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Abstract

Geographical information systems are commonly used for a variety of pur-
poses. Many of them make use of a large database of geographical data,
the correctness of which strongly influences the reliability of the system. In
this paper, we present an approach to quality maintenance that is based on
automatic discovery of non-perfect regularities in the data. The underlying
idea is that exceptions to these regularities (‘outliers’) are considered prob-
able errors in the data, to be investigated by a human expert. A case study
shows how the tool can be used for extracting valuable knowledge about out-
liers in real-world geographical data, in an adaptive manner to the evolving
data model supporting it. While the tool aims specifically at geographical
information systems, the underlying approach is more broadly applicable for
quality maintenance in data-rich intelligent systems.
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1. Introduction

Outliers in a data set are commonly defined as individuals that are sub-
stantially different from the rest of the data. Such irregularities can indicate
an error in the data, or abnormal behaviour of the underlying system. In
research areas such as machine learning and statistics, a great diversity of
algorithms for outlier detection have been proposed in the last years (Breunig
et al., 2000; Knorr et al., 2000; Aggarwal & Yu, 2001; Caruso & Malerba,
2007). Most of them refer to a statistical deviation of the outlier values from
the rest of the data set. However, a lot of contemporary applications of out-
lier detection such as fraud and network intrusion detection, have a relational
character. The data consist of several interrelated data types, implying that
the concept of outlier detection can be seen in a broader perspective. Besides
the detection of deviating values for a specific variable, it is also possible to
look for deviating structures in the relational data.

In this paper, a case study of relational outlier detection on geographical
data is presented. It concerns learning anomalies in the core database of
the geographic content provider Tele Atlas1. This company possesses a large
amount of geographical road data, collected from different sources. Irreg-
ularities, e.g. a wrong speed restriction, creep in due to human mistakes
or inconsistencies between different sources. Therefore, a quality mainte-
nance system has been set up by the company enabling data engineers to
manually formulate rules to which the data should conform and providing
infrastructure to trace violations against these rules in a brute-force manner.
An example of such a rule is “A road segment adjacent to a primary school
has always a speed restriction of 30”. More information about the problem
context is described by Maervoet et al. (2008). In the present paper, we apply
a relational frequent pattern miner to discover such rules automatically from
the data. Exceptions to these rules will be considered probable erroneous
data, to be presented to a human expert for evaluation.

The paper is structured as follows. Section 2 presents some related work in
the domains of relational outlier detection and spatial data mining. Section 3
thoroughly describes the geographic data quality problem and the relational

1Since 2007, the company is a wholly-owned subsidiary of automotive navigation system
manufacturer TomTom.

2



outlier detection approach to it. The actual case study is presented in more
detail in Section 4. Section 5 reports some regularity rules and corresponding
outliers found by the system. Finally, we indicate some directions for future
work in Section 6 and conclude in Section 7.

2. Related work

2.1. Outlier detection

Given an input data set, an outlier is an instance or a set of instances2

that show(s) exceptional behaviour compared to the rest of the input data
set or to a local context within the input data set. Outlier detection is the
non-trivial process of extracting a set of previously unknown anomalies from
data. It is a form of data mining.

A first dimension categorises outlier detection approaches according to the
type of learning. Lazarevic et al. (2008) distinguish between:

• Supervised outlier detection. Both the outliers and regularities
from the input data set are labelled. In this case, the problem can be
reduced to classification.

• Semi-supervised outlier detection. Some examples of anomalies
and/or regularities from the input data set are given. It can be applied
in interactive learning systems. Zhu et al. (2004) e.g. predict all the
outliers from the input data set based on an outlier sample set indicated
by the end user.

• Unsupervised outlier detection. This type of outlier detection as-
sumes unlabeled input data. It involves fitting one or more models over
the input data and identifying the model deviations as outliers.

Table 1 shows a classification of unsupervised outlier detection systems.
These systems can be classified into statistical and relation outlier detec-
tion and into detection by direct and indirect description.

Statistical outlier detection. This type of system looks for outliers with
a statistical deviation from the rest of the data, assuming one global model

2In the latter case, individual set members are not anomalous.
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Indirect description Direct description
Statistical outliers Clustering (distance or den-

sity based)
Probability distribution (his-
togram, Gaussian)

Nearest neighbour (dis-
tance or density based)

Relational outliers Frequent pattern discovery Anomaly pattern discov-
ery

Table 1: Unsupervised outlier detection.

that distinguishes the outliers from the regular data. A common technique
applies clustering: the data is clustered, and the elements that do not belong
to any clusters are outliers. Other methods use density (Breunig et al., 2000)
and/or proximity analysis (Knorr et al., 2000; Ramaswamy et al., 2000). Ag-
garwal & Yu (2001) introduce evolutionary algorithms for identifying outliers
in data with a high number of dimensions. Frank et al. (2007) mine for spa-
tial regional outliers. These are neighbourhoods of anomalous objects that
maximise the non-spatial attribute value deviation between the object and
its neighbouring objects.

