher electricity cost
than the HC control strategy, despite the fact that they do take advantage of
the off-peak electricity price. This is caused by a deterioration of the COP due
to on-off heat pump operation during the on-peak price period.
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Figure 6.8: Comparison of the solutions obtained for the different optimal
control problems (’OCP A’, ’OCP B’, ’OCP C’, ’OCP D’) and the heating curve
control strategy (’HC’) for the variable electricity price scenario: (a) Trade-off
curves obtained by varying the weighting factor K in the cost function (Eq. 6.4
for OCP) or by varying the setpoint temperature for the zone (HC),(b) f -
trajectories yielding a daily mean zone temperature of approximately 19 ◦C,
(c) corresponding Tw,s - trajectories, (d) corresponding Tz - trajectories.

6.4.3 Modified cost function

The problem with OCP C and OCP D, which both neglect the dependency of
the COP on the supply water temperature Tw,s, is that they tend to concentrate
the heat pump operation in certain time periods. This results in high values for
Tw,s which negatively affects the actual COP. The question rises whether the
control performance obtained with the OCP using these simplified heat pump
models, would be improved if the square of the predicted electricity cost Je is
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minimized, as suggested by Wimmer [186] and Bianchi [20]. The cost function
is then given by Eq.(6.19). The weighting factor K is again varied to obtain
the trade-off curves between both objectives.

Jtot = (1−K)
∫ tend

0
Je(t)2dt+K

∫ tend

0
Jd(t)dt (6.19)

The resulting control performances are depicted in Figure 6.9(a) and
Figure 6.9(b) for respectively the constant and the variable electricity price
scenario. For both cases, the performance improvement of OCP C and OCP D
achieved by the modified cost function, denoted as respectively OCP C∗ and
OCP D∗, is significant. Now, the trade-off curves almost coincide with the ones
obtained with OCP A and OCP B. Figure 6.9(c) and Figure 6.9(d) compare
the f -profiles for a given K-value and Figure 6.9(e) and Figure 6.9(f) compare
the corresponding Tw,s-profiles. The graphs show that the improved control
performance is indeed obtained by smoothening the operation profile. Through
penalization of power peaks, OCP C∗, which accounts for the Tamb-dependency
of the COP, converges towards the solution obtained with OCP B which accounts
for both the Tamb and Tw,s-dependency. OCP D∗, which assumes a constant
COP, converges towards the HC control strategy. As previously noted, the fact
that the trade-off curves coincide despite the different profiles for the compressor
frequency f and supply water temperature Tw,s, indicates that the cost function
is very flat near the optimum. On-off operation of the modulating heat pump
should however be avoided.
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Figure 6.9: Comparison of the solutions obtained for the different optimal
control problems (’OCP A’, ’OCP B’, ’OCP C∗’, ’OCP D∗’) and the heating
curve control strategy (’HC’) for the constant electricity price scenario (left) and
the variable electricity price scenario (right). Superscript ∗ refers to the OCPs
with quadratic energy cost in the cost function. (a, b) Trade-off curves obtained
by varying the weighting factor K in the cost function (Eq. 6.4 for OCP A
and OCP B, Eq.6.19 for OCP C∗ and OCP D∗) or by varying the setpoint
temperature for the zone (HC), (c, d) f - trajectories yielding a daily mean zone
temperature of approximately 19 ◦C, (e, f) corresponding Tw,s - trajectories.
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6.4.4 Influence of boundary conditions and building model
parameters

A sensitivity analysis is performed to check the generality of the conclusions
drawn. First, the mean value of the ambient air temperature profile is varied
between -5◦C and +10◦C and its amplitude is varied between 0◦C and 15◦C.
Second, the values for the building model parameters are varied based on a
broad range for following physical parameters [20]:

• Time constant for heating the volume of water at temperature Tw,s,
τhp: [180-3600] s,

• Water volume at return water temperature, Vw,r: [0.5-10.5] m3,

• Overall thermal capacity of the heat emission system, Cf : [55-655] J/K,

• Overall heat transfer coefficient between heat emission system and zone,
κf,z: [500-6500] W/K,

• Overall building heat loss coefficient, κb: [50-1600] W/K,

• Time constant of the building, τb: [50-650] h.

The sensitivity study shows that the results presented in this study hold for
the different ambient air temperature profiles, as well as for the majority of
investigated combinations of building parameter values. Only for the cases
combining a high building heat loss coefficient with a low heat emission thermal
capacity, corresponding to badly insulated buildings with a fast-reacting heat
emission system, the conclusion does not hold. For these cases, the solutions
found with the convex approximations minimizing the modified cost function
(OCP C∗ and OCP D∗), differ substantially from the solution obtained with the
nonlinear OCP formulations which incorporate the more detailed heat pump
models (OCP A and OCP B). However, these cases are not appropriate for
installing a heat pump. Much more energy can be saved by insulating the
building.

6.5 Summary and conclusions

For the investigated modulating AWHP system, a first comparison suggests a
significant impact of the controller heat pump model on the control performance.
The nonlinear OCP formulations with the Tws and f -dependent models result in
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continuous HP operation at part load while the convex approximations give rise
to large power fluctuations. The latter result in an energy cost increase of 7%
to 16%. However, by penalizing power peaks in the cost function, the control
performance obtained with the convex approximations is almost identical to
the one obtained with the nonlinear models. Analysis of the different control
trajectories and the resulting control performance reveals that the cost function
is very flat near the optimum.

In the case of a GCHP, high power rates not only result in increased supply
temperatures but also in decreased source temperatures. For a GCHP the
benefit of part load operation will therefore be even more pronounced than for
an AWHP. In practice, most GCHP systems are still of the single speed type,
allowing only on/off-operation. The size of the heat pump is then extremely
important. Oversizing should by all means be avoided such that the heat pump
has more running hours (less on/off-cycling), and a lower power (better COP).

6.6 Chapter highlights

• In the case of a constant electricity price, optimal operation of a modulating
AWHP system for a residential floor heating system is characterized by a
smooth and continuous heat pump operation at part load.

• In the case of a day-night electricity price tariff, the AWHP operates at
full load during (a fraction of) the off-peak electricity price period, and at
part load during the on-peak electricity price period.

• This result is found as the solution of a nonlinear OCP which explicitly
takes the dependency of the heat pump COP on (1) the source temperature
(Tamb), (2) the supply water temperature (Tws) and (3) the compressor
frequency f , into account.

• This result is also obtained with a constant COP approximation if the
cost function penalizes power peaks.

• A heating curve (HC) control strategy is close to optimal for the constant
electricity price scenario, while for the day-night electricity price scenario
the energy cost is 5% higher.





Chapter 7

Borefield level control

7.1 Introduction

A first objective addressed in this chapter, is the development of a borefield
model which can be used to optimize the operation of a HyGCHP system. The
model should predict the fluid temperature response to typical borefield loads in
order to assess the heat pump COP and the availability for passive cooling. To
impose long term borefield thermal balance, the model should also capture the
long term borefield dynamics. The aim is to investigate the minimum required
model order to capture these control relevant dynamics. A second objective is
to analyze the optimal HyGCHP operation for a given building heating and
cooling load profile, such that the total annual energy cost is minimized while
guaranteeing long term sustainable borefield operation.

Section 7.2 presents the optimal control problem (OCP) formulation which
defines the borefield model requirements. Section 7.3 starts with the physical
background on the heat transfer processes occurring inside and around the
BHE. An overview of the existing borefield models highlights the need for a
simplified borefield model which can be used in an optimization framework.
Section 7.4 describes the investigated approaches to derive a low-order model
for a single borehole heat exchanger (BHE). These models are validated by
the Duct Storage Model (DST) implemented in TRNSYS [75, 172]. Section
7.5 illustrates their use within the proposed OCP formulation. Analysis of the
optimal HyGCHP operation shows that the term ’seasonal storage’ is not suited
to describe the role of the borefield in the HyGCHP system. The borefield
serves as a dissipater of heat and cold rather than as a storage medium.

135
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GB HP PC CH 

GBQ
HPQ PCQ CHQ

bfQ

given office loads 

heat & cold distribution 

heat & cold production 

borefield  

Figure 7.1: Schematic presentation of the controlled HyGCHP system comprising
a ground-coupled heat pump (HP), a passive cooling (PC) heat exchanger, a
gas boiler (GB) and a chiller (CH). The HP and the PC are connected to the
borefield. The heat delivered to the building, i.e. Q̇HP + Q̇GB , must equal the
given office heating load Q̇h (>0). The cold delivered, i.e. Q̇PC + Q̇CH , must
equal the given office cooling load Q̇c (<0).

7.2 Optimal control problem formulation

This section presents an optimal control problem (OCP) formulation to optimize
the use of the borefield for a given building heating demand Q̇h(W) and building
cooling demand Q̇c (W). A simplified representation of the system is depicted
in Figure 7.1. Heat is provided by the heat pump (HP) or by the gas boiler
(GB). Cold is provided by passive cooling through the passive cooling (PC) heat
exchanger or by active cooling with the chiller (CH).

Meeting the building heating and cooling demand At each time step, the
building heating and cooling demand must be met, as expressed by Eqs.(7.1a)-
(7.1b).

Q̇h = Q̇HP + Q̇GB (7.1a)

Q̇c = Q̇PC + Q̇CH (7.1b)
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Minimizing corresponding annual operation cost The objective is to
minimize the total annual energy cost by defining at each control time step the
optimal distribution of the heating and cooling load over the GCHP system on
the one hand and the backup heating and cooling system on the other hand.
This requires to account for the heat and cold production efficiency of each
device as expressed by Eqs.(7.2a-7.2d).

COPHP = Q̇HP
PHP

(7.2a)

ηGB = Q̇GB

Q̇gas
(7.2b)

COPPC = Q̇PC
PPC

(7.2c)

COPCH = Q̇CH
PCH

(7.2d)

PHP (W) represents the electricity consumption of the HP compressor and
of the circulation pumps at borefield side. Q̇gas (W) represents the primary
gas power. PPC (W) represents the electricity consumption of the circulation
pumps. PCH (W) represents the electricity consumption of the CH compressor
and of the circulation pumps to cooling tower.

As indicated by Eqs.(7.3a)-(7.3c) COPHP , COPPC and COPCH depend on the
temperatures at source and supply side. Tfo (◦C) denotes the brine fluid outlet
temperature, Tamb (◦C) the ambient temperature and Tws (◦C) the supply
water temperature.

COPHP = f(Tfo, Tws) (7.3a)

COPPC = f(Tfo, Tws) (7.3b)

COPCH = f(Tamb, Tws) (7.3c)

Taking into account the electricity price, denoted by cel (e/kWh), and the gas
price, denoted by cgas (e/kWh), the cost function can be expressed by Eq.(7.4).

min

∫ 1 year

0

(
cel
(
PHP + PPC + PCH

)
+ cgasQ̇gas

)
dt (7.4)

Substituting Eqs.(7.2a)-(7.2d) into Eq.(7.4), yields Eq.(7.5).

min

∫ 1 year

0

(
cel
( Q̇HP
COPHP

+ Q̇PC
COPPC

+ Q̇CH
COPCH

)
+ cgas

Q̇GB
ηGB

)
dt (7.5)
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Input constraints To obtain a feasible solution, the optimization must account
for the limited heating or cooling capacity of each device:

Q̇HP ≤ COPHPPHP,max (7.6a)

Q̇GB ≤ ηGBQGB,max (7.6b)

Q̇PC ≤ UAPC(Tws − Tfo) (7.6c)

Q̇CH ≤ COPCHPCH,max (7.6d)

Through the dependency of COPHP and COPCH on the operation conditions,
the maximal Q̇HP and Q̇CH are variables. The maximal Q̇PC is even more
sensitive to the operation conditions. As indicated by Eq.(7.6c), there is no
passive cooling capacity if Tfo approaches Tws.

State constraints The critical point for freezing is at the heat pump evaporator
outlet. Tfi should not drop below a minimum value Tf,min, as expressed by
Eq.(7.7a). If an anti-freeze solution is used, the risk for frost formation moves
towards the ground around the BHE, giving rise to Eq.(7.7b) as additional
constraint.

Tfi ≥ Tf,min (7.7a)

Tg,i ≥ Tg,min (7.7b)

Long-term sustainable operation Finally, thermal build-up or thermal
depletion of the borefield should be prevented. This implies that for the
design reference year, thermal balance should be ensured. In other words, the
temperature distribution around the BHE should be the same at the beginning
and at the end of the year. The optimal operation profile calculated for the
reference year, can then serve as reference for the entire life length of the borefield,
while year-by-year variations in the heating and cooling load may allow small
deviations from this reference profile. Mathematically, this condition requires
the optimal solution for the reference year to be periodic. This periodicity can
be directly imposed by representing the optimal control profiles as weighted
sums of a set linearly independent periodic functions, with a period being an
integer fraction of 8760 h or 1 year. The optimization then determines the
contribution to the optimal control profile of each of these functions, i.e. the
amplitude and the phase. If the temperature distribution around the boreholes
can be extracted from the controller model, periodicity can also be imposed
by periodic boundary conditions on all N ground temperatures Tg,i in the
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controller model, see Eq.(7.8). The ground temperature distribution in the
borefield at the beginning of the year (t = 0) and at the end of the year (t = 1
year) should be identical. The latter approach is adopted in this study.

Tg,i(0) = Tg,i(1 year) ∀i = 1 : N (7.8)

Controller borefield model requirements Solving the above formulated OCP
therefore requires a model which predicts the variation of Tfo as a function
of the optimization variables Q̇HP and Q̇PC . This variation depends on the
net heat injected from the borefield Q̇bf , found by Eq.(7.9). The first term
represents the heat extracted by the heat pump, the second term the heat
rejected by passive cooling. The electricity consumption of the circulation
pumps in PC mode, Pprim (W) enters the energy equation since the pumping
power is eventually - through the friction losses of the circulating fluid inside
the GHE - dissipated as heat. In HP operation mode, this heat is extracted
by the HP and thus included in the term Q̇HP . In PC mode, by contrast, this
heat source is superposed on Q̇PC . Substituting Eq.(7.3b) into Eq.(7.9) yields
Eq.(7.10).

Q̇bf =
(
Q̇HP − PHP

)
+
(∣∣Q̇PC∣∣+ PPC

)
(7.9)

Q̇bf = −COPHP − 1
COPHP

Q̇HP + COPPC + 1
COPPC

∣∣Q̇PC∣∣ (7.10)

The Tfo-prediction should be accurate in both the short and the long term. The
former depends on the control time step, which for building climate control is
usually 1 h. The latter depends on the control horizon. Guaranteeing borefield
thermal balance on an annual basis corresponds to a horizon of 1 year. However,
a longer time scale is required to assess the ground and brine temperature
evolution in the case of borefield thermal imbalance.
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7.3 Heat transfer processes in borefields

7.3.1 Introduction

A borefield consists of a number of vertical ground loop heat exchangers or
borehole heat exchangers (BHE), connected in series and/or in parallel. A
typical borefield configuration with a Tichelmann-layout is shown in Figure 7.2.
Figure 7.3 zooms in on a single BHE with a single U-tube heat exchanger,
embedded in a conductive filling material or grout, surrounded by ground. To
describe the borefield thermal dynamics, one has to start with the description
of the thermal processes occurring inside and around a single BHE, in the
literature denoted by respectively the inner problem and the outer problem,
both indicated in Figure 7.3. Once the response of a single BHE to a heat
injection or extraction profile can be described, the thermal interference between
different BHEs inside a borefield can be taken into account, as well as the heat
exchange between the borefield and the so-called far field, i.e. the ground at
undisturbed ground temperature Tg,∞ (◦C).

Figure 7.2: Scheme of a borefield with BHEs connected in parallel (Tichelmann-
layout).

The development of models describing the thermal dynamics of borefields has
started in the ’70s and was motivated by the need for borefield design tools.
Since the borefield represents the largest share of the GCHP system investment
cost, tools were needed to determine the minimal required BHE length. Static
design guidelines based on the peak heating or cooling demand enable a first
rough estimation of the BHE length. However, to prevent thermal ground
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Figure 7.3: Scheme of a BHE with a single U-tube heat exchanger with indication
of the length of the insulated upper part D (m), the active borehole depthH (m),
the brine fluid mass flow rate ṁf (kg/s), the fluid inlet temperature Tf,i (◦C),
the fluid outlet temperature Tf,o (◦C), the mean borehole wall temperature
Tb (◦C) and the undisturbed ground temperature Tg,inf (◦C). Two regions
are distinguished: the so-called ’inner problem’, comprising the heat transfer
processes within the BHE, and the ’outer problem’, comprising the heat transfer
processes in the surrounding ground.

depletion or thermal build-up due to undersizing, or too large investment costs
due to oversizing, design tools were developed which not only took the maximum
heat injection or extraction rate into account, but the annual loads as well [see
e.g., 17, 42, 92, 139, 166]. These loads are based on a static or dynamic building
load calculation and an estimation of the heat pump COP and the COP for
passive cooling. The design question is then: ’What is the required BHE length
for the given load profile, the given ground thermal properties and the given
brine and BHE properties?’. From an economical point of view, the answer is the
length for which the borefield outlet temperature hits its maximal or minimal
value at the end of the borefield life, typically taken 20 years. One therefore
needs to simulate the borefield outlet temperature response to a multi-year
load profile and this as a function of the ground thermal properties and the
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different design parameters. The borefield model therefore needed (1) to be
a first-principles model, i.e. explicitly a function of the physical parameters,
and (2) to take the long term characteristics of the borefield into account,
and (3) to be computationally fast as to be integrated in an iterative design
process. The annual load profile was, and is still, often lumped into the monthly
energy values and monthly power peak values. The hourly and sub-hourly time
scale, corresponding to respectively the dynamics of the BHE grout and of the
circulating fluid, the so-called inner problem (see indication in Figure 7.3), could
in this view be neglected. Instead, the focus was on the outer problem, i.e. the
description of the heat diffusion process around the BHE, the thermal interaction
between the BHEs and the interaction of the borefield as a whole with the far
field. Due to the fact that the heat diffusion process is linear - at least if we
assume the ground thermal properties to be time and temperature invariant -
the temperature response to a time varying heat input profile can be found by
convolution of the step responses. A second benefit of the linearity of the heat
diffusion process, is that the temperature field of a borefield can be described by
spatial superposition of the temperature fields caused by the individual BHEs.
A computationally elegant description of the borefield dynamics exploits this
knowledge. The modeling then boils down to three parts: (1) modeling the
step response of a single BHE, (2) applying spatial superposition to obtain the
borefield temperature field, (3) applying temporal superposition to determine
the response to a time-varying input signal. While computational power has
drastically increased during the last 40 years, the above mentioned approach is
still - in one or an other way - adopted to speed up computation time.

The first three sections aim at providing a better understanding of how to
describe the heat transfer processes in borefields in general and in a single
BHE in specific, based on a literature overview: Section 7.3.2 presents the
governing first principle equations, Section 7.3.3 presents different approaches
to model the heat transfer inside the BHE (inner problem) and Section 7.3.4
presents different approaches to model the heat transfer processes around the
BHE (outer problem).The overview discusses only a few models, which are
schematic presented in Figure 7.4 with the horizontal position reflecting the
time scales incorporated in the model and the vertical position the model
and/or system complexity. Good reviews on the existing models are published
by, among others, Murugappan [120], Yavuzturk and Spitler [192], Lamarche
and Beauchamp [105], Yang et al. [190] and Javed and Claesson [86]. For a
comprehensive study of the fundamentals of the heat transfer processes inside
and around a BHE, we refer to the work of Eskilson [43]. All encountered
models are first principle (white-box) models, requiring knowledge of the ground
and borefield thermal properties. Section 7.3.5 deals with characterization of
the physical parameters. Section 7.3.6 deals with the validation of the models.
Section 7.3.7 discusses the fitness of the models encountered in the literature,
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for incorporation in an optimization framework such as the optimal control
problem presented in Section 7.2.
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EWS (Huber &Wetter, 1997) 

SBM (Eskilson 1984)  g-functions (medium/long term)  EED (2000), 
GLHEPRO (2000) 

FRACure (Köhl, 1995) 

DST (Hellström 1989)  TRNSYS Type557 (Pahud 1996) 

Javed 2011 

Yavuzturk 1999  g-functions (short term) 

Buried cable analogy (Lamarche & Beauchamp, 2007)  

Quasi-3D transient inner model (Zeng et al. 2003) 

Figure 7.4: Overview of the discussed BHE and borefield models, with the
horizontal position reflecting the time scales incorporated in the model (left: fast
dynamics related to the inner problem, right: slow dynamics related to the heat
exchange with the far field) and with the vertical position reflecting the model
complexity (below: simplified representations, above: detailed representations).
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7.3.2 First principle equations

Fourier’s law Except from the convective heat transfer due to the circulation
of the brine fluid inside the tubes, the heat transfer inside the BHE (inner
problem) and around the BHE (outer problem) is mainly conductive and can
thus be described by Fourier’s law ([175]):

q′′ = −k∇T (7.11)

with q′′ (W/m2) denoting the heat flux per unit surface and k (W/mK) the
thermal conductivity of the medium (e.g. the grout or the ground). Substituting
Eq.(7.39) in the energy balance equation for a unit volume with density ρ

(kg/m)3 and specific thermal capacity c (J/kgK):

ρc
∂T

∂t
= k∇2T (7.12)

yields:
∂T

∂t
= k

ρc
∇2T

= α∇2T (7.13)

with α (m2/s) the thermal diffusivity of the conductive medium. In polar
coordinates, the transient conduction equation Eq.(7.13) can be expressed as:

1
α

∂T

∂t
= ∂2T

∂z2 + ∂2T

∂r2 + 1
r

∂T

∂r
+ 1
r2
∂2T

∂θ2 (7.14)

with z (m) the axial position (e.g. the distance to the ground surface), r (m)
the radial position (i.e. the distance to the centre of the BHE) and θ (rad) the
angular position. Solution of this partial differential equation (PDE) requires
an initial condition and 2 boundary conditions for each spatial dimension.
Depending on the initial and boundary conditions, Eq. 7.14, can be solved
analytically and/or numerically. It should be noted that most borefield models,
whether they are based on an analytical or a numerical solution method (or
both), exploit the fact that heat diffusion is a linear process and thus allows
temporal and spatial superposition of temperature fields.

Temporal superposition Temporal superposition or convolution allows to
describe the temperature response of the ground at a certain position, Tg(r, z, t),
to a time-varying heat input signal q′b(t) as the convolution of the impulse
response function G′(r, z, t):

Tg(r, z, t) = Tg(r, z, t = 0) +
∫ +∞

−∞
q′b(t− τ)G′(r, z, τ)dtτ (7.15)
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If the continuous q′b(t)-profile is discretized into n piece-wise constant parts
q′b(i), the temperature response can be found as the sum of the step responses
to the consecutive heat pulses q′b(i)− q′b(i− 1):

Tg(r, z, t) = Tg(r, z, t = 0) +
n∑
i=1

(
q′b(i)− q′b(i− 1)

)
G(r, z, t− ti) (7.16)

with i the index denoting the end of a time step.

The step response functions G(r, z, t) can also be written as a function of
dimensionless space and time variables, r̃ (-) and t̃ (-). These so-called g-
functions can be used to describe both the outer problem and the inner problem,
and can be determined analytically and/or numerically (see Figure 7.4 and
discussion below). The use of g-functions is common in the field of borefield
modeling. Since the number of superposition calculations is proportional to
the square of the number of discretization time steps, an 8760 h simulation
creates a significant computational burden [192]. To address this problem,
aggregation algorithms have been developed [192] to lump the response to heat
inputs further away in the past, into larger blocks (i.e. larger discretization
time step) and this way reduce the number of superposition calculations. A
theoretical analysis of the impact of consecutive pulses and their pulse length
on the temperature at a certain time step t, has been performed by Eskilson
[45].

Spatial superposition In a borefield, the ground surrounding a BHE can not
simply be considered as an infinite medium due to the thermal interaction
between the different BHEs. The borefield temperature field is calculated by
spatial superposition of the contribution of each BHE to the temperature field,
see Eq.(7.17), with nb denoting the number of BHEs:

T (r, z, t) =
nb∑
i=1

Ti(ri, zi, t) (7.17)

The combination of temporal and spatial superposition can also be deployed to
increase the computation speed of models which cover the broad range of time
constants, i.e. ranging from the small time constants inside and/or near the
BHE up to the large time constants near the far field. The global temperature
field is then found as the sum of a finite number of temperature fields which
each focus on a different time scale and which are updated at appropriate time
intervals.
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7.3.3 Modeling the inner problem

The inner problem describes the processes within the BHE (see Figure 7.3), i.e.
the heat exchange between the circulating fluid and the BHE wall. Two parts
are distinguished: convective heat transport due to the brine fluid circulation
inside the tubes on the one hand, and conductive heat transport from the tubes
- through the grout - to the BHE wall, on the other hand. Most borefield models
treat the inner problem statically, i.e. the so-called steady flux assumption. Only
for subhourly simulations, for which the transient processes inside the BHE
can not be neglected, dynamic models of the inner problem are required. Also
for describing the brine fluid temperature evolution along the tube, different
approaches exist.

Steady flux assumption

br

0r

bR'

gR'

fT

gT

fT

bT

x

Figure 7.5: Horizontal cross cut of a single U-tube BHE, with indication of the
tube radius r0, the BHE radius rb, the tube inter distance x, the mean fluid
temperature Tf , the mean BHE wall temperature Tb and the surrounding ground
temperature Tg. R′b (K/(W/m)) represents the borehole thermal resistance per
unit length and R′g (K/(W/m)) the thermal resistance for heat transfer in the
ground. R′b (see Eq.(7.23)) suffices to model the inner problem statically.

A steady-flux assumption of the heat transfer inside a BHE is often tolerated
as the dynamics related to the inner problem are much faster than the ones



Heat transfer processes in borefields 147

needed for design purposes. The most simple static model expresses the heat
transfer as a function of the difference between the mean fluid temperature (Tf )
and the mean borehole wall temperature (Tb), both indicated in Figure 7.5, see
Eq.(7.18):

Tb(t) − Tf (t) = q′b(t)R′b (7.18)

R′b (K/(W/m)) is the unit length resistance of the BHE which takes into account
convection between the fluid and the wall, conduction in the tube wall and
conduction in the grout. q̇′b (W/m) represents the heat extraction rate per unit
length. Given the mean fluid temperature Tf and BHE depth H, the borefield
inlet temperature Tfi (◦C) and outlet temperature Tfo (◦C) are found using
the following assumptions:

Tf (t) = Tfi(t) + Tfo(t)
2 (7.19)

ṁcp(Tfo(t) − Tfi(t)) = Hq′b(t) (7.20)

Tfo(t) = Tf (t) + q′b(t)H
2ṁcp

(7.21)

or, by substituting Eq.(7.18) in Eq.(7.21):

Tfo(t) =
(
Tb(t) − q′b(t)R′b

)
+ q′b(t)H

2ṁcp
(7.22)

The problem of finding Tfo as a function of q′b then boils down to two
subproblems, being, first, finding an expression for the borehole resistance
R′b and, second, finding an expression for Tb as a function of q′b.

