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Abstract. The canonical polyadic and rank-(Lr, Lr, 1) block term decomposition (CPD and
BTD, respectively) are two closely related tensor decompositions. The CPD and, recently, BTD
are important tools in psychometrics, chemometrics, neuroscience and signal processing. We present
a decomposition that generalizes these two and develop algorithms for its computation. Among
these algorithms are alternating least squares schemes, several general unconstrained optimization
techniques, as well as matrix-free nonlinear least squares methods. In the latter we exploit the
structure of the Jacobian’s Gramian to reduce computational and memory cost. Combined with
an effective preconditioner, numerical experiments confirm that these methods are among the most
efficient and robust currently available for computing the CPD, rank-(Lr, Lr, 1) BTD and their
generalized decomposition.
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1. Introduction. Tensor decompositions are important techniques for data min-
ing, dimensionality reduction, pattern recognition, object detection, classification,
clustering and blind source separation [4, 8, 9, 15, 16, 29, 50, 52, 53]. The two main
tensor generalizations of the singular value decomposition (SVD) are, on one hand,
the Tucker decomposition or multilinear SVD (MLSVD) [18,60,61] and, on the other
hand, the canonical polyadic decomposition (CPD) [7,23]. In fact, the CPD general-
izes any rank-revealing matrix decomposition. The MLSVD and CPD are connected
with two different tensor generalizations of the concept of matrix rank. The former
is linked with the set of mode-n ranks, which generalize column rank, row rank, etc.
The latter generalizes rank in the sense of the minimal number of rank-one terms
whose sum is equal to a given tensor. Block term decompositions (BTD) were in-
troduced by De Lathauwer [12, 13, 19] as a framework that unifies the MLSVD and
CPD. Of particular interest is the rank-(Lr, Lr, 1) BTD, which has recently proven
to be useful in blind source separation [14], and particularly in telecommunication
applications [17,37,51].

In this article, we propose several optimization-based algorithms to compute the
rank-(Lr, Lr, 1) BTD. In fact, we first introduce a more general decomposition called
the (rank-Lr ◦ rank-1) BTD. Whereas the rank-(Lr, Lr, 1) BTD is a generalization
of the third-order CPD, the (rank-Lr ◦ rank-1) BTD is a generalization of both the
Nth-order CPD and the rank-(Lr, Lr, 1) BTD. Consequently, algorithms designed for
the more general decomposition are also applicable to the former decompositions.
We develop alternating least squares (ALS) schemes, memory-efficient gradient-based
methods such as nonlinear conjugate gradient and limited-memory BFGS using both
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line search and trust-region frameworks, and nonlinear least squares methods such
as Gauss–Newton and Levenberg–Marquardt. For the latter, we derive a matrix-free
implementation that exploits the structure inherent to the decomposition, reducing
computational complexity significantly compared to the exact method and reducing
memory cost to that of ALS. Throughout the paper, we consider the general case
where the decompositions may be complex, although real decompositions are also
supported through the choice of the initialization. Our numerical experiments reveal
that ALS, despite its popularity, is in many cases not a suitable choice. Nonlinear
least squares methods are far less sensitive to the type of initialization and are often
not only more efficient and less prone to so-called swamps, but also much more likely
to converge to the global minimum, given a unique decomposition.

The paper is organized as follows. In Section 2 we review our notation and
introduce some basic definitions. In Section 3 we recall the canonical polyadic decom-
position and the rank-(Lr, Lr, 1) block term decomposition, and also introduce the
(rank-Lr ◦ rank-1) block term decomposition. In Section 4 we derive the (co)gradient
necessary for alternating least squares and gradient-based methods. We then demon-
strate that the associated Gramian of the Jacobian may be intuitively expected to
approximate the objective function’s Hessian relatively well as the residuals decrease,
depending on the tensor’s order and rank. We also show that this matrix has a very
specific structure, which we exploit in matrix-free nonlinear least squares algorithms.
We close this section with an overview of each algorithm’s computational complexity.
In Section 5 we evaluate the performance of the proposed algorithms with Monte
Carlo simulations of both exact and noisy decompositions. We conclude the paper in
Section 6.

2. Notation and preliminaries. A tensor is an element of a tensor product of
vector spaces. In this article, we refer to a tensor represented as a multidimensional
array, given a choice of bases for each of these vector spaces. The order, or the number
of modes, of a tensor is the number of indices associated with each element of that
tensor. Vectors are denoted by boldface letters and are lower case, e.g., a. Matrices
are denoted by capital letters, e.g., A. Higher-order tensors are denoted by Euler
script letters, e.g., A. The ith entry of a vector a is denoted by ai, element (i, j) of a
matrix A by aij and element (i, j, k) of a third-order tensor A by aijk. Indices typically
range from one to their capital version, e.g., i = 1, . . . , I. A colon is used to indicate
all elements of a mode. Thus, a:j corresponds to the jth column of a matrix A, which
we also denote more compactly as aj . Mode-n vectors are the higher-order analogue
of matrix rows and columns. A mode-n vector is defined by fixing every index but
one. Third-order tensors have mode-1, mode-2 and mode-3 vectors, denoted by t:jk,
ti:k and tij:, respectively (cf. Figure 2.1).

(a) mode-1 (b) mode-2 (c) mode-3

Fig. 2.1. Mode-n vectors of a third-order tensor.
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The nth element in a sequence is denoted by a superscript in parentheses, e.g.,
A(n) denotes the nth matrix in a sequence. The superscripts ·T, ·H, ·−1 and ·† are used
for the transpose, Hermitian conjugate, matrix inverse and Moore–Penrose pseudo-
inverse, respectively. The complex conjugate is denoted by an overbar, e.g., a is the
complex conjugate of the scalar a. We use parentheses to denote the concatenation of
two or more vectors, e.g., (a, b) is equivalent to

[
aT bT

]T. The n×n identity matrix
is denoted by In, and the all-zero and all-one m × n matrices by 0m×n and 1m×n,
respectively.

Definition 2.1. The inner product 〈T ,U〉 of two tensors T ,U ∈ CI1×···×IN is
defined as

〈T ,U〉 =

I1∑
i1=1

· · ·
IN∑
iN=1

ti1···iNui1···iN .

Definition 2.2. The (Frobenius) norm of a tensor T ∈ CI1×···×IN is defined as
‖T ‖ =

√
〈T , T 〉.

Definition 2.3. The outer product T ◦ U of a tensor T ∈ CI1×···×IP and a
tensor U ∈ CJ1×···×JQ is the tensor defined by (T ◦ U)i1···iP j1···jQ = ti1···iP uj1···jQ .

Definition 2.4. An N th-order tensor T is rank-one if it is equal to the outer
product of N nonzero vectors a(n) ∈ CIn , i.e., T = a(1) ◦ · · · ◦ a(N).

Definition 2.5. In a vectorization vec(A) of a matrix A ∈ CI×J , matrix element
(i, j) is mapped to vector element (i+ (j − 1)J).

Definition 2.6. In a mode-n matricization, flattening or unfolding T(n) of an
N th-order tensor T ∈ CI1×···×IN , tensor element with indices (i1, . . . , iN ) is mapped
to matrix element (in, j) such that

j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk with Jk =

{
1 for {k = 1, k = 2 ∧ n = 1}∏k−1
m=1
m 6=n

Im otherwise .

In other words, the columns of the mode-n matricization T(n) are the mode-n vectors
of T arranged along the natural order of the remaining modes.

Definition 2.7. The n-rank of an N th-order tensor T , denoted by Rn =
rankn(T ), is defined as the column rank of T(n). In other words, the n-rank is the
dimension of the space spanned by the mode-n vectors of T . A tensor characterized
by its n-ranks Rn, n = 1, . . . , N , is said to be of rank-(R1, . . . , RN ).

Definition 2.8. The n-mode (matrix) product T ×nA of a tensor T ∈ CI1×···×IN
with a matrix A ∈ CJ×In is the tensor defined by (T ×n A)(n) = A · T(n).

Definition 2.9. The Kronecker product of two matrices A ∈ CI×J and B ∈
CK×L is defined as

A⊗B =

a11B · · · a1JB
...