Relational outlier detection. Many contemporary outlier applications
are relational. In the context of network security, for example, there is a
high interest in so-called anomaly detection. This is the detection of deviant
behaviour in network traffic that possibly indicates an attack. Caruso &
Malerba (2007) propose an adaptive model for network traffic. If a new net-
work connection deviates substantially from the model, the system examines
whether it concerns an outlier, or a legal connection, whereupon the model
is adapted.
In relational outlier detection, the input data is composed of several interre-
lated data types and so the outliers have a relational character too. Often, it
assumes multiple models that explain why an outlier differs from the rest of
the data. In (Angiulli et al., 2007), a theory of normal behaviour is modelled
using a formal knowledge representation language (first-order logic). Both
outliers and so-called witness sets are searched for. Outliers are entities that
are inconsistent with the given background knowledge. Corresponding wit-
ness sets describe the causes behind the outliers in the data.
Relational outlier detection is a form of relational data mining, a research
area that has gained a lot of interest during the last years. A large amount
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of the research is carried out in the context of inductive logic programming
(ILP) (Lavrač & Džeroski, 1994). The data, as well as the discovered pat-
terns and the background knowledge, are represented as logic programs. The
major part of research on ILP (and on relational data mining in general) has
been carried out on supervised learning. Less research has been performed
on unsupervised learning, in which a set of hypotheses that describe the
whole set of facts as accurately as possible are learnt. Relational cluster-
ing (Ramon, 2002), finding frequent patterns in first-order logic (Dehaspe &
Toivonen, 1999) and clausal discovery (De Raedt & Dehaspe, 1997) belong
to the latter category.

Discovery by direct description. This means that patterns describing
exceptional situations are looked up directly. For instance, Laros (2005)
looks for a substring, as short as possible, that appears exactly once in a set
of strings. With regard to relational outliers, several definitions and corre-
sponding algorithms for anomalous pattern discovery can be found: sporadic
rules (Koh & Rountree, 2005; Koh et al., 2008) (rules with low support but
high confidence), minimal infrequent itemsets (Haglin & Manning, 2007) and
unexpected rules (Plantevit et al., 2007) (with a support between two thresh-
olds). Exception rules (Suzuki, 2002) refer to the extension of the premise
of a ‘common sense rule’, refuting the consequence of that rule. Anoma-
lous association rules (Berzal et al., 2004) refer to association rules for which
anomalous itemsets exist that always contradict the rule.

Discovery by indirect description. Instead of looking for patterns that
describe the exceptions directly, the complementary problem can be exam-
ined as well. It involves looking for regularities, followed by the identification
of data that does not comply with those regularities. K-Means clustering of
network traffic data followed by the identification of traffic anomalies (Münz
et al., 2007) is an example of this category. Discovery by indirect description
allowed us to apply state of the art techniques from the domain of frequent
pattern mining.

2.2. Spatial rule mining

Spatial rule mining is a common machine learning approach to spatial
data mining (SDM), which aims at extracting useful or interesting patterns
from spatial databases. Shekhar et al. (2003) indicate that the data input,
statistical foundation, output patterns and computational process are dif-
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ferent for SDM. Zeitouni (2002) identified several generic SDM tasks, and
associated existing methods with these tasks. With regard to rule learning,
we can distinguish 4 types of approaches:

• Characteristic rules. This type of rules describes characteristic ob-
ject and neighbourhood properties of a set of spatial objects in the
database (Ester et al., 1998). It is a form of summarisation.

• Classification rules. This form of supervised classification involves
the discovery of a set of rules (often represented as decision trees) com-
paring the object and neighbourhood properties of a set of spatial ob-
jects of choice, called the target class, to one or more contrasting classes.
For instance, Ceci & Appice (2006) learn geographic impact factors for
several rent prize categories from census data. Frank et al. (2009)
propose a Voronoi-based framework to integrate spatial relationships
in the search process.

• Association rules. Spatial association rule mining is the identifica-
tion of frequently occurring spatial-related patterns in a set of data
items in a spatial database (Han et al., 1997). It can be categorised as
spatial data dependencies mining.

• Trend rules. Basically, trend rules describe patterns of change of one
or more non-spatial attributes of objects or objects in their neighbour-
hood (Ester et al., 1998).

Spatial association rule mining. Koperski & Han (1995) defined spatial
association rules (SAR) as association rules with at least one spatial predi-
cate in the antecedents or consequent. Such a spatial predicate could refer to
topological relationships, orientation and ordering and contain distance infor-
mation. The spatial rule mining algorithm employs refinement in a hierarchy
of topological relations i.e. starting from approximate spatial computation.

Concept hierarchy refinement. Spatial multi-level association rule min-
ing extends the approach above by refinement in a (spatial or attribute)
concept hierarchy. An example of spatial hierarchy is the refinement of a
country into one or more provinces. An example of conceptual hierarchy of
attributes is the refinement of areas into rural and urban areas.
SPADA (Spatial Pattern Discovery Algorithm) is a system for spatial as-
sociation rule mining, in which the rules have a Datalog representation. It
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uses refinement through a concept hierarchy of objects. SPADA is used by
Malerba et al. (2002) and Appice et al. (2003) for analysing socio-economic
issues in census data in order to improve transport planning. Lisi & Malerba
(2004) improved this system by the design of the hybrid language AL-log,
which yields a unified treatment for both relational and structural data fea-
tures.