According to Yavuzturk and Spitler [192], the borehole resistance R′b can be
expressed as the sum of the thermal resistance of the convective heat transfer
from the fluid to the pipe, R′convection (K/(W/m)), the thermal resistance for
the conductive heat transfer through the shell of the U-tubes, R′pipe (K/(W/m))
and the thermal resistance for the conductive heat transfer through the grout,
R′grout (K/(W/m)):

R′b = R′convection +R′pipe +R′grout (7.23)

with:

R′convection = 1
4πrinhin

(7.24)
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R′pipe = ln(rout/rin)
4πkpipe

(7.25)

and

R′grout = 1
kgrβ0(rb/rout)β1

(7.26)

with rin(m) and rout(m) respectively the pipe inner and outer radius, kpipe
(W/mK) the pipe thermal conductivity and hin (W/m2K) the convection
coefficient and β0 (-) and β1 (-) resistance shape factor coefficients which
depend on the borehole and pipe geometry. The convection coefficient hin can
be determined by the Dittus-Boelter correlation, which is a function of the
Reynolds number Re (-), the Prandtl number Pr (-), the thermal conductivity
of the brine fluid kf (W/mK) and the inner pipe radius ri:

hin = 0.023Re0.8Prnkf
2rin

(7.27)

with n = 0.4 for heating and n = 0.3 for cooling. β0 (-) and β1 (-) are based
on experimental and/or finite element analysis [136]. For typical borehole and
pipe geometries, β0 and β1 amount to approximately +20 and -1. The effective
borehole thermal resistance Rb (K/W) is expressed by Eq.(7.28), with H (m)
the active BHE depth (see Figure 7.3).

Rb = R′b
H

(7.28)

Eqs.(7.23) - (7.28) provide a first estimate of Rb which can be used in the
initial borefield design phase. For the final design phase, however, it is
recommended to define Rb experimentally through a thermal response test
(TRT), see Section 7.3.5.

The second subproblem, i.e. finding an expression for Tb as a function of q′b (see
Eq.(7.22)), is the subject of Section 7.3.4 which deals with the description of
the outer problem.

Transient models

For subhourly simulations the steady-flux assumption (see Eq.(7.18)) does not
hold. The steady-flux assumption is only valid for time scales larger than the
borehole time tbh (s), defined by Eskilson [43] as:

tbh = πr2
b ρgrcgr ∆T
∆T/R′b

= r2
b

αg

ρgrcgr
ρgcg

πkgR
′
b (7.29)
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tbh represents the time needed to increase the borehole temperature (with
borehole radius rb, grout thermal capacity cgr (J/m3K) and grout density ρgr
(kg/m3)) with ∆T (◦C) by means of a temperature change ∆T of the brine
fluid temperature (with the latter corresponding to a maximum heat transfer
rate from the fluid to the borehole q′b of ∆T/R′b). For a characteristic value
of 0.1 K/(W/m) for R′b, 3.3 W/mK for kg and a ratio of 2 for ρgrcgr

ρgcg
, following

simplified expression for tbh is obtained [43]:

tbh = 5r2
b

αg
(7.30)

with αg (m2/s) representing the ground thermal diffusivity. For rb equal to
0.075 m and αg 8.0× 10−7 m2/s tbh amounts to 10 h. Note that the ratio of 2
for ρgrcgr

ρgcg
is based on the assumption that the borehole is filled with water (as

applied in Sweden). For typical grout materials, such as bentonite, this ratio is
close to 1. The estimate of tbh, used to determine the time scale below which
the transient effects inside the borehole can not be neglected, is therefore on
the safe side.

Being minor in magnitude, the axial component is often neglected when modeling
the transient conduction inside the grout [190]. Eq. 7.14 then boils down to:

1
α

∂T

∂t
= ∂2T

∂r2 + 1
r

∂T

∂r
+ 1
r2
∂2T

∂θ2 (7.31)

Yavuzturk et al. [193] solved this PDE for various GHE geometries, using a fully
implicit finite volume approach [133, 134]. They developed an algorithm to
automatically generate polar grids for a variety of borehole radii rb, pipe radii r0
and tube inter distance x. To facilitate the integration into commercial borefield
design software, this numerical model was used to generate step responses which
were in turn translated into the g-function format proposed by Eskilson [45]
(see Section 7.3.4).

Recently, the transient description of the inner problem has also been solved
analytically. Lamarche and Beauchamp [104] proposed an analytical solution of
Eq.(7.31), based on the buried cable analogy [24]. This promises to be more
flexible and computationally less expensive than numerical methods, but has
not been integrated into commercial building simulation software yet. Javed
and Claesson [86] presented a combination of analytical and numerical methods
to describe the short-term response for the BHE.
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Brine fluid circulation

The axial variation of the brine fluid temperature, neglected in the two
aforementioned inner-problem representations, is taken into account in the
models proposed by, among others, Zeng et al. [200] and Lee and Lam [106].
They solve the governing equations respectively analytically and numerically.
Both studies use the steady-flux approximation however, i.e. the transient effects
related to the thermal capacity of the grout, are neglected. The EWS-model
[83] (discussed further), by contrast, takes both the brine fluid circulation and
the grout dynamics (though by a single node only), into account. The inner
problem is solved numerically, with a schematic presentation of the modeling
approach depicted in Figure 7.6.

grout 

ground 

brine 

ifT ,ofT ,

Tf,up(i+1) 

Tf,up(i) 

Tf,up(i-1) 

Tf,down(i+1) 

Tf,down(i) 

Tf,down(i-1) 

Tgr(i) 

Tg(i) 

Figure 7.6: Axial cross cut of the resistance-capacity network analogy used by
the EWS model to represent the thermal processes inside and around a BHE.
As indicated by the allocation of the capacities, the EWS model incorporates
the dynamics of the fluid (brine), of the filling material (grout) and of the
surrounding ground [82].

7.3.4 Modeling the outer problem

The thermal processes occurring in a borefield are per definition 3-dimensional.
If focusing on the thermal response of a single BHE, however, the axial symmetry
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allows the use of 2D-cylindrical coordinates with only the radial dimension r
and the axial dimension z. Eq. (7.14) then boils down to:

1
αg

∂T

∂t
= ∂2T

∂z2 + ∂2T

∂r2 + 1
r

∂T

∂r
(7.32)

Solution of this PDE requires an initial condition, i.e. T (t = 0), and 2 boundary
conditions for each spatial dimension. For certain combinations of initial and
boundary conditions, an analytical solution exists. Section 7.3.4 discusses the
infinite line source solution, the cylindrical source solution and the finite line
source solution, which allow an approximative but mathematically elegant
description of the outer process for a single BHE. For more complex geometries
and/or boundary conditions, Eq. (7.32) has to be solved numerically, an example
of which is given in Section 7.3.4. Section 7.3.4 presents two examples of
’hybrid’ models which combine analytical and numerical methods to describe
the complex borefield thermal processes in a computationally efficient way. First,
the conclusions of the study of Eskilson [43], on the parameters which may be
neglected when modeling the outer problem, are presented.

Negligible parameters and effects

Based on both analytical studies and numerical results, Eskilson [43] has
shown that the following parameters and effects are negligible for the thermal
performance of BHEs:

• Ground stratification The ground can most often be considered as a
homogeneous medium: deviations from the average thermal conductivity
are negligible.

• Ground surface The impact of temperature variations, snow etc. is
negligible.

• Geothermal gradient Temperature deviations from the effective
undisturbed ground temperature Tg,∞ due to the geothermal gradient (≈
3 ◦C/100m) are negligible.

• Groundwater infiltration Except for situations with strong ground
water flow, the effect of groundwater infiltration is negligible.

• Inner problem Transient thermal effects inside the BHE (grout, tubes
and the heat carrier fluid) are insignificant on a time scale above tbh (see
Eq.(7.30)).
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Analytical solutions

Infinite line-source approximation The most simple way to model the outer
process is to treat the BHE as an infinite line source. With this approximation,
the radial distance to the source r (m) is the only spatial variable and Eq.(7.32)
boils down to:

1
αg

∂T

∂t
= ∂2T

∂r2 + 1
r

∂T

∂r
(7.33)

with αg (m2/s) denoting the ground thermal diffusivity. This PDE is solved with
following initial condition, which defines a homogeneous ground temperature
distribution at time t = 0:

T (r, t = 0) = T0 ∀ r ≥ 0 (7.34)

and with following boundary conditions:

−k∂T
∂r
|r=0 = q′b ∀ t > 0 (7.35)

T (r, t) = T0 r →∞ (7.36)

With the first boundary condition, the BHE is represented as a heat source
with constant specific heat rate q′b (switched on at time t = 0). Note that
the radial dimension of the BHE is neglected (i.e. r = 0). With the second
boundary condition, the ground is represented as a semi-infinite medium. The
temperature response at time t and at a radial distance r from the line source
is then described by following equation:

T (r, t) − T0 = Q̇

4πkg

∫ ∞
x

e−β
2

β
dβ

= Q̇

2πkg
E(β) (7.37)

with E representing the exponential function and β (-) the dimensionless
integration variable:

β = r√
4αgt

(7.38)

Evaluation of T (r, t) at r = 0 yields an estimate of the borehole wall temperature
Tb. From this, Tf , Tfi and/or Tfo can be calculated using Eq.(7.18). This
model also enables to determine the diffusivity depth of the energy, denoted by
δ. For radial heat transfer, the diffusivity depth equals 1.118√αg t.
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The diffusivity model can be applied if the considered volume can be considered
as semi-infinite. This condition holds if the dimensionless number Fourier Fo
(-), expressed by Eq.(7.39) is smaller than 0.1.

Fo = α t

L2 ≈ ( δ
L

)2 (7.39)

L stands for the characteristic length and δ stands for the distance over which
the energy is transported during time t. If δ is small compared to L, the
approximation of infinity is justified. This condition holds in the case of a single
BHE. The characteristic length for radial heat transport is in that case infinite.
For multiple BHEs, L is approximately half of the distance B between the
BHEs. The diffusivity model is then only valid for small time steps. Short-term
variations can therefore be modeled analytically. Ingersoll et al. [84] were the
first to apply the line source model to the modeling and design of BHE. Most
models are extensions of this line-source approximation.

A BHE is, however, neither a line source, nor infinite. Due to the line source
assumption, the infinite line source model is not suitable for time steps smaller
than 5αt

r2
b

, i.e. when the short term dynamics related to the BHE itself and
to the ground near the BHE can not be neglected. Due to the infinite length
assumption it is not suitable for time periods larger than H2

9α , i.e. when axial
effects start playing a role. Therefore, the infinite line source solution is only
valid within the following time range, with tbh(s) being the borehole time (see
Eq.(7.30), [43]) and ts (s) being referred to as the borehole time constant.

5αt
r2
b

≤ t ≤ ts
20 with ts = H2

9α (7.40)

Finite line-source approximation For time scales longer than ts/20 the axial
effects, neglected in the infinite line-source approximation, become important.
Diao et al. [37] therefore proposed to use the analytical solution based on the
finite line source model. This finite line source solution considers every segment
of the line as a point source. The temperature response to the entire line source
is found by integrating over all segments. The mean BHE wall temperature Tb is
considered constant and equal to the BHE wall temperature at z = H/2. The
thermal response of Tb to a step input is presented by Eq.(7.41), as a function
of the dimensionless time t

ts
(-) and the dimensionless space variable r

H (-):

Tb − T0 = q′b
4πkg

(
t

ts
,
r

H

)
(7.41)

with g(-) the g-function, which is represented in Figure 7.7 for 1 BHE and 2
BHEs [105].
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Figure 7.7: g-Function for one BHE (B/H =∞) and two BHEs (B/H = 0.05)
obtained with the numerical model SBM [45](see Section 7.3.4), compared to
the infinite line source model (grey line). The g-function for one BHE (medium
and long time-scale) can also be found analytically using the finite line source
approximation. The difference between the g-function of the infinite line source
approximation (grey) and the finite line source approximation (B/H = ∞)
indicates the time scale from which axial effects start playing a role. The
difference between the g-functions for one BHE (B/H =∞) and for two BHEs
(B/H = 0.05) indicates the time scale from which BHE thermal interference
start playing a role (for the given ratio of the BHE spacing B and the BHE
depth H). Source: Lamarche and Beauchamp [105]

Figure 7.7 shows the difference between the dimensionless response functions
obtained with the infinite line-source approximation (straight line) and the
finite line-source approximation for a single BHE (B/H →∞). It is observed
that the two methods yield similar results for log( tts ) ≤ −3 ⇒ t ≤ ts

20 . For
longer time frames the axial effects (as a response to a step heat input) start
playing a role. The infinite line source approach is then no longer adequate.
For sandy-gravel soil axial effects become important after about 3.7 years, for
rocky soil already after about 1.2 years [105].

The approach of Diao et al. [37] however, yields some small discrepancies
compared to the infinite line source theory for t → 0 and a maximum in the
step response function is observed. According to Lamarche and Beauchamp
[105] these errors are caused by the choice of the reference temperature Tb.



Heat transfer processes in borefields 155

Lamarche and Beauchamp [105] determined Tb by integrating along the BHE
length, which yields a correct result. They also rewrote this integral in a
computationally more efficient form.

Infinite cylindrical-source approximation Deerman and Kavanaugh [36]
applied the cylindric source model, of which the line source model is a simplified
variation, to improve the description of the step response for the time scales
smaller than 5αt

r2
b

(see Eq.(7.40). The cylindric source model approximates the
BHE as a cylinder with infinite length and with a constant heat flux q′b at r = rb.
The initial and boundary conditions for the PDE expressed in Eq.(7.33) are
respectively:

T (r, t = 0) = T0 ∀ r ≤ rb (7.42)

and:

−k∂T
∂r
|r=rb

= q′b ∀ t > 0 (7.43)

T (r, t) = T0 r →∞ (7.44)

The solution to this problem at r = rb equals:

Tb − T0 = q′b
k
.G(z, p)

{
z = αt

r2

p = r
rb

(7.45)

where G(z,p) is the cylindrical source function as described by Ingersoll et al.
(1954):

G(z, p) = 1
π2

∫ ∞
0

f(β)dβ (7.46)

f(β) = (e−β
2z − 1). [J0(pβ)Y1(β)− Y0(pβ)J1(β)]

β2 [J1(β)2 + Y1(β)2] (7.47)

where J0, J1, Y0, Y1 are the Bessel functions of the first and second kind.
Carslaw and Jaeger [24] developed analytical solutions with varying boundary
conditions for regions bounded by cylinder geometry. Deerman and Kavanaugh
[36] and Kavanaugh and Rafferty [92] described the use of the cylinder source
model in designing ground loop heat exchangers.



156 Borefield level control

Numerical models

Eskilson [45] developed the Superposition Borehole Model (SBM), aimed at
describing the response of a borefield for different configurations of the BHEs.
Inspired by the computational advantages of a step response model, he created
a library with step responses of more than 112 borefield configurations. These
step responses, referred to as g-functions, are a function of two dimensionless
variables, being the dimensionless time t

ts
and the dimensionless length B/H:

T ( t
ts
, B/H) = g( t

ts
, B/H) (7.48)

B (m) denotes the distance between two adjacent BHEs. Figure 7.7 shows the
g-functions for one BHE (B/H =∞) and two BHEs (B/H = 0.05). Comparison
between both g-functions indicates that, for the case B/H = 0.05, thermal
interference starts playing a role for log( tts ) ≥ −5. For sandy-gravel soil this
corresponds to a time span of about half a year, for rocky soil only 2 months
[105].

By convolution of these individual step response functions the final solution is
calculated. These g-functions can be used to analyze the medium and long-term
behavior of borefield configurations, which is useful for design purposes. They
are integrated in commercial borefield design software such as EED [42] and
GLHEPRO [166].

Eskilson [43] computed the g-functions based on numerical models. This
approach is however time-consuming and not flexible with respect to the borefield
configuration. Zeng et al. [199] therefore proposed an analytical method for
generating these g-functions, which has been worked out by Diao et al. [37]
and further improved by Lamarche and Beauchamp [105]. Note also that the
inner problem in the SBM is described using the steady flux assumption, which
formerly limited the use of the g-functions to the medium and long time scale.
Yavuzturk and Spitler [192] have extended the g-functions towards the smaller
time steps.

Hybrid models

While the first borefield models were intended for design purpose, the use of
integrated building simulation software environments, such as TRNSYS and
EnergyPlus, required BHE models with a shorter time step accuracy and high
computation speed. The most well-known model in this category is the Duct
Storage Model (DST) [74], aimed at describing the response of cylindrically
shaped borefields within a building simulation environment. The need for a
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computationally fast model resulted in a hierarchical model structure. The
borefield temperature field is calculated as the superposition of three solutions
which each account for a different time scale. The smallest time scale, related
to the heat transfer processes near the BHE as a result of hourly loads, is
captured by a 1D-radial finite-difference (FD)-model. The largest time scale,
related to the heat exchange processes inside the borefield and to the far field,
is captured by a 2D-axial-radial FD-model. The coupling between both time
scales, i.e. the medium time scale, is realized by an analytical model. The latter
redistributes the heat sources, originating from the short term solution, correctly
over the borefield. This redistribution is required as the 1D-radial FD-model
is solved only once, namely for a temperature distribution around the BHE
based on the mean borefield temperature. As the borefield temperature is not
homogeneous, the heat exchange between the BHE and its surrounding ground
will depend on the location of the BHE in the borefield. In other words, the
nominal solution for the heat transfer rate found with the 1D-radial model, will
thus be an overestimation or an underestimation of the actual heat exchange.
The redistribution of the heat sources, based on the position of the BHE in
the borefield, is thus realized by this analytical model. The inner problem is
treated statically, i.e. according to Eq.(7.18). The model has been translated
into TRNSYS Type557 [130, 172] and is especially useful for whole-building
simulation. The DST model is generally regarded as a reference model [105]. It
was recently experimentally validated by Pertzborn et al. [138].

The DST-model uses the steady-state assumption to model the inner problem.
For subhourly time scales, as mentioned earlier, this assumption does not
hold. For integration in building simulation software, a compromise is required
between the computational advantage of the steady-flux assumption on the
one hand, and the very detailed, but computationally expensive, numerical
models of the inner problem [e.g. 193] on the other hand. The EWS model
[82, 185] is an example of a model which forms such a compromise. The model
is well documented by Huber and Schuler [82]. The grout thermal capacity, the
convective heat transport inside the tubes and the thermal interference between
the tubes are represented by a lumped RC-network, depicted in Figure 7.6.
The heat transfer in the ground itself, near the BHE, is solved using the
Cranck-Nicholson discretization scheme, while the heat transfer to the far-field
is modeled analytically. The short-term behavior of the EWS-model has been
validated experimentally [82]. The long term behavior has been validated
numerically against the very detailed numerical model FRACure [97], the DST-
model [75] and WPcalc [121] by respectively Signorelli et al. [159] and Huber
and Schuler [82].
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7.3.5 Determining the physical parameters

The above mentioned models are all first-principle models, requiring knowledge
of the physical properties of the ground and of the BHE. The BHE length is
most sensitive to the effective borehole thermal resistance Rb and to the ground
thermal conductivity kg [60, 147]. An on-site determination of these parameters
by means of a Thermal Response Test (TRT), is strongly recommended.
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Figure 7.8: Thermal response test set-up

During a TRT heat is injected (or extracted) at a constant power. A schematic
representation of such a ’TRT device’ is given in figure 7.8. The evolution of
water inlet and outlet temperature is registered. From this the step response
of the mean fluid temperature Tf is calculated. As there are two parameters
to be determined, we need two equations. The first equation describes the
inner problem at steady-flux state, yielding an expression for Rb. The second
equation describes the temperature distribution in the surrounding ground,
yielding an expression for kg. Gehlin [60] describes five methods for the latter:
two analytical approaches, based on respectively the line source theory and the
cylinder source theory, and three numerical approaches: a 1-D numerical model
[158], a 2-D finite difference model [16] and a transient 2-D finite volume model
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in polar co-ordinates [7, 193]. While the analytical TRT evaluation techniques
require a constant heat injection or extraction rate, numerical models can also
account for time-varying heat transfer rates. On top of that they can handle
detailed representations of the BHE geometry and thermal properties of the
fluid, the tubes, the grout and the ground. Recently, however, also analytical
models have been developed for treating the short term dynamics related to
the inner problem [see e.g., 86, 105].

The impact of these parameters (and especially kg [91, 153]) on the BHE length,
explains the importance of a TRT and the large research effort in this domain
[see e.g., 60, 152, 158, 160, 181, 187]. The challenge here lies in the development
of methodologies (i.e., measurement techniques and models for data analysis)
which enable to increase the estimation accuracy and/or decrease the duration
time (and thus the cost) of performing a TRT. In this context one can situate
the development of models which are accurate on the very short term.

7.3.6 Model validation

Validation of borefield models is not straightforward. Validation of the long term
behavior is experimentally almost infeasible, as this would require measurement
periods of multiple tens of years. For the long term validation one therefore has
to rely on comparison with analytical models [18] and very detailed numerical
models [see e.g., 82]. Validation of the short term dynamics is not straightforward
either; since the temperature difference between inlet and outlet fluid is relatively
small (2 to 6◦C), heat power measurements are very prone to measurement
errors. Most models are therefore validated by comparison with other models.
Until recently, the experimental validation of some models was mentioned, but
not well documented. Recently, however, Beier et al. [14] gathered detailed
measurement data to enable a correct validation of the short term behavior of
BHE models, especially interesting for assisting the data analysis of TRT, as
discussed above.

7.3.7 Models for optimal control purpose

For the purpose of optimal control it is computationally advantageous to
represent the system by a linear state-space model [116]. The influence of
the number of states on the computation time depends on the optimization
problem itself, as well as on the optimization method used. Especially for
dynamic programming and explicit MPC it is computationally advantageous
to keep the number of states, i.e. the model order N, as small as possible [e.g.
81, 142]. With respect to the representation of the building dynamics, several
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examples of simplified models for use within the framework of building climate
optimal control are presented in the literature [e.g., 20, 101, 109, 186]. With
respect to the borefield dynamics, however, such low-order models have not
been encountered. Most existing models are intended for the purpose of (1)
design, (2) simulation or (3) TRT analysis, as described above, and their format
is either a step response model, a high-order numerical model or a combination
of both.

Only a few studies report the use of a simplified borefield model for optimization
purposes. Vanhoudt et al. [177] and De Ridder et al. [35] implemented dynamic
programming [15] to optimize HyGCHP operation with the mean borefield
storage temperature as optimization variable. However, the mean borefield
temperature alone is insufficient. The brine temperature should be predicted
as well since this is the variable defining the heat pump COP and the ability
for passive cooling. Franke [54] developed an object-oriented, equation-based
model of a solar heating system with borefield thermal storage to optimize the
design parameters with respect to both investment costs and running costs. The
local thermal process around the boreholes, i.e. the heat transfer between the
fluid and the storage medium, is described by a first-order dynamic model. The
global process, i.e. the heat transfer within the ground, is represented by an 11th
order model extracted from the 300th-order system matrix of the DST-model
implemented in TRNSYS [74, 172]. This model reduction was accomplished
by means of the singular perturbation approximation technique which yields a
model with good long-term prediction properties. Kim et al. [94] also proposed
the state model reduction (MR) technique to decrease the computation time for
predicting the short and long term dynamics of a BHE. The advantage of the
MR approach is that the resulting model captures the dominant dynamics with
a minimum number of states. One downside of the reported examples on the
use of MR, is the requirement to have access to the system matrix of a detailed,
high-order numerical model. This may constitute a practical barrier. A second
drawback, which is inherent to the methodology of MR, is that the initial (higher
order) numerical model remains an idealized representation of the real system.
Bianchi [20] therefore recommends to estimate the parameters of a controller
model for MPC from real measurement data. Contrary to the building dynamics,
however, the thermal time constant of a BHE (see definition ts) is very large
due to the slow thermal diffusion process in the semi-infinite ground. Time
constants range up to the order of magnitude of tens of years. Consequently
it is not possible to cover the entire dynamic range by measurement data. To
address this problem, parameter estimation (PE) can be started from an initial
model which is based on the physics of radial heat diffusion. The values for the
physical parameters in this first principle model can be obtained from a thermal
response test. Both the MR and the PE approach are evaluated in Section 7.4,
with in addition black-box system identification.
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7.4 Controller borefield model

Different techniques to obtain a low-order BHE-model are evaluated and
compared. The methodology followed is presented Section 7.4.1. Section
7.4.2 describes each modeling technique in detail. Section 7.4.3 evaluates
the developed models. Section 7.4.4 investigates the impact of non-idealities
encountered in practice. The main results are summarized in Section 7.4.5.

7.4.1 Methodology

As presented in Chapter 2, we start with the definition of the model requirements,
followed by the selection of the model types, identification data sets, parameter
estimation methods and validation methods. Here, we additionally describe the
DST-model used as emulator for validation and identification purposes.

BHEQ
Controller 
borefield 

model 
fT

Figure 7.9: Input-output description of the controller borefield model.

Model requirements The OCP defined in Section 8.3 requires a model which
relates the borefield fluid outlet temperature Tf,o to the hourly borefield load
profile Q̇BHE . With a steady state description of the inner problem this is
equivalent to finding an expression for the mean fluid temperature Tf (see
Eq.(7.18) and Eqs.(7.19-7.22) on p.148). This is represented in Figure 7.9. The
controller borefield model we are looking for, has to predict the mean fluid
temperature Tf as a response to hourly borefield load profiles Q̇BHE , and this
from the hourly time scale up to the annual time scale. For incorporation in an
optimization framework, the lowest-order model (i.e. the model with the lowest
number of states) which fits this requirement, is looked for.
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Figure 7.10: Investigated approaches to obtain low-order BHE-models: white-
box modeling followed by model reduction (MR) (top), grey-box modeling
followed by parameter estimation (PE) (middle) and black-box system
identification (SI) (bottom). The white-box model (top) is a 1-D finite difference
model (1D-FDM) representing the radial heat diffusion in the ground and is
based on Eskilson’s grid guidelines, yielding a model order N = 11. The physical
parameter values are the same as for the BHE emulator (DST-model), see dashed
arrow (1). The evaluated MR techniques are ’MatchDC’ and ’Truncate’. The
initial guess for PE (middle) is a 1D-FDM with the grid adapted to the model
order N = 1 : 11. PE is performed for 5 identification data (ID) sets (ID1
to ID5), each covering a different time scale, as indicated. The ID data are
obtained from the DST-model (with multisine heat profiles as excitation signal),
indicated by the full arrow (2). Black-box system identification (bottom) is
performed for 2 additional ID sets (ID6 and ID7, covering a large time frame).
The models obtained with the 3 approaches are validated with the DST-model
for typical load profiles (Val1, Val2) and for a step heat input (Val3), indicated
by the double arrow (3).
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Model types Three approaches are investigated to obtain a low-order state
space description of a borehole heat exchanger (BHE):

• white-box approach,

• grey-box approach,

• black-box approach.

The white-box approach starts from a 1-dimensional finite-difference model
(1D-FDM) of the radial heat transfer process around the BHE, based on the
grid guidelines formulated by Eskilson [43]. Model reduction (MR) is applied to
this initial model to reduce the number of states. Two model reduction methods,
MatchDC and Trunctate, both implemented in the Matlab function balread,
are evaluated. Here, the question is to which order the initial model, based on
the grid guidelines, can be reduced.

The grey-box approach also starts from a finite-difference description of the radial
heat transfer. Instead of applying the grid guidelines, however, the number of
capacitances is varied. This results in a set of RC-models with varying model
order. The parameters of these RC-models are defined by parameter estimation
(PE). The identification data are simulation data obtained with the TRNSYS
DST-model, described in Section 7.4.1. Also here, the model with the lowest
number of states is defined. Additionally, the impact of the identification data
set used, is assessed.