. . .
...

aI1B · · · aIJB

 .

Definition 2.10. The Khatri–Rao product [27] of two matrices A ∈ CI×K and
B ∈ CJ×K is defined as A�B =

[
a1 ⊗ b1 · · · aK ⊗ bK

]
.

Definition 2.11. The Hadamard product of two matrices A ∈ CI×J and B ∈
CI×J is the matrix defined by (A ∗B)ij = aijbij.
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3. Tensor decompositions.

3.1. The canonical polyadic decomposition. The canonical polyadic de-
composition (CPD) approximates a tensor with a sum of R rank-one tensors. It was
introduced by Hitchcock in 1927 [25,26], and was later referred to as the canonical de-
composition (CANDECOMP) [7] and parallel factor decomposition (PARAFAC) [23]

in psychometrics and phonetics, respectively. Let T ∈ CI1×···×IN and a
(n)
r ∈ CIn ,

a
(n)
r nonzero, then

T ≈
R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r (3.1)

is a CPD of the tensor T in R rank-one terms (cf. Figure 3.1). The rank of the
tensor is defined as the smallest R for which (3.1) is exact. Such a decomposition is
called a rank decomposition and is, in contrary to the matrix case, often unique. Let

A(n) =
[
a
(n)
1 · · · a

(n)
R

]
be the factor matrix corresponding to the nth mode. The

CPD can then be written in matrix form as

T(n) ≈ A(n) · V {n}
T

where V σ ,
N−1
�
n=0

N−n6∈σ

A(N−n) (3.2)

for any 1 ≤ n ≤ N . Note that σ defines a set of factor matrices to exclude from the
string of Khatri-Rao products. For example, V {n} = A(N) � · · · �A(n+1) �A(n−1) �
· · · �A(1).

T
≈

a
(1)
1

a
(2)
1

a
(3)
1

+ · · ·+

a
(1)
R

a
(2)
R

a
(3)
R

Fig. 3.1. Canonical polyadic decomposition of a third-order tensor.

To a large extent, the practical importance of the CPD stems from its uniqueness
properties. It is clear that one can arbitrarily permute the different rank-one terms.
Also, the factors of a single rank-one term may be arbitrarily scaled, as long as their
product remains the same. We call a CPD essentially unique when it is subject only
to these trivial indeterminacies. The most well-known result on uniqueness is due
to Kruskal [30, 31] and depends on the concept of k-rank. The k-rank of a matrix
A, denoted kA, is defined as the maximum value k such that any k columns of A
are linearly independent [30]. Kruskal’s sufficient condition for the unicity of a rank
decomposition, generalized to Nth order tensors by Sidiropoulos and Bro [49], is

N∑
n=1

kA(n) ≥ 2R+ (N − 1). (3.3)

This condition can be relaxed by an order of magnitude if the tensor is long in one
mode [11].
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3.2. The rank-(Lr, Lr, 1) block term decomposition. The rank-(Lr, Lr, 1)
block term decomposition (BTD) [12, 13, 19] approximates a third-order tensor by a
sum of R terms, each of which is an outer product of a rank-Lr matrix and a nonzero
vector. Let T be a third-order tensor, Ar ∈ CI1×Lr and Br ∈ CI2×Lr be rank-Lr
matrices and let cr ∈ CI3 , cr nonzero, then

T ≈
R∑
r=1

(Ar ·BT
r ) ◦ cr (3.4)

is a BTD of the tensor T in T rank-(Lr, Lr, 1) terms (cf. Figure 3.2). In addition to the
permutation and scaling indeterminacies inherited from the CPD, the factors At may
be postmultiplied by any nonsingular matrix Fr ∈ CLr×Lr , provided BT

r is premulti-
plied by the inverse of Fr. This decomposition is also called essentially unique when
it is subject only to these trivial indeterminacies. When the matrices

[
A1 · · · AR

]
and

[
B1 · · · BR

]
are full column rank and the matrix

[
c1 · · · cR

]
does not

contain collinear columns, the decomposition is guaranteed to be essentially unique.
Furthermore, the decomposition may then be computed with a generalized eigen-
value decomposition (GEVD). These GEVD-type sufficient conditions, along with
Kruskal-type conditions were derived in [13]. Even more relaxed conditions are ex-
pected to exist, and are a topic for future research. For example, a new sufficient
condition was derived in [14]. The CPD and rank-(Lr, Lr, 1) BTD have both been
applied in telecommunication applications [17, 37, 50–52]. However, the terms of a
rank-(Lr, Lr, 1) BTD possess a more general low-rank structure that, together with
its relatively mild conditions for unicity, make it a promising new candidate for blind
source separation [14]. The rank-(Lr, Lr, 1) BTD generalizes the CPD for third-order

T
≈

A1

B1

c1

+ · · ·+
AR

BR

cR

Fig. 3.2. Rank-(Lr, Lr, 1) block term decomposition of a third-order tensor.

tensors. We now introduce a new block term decomposition which generalizes both
these decompositions. Designing algorithms for this more general decomposition re-
quires little additional effort, and will result in algorithms applicable to all of the
aforementioned decompositions.

3.3. The (rank-Lr ◦ rank-1) block term decomposition. The (rank-Lr ◦
rank-1) block term decomposition approximates a tensor by a sum of R terms, each
of which is an outer product of a rank-Lr tensor and a rank-one tensor. Let N , P
and Q be positive integers so that N = P + Q and let T be an Nth-order tensor,

R′ =
∑R
r=1 Lr, A

(p) =
[
a
(p)
1 · · · a

(p)
R′

]
and C(q) =

[
c
(q)
1 · · · c

(q)
R

]
, then

T ≈
R∑
r=1

 ∑r
u=1 Lu∑

r′=1+
∑r−1

u=1 Lu

a
(1)
r′ ◦ · · · ◦ a

(P )
r′

 ◦ (c(1)r ◦ · · · ◦ c(Q)
r

) (3.5)
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is a BTD of the tensor T in R (rank-Lr ◦ rank-one) terms (cf. Figure 3.3). By setting
Lr ≡ 1, it is obvious that this decomposition reduces to the CPD. On the other hand,
it is equivalent to the rank-(Lr, Lr, 1) BTD if P = 2 and Q = 1.

T

≈

rank
L1

c
(1)
1

c
(2)
1

c
(3)
1

+ · · ·+

rank
LR

c
(1)
R

c
(2)
R

c
(3)
R

Fig. 3.3. A (rank-Lr ◦ rank-1) block term decomposition of a sixth-order tensor.

Another way to interpret this decomposition, is as a structured CPD in which
the nth factor matrix is just A(n) when 1 ≤ n ≤ P , and defined as

A(n) , C(n−P ) · E when P < n ≤ N . (3.6)

Here, E is defined as the R×R′ block diagonal matrix diag(11×L1
, . . . ,11×LR

) in which
the rth block on the diagonal is the row vector 11×Lr

. We use this interpretation to
formulate (3.5) as the nonlinear least squares problem

min
A(1),...,A(P )

C(1),...,C(Q)

fBTD where fBTD ,
1

2
‖FBTD‖2 (3.7)

and the mode-n unfolding of the residual tensor FBTD is defined as

(FBTD)(n) , A(n) · V {n}
T
− T(n) for any 1 ≤ n ≤ N . (3.8)

Although the residual tensor FBTD is analytic in its argument, the objective function
fBTD is not because of its dependency on the complex conjugate of the argument.
This implies that fBTD is not complex differentiable, and hence that its Taylor series
does not exist everywhere on its domain. In the following section, we derive gradient-
based unconstrained optimization methods and nonlinear least squares methods for
(3.7), built with generalized algorithms for this class of optimization problems [54].
These methods are based on the observation that if a function of complex variables
is analytic in the real and imaginary part of its argument, it is also analytic in its
argument and the complex conjugate of its argument as a whole [1, 62].