3. Problem description

3.1. System analysis

The company Tele Atlas collects geographical information from several
sources, such as satellite images and mobile mapping. It provides the geo-
graphical data for companies active in the areas of car navigation systems,
geographical information systems and location-based services. From these
application areas, the company is facing an ever increasing demand for geo-
graphic data quality. It manages a large central database, which is subject
to continuous updates, originating from core data collection and processing
using high quality standards. There are two strategies by which the quality
of the geographic data in the database can be maintained and improved:

• by processing the navigation logs of and explicit update requests by
the end user community

• by making quality domain knowledge explicit and verifying it against
the data.

In line of the latter strategy, Tele Atlas has set up an infrastructure that
allows manually building quality rules and verifying data against these rules.
Passive verification implies a check of each update against a limited set of
rules. Active verification is done by separate processes, checking the rest of
the rules against the whole database. In this paper, we introduce a tool that
automates building quality rules.

This tool is used by data engineers and extracts previously unknown re-
lations that are present in the data. It supports the use cases below:

• First of all, the user selects a data sample and formulates a question
e.g. “How do speed restrictions of a road element (i.e. elementary piece
of any road) relate to adjacent points of interest (POIs)?”
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Figure 1: Identification of regularities and anomalies within the quality maintenance busi-
ness process.

• Within a reasonable amount of time, the user receives direct and com-
plete answers to the question w.r.t. the selected data sample, in the
form of rules, together with their statistical relevance.

• The user is able to trace the violations (outliers) against these rules
and to visualise them.

• Guided by a rule’s outliers, the user decides whether to accept the
rule in the quality maintenance system, by exporting it, or not. Also
very similar rules without violations can be considered for acceptance.
After approval, the rule can be used for active and passive verification,
in order to discover outliers w.r.t. the complete database.

These functionalities clearly require a system for outlier detection by in-
direct description. Figure 1 shows its impact on the quality maintenance
business process. Data sampling is required to cope with the large dimen-
sions of the database. The data engineers should match data samples to
questions. The sample size should be significantly large in order to avoid
overfitting.

3.2. The dynamic data model

Besides the geographical data, the data model has a dynamic nature too.
The data model changes, for example, when the engineers decide to adopt a
new type of POI, or when, entering a new country, the address interpolation
representation by integers does not apply any more. In order to design a
rule miner tool that copes with this dynamic data model, the metamodel
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Figure 2: An excerpt of the metamodel, the data model, and the data (UML class dia-
gram).

is constructed. This is the model of the datamodel, which does not change
over time. It will be used to design a rule language that is independent from
the data model that is currently in use. Figure 2 conceptually shows the
relationship between the metamodel, the data model, and the data.

We explain the most important concepts in the metamodel, their implemen-
tations in the data model, and the data itself:

• Feature type. The company’s geographical data basically consists of
features of a certain type, for example restaurants, water areas, junc-
tions or road elements.

• Simple and complex attribute type. Each feature type is com-
posed of a tree of attributes types, in which the internal nodes are
complex attributes and the leaves are simple attributes, i.e. containing
a value. A road element has, for instance, a functional road class, which
is a value indicating the road importance (highway, secondary road,...)
and a composite official name, of which multiple official names con-
tain the name strings. The most important attribute is the geometry,
which scales down to a point, a polyline, a polygon or a combination of
these. The data model also defines spatial relationships such as overlap
and distance.

• Association type (not in figure). An association type links several
feature types by specific roles, e.g. a forbidden traffic manoeuvre be-
tween two road elements or connectivity between junctions and road
elements.

• Inheritance support (not in figure). Furthermore, the metamodel
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supports association, feature and attribute type inheritance. For ex-
ample, restaurants, junctions and schools inherit from the POI type.
All types inherit the geometry attribute type from the base feature
type.

The rules, generated by the tool, are expressed in terms of the data model and
describe previously unknown relationships in the data. Note that a possible
data model update requires a set of data transformations, which apply to the
already discovered rules as well.

3.3. Rule and outlier type analysis

At this point, we go into more detail about the type of rules that the
tool is expected to extract. We received a set of sample rules in advance,
out of which 3 typical rules are listed in the second column of Table 2. The
company expects their type is very similar to the type of rules the tool might
discover.

Question Example rule Anomaly description
“How do road element
speed restrictions relate to
adjacent POIs?”

“A road element adjacent
to a primary school has al-
ways a speed restriction of
30 km/h”

road elements adjacent to
a school with a speed re-
striction different from 30
km/h

“How do the road ele-
ment’s attributes interre-
late?”

“A road element with a
speed restriction of 120
km/h, has always func-
tional road class 1 (i.e.
high road importance)”

a road element with speed
restriction 120 and func-
tional road class > 1

“How does a roundabout
relate to the attributes of
its associated features?”

“Each roundabout has
at least one connection-
association with a road
element with a traf-
fic flow away from the
roundabout.”

a roundabout without con-
nected road elements with
a traffic flow away from the
roundabout

Table 2: Possible experiment scenarios for the example rule set

According to the definitions by Koperski & Han (1995), this rule set contains
both spatial and non-spatial association rules. Table 2 shows a possible
experiment scenario w.r.t. the system analysis functionalities for each of the
example rules. The questions are examples of system inquiries by users that
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definitely result in a concise set of rules, of which the example rule is an
unexpected member. ‘Unexpected’ means that data engineers who do not
know the examples, are not able to predict the rule from the question. The
anomaly descriptions state which kind of outliers, for each of the rules, the
user expects to highlight during visualisation.
The table shows that

• each rule can be mapped to a question aiming at feature and attribute
type relations, given a fixed spatial relation or association type.