The black-box approach, requiring no prior knowledge of the ground and borefield
thermal properties, is applied for two sets of model structures. The first set
comprises rational functions in the Laplace variable s, being the standard and
general format for linear models. The second set comprises rational functions in
the Warburg variable

√
s, a format which has been put forward to incorporate

the prior knowledge that the process being identified is a diffusion process,
which, in the Laplace domain, is a function of

√
s [141]. In this sense, this

second model structure in the variable
√
s is not a purely black-box model.

The coefficients of the rational models in s and
√
s are defined in the frequency

domain with the Matlab FDIDENT-toolbox [99]. The difference between the
two model structures is assessed, as well as the influence of the frequency content
of the excitation signal.

The three approaches are visualized in Figure 7.10. The resulting models are
compared to the DST-model implemented in TRNSYS [74, 172].
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TRNSYS Type557b 

Figure 7.11: Input and output variables of the DST-model implemented in
TRNSYS Type557b used as emulator for obtaining identification and validation
data.

Borehole emulator The data used for identification and validation are
simulation data obtained with the DST-model implemented in TRNSYS
Type557b [74, 172], see Figure 7.11. The DST-model (see also Section 7.3.4) is
a simulation model for cylindrical duct thermal energy storage systems. The
heat transfer between the circulating fluid and the borehole wall is represented
by the specific borehole thermal resistance R′b (mK/W). The dynamics of the
circulating fluid are neglected, preventing the use of this model to accurately
describe the temperature transients when switching on and off the circulation
pump. The ground temperatures are found by superposition of a local solution,
a steady-flux part and a global solution. The local solution accounts for the
contribution of a single BHE to the temperature variation inside a borefield,
related to the short-term effects of the heat injection or extraction, while the
steady-flux part and the global solution account for the slow heat redistribution
inside and outside the borefield. The global and local problems are solved
numerically by using the explicit finite difference method, whereas the steady-
flux part is given by an analytical solution. The superposition method is a
computationally efficient strategy to deal with the large range of time constants.
Due to its high level of detail, the TRNSYS DST-model is often used as a
reference, e.g. for validating simplified BHE models [18, 94, 132], for evaluating
design strategies [see, e.g. 158] or for analyzing thermal response test evaluation
tools [see, e.g. 187].

The BHE implemented in the TRNSYS DST-model has a length H of 121 m,
header depth of 1 m, borehole radius rb of 0.075 m and a specific borehole
thermal resistance of 0.1 mK/W. The specific heat of the calorimetric fluid is
4 kJ/kgK and its density is 1000 kg/m3. The ground has a thermal conductivity
kg of 1.9 W/mK and a volumetric heat capacity ρcg of 2400 kJ/m3K. The
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cell size of the numerical grid depends on the simulation time step and the
simulation length defined by the user. For this study, these model parameters
are set to respectively 0.2 h and 100 years.

The measurable variables are the mass flow rate ṁf , the fluid inlet temperature
Tfi and the fluid outlet temperature Tfo. From these, the heat input rate Q̇BHE
and the mean fluid temperature Tf can be calculated, see Eq.(7.18)-(7.20). Note
that Tbf , the mean borefield temperature is also an output of the DST-model,
but can not be directly measured in practice.

Identification data for grey-box PE and black-box SI The excitation signal
used for identification should excite the frequency range of interest. The dynamic
time range of a borehole is however very large, ranging from the hourly scale
to tens of years. Capturing this entire range in one identification data set (ID
set) requires both a small sampling time ∆ts and a long simulation time tsim.
This results in a huge amount of data, which is computationally difficult to
handle in the time domain. As stated in Chapter 2, parameter estimation boils
down to solving a nonlinear optimization problem. For identification in time
domain with the prediction error method (PEM), most nonlinear solvers, such
as the Levenberg-Marquardt algorithm adopted here, require the inversion of the
Hessian matrix (or of a computationally interesting approximation of it). The
size of the Hessian is nm × ny times nm × ny, where nm represents the number
of measurement time steps and ny the number of outputs for which the model
error needs to be minimized. With the adopted algorithm implementation and
the software and the hardware used, this inversion step is found to limit the
matrix size to approximately 5000 by 5000, which in turn limits the frequency
content contained in the identification data (ID) set for the grey-box models
identified in the time domain. Hence for time-domain identification a trade-off
must be made between the sampling frequency and the simulation time, and
thus between capturing the fast or slow dynamics.

For the black-box system identification performed with the Matlab FDIDENT
toolbox [99], there are no computational limitations on the frequency range
covered by the identification data. On the other hand, FDIDENT requires the
system response to a multisine excitation signal. Moreover, in the basic version
of FDIDENT used here, the steady state system response to the multisine
excitation signal is needed, which means that the transients at start up should
have died out. The steady state response to a multisine input signal is found by
repeating the same input a large number of times, until the difference between
the response of the (n+1)th time and the (n)th time the signal is applied, is
negligible. While in practice both criteria (multisine input signal and steady
state regime) are impossible to satisfy, it is easily performed within the TRNSYS
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simulation environment. In this sense, the ID sets used correspond to the better
than best-case scenario.
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Figure 7.12: Frequency range covered by the different identification data sets.
ID1, ID2, ID3, ID4, ID5, are used for PE in the time domain and therefore
cover a limited frequency range (trade-off between the short term dynamics (ID
1, ID2, ID3) and the long term dynamics (ID4 and ID5)). ID6 and ID7, used
for SI in frequency domain, cover the entire frequency of interest (2h-10y). As
a reference, the frequency response of the mean brine fluid temperature Tf to
the input Q̇BHE , based on the DST-model simulations, is shown. The discrete
markers (blue dots) indicate the frequencies of the multisine excitation signals
for which the response of Tf was calculated.

To examine the effect of the frequency content of the identification data on the
model performance, 7 identification data (ID) sets are proposed. The excitation
signals are multisine profiles for the borehole heat input rate Q̇BHE(t) (kW).
Table 7.1 lists the parameter values characterizing the multisines, being the
minimal period Tp,min (h) and the maximal period Tp,max (h) found in the
signal, or respectively the maximal frequency fmax (h−1) and minimal frequency
fmin (h−1), and the number of frequencies contained, Nf (-). To capture the
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information contained in the signal, the required measurement length tm (h)
and the sampling time ∆ts (h) (or sampling frequency fs (h−1)) are found as:

∆ts ≤
Tp,min

2 or fs ≥ 2fmax (7.49)

tsim ≥ Tp,max (7.50)

tsim in turn defines the smallest difference ∆f (h−1) between two frequencies
contained in the signal:

∆f ≥ 1
tsim

(7.51)

The frequencies contained in the multisine fi are by consequence elements of
the following vector of frequencies:

fi ∈ [fmin : ∆f : fmax] (7.52)

This way, the number of frequencies Nf (-) in the multisine is limited.

Table 7.1: Parameters of the multisine excitation signals used for identification.
ts Tp,min Tp,max fmin fmax df Nf

(h) (h) (years) (h−1) (h−1) (h−1) (-)

ID1 0.5 21 1/52 6.00×10−3 6.00×10−3 4.75×10−2 79
ID2 0.5 21 1/12 1.30×10−3 1.30×10−3 4.75×10−2 102
ID3 0.5 21 1/4 4.48×10−4 4.48×10−4 4.75×10−2 104
ID4 1.0 42 1/2 4.48×10−4 2.28×10−4 2.37×10−2 104
ID5 2.0 84 1 1.14×10−4 1.14×10−4 1.19×10−2 104
ID6 0.05 2 1 1.14×10−4 1.14×10−4 0.5 160
ID7 0.05 2 10 1.14×10−4 1.14×10−5 0.5 179

The frequency range covered by the 7 ID sets is graphically presented in
Figure 7.12. As a reference, the frequency range of interest, represented by
the response of the brine fluid temperature Tf to Q̇BHE as a function of f
(calculated based on the DST-model simulations), is depicted. The first five data
sets (ID1, ID2, ID3, ID4 and ID5) are used for the time-domain identification
of the grey-box models. As explained before, the frequency range of these ID
sets is limited by the maximal number of time steps (< 5000). ID1 corresponds
to a measurement time tm of 1 week, sampling time ∆ts of 0.5 h, and captures
the response of a multisine with a minimal period Tp,min of 20 h and a maximal
period Tp,max of 1 week. ID2 and ID3 extend tm to respectively 1 month (744 h)
and 3 months (2190 h), with a corresponding increase of Tp,max as a result. For
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ID3, this brings the number of measurement time steps to 4380 (=tm/ts), which
is close to the maximal number allowed. As a consequence, further increase
of the measurement time requires a reduction of the sampling frequency. ID4
covers the time scale from 40 h to 6 months (with ∆ts = 1 h) and ID5 covers
the time scale from 80 h to 1 year (with ∆ts = 2 h). To summarize, ID1 to
ID3 focus on the shorter time scale while ID4 and ID5 focus on the medium
time scale. This compromise between short or long time scale is not needed for
the identification of the black-box models, i.e. the rational function in s and
in
√
s. Two additional ID sets (indicated in grey in Figure 7.12) are proposed:

ID6 extends ID5 towards the very short time scales (down to 2 h) and ID7
additionally extends it towards the very long time scale (up to 10 years).

As an illustration, the multisine Q̇BHE-signal for ID3 is depicted in Figure 7.13.
Figure 7.13(a) shows the signal in the time domain and Figure 7.13(b) the
amplitude in the frequency domain. The highest frequency contained in the
Q̇BHE-signal is, as listed in Table 7.1, about 0.05 h−1, while the sampling
frequency fs, shown at the right end of the frequency axis, amounts to 1 h−1.
This is about 10 times the Nyquist frequency. This high safety margin
contributes to a good signal-to-noise ratio (see Chapter 2). Note also that
the contribution of the different frequencies to the Q̇BHE-signal is more or less
equal (namely 0.15− 0.30 kW), while at the same time the Q̇BHE(t)-profile in
the time domain nicely covers the entire power range (namely −4 kW to +4 kW).
This behavior, which also improves the signal-to-noise ratio, is achieved by
minimizing the peak-to-average ratio or Crest-factor, defined by Eq.(7.53). The
Crest factor should be evaluated in the frequency range of interest.

Crest = max(Q̇BHE(k))
RMS

with RMS =

√∑tm
k=0Q̇BHE(k)2

nm
(7.53)

Model validation methods The models are validated in three steps.

In the first step, the model time constants are calculated to check whether they
are within a physical range.

In the second step, the models are validated for 3 data sets, depicted in
Figure 7.14. The first validation data set (Val1) comprises the Tf -temperature
response to an hourly Q̇BHE(t)-profile for one entire year, a profile which
is representative for a balanced GCHP system. The second validation data
set(Val2) comprises the Tf -response to an unbalanced Q̇BHE(t)-profile and the
third validation data set (Val3) comprises the response to a step heat input
over a time frame of 10 years. For Val1 and Val2, the model error is quantified
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Figure 7.13: Multisine excitation signal with a period of 3 months used for
identification (ID set 3).(a) Time domain representation, (b) Frequency domain
representation (amplitude only).

in terms of the Root Mean Squared Error (RMSE) (◦C):

RMSE =

√∑nm

k=1
(
Tf,mod(k)− Tf,DST (k)

)2

nm
(7.54)

where Tf,mod (◦C) represents the model output, Tf,DST (◦C) the DST-model
output and nm(-) the number of data points in the ID set.

For the step response, the model error is quantified in terms of the relative
model error (Rel.Error) (%) at time step k:

Rel.Error = 100 Tf,mod(k)− Tf,DST (k)
Tf,DST (k)− Tf,DST (0) (7.55)

Val1 and Val2 assess the model quality for load variations typically encountered
in practice and allow to quantify the model performance for the short and
medium time scale (namely from 1 h to 1 year), for both a balanced and an
imbalance load profile. The step input is used to evaluate the long term effects
of thermal imbalance between the injected and extracted heat loads. This
choice of combination of validation sets (Val1, Val2 and Val3) is similar to the
combination of sets proposed by Bernier et al. [18]. Note that in what follows,
the term ’validation’ is not used in its strict sense. In its strict sense, the term
’validation’ denotes that the frequency content of the validation data set is
covered in the ID set. Here, we will use the term ’validation result’ for both
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Figure 7.14: Heat injection (Q̇BHE >0) and extraction (Q̇BHE <0) profile
used for validation (left) and corresponding fluid temperature profile relative
to the undisturbed ground temperature Tg,inf simulated by TRNSYS (right).
Validation set 1 (top): balanced annual load profile, Validation set 2 (bottom):
imbalanced annual load profile (heating only).

Val1, Val2 and Val3, irrespective of whether the frequency range of the ID set
used. This is done to simplify the discussion given the large amount of models
and ID sets.

Besides the evaluation of the time constants and the validation in the time
domain, the frequency response of the models is compared to the frequency
response obtained from the DST-simulation data.
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7.4.2 Modeling approaches

White-box modeling with model reduction (MR)

In the case of MR, the initial (white-box) model determines the maximum
obtainable degree of accuracy. A very detailed initial model to start from, is for
instance the DST-model, as proposed by Franke [54]. In this study the use of a
simpler initial model is investigated, namely a one-dimensional finite difference
model (1D-FDM). The time frame for which this 1D-representation is accurate,
is first discussed. Next, the MR techniques are briefly introduced.

 

1Nr1irir ir
~
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Figure 7.15: Discretization of the ground surrounding a single BHE into a finite
number of cylindrically shaped volumes.

Initial model: one-dimensional finite difference model based on Eskilson’s
guidelines The 1D, radial approximation of the heat diffusion process in the
ground can be modeled as a series of concentric volumes, each representing a
thermal capacity Ci, separated by thermal resistances Ri. This is schematically
shown in Figure 7.15. The inner node (left-hand side in Figure 7.16) represents
the mean fluid temperature (Tf ) at which the heat is supplied. The outer node
represents the undisturbed ground temperature (Tg,∞).
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Figure 7.16: RC-network representation of the one-dimensional radial
approximation of heat diffusion in the ground.

This representation is based on two assumptions that define the time frame
for which this representation is accurate. First, it is assumed that the heat
transfer rate from the fluid to the ground is directly proportional to the difference
between the mean fluid temperature Tf and the mean borehole wall temperature
Tb and inversely proportional to the effective borehole wall resistance Rb (K/W).
This assumption holds for time scales larger than the borehole time tbh, which
is the time needed to reach a steady state temperature distribution inside the
borehole after implying a step heat input, calculated from Eq.7.56, with rb (m)
the borehole radius and α [m2/s] the thermal diffusivity of the ground. For the
parameters rb and α of the borehole considered,

Q̇BHE = 1
Rb

(
Tf − Tb

)
for t > tbh ≈

5r2
b

α
(7.56)

The second assumption is that heat conduction in the ground is considered
to occur only radially. In the most general description, the heat transfer
from the borehole wall to the surrounding ground is three dimensional with a
radial component r, an angular component θ and an axial component z. For
axisymmetrical cases, it can be described by a radial and axial component
only. Axial conduction, however, starts influencing the temperature distribution
around the borehole only for unbalanced heat injection or heat extraction profiles
after a couple of years. For time scales shorter than 5% of the steady-state time
ts, calculated according to Eq.(7.57), the axial heat transfer can be neglected
[43, 105].

T (r, θ, z, t) ≈ T (r, t) for t <
ts
20 with ts ≈

H2

9α (7.57)

For the borehole considered, ts amounts to 65 years. For time frames shorter
than 3 years or for loads which are balanced on a yearly term, it is therefore
allowed to consider only the radial heat transfer component. The RC-model
presented in Figure 7.16 is therefore adequate to describe the response of the
fluid temperature to a step heat input between those two time scales, 10 h to 3
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years ( tb < t < ts/20). Extrapolation of this model to shorter or longer time
scales will introduce some errors due to the neglect of the transients related to
the inner problem on the other hand, and heat conduction in the axial direction
on the other hand.

Eskilson [43] presented the following guidelines for the grid generation :

∆rmin = min
(√

α∆tmin, H/5
)

(7.58a)

rmax = 3
√
αtmax (7.58b)

∆r =
[
∆rmin,∆rmin,∆rmin, β∆rmin, β2∆rmin, · · ·

]
(7.58c)

r1 = rb (7.58d)

ri+1 = ri + ∆ri (7.58e)

rN+1 ≥ rmax (7.58f)

The grid parameter tmax determines the lower bound for the outer radius rmax
while tmin determines the upper bound for the mesh size near the borehole wall
∆rmin. ∆rmin is repeated three times, after which the mesh size expands with
a factor β until the lower bound of the outer radius rmax is reached. The choice
of the grid parameters ∆tmin, tmax and β determines the resulting model order
N.
The nodes are located in the center of the cylindrical volumes:

r̃i = ri + ri+1

2 for i = 1..N (7.59)

Subsequently, the values of the thermal resistances Ri and capacities Ci are
determined:

R0 = 1
2πkgH

ln
( r̃1

rb

)
(7.60a)

Ri = 1
2πkgH

ln
( r̃i+1

r̃i

)
for i = 1..N − 1 (7.60b)

RN = 1
2πkgH

ln
( r̃N+1

r̃N

)
(7.60c)

Ci = ρcgπ
(
r2
i+1 − r2

i

)
H for i = 1..N (7.60d)

Eskilson (1987) has shown that the 1D -FDM based on the above mentioned
guidelines predicts the response to a step heat input with a relative error of
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Table 7.2: Results for 1-D finite difference models: Model order N and relative
model error for the temperature response to a step heat input.

Model parameters Relative model error (%)
Time ∆tmin tmax N 1 1 1 6 1 10 tmax

frame [h] [h] day week month months year years

1 week 1 189 8 -1. -1.05 -0.82 -8.44 -13.3 -25.8 -0.79
1 month 1 490 9 -1.7 -1.05 -0.68 -1.03 -2.86 -15.8 -0.54
6 month 1 7.42×103 10 -1.7 -1.05 -0.68 -0.48 0.02 -5.8 -0.17
1 year 1 2.94×104 11 -1.7 -1.05 -0.68 -0.48 0.06 1.69 1.39
10 year 1 1.17×105 12 -1.7 -1.05 -0.68 -0.48 0.06 2.62 >2.62

maximum 1% compared to the analytical solution. ∆tmin must then be equal
or smaller then the simulation time step and tmax equal or larger then the
simulated time period. The grid expansion term β is 2. These grid guidelines
are applied for 5 different time frames, each characterized by a certain value
for ∆tmin and tmax, resulting in five models of different order. For each model,
the response to a step heat input is compared to the response obtained by the
TRNSYS DST-model. The relative model errors are evaluated at different times
according to Eq.(7.55).

The results are listed in Table 7.2 and plotted in Figure 7.17. The validity
range of the model structure can be clearly observed. First, the fact that the
relative model error is larger during the first week agrees with the theory that
the steady state approximation of the inner problem is only accurate after the
borehole time tbh (see Eq.7.56). Second, the relative model error evaluated at
the time value tmax for which the numerical grid was sized, given in the last
column, remains below 1.5% as predicted by Eskilson (1987). The model set up
with tmax equal to 10 years forms an exception, as the relative error at tmax
exceeds 2.5%. This is due to the fact that for time scales longer than 5% of
the steady state time ts (3 years, see Eq.7.57), axial effects start playing a role.
As the axial heat losses are not taken into account by the radial model, the
response of the fluid temperature to a step heat input is overestimated in the
long-term.
The extrapolation characteristics of the models are clear from Figure 7.17 and
from the values presented in grey in Table 7.2. The model error drastically
increases for time frames larger than tmax. It therefore makes sense to choose
the grid parameter value tmax large, which does not cause a huge increase in the
model order N, as is clear from the fourth column of Table 7.2. The majority of
nodes are needed to describe the fast dynamics close to the borehole.
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Figure 7.17: Relative model error for the temperature response to a step heat
input for the 1D-FDMs set up according to Eskilson’s guidelines with the grid
parameter ∆tmin equal to 1 hour and tmax equal to respectively (1) one week,
(2) one month, (3) 6 months, (4) one year and (5) 10 years, indicated by the
dotted vertical lines. The dashed vertical line at the left indicates the borehole
time tbh , below which the steady state assumption for the inner process in the
borehole is invalid.

Model reduction methods The values in the fourth row of Table 7.2, listed
in bold, show that the model order needed to describe the response to a step
heat input after 10 years up to 2% accuracy, amounts to 11. In this section
it is investigated how the model accuracy is affected when this 11th order
model is reduced to lower order models by means of MR. Two methods, namely
’matchDC’ and ’Truncate’, both implemented in the Matlabroutine balred
[118], are compared. balred first computes a balanced realization of the system
matrices. The original states are recombined to new states which are ordered
according to their associated Hankel Singular Value (HSV). The latter is a
measure for the contribution of that state to the input/output behavior. From
this balanced realization a reduced-order approximation is derived, based on
the user specified option (’matchDC’ or ’Truncate’). The option ’matchDC’
guarantees that the steady-state behavior of the initial model is matched. The
option ’Truncate’ tries to optimize the dynamic behavior over the entire time
domain by discarding the states associated with the smallest Hankel singular
values. In the latter case a match of DC-gains is not guaranteed [118].



176 Borefield level control

Grey-box modeling with parameter estimation (PE)

Model structure A second approach to obtain low-order models, investigated
in this study, is parameter estimation (PE). The model structure, presented in
Figure 7.18, is the same as for the white-box model (see Figure 7.16), but the
model order N ′ is varied between 1 and 11. The corresponding model parameters
C ′i and R′i (with i ranging from 1 to N ′) are determined by PE for different
identification data sets which are obtained with the TRNSYS DST-model. The
initial values are based on the known geometrical and thermal system properties.
This is needed to obtain convergence to physically meaningful parameter values.

  QBHE 
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Tf 

R’N’ 
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Figure 7.18: Model structure of the grey-box models, based on the one-
dimensional radial approximation of heat diffusion in the ground. The model
order N ′ is varied between 1 and 11 and the model parameters R0 to R′N (W/K)
and C1 to C ′N (J/K) are determined by parameter estimation (PE), with their
initial guess based on physical insights.

Initial parameter values The initial guess for the parameters is obtained from
a 1D-FDM. Contrary to the set up of the 1D-FDM used as initial model for MR,
where ∆rmin is found as a function of the parameter ∆tmin, see Eq.(7.58a),
∆rmin is calculated as a function of the desired model order N’ :

∆rmin = rmax
(
2 + βN

′−2 − 1
β − 1

)
(7.61)

The parameter tmax, which defines rmax via Eq.(7.58b), is set to 1 year. The
grid expansion factor β equal to 2. The R′i and C ′i-values calculated according
to Eqs.(7.58-7.60), are used to determine the initial guess for the parameters.
To investigate the impact of the initial guess on the optimization result, the
PE procedure has also been performed from initial guesses obtained with other
values for tmax and β.
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Parameter estimation Starting from the initial guess for the model parameters
(R′i and C ′i), the optimal parameters for a given identification data set are found
as the solution which minimizes the sum of squared errors between the low-order
model output and the TRNSYS DST-model output. The resulting non-linear
least squares problem is solved using the Levenberg-Marquardt algorithm. As
excitation signals, multisine load profiles of different time lengths are used. Their
characteristics are presented in Table 7.1. A careful choice of the initial guess for
the parameter values, based on the physical insights (see previous paragraph) is
required to obtain convergence to a physically meaningful optimum.

Black-box modeling

Motivation The dynamic time range of a BHE is very large, ranging from
the hourly scale to tens of years. Capturing this entire range in one ID set
requires both a small sampling time and a long simulation time. This results
in a huge amount of data, which is computationally difficult to handle in the
time domain. Hence for time-domain identification a trade-off must be made
between sampling frequency and simulation time and thus between capturing
fast or slow dynamics. For frequency domain identification, on the contrary,
there is no computational limitation for the frequency range covered by the
identification data. The system identification procedure will be performed for
ID3, ID4 and additionally for ID6 (2 h-1 year) and ID7 (2 h-10 years) (see
Figure 7.12). In contrast to the grey box-modeling approach, however, the
black-box procedure does not incorporate prior knowledge of the borefield and
ground thermal properties. Comparison of the model performance obtained
with the three modeling procedures will thus allow to:

• quantify the impact of the frequency content of the ID set:
(a) white-box (MR): none
(a) grey-box (PE): limited frequency range
(b) black-box (s) and (

√
s): entire frequency range of interest

• and quantify the impact of incorporating physical knowledge:
(a) white-box (MR): RC-model structure + parameters
(b) grey-box (PE): RC-model structure + parameters initial guess
(c) black-box (s): none, black-box (

√
s): diffusion process
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Model structure The first set of black-box models are rational transfer
functions in the Laplace variable s:

Tf (s)
Q̇BHE(s)

= bzs
z + bz−1s

z−1 + ...+ b0

apsp + ap−1sp−1 + ...+ a0
(7.62)

where z denotes the number of zeros, p the number of poles with z always ≤ p.
bi and ai are the corresponding coefficients. The rational function in

√
s is

presented by Eq.(7.63):

Tf (s)
Q̇BHE(s)

= bz(
√
s)z + bz−1(

√
s)z−1 + ...+ b0

ap(
√
s)p + ap−1(

√
s)p−1 + ...+ a0

(7.63)

This
√
s-representation originates from the fact that diffusion processes, such

as thermal diffusion, result in a
√
s-representation in the Laplace domain. In

the time domain, this gives rise to a fractional order differential equation. The
domain of ’fractional order control’ (FOC) deals with the design of PI-controllers
for these kind of systems [see e.g. 113]. Implementation of the

√
s-models in an

optimization framework requires fitting a higher-order s-model in the control
frequency range. The latter is not investigated in this work.

System identification The coefficients ai and bi are fitted in the frequency
domain, using the Matlab FDIDENT toolbox [99]. The procedure does not
require an initial guess for the ai or bi, only the steady state system response
to a multisine excitation. The software allows to user to vary the number
of zeros z and poles p between any range. For each combination of z and p,
FDIDENT optimizes the ai and bi coefficients. For the entire range of z and p,
the cost function V (z, p) (evaluated in terms of the model error) is graphically
represented. The user can select the best model as the one with the lowest cost
function evaluation, or as the one with the lowest AIC-value (see Eq.(2.14) on
p.20). For each ID set, only the model with the lowest AIC value is retained.

7.4.3 Results

This section evaluates the three modeling approaches. The models are validated
in the time domain (Val1, Val2 and Val3) and in the frequency domain. A
first evaluation of the models is based on a graphical representation of the time
constants of the different models obtained.
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Time constants

Heat diffusion is characterized by an infinite number of time constants with
a continuous distribution. Simulation of heat diffusion by a numerical model
limits the number of time constants or nodes to a finite number, equal to the
model order N .

Figure 7.19(a) and Figure 7.19(b) depict the time constants of the models
obtained by MR and by PE for respectively N = 8 and N = 4 on a logarithmic
scale. The time constants of the 11th order model obtained when following
Eskilson’s grid generation guidelines and used as initial model for MR (MR(ini)),
range from 1 h, related to the inner node, to 105 h, related to the outer node.
The ’matchDC’ MR method (MR(DC)) only keeps the N largest time constants.
The ’Truncate’ method (MR(Tr)) puts one of the time constants more towards
the left in order to describe also the faster dynamics. For the models obtained
by PE the location of the time constants depends on the identification data
set. The shorter the time length of the identification data set (ID1 (1 week)
< ID2 (1 month) < ID3 (3 months) < ID4 (6 months) < ID5 (1 year)), the
smaller the time constants of the resulting model. The degrees of freedom are
used to describe as accurately as possible the frequency range contained in the
excitation signal.

