
FRANCESCO GADALETA, RAOUL STRACKX, NICK NIKIFORAKIS,
FRANK PIESSENS, WOUTER JOOSEN∗

On the effectiveness of virtualization-based security

Protecting commodity operating systems and applications against
malware and targeted attacks has proven to be difficult. In recent years,
virtualization has received attention from security researchers who uti-
lize it to harden existing systems and provide strong security guarantees.
This has lead to interesting use cases such as cloud computing where
possibly sensitive data is processed on remote, third party systems. The
migration and processing of data in remote servers, poses new technical
and legal questions, such as which security measures should be taken to
protect this data or how can it be proven that execution of code wasn’t
tampered with. In this paper we focus on technological aspects. We dis-
cuss the various possibilities of security within the virtualization layer
and we use as a case study Hello Rootkitty, a lightweight invariance-
enforcing framework which allows an operating system to recover from
kernel-level attacks. In addition to Hello Rootkitty, we also explore the
use of special hardware chips as a way of further protecting and guaran-
teeing the integrity of a virtualized system.

I. Introduction
Virtualization is the set of technologies that together allow for the existence of

multiple running virtual machines on-top of a single physical machine. While
initially all of the needed mechanisms for virtualization were created in soft-
ware, the sustained popularity of virtualization, lead to their implementation in
hardware, providing the desired speed that was lacking in their software coun-
terparts. Today virtualization is gaining more and more interest in IT as well
as the business world. The ability of virtualization to easily consolidate and
migrate virtual machines between physical machines, allows corporations to
outsource their IT infrastructure while reducing the cost of maintenance, power
consumption and required infrastructure. This practice is called cloud comput-
ing. While virtualization is now mostly a technology for server farms, it is
expected that it will soon affect both the mobile device and desktops market.
Companies are already offering products such as VMWare’s Mobile Virtualiza-
tion platform (Barr et al., 2010) and Citrix’s XenDesktop which utilize virtual-
ization to increase productivity, decrease costs and allow easier maintenance of
mobile and desktop devices in corporate environments.

From a security point of view, researchers have already identified a number of
attractive properties of virtualization that can be used to provide stronger secu-
rity guarantees in server, desktop as well as mobile environments. The property
that has received the most attention is the guaranteed isolation between virtual

∗IBBT-DistriNet, Katholieke Universiteit Leuven, 3001 Leuven, Belgium



machines on top of the same physical machine and the isolation of the code
managing the virtual machines, called the hypervisor, from the virtualized op-
erating systems. This makes the hypervisor and separate virtual machines ideal
locations for security measures. A strong isolation between the layer where
a security mechanism resides and the layer which it protects allows the secu-
rity mechanism to continue to operate correctly even in the presence of an at-
tack against the protected layer. A number of virtualization-utilizing security
mechanisms have been proposed, ranging all the way from rootkit detectors
to anti-virus products (Chiueh et al., 2009; Gadaleta et al., 2011, 2009; Qub,
n.d.). Unfortunately virtualization-utilizing security measures are usually af-
fected by consistent overhead since they typically require interactions between
the hypervisor and the virtualized operating system that would not be present in
traditional environments.

In this paper we discuss two very active research tracks. First, one track
focuses on the application of virtualization techniques to increase the security
of the overall system against malicious software. As a use case we describe
Hello Rootkitty, an in-hypervisor invariance-enforcing framework used to detect
kernel-level rootkits. While Hello Rootkitty significantly elevates security of
the overall system without requiring any hardware or software modification, it
is not able to guarantee isolation of sensitive information against a determined
attacker.

Second, we discuss recent research results of another research track to pro-
vide formally provable security for small, specially tailored software modules.
These strong security guarantees come at a significant cost of partitioning ap-
plications in security sensitive and insensitive parts. These results build on the
technology of the Trusted Platform Module (TPM), a low-budget chip that is
currently shipping with newer computers that provides a limited number of se-
curity features in hardware.

The rest of the paper is structured as follows. Section II. discusses how
virtualization can be used to rethink security from the ground-up and use it
to develop strong defenses for modern computing. Section A. explores Hello
Rootkitty and shows how a hypervisor can be used as an invariance enforcing
framework in order to identify malicious and unexpected modifications in a ker-
nel’s data structures. Section B. presents the technology of TPMs and discusses
how this hardware chip can be employed to offer provable security, followed by
our conclusions in Section III..