• for each rule, the expected anomaly descriptions refer to spatial objects
for which the fixed relation or association type holds, but the rule fails.3

This representation situates the problem as a relational outlier detection
problem and requires the use of relational association rule mining techniques
to look up regularities in a first phase. Moreover, omitting the refinement of
spatial operators during the search process speeds up the search, compared
to spatial rule mining.

3.4. The integration of a relational datamining technique

Hypothesis language requirements. Building an operational tool
that is able to discover patterns in the complete data set, independent from
the data model version in use, requires a uniform representation language in
terms of the metamodel, in which the data and the rules can be expressed.
Besides, the hypothesis language should enable the expression of aggregate
(‘has-a’) relationships between features and attributes.

The algorithm. WARMR (Dehaspe, 1998) is a relational datamining algo-
rithm that induces association rules in datalog representation, which meets
the above language requirements. It uses learning from interpretations (Bloc-
keel et al., 1999), which is typically used for description. This learning setting
assumes that the input data is presented in the form of interpretations. These
are database partitions that represent a set of relational states. A candidate
hypothesis describes certain interpretation properties. It covers an interpre-
tation if and only if the interpretation is a model for the hypothesis. The

3For instance, in example 1, it would not make sense that the outlier detection comes
up with pairs of primary schools and road elements with speed restriction 30 km/h that
are not adjacent.
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algorithm is linear in the number of interpretations.
First, WARMR executes a level-wise discovery of frequent queries that
cover the given set of interpretations. Frequent queries are conjunctions of
literals that fulfil the language bias provided by the user. The language bias
consists of a set of constraints, which determine which frequent queries are
searched for. The support of a frequent query is defined as the number of
interpretations the query covers to the total number of interpretations. Level-
wise discovery involves that, at each level, the frequent queries are specialized
by extending them with each of the allowed literals, until a specified maxi-
mum number of levels (literals) is reached or until the support has decreased
below a specified minimal support. Note that also background knowledge, in
the form of rules, can be taken into account during interpretation coverage
control.
Next, frequent queries are processed into query extensions. A query ex-
tension is a datalog clause of the form h : −b1, b2, ..., bm, generated from the
queries b1, b2, ..., bm and b1, b2, ..., bm, h. The confidence of the query extension
is defined as the support of the latter query to the support of the first. The
support of the first and the latter query are said to be the bodyfrequence and
the support of the query extension. The discovery of outliers to a query
extension is trivial. Outliers are the interpretations that are covered by the
first query but not by the latter.
Clare & King (2003) treat the distribution of levelwise rule discovery algo-
rithms such as WARMR. They describe Farmer, Worker and Merger pro-
cesses to distribute frequent query support counts within equal amounts of
interpretations over multiple machines.
In our case study, we use the WARMR implementation of the ACE Datamin-
ing System (Blockeel et al., 2009). It implements a set of Inductive Logic
Programming (ILP) algorithms, of which the efficiency has been improved
by the query pack mechanism (Blockeel et al., 2002).

4. System design

4.1. Rationale

The system analysis in the previous section states that the user starts
an experiment from a selected data sample, which is typically a geographic
area and a question. The rule type analysis showed that rule mining with
a relational approach, realised by WARMR, can formulate answers to these
questions. This algorithm learns from interpretations. The user’s question
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consists of 3 data selection items. The design choices for each of these items
are motivated below.

• Central feature type. In the quality maintenance system of the
company, a rule starts by definition by a universal quantification for the
features of a specific type, as in “For all features of type x: ...”. Strictly
speaking, the rules produced by WARMR have a relative quantification
over the interpretations, as in “For 99% of the interpretations: ...”.
However, this rule is adopted as a perfect rule (and thus universally
quantified) by the quality maintenance system. We prefer to build
interpretations for features in a geographic area and of one specific
type. As a consequence, WARMR produces rules that conform to the
specifications of the system. Therefore, the user has to select a feature
type.

• Feature inclusion condition. One approach to including spatial
information (e.g. distance) in the rules, would be to define a set of
spatial relations in the background knowledge. This would result in a
large number of spatial calculations (not any information will be pro-
cessed and cached only once) during the knowledge discovery process,
resulting in poor computational performance. A common technique for
performance improvement in spatial data mining is the materialisation
of spatial relationships, described by Shekhar et al. (2003). It involves
that all necessary spatial calculations are executed during preprocess-
ing and that the results are integrated in the input data. Therefore,
we prefer the user to select a spatial relation, e.g. overlap, and this
information is incorporated in the interpretations. This is realised by
the inclusion of features for which the relation holds. The same princi-
ple is applied for associations, not for performance but for uniformity
reasons.

• Attribute types. The data engineer might not be interested in pos-
sible relations for each of the simple and complex attribute types in-
volved. It should thus be possible to restrict the attributes types en-
tered in the interpretations.

These data selection items are shown in Fig. 3.
The next subsection details the design of a rule language that covers the
example rules in Table 2. The following subsections discuss the data prepro-
cessing, mining and postprocessing steps of the rule miner tool in Fig. 3.
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Figure 3: Design of the rule miner prototype.

4.2. Generic rule language

In this section, a rule language is defined in terms of the metamodel, in

order to support data model evolution. In Table 3, we define and illustrate

a set of primitive functions.