The influence of the initial guess on the optimization result is investigated by
using two different starting models for PE (see PE(ini)). In Figure 7.19 they
are indicated by respectively a circle (’o’) and a cross (’x’). For N = 4, the
position of the time constants is unique for the majority of identification data
sets, i.e. independent of the initial guess for the parameters. For N = 8, on the
contrary, the solution depends on the initial parameter values. This means that
there are local minima if the model order is high.

Figure 7.20 depicts the time constants of the s-models obtained by black-box
system identification. For each ID set only the result for the best model (defined
as the model with the lowest AIC value, see Chapter 2) is shown. The time
constants are nicely spread over the entire frequency range covered by the ID
sets. Note however that the smallest time constant, located at the left end and
circled in red, for all investigated cases corresponds to a pair of complex poles.

The
√
s-models can not be characterized by time constants.
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Figure 7.19: Comparison of the time constants of the BHE-models obtained
with MR and PE of order N = 8 (a) and N=4 (b). Below the horizontal
grey line: Models obtained by MR using the ’Match DC’ option (MR(DC))
and the ’Truncate’ option (MR(Tr)) of the 11th order 1D-FDM obtained
with Eskilson’s guidelines (Esk). Above the horizontal grey line: Two starting
models for PE (PE(ini)), marked by respectively ’o’(bold) and ’x’(bold) and
the corresponding models found by PE with the identification data sets ID1
(PE(1w)), ID2 (PE(1m)), ID3 (PE(3m)), ID4 (PE(6m)) and ID5 (PE(1y)).
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Figure 7.20: Comparison of the time constants of the black-box s-models
obtained with an identification data set length of respectively 3 months, 6
months, 1 year and 10 year (s(ID3), s(ID4), s(ID6), s(ID7)). The first markers,
circled in black, denote time constants related to a pair of complex poles.
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Validation in the time domain

The model accuracy is evaluated for 3 distinct validation data sets, presented in
Figure 7.14: Val1, which corresponds to a typical balanced annual heat injection
and extraction profile, Val2, which corresponds to a typical imbalanced heat
profile (extraction only) and Val3, being a step heat input. The model accuracy
for Val1 and Val2 is quantified in terms of the RMSE (◦C), the accuracy for
Val3 in terms of the relative model error (Rel.Error)(%) evaluated after 10
years.

This section is structured as follows. First, the validation results obtained
with the MR and the PE approach are presented, with focus on the influence
of the model order N . The RMSE for the Val1, Val2 and Val3 is graphically
presented as a function of N (see Figure 7.21). For the MR method (see left hand
side of Figure 7.21), the influence of the model reduction method (’MatchDC’
versus ’Truncate’) is analyzed, while for the PE method (see right hand side
of Figure 7.21), the influence of the ID set is quantified. For the black-box
approach the influence of N is not analyzed: for each ID set, only the model
yielding the lowest AIC value is retained. The first part of this section therefore
only deals with the MR and PE approach. In the second part, the difference
between the black-box and the grey-box models is evaluated and discussed.

White-box (MR) and grey-box (PE): validation as a function of the model
order N The validation results for the MR and the PE approach are presented
in Figure 7.21. The plots at the left-hand side contain the results for the
models obtained by MR, the plots at the right-hand side show the results for
the models obtained by PE. Figure 7.21(a) and Figure 7.21(b) show the RMSE
as a function of the model order N . For both approaches, the model accuracy
hardly changes when the model order is reduced from the initial order of 11
down to model order 6. However, the validation results for N lower than 5 differ
substantially. For the models obtained by MR, the RMSE strongly increases for
N < 5 whereas the increase is far more moderate (but still significant) in case
of PE. As an illustration, the RMSE values for validation set 1 (representing
a balanced load profile) amount to 4.6 ◦C, 1.2 ◦C and 0.6 ◦C for the reduced
models of order N respectively 2, 4 and 6. For the models identified with the
identification set of 3 months, the RMSE is a factor 5 to 2 lower, respectively
1.0 ◦C, 0.4 ◦C and 0.3 ◦C. For N < 6 the absolute error of the models obtained
by PE is almost a factor 4 lower than for the ones obtained by MR, namely
3 ◦C, 2 ◦C and 1.2◦C compared to 9 ◦C, 5 ◦C and 0.6 ◦C. Given the amplitude
of the Tf signal of 35 ◦C (depicted in Figure 7.14(b)), the maximum relative
error of the former equals 10% for N = 2, 6% for N = 4 and 4% for N = 6.
Increasing the time span covered by the identification data set, further improves
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the model accuracy. Further increasing the model order, however, does not.
On the contrary, it was found that for N > 6 the PE procedure sometimes
yields unstable models, depending on both the choice of the initial guess and on
the identification data set. This indicates that for N > 6 there are too many
degrees of freedom compared to the information contained in the identification
data set.

The results for Val1 clearly show that PE is more adequate than MR for
obtaining low-order models able to describe the dynamics excited by a typical
balanced load profile. The impact of load imbalance on the prediction quality
is quantified by validating the models for Val2. The validation results for the
models obtained by MR and PE are shown in respectively Figure 7.21(c) and
7.21(d). Comparison of these two graphs reveals that for N < 6, PE still
performs better than MR. For N > 6, the MR technique discards fewer modes
related to the faster dynamics, resulting in a better performance than the models
obtained by PE.

The ability to describe the slow dynamics is investigated by applying a step
heat input and evaluating the relative error on the mean fluid temperature Tf
after one year. The validation results for the models obtained by MR and PE
are presented in respectively Figure 7.21(e) and Figure 7.21(f). Two conclusions
can be drawn. First, the low order models obtained by MR accurately describe
the slow dynamics, at least if the ’MatchDC’ option is used. Given the results
for Val1, (see Figure 7.21(a)) it can be concluded that the ’Truncate’ method,
which tries to achieve a fit for the entire frequency range, is inadequate since
neither the fast (excited by Val1) nor the slow dynamics (excited by the step heat
input) are well described. Second, the models obtained by PE, result in larger
relative errors. This is explained by the fact that the model parameters have
been optimized for the given, restricted time frame covered by the identification
data which do not capture the long-term dynamics excited by the step heat
input.

The RMSE for this 10-year evaluation is shown in Figure 7.22. As for the
1-year-simulations, for lower values of N the RMSE is by far the smallest for
the models obtained by PE. For higher values of N the MR method yields more
accurate models.

Comparison of the grey-box (PE) and the black-box (s and
√
s) results

The difference between the grey-box and the black-box models is summarized
in Table 7.3. For the black-box models in s and

√
s, the tabulated values
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Table 7.3: RMSE for validation data sets Val1 (1 year) and Val3 (10 years)
of the BHE-models obtained with the grey-box modeling approach (RC) and
the black-box system identification approach (s and

√
s). For each model, the

number of zeros z and poles p is given, the latter corresponding to the model
order N . Identification data sets ID6 and ID7 could only be used within the
black-box system identification framework in the frequency domain.

ID3 ID4 ID6 ID7
RC s

√
s RC s

√
s s

√
s s

√
s

z/p 8/8 8/8 2/5 8/8 8/8 2/5 11/11 2/5 11/11 7/7
Val1 0.002 0.010 0.018 0.003 0.079 0.057 0.038 0.046 0.066 0.024
Val3 0.63 0.83 0.33 0.37 0.67 0.29 0.49 0.17 0.30 0.06

correspond to the best model, based on the AIC value, for the given ID set.
For the s-models these are the 8th order model (ID3, ID4) and the 11th order
model (ID6, ID7). For the

√
s-models, these are the 5th order model (ID3, ID4,

ID6) and the 7th order model (ID7), which shows that the model order of
√
s

-models tend to be smaller than for s-models.

In general, very high model accuracies are achieved with all model types. The
RC-models are the most accurate for the validation set Val1 (1year), while√
s-models perform best for the extrapolation set represented by Val3 (10 year).

The quality of the s-models found is inferior to that of the RC-models. However,
as the grey-box model structures are RC-networks which belong to the s-model
set, the global optimum of the s-model set should be at least as good as the
one for the RC-model set. This suggests that the s-model identification in the
frequency domain got stuck in a local minimum. The results for ID6 and ID7
show that the wider range covered by the identification data effectively results
in both an improved short-term and long-term prediction.
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Figure 7.21: Validation results for the models obtained by MR (’MatchDC’)
(left) and for the models obtained by PE (right) for model order N ranging
from 1 to 11. Unstable models, which yield very high RMSE values, are not
displayed. Top: RMSE for Val1 (balanced annual load profile), Middle: RMSE
for Val2 (imbalanced annual load profile) , Bottom: Relative model error for
Val3 (step heat input) at time step t = 8760h (1 year).
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Figure 7.22: Absolute error on Tf for validation set 2 - repeated for 10 years -
for the models obtained by MR (Truncate) (left) and for the models obtained
by PE (ID 3 months) (right).
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Validation in the frequency domain

Figure 7.23 and Figure 7.24 compare the frequency response of the low-order
BHE models to the frequency response determined from the DST-model
simulation results. The frequency range displayed corresponds to periods
ranging from 1 hour to 100 years.

The magnitude plots on the left show that the grey-box models (PE) and the
black-box models (s and

√
s) are accurate within the frequency band of the

ID set. For lower frequencies outside this band, the fit of the
√
s-models is

better than that of the RC- and s-models. This indicates that the
√
s-models

are better suited for long-term extrapolation.

The phase plots on the right show a more pronounced difference between the 4
model types. The phase of the frequency response of the models obtained by
MR (Figure 7.23(b) does not properly fit the TRNSYS-simulation results. The
models obtained by PE (Figure 7.23(d)) and black-box system identification
(Figure 7.24(b,d)) are accurate in the frequency band of the ID set. Outside
this band all models deviate from the TRNSYS-data. The deviation is again
the smallest for the

√
s-models. Theoretically, analytical solutions are functions

of the square root of the time variable, so the low frequent diffusion behavior
of the borehole is predictably better described by the

√
s-models, even with a

smaller model order compared to the s-model.

Note The graphs reveal that the frequency response obtained from the
TRNSYS DST-model has a number of local discontinuities. These are located
at the frequencies where the response of different sets of multisines (5 in total)
are concatenated. These numerical artefacts probably explain the inferior
performance of the s-models compared to the RC-models. A new set of
TRNSYS simulations data, to obtain a smoother frequency response signal for
the frequency domain system identification, could alleviate this problem. This
result however clearly shows that care should be taken when using numerical
models as a reference.
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Figure 7.23: Magnitude (left) and phase (right) of the 6th-order BHE-models
obtained by (above) model reduction (MR) of a first-principles initial model
(MR(ini)) with respectively the ’Match-DC’ method (MR(DC)) and the
’Truncate’ method (MR(Tr)) and by (below) parameter estimation (PE) with
identification data sets covering different time scales (ID1, ID2, ID3, ID4, ID5).
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Figure 7.24: Magnitude (left) and phase (right) of the best-fit rational models
in the Laplace-variable s (above) and in

√
s (below, legend (w)) obtained by

black-box system identification with identification data sets covering different
time scales (ID3, ID4, ID6, ID7).
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7.4.4 Sensitivity to non-idealities

The results presented above are obtained under some assumptions, which do
not necessarily hold in practice:

• The values for the ground thermal properties and borehole resistance used
to set up the 1D-FDM - which is subsequently used for MR - are identical
to the values used in the TRNSYS DST-model. In practice, the accuracy
of the values determined from a TRT is limited by the quality of the
measurement set up. Moreover, the ground thermal properties are not
homogeneous. Both factors will affect the quality of the 1D-FDM and, as
a consequence, the quality of the reduced models.

• The grey-box and black-box models are based on simulation data
for multisine load profiles without measurement noise. In practice
measurement data from the borefield in operation will be used. Those are
prone to measurement noise and missing data. Moreover, typical building
loads will not excite all frequencies equally.

In this section a sensitivity study is performed to investigate the impact of
these non-idealities. The influence of the ID set on the model quality is only
performed for the grey-box models (PE). Assessing the impact of non-idealities
for the black-box SI approach fits within in the scope of the ongoing FWO
project ’Black-box model based predictive control of ground coupled heat-pump
systems’.

White-box with MR: Impact of uncertainty on the physical parameters

The ground thermal conductivity kg and the borehole thermal resistance Rb can
be obtained from a TRT with an uncertainty of respectively 10% [7, 61, 188] and
10 to 20% [60]. The ground thermal capacity ρcg is known with an uncertainty
of typically 20% Wagner and Clauser [180]. To analyze the impact of these
uncertainties on the accuracy of the 1D-FDM and the models derived by MR,
the values for Rb and kg have been perturbed with -10% and +10% of their
nominal value (used in the TRNSYS DST-model) and the value for ρcg with
-20% and +20%. The results are depicted in Figure 7.25. Figure 7.25(a) shows
the RMSE for validation set 1, Figure 7.25(b) shows the relative model error to
a step heat input after one year. It is observed that a bad estimate of the kg
substantially decreases the model accuracy.
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Figure 7.25: RMSE in the case of validation set 1 (left) and relative error
to a step heat input after 1 year (right) for the models obtained by MR of
a 1D-FDM and this in the case of an estimation error on the values for the
physical parameters ρcg, Rb and kg.

The RMSE for validation set 1, see Figure 7.25(a), and the relative model error
to a step heat input, see Figure 7.25(b), both increase by almost 10% for an
error on kg of 10%. The impact of an error on the estimate for Rb is smaller.
The relative error to a step heat input is only about 2%. The impact of an
estimation error on the parameter ρcg of 20% is found to be negligible.

Grey-box with PE: Impact of excitation signal and measurement noise

The PE procedure is repeated with a heat injection and extraction profile for an
office building with CCA as excitation signal. Note that this excitation signal
differs from the load profiles used for validation, depicted in Figure 7.14. The
excitation signal is applied to the TRNSYS DST-model to obtain the simulation
results for the fluid water temperature Tf . For PE, white noise is added to
both the input Q̇ and the output Tf . In this study, the standard deviation
of the measurement error on Q̇ is varied between 0% and 20%, based on the
value of 10% reported by Gentry et al. [61]. The measurement error on Tf is
varied between 0◦C and 0.3◦C, based on the value ± 0.11◦C reported by Hern
[79]. The results for an identification time length of 3 months are presented
in Figure 7.26. For comparison, also the results obtained for the reference
identification data set, i.e. a multisine excitation signal and no measurement
noise, are shown. Figure 7.26(a) and Figure 7.26(b) at the top and Figure
7.26(c) and Figure 7.26(d) at the bottom show the validation results for various
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amplitudes of the temperature measurement error for respectively the case
without and with measurement noise on the input Q̇.

These figures show that the main impact of measurement noise is the reduction
of the maximum model order yielding a stable model. Without noise, a stable
model is found up to N = 11. In the presence of noise, the maximum model
order is 5 or 4, depending on the magnitude of the measurement noise. However,
if a stable model is obtained, the validation results are improved compared to
the reference case (i.e. multisine, no measurement noise). This improvement
holds for both validation set 1 and step heat input. The same trends are
observed for the shorter and longer identification time lengths, not displayed
here. From these observations it is concluded that the use of measurement
data of a heat pump system in operation on the one hand impose an upper
bound on the model order (due to the presence of measurement noise), but
may on the other hand result in a model which enables to accurately predict
the fluid temperature (due to the fact that the identification data set contains
the relevant information needed for PE). With measurement data covering 3
months, a fifth order model is obtained characterized by an RMSE of about
0.6◦C for validation data set 1, which, given the temperature amplitude of 35 ◦C
(see Figure 7.14(b)), corresponds to a relative model error of less than 2%.

7.4.5 Summary and conclusions

Three distinct approaches are investigated to obtain a low-order dynamic
borefield model for control purposes: white-box modeling with model reduction
(MR), grey-box modeling with parameter estimation (PE) and black-box system
identification in the Laplace variable s and the Warburg variable

√
s.

The validation results showed an inferior model quality obtained with the black-
box modeling approach. This inferior performance could however be attributed
to discontinuities in the frequency response signal used as input.

Table 7.4 summarizes the results for MR and PE. First, it is found that an
11th order 1D-FDM, based on the guidelines of Eskilson (1987), predicts the
fluid temperature output from the TRNSYSDST-model for various hourly
load profiles (i.e. Val1, Val2 and Val3) with a relative error of 0.6% for a time
horizon of 1 year, and with a relative error of less than 2% for a time horizon
of 10 years (see column 1D-FDM). Second, the results have proven that the
order of this 1D-FDM can be reduced down to a sixth order model with the
’Match DC’ method without a major loss in accuracy (see column MR(DC)).
The validation error remains below 1% for the time frame of 1 year and hardly
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Figure 7.26: Validation results for the models obtained by PE with a multisine
excitation signal (’multisine ID’) and with typical data of a system in operation
(’typical ID’). For the ’typical ID’ case, the influence of white noise on the
measurement of Tf and of Q̇ are shown: (a,b) standard deviation of the
measurement error on Q̇ = 0% (c,d) standard deviation of the measurement
error on Q̇ = 20%. The validation results for the unstable models are not
displayed.

increases for the time horizon of 10 years compared to the initial 1D-FDM.
Third, the models obtained by PE based on simulation data resulting from the
TRNSYSDST-model, are able to predict the fluid temperature for Val1 with a
relative error of 4% for ID1 (1 week), down to 0.4% for ID4 (6 months). The
models found by PE are less accurate in predicting the response to a step heat
input. The relative error obtained with ID1 amounts to 50%. With ID4, this
error is reduced to the acceptable level of 0.2%. However, the relative errors
for an unbalanced load profile (Val2) applied during 10 consecutive years, are
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small for both the models obtained with ID1 and with ID4, respectively 6%
and 2%. This shows that PE, even based on a limited time span covered by
the identifation data, is able to yield models which can accurately predict the
control relevant dynamics.

Next, the influence of non-idealities is investigated. For the MR approach, the
sensitivity to the estimation error of kg, ρcg and Rb, used to set up the initial
model (1D-FDM), is investigated. The validation results listed in Table 7.4
in column 1D-FDM’, printed in grey, are found by perturbing the values for
kg, ρcg and Rb with respectively +10% , +10% and -10%. Those are typical
uncertainties, as reported in the literature, and the chosen combination yields
the worst case scenario (i.e. a strong underestimation of the fluid temperature
as a response to a step heat input). The validation errors increase up to 3% for
validation set 1 and up to 9% for the step responses. The same holds for the
derived models obtained by MR (listed in column MR(DC)’, grey).

Values in black correspond to the ideal scenario: (a) for the white-box modeling
approach followed by MR, this means perfect knowledge of kg, ρcg and Rb
to define the 1D-FDM initial model; (b) for the grey-box modeling approach
this means a multisine excitation signal and no measurement errors (ID1, ID3,
ID4). Values in grey correspond to a more realistic scenario: (a) Estimation
error on kg, ρcg and Rb of respectively +10% , +10% and -10%, yielding a
slightly modified initial model 1D-FDM’; (b) Typical load profile as excitation
signal with white measurement noise on Q̇ and Tf of respectively 10% and
0.3◦C, denoted by ID1’, ID3’ and ID4’ corresponding to a measurement time of
respectively 1 week, 3 months and 6 months.

Table 7.4: Comparison of models based on relative model error (%) (∗).
Model reduction from 1D-FDM (MR) Parameter estimation (PE)

1D-FDM 1D-FDM’ MR(DC) MR(DC)’ ID1 ID1’ ID3 ID3’ ID4 ID4’

Model order N 11 11 6 6 6 4 6 5 6 5

Val1 (1 year) 0.6 3 0.9 3 4 17 1.3 2 0.4 2
Val3 (1 year) 0.1 -9 0.1 -9 -27 51 -10 -17 -0.2 7
Val2 (10 years) 0.5 2 0.6 2 6 13 3 4 2 2
Val3 (10 years) 1.7 -8 1.7 -8 -37 29 -23 -29 -12 -8

(∗) Values in black correspond to the ideal scenario: (a) for the white-box modeling approach followed by MR, this means
perfect knowledge of kg, ρcg and Rb to define the 1D-FDM initial model; (b) for the grey-box modeling approach this
means a multisine excitation signal and no measurement errors (ID1, ID3, ID4). Values in grey correspond to a more
realistic scenario: (a) Estimation error on kg, ρcg and Rb of respectively +10% , +10% and -10%, yielding a slightly

modified initial model 1D-FDM’; (b) Typical load profile as excitation signal with white measurement noise on Q̇ and Tf

of respectively 10% and 0.3◦C, denoted by ID1’, ID3’ and ID4’ corresponding to a measurement time of
respectively 1 week, 3 months and 6 months.

Also the influence of non-idealities on the PE procedure is investigated. Two
aspects are considered: (1) the fact that in practice the identification data
result from measurements of a system in operation, i.e. the excitation signal is
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determined by the real load profile, and (2) the presence of measurement noise.
The validation results for the models identified under these non-ideal conditions
are printed in grey in the columns for ID1’, ID3’ and ID4’. The errors remain
acceptable , at least if the measurement period is long enough. The validation
error for the models identified based on a measurement period of 6 months
(ID4’) is about 2% for Val1 (1 year) and Val2 (10 years). The main impact
of the presence of measurement noise is that the maximum model order (for
stable models) is reduced. Identifying models with N > 5 in the presence of
high levels of measurement noise, gives rise to unstable models.

The suitability of the models for incorporation in an optimal control problem
formulation, as introduced in Section 7.2, depends on three factors: first, the
model accuracy to predict the control relevant dynamics, second, the complexity
to develop or identify the model and, third, the impact of the model structure
and order on the computation time. The complexity to develop the model
depends on the modeling approach and its sensitivity to non-idealities, while
the computation time depends on the model structure and order. This study
has analyzed the model accuracy for two distinct modeling approaches, i.e.
model reduction and parameter estimation, as a function of the model order
and the level of non-idealities, The results suggest that, if measurement data are
available, parameter estimation is well suited to obtain very-low order models
for control purposes. Even in the presence of measurement errors, the prediction
error of a fifth order model based on in-situ measurement data, is less than 2%
for a typical annual load profile, corresponding to an RMSE of less than 1◦C.
The model order can be further reduced to a second or even a first order model,
with the RMSE amounting to respectively 1◦C and 1.2◦C (see Figure 7.26(c)).
If no measurement data are available, model reduction is a good alternative. In
that case, a fifth order model is required. Compared to parameter estimation,
the model reduction approach is intrinsically better suited to describe the long
term dynamics.

Here, we want to incorporate the controller model into an optimal control
problem formulation which allows to optimally distribute the building heating
and cooling loads over the different heating and cooling devices, while
guaranteeing long term borefield thermal balance. The first objective requires
description of the short term time scale, the latter of the long term time scale.
The prediction accuracy required for these time scales, depends on the sensitivity
of the optimal solution to these effects (i.e. the short term dynamics around the
BHE and the long term dynamics near the far field). This evaluation will be
performed in Section 7.5. The relatively high model accuracies obtained with
the PE method for very low-order models, suggests that a model order between
one and six will suffice.
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7.5 Control performance evaluation

A selection of the developed BHE models is now used within the OCP, presented
in Section 7.2, which aims at defining the optimal distribution of the annual
heating and cooling load profiles over the 4 different devices (namely the heat
pump (HP), the gas boiler (GB), the passive cooling heat exchanger (PC) and
the chiller (CH)). The OCP problem is formulated such that the obtained
solution is at steady state, which means, it could be repeated unaltered year
after year if the same annual building load is being applied.

The optimal solution is analyzed as a function of:

1. the level of imbalance between the building heating and cooling loads,

2. the time scale over which the building loads are lumped: hourly load
profiles versus weekly load values.

Additionally, the sensitivity of the optimal distribution on the following OCP
variables is analyzed:

1. constant COPHP -representation versus source temperature dependent
COPHP -representation,

2. constant COPPC-representation versus source temperature dependent
COPPC-representation,

3. the incorporated BHE model

From this analysis, insight will be gained in the factors driving the optimization.

7.5.1 Settings

The OCP, given by the set of equations Eq.(7.1a)-Eq.(7.10), is solved with the
following settings.

Building heating and cooling loads The heating and cooling loads, given as
input to the optimization and denoted by respectively Q̇h and Q̇c, are to be
delivered by the installation (see Eq.(7.1a)-(7.1b)):

Q̇h = Q̇HP + Q̇GB

Q̇c = Q̇PC + Q̇CH
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Table 7.5: Results building load calculation
Thermal comfort Specific loads

Khtot,N Khtot,S Qh,tot Qc,tot Q̇h,max Q̇c,max δQb

(Kh) (Kh) ( kWh
m2a ) ( kWh

m2a ) ( W
m2 ) ( W

m2 )

HC/CC 35 27 13 -27 54 -51 -0.33
MPC 24 65 13 -25 36 -22 -0.34

Two load profiles, both obtained from the study performed in Chapter 5 for the
two zone office building, are evaluated and compared. The first one, presented in
Figure 7.27(a), corresponds to the load profile obtained with the best performing
heating curve/cooling curve (HC/CC) control strategy, i.e., based on feedback
of the CCA surface temperature Tc,s. The second load profile, presented in
Figure 7.27(b), is the one obtained with the best performing MPC strategy, i.e.,
using the controller building model nx2-DS3, prediction correction method c2
and perfect disturbance predictions (see Section 5.5.1). In what follows, they are
simply denoted by ’HC/CC’, respectively ’MPC’. Note that the loads, depicted
in Figure 7.27, represent the loads for the entire office building (i.e., 3600 m2

conditioned floor area, see Chapter 4).

Figures 7.27(a) and (b) show that the hourly load profiles strongly differ: the
HC/CC-control strategy requires much higher peak powers than the MPC
strategy. The weekly averaged loads, by contrast, shown in Figure 7.27(c) and
(d), are almost identical. In terms of net annual heating and cooling energy
demand (kWh), see Table 7.5, the two demand profiles indeed hardly differ. We
will evaluate the impact of the power content of the load profile, i.e. with high
power peaks (HC/CC) and with a flat power profile (MPC), on the optimal
HyGCHP operation and on the required borefield size.

Heat pump coefficient of performance COPHP The optimization is solved
for 2 representations of COPHP :

COPHP (Tf ) = 6 + 0.07
(
Tf − Tws,h

)
with Tws,h = 25◦C (7.65)

COPHP (constant) = 4.45 (7.66)

The first presentation takes the source temperature dependency of the heat
pump COP into account. The COP is represented by a linear function of the
mean fluid temperature Tf (◦C), i.e. the output of the controller borefield model,
and the heating supply water temperature Tws,h (◦C). The coefficients are
obtained by a fit through the catalogue data of a water-to-water heat pump [33].
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Figure 7.27: Heating (>0) and cooling (<0) load profiles, Q̇h and Q̇c, derived
for the office building with (left) heating curve/cooling curve (HC/CC) control
and (right) MPC. Top: Hourly load values. Bottom: Weekly averaged load
values.

As in this chapter abstraction is made of the building level, a constant supply
water temperature of 25 ◦C is assumed, corresponding to the annual mean
supply water temperature in heating mode obtained from the case for which
the building loads have been calculated. Similarly to the optimization problem
considered in Chapter 6, the cost function with COPHP (Tf ) is nonlinear. The
second representation, by contrast, - in absence of other nonlinear terms - results
in a convex problem.
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Passive cooling coefficient of performance COPPC The optimization is
solved for 2 representations of COPPC :

COPPC(Tf ) = 50 − 2.5Tf (7.67)

COPPC(constant) = 20 (7.68)

The first presentation takes the source temperature dependency of the passive
cooling efficiency into account. The COP is represented by a linear function
of Tf with COPPC corresponding to 20 for Tf equal to 12 ◦C and to 0 for Tf
equal to 20 ◦C. The latter expresses that there is no passive cooling capacity
when Tf approaches the supply water temperature for cooling at building side,
Tws,c. While this Tf -dependent COPPC-formulation gives rise to a nonlinear
OCP, the second representation with a constant COPPC-value can be used
within a convex OCP formulation.