II. Rethinking security
In order to take advantage of cloud computing in a corporate environment,

a strong isolation between workloads of different parties is required. Modern
operating systems, such as Microsoft Windows Server 2008, are not able to



provide sufficient isolation between different applications, or even between ap-
plications and the operating system itself. According to the National Institute
of Standards and Technology (NIST), that keeps track of all reported vulnera-
bilities of commercial available software packets, there were 128 new vulner-
abilities found in Windows Server 2008 in 2010 alone (National Vulnerability
Database (NVD) CVE Statistics, 2011). For 2011, this figure was already sur-
passed at the time of writing. The size of the kernel, ranging into millions lines
of code, make it infeasible to make it reliably secure. Subtle bugs(One, 1996)
can be exploited by an attacker to gain kernel-level access. As this is the most
privileged level, sensitive information stored by another party’s applications can
now be easily accessed.

Virtualization techniques, allow us to create another, even more privileged,
layer. Using this additional layer, research has focused on two distinct ap-
proaches. First, the layer can be used to offer stronger protection of the op-
erating system running on top of it without any need to modify any source code
or binary. Second, security measures can be implemented in this layer to pro-
tect the execution and isolation of code even in the presence of malware. While
the latter approach is able to offer stronger security guarantees, it requires a
significant modification of source code.

A. Hello Rootkitty: an invariance-enforcing framework
Rootkits are pieces of malicious software deployed on a compromised operat-

ing system with the chief purpose of concealing the presence of other malicious
applications (such as a keylogger, or a backdoor) from the users and admin-
istrators of that system. The two most common rootkit classes are user-mode
and kernel-mode and essentially signify the privilege level where the rootkit
resides. User-mode rootkits have a relatively limited impact on the system be-
cause they compromise a single application at a time and can be easily detected
and removed by security mechanisms residing either in the userspace or the
kernel-space of the operating system. Kernel-mode rootkits however, are much
more insidious, with a higher impact on the system and harder to detect and
remove.

A countermeasure deployed within the same layer of the system that it pro-
tects might be circumvented and is susceptible to attacks. No isolation can be
guaranteed if the countermeasure that protects and the kernel that is to be pro-
tected, are both part of the attack surface. Hello Rootkitty takes advantage of
isolation provided by virtualization in order to protect a target kernel and mit-
igate the problem of rootkits. We assume that a rootkit can be introduced in
a system through a Loadable Kernel Module (LKM) 1, by overwriting mem-

1LKMs are regularly used to install new hardware or extend the kernel with new features. Un-
fortunately, an inexperienced user can easily install a malicious LKM which masks itself as a benign



ory directly via kernel-exposed interfaces, or by exploiting a vulnerability in
the kernel that allows execution of arbitrary code. A common characteristic of
most rootkits is that they overwrite locations in memory in order to change the
control-flow inside the kernel. The majority of these locations have values that
do not change during normal execution. Thus, any sign of variance can be used
to detect the presence of rootkits. We name these target memory areas as invari-
ant “critical kernel objects” because compromising such locations is essential
to change the control-flow of the kernel and execute injected code.

The literature provides methods to detect invariant critical kernel objects as
described in Baliga et al. (2010); Dolan-Gavitt et al. (2009); Carbone et al.
(2009); Wang et al. (2009). These methods differ depending on the type of
kernel object. We identify three types of objects:

1. Static kernel objects at addresses hard-coded and not dependent on kernel
compilation

2. Static kernel objects whose addresses depend on kernel compilation

3. Dynamic kernel objects allocated on the kernel heap via kernel-specific
memory allocation functions

Once the locations of invariant kernel objects have been collected, Hello
Rootkitty can check their integrity regardless of their type. The minimal in-
formation required to enable protection without dealing with false positives is
the address of the object within guest memory and its size in bytes.

Part of Hello Rootkitty is a trusted module which operates in the guest oper-
ating system at boot time and provides such information to the hypervisor. We
consider boot time our root of trust. This is a realistic assumption especially in
the case of production servers, such as mail and web servers, in which the envi-
ronment does not change after their installation. After the first boot, the system
is considered to operate in an untrusted environment and integrity checking will
be enforced by the hypervisor.