The rules that are generated will test for the existence of related features,

certain attributes, or certain attribute values. The rule language consists of

the components defined in Table 4. Feat rel(CF, F ) is a boolean function,

which returns true if the relationship between the features CF and F holds.

Example functions for Feat rel(CF, F ), will be defined in Subsection 4.3.

Let us assume that adjacent50(CF, F ) is true when two features are less

than 50 metres apart. The ground term

feature exists(church53, “Church”, adjacent50, road54)

means that feature church53 of type “Church” is adjacent to feature road54.

The first rule in Table 2 is defined as

foreach feature(A, “Road Element”) :

feature exists(B, “School”, adjacent50, A),

simple att exists(C, “Type”, B, “primary”),

complex att exists(D, “Composite Speed Restriction”, A)

⇒ simple att exists(E, “Speed Restriction”, D, 30)
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Definitions Examples
type(DataElement)
returns the specific data model type of a
feature, an attribute or an association.

type(feat4497) = “Road”
type(attr4498) = “Address”
type(ass4499) = “Forbidden Turn”

value(SimpleAttribute)
returns the assigned value of a simple at-
tribute.

value(attr4498) = “Elm Park”

has(DataElement1, DataElement2)
returns true if the first element contains
the second one. According to the meta-
model, only features and complex at-
tributes can contain other attributes. As-
sociations contain features.

has(feat4497, attr4498) = true
has(ass4499, feat4497) = true

spat dist(Feature1, Feature2)
returns the spatial distance between the
“Geometry” attributes of the 2 features.
Returns 0 if both geometries overlap.

spat dist(feat4496, feat4497) = 20

Table 3: Primitive function definitions

No. Definitions
1 foreach feature(feature CF , type T )

∀ CF : type(CF ) = T
2 feature exists(feature F , type T, boolfunction Feat rel, feature CF)

∃ F : type(F ) = T ∧ Feat rel(CF,F )
3 complex att exists(attribute A, type T, element P)

∃ A : type(A) = T ∧ has(P,A)
4 simple att exists(attribute A, type T, element P, value V )

∃ A, V : type(A) = T ∧ has(P,A) ∧ value(A) = V

Table 4: Rule language components
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given the model in which speed restrictions belong to a composite attribute
and primary is a value for the attribute named “Type” contained by the
“School” feature type.

4.3. Data preprocessing

Interpretation generation. First, the user enters a selection of the geographi-
cal database partitions to be inspected, whereupon these partitions are loaded
from the database. Next, the interpretations are generated from the loaded
data. This generation consists of the following steps (present in Fig. 3):

• The user chooses a central feature type of interest, around which the
interpretations are built. For each instance of this central feature type
in the data, an interpretation is constructed. This step determines the
T parameter in rule language component 1.

Approach Feat rel(CF,F ) Example rule
Inclusion by overlap
adds all features of some types of
choice (in the set ftypeset) that
overlap the central feature.

spat dist(CF,F ) = 0
∧ (type(F ) ∈ ftypeset)

Each “Service
Area” overlaps
at least one
“Service Point”.

Inclusion by offset distance
adds all features of some types of
choice that are situated an offset
distance d apart from the central
feature.

spat dist(CF,F ) < d
∧ (type(F ) ∈ ftypeset)

Rule 1 in Ta-
ble 2.

Inclusion by association type
adds all features that are associ-
ated with the central feature type
for some association types of choice
(in the set atypeset).

∃ A : type(A) ∈ atypeset
∧ has(A,CF ) ∧ has(A,F )

Each “Slip
Road” is as-
sociated with
a “Forbidden
Turn”.

Table 5: Inclusion condition: three approaches

• By formulating inclusion conditions, the user is able to include other
features in the interpretations that are somehow related to the central
feature. This step both constrains the T parameter and defines the
Feat rel function to be included in rule language component 2. Cur-
rently, 3 types of inclusion condition, shown in Table 5, are supported.
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Figure 4: The geographic metamodel and its relation to interpretation construction (UML
class diagram).

• The user has to indicate an attribute type subtree for each of the fea-
ture types involved. Only the information for these attribute types is
recorded in the interpretations. This step constrains the T parameters
in rule language components 3 and 4.

Fig. 4 shows the relationship between the geographic metamodel and the
concepts of interpretation construction. The interpretations are generated
into Prolog notation, based on the rule language components.

Language bias and background knowledge generation. The language bias and
background knowledge are partially fixed, partially generated in a semi-
automated manner. The language bias ensures that recurring variables only
bind parameters of the same type, as listed in Table 4. Note that features
and attributes are both elements. The same table contains annotations that
indicate how variables and constants are introduced in candidate rules. By
default, the underlined terms will be replaced by new variables, the normal
terms by constants and the bold terms by previously introduced variables.
There are some possible variations:

• The end user can select an alternative language bias and background
knowledge pair, resulting in data model mining. An example rule
is: “Each restaurant is overlapped by exactly one restaurant area.”
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This setting only includes information about the existence of simple
attributes instead of the values (cf. underlined parameter V of rule
language component 4), and allows to mine for cardinalities. In this
case, the background knowledge contains the definition of an isunique-
predicate, indicating whether an attribute of a given type only occurs
once for each parent attribute or feature. It is included in the language
bias.