4. Algorithms for the general decomposition.

4.1. General unconstrained optimization & alternating least squares.
Solving (3.7) not only allows us to compute the (rank-Lr ◦ rank-1) BTD, but also
the CPD and the rank-(Lr, Lr, 1) BTD. To this end, we first consider gradient-based
unconstrained optimization methods that attempt to minimize fBTD directly. Among
these methods are the nonlinear conjugate gradient method and quasi-Newton meth-
ods such as the (limited-memory) BFGS method [38]. The complex counterparts of
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these methods [54] are built on the second-order model

mf
k(
C
p) , f(

C
zk) +

C
pT ∂f(

C
zk)

∂
C
z

+
1

2
C
pHBk

C
p (4.1)

of the objective function f at the current iterate
C
zk, where the superscript

C· denotes
the concatenation of its argument with its complex conjugate, e.g.,

C
z ≡ (z, z), and

Bk is a Hermitian positive definite matrix that is updated every iteration. The partial
derivative in (4.1) is called the complex gradient at

C
zk and is composed of two parts;

its top half ∂f
∂z is the cogradient and its bottom half ∂f

∂z is the conjugate cogradient.
For real-valued f , the cogradients are each other’s complex conjugates. By definition,
these complex derivatives are to be interpreted as partial derivatives with respect
to complex variables while treating their complex conjugates as constant. They are
also known, especially in the German literature, as Wirtinger derivatives [46]. The
minimizer of the convex quadratic model (4.1) can be obtained by setting the model’s
conjugate complex gradient equal to zero, and is given by

C
p∗k = −B−1k

∂f(
C
zk)

∂
C
z

. (4.2)

Storing and manipulating the full Hessian approximation Bk or its inverse B−1k can
be quite expensive for functions of many variables, as is often the case for tensor
decompositions. Many strategies to store the approximation to the Hessian exist. For
instance, the nonlinear conjugate gradient method can be interpreted to build Bk as
the sum of the identity matrix and a rank-two update. The limited-memory BFGS
(L-BFGS) method generalizes this concept to the sum of a (scaled) identity matrix
and m rank-two updates. In practice, L-BFGS often performs better than nonlinear
conjugate gradient due to its flexibility, and is regarded as superior to the latter.

In Theorem 4.4 we derive an expression for fBTD’s cogradient, which enables us
to update Bk and compute the search direction (4.2). The following proposition is
a useful tool that allows us to initially disregard any structure in A(P+q) by relating
the partial derivative with respect to C(q) to that of A(P+q). Proposition 4.2 is a
well-known property of the Khatri-Rao product that we will use in the derivation of
the cogradient.

Proposition 4.1. Let F (q) = E ⊗ II(P+q)
, then we have that vec(C(q) · E)T =

vec(C(q))T · F (q). Furthermore, applying the chain rule leads to

∂

∂C(q)
=

∂

∂A(P+q)
· ET and (4.3a)

∂

∂ vec(C(q))T
=

∂

∂ vec(A(P+q))T
· F (q)T. (4.3b)

Proposition 4.2 (see e.g., [5, 45]). Let A(n) ∈ CIn×J , n = 1, . . . , N , let V =

A(p1) � · · · � A(pN ) where p is any permutation of {1, . . . , N} and let W =
N∗
n=1

A(n)HA(n) be the Hadamard product of all matrices A(n)HA(n). Then V HV = W .

Corollary 4.3. Define Wσ ,
N∗
n=1
n 6∈σ

A(n)HA(n), then (V σ)HV σ = Wσ.
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Theorem 4.4. Let z be the vector of unknowns (vec(A(1)), . . . , vec(A(P )),
vec(C(1)), . . . , vec(C(Q))), then fBTD’s complex cogradient is given by

∂fBTD

∂z
=

(
vec

(
∂fBTD

∂A(1)

)
, . . . , vec

(
∂fBTD

∂A(P )

)
,

vec

(
∂fBTD

∂C(1)

)
, . . . , vec

(
∂fBTD

∂C(Q)

))
,

(4.4)

where

2
∂fBTD

∂A(p)
= A

(p) ·W {p} − T (p) · V {p}, and (4.5a)

2
∂fBTD

∂C(q)
= C

(q) · E ·W {P+q} · ET − T (P+q) · V {P+q} · ET (4.5b)

for 1 ≤ p ≤ P and 1 ≤ q ≤ Q, respectively.

Proof. Let f
(1)
BTD = ‖A(n) · V {n}T‖2, f

(2)
BTD = 〈T(n), A(n) · V {n}T〉 and f

(3)
BTD =

‖T(n)‖2, so that fBTD = 1
2 (f

(1)
BTD − f

(2)
BTD − f

(2)

BTD + f
(3)
BTD). We have that

∂f
(1)
BTD

∂A(n)
=

∂

∂A(n)

∑
i=1

(
v
{n}
i: A

(n)T
)(

A(n)v
{n}
i:

T
)

=
∑
i=1

A
(n)

v
{n}
i:

H
v
{n}
i:

= A
(n) ·W {n},

where the last equality follows from Corollary 4.3. Similarly, it can be shown that
∂f

(2)
BTD

∂A(n) = T (n) ·V {n}, and trivially that
∂f

(2)
BTD

∂A(n) =
∂f

(3)
BTD

∂A(n) = 0. Expression (4.5b) follows
from (4.5a), (3.6) and Proposition 4.1.

In Table 4.1 we summarize Theorem 4.4 for the special case of a (complex) third-
order CPD and rank-(Lr, Lr, 1) BTD. If the decomposition is real, then it is easy to
show that the real gradient is twice the expression for the complex cogradient [54].

Decomposition Cogradient ∂fBTD

∂z

third-order CPD 1
2

vec(A
(1)

[(A(2)HA(2)) ∗ (A(3)HA(3))]− T (1)(A
(3) �A(2)))

vec(A
(2)

[(A(1)HA(1)) ∗ (A(3)HA(3))]− T (2)(A
(3) �A(1)))

vec(A
(3)

[(A(1)HA(1)) ∗ (A(2)HA(2))]− T (3)(A
(2) �A(1)))


rank-(Lr, Lr, 1) BTD 1

2

vec(A
(1)

[(A(2)HA(2)) ∗ (ETC(1)HC(1)E)]− T (1)((C
(1)E)�A(2)))

vec(A
(2)

[(A(1)HA(1)) ∗ (ETC(1)HC(1)E)]− T (2)((C
(1)E)�A(1)))

vec(C
(1)

E[(A(1)HA(1)) ∗ (A(2)HA(2))]ET − T (3)(A
(2) �A(1))ET)


Table 4.1

The (rank-Lr ◦ rank-1) BTD objective function’s cogradient in the special case of a third-order
CPD and a rank-(Lr, Lr, 1) BTD.

In a line search framework, the next iterate is zk+1 = zk + αkpk, where the real
step length αk is usually chosen to satisfy the (strong) Wolfe conditions [38,63]. Line
search algorithms are an integral part of quasi-Newton methods, but can be difficult
to implement. There are several good software implementations available in the public
domain, such as Moré and Thuente [35] and Hager and Zhang [22].
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Another approach to select the step is using a trust-region framework, where a
region around the current iterate zk is defined in which the model mk is trusted to
be an adequate representation of the objective function. The next iterate zk+1 is
then chosen to be the approximate minimizer of the model in this region. In effect,
the direction and length of the step is chosen simultaneously. The trust-region radius
∆k is updated every iteration based on the trustworthiness ρk of the model, which
is defined as the ratio of the actual reduction f(

C
zk) − f(

C
zk +

C
pk) of the objective

function and the predicted reduction mf
k(0) −mf

k(
C
pk). The dogleg method [42, 43],

double-dogleg method [21] and two-dimensional subspace minimization [6] all attempt
to approximately minimize the trust-region subproblem by restricting the step p to
(a subset of) the two-dimensional subspace spanned by the steepest descent direction
−∂f∂z and the quasi-Newton step (4.2) when the model Hessian Bk is positive definite.