Chiller coefficient of performance COPCH The COP of the chiller is
represented by a linear function of the ambient air temperature Tamb and
the cooling supply water temperature Tws,c. Again, making abstraction of
the building level, a constant value for Tws,c is taken to evaluate COPCH ,
corresponding to the annual mean supply water temperature in cooling mode
obtained from the case for which the building loads have been calculated.

COPCH(Tamb) = 5 + 0.07Tws,c − 0.08Tamb with Tws,c = 20◦C (7.69)

Gas boiler efficiency ηGB The gas boiler efficiency is taken equal to 0.85.

Electricity price cel and gas price cgas The peak electricity price amounts to
0.15 e/kWh, the off-peak electricity price to 0.09 e/kWh and the gas price to
0.06 e/kWh. The peak electricity price period extends from 7AM to 10PM.

Controller borefield models One of the aims of this study is to determine the
minimal model order N required to accurately solve the OCP. For very low
model orders (N < 6), the BHE models obtained with parameter estimation
(PE) were found to yield better predictions of Tf compared to the models
obtained with model reduction (MR) of the initial model representing the radial
heat transfer around the BHE (1D-FDM). For this aim, the models found with
PE (obtained with ID set 1 covering a period of 1 year) of order N from 3 to 6,
are incorporated in the OCP.

A second aim is to gain insight in the optimal ground temperature distribution.
While very-low order models may well describe Tf , they do not provide sufficient
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information on the temperature distribution around the BHE. To evaluate the
radial temperature distribution around the BHE, the 1D-FDM derived from
the discretization of the radial heat transfer around the BHE, is used.

7.5.2 Computational limitations

Ideally, the OCP is solved for the hourly building load profile, depicted in
Figure 7.27. This way the short term dynamics and the long term dynamics are
both taken into account in the optimization. This however requires to determine
the optimal values for Q̇HP , Q̇GB, Q̇PC and Q̇CH for each hour of the year,
resulting in a problem with 8760 by 4 optimization variables. This is a large
optimization problem and by consequence hard to solve. On a computer with a
32-bit dual core processor (Intel(R) Core(TM)2 Duo CPU P9700 @ 2.80GHz),
even a powerful solver such as CPLEX [29] can not solve this problem due to
memory restrictions. On a 64-bit processor this problem can be solved, at least
with the CPLEX solver. With non-commercial convex solvers this problem is
hardly solvable and for nonlinear optimization solvers, such as incorporated
in ACADO, the problem is far too large. Therefore, the OCP will first be
solved with a control time step of 182.5 h (approximately 1 week), resulting
in a control problem of 48 by 4 optimization variables. In a second approach
the OCP will be solved for a control time step of 1 h (8760 by 4 optimization
variables, assuming constant COP values). Each approach will enable to focus
on a particular aspect of the OCP:

1. weekly control time step
Assumption: week-averaged load profiles
Focus: What drives the optimization on the long term?
(a) influence of COPHP (Tf (t)) (nonlinear OCP)
(b) influence of COPPC(Tf (t)) (nonlinear OCP)
(c) influence of COPCH(Tamb(t)) (seasonal variation)
(d) influence of the long term borefield thermal balance condition

2. hourly control time step
Assumption: constant COPHP and COPPC (convex OCP)
Focus: What drives the optimization on the long + short term?
(a) influence of the peak loads
(b) influence of COPCH(Tamb(t)) (seasonal + diurnal variation)
(c) influence of the electricity price cel(t) (diurnal variation)
(d) influence of the long term borefield thermal balance condition
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Nonlinear OCP with a weekly control time step To solve the nonlinear
optimization problem, resulting from the Tf -dependency of COPHP and
COPPC , the number of control intervals has to be reduced. To this end,
the 8760 hourly building load values, see Figure 7.27(a,b), are lumped into
48 time-averaged values, see Figure 7.27(c,d). The latter corresponds to a control
time step of 182.5 h or approximately one week (a control time step of exactly
one week, i.e. 168 h, would not yield an integer number of control intervals).
Note the different scaling of the y-axis: by lumping the loads over larger time
frames, the load profile is flattened. For the short term response, this lumping
introduces an inconsistency: information on the actual peak heat injection and
extraction rates is lost. As a consequence, only the weekly average mean brine
temperature, here denoted by Tf,av, can be evaluated. This implies that COPHP
and COPPC , which are both function of the actual mean brine temperature
Tf , can only be approximately assessed. This may be problematic, especially
for the cooling dominated cases because of the strong dependency of COPPC
on Tf . Therefore, to guarantee that the solution effectively enables the use of
passive cooling, an additional constraint on Tf,av is imposed. While the actual
Tf should remain below Tws,c to have passive cooling capacity (see Eq.(7.70)),
with ∆Tlm (◦C) the logarithmic mean temperature difference over the PC heat
exchanger (see Eq.(7.72)), the Tf,av-value obtained with the weekly load profile
should remain even lower, as expressed in Eq.(7.71)). This temperature margin,
∆Tf,av (◦C), see Eq.(7.73), is proportional to the effective borehole thermal
resistance, Rb (K/W) and the difference between the actual heat injection rate
Q̇bf,in (W) and its weekly-averaged value Q̇bf,in,av (W)).

Tf ≤ Tf,max = Tws,c − ∆Tlm (7.70)

Tf,av ≤ Tf,max = Tws,c − ∆Tlm − ∆Tf,av (7.71)

with

∆Tlm = (UA)−1
PCQ̇bf,in (7.72)

∆Tf,av = Rb
(
Q̇bf,in − Q̇bf,in,av

)
(7.73)

The weekly averaged building load values for the office load profile depicted
in Figure 7.27(c,d), are about a factor 6 smaller than the actual peak loads
(depicted in Figure 7.27(a,b)). Therefore, the term Q̇bf,in,av in Eq.(7.73) can
almost be neglected. For a realistic heat injection rate of 40− 50 W/m BHE
length and a specific borehole thermal resistance R′b of 0.1 mK/W, ∆Tf,av
amounts to about 3 ◦C. Assuming Tws,c equal to 20 ◦C and ∆Tlm of 1.5 ◦C,
this yields an upper bound Tf,av,max ≈ 15 ◦C. For the same reason, the lower
temperature bound of 0 ◦C on Tf to prevent frost formation, is translated to a
lower bound Tf,av,min ≈ of 3 ◦C.
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One could wonder what can be learned from solving this lumped-load-case
scenario. While the physical information content of the results is effectively
reduced, the long term response can be evaluated, since the latter does not
depend on the hourly load variations. On this time scale, we are able to
analyze the optimal annual mean brine temperature, being a result of the
optimization thanks to the free periodic boundary conditions on the ground
temperatures Tg,i (see Eq.(7.8)). If the incorporated BHE model is a first-
principles model, the optimization additionally yields the optimal annual mean
ground temperature distribution around the BHE. The question addressed for
the long term time scale, is what determines the optimal value of the annual mean
brine temperature and the corresponding ground temperature distribution. Two
conflicting objectives come into play, as visualized in Figure 7.28: maximizing
the efficiency (COPHP or COPPC) on the one hand versus maximizing the
heat exchange with the borefield (

∫
Q̇bf,exdt or

∫
Q̇bf,indt), on the other hand.

If maximizing the efficiency is the driving factor, one should observe that the
optimal borefield temperature is higher for the heating dominated case than for
the cooling dominated case, since COPHP rises with rising source temperature
while Q̇PC - and thus COPPC - increases with decreasing heat sink temperatures
(see Eq.(7.6c)).

If maximizing the total amount of heat exchanged with the borefield is the
driving factor, by contrast, the optimal borefield temperature should be higher
for the cooling dominated case than for the heating dominated case. The
condition for long term borefield thermal balance, expressed by the periodic
boundary conditions on Tg,i (see Eq.(4.31), can namely be written in terms of
energy flows: ∫ 1 y

0
(Q̇bf,in − Q̇bf,ex − Q̇bf,∞)dt = 0, (7.74)

with

Q̇bf,in = COPPC + 1
COPPC

∣∣Q̇PC∣∣ ,
Q̇bf,ex = COPHP − 1

COPHP
Q̇HP ,
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Q̇bf,∞ (W) denotes the heat flow from the borefield to the surroundings, i.e.
the sum of the heat exchange with the ambient air at the borefield surface
and the heat exchange with the ground far field. Since the presented borefield
controller models only describe the radial heat transfer, only the latter term is
taken into account. For the discussion here, this heat loss term is assumed to
be proportional to the difference between the mean borefield temperature Tbf
and the undisturbed ground temperature Tg,∞:

Q̇bf,∞ ∼ Tbf − Tg,∞.

The larger the heat loss from the borefield to the surroundings (
∫ 1 y

0 (Q̇bf,∞)dt >
0 ) the more heat can be injected to the ground through passive cooling. The
larger the heat gains from the surroundings to the borefield (

∫ 1 y
0 (Q̇bf,∞)dt < 0),

the more heat can be extracted for heat pump operation. The annual net heat
exchange between the borefield and the surrounding ground depends on the
borefield temperature distribution, as visualized in Figure 7.28: if the mean
borefield temperature Tbf is higher than Tg,∞, there will be a net heat loss from
the borefield to the surrounding ground. If Tbf is lower than Tg,∞, there will
be a net heat flux from the surrounding to the borefield. The optimal value of
Tbf is therefore based on a trade-off between increasing the efficiency of the
heat and cold production with the GCHP system, on the one hand, and of the
share of the GCHP in the total heat and cold production, i.e.

∫ 1 y
0 Q̇hdt and∫ 1 y

0
∣∣Q̇c∣∣ dt, on the other hand. This trade-off will depend on the building loads

(heating versus cooling dominated) and on the sensitivity of the terms COPHP ,
COPPC and Q̇bf,∞ on Tbf (and thus on the borefield dynamics).

As a variable COP formulation gives rise to a non-convex optimization problem,
we are interested to know how much the result obtained with a constant
COP approximation deviates from the original solution. The constant COP
formulation gives rise to a convex problem which allows solving the OCP much
faster (using CPLEX) and for much smaller control time steps (down to 1 hour
for a 8760 h-optimization), as stated above.
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(b) Temperature profile around BHE determines the net heat exchange Q̇bf,∞ with the
surroundings at the undisturbed ground temperature Tg,∞. In the case of borefield thermal
balance, this heat exchange is compensated by an annual net heat injection Q̇bf,in (left) or
by an annual net heat extraction Q̇bf,ex from the borefield.

Figure 7.28: Influence of the radial ground temperature profile around a BHE
on the heat pump coefficient of performance, COPHP and on the passive cooling
coefficient of performance, COPPC (top) and on the heat exchange with the
surrounding ground and the GCHP system (bottom).
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Convex OCP with hourly control time step The CPLEX solver is able to
solve the convex optimization problem (using constant COP values) with 8760
by 4 optimization variables, enabling to capture both the short and the long
term borefield dynamics in the optimization. With the hourly load values, also
the short term response of Tf will be accurately predicted. Consequently, we are
able to effectively impose constraints on Tf and thus accurately determine when
to use passive cooling and at which rate. Compared to the weekly time scale,
the hourly time scale additionally allows to take the time dependency of the
electricity price cel(t) into account, as well as the dependency of COPCH(Tamb)
on the diurnal variation of the ambient air temperature, two factors that may
influence the choice of passive versus active cooling. As the long term thermal
balance condition is also incorporated, the distribution of the cooling loads will
also take this aspect into account. The only drawback is that the CPLEX solver
requires a constant COPHP and COPPC representation. From the insights
gained from (1) the influence of the Tf -dependency of COPHP and COPPC
on the long term time scale (see Section 7.5.3) and (2) the influence of the
Tws-dependency of COPHP on the short term time scale (see Chapter 6), we
will be able to assess the impact of this approximation.

7.5.3 What drives the optimization in the long term?
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Figure 7.29: Idealized building load profiles, characterized by the relative level
of load imbalance δQb: δQb > 0: heating dominated building (red), δQb < 0:
cooling dominated building (blue) and δQb = 0 building with balanced heating
and cooling load (black).
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Influence of COPHP and COPPC First, we analyze the impact of the COP-
formulation on the optimal borefield temperature. To this end, the nonlinear
and convex OCP formulations are solved for a set of idealized building load
profiles, depicted in Figure 7.29. Each of these building loads is characterized by
the absolute and relative imbalance between the building heating and cooling
demand, denoted by respectively ∆Qb (kWh) and δQb (-). The values ∆Qb
and δQb, defined by Eq.(7.75)-Eq.(7.76), are positive for a heating dominated
building and negative for a cooling dominated building.

∆Qb =
∫

1y
Q̇hdt−

∫
1y

∣∣Q̇c∣∣ dt (7.75)

δQb =
∫

1y Q̇hdt−
∫

1y
∣∣Q̇c∣∣ dt∫

1y Q̇hdt+
∫

1y
∣∣Q̇c∣∣ dt (7.76)

For each of these building loads, the OCP formulations yield an optimal profile
for the control variables Q̇HP , Q̇GB , Q̇PC and Q̇CH which satisfies the imposed
building load profile, as illustrated in Figure 7.30 for both a cooling and a heating
dominated building with a relative building load imbalance δQb of respectively
-0.6 and +0.6). For each case, both the control profiles obtained with the
nonlinear OCP and the convex OCP are displayed. For the investigated weekly
building load profiles, the two OCP formulations yield almost identical results
and this despite the very different profiles for COPHP (Tf ) and COPPC(Tf )
used for the nonlinear and convex OCP.

Figure 7.31(a) and Figure 7.31(c) compare the profiles for COPHP (Tf ) and
COPPC(Tf ) obtained with the nonlinear OCP to the constant ones assumed in
the convex OCP. The fact that the 2 OCP formulations, despite their significant
different values for COPHP and COPPC , yield almost identical control profiles
(see Figure 7.30, indicates that maximizing the COPs is not the driving factor
for the optimization. Otherwise we would observe a fundamentally different
operation strategy for the two OCP formulations. For the cooling dominated
case, the nonlinear OCP could for instance have constrained the use of PC to a
certain extent, to keep the Tf low and thus COPPC(Tf (t)) high. Similarly, for
the heating dominated case, the use of the HP could have been constrained to
keep Tf high and thus COPHP (Tf (t)) high. This is however not the case.

Figure 7.32 presents the optimal profiles for Q̇bf (t) and Ṫf,av(t) and this for
different levels of building load imbalance. The constraints on the average brine
temperature Tf,av are active. For the theoretical demand profiles depicted in
Figure 7.29, which are rather large for the considered BHE, the constraints are
not only ’hit’, but they remain active for a long period. This indicates that the
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Figure 7.30: Optimal distribution of the building heating load Q̇h(t) and building
cooling load Q̇c(t) over respectively the heat pump Q̇HP (t), the gas boiler
Q̇GB(t), the passive cooling Q̇PC(t) and the chiller Q̇CH(t) for respectively a
cooling dominated building (δQb = -0.8) (left) and a heating dominated building
(δQb = +0.8) (right). The results for the nonlinear OCP (-x-) and those for the
convex OCP (-o-) almost coincide.

optimal control, at least for the considered control time step of 1 week, is of the
bang-bang control type, i.e. operating at the constraints. By consequence, the
operation is very sensitive to the actual value of the upper and lower bound on
Tf,av.

Figure 7.33 depicts the optimal ground temperatures Tg,i for the incorporated
BHE model, which corresponds to a 6th order model obtained with PE. This
choice is motivated by the sensitivity analysis of the optimal solution with
respect to the model order N , treated further in this section. Figure 7.33(a)
shows the Tg,i(t)-profile as a function of time for a heating dominated building
load. For each of the temperature nodes, the annual mean value is calculated.
The resulting values are depicted in Figure 7.33(b) and this for the different
building loads. The heating dominated cases are plotted in red, the cooling
dominated in blue and the balanced load case in black. For each case, both the
profiles obtained with the nonlinear OCP and the convex OCP are displayed.
As noted previously, the two OCP formulations yield almost identical results.
This confirms again that maximizing the COPs is not the driving factor for
the optimization. On the contrary, the higher the heating demand/cooling
demand ratio, the lower the optimal borefield temperature; the lower the heating
demand/cooling demand ratio, the higher the optimal borefield temperature.
From this we can conclude that maximizing the heat exchange with the borefield
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Figure 7.31: (a) The green line represents the constant COPHP value for the
convex OCP, the markers the COPHP (Tf )-profiles obtained with the nonlinear
OCP for different load imbalances, (b) Gas boiler efficiency ηGB, scaled with
the electricity-to-gas price ratio cel/cgas (-) to compare the GB energy cost
with the HP energy cost, (c) The green line represents the constant COPPC
value for the convex OCP, the markers the COPPC(Tff )-profiles obtained with
the nonlinear OCP for different load imbalances, (d) COPCH(Tamb)-profile for
both the nonlinear and convex OCP.

is the driving factor. For the heating dominated case, the optimal operation
maximizes the use of the borefield as a heat source. In order to do this, while
meeting the periodic boundary conditions, there is only one way: maximize
the heat gains from the surroundings for the heating dominated case and
maximize the heat loss to the surroundings for the cooling dominated case, as
depicted in Figure 7.28(b). The temperature profiles presented in Figure 7.33(b)
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confirm that the higher the heating demand/cooling demand ratio, the lower
the optimal borefield temperature; and vice versa. The small deviation between
the nonlinear and the convex OCP formulation is caused by the difference in
the calculated heat extraction rates (which weakly depend on COPHP and
COPPC), rather than by a different evaluation of the cost function.
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Figure 7.32: Optimal profiles for the weekly averaged borefield heat extraction
power Q̇bf (t) (left) and the brine fluid temperature Tf,av(t) (right) for the
building load profiles depicted in Figure 7.29, characterized by their level of
building load imbalance δQb. The results for the nonlinear OCP (-x-) and those
for the convex OCP (-o-) almost coincide. The horizontal line at 10 ◦C on the
right figure indicates the undisturbed ground temperature Tg,∞.

This result can be explained by the knowledge that it is more interesting to
use the HP instead of the GB as long as the related energy cost, celCOPHP (t)
versus cgasηGB, is lower. Comparison of the COPHP (t)-profiles, presented
in Figure 7.31(a), and the cel/cgasηGB-profile, presented in Figure 7.31(b),
shows that - for the adopted cel/cgas-ratio (=3.75), this is always the case.
As a consequence, in the heating dominated case, annual minimization of the
energy cost is achieved by maximizing the use of the borefield for heating, i.e.
maximizing the ratio of the GCHP for heating, denoted here by GEOh:

GEOh =
∫ 1 y

0 Q̇HP dt∫ 1 y
0 Q̇hdt

(7.77)
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Figure 7.33: Left: Optimal profiles for the ground temperatures Tg,i(t) for the
case of a heating dominated building load profile (δQb = 0.8). Tg,1 represents
the temperature near the BHE, Tg,6 the temperature near the undisturbed
ground at a temperature Tg,∞ of 10 ◦C. Right: Annual mean temperature of
the different model nodes Tg,i for different building load profiles. The first node
corresponds to Tg,1, the last node to Tg,6. The results for the nonlinear OCP
(-x-) and those for the convex OCP (-o-) almost coincide.

Similarly, as long as COPPC is higher than COPCH , the optimization will
maximize the ratio of the passive cooling, denoted by GEOc:

GEOc =
∫ 1 y

0
∣∣Q̇PC∣∣ dt∫ 1 y

0
∣∣Q̇c∣∣ dt (7.78)

Note that maximizing GEOh for the heating dominated case also results in lower
energy costs for cooling thanks to the relatively low borefield temperature which
increases the average COPPC . Similarly, maximizing GEOc for the cooling
dominated case results in a higher COPHP and thus in lower energy costs for
heating.

The load imbalance at borefield level is - analogously to the load imbalance at
building level - expressed in both absolute terms, denoted by ∆Qbf (kWh), and
in relative terms, denoted by δQbf (-), see respectively Eq.(7.79) and Eq.(7.80).

∆Qbf =
∫

1y

(
Q̇bf,ex − Q̇bf,in

)
dt (7.79)

δQbf =
∫

1y
(
Q̇bf,ex − Q̇bf,in

)
dt∫

1y
(
Q̇bf,ex + Q̇bf,in

)
dt

(7.80)
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Figure 7.34 shows the load imbalance at borefield level as a function of the
load imbalance at building level. Figure 7.34 (a) reveals that ∆Qbf scales
approximately linearly with ∆Qb. Figure 7.34 (b) shows that for a relative
load imbalance at building level δQb between -50% and +50% the resulting
imbalance at borefield level δQbf amounts to -20% to 20%. Obviously, for
buildings with only a heating or a cooling demand (i.e. |δQb| = 1), the borefield
thermal imbalance |δQbf | also equals 1.
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Figure 7.34: Annual imbalance at borefield level as a function of the annual
imbalance at building level, expressed in absolute values (left) and relative
values (right).

Following conclusions are derived: first, the optimization shows that achieving
a sustainable operation - represented by the condition of periodicity for ground
temperatures Tg,i - does not necessarily mean that the total amount of injected
and extracted heat (at borefield level) should be equal. By contrast, a certain
amount of imbalance is tolerated. This finding is consistent with recent research
results [31]. For the heating dominated case, a limited thermal depletion is
even beneficial, while for the cooling dominated case a limited thermal build-up
is allowed. Once the optimal Tbf is reached, however, the operation should
guarantee no further deviation from this optimal point. A very first proposal
of how this can be accomplished within an MPC-framework, is discussed in
Chapter 8. However, this topic remains to be explored further. Second, the
optimization yields interesting information for the design of HyGCHP systems.
According to current design practice, the borefield is sized for the smallest
of the two loads, with the remaining fraction of the largest of the two loads
being covered by the backup system. The optimization problem discussed here,
actually shows that balancing all the loads at borefield level does not necessarily
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require the injected and extracted heat to be equal. Depending on the ground
thermal properties and on the borefield configuration, an optimal annual amount
of imbalance between the injected and extracted heat is found as a result of the
optimization. A third conclusion, interesting from computational point of view,
is that a convex OCP formulation is allowed.

Influence of the BHE model order The observations indicate that the
controller borefield model should capture both short and long term dynamics.
The former are required to accurately predict the brine temperature since - for
a well-designed borefield - the constraints on this variable are active. The latter
determine the heat loss from the borefield to the surroundings, being a driving
factor in the optimization. The lower the model order N , the more information
is lost. For the models obtained with PE, decreasing the model order was
found to affect the description of the long term dynamics while for the models
obtained with MR, the description of the short term dynamics is affected. In
general, for very low order models (i.e. N < 6), which are interesting to limit
the computational requirements to solve the nonlinear OCP, the validation
results for the models obtained by PE were better than for the ones obtained
with MR.

To assess the influence of the model accuracy on the optimization result, both
the nonlinear OCP and the convex OCP are solved with the BHE models
obtained with PE, with N ranging from 3 to 6, and with the initial model of
order N = 11, based on Eskilson’s guidelines. Figure 7.35 depicts the results of
the optimization for the optimal borefield heat extraction rate Q̇bf,ex and the
weekly average mean brine temperature profile Tf,av, evaluated for the weekly
building load profile with δQb = 0. For the convex OCP, depicted on the right
hand side, no significant impact of N is observed. For the nonlinear OCP, on the
contrary, the model order does influence the result. For N < 6 and N = 11 the
solutions for Tf,av and Q̇bf,ex are found to oscillate. For N < 6, this oscillation
is probably caused by an attempt of the optimization to maximize the efficiency
of passive cooling COPPC at the start of the cooling season. However, if the
model order is increased up to N = 6, this oscillation disappears, suggesting
that the solutions found for N < 6 do not correspond to a physically meaningful
optimal solution. The Eskilson model with N = 11, however, does describe
the physics of the ground accurately. The oscillatory behavior observed here
is probably attributed to numerical problems due to the very large range of
time constants involved. This hypothesis gains strength as comparison of the
solutions obtained by the nonlinear OCP and the convex OCP match for N = 6.
The observations for N < 6 show that the nonlinear OCP is more sensitive to
the model quality than the convex OCP. The results for N = 11 additionally
suggest that the nonlinear OCP is more prone to convergence problems. Only
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for N = 6 the nonlinear OCP was able to find a good result. This emphasizes
the importance that, in order to perform this kind of theoretical investigations,
the BHE model should not only be accurate, but also have a low order in order
to prevent numerical problems.

1000 2000 3000 4000 5000 6000 7000 8000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Q̇
b
f
,e
x
(k
W
)

Time (h)

 

 
N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 11

(a) nonlinear OCP

1000 2000 3000 4000 5000 6000 7000 8000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Q̇
b
f
,e
x
(k
W
)

Time (h)

 

 
N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 11

(b) convex OCP

1000 2000 3000 4000 5000 6000 7000 8000
2

4

6

8

10

12

14

16

T
f
,a
v
(o
C
)

Time (h)

 

 

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 11

(c) nonlinear OCP
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Figure 7.35: Influence of the controller borefield model order N on the optimal
borefield heat extraction rate Q̇bf (top) and on the optimal weekly average
mean brine fluid temperature profile Tf,av (bottom). The figures on the left
and right hand side show the results obtained with respectively the nonlinear
and the convex OCP formulation.

Results for the office building load profiles The optimization of the HyGCHP
operation is now performed for the weekly averaged office building loads
presented in Figure 7.27(c) and Figure 7.27(d), i.e. the loads obtained with an
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advanced HC/CC-control strategy on the one hand, and an MPC strategy on
the other hand. For these two load profiles, we will analyze the impact of the
GHE length on the optimal solution, i.e. on the distribution of the building
heating and cooling loads over the HP, GB, PC and CH. Assuming a fixed BHE
depth H and no BHE thermal interference, the GHE length scales linearly with
the number of BHEs nb. The impact of the GHE length will here be evaluated
by varying nb.

In Chapter 4, the borefield size has been determined for the office loads obtained
with the HC/CC-control strategy. Applying the current HyGCHP design
guidelines (i.e., borefield sized for the smallest of both loads and balancing the
loads at borefield level), resulted in 26 BHEs, each of 125 m depth and spaced
with 5 m distance. The current controller borefield model, however, represents
a single BHE. We will analyze the optimal operation of the HyGCHP system
assuming that there is no thermal interaction between the BHEs, an assumption
that will be evaluated after performing the optimization. This means that the
borefield loads, Q̇bf,in and Q̇bf,ex, are simply divided by the number of BHE nb
in the borefield. The OCP is solved for the convex formulation incorporating
the 11th order BHE model (Eskilson). This way, information on the radial
distribution of the ground temperatures Tg,i is obtained, enabling to evaluate
the neglect of the thermal interaction between the BHEs.

Figure 7.36 shows the optimal distribution of the weekly averaged heating and
cooling load profile over the HP, the GB, the PC and the CH for the different
values of nb (26-15-11). The figures at the left hand side present the results of
the optimization for the office loads obtained with the HC/CC-control strategy,
the figures at the right hand side the results for the office loads obtained with
the MPC strategy. Figure 7.36(a) and Figure 7.36(b) show that the borefield
with 26 BHEs is able to cover the entire heating and cooling load with the HP
and the PC alone. If nb is reduced to 15, see Figure 7.36(c) and Figure 7.36(d),
the weekly averaged heating loads can still entirely be covered by the HP, but
now CH operation is required to help covering the high cooling loads in summer.
Figure 7.36(e) and Figure 7.36(f) show that a borefield with 11 BHEs is still
able to cover the entire weekly averaged heating load. The share of the CH is
further increased. PC provides base load cooling, while the CH helps to cover
the higher cooling loads in summer.