• The tool supports abstract feature and attribute types in the hypoth-
esis language. An example rule is “Each service point (this is an ab-
stract feature type) is adjacent to a road”. In this case, the background
knowledge contains the necessary rules to derive whether a feature or
attribute type implements an abstract type. It is necessary to enu-
merate all possible abstract and non-abstract types in the language
bias.

Table 6 shows a sample data flow during preprocessing.

4.4. Data mining and pattern postprocessing

Data mining. The interpretations, background knowledge and language bias
files are fed to the ACE Datamining System. Before mining, the user is asked
a minimum support, a minimum confidence and a maximal rule length (i.e.
maximal number of literals). In a level-wise manner, WARMR generates
the frequent queries (above the minimum support), which are processed into
query extensions (above the minimum confidence) afterwards. Some exam-
ples are given in the results section. These query extensions are presented to
the end user and can be selected individually for outlier detection and rule
export.

Outlier detection. Outliers for an individual rule are the interpretations for
which the body of the rule holds, but the body extended by the head fails.
Outlier detection involves the execution of these two queries on the logic
program of each of the interpretations separately, each time extended by the
background knowledge. The tool supports a generic visualisation of outlying
interpretations on a geographical map. Interpretations always represent fea-
tures that have a geometry, which scales down to a (set of) points, polylines
or polygons.
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Raw
data

type(f001) = type(f002) = type(f003) = “Road Element”
type(f004) = type(f005) = “School”
spat dist(f001, f004) = 8 spat dist(f001, f005) = 66
spat dist(f002, f004) = 24 spat dist(f002, f005) = 22
spat dist(f003, f004) = 16 spat dist(f003, f005) = 44
spat dist(f004, f005) = 21

type(ass001) = type(ass002) = “Connected Road Elements”
has(ass001, f001) = has(ass001, f003) = true
has(ass002, f002) = has(ass002, f003) = true

type(a001) = type(a002) = type(a003) = “Comp. Speed Restriction”
type(a011) = type(a012) = type(a013) = “Speed Restriction”
type(a004) = type(a005) = “Type”

has(f001, a001) = has(f002, a002) = has(f003, a003) = true
has(a001, a011) = has(a002, a012) = has(a003, a013) = true
has(f004, a004) = has(f005, a005) = true

value(a011) = 30 value(a004) = “primary”
value(a012) = 50 value(a005) = “university”
value(a013) = 30

Input
settings

- Central feature type: “Road Element”
- Inclusion by offset distance: all restaurants, schools and gas stations
that are situated 50m apart from the central feature
- Attribute types: all attribute types for the feature types involved

Interpre-
tations

%interpretation for “Road Element” f001
...

%interpretation for “Road Element” f002
complex att exists(f002, “Composite Speed Restriction”, a002).
simple att exists(a002, “Speed Restriction”, a012, 50).
feature exists(f004, “School”, adjacent50, f002).
simple att exists(a004, “Type”, f004, “primary”).
feature exists(f005, “School”, adjacent50, f002).
simple att exists(a005, “Type”, f005, “university”).

%interpretation for “Road Element” f003
...

Table 6: Sample data flow during preprocessing for the school/road data set
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Language
bias

Default settings.

Frequent
queries

foreach feature(A, “RoadElement”) :
− complex att exists(B, “Comp. Speed Restriction”, A). Supp: 1
− feature exists(B, “School”, adjacent50, A). Supp: 1
− ...
− feature exists(B, “School”, adjacent50, A),

simple att exists(C, “Type”, B, “university”),
complex att exists(D, “Comp. Speed Restriction”, A). Supp: 0.67
− feature exists(B, “School”, adjacent50, A),

simple att exists(C, “Type”, B, “primary”),
complex att exists(D, “Comp. Speed Restriction”, A). Supp: 1

− feature exists(B, “School”, adjacent50, A),
simple att exists(C, “Type”, B, “primary”),
complex att exists(D, “Comp. Speed Restriction”, A),
simple att exists(E, “Speed Restriction”, D, 30). Supp: 0.67

Query
exten-
sions

...
%query extension 20
foreach feature(A, “Road Element”) :

feature exists(B, “School”, adjacent50, A),
simple att exists(C, “Type”, B, “primary”),
complex att exists(D, “Composite Speed Restriction”, A)
⇒ simple att exists(E, “Speed Restriction”, D, 30). Conf: 0.67

Outliers The outliers for query extension 20 are:
- interpretation for “Road Element” f002
Visualisation: g002 : type(g002) = “Geometry” ∧ has(f002, g002).

Table 7: Sample data flow during datamining and postprocessing for the school/road data
set
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Rule export. The XML rule format used by the company is a semantical
superset of the rule language defined in subsection 4.2. The rule export
involves syntactical conversion, conversion to primitive functions and the re-
moval of duplicate information. For example, the feature type set constraint
in Feat rel(FC, F ) can be omitted, because rule language component 2 in-
volves a feature type declaration. The rule export module allows the end
user to export an accepted rule to the quality maintenance system, which
uses the rule for active or passive verification.

Table 7 presents a sample data flow during the data mining and outlier
detection steps, which is subsequent to the flow in Table 6.