Aside from quasi-Newton methods, the cogradient also gives rise to the simple but
effective alternating least squares (ALS) algorithm [7,19,23], which is an application
of the nonlinear block Gauss–Seidel method. In the latter, the partial gradients
(4.5) are alternately set to zero. Each factor matrix A(p) is then computed as the
right Moore-Penrose pseudo-inverse of the matrix V {p}T applied to the unfolding
T(p) and is subsequently used to recompute V {p} and W {p}. This can be done by
explicitly solving the associated normal equations as in Algorithm 4.1, or by first
decomposing V {p} with a QR factorization. The latter is numerically more stable,
but also more expensive in both memory and floating point operations considering the
normal equations can be computed efficiently using Corollary 4.3. We refer to these
two types of updates as fast and accurate, respectively. The difference in accuracy
between the two methods often has a negligible effect on convergence speed. Hence, a
practical implementation might start by using the fast updates until some convergence
criterion is satisfied, after which a few more accurate updates are computed to obtain
maximal precision.

while (not converged) do
for p = 1, . . . , P do

A(p) ← T(p) · V
{p} ·W {p}

−1

end
for q = 1, . . . , Q do

C(q) ← T(P+q) · V
{P+q} · ET · (E ·W {P+q} · ET)−1

end

end

Algorithm 4.1. Alternating least squares with fast updates.

Although conceptually simple and often effective, ALS is not guaranteed to con-
verge to stationary point and is also sensitive to so-called swamps, where convergence
is very slow for many iterations. For a given tensor, its best rank-R approximation
may not exist. For example, no real 2× 2× 2 rank-3 tensor has a best rank-2 approx-
imation [20]. This ill-posedness is a consequence of the fact that the set of rank-R
tensors is not closed, i.e., there exist sequences of rank-R tensors that converge to
rank-R∗ tensors, where R < R∗ [20, 41]. For such sequences, two or more terms
grow without bound yet nearly cancel each other out. This behaviour is referred to
as degeneracy and has been linked with swamps [32, 34], which are observed when
either the best rank-R approximation does not exist (strong degeneracy [28, 55, 56]),
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or when the best rank-R approximation does exist, but the path between the initial-
ization and the solution displays degenerate factors for a certain number of iterations
(weak degeneracy [34]). Several approaches to mitigate swamp-like behaviour in ALS
have been proposed in the literature, among which (exact) line search [5, 23, 37, 44]
and iterated Tikhonov regularization [36]. In contrast, optimization-based algorithms
coupled with line search or trust region globalization strategies do guarantee conver-
gence to a stationary point and, depending on the method, spend comparatively fewer
iterations in swamps.

4.2. Nonlinear least squares methods. Another approach to solve (3.7) is
by means of nonlinear least squares methods such as Gauss–Newton or Levenberg–
Marquardt. In these methods, the residual tensor FBTD is approximated by the linear
model

mFk (
C
p) , vec(F(

C
zk)) +

∂ vec(F(
C
zk))

∂
C
zT

C
p, (4.6)

where the partial derivative is called the complex Jacobian at
C
zk and is a straightfor-

ward generalization of the complex gradient [54]. The model mFk is then used in the
modified quadratic model of the objective function

mf
k(
C
p) ,

1

2
‖mFk (

C
p)‖2 +

λk
2
‖p‖2, (4.7)

where λk is the Levenberg–Marquardt regularization parameter which influences both
the length and direction of the step p that minimizes mf

k . In the Gauss–Newton
method, λk = 0 for all k, and a trust-region framework can instead be used to control
the length and direction of the step.

By noting that FBTD is analytic in its argument, we need only work with half of

the complex Jacobian, since the conjugate Jacobian ∂ vec(FBTD)
∂zT is identically equal to

zero. As a consequence, the quadratic model mfBTD

k is minimized by the Levenberg–
Marquardt step

p∗k = −
[
Jk√
λkI

]† [
vec(FBTD(zk))

0

]
, (4.8)

where Jk is the Jacobian ∂ vec(FBTD)
∂zT at the kth iterate zk and the identity matrix and

zero vector are of the appropriate dimensions. Due to the scaling indeterminacy of
the decomposition, the Jacobian is rank deficient and a certain number of its singular
values are equal to zero. In general, each of the R terms contains a Qth-order rank-
one tensor and a P th-order rank-Lr tensor, which contribute (Q− 1)R and (P − 1)R′

degrees of freedom, respectively. Furthermore, there is one more degree of freedom in
the scaling between the rank-one and rank-Lr part of each term, bringing the total
number of singular values equal to zero to at least QR + (P − 1)R′. Note that this
is just a lower bound and that the actual amount of singular values equal to zero
depends on the unicity of the individual terms. For example, when P = 2, each
term contains a rank-Lr matrix, the factors of which are only unique up to a linear
transformation. In the Levenberg–Marquardt algorithm, the Jacobian is allowed to be
singular since each of the steps are regularized by a norm constraint on the solution.
However, in a Gauss–Newton trust-region algorithm, special care must be taken to
invert the Jacobian in a meaningful way. One approach is compute the Moore–Penrose
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pseudo-inverse J†k . Another is to compute an approximate solution with a truncated
conjugate gradient algorithm, where the amount of regularization is controlled by the
number of iterations. As we will see, the latter method allows for significant savings
in both memory and computational cost.

Storing the Jacobian as a dense matrix is impractical as each of its columns
requires as much memory as the tensor T itself. A sparse representation is one way to
store the Jacobian more efficiently, but is likely of limited use due to a large amount
of fill-in appearing when applying the QR factorization to solve (4.8) [39,59]. At the
cost of squaring the condition number of the system, the memory requirement can be
reduced by solving the normal equations

(JH
k Jk + λkI)p∗k = −JH

k vec(FBTD(zk)) = −2
∂fBTD

∂z
(zk), (4.9)

where the last equality follows from the analyticity of FBTD [54], associated with (4.8)
and looking for an expression for the Gramian JHJ [58]. In the real case, the latter
matrix represents an approximation of the objective function’s Hessian. The error of
the approximation is the sum [38]

I1,...,IN∑
i1,...,iN=1

(FBTD)i1...iN
∂(FBTD)i1...iN

∂z∂zT
,

and hence is small when the residuals FBTD are small, or when FBTD is nearly linear
in its argument. Fortunately, the multilinear structure of FBTD ensures that the total

contribution of the Hessians
∂(FBTD)i1...iN

∂z∂zT is quite sparse, depending on the number
of rank-one terms. In fact, one can show that the relative number of nonzero elements

in the superimposed Hessian is equal to N(N−1)RI2
(NRI)2 = N−1

NR for a CPD of an Nth-order

tensor of dimensions I×· · ·×I in R rank-one terms (cf. Figure 4.1). Moreover, it can
be observed that these nonzero elements are often quite small in comparison to the
elements of JHJ . It may therefore be expected that, as the residuals (FBTD)i1...iN
decrease, the Gramian JHJ rapidly becomes a good approximation to the real Hessian.
In Theorem 4.5 we show that JHJ is a block matrix with diagonal and rank-one blocks.
This structure can be exploited to significantly reduce both its storage cost and the
computational complexity of its matrix-vector product.

(a) N = 3, R = 4 (b) N = 4, R = 8

Fig. 4.1. Sparsity pattern of the total contribution of the Hessians
∂(FBTD)i1...iN

∂z∂zT in the case

of a real CPD of a (hyper)cubical third-order tensor (left) and fourth-order tensor (right).
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Theorem 4.5. Let J be the Jacobian ∂ vec(FBTD)
∂zT and let F (q) be defined as in

Proposition 4.1, then the Gramian JHJ is given by

JHJ = Σ ·

Π(1,1) · · · Π(1,N)

...
. . .

...
Π(N,1) · · · Π(N,N)

 · ΣT, (4.10)

where

Σ , diag
(
II1R′ , . . . , IIPR′ , F (1), . . . , F (Q)

)
(4.11)

and

Π(n1,n2) ,

(
∂ vec(FBTD)

∂ vec(A(n1))T

)H(
∂ vec(FBTD)

∂ vec(A(n2))T

)

=



W {n} ⊗ IIn n = n1 = n2
w
{n1,n2}
1,1 a

(n1)
1 a

(n2)
1

H
· · · w

{n1,n2}
1,R′ a

(n1)
R′ a

(n2)
1

H

...
. . .

