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Contribution: Lesion Heterogeneity Change for Predicting Response

Early therapy response prediction, employing biomarkers such as
[18F]-fluorodeoxyglucose (FDG) followed with positron emission to-
mography (PET) imaging the tumor metabolic activity, turned out to
be the de facto mode of evaluation in longitudinal studies. Tradition-
ally, the first order intensity based feature estimates extracted from

the longitudinal scans are used for the response evaluations. Nonethe-
less, lesion heterogeneity computed from the higher order textures of
the baseline scan prior treatment has been recently found to be cor-
relating well with the final outcome [1]. The aim of this study is to
establish the significance of tumor texture in follow up evaluations.

Clinical Lesions: [18F]-FDG PET/CT Scans

15 chemo-naive first-line patients suffering from metastatic colorec-
tal cancer (mCRC) and treated with cetuximab were selected for
the study. Baseline [18F]-FDG PET scans were acquired prior to
treatment and the follow up scanned at 1 week post treatment was

investigated for early response. 1-5 lesions were expert identified per
patient and analyzed. Sagittal, coronal and axial orthogonal slices
of the PET (left) and blended PET/CT (right) of a subject in the
cohort is displayed below. Expert marking is also visible in the slices.
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A block overview of various modules investigated in this longitudinal
study is schematically represented above.
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Illustration of the FLAB [2] algorithm, on the process of extract-
ing a typical PET lesion, with initialization followed by step-by-step
iterations demonstrated in a clock-wise manner.

Covariates / Feature Estimates
⇒ Traditional feature (TrF) estimates employed in this longitudi-

nal study included 4 SUV-based, 1 volume-based and their 2
combinations constituting 7 TrF covariates.

⇒ Textural features (TxF) employed in this longitudinal study in-
cluded 7 from ALCC, 11 from ALRL, 11 from ALSZ, 5 from
ALDC and 19 from ALHS constituting 53 TxF covariates.

⇒ Activity level co-occurrence matrix [3] entries ALCCij express
the frequency of co-occurrences of (i, j) activity level pairs.

⇒ Activity level run length matrix [4] elements ALRLij represent
the frequency of ith activity level’s j runs in 13 directions.

⇒ Activity level size zone matrix [5] entries ALSZij is updated when
ith activity level has a zone with j voxels.

⇒ Activity level difference matrix [6] ALDC consists of mean devi-
ation of activity level relative to the neighbourhood.

⇒ Activity level histogram descriptive statistics ALHS were also
computed and investigated.

Data Analysis
⇒ To compute a marker per subject, response indices (RI) com-

puted for each lesion feature were accumulated either taking
the maximum relative change (max{δFS(%)}lesions) or the rel-
ative change cumulated (δ

∑
{FS}lesions(%)) over all lesions.

⇒ The baseline dynamic range of TrF estimates were investigated.

⇒ A Cox proportional hazards regression model was fit with RIs
and analyzed. The regression coefficients were projected back
to the feature set so as to compute the ‘marker’.

⇒ The time dependent receiver operating characteristics (ROC) [7]
were determined relating the continuous ‘marker’ with the con-
tinuous ‘outcome’. The time to progression (TTP) was used
as the ‘outcome’ information in our studies.

⇒ For more realistic evaluation, a leave one-out cross validation
(LOOCV) was performed to investigate the model fitting.

⇒ In LOOCV, the regressor was fit with features from all subjects
except one. The regressor was then tested on the remaining
subject. This procedure was repeated for each subject to find
the respective marker value.

⇒ The concordance measure (Cτ ) [8] was determined by weighted
integration of the individual area under curve (AUC).

⇒ AUC at TTP > 4 months (AUCTTP4) was also computed.

⇒ For multivariate feature selection (MVFS), univariate analysis
was performed using a Cox model and significant features giving
p < 0.25 were selected. Selected features (FS) are then used for
creating the multivariate Cox model.

⇒ The current clinical standard EORTC criteria [9] and PER-
CIST 1.0 [10] (using SUV - body weight) were studied.

⇒ With MVFS, 2 predictive models, pMVFS-max and pMVFS-
cum, were presented.

⇒ The statistical difference of survival curves was analyzed using
logrank test.

PET derived Covariates: Textural Matrices
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Survival Analysis: Kaplan-Meier Plot
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R - median TTP = 9

NR - median TTP = 4

HR = 0.71, p = 0.743

Responder (EORTC)
Non−responder (EORTC)
Censored

EORTC criteria [9]
max{δSUVmax(%)}lesions

Cτ = 0.6044, AUCTTP4 = 0.7045
LOOCV − Cτ = 0.5659
R⇒ Marker < −25%
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R - median TTP = 9

NR - median TTP = 4

HR = 0.71, p = 0.743

Responder (PERCIST)
Non−responder (PERCIST)
Censored

PERCIST 1.0 [10]
max{δSUVpeak(%)}lesions

Cτ = 0.6657, AUCTTP4 = 0.7955
LOOCV − Cτ = 0.6509
R⇒ Marker < −30%
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R - median TTP = 14