5. Results

In this section, we present a set of example rules found by the system. We
first present the outcome of two specific experiments, focussing on the query
extensions that have almost 100% confidence. These rules are of particular
interest, because they directly indicate possible outliers in the data sample.
For each of the rules, expert feedback is given. Next, we present a sanity
check, in which experiments are reconstructed for a set of rules that have
been designed from specifications manually by the data engineers.

5.1. Experiment 1: discovering inter-feature relations

In a first experiment, we try to induce relationships between associated
features of junctions. Therefore, we used following input settings:

• Geographical data set: northern Barcelona (consisting of 1404 junc-
tions)
• Central feature type: junction
• Inclusion of: all features that are associated by one of the 16 association

types defined on the junction feature type
• Attribute types: 10 (official names and type IDs) from the set of all

attribute types for the feature types involved
• Minimal support: 0.05
• Minimal confidence: 0.90
• Maximal rule length: 5

This results in 90 frequent queries and 79 query extensions. The outcome

rule with the highest confidence below 100% is:
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foreach feature(A, “Junction”) :

feature exists(B, “Calculated Prohibited Manoeuvre”, assoc,A),

⇒ feature exists(C 6= B, “Calculated Prohibited Manoeuvre”, assoc,A)

Confidence: 0.9795

Support: 0.1019

Explanation. The rule means that, if a prohibited manoeuvre is defined over
a junction, also another prohibited manoeuvre exists over this junction. The
‘Calculated Prohibited Manoeuvre’ association type defines forbidden traffic
turns over a set of junctions, connected by the role type ‘Via Junction’.

Feedback. Data experts identify this rule as a promising check, although
‘Calculated Prohibited Manoeuvre’ is an attribute generated from basic at-
tributes that are already present in the data. This rule has 3 outliers in
the data, 2 of which are located at the border of the data set. These are
false-positive outliers due to incomplete information. A third one triggered
further study by the engineers.

5.2. Experiment 2: discovering intra-feature relations

In a second experiment, we try to find relationships amongst the at-
tributes of road elements.

• Geographical data set: northern Barcelona (consisting of 1851 road
elements)
• Central feature type: road element
• Inclusion of: none
• Attribute types: 20 attribute types (about name, postal information,

speed restriction, routing classes, etc.) belonging to the road element
feature type
• Minimal support: 0.05
• Minimal confidence: 0.90
• Maximal rule length: 4

This results in 190 frequent queries and 169 query extensions. The 3 most

interesting outcome rules with confidence below 100% are:

foreach feature(A, “Road Element”) :

simple att exists(B, “Routing Class”, A, “Local Roads of High Importance”),
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⇒ simple att exists(C, “Road Conditions”, A, “Paved”)

Confidence: 0.9981

Support: 0.5786

foreach feature(A, “Road Element”) :

simple att exists(B, “Functional Road Class”, A, “Local Roads”),

⇒ simple att exists(C, “Routing Class”, A, “Destination Traffic”)

Confidence: 0.9947

Support: 0.3047

foreach feature(A, “Road Element”) :

simple att exists(B, “Form Of Way”, A, “Road in Pedestrian Zone”),

⇒ simple att exists(C, “Functional Road Class”, A,

“Local Roads of Minor Importance”)

Confidence: 0.9917

Support: 0.0643

Explanation. These rules show obvious correlations between a road’s impor-
tance, its form and its actual condition. Their respective meanings are that
each ‘Road Element’ that

1. has the ‘Routing Class’ label ‘Local Roads of High Importance’, has
the ‘Road Condition’ label ‘Paved’.

2. has the ‘Functional Road Class’ label ‘Local Roads’, has the ‘Routing
Class’ label ‘Destination Traffic’.

3. has the ‘Form Of Way’ label ‘Road in Pedestrian Zone’, has the ‘Func-
tional Road Class’ label ‘Local Roads of Minor Importance’.

Feedback. According to the data experts, the first rule reveals an interesting
relationship, but is too much dependent on geography. A ‘Routing Class’ re-
flects a relative importance, whereas a ‘Road Condition’ describes a physical
state. This means that an individual ‘Routing Class’ attribute is strongly
related to the global attribute distribution over a country, such that the
‘Routing Class’ distribution for unpaved roads varies from country to coun-
try. Note that it is not unusual to include country-dependent information in
the quality rules, but that including the geographical dimension in the anal-
ysis is beyond the primary scope of this tool for automated rule discovery.
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The second rule shows a correlation between two road class categorisation
systems. This correlation is already implied by internal road class production
rules.
The third rule indicates an interesting correlation between the ‘Functional
Road Class’ and ‘Form Of Way’ attribute. The first one indicates a relative
importance w.r.t. functional aspects of a road, whereas the latter combines
both physical and functional aspects. In this case, ‘Road in Pedestrian Zone’
is a purely functional determinant. The single outlier, a relative important
road element in a pedestrian zone, is most probably an anomaly and the rule
has been accepted for further inspection.

5.3. Rule set for experiment reconstruction

In this evaluation phase, we verify whether end users would be able to dis-
cover rules that are currently in use by the quality maintenance system. This
sanity check involves experiment reconstruction for this selection of rules. It
assumes unawareness by end users of these rules. The top column of Table 8
shows 4 rules that have been manually designed from specifications by data
engineers. For each of the rules, we set the experiment parameters such that
it has the rule amongst its results and such that data engineers are not able
to predict the rule as an outcome of the experiment set-up.