...

w
{n1,n2}
R′,1 a

(n1)
1 a

(n2)
R′

H
· · · w

{n1,n2}
R′,R′ a

(n1)
R′ a

(n2)
R′

H

 otherwise.

(4.12)

Proof. Let e
(n)
i be the ith column of the identity matrix IIn , then

∂FBTD

∂a
(n)
inr

= a(1)
r ◦ · · · ◦ a(n−1)

r ◦ e(n)in
◦ a(n+1)

r ◦ · · · ◦ a(N)
r .

Diagonal blocks. For n = n1 = n2 we have〈
∂FBTD

∂a
(n)
ir1

,
∂FBTD

∂a
(n)
jr2

〉
=

{
w
{n}
r1r2 i = j

0 otherwise

and so (
∂ vec(FBTD)

∂a
(n)
r1

T

)H(
∂ vec(FBTD)

∂a
(n)
r2

T

)
= w{n}r1r2IIn .

Off-diagonal blocks. For n1 6= n2 we have〈
∂FBTD

∂a
(n1)
in1

r1

,
∂FBTD

∂a
(n2)
in2

r2

〉
= w{n1,n2}

r1r2 a
(n1)
in1r2

a
(n2)
in2r1

and so (
∂ vec(FBTD)

∂a
(n1)
r1

T

)H(
∂ vec(FBTD)

∂a
(n2)
r2

T

)
= w{n1,n2}

r1r2 a(n1)
r2 a(n2)

r1

H
.

The (p, P + q)th block in JHJ is defined as(
∂ vec(FBTD)

∂ vec(A(p))T

)H(
∂ vec(FBTD)

∂ vec(C(q))T

)
12



and can be computed from Π(p,P+q) using (4.3b) as Π(p,P+q) · F (q)T. Similarly, the
(P + q, p)th and (P + q1, P + q2)th blocks can be computed as F (q) · Π(p,P+q) and
F (q1) ·Π(P+q1,P+q2) · F (q2)T, respectively.

We propose to store JHJ as the collection of factor matrices A(n) and the fac-
tor matrices’ Gramians A(n)HA(n), from which the Hadamard products W {n} and
W {n1,n2} can easily be reconstructed. In the case of a hypercubical CPD, this adds
only O(NR2) to the memory complexity of the algorithm, as opposed to O(N2R2I2)
when JHJ is stored in a dense format. Storing the Jacobian’s Gramian in this way
is not appropriate for direct solvers, but is suited for matrix-vector products and
hence admits the use of inexact adaptations of the Levenberg–Marquardt and Gauss–
Newton algorithms. The latter only partially invert the Jacobian’s Gramian using
a limited number of (preconditioned) conjugate gradient iterations [38]. Besides the
reduction in memory cost, the following theorem shows that the Gramian’s structure
also allows for an efficient matrix-vector product. Compared to a dense matrix-vector
product, Theorem 4.6 can reduce the computational complexity from O(N2R2I2) to
O(NR2I) flop per matrix-vector product, depending on the implementation.

Theorem 4.6. Let p = (b(1), . . . , b(P ),d(1), . . . ,d(Q)), where B(p) ∈ CIp×R′ and

b(p) = vec(B(p)), p = 1, . . . , P , D(q) ∈ CIP+q×R and d(q) = vec(D(q)), q = 1, . . . , Q.

Furthermore, we define B(P+q) , D(q) · E and b(P+q) , vec(B(P+q)). The matrix-
vector product JHJ · p then follows from

Π(p,p) · b(p) = vec(X(p)) (4.13a)

Π(p1,p2) · b(p2) = vec(Y (p1,p2)) (4.13b)

(F (q) ·Π(P+q,p)) · b(p) = vec(Y (P+q,p) · ET) (4.13c)

(Π(p,P+q) · F (q)T) · d(q) = vec(Y (p,P+q)) (4.13d)

(F (q1) ·Π(P+q1,P+q2) · F (q2)
T

) · d(q2) = vec(Y (P+q1,P+q2) · ET) (4.13e)

(F (q) ·Π(P+q,P+q) · F (q)T) · d(q) = vec(X(P+q) · ET) (4.13f)

where

X(n) , B(n) ·W {n}, (4.14)

Y (n1,n2) , A(n1) · (W {n1,n2} ∗ (B(n2)
T
·A(n2)

)) and (4.15)

1 ≤ p1 6= p2 ≤ P , 1 ≤ q1 6= q2 ≤ Q and 1 ≤ n, n1 6= n2 ≤ N .

Proof. We have that Π(p,p) · b(p) = (W {p}⊗ IIp) ·vec(B(p)) = vec(B(p) ·W {p}T) =

vec(B(p) ·W {p}). A similar structure is present in Π(p1,p2) · b(p2). Let Z = W {p1,p2} ∗
(A(p2)HB(p2)), then it is not hard to show that Π(p1,p2) ·b(p2) = (Z⊗ IIp1 ) ·vec(A(p1)),
from which (4.13b) follows. The special cases (4.13c–4.13f) are a direct result of
(4.13a–4.13b) and Proposition 4.1.

The convergence rate of the conjugate gradient algorithm depends on how well the
system’s eigenvalues are clustered and is consequently also influenced by its condition
number. In the preconditioned conjugate gradient (PCG) algorithm, the eigenvalue
distribution is improved by solving a system of the form

M−1 · JHJ · p = M−1 ·
(
−2

∂fBTD

∂z

)
,
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where M is a symmetric positive definite matrix called the preconditioner. The inverse
of the preconditioner M−1 should be cheap to apply and is often designed so that
M−1 · JHJ ≈ I. The block Jacobi preconditioner

MBJ = Σ ·

Π(1,1)

. . .

Π(N,N)

 · ΣT (4.16)

is one such example. It is a block-diagonal approximation of (4.10) and can be inverted
efficiently using (4.13a) and (4.13f). For instance, the solution of the system Π(p,p) ·
vec(X) = vec(Y ) can be computed by solving the much smaller system X = Y ·
W
{p}−1

. It is interesting to note that if M−1BJ ·JHJ = I, the computed step p amounts
to a simultaneous version of the fast ALS updates of Algorithm 4.1. Indeed, we then

have that p = M−1BJ ·
(
−2∂fBTD

∂z

)
, of which the pth component B(p) is given by

B(p) = −2
∂fBTD

∂A(p)
·W {p}

−1
= −A(p) + T(p) · V

{p} ·W {p}
−1

.

The pth factor matrix of the next iterate A(p) +B(p) is hence equal to that obtained
by a fast ALS update in which the updated factor matrices are not used to recompute
V {p} or W {p}. This preconditioner adds only O(NR3) flop per conjugate gradient
iteration, which is relatively cheap in comparison to the computation of the scaled
conjugate cogradient that acts as the right-hand side of the linear system. In summary,
the initial solution computed by PCG with a block Jacobi preconditioner is similar
to that of an ALS update, and the effect of the off-diagonal blocks is subsequently
taken into account in an iterative manner. In this light, these matrix-free nonlinear
least squares methods can be viewed as a refinement of the alternating least squares
algorithm with simultaneous updates. The numerical experiments show that this
refinement pays off for difficult problems, and is still competitive with ALS for more
simple problems.

4.3. Computational complexity. In Section 5 we compare the accuracy and
efficiency of the algorithms discussed in this section. To this end, we express the
amount of effort required to reach a certain precision in terms of a unit of work which
we define to be one evaluation of the objective function fBTD. Table 4.2 gives an
overview of some of these algorithms’ computational complexity in flop per iteration
(cf. Appendix A for the derivation). In the numerical experiments, we use this
table to estimate the total amount of floating point operations and then divide by the
number of floating point operations equivalent to one function evaluation to obtain an
equivalent number of function evaluations. For example, alternating least squares with
fast updates requires a number of floating point operations per iteration equivalent
to the cost of N + 1 function evaluations.