The profiles for Q̇bf and Tf,av as a function of nb, shown in Figure 7.37,
confirm these observations. nb is varied between 38 and 6. Figure 7.37(a) and
Figure 7.37(b) show that GEOh remains 100% when reducing nb from 38 to
11; only the fraction of the building cooling load covered by PC, i.e. GEOPC ,
decreases. Only when nb is further reduced down to 7 or 6, GEOh decreases
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Table 7.6: Influence of the borefield size, represented by the number of BHEs
nb, on the fraction of the office heating load covered by the HP (GEOh(-)), the
fraction of the office cooling load covered by PC (GEOc(-)) and the resulting
relative thermal imbalance at borefield level (δQbf (-)). The building heating
and cooling loads are the weekly averaged values of the office loads obtained
with a HC/CC-control strategy (left) and an MPC control strategy (right), and
are characterized by the relative imbalance between the building heating and
cooling demand (δQb).

Office loads HC/CC Office loads MPC
nb GEOh GEOc δQb δQbf GEOh GEOc δQb δQbf

25 1.00 1.00 -0.33 -0.48 1.00 1.00 -0.34 -0.44
15 1.00 0.86 -0.33 -0.41 1.00 0.85 -0.34 -0.38
11 1.00 0.70 -0.33 -0.32 1.00 0.69 -0.34 -0.28
8 1.00 0.60 -0.33 -0.24 1.00 0.58 -0.34 -0.20
7 0.99 0.52 -0.33 -0.17 0.95 0.50 -0.34 -0.15
6 0.95 0.47 -0.33 -0.13 0.88 0.43 -0.34 -0.12

as well, requiring the GB to help covering the heating load of the first month.
Figure 7.37(c) and Figure 7.37(d) reveal that the GB is required when the
lower limit on Tf,av of 3 ◦C is active, which is only the case for these very small
borefields. Also the fact that a borefield with 26 BHEs may be too large is
confirmed: neither the upper, nor the lower limit on Tf,av is active.

Figure 7.37(d) and Figure 7.37(e) plot the annual mean ground temperature
as a function of the radial distance to the BHE, obtained with the 11th-order
model. Two phases are distinguished. In a first phase, when nb is reduced from
38 to 15, the borefield temperature increases with decreasing nb. For this range
of nb, Q̇h and Q̇c can be (almost) entirely covered by respectively the HP and
PC, i.e. GEOh = 1 and GEOc ≈ 1 (see Table 7.6). While the relative and
absolute imbalance at borefield level, ‖δQbf‖ and ‖∆Qbf‖, remains almost the
same, the imbalance per BHE increases, with an increase in Tg,i as a result.
Further reducing nb, i.e. from 15 to 6, however, yields a decrease in GEOc
due to the active constraint on Tf,av. As the amount of heat extracted from
the borefield by the HP remains the same while the amount of heat injected
to the borefield by PC decreases, both ‖δQbf‖ and ‖∆Qbf‖ decrease. As a
consequence, further thermal build-up is counter-acted and in this second phase,
Tg,i decreases with decreasing nb. The influence of nb on GEOh, GEOc and
δQbf is summarized in Table 7.6 for both office loads, i.e. obtained with the
HC/CC-control strategy on the one hand, and with the MPC strategy on the
other hand. The figures clearly show the decrease in GEOc from 100% for 26
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BHEs to about 40% for 6 BHEs. GEOh remains 100% until 8 BHEs.

Figure 7.37(d) and Figure 7.37(e) also allow to evaluate the assumption made
that there is no thermal interaction between the BHEs. The ground temperature
increase relative to the Tg,∞ at a distance of 2.5 m of the BHE (which corresponds
to half the BHE spacing assumed at the borefield design stage) ranges from
0.3 ◦C to 0.5 ◦C, depending on the number of BHEs. While in absolute terms this
seems to be quite small, in relative terms the impact may not be negligible. To
incorporate the impact of thermal interaction for a given borefield configuration,
the borefield loads could be distributed over a number of ’central’ BHEs, with
adiabatic boundary conditions at half of the BHE spacing, and a number of
’outer’ BHEs, with the undisturbed ground temperature connected to the outer
node. The relative number of ’insulated’ versus ’outer’ BHEs would then reflect
the compactness or volume-to-surface ratio of the borefield. For densely packed
BHEs, the allowed level of thermal buildup or thermal depletion will probably be
lower than observed here for the single BHE case, imposing a smaller imbalance
between injected and extracted heat (i.e., smaller ∆Qbf ). This investigation is
however left for future research.

Following qualitative conclusions can be drawn: first, there is no significant
difference between the optimal solution for the weekly averaged loads obtained
with the HC/CC-controller on the one hand, and with the MPC on the other
hand. This indicates that with this large control time step, only the influence
of the loads expressed in terms of energy (kWh) matter, which, as listed in
Table 4.7, are almost equal for the two control strategies. Second, the number
of BHEs required to cover the entire heating load could be significantly reduced
compared to the number obtained at the design stage (i.e. nb 8 in stead of
26). This suggests that the peak heating loads have determined the borefield
size at design stage. Note that the numerical results depend on the choice of
the lower and upper limit for Tf,av, since this directly constraints the amount
of heat injected or extracted from the borefield. The values presented here,
are obtained for Tf,av,min and Tf,av,max equal to respectively 3 ◦C and 15 ◦C.
These limits were chosen more stringent than the limits of 0 ◦C and 20 ◦C on
the actual Tf to account for the temperature change of Tf due to a peak heat
injection or extraction power (see Eq.(7.71) on p.202). In the next section, the
OCP will be solved for the hourly load data. In that case, no assumptions on
the required temperature margins have to be made, and the actual constraints
for Tf (0 ◦C and 20 ◦C) are imposed.
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Figure 7.36: Optimal distribution of the weekly averaged heating load Q̇h(t)
and cooling load Q̇c(t) over respectively the heat pump Q̇HP (t), the gas boiler
Q̇GB(t), the passive cooling Q̇PC(t) and the chiller Q̇CH(t) for different borefield
sizes ((top) 26 BHEs, (middle) 15 BHEs, (bottom) 11 BHEs), and this for the
office (3600 m2) load profiles obtained with the HC/CC-control strategy HC/CC
(left) and with MPC (right).
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Figure 7.37: Optimal profile for the thermal power extracted per BHE Q̇bf (t)
(top), the week-averaged mean fluid temperature Tf,av(t) (middle) and the
annual mean ground temperature distribution around a single BHE (bottom),
for different borefield sizes (6 till 38 BHEs), and this for the load profiles of
the office building (3600 m2) obtained with (left) a HC/CC-control strategy, see
Figure 7.27(a) and (right) with MPC see Figure 7.27(b).
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7.5.4 What drives the optimization in the short term?

As shown in Subsection 7.5.3, there is no fundamental difference between
the results obtained with the original nonlinear OCP (with COPHP and
COPPC both expressed as a function of Tf ) and those obtained with the
convex OCP (with COPHP and COPPC being approximated by well-chosen
constant values). Compared to nonlinear problems, convex problems can be
solved for a significantly larger number of optimization variables. This advantage
is exploited to analyze the optimal HyGCHP operation considering both the
short and the long term time scale, ranging from 1 h to 1 year. Compared to
the OCP with the weekly time step, discussed before, the extension towards
the hourly time scale allows to accurately predict the actual brine temperature
value Tf instead of the week-averaged one, Tf,av. Additionally, the impact of
the time-of-day electricity price and the diurnal variation of COPCH can be
assessed.

The solution of the OCP for the weekly load profiles suggested that the borefield
with 26 BHEs (sized to cover 98% of the heating load obtained with the HC/CC
control strategy) is too large for the investigated office building. This result
can now be verified using the hourly load profiles. Figure 7.38 shows the
distribution of Q̇h and Q̇c over the HP, the GB, the PC and the CH. While the
HP covers the entire heating load, a small fraction of the cooling demand is
covered by the CH. Figure 7.39(a) reveals that in summer, Tf indeed reaches
the maximum value. In winter, Tf also hits the lower bound Tf,min. The latter
indicates that the borefield size of 26 BHEs, which was obtained following the
design guidelines described in Chapter 4, is indeed required to cover 98% of the
heating load. The values for GEOh, GEOc and δQbf , based on the hourly load
values, are listed in Table 7.7. For 26 BHEs, the optimization yields a GEOc
fraction of 95% and a relative borefield thermal imbalance δQbf of 43%. These
latter values significantly differ from the values assumed at the design stage.
There, we imposed thermal balance of the annual amount of heat injected and
extracted, i.e. δQbf = 0, with a limited GEOc of only 42% as a result. The
optimization indicates that, while respecting (1) the requirement for a long
term sustainable borefield operation, and (2) the temperature limits on Tf , a
considerable amount of thermal imbalance between injected and extracted heat
is tolerated, with a significant increase of the share of PC as a result. The chiller
is only operated to cover a few peaks in the cooling demand. Withdrawing
the chiller would cause an increase in thermal discomfort during only a few
hours of the year. This means that this borefield size corresponds to a GCHP
system, not to a HyGCHP system. To analyze the operation of a HyGCHP,
which is more cost efficient from life cycle cost point of view, the number of
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Figure 7.38: Optimal distribution of the hourly heating load Q̇h(t) and cooling
load Q̇c(t) over respectively the heat pump Q̇HP (t), the gas boiler Q̇GB(t),
the passive cooling Q̇PC(t) and the chiller Q̇CH(t) for different borefield sizes
((top) 26 BHEs, (bottom) 15 BHEs), and this for the hourly office load profiles
obtained with the HC/CC-control strategy HC/CC (left) and with MPC (right).

BHEs will need to be reduced, as was also suggested by the results obtained
with the week-averaged load profiles. The optimization results for the office
loads obtained with the HC/CC control strategy for a borefield with 15 BHEs
are depicted in Figure 7.38(c) and Figure 7.39(c), and listed in Table 7.7. For
GEOh and GEOc the optimization yields respectively 77% and 71%. Recall
that, based on the week-averaged load profiles these values (for the same nb)
amounted to respectively 100% and 86%. The difference between the hourly and
the weekly optimization is an indicator of the performance loss caused by the
peak power demands.
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Figure 7.39: Optimal mean fluid temperature Tf (t) for different borefield sizes
((top) 26 BHEs, (bottom) 15 BHEs), and this for the office hourly load profiles
obtained with the HC/CC-control strategy (left) and with MPC (right). The
dashed horizontal line at 10 ◦ indicates the undisturbed ground temperature
Tg,∞, the dotted lines the upper and lower limits on Tf .

Figure 7.38(b) and (d) show the optimal Q̇HP , Q̇GB, Q̇PC and Q̇AC-profiles
for the hourly office loads obtained with the MPC controller and Figure 7.39(b)
and (d) show the corresponding Tf -profiles. A significant difference with the
results for the loads obtained with the HC/CC-control strategy is observed.
The borefield with 26 BHEs is by far too large which, as listed in Table 7.7,
results in 100% coverage of the heating and cooling loads by the HP and the
PC respectively. Even with 15 BHEs, GEOh and GEOc remain close to 100%,
namely 98% for GEOh and 100% for GEOc. While in terms of energy the
heating load is the smallest of both (Qh,tot equals 13 kWh/m2, Qc,tot equals
25 kWh/m2), the peak heating demand is larger than the peak cooling demand
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(Q̇h,max equals 36 W/m2, Q̇c,max equals 22 W/m2, see Table 4.7), and it is
the latter factor that dominates the result. Hackel and Pertzborn [70] also
emphasized that care should be taken that the peak load of a cooling dominated
building is not defined by the heating load. This is especially important for
borefield design according to current practice, with the borefield size being
calculated to meet the smallest of the two loads (in this case heating) entirely,
since the required GHE length scales almost linearly with the imposed peak
heat injection or extraction power.

With respect to the time-of-day variation of cel and the Tamb-dependency of
COPCH , none of these factors have an impact on the optimal distribution of Q̇h
and Q̇c over the 4 devices. The reason for this is the same as for the sinusoidal
building loads profiles, discussed in the previous section, where the insensitivity
of the optimal solution on the Tf -dependency of COPHP (t) and COPPC(t) was
explained: as it will always be cheaper to operate the HP instead of the GB,
and PC instead of the CH, the optimization will just strive to maximize GEOh
and GEOc. This means that the GB and the CH are only used when the HP,
respectively the PC, are not able to meet the imposed heating and cooling loads.
Of course, if the loads could be shifted in time, the optimization could shift
the heating and cooling loads towards the night to make better use of the low
energy price tariff and of the higher COPCH performance. This flexibility was
not provided here. Including both the building and borefield dynamics in the
OCP is proposed as a topic for further research. Note that in Chapter 8, where
the HyGCHP operation is optimized including the building dynamics (but not
the borefield dynamics), the opportunity for peak shaving and load shifting can
be exploited.

Following conclusions are derived from the results obtained for the hourly
building load profiles. First, the results confirm the observation made for the
OCP with the weekly load profiles, namely that the result of the optimization
is determined by the constraints on Tf . The second conclusion is a direct
result of the first one: it is not the energy content of the heating and cooling
loads (kWh), but their power rates (kW) which limit the use of the borefield in
covering the heating and cooling demand. For instance, while the total annual
heating and cooling demand with the HC/CC-control strategy is close to the one
with the MPC-control strategy, the former requires a borefield with 26 BHEs
to cover the entire heating demand, while the latter only requires 15 BHEs.
This also explains why both GEOh and GEOc decrease with decreasing nb. If
the net energy demand (kWh) was the restricting factor, we would initially
only observe a decrease of GEOc when reducing nb for this cooling dominated
office building. The third conclusion is also linked with the fact that the Tf -
constraints determine the solution: the fraction of the heating and cooling
demand covered by the HP, respectively PC, is maximized within these limits,
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Table 7.7: Influence of the borefield size, represented by the number of BHEs
nb, on the fraction of the office heating load covered by the HP (GEOh(-)), the
fraction of the office cooling load covered by PC (GEOc(-)) and the resulting
relative imbalance of the borefield loads (δQbf (-)). The building heating
and cooling loads are the hourly values of the office loads obtained with a
HC/CC-control strategy (left) and an MPC control strategy (right), and are
characterized by the relative imbalance between the building heating and cooling
demand (δQb).

HC/CC MPC
nb GEOh GEOc δQb δQbf GEOh GEOc δQb δQbf

38 1.00 0.99 -0.33 -0.43 1.00 1.00 -0.34 -0.44
26 1.00 0.95 -0.33 -0.42 1.00 1.00 -0.34 -0.44
19 0.89 0.82 -0.33 -0.40 1.00 1.00 -0.34 -0.44
15 0.77 0.71 -0.33 -0.40 0.98 1.00 -0.34 -0.44

and this maximization can result in a significant amount of thermal imbalance
between the injected and extracted heat. For the office loads obtained with the
HC/CC-control strategy and the MPC strategy, δQbf amounts to respectively
40% and 44%. To conclude, the OCP results differ from the assumptions made
at the design phase on two points: first, balance of the injected and extracted
heat (i.e. δQbf = 0) is not required. On the contrary, large imbalances allow
higher values for GEOh and GEOc. Second, it is not necessarily optimal to size
the borefield for the smallest of the two loads (expressed in terms of energy),
also the peak loads should be considered. For the office loads obtained with
MPC, for instance, the optimal GEOh decreases with nb before GEOc starts
decreasing.
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7.5.5 Comparison of weekly versus hourly optimization

Current borefield design practice often starts from predefined building loads, i.e.
Q̇h and Q̇c, as well as predefined values for GEOh and GEOc. For a traditional
GCHP system, for instance, both GEOh and GEOc are imposed to be close to
100%, while for an HyGCHP system only GEOh or GEOc (depending which
of the loads is the smallest) is imposed to be 100%. The investigated OCP,
presented in Section 7.2, showed to be interesting to assist in the choice for
GEOh and GEOc. The OCP yields an optimal value for GEOh and GEOc for a
given heating and cooling load profile as a function of the number of BHEs. The
OCP was solved both for week-averaged loads and for hourly loads. The latter
requires much more computational power, while the former requires tuning of
the constraints set with respect to Tf,av. In this section, we briefly discuss the
diffences in the results obtained for the weekly and hourly optimization, and
what can be learned from this.

Figure 7.40(a) and Figure 7.40(b) summarize the influence of nb on GEOh
and GEOc for the two office loads (’HC/CC’ and ’MPC’), for respectively the
week-averaged loads and the hourly values.

Figure 7.40(a) illustrates that the results obtained for the HC/CC loads and
for the MPC loads are almost the same if abstraction of the actual peak powers
is made. In this case, the optimization only considers the heating and cooling
loads expressed in terms of energy (kWh). To cover the entire heating load
(GEOh = 100%), 7 BHEs are found to be enough. To additionally cover the
entire cooling load (GEOc = 100%), 15 BHEs are required.

Based on the hourly heating and cooling load values, which include the impact
of the power demand (kW), the results for the loads with the HC/CC on the
one hand and with MPC on the other hand, significantly differ. The loads
obtained with the HC/CC-control strategy require 26 BHEs to cover the entire
heating load, while for the MPC loads only 15 BHEs are required. For the MPC
loads, further reduction of nb causes a larger drop in GEOh than in GEOc,
while for the HC/CC loads the opposite holds. This is explained by the fact
that for the considered MPC the peak heating demand is much larger than the
peak cooling demand (36 versus 22 W/m2), while this is not the case for the
considered HC/CC control (53 versus 51 W/m2).

The difference between the results shown in Figure 7.40(a) and Figure 7.40(b)
illustrates that the optimization based on hourly loads, is entirely determined
by the peak powers. The same is true for current borefield design practice. The
impact on the required GHE length of something so ’random’ is alarming. The
results obtained with the week-averaged loads seem to be more ’robust’. For
weekly-averaged loads the borefield size is not so sensitive to the required peak



Control performance evaluation 225

powers (only indirectly, through the choice for the Tf,av temperature limits)
and thus to the control strategy used to determine the loads. Moreover, the
sensitivity of GEOh and GEOc to nb corresponds better to what we would
expect for a cooling dominated building.

It is observed that the required nb obtained for the week-averaged loads is
significantly smaller than what results from the hourly optimization. The
difference between both is a function of the peak loads, which, as stated before,
is more sensitive to the controller used to determine the load profiles, than to
the building considered. The question arises how the HyGCHP would operate
if the borefield was sized based on the results of the OCP with the week-
averaged building loads. The impact of the the GHE length (through nb) on
the investment costs and the energy costs, evaluated over a time frame of 10
years for both a HC/CC-control strategy and an MPC strategy, is evaluated in
Chapter 8.
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Figure 7.40: Fraction of the annual heating demand covered by the HP (GEOh)
and of the annual cooling demand covered by PC (GEOc) as a function of the
number of BHEs, and this for the weekly (left) and hourly (right) office building
loads obtained with the HC/CC-control strategy (’HC/CC’) and MPC strategy
(’MPC’).

Figure 7.41 summarizes the results obtained for the OCP with respect to the
thermal imbalance between the injected heat by PC and the extracted heat
by the HP. We recall that all results correspond to a steady-state optimal
solution for the borefield given the defined building loads, i.e. the borefield is in
thermal balance as imposed by the periodic boundary conditions on the ground
temperatures Tg,i. Both for the weekly and hourly control time steps, and for
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the HC/CC and MPC load profiles, a heat injection surplus of more than 40%
is found, at least for borefields with more than 15 BHEs. For smaller borefields,
the hourly and weekly optimization results contradict each other. While the
imbalance drops to 10% in the case of the weekly OCP (due to the decreased
GEOc, see Figure 7.41(a)), the imbalance increases up to 60% in the case of
the hourly OCP.
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Figure 7.41: Relative imbalance between heating and cooling loads at building
level (δQb) and imbalance between heat injection and extraction at borefield level
(δQbf ) as a function of the borefield size (characterized by the number of BHE),
and this for the weekly (left) and hourly (right) office building loads obtained
with the HC/CC-control strategy (’HC/CC’) and MPC strategy (’MPC’).

7.5.6 Computation time

Table 7.8 evaluates the computation time (CPU) as a function of the following
factors:

• convex versus nonlinear OCP,

• the number of control time steps Nc,

• the order of the BHE model N .

The values illustrate the computational benefit of a convex optimization problem
compared to a nonlinear one. With the CPLEX and QPOasis solvers used, the
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Table 7.8: Computation time for solving the OCP as a function of the
optimization problem, the number of control time steps Nc and the BHE
model order N . If a range is given, this corresponds to a range of borefield sizes.

convex OCP nonlinear OCP
(CPLEX) ACADO (QPOasis)

∆tc Nc N=3 N=6 N=11 N=3 N=6 N=11

1 month 12 <1s <1s <1s 20s x 300s
1 week 48 <1s <1s <1s 200s x 1500s
1 day 365 ≈ 1s ≈ 1s ≈ 1s - - -
1 hour 8760 3min 5-60min 23min - >1h - - -

CPU time differs with a factor 100 or more. Moreover, the nonlinear solver
sometimes has convergence problems, while the convex solver always find a
solution. Additionally, the convex OCP allows us to increase the number of
control time steps Nc to 8760. For this large Nc value, the CPU time to solve
the OCP with a BHE model of N=3 is 10 times less than for N=11. The
tabulated spread in CPU time depends on the physics of the OCP solved. The
lower CPU is found for the case with a large borefield, the higher CPU for the
case with a small borefield. In the former case the constraint on Tf are rarely
active. In the latter case, the constraint on Tf is active during a large fraction
of the time and this makes the problem harder to solve.

7.5.7 Optimization from a system’s perspective

It is important to frame the observations made, i.e. the influence of the number
of BHEs on GEOh, GEOc and the related borefield temperature, within the
context of the presented OCP. As is the case for standard borefield design
calculations, the building heating and cooling loads Q̇h and Q̇c are predefined.
This means that the optimization has no flexibility to increase the share of the
HP, i.e. GEOh, or the share of PC, i.e. GEOc, by shifting the loads in time. An
optimization from a system’s perspective, including both the building dynamics
and the borefield dynamics in one single optimization, would therefore enable
even larger shares of the HP and the PC. Load shifting at building level, made
possible thanks to the thermal mass of CCA, could be directly exploited for
this purpose. As the optimization has to run over a time horizon of 8760 h, a
low-order building model is required which accurately predicts the operative
temperature Top for the entire year, including the response to the solar gains
and the internal gains. The validation results for the low-order building models
obtained by parameter estimation in Chapter 5, Section 5.4, however, indicate



228 Borefield level control

that this requirement is not easy to fulfill. The models were found to yield
satisfactory prediction of Top only within the MPC framework, as the latter
enables to improve the predictions of Top based on the actual Top measured
(see Section 5.5.1). This optimization from an integrated system’s perspective
which can be used at design level, is therefore left for future research.

7.6 Summary and conclusions

The operation of HyGCHP systems requires a strategy for switching between
the GCHP system and the backup system. Optimally, the building heating and
cooling demand are satisfied at a minimal energy cost. The formulation of the
corresponding OCP requires a dynamic BHE model which captures both the
short and long term borefield dynamics. The small time scale, related to the
brine temperature response to the borefield loads, determines the heat pump
COP and the passive cooling efficiency. The large time scale is required to
assure a long term sustainable solution.

Existing borefield models have been developed for design purposes, being too
complex for incorporation in an optimization framework. The following questions
arise: (1) Is it possible to describe the control relevant dynamics by a low-order
state space model? (2) How to obtain such a model? (3) What is the minimal
model order?

Three approaches have been studied: black-box, grey-box and white-box
modeling. The black-box models were obtained by system identification in the
frequency domain using the FDIDENT Matlab toolbox. Both rational functions
in the Laplace variable s and in

√
s were put forward, with the latter being

based on the analytical solution for radial heat diffusion. The grey-box models
were obtained by parameter estimation of a resistance-capacitance network
representing the radial heat transfer in the ground. The white-box models
were obtained by applying the modeling guidelines formulated by Eskilson,
followed by model reduction to decrease the model order. The data for system
identification, parameter estimation and model validation are simulation data
obtained with the detailed TRNSYS DST-model.

The validation results revealed that the grey-box and white-box approaches
are able to predict the brine water temperature for the long term time scale
with a relative model error of less than 1% and this with very low-order models,
respectively order 3 and order 6. The black-box models in the variable s, on the
contrary, required large model orders to predict the brine water temperature.
Moreover, these models could not be used outside the frequency range covered
by the identification data. This inferior model performance could possibly be
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explained by numerical artefacts in the identification data set. The black-box
models in the variable

√
s were shown to have good extrapolation capabilities

and this with lower model orders. This confirms that a description in
√
s better

matches the physics of the heat diffusion process.

Next, a selection of the borefield models were incorporated in the investigated
optimal control problem (OCP). The OCP has as objective optimizing the
distribution of the building heating and cooling loads over the heat pump
(HP) and the gas boiler (GB) on the one hand, and passive cooling (PC)
and active cooling (CH) on the other hand, such that long term sustainable
borefield operation is guaranteed. The results show that the optimization
maximizes the share of the HP and the PC in covering the heating and cooling
demand. As a natural consequence, the optimal mean borefield temperature
at equilibrium is higher than Tg,∞ for cooling dominated buildings. This way,
the net annual heat loss from the borefield to the surroundings compensates
the excess heat injection to the borefield. The benefit of an increased PC/CH
ratio thus outweighs the deterioration of the COPPC caused by the increased
source temperature. For heating dominated cases, the opposite holds: the
optimal mean borefield temperature at equilibrium is below Tg,∞. This way,
the net heat gain from the surroundings to the borefield compensates for the
net heat extraction from the borefield. The benefit of an increased HP/GB
ratio thus outweighs the deterioration of COPHP caused by the lower borefield
temperature. The PC/CH ratio, respectively HP/GB ratio are constrained by
the limits on the brine fluid temperature. The temperature difference between
the brine fluid and the surrounding ground is proportional to the heat injection
or extraction rate. Therefore, the flatter (or lower) the thermal power demand
profile, the larger the PC/CH ratio and HP/GB ratio can be.

The analysis of the optimal solution for the envisaged time scales shows that a
crucial requirement for the borefield control model is the accurate description
of the heat exchange between the borefield and the far field. This net heat
exchange constitutes an important term in the heat balance equation and
determines the optimal mean borefield temperature. A second requirement
to the controller model is a good prediction of the brine temperature as the
constraint on this variable is active. A final conclusion is that maximization of
the heat pump COP or the passive cooling efficiency as such, is not the driving
force in the optimization. A good estimate of the heat pump COP is only
needed to determine the borefield heat extraction rate for a given heat pump
power. The results of the OCP were also analyzed as a function of the BHE
model accuracy. For a control time step of one week, a sixth order model was
found to yield the best result for the nonlinear OCP. The convex OCP showed
to be less sensitive to the model order, with a minimal required model order of
3. The convex OCP, shown to be a valid approximation of the original nonlinear
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OCP, has been used to solve the optimization problem over a time frame of
8760h and a control time step of 1 h. This way, both the short and long term
dynamics are included in one single optimization. The results obtained with this
hourly control time step confirmed the results obtained with the weekly control
time step, namely that the optimization maximizes the share of the borefield
in covering the heating loads, GEOh (-), and in covering the cooling loads,
GEOc (-), within the constraints imposed on the mean fluid brine temperature
Tf . Comparison of the optimal values of GEOh and GEOc obtained with the
week-averaged building load values on the one hand, and with the hourly load
values on the other hand, highlights the significant impact of the peak power
demand on these performance indicators. This in turn illustrates the impact of
the peak power demands on the required borefield size to fulfill a predefined
fraction for GEOh and/or GEOc. The insights gained from this optimization,
i.e. (1) the tolerance towards imbalance between the injected and extracted
heat from the borefield, (2) the active constraints on the brine fluid temperature
Tf , and (3) the impact of the peak power demands on the required BHE length,
are incorporated in Chapter 8, which has as objective to optimize the control
of the office building with CCA and a HyGCHP system from an integrated
system’s perspective.