A schema of Hello Rootkitty is provided in Figure 1. Given the list of in-
variant kernel objects, the trusted module sends this data to the hypervisor via
a hypercall2. The hypervisor will checksum the contents at the provided ad-
dresses, store the computed hashes to a private memory area, not accessible by
the guest, and will force the trusted module to unload. After this point, an at-
tacker can no longer tamper with the countermeasure: the trusted module is not
part of the attack surface and isolation between the guest and the hypervisor is
guaranteed by virtualization-enabled hardware.

application.
2Virtual machines communicate to the underlying hypervisor via hypercalls, the equivalent of

system calls used by regular processes to communicate with the underlying kernel.



hypervisor

guest kernel
trusted 
module

(1)

(2)

(3)

shared memory

private memory
(4)

(5)

Figure 1: High level view of trusted module-hypervisor interaction in Hello
Rootkitty framework

Integrity checking is needed to detect if any of the protected objects has been
compromised. In order to detect such changes, the hypervisor needs to access
the contents within the guest, compute their hash and finally compare it against
the hash stored in its private memory area.

Hello Rootkitty executes checking by taking into account the regular interac-
tion of the hypervisor and the guest running on top. In a virtualized environment
the guest runs on a logical processor in a privilege level lower than the virtual-
ized machine, called VMX non-root mode. In this mode certain instructions
or events triggered by the guest kernel will cause a VMExit and control is
given to the hypervisor. The hypervisor will handle the exception and return to
the guest upon termination. We found that writing to control registers3 is the
most convenient event to check the integrity of kernel objects. This event is
strategic because with virtual addressing enabled, Control Register 3 (CR3) be-
comes the page directory base register. On Intel architecture switching between
two running processes will change CR3. This gives direct information about
the current guest system load and allows to implement a countermeasure that
scales accordingly.

When the hypervisor detects that the signature of a protected object does not
match the one computed the first time, the system will report an ongoing attack.
Hello Rootkitty is also able to repair the compromised object, if a copy of it has

3MOV CR* for Intel x86 Architecture



been provided by the trusted module.
Executing integrity checking outside of the target operating system can have

consistent cost that affects performance overhead and limit the deployment in
production systems. Moreover, the number of critical kernel objects to be pro-
tected is usually high and checking the integrity of the entire list could make
the system unusable. Thus, integrity checking of a large list of objects is spread
over a certain number of events trapped by the hypervisor. This problem relax-
ation considerably improves the performance overhead, although it comes at a
cost in terms of security and detection time. However, the detection ability of
this countermeasure remains strong also in a realistic scenario.

While performance benchmarks show negligible overhead and the memory
footprint is proportional to the number of protected objects, hello Rootkitty has
some limitations. Since it depends on invariance inference engines to provide
an accurate list of invariant critical kernel objects, hello Rootkitty will be unable
to detect attacks that occur in the non-reported ones. Moreover, this framework
will not enable protection of objects whose values can legitimately change dur-
ing regular usage. However, protecting a consistent amount of invariant kernel
objects will dramatically reduce the attack surface and make the overall system
more secure against rootkits.

B. Offering provable secure isolation

While Hello Rootkitty significantly elevates the security of the overall system,
it is not able to guarantee complete isolation of applications. Malware could
still successfully exploit subtle bugs in the kernel by trying to restore invariants
before they are checked or avoiding breaking invariants altogether. For at least a
certain period of time, the malware may be able to access sensitive information
of applications running on behalf of other parties.

An alternative research track attempts to protect sensitive information even
in the presence of kernel-level malware. Security measures have been devel-
oped(Azab et al., 2011; Garfinkel et al., 2003; McCune et al., 2008, 2010; Sin-
garavelu et al., 2006; Strackx et al., 2010) to offer such strong security guar-
antees by splitting applications in a security sensitive and a security insensitive
part. The former part is executed in complete isolation from the rest of the sys-
tem. This minimizes the size of the trusted computing base (TCB), the sum of
all software that is relied upon to isolate sensitive information and calculate the
correct result, up-to a point that it becomes feasible to formally verify(Jacobs
and Piessens, 2008) the correctness of code. This proves with mathematical cer-
tainty that sensitive information will never leak to another party. While these
security measures are able to provide very strong security guarantees, they are
no longer binary-compatible with legacy applications. A significant effort is
required to partition these applications in an security sensitive and insensitive



part. Moreover, it does not provide any availability guarantees. While malware
is unable to access or modify sensitive information, it still can, for example,
cause the system to freeze, preventing all parties to execute any application.