Aside from the substantial reduction in floating point operations that the inexact
nonlinear least squares methods offer, they also require significantly less memory in
comparison to their exact counterparts. The exact methods need O(N2R2I2) memory
cells to store the Jacobian’s Gramian, while the inexact methods only require O(NR2)
memory cells, the same amount of memory that the alternating least squares algorithm
with fast updates requires. Furthermore, it is to be expected that the Gauss–Newton
with dogleg trust-region strategy is more efficient than the Levenberg–Marquardt
method; the former only solves one system involving the Jacobian’s Gramian per
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iteration, while the latter solves such a system every inner iteration. We also note
that nonlinear conjugate gradient [2, 40] and exact Levenberg–Marquardt [24, 39, 58]
have been applied to the real CPD before. For an overview and comparison of existing
algorithms for the CPD, see [10] and [59], respectively.

Algorithm Complexity (flop/iteration)

ALS (fast) O(2(N + 1)RIN )
ALS (accurate) O(2(N + 1)RIN + 2NR2IN−1 − 2R3)
L-BFGS-DL O(2(N + itdl)RI

N )
L-BFGS-MT O(itmt2(N + 1)RIN )
CG-MT O(itmt2(N + 1)RIN )
LM O(2(N + itlm)RIN + itlm

1
3N

3R3I3)
GN-DL O(2(N + itgn)RIN + 8

3N
3R3I3)

LM (inexact) O(2(N + itlm)RIN + itlmitcg( 5
2N

2R2 + 8NR2I + 1
3NR

3))
GN-DL (inexact) O(2(N + itgn)RIN + itcg( 5

2N
2R2 + 8NR2I + 1

3NR
3))

Table 4.2
Computational complexity of several BTD algorithms in flop/iteration in case of a CPD of

an Nth-order I × · · · × I tensor in R rank-one terms. From top to bottom, the algorithms are
alternating least squares with fast updates, alternating least squares with accurate updates, limited-
memory BFGS with dogleg trust region, limited-memory BFGS with Moré–Thuente line search,
nonlinear conjugate gradient with Moré–Thuente line search, Levenberg–Marquardt, Gauss–Newton
with dogleg trust region, inexact Levenberg–Marquardt and inexact Gauss–Newton with dogleg trust
region.

5. Numerical experiments. We compare the algorithms in Table 4.2 in both
accuracy and efficiency with a number of Monte Carlo simulations. In a first set
of experiments, we are interested in the performance on real rank-(Lr, Lr, 1) block
term decompositions. In the second set of experiments, we look at the performance
on complex fourth-order canonical polyadic decompositions. All experiments were
performed in Matlab 7.13 (R2011b) on two octocore Intel Xeon X5550 CPUs with
32 GB RAM.

5.1. Computing the rank-(Lr, Lr, 1) block term decomposition.

5.1.1. Without noise.

A simple problem. First, fifty sets of factor matrices are generated, the entries
of which are pseudorandom numbers drawn from the standard normal distribution.
Each set of factor matrices corresponds to a rank-(Lr, Lr, 1) BTD in three terms,
where L1 = L2 = L3 = 3. For each set of factor matrices, we generate its associated
full 10 × 11 × 12 tensor, which is then scaled such that it has unit norm. Note that
these decompositions are generically unique since the factor matrices are generically
full column rank [13]. For each tensor, we generate another fifty sets of orthogonalized
pseudorandom factor matrices with the same dimensions as the original factor matri-
ces to use as initializations for the algorithms. The convergence criteria are identical
for all algorithms and are such that the algorithms stop if the difference in objective
function value or the difference of the solution between two successive iterates is less
than machine precision. If neither of these conditions are satisfied, the algorithms ter-
minate after a maximum of 1000 iterations. In other words, the algorithms continue
to iterate until no further improvement in the objective function can be made, or the
solution does not change, or the maximum number of iterations is reached.
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Each algorithm then attempts to decompose the fifty tensors using the given ini-
tializations, and for each attempt the attained accuracy, the number of iterations and
equivalent number of function evaluations are recorded. The accuracy is computed
as
√

2fBTD, which is equal to both the absolute and relative error of the approxima-
tion in Frobenius norm. As noted in Section 4.3, we derive an equivalent number of
function evaluations from the algorithm’s computational complexity in Table 4.2. For
many algorithms, this is just a multiple of the number of iterations. The result of each
attempted decomposition is divided into one of two classes: if the attained accuracy is
less than 10−12 and the number of iterations is less than the maximal amount, the at-
tempt is logged as successful, otherwise it is logged as unsuccessful. For both classes,
we draw a box plot of the accuracy and equivalent number of function evaluations.
Next to each box plot the relative number of decompositions belonging to that class
is printed with a green or red background, for the successful and unsuccessful class,
respectively.

We compare a total of seven algorithms: ALS with fast updates (ALS fast), ALS
with fast updates followed by ALS with accurate updates (ALS fast-acc), limited
memory BFGS with dogleg trust-region (L-BFGS-DL), limited memory BFGS with
Moré–Thuente line search (L-BFGS-MT), nonlinear conjugate gradient with Moré–
Thuente line search (CG-MT), inexact Gauss–Newton with dogleg trust-region (GN-
DL) and inexact Levenberg–Marquardt (LM). For ALS fast-acc, the result of ALS
fast is used to initialize ALS with accurate updates. As a consequence, the second
algorithm is the only algorithm which has an effective maximal amount of iterations
equal to 2000. An additional requirement for its decompositions to be labeled as
successful is that the ALS fast initialization must have also completed within 1000
iterations. For the inexact nonlinear least squares methods, we have opted to truncate
the CG iterations after a maximum of 20 iterations or when a relative residual of 10−6

is obtained, although there exist more advanced truncation strategies which take the
trust-region radius into account [38, 57]. The complex optimization algorithms were
validated independently on different optimization problems and then adapted for the
(rank-Lr ◦ rank-1) BTD.
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Fig. 5.1. Accuracy and effort for rank-(Lr, Lr, 1) block term decompositions generated with
normally distributed pseudorandom factor matrices, where L1 = L2 = L3 = 3. The algorithms are
initialized with orthogonalized pseudorandom matrices.
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The results of the first experiment are shown in Figure 5.1. All algorithms have
similar success ratios and when they are successful, they attain accuracies near ma-
chine precision with little spread. As expected, ALS fast-acc improves the accuracy
of ALS fast slightly for hardly any added cost. The most efficient algorithm in terms
of an equivalent number of function evaluations is GN-DL, followed closely by ALS.
When the decompositions are unsuccessful, ALS suffers from weak degeneracy and
uses the maximum number of iterations. In comparison, the nonlinear least squares
methods at least converge to an undesired solution with relatively little effort.

Uniformly distributed pseudorandom factor matrices. This experiment is identical
in setup to the first experiment, except that the tensors are now generated using
uniformly distributed pseudorandom factor matrices, the entries of which lie in the
open interval (0, 1). Judging from Figure 5.2, this type of decomposition seems to be
a much more difficult problem. Only the nonlinear least squares methods are able to
find a correct decomposition sufficiently often. Again, the latter methods converge
quite fast in comparison to the other algorithms, regardless if they were successful or
not. The large spread on the unsuccessful cases of the other algorithms suggests they
were converging to a correct solution, albeit very slowly.
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Fig. 5.2. Accuracy and effort for rank-(Lr, Lr, 1) block term decompositions generated with
uniformly distributed pseudorandom factor matrices, where L1 = L2 = L3 = 3. The algorithms are
initialized with orthogonalized pseudorandom matrices.

By using uniformly distributed pseudorandom factor matrices to initialize the
algorithms, many algorithms perform much better. Figure 5.3 shows that the gen-
eral unconstrained optimization techniques have drastically improved success ratios,
although their efficiency still leaves a little to be desired. The nonlinear conjugate
gradient method seems to have a little more trouble than limited-memory BFGS. This
is likely due to its limited ability of approximating the objective function’s Hessian.
ALS is the only algorithm that still has trouble converging to the desired accuracy.