7.7 Chapter highlights

• Three approaches to obtain a low-order BHE-model have been investigated
and compared against the TRNSYS DST-model. The model accuracy is
determined for the time scale ranging from 1 h to 10 years.

• Model reduction of a simple white-box model (1D-FDM), yields accurate
models of model order down to N = 6. Grey box modeling with parameter
estimation, yields accurate models of model order down to N = 3. The
black-box approach for rational functions in

√
s have good extrapolation

performance for the long term dynamics.

• A set of these BHE-models is incorporated in an OCP formulation which
optimizes HyGCHP operation for a given building load profile. The total
annual energy cost is minimized under the condition of long term borefield
thermal balance (sustainability).

• The optimization maximizes the share of the HP for heating and the
share of PC for cooling. For cooling-dominated buildings, this results
in an excess heat injection to the borefield. At equilibrium borefield
temperature this excess heat injection is compensated by the heat exchange
with the surrounding ground. Therefore, the borefield should be a good
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heat dissipater rather than a good thermal storage medium. The active
constraints are found to be the brine fluid temperature limits.

• The required BHE length to cover the building loads is currently
determined by the peak power demand and, as a consequence, very
sensitive to the building load calculation step. Peak shaving at building
level allows significant reduction of the required BHE length, which in
turn yields significant investment cost savings.





Chapter 8

MPC of a HyGCHP system

8.1 Introduction

The study presented in this chapter aims first at contributing to the development
of an MPC strategy to optimize the operation of a CCA-HyGCHP system from
an integrated system’s perspective. Second, this chapter addresses the objective
to integrate the use of MPC in both the design and operation phase of HyGCHP
systems. The benefit with respect to the life cycle cost compared to conventional
design and control strategies is assessed.

In Chapter 5 the operation of the office building with CCA was optimized from
a building level perspective with abstraction being made of the installation
level. There it was found that, with an ideal boiler/chiller enabling to perfectly
track the supply water temperature setpoint, MPC has the potential to reduce
the annual energy cost for space heating and cooling by 15% compared to a
well-tuned HC/CC controller. The control of a HyGCHP is however far more
complex than the control of an ideal boiler/chiller, especially if on/off-controlled
devices are considered. As described in Chapter 4, Section 4.5, currently
used rule-based control strategies for a HyGCHP system require tuning of a
large number of control parameters. Since the control performance is found
to be very sensitive to the choice of these control parameters, both in terms
of thermal comfort and in terms of energy cost, the development of a more
generic approach to guarantee an efficient operation of these HyGCHP systems
is strongly advocated [70].

In Chapter 7 the operation of the HyGCHP system was optimized from the
installation perspective with abstraction being made of the building level. There

233
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it was found that an optimal operation of the HyGCHP system allows a certain
amount of load imbalance of the borefield heat injection and extraction loads,
such that the total amount of heat exchanged with the borefield is maximized
under the given constraints on the brine fluid temperature and the periodic
boundary condition on the ground temperatures in the borefield. The MPC
formulation presented in this chapter extends the MPC formulation developed
for the building level in Chapter 5 towards the installation level, including these
insights.

The results of Chapter 7 also illustrated the dominant impact of the peak power
demands on the total ground heat exchanger (GHE) length required to cover
the entire heating and/or cooling demand by respectively the HP and passive
cooling (PC). For the investigated office building, the results suggested that
the number of BHEs nb required to cover the entire heating load, could be
reduced from 26 BHEs (of each 125 m depth) to 15 BHEs if the building load
calculation is performed with the MPC strategy presented in Chapter 5 instead
of a HC/CC-based control strategy, as the MPC strategy requires smaller peak
powers. If thermal power peaks would be flattened out further, nb could be even
further decreased, down to 7. Given the fact that the borefield cost dominates
the investment cost, the potential to reduce the GHE length by improving
the control strategy at building level, is investigated. The Net Present Value
(NPV), evaluated over a time horizon of 20 years, is assessed as a function of the
borefield size and as a function of the control strategy (HC/CC-based control
versus MPC). The assessment is based on extrapolation of 10-year simulation
results of the CCA-HyGCHP system in TRNSYS.

Section 8.2 presents the proposed methodology to tackle the combination of the
short term and the long term control objectives as well as the evaluated design
cases. Section 8.3 presents the corresponding optimal control problem (OCP)
formulation, Section 8.4 the results and Section 8.5 the conclusions.

8.2 Methodology

This chapter tackles two issues. The first issue, being the main focus of this
work, is how to optimize the operation of a CCA-HyGCHP system, illustrated
in Figure 8.1, from an integrated system’s perspective. As stated in Chapter 1,
this objective is motivated by experiences from practice which show that those
systems are difficult to operate. A first reason is the large thermal capacity
of the CCA and a second reason is the presence of different heat and cold
production devices. The number of control parameters for this kind of systems
is high, and an adequate tuning of the settings proves to be a complex task. As
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Figure 8.1: Schematic presentation of the system with indication of the two
zone office, the heat and cold distribution, the heat and cold production and the
borefield. Top,S and Top,N denote the zone operative temperature in respectively
the South and North zone, Tws,S and Tws,N the corresponding supply water
temperatures and Twr,S and Twr,N the corresponding return water temperatures.
The heat and cold production system comprises a gas boiler (GB), a heat pump
(HP), a heat exchanger for passive cooling (PC) and a chiller (CH). The heating
power Q̇h = Q̇HP + Q̇GB and the cooling power Q̇c = Q̇PC + Q̇CH . Q̇bf
represent the thermal power extracted or injected from the borefield by means
of the HP and PC.

a consequence, the energy saving potential of these systems, which in theory is
very promising, is in practice not fully harnessed. The objective of the developed
MPC strategy is to facilitate the control task by replacing the large number
of control settings by one single optimization. The MPC strategy defines the
status of each heat and cold production device, based on knowledge of the
building dynamics on the one hand, and of the heat and cold production power
capacities and performances on the other hand. To this end, the MPC requires a
simple but accurate representation of the building dynamics. In Chapter 5 such
a controller building model has been derived for the investigated office building.
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Additionally, the MPC requires knowledge of the installation characteristics.
Catalogue data can be used for this purpose, or, as proposed in this chapter,
this information can be obtained from on line measurements. The main question
that has to be dealt with, for the case of a HyGCHP system, is how to guarantee
long term sustainable operation of the HyGCHP system. At the start of this
study, this objective was directly translated to the question: ’How to prevent
thermal build-up or thermal depletion of the borefield?’. The latter is namely
assumed to affect the global system’s performance as it results in a gradual
decrease of the amount of cold available for passive cooling, respectively the
amount of heat available for heat pump operation. This wide-spread idea is
also reflected in current design guidelines for HyGCHP systems, which suggest
to balance the heat injection and extraction loads at borefield level to obtain
an optimal borefield size:

∫ 1y

0
Q̇bf,indt−

∫ 1y

0
Q̇bf,exdt = 0 (8.1)

This would imply that the optimal operation of a HyGCHP system should
not only consider the short-term control objectives, i.e. minimizing thermal
discomfort cost and energy cost, but also explicitly incorporate the long term
condition reflected in Eq.(8.1). In other words, the MPC should assure that
the annual amount of injected and extracted heat are in balance. For a cooling
dominated building, as considered here, the MPC should then guarantee that
the total amount of heat injected into the borefield by PC does not exceed
the amount of heat extracted by the HP. A computationally efficient way to
realize this, as suggested by Patteeuw [135], is to allocate for each day of the
year a certain ’budget’ for passive cooling CB(t) (kWh/day), defined off line for
the design reference year. The distribution of the total annual passive cooling
budget CBtot (kWh), which equals the annual amount of heat extracted by the
HP, over the year could be defined through an off- line optimization as presented
in Chapter 7, or simply by rules of thumb, e.g. ’use PC in base load’. CB(t)
serves as a reference in the short term optimization (Hc = 48 h) incorporated
in an on-line MPC framework. This way, the MPC has the flexibility to operate
the system on a day-by-day basis where the objectives of maximal thermal
comfort and minimal energy cost prevail, while the constraint on the use of
passive cooling allows to guarantee the condition expressed by Eq.(8.1). The
objective function, expressed by Eq.(8.2), then not only includes the energy
cost Je(e) and the thermal discomfort Jd (K2h), but also the long term cost
JLT ((kWh)2), defined by Eqs.(8.3)-(8.4) for a control horizon Hc of 48 h. With
this definition of JLT , exceeding the passive cooling budget allocated for the
2 days in the control horizon Hc (48 h), denoted by respectively CB(d) and
CB(d + 1) in Eq.(8.4), is penalized. The weighting factors α (-), β (e/K2h)
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and γ (e/(kWh)2) in Eq.(8.2) determine the weight of each objective in the
cost function.

min
Q̇HP ,Q̇GB ,Q̇P C ,Q̇CH

(
αJe + βJd + γJLT

)
(8.2)

JLT = ε2LT with εLT =
{

0 if ∆QCB ≤ 0
∆QCB if ∆QCB > 0

(8.3)

with

∆QCB =
Hc∑
0
Q̇PC(t)dt − (CB(d) + CB(d+ 1)) (8.4)

Based on the results obtained in Chapter 7, however, the requirement to balance
the amount of injected and extracted heat by the HP/PC (see Eq.(8.1)), is
questioned. The optimal distribution of the building heating and cooling loads
over the HP, the GB, the PC and the CH was analyzed for different building load
profiles and borefield sizes, with annual borefield thermal balance as constraint.
The results indicated that the optimization aims at maximizing the fraction
of the heating demand covered by the heat pump, denoted by GEOh (-), as
well as the fraction of the cooling demand covered by passive cooling, denoted
by GEOc (-). For a cooling dominated building, the steady state optimal
solution (i.e., the solution which can be repeated year by year and therefore
represents a long term sustainable solution) is characterized by a significant
surplus of injected versus extracted heat. For the considered office building,
the relative thermal imbalance δQbf (-) between the extracted and injected
heat, was found to amount to -44% for a borefield with 26 BHEs. Based
on the design condition δQbf = 0, GEOc would only amount to 47%. With
δQbf = −0.44, however, as suggested by the optimization, GEOc can be as
high as 95%. Further increase of GEOc is hampered by the upper limit on
the mean brine fluid temperature Tf , as the latter should remain below about
20 ◦C for PC. Obviously, the surplus of injected heat results in a mean borefield
temperature Tbf which is higher than the undisturbed ground temperature
Tg,∞. This in turn results in a net heat dissipation Q̇bf,∞ from the borefield
to the surrounding ground which compensates for the excess heat injection by
passive cooling. This way, the optimal solution effectively complies with the
long term sustainability requirement, expressed by Eq.(8.5).∫ 1 y

0
Q̇bf,indt−

∫ 1y

0
Q̇bf,exdt−

∫ 1y

0
Q̇bf,∞dt = 0 (8.5)

The concept of a passive cooling budget CB(t), introduced above to satisfy
Eq.(8.1) within an on-line MPC framework, can also be used to satisfy the
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’improved’ thermal balance condition expressed in Eq.(8.5). The total annual
cooling budget CBtot should then be increased with the term

∫ 1y
0 Q̇bf,∞dt

resulting from the off-line optimization. The results obtained in Chapter 7,
however, suggest that Eq.(8.5) is automatically satisfied. The optimization just
tries to maximize GEOh and GEOc for the given constraints on Tf . Further
increase of GEOc, and thus of the steady state mean borefield temperature
Tbf , is prevented by the constraint on Tf . Therefore, it could be possible that
an MPC strategy which only takes the short term objectives into account may
also evolve towards this optimal steady state solution, just by respecting the
constraints on Tf . For the considered cooling dominated office building, the
borefield temperature would then rise during the first years of operation and
eventually stabilize at a certain equilibrium temperature. This hypothesis is
investigated in this chapter. The MPC formulation is presented in Section 8.3.

A second issue tackled in this chapter, is the relation between control and
design. It is generally known that the design influences the control. In the
extreme case of a very large borefield, for instance, the heating and cooling loads
can be entirely covered by the HP, respectively by PC. In the other extreme,
i.e. no borefield at all, the heating and cooling loads are entirely covered by
the GB, respectively the CH. For both extremes, the control task is simpler
than for a HyGCHP system, where the controller needs to determine when
to switch between the different heat and cold production devices. This is a
first example of how the design affects the control. A second example is the
impact of the installed heating and cooling capacity on the control settings.
Larger installed capacities can reach the supply water temperature setpoint
faster, and thus also the zone temperature setpoint, compared to less powerful
devices. Therefore, smaller installed capacities require earlier start-up. How
much earlier, is again a challenge for the controller. It is therefore important
to evaluate the performance of the developed MPC and of the HC/CC-based
control strategy as a function of the borefield size and of the installed capacities.
As stated in Chapter 1 the control also influences the design, especially for
cases with (a) CCA [173] and (b) a GCHP system [70] (and thus even more
for the combined system CCA-GCHP). The impact of control on design is in
practice often underestimated. For conventional heating and cooling systems
(with GB and CH only), this is not so problematic as for GCHP systems due
to the absence of large borefield investment costs. Current design practice
is to size the borefield for a given building load profile. The required total
BHE length is, however, extremely sensitive to this building load profile, as
illustrated in Chapter 7. For the load profile obtained for the investigated
(cooling dominated) office building with the reference HC/CC-control strategy,
the optimization results showed that 26 BHEs are required to cover 100% of
the heating load (GEOh = 1). This number corresponds to the one found when
following the HyGCHP design guidelines in combination with the borefield
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design software GLHEPRO [166], described in Chapter 4. The optimization
however also suggested that only 15 BHEs are required to cover 100% of the
heating demand for the load profile obtained with the MPC strategy, the latter
being characterized by far smaller peak heating demands than the HC/CC-
control strategy. To validate this result, the required number of BHE for the
MPC load profile has been determined with the design software GLHEPRO,
following the procedure described in Chapter 4. This yields 14 BHEs, which
is close to the result obtained by the optimization. This result confirms the
potential to decrease the investment costs of a HyGCHP system, following the
current HyGCHP design guidelines, by incorporating MPC already in the design
phase. The strength of the use of MPC, with the objective function penalizing
the square of the heating and cooling power (see Section 5.3.3, Eq.(5.9)), is
that the peak heating and cooling demand, and thus the required BHE length,
are drastically reduced compared to current HC/CC-based strategies. We will
even go a step further and investigate how the system performs if the number
of BHEs is reduced to 7. This number was found by optimization based on
the week-averaged loads, discussed in Chapter 7, Section 7.5. In this chapter it
will be investigated whether this result makes sense for the actual operation
of a HyGCHP system, i.e., taking the dynamics at building level into account.
Finally, also a system without a borefield, i.e. a conventional system with
only a GB and a CH, will be evaluated. To summarize, 4 design cases will be
evaluated:

1. DC1 - 26 BHEs: HyGCHP sized for the office loads obtained with the
HC/CC-strategy,

2. DC2 - 14 BHEs: HyGCHP sized for the office loads obtained with the
MPC-strategy,

3. DC3 - 7 BHEs: HyGCHP sized for the office loads obtained with the
MPC-strategy, with the borefield size based on the OCP result for the
week-averaged loads,

4. DC4 - 0 BHEs: gas boiler/chiller (GB-CH) system sized for the office
loads obtained with the HC/CC-strategy

The corresponding installed capacities of the HP, the GB, the PC and the CH
are listed in Table 8.1.

It should be noted that this study does not provide a methodology to optimize
the design and the control of a HyGCHP simultaneously. This task was
recently undertaken by Hackel [71], who optimized the control settings of
a rule-based control strategy simultaneously with the main design parameters
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Table 8.1: Evaluated design cases
Installed power

Design Q̇HP,nom Q̇P C,nom Q̇GB,max Q̇CH,nom

case (kW) (kW) (kW) (kW)

DC1-26 BHEs 179 124 8 51
DC2-14 BHEs 85 71 33 21
DC3-7 BHEs 48 40 16 27
DC4-0 BHEs - - 193 183

(BHE length and cooling tower size). This was achieved by coupling the
TRNSYS simulation environment, in which the HyGCHP installation was
modelled, with the GENOPT optimization software [184]. The building loads
are given as input. The approach evaluated here, by contrast, is to optimize the
control from an integrated system’s perspective, which, as shown in Figure 8.1,
not only comprises the installation level with the borefield, but the heat and
cold distribution level and the building zone level as well. Moreover, the
MPC framework allows to effectively reduce the peak power demands which
determine the installation size. Optimizing design and control simultaneously,
with incorporation of the MPC strategy evaluated here, is an interesting topic
for further research.

8.3 MPC strategy

The MPC strategy comprises of 2 steps. In a first step, the optimal control
problem (OCP), presented below, is solved for the next 48 h, based on the
dynamic controller building model, building and installation measurement data
and future weather predictions. The solution of the OCP yields a 48 h-profile for
Q̇HP (t), Q̇GB, Q̇PC(t) and Q̇CH(t), with hourly values fluctuating between 0
and the maximal thermal power. In a second step, a post-processing step, these
profiles are translated into on-off-signals for the corresponding devices. The first
24 h of this on/off-profile are actually applied. After 24 h, the optimization is
repeated, using updated system measurements. The optimization is performed
each day at 0AM, as this time of the day is (1) characterized by few disturbances
and (2) far from the transient periods of the morning start-up and the loads
during occupancy, two factors which are known to affect the quality of the
measurements.

Note that, in contrast to the hydraulic lay-out of the system considered in
Chapter 5, there are no 3-way mixing valves, and by consequence, there is no
zone level control: both the mass flow rate ṁw and the supply water temperature
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Tws are equal for the North and the South zone. This simplification is made to
simplify the control problem for the HyGCHP system. For the ideal boiler/ideal
chiller in Chapter 5, the control signal is the heating or cooling supply water
setpoint temperature, which can easily be determined from the setpoints for
the individual zones, i.e. Tws,N and Tws,S . In the case of a HyGCHP system,
however, 4 control signals are required at installation level, i.e. the on-off-status
of each of the devices. Additionally optimizing the supply water temperatures
for the North and South oriented office zones, i.e. zone-level MPC, would result
in a nonlinear optimization problem. Alternatively, the control could be a
combination of MPC as high-level controller, determining the total energy flow
to the building, with a rule-based low-level control strategy, determining the
distribution of the produced heat and cold over the different zones. The MPC
then treats the building as a whole, without distinguishing between the loads
of the different zones. Here, neither of these two options, i.e. zone-level MPC,
nor high-level MPC combined with low-level rule-based control, is implemented.
The impact of this simplification on the control performance has been assessed
in Chapter 5. In order to meet the thermal comfort requirements in both zones,
it was found that the optimization should be performed for the most demanding
of the two zones. For the investigated office building with automated solar
shading at the South side, the North zone was found to be the most demanding,
both for heating and for cooling. The price for this conservativeness showed to
be an energy cost increase of about 5%.

OCP formulation The optimization aims at defining the optimal heating or
cooling power delivered by each device as a function of time, in order to minimize
the weighted sum of the energy cost Je (e) and the thermal discomfort Jd (K2h),
both evaluated over a time horizon Hc of 48 h, see Eq.(8.6). The weighting
factors αe (-) and αd (e/K2h) define the relative weight of these conflicting
objectives.

min
Q̇HP ,Q̇GB ,Q̇P C ,Q̇CH

(
αeJe + αdJd

)
(8.6)

The definition of Jd remains unaltered (see Eq. (5.10)), penalizing operative
temperatures Top exceeding the lower or upper temperature limit denoted by
respectively Tcomf,min and Tcomf,max:

Jd =
Hc∑
0

(
εh(k)2 + εc(k)2)∆tc with

{
εh(k) ≥ Tz(k)− Tcomf,max(k)
εc(k) ≥ Tcomf,min(k)− Tz(k)

The energy cost term, Je is now defined by Eq. (8.7). Je penalizes the sum of
the absolute values of the predicted energy costs, with COPHP and COPCH
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assumed constant for the entire control horizon Hc. Penalizing power peaks by
minimizing the square of the predicted power, found to yield close to optimal
operation for the modulating air-to-water HP investigated in Chapter 6, is
now not useful as we are dealing with on/off-controlled devices. The values for
COPHP , COPPC and COPCH , are updated prior to the MPC-call, based on
the measured values for the delivered thermal powers and the corresponding
electricity consumptions. This way, no model for the installation devices or
the borefield outlet temperature Tf,o is needed. On the other hand, it requires
additional installation of calorimeters. ce(k) (e/kWh) denotes the time-of-day
electricity price and cgas (e/kWh) the gas price. Peak electricity price amounts
to 0.15 e/kWh (from 7AM to 22AM), off-peak electricity price 0.09 e/kWh
and the gas price 0.06 e/kWh .

Je =
Hc∑
0

(
cel(k)

( Q̇HP (k)

COPHP
+ Q̇PC(k)
COPPC

+ Q̇CH(k)
COPCH

)
+ cgas

Q̇GB(k)
ηGB

)
∆tc (8.7)

The incorporated controller building model is the 2nd order model nx2-DS3 in
combination with the prediction error correction method c2 (see Eq.(5.30)),
obtained from parameter estimation as described in Chapter 5. This combination
was found to yield a very good control performance for the investigated office
building. The building model equations (see Eq.(5.27)) are repeated here:

[
Tc(k + 1)
Tz(k + 1)

]
= A

[
Tc(k)
Tz(k)

]
+ BT

 Tws(k)
Tvs(k)
Tamb(k)

+ BQ

[
Q̇int(k)
Q̇sol(k)

]
+
[

0
∆Tz(k)

]

The input of the building model, Tws(t) has to be related to the controlled
variables Q̇HP (t), Q̇GB(t), Q̇PC(t) and Q̇CH(t). The expression for Tws which
links the building dynamics to the installation is given by Eq.(8.8).

(UA)wf
(
Tws − Tc

)
= Q̇HP + Q̇GB − Q̇PC − Q̇CH (8.8)

with (UA)wf (W/K) representing the lumped heat exchange coefficient between
the supply water at temperature Tws and the concrete core at temperature Tc.

Input constraints The heating and cooling devices are on/off-controlled. The
OCP, however, determines the hourly averaged values of the thermal power
delivered by each device. By consequence, the OCP formulation allows the
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powers to take any value between zero and the maximal heating or cooling
capacity, as indicated by Eqs. (8.9) - (8.12).

0 ≤ Q̇HP ≤ Q̇HP,max (8.9)

0 ≤ Q̇GB ≤ Q̇GB,max (8.10)

0 ≤ Q̇PC ≤ Q̇PC,max (8.11)

0 ≤ Q̇CH ≤ Q̇CH,max (8.12)

The maximal thermal power of the gas boiler, denoted by Q̇GB,max (W), is
constant, i.e. equal to Q̇GB,max listed in Table 8.1. The heating capacity of
the heat pump and the cooling capacity of the PC heat exchanger, denoted by
respectively Q̇HP,max(t) (W), Q̇PC,max(t) (W), depend on the brine temperature
leaving the borefield, Tf,o(t) (◦C) and the supply water temperature at building
level Tws(t). The cooling capacity of the chiller, Q̇CH,max(t) (W), depends
on the ambient air temperature Tamb(t) and on the supply water temperature
Tws(t).

Q̇HP,max(t) = f1(Tbf,o(t), Tws(t)) (8.13)

Q̇PC,max(t) = f2(Tbf,o(t), Tws(t)) (8.14)

Q̇CH,max(t) = f3(Tamb(t), Tws(t)) (8.15)

These temperature dependencies can be explicitly taken into account by setting
up correlations for f1, f2 and f3, as was done by Verhelst et al. [179]. In this
study, a more pragmatic approach is used. The values for Q̇HP,max, Q̇PC,max
and Q̇CH,max are determined prior to the MPC-call, namely equal to the thermal
power the last time the device was operating, determined through measurements
of the delivered heat/cold. This avoids the need for a controller model of the
installation, but - as stated previously - it requires installation of calorimeters.
The choice whether to use catalogue data or measurement data is important
from practical point of view, but not from theoretical one. Note that in the
current OCP formulation, the input constraints are held constant for the entire
control horizon Hc of 48 h.

Post-processing The MPC yields a 48 h-profile for Q̇HP (t), Q̇GB(t), Q̇PC(t)
and Q̇CH(t). By means of Pulse Width Modulation (PWM) each profile is
translated into an on/off-signal for the corresponding device. The minimal
pulse width is equal to the TRNSYS simulation time step of 0.2 h(=12 minutes).
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For the heat pump a minimal on-time of 20 min is ensured to avoid cycling. A
sensitivity analysis of the actual control performance on this post-processing
step showed that the impact of this post-processing step, for which different
solutions exist, is limited, as also observed by Wimmer [186]. The difference
between two distinct implementations on the total annual energy cost is found
to be smaller than 5%. The influence on the thermal discomfort cost is sligthly
higher (30 Kh - 50 Kh for the same choice of the weighting factors αe and αd).

8.4 Results

The control performance obtained with the MPC strategy and with the HC/CC-
based control strategy are evaluated over a time horizon of 10 years. This long
time horizon is required to evaluate the degradation of the control performance
due to borefield thermal build-up. In general, we want to assess (1) the
improvement potential of MPC compared to a HC/CC-based strategy and (2)
the potential to decrease the borefield size in order to reduce investment costs.
Specifically, following questions are answered:

1. With respect to thermal comfort:

• How does MPC compare to the HC/CC-based control strategy?
• What is the sensitivity of thermal comfort to the installation size, in

case of MPC?
• What is the sensitivity of thermal comfort to the installation size, in

case of a HC/CC-control?

2. With respect to energy cost:

• How does MPC compare to the HC/CC-based control strategy?
• What is the sensitivity of the energy cost to the installation size, in

case of MPC?
• What is the sensitivity of the energy cost to the installation size, in

case of a HC/CC-control?

3. With respect to the long term sustainability of the borefield operation:

• To what extent does borefield thermal-build up affect the annual
energy cost?

• How does the borefield size relates to the level of borefield thermal
build-up?
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Table 8.2: Evaluation of MPC versus a HC/CC-control strategy for different
HyGCHP designs (DC1, DC2, DC3) and a conventional GB/CH system (DC4).
The NPV and PBT are evaluated for 2 energy price scenarios.

DC1 DC2 DC3 DC4
Performance indicator

IC (ke) 74 100 151 233

Khtot (Kh/y) HC/CC 85 68 80 84
MPC 23 30 34 31

GEOh (%) HC/CC 93 90 91 0
MPC 99 98 98 0

GEOc (%) HC/CC 83 75 57 0
MPC 97 90 69 0

Eprim (kWh/m2/y) HC/CC 9.4 13.5 18.2 32.9
MPC 7.5 9.0 14.2 31.5

Ce (e/m2/y) HC/CC 0.44 0.63 0.88 1.93
MPC 0.29 0.37 0.62 1.53

NPV (ke) HC/CC 142-213 130-160 170-189 244-256
MPC 129-185 116-133 159-169 241-250

PBT (y) HC/CC ref >20 17 - >20 8 - 11
MPC - >20 14 - >20 6 - 8

4. With respect to the life cycle cost:

• What is the pay-back time (PBT) of the evaluated HyGCHP design
cases compared to a GB-CH system ?