1. Root of trust

Accepting the presence of kernel-level malware causes significant problems
to establish a root of trust. Malware may already have infected the system
before the security measure is applied. Hence, the malware could influence the
security measure’s behavior or disable it altogether. For example, the kernel im-
age stored on the hard drive, could have been modified to include the malicious
code. To mitigate this problem, a low-cost security chip, called the Trusted
Platform Module (TPM)(Trusted Computing Group, 2004) has been developed
and is already shipped with most modern computers. Equipped with a slow
but cheap processor and its own memory, it can be used to execute a fixed set
of security-related tasks. To protect the chip itself from software attacks, it is
shipped with all required software that under no circumstance can be modified.

The TPM chip is designed for a few specific tasks. First, it is able to record
all software that is loaded on the system. Starting at power up, a measurement
of the software is calculated and stored on the chip. Every time a new pro-
cess is loaded, this measurement is extended with a measurement of the loaded
software including the used configuration files. This is called a Static Root of
Trust Measurement (SRTM). Similarly, a new measurement can be started after
the system has already booted, called a Dynamic Root of Trust Measurement
(DRTM). Second, the TPM chip is able to store a very limited amount of data,
called sealed storage. On storage, the data is supplied together with a mea-
surement. Only when software with this specific measurement is loaded, can
the data be retrieved again. Finally, the chip is able to attest to a third party
that a specific version of software has executed and outputted the specified re-
sults. Using cryptographic functions, it can prevent malware from making false
claims such as specifying a different output.

Using a combination of the features directly provided by the TPM chip,
strong security guarantees can be provided. Flicker(McCune et al., 2008), takes
this approach. Applications are divided into security sensitive modules. Upon
invocation, a new dynamic root of trust measurement is started, measuring the
loaded module. This will also place the machine in an isolated state. During
that time, only the module itself has control over the machine. Malware, possi-
bly already present on the system, will not be executed. Hence, it is unable to
access any sensitive information used by the module. After the module finished
its execution, it will clear all sensitive information from memory and resume
normal operation of the system. When information needs to be stored for other
invocations of the same or other modules, it uses the sealed storage feature of



the TPM chip.
While malware is not able to modify the binary image of the module, the

module must still be trusted. Subtle bugs in the module itself, may be exploited
by an attacker by providing unexpected parameters. As a result, sensitive in-
formation may not be completely overwritten after the module finished its ex-
ecution or an incorrect result may be provided. Hence, there is still a need
to formally verify that modules behave correctly (Jacobs and Piessens, 2008).
Given the very limited code size, contrary to entire monolithic kernels such as
Windows and Linux, this approach is feasible.

While offering strong security guarantees, the Flicker security measure still
has significant drawbacks. First, isolating security-sensitive parts of an appli-
cation in modules can be difficult. All accesses to sensitive information must
be encapsulated in the module in such a way that the result does not reveal
any information unknown to an attacker. This could be achieved by, for exam-
ple, encrypting the provided result. Another difficulty is that security-sensitive
functionality provided by the operating system can no longer be used by the
module. Second, to reduce the cost of the TPM chip, it is equipped with a low-
budget processor that is much slower than the main processor of the system. As
a result, executing a module incurs a significant overhead. Moreover, to iso-
late the module, other code is prevented from being executed and the user can
experience a momentarily freeze of the system.

2. Increasing flexibility

Recent security measures(McCune et al., 2010; Sahita R, 2009) are able to
significantly reduce Flicker’s drawbacks while offering the same strong security
guarantees. Using virtualization techniques, an additional protection layer can
be added. This hypervisor layer is even more privileged than kernel layer and
can be used to protect against kernel-level malware. As usual, formal verifica-
tion is required to avoid malware infecting this most privileged level.

TrustVisor is an example of a security architecture that uses virtualization
techniques to offer strong isolation of code and data of sensitive parts of an
application. When the system is booted, a hypervisor is installed. This code
executing at the highest privilege level, has two purposes. First, it is responsible
to maintain binary compatibility with legacy code. Given the number and di-
versity of operating systems and legacy applications, any security measure that
requires even minor changes to legacy software are infeasible in practice. Only
applications that require use of the newly offered security guarantees should
require minimal modification.

Second, the hypervisor must protect memory regions used by itself or pro-
tected modules. To be able to guarantee isolation of modules, TrustVisor must
prevent read and write access from malware to these memory regions from the



legacy operating system or applications. Similarly, protected modules that are
possibly specially crafted by an attacker must not be able access other protected
modules or the implementation of the security measure itself.