Table 8 shows some detailed information about the experiments. In prac-
tice, it is often needed to lower the minimal support in order to find the
target rules. The target rules could be found in experiment 1,2 and 4. For
experiment 3, the targeted relation was not present in the input data set
(which was checked manually). No outliers could be detected w.r.t. these
rules, because they had already been adopted by the quality maintenance
system. Each of the rules comes with a set of other rules, most of the time
containing valuable information. Most of the targeted rules are short, so the
total number of rules can be kept low by lowering the maximum rule length.

6. Future work

The sanity check in Section 5 has shown that the tool is able to discover
realistic quality rules. However, the current rule language still has limita-
tions. This section presents two language extensions that adapt the rule
expressiveness to real-world standards.
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Quality rule A Road Element
that is part of
a Freeway In-
tersection, shall
not be part of
another Freeway
Intersection (FWI).

A face shall not
be part of 2 or
more Postal Dis-
tricts (PDs)

Road Elements having
a Functional Road-
class (FRC) attribute
‘Motorway’, ‘Major
Road’, ‘Other Major
Road’, ‘Secondary
Road’ or ‘Stubble’
shall have a ‘No Ob-
struction’ Blocked
Passage attribute.

A Junction can bound ex-
actly 2 or 0 Road Elements
with Form of Way (FOW)
Roundabout.

Experiment
description

Find relations be-
tween backward as-
sociated features to
each road element;
in this set FWI is
unique

Find relations be-
tween backward as-
sociated features to
each face; in this
set PD is unique

Find relations between
attributes of each road
element

Find relations between (at-
tributes of) road elements
that overlap each junction

Geographical
data set

Crisler Crisler Crisler + Elzie +
Malta + Nilsson (rea-
son: FRC variation)

Nilsson

Central fea-
ture type

Road Element Face Road Element Junction

# interpreta-
tions

1851 674 6765 1611

Inclusion
condition

Association Association - Overlap

All non-abstract
backward associa-
tions

All non-abstract
backward associa-
tions

- Road Element

Attribute
Types

- - Everything from Com-
posite Blocked Passage
+ FOW and FRC from
Road Element

(Composite) Official Name,
FOW and FR from Road El-
ement

Constraint
approach

Datamodel mining Datamodel mining default default

Minimal sup-
port

0.02 (FWI has low
support)

0.05 0.01 (FRC 2 3 4 8 have
low support)

0.01 (FOW 3 has low sup-
port)

Minimal con-
fidence

0.90 0.90 0.7 (to show invalidity
of target rule)

0.90

Maximal rule
length

4 2 5 3

Targeted rule foreach feature(A,
“Road Element”) :

feature exists(B,
“FWI”, assoc, A)
⇒ is unique(B,A)

foreach feature(A,
“Face”) :
feature exists(B,
“PD”, assoc, A)
⇒ is unique(B,A)

not found foreach feature(A,
“Junction”) :
feature exists(B, “Road
Element”, overl, A),
simple att exists(C, “FOW”,
B, “Roundabout”)
⇒ feature exists(C 6= B,
“Road Element”, overl, A)

Confidence
and support

1.0 0.0427 1.0 1.0 - 1 0.02

Violations 0 0 - 0
Number of
rules per
level

4+26+105+289 7+59 1+0+9+16+28 2+2+7

Table 8: Sanity check details.
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Association. Presently, association is only used as a condition to include
other features in an interpretation. Full integration means that the rule lan-
guage is able to capture associations (by name and by role) between features
and to list properties of associations. This would enable:

• the discovery of recurring patterns in association roles and association
properties. An example could be: if a junction is the first junction of
a manoeuvre, it is always the last junction of another manoeuvre.

• the combinatorial application of different inclusion conditions. For ex-
ample, this would enable finding that a junction’s associated intersec-
tion also overlaps this junction.

Spatial functions and concepts. There is a number of functions and concepts,
tailored to the domain of geographic databases, that would be very useful
when integrated in the current system.

• Feature count, for example, supports the discovery of certain types of
anomalies in geographical data, such as erroneous duplication of data.
An example rule is: the number of hotels in a city is lower than the
number of restaurants.

• Spatial distance (for feature sizes as well as distances between features)
can be realised by calculation during preprocessing, and making it ex-
plicit in the rule language. This measure would enable finding that the
distance between a gas station and a motorway is always between 10
and 100 metres.

7. Conclusion

We have built a tool to mine for relational regularities and corresponding
outliers in geographical data. This tools assists a geographic content provid-
ing company in reasoning about the structure of the data and about the data
itself. It is able to extract previously unknown knowledge in an automated
way, which can be integrated in the quality maintenance process directly. It
anticipates the process of manual rule formulation driven by individual re-
porting of anomalies in the data. Moreover, it is independent from the data
model currently in use.

The WARMR algorithm is the central component of this tool. Its input
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consist of interpretations, a background knowledge and a language bias, gen-
erated from the end user’s data selection and mining preferences. Its output is
used for relational outlier detection by indirect description i.e. first WARMR
mines for rules that describe regularities and next, violations of these rules
are identified as outliers.

The case studies show that relatively simple experiments yield valuable in-
formation about regularities and outliers in the sample data. Three out of
4 manually designed example rules were reconstructed using the tool. Only
one rule was not found because it had very low confidence over the sample
data. The validation shows that the system requirements of our tool are met.
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