NR - median TTP = 4

HR = 0.32, p = 0.04972

Responder (pMVFS−max)
Non−Responder (pMVFS−max)
Censored

pMVFS-max
Cox CoeffFS ×max{δFS(%)}lesions
Cτ = 0.8313, AUCTTP4 = 0.9545

LOOCV − Cτ = 0.8047
R⇒ Marker < −2.1701%
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R - median TTP = 10

NR - median TTP = 3.5

HR = 0.26, p = 0.0006411

Responder (pMVFS−cum)
Non−Responder (pMVFS−cum)
Censored

pMVFS-cum
Cox CoeffFS × δ

∑
{FS}lesions(%)

Cτ = 0.9615, AUCTTP4 = 1.000
LOOCV − Cτ = 0.9644
R⇒ Marker < 8.0057%

Multivariate Feature Selection (MVFS)
2 MVFS predictive models are presented below:

Selected Univariate Multivariate Hazard Multivariate
Features p-value Cox Coeff. Ratio p-value

pMVFS-max ⇒ Cox CoeffFS ×max{δFS(%)}lesions
SUVpeak 0.1529 0.0412 1.0421 0.1495
ALCCcon 0.1711 -0.1271 0.8807 0.2817
ALCCepy 0.1992 -0.0391 0.9617 0.4153
ALCCdis 0.1654 0.1843 1.2024 0.1130
ALRLsre 0.2473 -0.6104 0.5431 0.0328
ALRLrp 0.2424 0.5219 1.6852 0.0315
ALDCcon 0.1985 -0.002 0.9998 0.6759

pMVFS-cum ⇒ Cox CoeffFS × δ
∑
{FS}lesions(%)

ALCCsam 0.2283 -0.0919 0.9122 0.0387
ALCCidm 0.1606 -3.0988 0.0451 0.0649
ALCChom 0.1645 4.2081 67.2291 0.0500
ALRLlrhae 0.2313 -0.0596 0.9422 0.3385
ALSZsze 0.1557 0.0079 1.0080 0.6447
ALSZszhae 0.2246 -0.0236 0.9767 0.3404
ALDCcoa 0.1861 -0.0758 0.9270 0.0313
ALDCcon 0.0885 0.1044 1.1101 0.0466
ALDCcpx 0.1159 -0.1928 0.8247 0.0579
ALDCtxs 0.1748 0.0367 1.0374 0.1134
ALHSaadmod 0.1125 0.0503 1.0515 0.0585

Baseline Dynamic Range
The baseline dynamic range of TrF are listed below:

TrF estimates Minimum Maximum Median SD†

SUVmax (g/mL) 2.40 12.28 6.33 2.34
SUVpeak (g/mL) 1.64 10.52 4.86 2.01
SUVmean (g/mL) 1.61 8.39 4.05 1.52
TLV (mL) 0.48 1,182.42 5.71 155.91
TLA (g) 2.11 6,620.88 29.58 878.20
TLE (g2/mL) 3.55 38,963.30 152.79 5,138.32

†SD: Standard Deviation

Results
⇒ Both EORTC criteria & PERCIST 1.0 resulted in identical

subject dichotomization.

⇒ PERCIST 1.0 gave better Cτ , AUCTTP4 & LOOCV − Cτ with
respect to EORTC criteria.

⇒ For both EORTC criteria & PERCIST 1.0, hazard ratio (HR)
of 0.71 means responders have a 29% less chance for progression
(TTP) compared to non-responders.

⇒ However, both EORTC criteria & PERCIST 1.0 based di-
chotomization are less statistically significant (p=0.743).

⇒ In pMVFS-max, a positive Cox regression coefficient indicated
that, an increase in max δSUVpeak(%) for a subject will result
in an increase in hazard for progression.

⇒ In pMVFS-max, ALRLsre and ALRLsp were found to be statis-
tically significant in the multivariate Cox model.

⇒ In pMVFS-cum, ALCCidm obtained higher statistically signifi-
cance and lower HR (95.5% less chance for progression). Hence
a subject with a high δ

∑
ALCCidm% will have less chance for

progression (or high chance of response to treatment).

⇒ In pMVFS-cum, ALCChom obtained both high HR and statisti-
cally significance. Hence a subject with a high δ

∑
ALCChom%

will have high chance for progression.

⇒ Both pMVFS-max (p=0.0497) and pMVFS-cum (p=0.0006)
provided statistically significant cohort dichotomization.

⇒ In pMVFS-max, responders were having 68% (HR=0.32) less
chance for progression compared to non responders.

⇒ In pMVFS-cum, responders were having 74% (HR=0.26) less
chance for progression compared to non responders.

⇒ Both pMVFS-max and pMVFS-cum provided better Cτ ,
AUCTTP4 & LOOCV − Cτ estimates compared to EORTC
criteria and PERCIST 1.0.

Conclusion
The results with the current data denoted an added value in using
textural information for early therapy response evaluation. Moreover,
therapy response could be predicted as early as 1 week post treatment
using TrF & TxF feature estimates.
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