Different ranks. Now we examine what happens when the terms have different
ranks. The factor matrices are generated with normally distributed pseudorandom
numbers and correspond to a rank-(Lr, Lr, 1) BTD in two terms where L1 = 4 and
L2 = 5 in Figure 5.4 and in four terms where L1 = 1, L2 = 2, L3 = 3 and L4 = 4
in Figure 5.5. Comparing Figure 5.1 with 5.4 and 5.5 shows that the success ratios
decrease significantly with an increasing number of terms of different rank. Two
terms of different rank can create additional local minima. For example, in Figure

17



10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

99%

1%
99%

1%

5%

95%

3%

97%

51%

49%

5%

95%

3%

97%

ab
s,

 r
el

 a
cc

ur
ac

y 
of

 th
e 

ap
pr

ox
im

at
io

n

ALS fast

ALS fast−acc

L−BFGS−DL

L−BFGS−MT
CG−MT

GN−DL LM

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

99%
1%

1% 5%

95%

3%

97%

51%

5% 95%

97%

3%

eq
ui

va
le

nt
 n

um
be

r 
of

 fe
va

ls

ALS fast

ALS fast−acc

L−BFGS−DL

L−BFGS−MT
CG−MT

GN−DL LM

(b)

Fig. 5.3. Accuracy and effort for rank-(Lr, Lr, 1) block term decompositions generated with
uniformly distributed pseudorandom factor matrices, where L1 = L2 = L3 = 3. The algorithms are
initialized with uniformly distributed pseudorandom matrices.

5.4, tensors are generated as the sum of a rank-(4, 4, 1) term and a rank-(5, 5, 1)
term. Initially, neither of the two terms are strongly inclined to converge to a specific
term of the decomposition and so we may expect that the rank-(4, 4, 1) term of the
initialization will start to converge to the rank-(5, 5, 1) term of the decomposition and
vice versa for roughly half of the initializations. Such a solution represents a local
minimum because there is no way for the two terms to ‘cross’ each other without
increasing the objective function value. In general, we observe that the probability
that all T terms in the optimization process converge to their corresponding term in
the decomposition is about 1

T ! for terms of distinct ranks, if these ranks are close to
each other, relative to the smallest rank and the terms have similar norm. This rule of
thumb coincides with a uniform probability of any permutation of the T terms being
picked, where only one is correct.
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Fig. 5.4. Accuracy and effort for rank-(Lr, Lr, 1) block term decompositions generated with
normally distributed pseudorandom factor matrices, where L1 = 4 and L2 = 5. The algorithms are
initialized with orthogonalized pseudorandom matrices.
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Fig. 5.5. Accuracy and effort for rank-(Lr, Lr, 1) block term decompositions generated with
normally distributed pseudorandom factor matrices, where L1 = 1, L2 = 2, L3 = 3 and L4 = 4.
The algorithms are initialized with orthogonalized pseudorandom matrices.

5.1.2. With noise. In our next experiment, we add different levels of Gaus-
sian noise to the tensors before decomposing them. We generate twenty sets of fac-
tor matrices using uniformly distributed random numbers, corresponding to rank-
(Lr, Lr, 1) block term decompositions in two terms where L1 = 4 and L2 = 5. We
then generate their associated full 10 × 11 × 12 tensors. After normalizing these
tensors, we add white Gaussian noise so that we obtain ten noise levels for each of
the twenty tensors. The noise levels correspond to the signal-to-noise ratios (SNR)
of 5, 10, 15, 20, 30, 40, 50, 100, 200 and 300 dB, where the SNR is computed as
20 log10(‖T ‖‖E‖−1) = −20 log10(‖E‖), in which T is the data tensor and E is the noise
term. For each tensor and noise level, the algorithms are initialized using fifty orthog-
onalized pseudorandom sets of factor matrices of the same dimensions as in the tensor
decomposition. A decomposition is now labeled as successful if the approximation is
as accurate or more accurate than 85% of the SNR of the tensor being decomposed.
For example, if the error Ê = T − T̂ of the rank-(Lr, Lr, 1) BTD approximation T̂
of a tensor T with 300 dB SNR is viewed as a noise term, then −20 log10(‖Ê‖) must
be at least 255 dB for the decomposition to be labeled as successful. This threshold
corresponds to an approximation error of 10−12.75 or less. Figure 5.6 shows the ac-
curacy and effort of the decompositions labeled as successful and which percentage
was successful for 10, 30, 50, 100, 200 and 300 dB SNR, while Figure 5.7 shows those
for 5, 10, 15, 20, 30, 40 and 50 dB SNR. The thresholds for a decomposition to be
labeled as successful are drawn as solid black lines in the figures showing the attained
accuracy. The y-axis ranges from 0 to 5000 for each noise level in the figures showing
the required effort, expressed as an equivalent number of function evaluations. For
each of the latter plots, the corresponding noise level is displayed on the right-hand
side.

In Figure 5.6, the success ratios surprisingly seem to increase as the SNR de-
creases. In fact, the nonlinear least squares methods reach a success ratio of 100%
near 30 dB SNR. Looking at the range of 5 to 50 dB SNR in Figure 5.7, the interval
in which the nonlinear least squares methods perform so well seems to be quite large:
between 5 and 40 dB SNR. The general unconstrained optimization methods also
benefit from a lower SNR. For very low SNRs around 5 to 10 dB, even ALS seems
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Fig. 5.6. Accuracy and effort for rank-(Lr, Lr, 1) block term decompositions generated with
uniformly distributed pseudorandom factor matrices, where L1 = 4 and L2 = 5 and different noise
levels were added to the tensors. The algorithms are initialized with orthogonalized pseudorandom
matrices.
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Fig. 5.7. Accuracy and effort for rank-(Lr, Lr, 1) block term decompositions generated with
uniformly distributed pseudorandom factor matrices, where L1 = 4 and L2 = 5 and different noise
levels were added to the tensors. The algorithms are initialized with orthogonalized pseudorandom
matrices.

to achieve a moderate success ratio. This may be misleading however, since at those
noise levels the condition for a decomposition to be successful is relatively easily ob-
tained by fitting the noise term. A possible explanation for the marked increase in
success ratios of the other algorithms is that the noise term eliminates many local
minima by providing additional descent directions in which the model can describe
the noise instead of the data. Such directions of descent may only exist if the noise
term is large enough and eventually allow the terms of the current iterate to ‘cross’
each other so that they converge to the correct terms in the decomposition. Future
research might investigate other methods of introducing new descent directions, per-
haps by means of a ‘lifting’ scheme [3], in which the model is modified instead of the
data.
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5.2. Computing the canonical polyadic decomposition. For our last ex-
periment, we generate tensors of dimensions 7×8×9×10 as rank-4 canonical polyadic
decompositions. The first rank-one term in the decomposition is an outer product of
four vectors generated using pseudorandom uniformly distributed numbers in the open
interval (0,1). The next three rank-one terms are outer products of four complex vec-
tors generated using a standard normal distribution for both their real and imaginary
part. The tensors are then normalized to have unit norm and for each tensor, differ-
ent levels of complex white Gaussian noise are added so that the resulting tensors’
signal-to-noise ratios are 5, 10, 15, 20, 30, 40, 50, 100, 200 and 300 dB. We apply
two types of initialization. For the first type, we generate fifty tensors as described
above and for each tensor, we generate fifty initializations as orthogonalized complex
pseudorandom sets of factor matrices. The second intialization is based on the gen-
eralized eigenvalue decomposition (GEVD) [33,47,48] and would in the noiseless case
compute the exact decomposition. Since the latter initialization is deterministic, we
generate 1000 tensors in the same way as before and only one such initialization per
tensor. We use the same criteria for a decomposition to be labeled as successful as in
the previous experiment. The accuracy and effort of the decompositions labeled as
successful and which percentage was successful are shown in Figure 5.8 and 5.9 for the
orthogonalized pseudorandom initializations and in Figure 5.10 for the GEVD-type
initialization.
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Fig. 5.8. Accuracy and effort for complex rank-4 canonical polyadic decompositions, where
different noise levels were added to the tensors. The algorithms are initialized with orthogonalized
pseudorandom matrices.