• What is the Net Present Value (NPV) of each case, evaluated over a
time horizon of 20 years?

8.4.1 Overview

Table 8.2 summarizes the results. The first row tabulates the investment cost
(IC) for the different design cases. Next, annual thermal discomfort (Khtot),
GEOh and GEOc, primary energy consumption Eprim (kWh/m2/y) and energy
cost Ce (e/m2/y) - evaluated after 10 years of operation, are tabulated as a
function of the control strategy. The two last rows present the NPV evaluated
over a time frame of 20 years and the PBT for two energy price scenarios.
The following sections discuss these performance indicators one by one in more
detail.
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Figure 8.2: Performance cloud of the HC/CC-control strategies for the different
HyGCHP design cases (DC1, DC2 and DC3) obtained by varying the HC/CC-
control settings. The performance of the MPC strategy for each design case is
added as a reference. The thermal comfort limit of 100 Kh is indicated by the
dashed line.

8.4.2 Tuning of the control parameters

The results for the reference control strategy presented correspond to the best
HC/CC-based control strategy found, based on a manual, iterative optimization
of the control settings. The values tuned for DC1 are listed in Table 4.5 on
p.49. Using the same settings for DC2 and DC3, which have smaller installed
capacity, yields unsatisfactory thermal comfort. Therefore, the manual tuning
has been repeated for both DC2 and DC3. Figure 8.2 shows the performance
cloud obtained when varying the HC/CC-control settings. For each design, the
selected HC/CC-control strategy is the one which satisfies the thermal comfort
requirement (Khtot < 100 Kh) at the lowest energy cost. The performance
obtained with MPC is added as a reference. The sensitivity of the control
performance of the HC/CC-control strategy to the control settings illustrates
one of its weaknesses: a HC/CC-based control strategy requires to be fine-tuned
for each individual case, not only as a function of the building characteristics,
but also as a function of the installation size. The MPC strategy, on the contrary,
automatically adjusts the control action as a function of the installed capacities.
MPC namely explicitly accounts for the available heating and cooling capacity
(see Eq.(8.9)-(8.12)). The tuning variables of the MPC, i.e. the weighting
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factors αe en αd in the cost function, can be kept constant for the different
design cases.

Figure 8.2 also reveals that the HC/CC-control strategy has more difficulty
to achieve good control performance for the smaller design cases (DC2 and
DC3) than for the larger ones. The control performance of MPC, by contrast,
is less sensitive to the installation size. On the other hand, as indicated
in Chapter 5, MPC requires a suitable controller building model and good
disturbance predictions to achieve good control performance.

8.4.3 Thermal comfort
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Figure 8.3: Thermal discomfort, expressed in terms of annual number of
temperature exceeding hours Khtot, as a function of time for the HC/CC-
control strategy (left) and for MPC (right) for different borefield sizes (26 BHEs,
14 BHEs 7 BHEs and 0 BHEs (GB and CH only)). The thermal comfort limit
of 100 Kh is indicated by the dashed line.

Figure 8.3 shows that it is possible to satisfy the thermal comfort requirement
for building class B with both the HC/CC-control strategy and MPC. However,
the thermal comfort level obtained with MPC is better than for the HC/CC-
control strategy. Note that the weighting factors αe en αd in the cost function
of the MPC, reflecting the relative weight of the energy cost versus the thermal
discomfort cost, are kept constant for the different design cases. This explains
why the thermal discomfort cost slightly increases with decreasing number of
BHEs, see Figure 8.3(b), as the energy cost increases with decreasing number
of BHEs.
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8.4.4 Primary energy consumption
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Figure 8.4: Annual primary energy consumption Eprim as a function of time for
the HC/CC-control strategy (left) and with MPC (right) for different borefield
sizes (26 BHEs, 14 BHEs 7 BHEs and 0 BHEs (GB and CH only)), assuming
an efficiency for the electricity production ηel of 40%.

The results for the annual primary energy consumption Eprim (kWh/m2/y),
based on an electricity production efficiency ηel of 40%, are shown in Figure 8.4.
The primary energy savings potential of a (Hy)GCHP system compared to a
conventional GB-CH-system (0 BHEs) is clearly illustrated. With the HC/CC-
control strategy, the primary energy consumption for the office building with a
HyGCHP system with DC1 (26 BHEs) is 9 kWh/m2/y. Compared to a GB-CH
system, where Eprim amounts to 33 kWh/m2/y, this is a reduction of more than
70%. For DC2 and DC3 Eprim amounts to respectively 13.5 kWh/m2/y and
18 kWh/m2/y. With MPC, the increase of Eprim when reducing the number of
BHEs is significantly smaller. For DC2 and DC3 Eprim amounts to respectively
9 kWh/m2/y and 14 kWh/m2/y compared to 7.5 kWh/m2/y for DC1. This
indicates that the relative benefit of MPC is larger for the compact design
cases (DC2 and DC3), than for the larger ones (DC1 and DC4). To achieve
the thermal comfort requirements with a smaller capacity at an acceptable cost,
requires a more intelligent control strategy.
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Figure 8.5: Annual energy cost Ce as a function of time for the HC/CC-control
strategy (left) and with MPC (right) for different borefield sizes (26 BHEs, 14
BHEs 7 BHEs and 0 BHEs (GB and CH only)), assuming an efficiency for
electricity production ηel of 45%.

8.4.5 Energy cost

The annual energy costs (e/m2) are depicted in Figure 8.5. The energy cost
reduction obtained with the HyGCHP systems (DC1, DC2, DC3) compared
to the conventional system (DC4), tabulated in Table 8.3, is outspoken. The
reduction in annual energy cost of a HyGCHP system compared to a conventional
system, evaluated at the 10th year of operation, amounts to 82%, 72% and 56%
for respectively the DC1 (26 BHEs), DC2 (14 BHEs) and DC3 (7 BHEs) in case
of HC/CC-control (see first column in Table 8.3). With MPC, the energy cost
savings (which is actually aimed at with the current definition of the energy cost
term in the cost function of the OCP formulation (see Eq.(8.7)), even amounts
to respectively 88%, 87% and 76% (see second column). The last column shows
the energy cost reduction potential of MPC compared to HC/CC-control. For
DC1 (26 BHEs), MPC realizes an energy cost reduction of 26% compared to the
(well-tuned) HC/CC-controller (and at the same time a better thermal comfort,
namely Khtot = 23 Kh per year per zones, instead of 85 Kh), see Table 8.2).
For DC4 (GB-CH only), the energy cost reduction amounts to 20% (with Khtot
equal to 31 Kh instead of 84 Kh. For DC2 (14 BHEs) and DC3 (7 BHEs), the
energy cost reduction is even higher, respectively 41% and 29%. To conclude,
for the same design, and even better thermal comfort, MPC allows to reduce
the energy costs compared to a HC/CC-control strategy by 20% up to 40%
compared a HC/CC-based control strategy. The cost reduction potential is
larger for the (more complex) HyGCHP system than for the (more simple)



250 MPC of a HyGCHP system

GB-CH system. Note that the numerical values in the latter comparison, i.e.
the cost reduction potential of MPC compared to HC/CC-control for a given
design case, are very sensitive to the HC/CC-controller taken as a reference.

Table 8.3: Annual energy cost reduction of the evaluated HyGCHP systems
(DC1, DC2 and DC3) relative to the conventional GB-CH system (DC4). The
cost reduction potential is evaluated for both HC/CC-control and MPC. The
last column tabulates the energy cost reduction potential (%) of MPC compared
to a HC/CC-control strategy.
Reference DC4 (HC/CC) DC4 (HC/CC) HC/CC

Control HC/CC MPC MPC

DC1 -77% -85% -26%
DC2 -67% -81% -41%
DC3 -54% -68% -29%
DC4 0 -20% -20%

8.4.6 Long term sustainability of borefield use

The profiles of the annual primary energy consumption Eprim and of the annual
energy cost Ce as a function of time, depicted in Figure 8.4 and Figure 8.5,
appear to be rather constant in time. Only between the first year of operation
and the second one, a significant degradation of the control performance, i.e.
an increase in the primary energy consumption and the related energy cost,
is observed. This is especially the case for the HyGCHP design with 7 BHEs
operated with the MPC strategy. The impact of the operation on the mean
borefield temperature Tbf and the correlated fractions of the heating and cooling
demand covered by the HP, i.e. GEOh, respectively PC, i.e. GEOc, is shown
in Figure 8.6. Comparison of Figure 8.6(a) and Figure 8.6(b) shows that the
thermal buildup for the design with 26 BHEs is almost the same for the two
operation strategies, while for the smaller designs, the thermal buildup with
the MPC is clearly more outspoken. After 10 years of operation the borefield
with 7 BHEs, Tbf has reached 14 ◦C, i.e. a temperature difference of 4 ◦C
compared to the undisturbed ground temperature Tg,∞ of 10 ◦C. Also for the
borefield with 14 BHEs the rise is significant. A longer simulation horizon
would be required to determine the actual equilibrium temperature, but the
curvature of the graph suggest that the borefield should achieve an equilibrium
temperature below 15 ◦C. The profiles for GEOc, shown in Figure 8.6(e) and
8.6(f) confirm that the larger temperature rise of Tbf for MPC compared to
the HC/CC-control, is a direct result of the higher fraction of PC. However,
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also GEOh is larger with MPC than with the HC/CC-control, as depicted in
Figure 8.6(c) and 8.6(d), but the relative difference is smaller. The reduction of
the energy costs, discussed above, can thus be attributed to two factors. First,
MPC realizes a reduction of the total energy demand, through an improved
prediction of the actual heating and cooling loads in the presence of internal
and solar gains. Second, because of this prediction potential the MPC is able to
better spread the heat and cold production in time, this way obtaining a flatter
demand profile. This flatter profile in turn enables to make more use of the
borefield as the temperature rise of the brine fluid temperature Tf is kept small.
With the the HC/CC-control strategy, on the contrary, the lack of anticipative
control action will require more often higher power rates (compared to MPC),
which necessarily have to be partially covered by the backup GB and CH. The
anticipatory character of the MPC strategy is therefore crucial, as illustrated
by the result, to satisfy both thermal comfort and to harness the energy saving
potential of HP operation and PC in the case of a small sized borefield.
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Figure 8.6: Top: Mean borefield temperature Tbf as a function of time for the
HC/CC-control strategy (left) and with MPC (right) for different borefield
sizes (26 BHEs, 14 BHEs and 7 BHEs). Middle and bottom: Corresponding
fractions of the annual heating demand covered by the HP, GEOh, respectively
the annual cooling demand covered by PC, GEOc.
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8.4.7 Economic evaluation
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Figure 8.7: NPV cost path with the total costs (investment costs + energy
costs) incurred over the given time horizon: (left) DC1 (26 BHE), (middle) DC2
(14 BHEs), (right) DC3 (7 BHEs), each time compared to the NPV cost path
of DC4 (0 BHEs). Top: Scenario with an energy price inflation Er equal to 2%.
Bottom: Scenario with Er equal to 10%. The results with MPC are marked by
the circles (’o’), the ones with HC/CC-control by crosses (’x’).

The asset of MPC to maximize the use of the borefield, irrespective of its size,
opens the path towards economically competitive HyGCHP designs, as is clearly
illustrated in Figure 8.7. The horizontal axis has the time horizon (number
of years considered) and the vertical axis has the Net Present Value (NPV)
cost path with the total costs incurred over that horizon. Figure 8.7(a), (b)
and (c) compare the NPV for respectively DC1, DC2 and DC3 to the NPV for
DC4 (conventional GB/CH-system). The crossing gives the payback-time. The
NPV discounts the monetary value in the future and translates it into today’s
terms as illustrated by Eq.(8.16), with yn (year) the considered time horizon,
dr (-) the nominal discount rate, Er (-) the nominal energy inflation, IC (e)
the nominal investment cost, Ce(i) (e/m2) the specific annual electricity cost
at year i and Atot (3600 m2) the total conditioned surface.

NPV (yn) = IC+Atot
(Ce(y1)(1 + Er)

(1 + dr)
+Ce(y2)(1 + Er)2

(1 + dr)2 +...Ce(yn)(1 + Er)yn

(1 + dr)yn

)
(8.16)
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The values used for the investment cost analysis are listed in Table 8.4. Note
that we make abstraction of operation costs other than the energy costs. The
result for the 4 design cases are shown in Table 8.5. Bffix (e) comprises the
cost of the TRT and the additional costs for the engineering study and the
control and monitoring equipment. Bfvar (e) comprises the costs which scale
with the borefield size, i.e. the cost of the BHEs, the horizontal piping and the
collectors.

Table 8.4: Values used for the investment cost evaluation [2]
HP 420 e/kW collector (max. 10 BHEs) 7260 e
HE 56 e/kW circulation pump 760 e
GB 100 e/kW TRT 8500 e
CH 197 e/kW borefield engineering study 20 000 e
CT 104 e/kW borefield control 8250 e
GHE 30 e/m energy cost rise Er 2 - 10 [46] %/y
hor. piping 50 e/m cost of capital dr 10 [122] %/y

Figure 8.7(a) shows that the designs with 26 BHEs and 14 BHEs are not
economically attractive. For the scenario with an energy price rise Er of 2%
(being the mean value for the period 1996 - 2011 [46]), the PBT is more than
20 years for both designs. Only for the scenario with large energy prise rise, i.e.
Er 10%, DC2 becomes economically viable. The design with 7 BHEs, on the
contrary, has a pay-back time of less than 10 years for both energy price scenarios:
it is already economically interesting for conservative estimates of Er. This
clearly illustrates the potential for such a compact HyGCHP system, not only
to reduce the primary energy consumption related to space heating and cooling
(shown to amount up to 50%, compared to a GB-CH system, see Figure 8.4),
but also to reduce the related energy cost with a comparable investment cost.
The latter two factors are also illustrated in Figure 8.8 which presents the NPV
evaluated over a time horizon of 20 years for a nominal discount rate dr of
10%, a nominal energy price inflation Er of 2%, and assuming that the annual
energy cost Ce for year 11 to year 20 equals the one for year 10. The relatively
small difference between the depicted NPV values and the depicted investment

Table 8.5: Investment costs for the 4 design cases (e)
HP HE GB CH Bfvar Bffix Total

DC1 0 0 19 300 55 080 0 0 74 380
DC2 14 450 1 490 1 600 8 130 37 970 36 750 100 390
DC3 26 490 2 740 2 550 6 320 75 940 36 750 150 790
DC4 53 880 5 570 1 600 13 850 120 940 36 750 232 590
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costs (IC), again illustrates the enormous impact of the IC on the economic
feasibility of the installation. From economic point of view, the benefit of MPC
is therefore in the first place that it enables a smaller design. As this smaller
design in turn makes HyGCHP competitive with conventional systems, a wide-
spread implementation of these compact HyGCHP systems could contribute to
significant savings in the primary energy consumption for buildings with both
space heating and cooling demand.
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Figure 8.8: Investment cost (’IC’) and Net Present Value (’NPV’) as a function
of the number of BHEs. The results with MPC are marked by the circles (’o’),
the ones with HC/CC-control by crosses (’x’).

8.5 Summary and conclusions

A first objective of this chapter was to evaluate the benefits of MPC compared
to a HC/CC-based control strategy for the operation of HyGCHP-CCA systems
in cooling dominated office buildings. A second objective addressed, was
quantifying the impact of a smaller borefield size (resulting from a different
design strategy) on investment costs and energy costs. The results show a
significant potential of the use of MPC for HyGCHP-CCA systems, in terms of
thermal comfort, energy cost and investment cost.

For the same design, and significantly better thermal comfort, MPC realizes
an energy cost reduction of 20% up to 40% compared to a HC/CC-based
control strategy. The cost reduction potential is larger for the (more complex)
HyGCHP system than for the (more simple) GB-CH system. Arguably more
important, is that MPC is able to guarantee good thermal comfort with smaller
HyGCHP installations than what is currently common. The impact on the
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investment costs and the net present value (NPV) (evaluated over a time span
of 20 years) is considerable. Three HyGCHP designs, with different borefield
size, were evaluated and compared to a conventional gas boiler/chiller (GB-CH)
installation. The NPV of the first HyGCHP installation (26 BHEs), evaluated
after 20 years and assuming an energy price rise of 2%, amounts to 241 000 e.
Compared to the NPV of the GB-CH installation, approximately 130 000 e,
this design is not economical. The NPV of the second HyGCHP installation
(14 BHEs) operated with MPC, amounts to 159 000 e. The pay-back time
ranges from 14 years to more than 20 years, depending on the energy price
scenario. For the third HyGCHP design, with the borefield size based on an
optimization for the week-averaged building loads (see Chapter 7, Section 7.5)
(7 BHEs), the NPV with MPC amounts to 113 000 e, being economically very
attractive. Moreover, this third HyGCHP design realizes a primary energy
consumption reduction of more than 50% compared to the GB-CH installation
(the specific annual primary energy consumption is reduced from 32 kWh/m2/y
to 14 kWh/m2/y). This way, this compact HyGCHP design is very attractive
from both economic and ecological perspective.

These results are possible thanks to the specific combination of the HyGCHP
with CCA on the one hand, and the use of MPC on the other hand. The thermal
capacity of CCA allows load shifting and peak power reduction, which in turn
allows to reduce the installation and borefield size. The anticipatory character
of MPC allows to effectively exploit this potential: prediction of the building
loads, given the thermal capacity of the CCA, allows to maximize the share
of the heat pump in heating mode, and the share of passive cooling in cooling
mode. This way, even if the borefield is small, the share of the heat pump and
the passive cooling are large. With HC/CC-control strategies, however, the
lack of anticipation results in peak power demands which can not be covered
by the (small) heat pump or the (small) passive cooling power capacity, which
automatically results in a less efficient use of the borefield compared to MPC.

Finally, the results indicate that the strong interdependence between building
dynamics, borefield dynamics and control, should already be taken into account
at the borefield design phase. A first step is to integrate an MPC strategy,
which penalizes peak thermal power demand, in the building load calculation
phase (here represented by HyGCHP DC2). A second step is to determine the
borefield size based on an optimization with the week-averaged building load
values as input. The advantage of this optimization-based approach, compared
to current design guidelines, is that, first, the condition to balance the borefield
heat injection and extraction loads is relaxed (instead, the condition for long
term thermal balance is imposed) and, second, that the required borefield size
to cover the smallest of the two loads is determined by the loads (in terms of
energy) instead of by the peak power demands (which very much depend on
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the way the building load calculation is performed, cfr HyGCHP DC1). The
feasibility of the resulting HyGCHP design (represented by HyGCHP DC3) to
satisfy thermal comfort at a low energy cost by means of MPC, was shown in
this Chapter.

8.6 Chapter highlights

• MPC guarantees high thermal comfort for all design cases, irrespective of
the installation size.

• MPC exploits the thermal capacity of CCA for load shifting and peak
shaving to maximize the use of the borefield in covering the heating and
cooling demand.

• For a same design, and even better thermal comfort, MPC realizes an
energy cost reduction between 20% and 40% compared to HC/CC-control.

• For CCA-HyGCHP systems, MPC allows a borefield size reduction of
more than 50% compared to current HyGCHP design and control practice.

• For compact borefields, operated with MPC, thermal build-up is significant
(+4◦C), however:

– the thermal build-up levels are constrained by the the borefield fluid
outlet temperature limit,

– the thermal build-up levels do not jeopardize the long-term system
performance.

• An integrated approach for design and operation of these systems seems
recommended.





Chapter 9

Conclusions

This study aimed at contributing to the development of MPC to optimize the
operation of CCA-HyGCHP systems from an integrated system level approach.
A step-wise approach was adopted to achieve this objective. Motivation for this
research and an introduction of the key concepts of the proposed methodology,
were given in Chapter 1, Chapter 2 and Chapter 3. Chapter 4 described the
investigated case, the boundary conditions and the reference control and design.
Chapter 5 focused on the optimization at building level, Chapter 6 on the
optimization at heat pump level and Chapter 7 on the optimization at borefield
level. In Chapter 8, MPC is evaluated from an integrated system perspective.
The insights gained from these last 4 chapters can be summarized as follows:

Chapter 5, dealing with the development of a controller building model for
the investigated office building with CCA, reveals a significant impact of the
identification data (ID) set used for parameter estimation of the grey-box model
structures, on the model accuracy. The model structure itself is shown to have a
smaller impact. A simple 2nd order model, with the parameters identified with
a data set with step excitation of all model inputs, yields the most accurate
predictions of the operative temperature Top. Within the MPC framework,
fortunately, the impact of model mismatch on the MPC performance can be
reduced by compensating for the measured prediction errors. The main benefit
of MPC compared to an advanced HC/CC-control strategy, is found to be the
reduction in peak power demand, both for heating and for cooling.

Chapter 6, evaluating the impact of the controller heat pump model for the
case of a modulating air-to-water heat pump connected to a residential floor
heating system, showed that optimal operation is characterized by a continuous
and smooth operation at part load, in the case of a constant electricity price
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scenario, or a combination of full load operation at night and part load operation
during the day, in the case of a day-night electricity price tariff structure. This
optimal profile is found with the nonlinear optimal control problem (OCP)
formulation which explicitly takes the dependency of the heat pump COP on
the source temperature, supply temperature and compressor frequency into
account. If the COP is assumed constant, yielding a convex OCP, the same
result is found if the cost function penalizes power peaks. The main conclusion of
this chapter is that, for modulating heat pumps, power peaks and on/off-cycling
should be avoided since these largely affect the COP. For on/off-controlled heat
pumps, this result emphasizes the benefit of small HP sizes.

Chapter 7, dealing with the development of a low-order BHE model for
incorporation in a HyGCHP control optimization framework, shows that very
low-order models (N < 6) can be surprisingly accurate in describing both the
short and the long term BHE dynamics. The BHE-models have been validated
through comparison with the TRNSYS DST-model. The most simple approach,
being model reduction (MR) of a white-box BHE-model, yields accurate models
down to model order N = 6. With parameter estimation (PE) N can be reduced
down to 3. The model performance obtained with black box system identification
(SI) of rational transfer functions in the Laplace variable s (frequency domain
identification) is found to be inferior than for the other approaches, while the
transfer functions in the Warburg variable

√
s, adequate for modeling diffusion

phenomena, accurately describe the long term BHE-dynamics. This indicates
that BHE-modeling requires incorporation of some form of physical knowledge
(i.e., initial model for MR, initial guess for PE and

√
s-format for SI).

The subsequent analysis of the optimal operation of a HyGCHP system,
effectuated for various building load profiles and borefield sizes, indicate that -
contrary to what is often suggested - sustainable HyGCHP system operation
does not require annual balance of the borefield heat injection and extraction
loads (as was recently also observed by Hackel and Pertzborn [70]). On the
contrary, the optimization aims at maximizing both the share of HP operation in
covering the heating loads (GEOh) and the share of PC in covering the cooling
loads (GEOc). For cooling dominated buildings, this results in an excess heat
injection to the ground which in turn is compensated by higher heat losses to the
surrounding ground. As a consequence, an optimal and sustainable HyGCHP
operation allows thermal build-up during the first years of operation, until
equilibrium is reached. The amount of borefield thermal build-up (and thus the
value of GEOc), is limited by the constraint on the brine fluid temperature Tf ,
since the latter must remain below the cooling water temperature at building
side to enable PC. For the formulation of an MPC strategy which aims at
optimizing the CCA-HyGCHP system from an integrated systems perspective,
this result suggests that incorporation of the annual time scale in the MPC
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formulation (which is needed if the condition for annual borefield load thermal
balance is imposed) is not required, implicating that MPC of a HyGCHP system
is allowed to focus on the short time scale only.

The performed sensitivity analysis of the optimal HyGCHP operation on the
borefield size showed a significant impact of the building peak power demand
on the borefield size required to cover the (smallest of) the loads. This in turn
highlights the impact of the building load calculation. For instance, the required
borefield size for the building loads obtained with MPC (14 BHEs) is also 50%
smaller than for the loads obtained with the HC/CC-control strategy (26 BHEs).
This reduction can entirely be attributed to the reduction in peak power demand
since, in terms of total annual heating and cooling demand, these two load
profiles hardly differ. The borefield size required to meet the week-average load,
is another 50% smaller (7 BHEs) and, due to the time-averaging, less sensitive
to the building load calculation. The difference in borefield size required to
cover the week-averaged versus the hourly loads is indicative for the investment
cost reduction which can be achieved by peak load reduction.

Chapter 8 evaluates these three design cases, DC1 (26 BHEs), DC2 (14 BHEs)
and DC3 (7 BHEs), for both an MPC and a HC/CC-control strategy. For a
CCA-HyGCHP system, the benefits of MPC compared to a HC/CC-control
strategy are:

• Significantly better thermal comfort: a reduction of the amount of
temperature exceeding hours from 85-100 Kh/zone/year (depending on
the design case) to 40-25 Kh/zone/year.

• Significant energy cost savings: a reduction of the annual energy cost of
20 up to 40%.

The results indicate that MPC is better suited than HC/CC-based control
strategies for efficiently operating CCA-HyGCHP systems in general (due to the
large number of decision variables), and compact, cost-efficient CCA-HyGCHP
systems in particular. For the small HyGCHP designs (DC2 and DC3), the
HC/CC-control strategy makes less efficiently use of the borefield than the
MPC. Due to the lack of anticipation of the future building loads, the HC/CC-
control strategies require relatively higher powers to satisfy the thermal comfort
requirements. Since the installed capacity of the HP and the PC for these
designs is limited, this means a more frequent use of the GB/CH. For the
small HyGCHP designs, the share of the heating and cooling demand covered
by the HP, respectively PC, is 10% to 20% higher with MPC than with the
HC/CC-control. Contrary to the HC/CC-control strategy used as a reference,
MPC optimally exploits the thermal capacity of CCA for load shifting and peak
shaving to maximize the use of the (limited) HP and PC capacity.
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This way, MPC in combination with CCA facilitates the operation of
economically competitive HyGCHP systems: the NPV for DC1, DC2 and
DC3, evaluated over a time span of 20 years, amounts to respectively
241 000 e, 159 000 eand 113 000 e, compared to 130 000 efor a conventional
gas boiler/chiller system. The primary energy cost reduction of these HyGCHP
systems, compared to the conventional system, amounts to respectively 76%,
72% and 56%. This means that DC3, which has a pay back time of 6 to 8 years,
is interesting both from economical as from ecological point of view.

Future research The following paths for further research, related to the
presented work, are identified:

• Chapter 5

– Design of experiments for defining the optimal set of excitation
signals for building control model identification,

– evaluating the proposed building grey-box model and parameter
estimation approach in the presence of unmeasured internal and solar
gains,

– elaborating on improved error-correction methods to extract a
maximal amount of information from the recorded prediction errors,

– improving the robustness of MPC with respect to model mismatch,
measurement noise and prediction errors,

– experimental validation.

• Chapter 6

– evaluate the potential for MPC in the case of varying occupancy
profiles.

• Chapter 7

– extending the study of controller models for single BHE towards
borefields with BHE thermal interaction,

– evaluating the optimal HyGCHP performance including both the
building and the borefield dynamics in one single optimization.

• Chapter 8

– optimizing the HyGCHP performance for modulating instead of
on/off-controlled devices,
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– optimizing the HyGCHP performance for buildings requiring
simultaneous heating and cooling,

– taking the hydraulics into account to optimize the use of the
circulation pumps,

– experimental validation.
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