Using these properties, TrustVisor implements and protects software-based
TPM’s, called µTPMs, to significantly increase performance. When the system
is booted, the hardware TPM chip measures all loaded software. At the first
execution of the security measure, a long term secret is created for the µTPMs
and sealed by the TPM. For subsequent boots, only when the security measure
is loaded correctly, access to the long-term secrets is granted. The µTPMs use
this long-term secret to safely provide secure storage and attestation functional-
ity without accessing the slow hardware TPM. When a security-sensitive part of
an application request TPM functionality, a µTPM is accessed instead. This re-
duces the overhead of accessing the hardware TPM chip to the cost of crossing
the kernel-hypervisor border. Since µTPMs are executed on the main proces-
sor which is significantly more performant than the low-cost hardware TPM,
performance evaluation of TrustVisor shows a significant speedup compared to
Flicker.

III. Conclusion
Recent years corporations have been looking at cloud computing as a conve-

nient model to outsource their IT infrastructure. The key technology to enable
this is virtualization. It allows the execution of several virtualized machines
on the same physical hardware decreasing the cost of maintenance, power con-
sumption and required infrastructure. Virtualization, when supported by hard-
ware, also comes with important features that can be used to implement strong
security measures such as isolation and a low performance overhead.

In this paper we described two distinct active security research tracks. First,
as a use case, we presented Hello Rootkitty, a lightweight security measure that
mitigates the problem of kernel level rootkits. Upon detection of malware Hello
Rootkitty alerts the administrator of the virtual machine and, in some cases, pro-
ceeds to repair the compromised kernel. This security measure has been imple-
mented within a hypervisor. Using virtualization techniques, it doesn’t require
any modification of the target kernel nor of any legacy user application. More-
over performance overhead is low enough to be applicable to a large spectrum
of systems. Although it significantly elevates security, it can’t guarantee full
isolation of applications and can leave sensitive information unprotected.

Secondly, we described recent results of another active research track that fo-
cuses on provable protection of sensitive information. The core idea of security
measures in this research field, is to partition target applications into a security
sensitive and an insensitive part. This is achieved by modifying the target ap-
plication according to a detailed application specific functional analysis. For



most use cases a significant effort is required. Moreover to achieve complete
isolation from malware, a root of trust needs to be established by supported
hardware.

Most countermeasures originating from these two research tracks are comple-
mentary. Strong isolation of sensitive information and availability guarantees
can be provided, even when multiple, possibly malicious, parties are executing
on the same platform, as is the case of cloud computing.

Acknowledgements:
This research is partially funded by the Interuniversity Attraction Poles Pro-

gramme Belgian State, Belgian Science Policy, IBBT, the Research Fund KU Leu-
ven, the Flemish agency for Innovation by Science and Technology (IWT) and
EU FP7 project NESSoS.

References:

ALEPH ONE (1996), ‘Smashing the stack for fun and profit’, Phrack magazine
7(49).
URL: http://www.phrack.com/issues.html?issue=49&id=14

ARATI BALIGA AND VINOD GANAPATHY AND LIVIU IFTODE (2010),
‘Detecting kernel-level rootkits using data structure invariants’.

AZAB, A.M. AND NING, P. AND ZHANG, X. (2011), Sice: a hardware-
level strongly isolated computing environment for x86 multi-core platforms, in
‘Proceedings of the 18th ACM conference on Computer and communications
security’, ACM, pp. 375–388.
URL: http://www4.ncsu.edu/∼amazab/SICE-CCS11.pdf

BARR, KEN AND BUNGALE, PRASHANTH AND DEASY, STEPHEN
AND GYURIS, VIKTOR AND HUNG, PERRY AND NEWELL, CRAIG
AND TUCH, HARVEY AND ZOPPIS, BRUNO (2010), The vmware mobile
virtualization platform: is that a hypervisor in your pocket?, Vol. 44, ACM,
New York, NY, USA, pp. 124–135.
URL: http://doi.acm.org/10.1145/1899928.1899945

B. JACOBS AND F. PIESSENS (2008), ‘The VeriFast program verifier’, status:
published .
URL: http://people.cs.kuleuven.be/∼bart.jacobs/verifast/verifast.pdf

CHIUEH, T. AND CONOVER, M. AND LU,M. AND MONTAGUE, B.
(2009), Stealthy deployment and execution of in-guest kernel agents, in ‘Pro-
ceedings of the Black Hat USA Security Conference’.



DOLAN-GAVITT, BRENDAN AND SRIVASTAVA, ABHINAV AND
TRAYNOR, PATRICK AND GIFFIN, JONATHON (2009), Robust signatures
for kernel data structures, in ‘Proceedings of CCS ’09’.

GADALETA, FRANCESCO AND NIKIFORAKIS, NICK AND YOUNAN,
YVES AND JOOSEN, WOUTER (2011), Hello rootKitty: A lightweight
invariance-enforcing framework., in X. Lai, J. Zhou and H. Li, eds, ‘ISC’, Vol.
7001 of Lecture Notes in Computer Science, Springer, pp. 213–228.

GADALETA, FRANCESCO AND YOUNAN, YVES AND JACOBS, BART
AND JOOSEN, WOUTER AND DE NEVE, ERIK AND BEOSIER, NILS
(2009), Instruction-level countermeasures against stack-based buffer overflow
attacks, in ‘Proceedings of the 1st EuroSys Workshop on Virtualization Tech-
nology for Dependable Systems’, VDTS ’09, ACM, New York, NY, USA,
pp. 7–12.
URL: http://doi.acm.org/10.1145/1518684.1518686

GARFINKEL, T. AND PFAFF, B. AND CHOW, J. AND ROSENBLUM, M.
AND BONEH, D. (2003), ‘Terra: A virtual machine-based platform for trusted
computing’, ACM SIGOPS Operating Systems Review 37(5), 193–206.
URL: http://www.ittc.ku.edu/∼kulkarni/teaching/archieve/
EECS800-Spring-2008/terra.pdf

JONATHAN M. MCCUNE AND BRYAN PARNO AND ADRIAN PERRIG
AND MICHAEL K. REITER AND HIROSHI ISOZAKI (2008), Flicker: An
execution infrastructure for TCB minimization, in ‘Proceedings of the ACM
European Conference in Computer Systems (EuroSys)’, ACM, pp. 315–328.
URL: http://www.ece.cmu.edu/∼jmmccune/papers/mccune parno perrig
reiter isozaki eurosys08.pdf

JONATHAN M. MCCUNE AND YANLIN LI AND NING QU AND ZONG-
WEI ZHOU AND ANUPAM DATTA AND VIRGIL GLIGOR AND ADRIAN
PERRIG (2010), TrustVisor: Efficient TCB reduction and attestation, in ‘Pro-
ceedings of the IEEE Symposium on Security and Privacy’.
URL: http://www.ece.cmu.edu/∼jmmccune/papers/MLQZDGP2010.pdf

LENIN SINGARAVELU AND CALTON PU AND HERMANN HÄRTIG
AND CHRISTIAN HELMUTH (2006), Reducing tcb complexity for security-
sensitive applications: three case studies, in ‘EuroSys ’06: Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems
2006’, ACM, New York, NY, USA, pp. 161–174.
URL: http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/
p161-singaravelu.pdf



MARTIM CARBONE AND WENKE LEE AND WEIDONG CUI AND
MARCUS PEINADO AND LONG LU AND XUXIAN JIANG (2009), Map-
ping kernel objects to enable systematic integrity checking, in ‘In ACM Conf.
on Computer and Communications Security’.

National Vulnerability Database (NVD) CVE Statistics (2011).
URL: http://web.nvd.nist.gov/view/vuln/statistics

Qub (n.d.), ‘QubesOS: Architecture Specification’, http://qubes-os.org/files/
doc/arch-spec-0.3.pdf.

SAHITA R, WARRIER U., DEWAN P. (2009), ‘Protecting Critical Applica-
tions on Mobile Platforms’, Intel Technology Journal 13, 16–35.
URL: http://www.cs.unh.edu/∼it666/reading list/Hardware/intel techjounral
security.pdf

STRACKX, R. AND PIESSENS, F. AND PRENEEL, B. (2010), ‘Efficient Iso-
lation of Trusted Subsystems in Embedded Systems’, Security and Privacy in
Communication Networks pp. 344–361.
URL: https://lirias.kuleuven.be/bitstream/123456789/277417/1/paper.pdf

TRUSTED COMPUTING GROUP (2004), ‘Design Principles Specification
Version 1.2’, TCG Specification 5.
URL: http://www.trustedcomputinggroup.org/resources/tpm main
specification

WANG, ZHI AND JIANG, XUXIAN AND CUI, WEIDONG AND NING,
PENG (2009), Countering kernel rootkits with lightweight hook protection, in
‘Proceedings of CCS ’09’.