With random orthogonal initializations, the quasi-Newton methods have higher
success ratios than ALS, but are also about two to four times more expensive in
floating point operations. The nonlinear least squares methods are clearly the best
choice here; their success ratios are close to unity, their equivalent cost in terms of
number of function evaluations is the lowest among the algorithms, and the spread on
the attained accuracy and required effort is very small. However, when a GEVD-type
initialization is used, ALS shows markedly improved success ratios and is also very
efficient. The nonlinear least squares methods are not trailing far behind in efficiency
and still offer slightly higher success ratios than ALS, but the general unconstrained
methods perform very poorly in combination with low to medium SNR.
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Fig. 5.9. Accuracy and effort for complex rank-4 canonical polyadic decompositions, where
different noise levels were added to the tensors. The algorithms are initialized with orthogonalized
pseudorandom matrices.
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Fig. 5.10. Accuracy and effort for complex rank-4 canonical polyadic decompositions, where
different noise levels were added to the tensors. The algorithms are initialized with a GEVD-type
initialization.

6. Conclusion. The rank-(Lr, Lr, 1) block term decomposition is an emerging
decomposition for signal processing and blind source separation. We introduced the
(rank-Lr ◦ rank-1) block term decomposition as a generalization of the former and the
canonical polyadic decomposition. We then developed several algorithms for its com-
putation, among which are alternating least-squares schemes, memory-efficient uncon-
strained gradient-based optimization methods such as nonlinear conjugate gradient
and limited-memory BFGS with line search and trust-region frameworks, and matrix-
free adaptations of nonlinear least squares methods such as Levenberg–Marquardt and
Gauss–Newton. The resulting algorithms are all applicable to the canonical polyadic
decomposition, the rank-(Lr, Lr, 1) block term decomposition and their generalized
decomposition. Due to the multilinear structure of the objective function, the latter
may be expected to converge close to quadratically, especially as the residuals de-
crease. Exploiting the structure of the Jacobian’s Gramian has led to a significant
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decrease in computational complexity compared to their exact counterparts and re-
duced the memory cost to that of alternating least squares. The singularity of the
Gramian is inherently handled by the built-in regularization of the conjugate gradient
algorithm. Additionally, we reduce the number of conjugate gradient iterations with
an effective block Jacobi preconditioner. Numerical experiments confirm that these
improvements make the inexact nonlinear least squares methods among the most ef-
ficient currently available. Furthermore, they are also among the most robust; they
converge to the global optimum significantly more often than competing methods and
are also much less sensitive to the type of initialization. The algorithms discussed in
this article were implemented in Matlab and are available upon request.
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Appendix A. Computational complexity. In the following, we derive the
computational complexity per iteration of several algorithms, which can often con-
veniently be expressed in terms of a number of function evaluations. When this is
not possible, we use the parameters of the experiments to convert their total effort
expressed in floating point operations (flop) into an equivalent number of function
evaluations.

To simplify the obtained expressions, we restrict the discussion to the CPD of a
real Nth-order tensor of dimensions I1×· · ·×IN in R rank-one terms. In the complex
case, a good rule of thumb is to multiply the number of floating point operations by
a factor of four. A function evaluation of fBTD (or FBTD) then costs

O(2R
∏N
n=1 In) (Computing FBTD)

O(2
∏N
n=1 In) (Computing 1

2
‖FBTD‖2)

O(2R
∏N
n=1 In) flop.

A cogradient evaluation ∂fBTD

∂z costs the equivalent of N function evaluations, namely

O(
∑N
n=1

∏N
m=1
m 6=n

Im) (Computing all V {n})

O(2NR
∏N
n=1 In) (Computing all T (n) · V {n})

O( 1
2 (N − 1)R2 +R2

∑N
n=1 In) (Computing all W {n} and A

(n) ·W {n})

O(2NR
∏N
n=1 In) flop.

A.1. Alternating least squares. The cost of a fast ALS iteration is very simi-
lar to a gradient evaluation, with the most important difference being that the matrix-

matrix product A
(n) ·W {n} is replaced by solving a Hermitian linear system of order

R. The matrices W {n} = V {n}
H
V {n} can be factorized with a Cholesky decomposi-

tion, in which case solving all N systems costs O( 1
3NR

3 + 2R2
∑N
n=1 In) flop, which

is often negligible compared to the cost of computing the products T (n) · V {n}. Ev-
ery iteration, the objective function is also evaluated to check for convergence. The
complexity of a fast ALS iteration is hence equal to

O(2NR
∏N
n=1 In) (Computing all T(n) · V

{n}
)

O( 1
3NR

3 + 2R2
∑N
n=1 In) (Solving the linear systems)

O(2R
∏N
n=1 In) (Function evaluation)

O(2(N + 1)R
∏N
n=1 In) flop/iteration.

An accurate ALS iteration projects the rows of T(n) onto an orthogonal basis of

V {n}, instead of on V {n} itself as in a fast ALS iteration. An orthogonal basis of V {n}

can be obtained by means of a QR decomposition. These decompositions require a
total of O(−2R3 + 2R2

∑N
n=1

∏N
m=1
m 6=n

Im) flop, which is comparable in cost to a fast

ALS iteration for moderate R. Hence the cost of an accurate ALS iteration is roughly
double that of a fast ALS iteration.

A.2. General unconstrained optimization. Limited memory BFGS with a
dogleg trust-region strategy (L-BFGS-DL) requires one cogradient evaluation every
iteration and one function evaluation every inner iteration. Let itdl be the number
of dogleg iterations in each outer iteration, then the computational complexity is
O(2(N + itdl)R

∏N
n=1 In) flop/iteration.
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The general optimization methods based on a Moré–Thuente line search, require
one function and one gradient evaluation per line search iteration. Let itmt be the
number of line search iterations in each outer iteration, then L-BFGS and nonlinear
conjugate gradient with Moré–Thuente line search (L-BFGS-MT and CG-MT) cost

O(itmt2(N + 1)R
∏N
n=1 In) flop/iteration.

A.3. Nonlinear least squares. Let us first consider the exact nonlinear least
squares methods. The matrix JHJ requires O( 1

2R
2(
∑N
n=1 In)2) memory cells. Pre-

computing the Gramians A(n)HA(n) costs O(R2
∑N
n=1 In) flop. For each diagonal

block Π(n,n), the Hadamard products W {n} must be generated given these precom-
puted Gramians, which costs O( 1

2NR
2) flop given W {}. Each off-diagonal block

Π(n,m) also requires a matrix W {n,m} and a further three multiplications per en-
try. Taking the symmetry into account, this is a total of O(

∑N
n=1

∑N
m=n+1( 1

2R
2 +

3R2InIm)) flop. In the hypercubical case I = I1 = · · · = IN , the cost of evaluating
JHJ is then

O(NR2I) (Computing all A(n)HA(n))

O( 1
2NR

2) (Computing all W {n})

O(1) (Computing all Π(n,n))

O( 1
2
N(N−1)

2 R2) (Computing all W {n,m})

O(3N(N−1)
2 R2I2) (Computing all Π(n,m))

O( 3
2N

2R2I2) flop.

In each iteration of the exact Levenberg–Marquardt algorithm (LM), a linear
system involving the Gramian JHJ and the conjugate cogradient must be solved
repeatedly for different values of the regularization parameter λ until some descent
criterion is satisfied, which is checked using function evaluations. If the number of
such inner iterations in each outer iteration is denoted by itlm, the cost of the exact
Levenberg–Marquardt algorithm is given by

O( 3
2N

2R2I2) (Evaluating JHJ)

O(2NRIN ) (Cogradient evaluation)

O(itlm( 1
3N

3R3I3 + 2N2R2I2)) (Solving the linear system)

O(itlm2RIN ) (Function evaluation)

O(2(N + itlm)RIN + itlm
1
3N

3R3I3) flop/iteration.

The Gauss–Newton method with dogleg trust-region (GN-DL) solves only one
linear system per iteration. The trust-region subproblem is then iteratively minimized
along a line connecting the resulting Gauss–Newton step (4.8) and the steepest descent
direction. These inner iterations each require one function evaluation to check if the
model is sufficiently accurate. Unfortunately, the system JHJ is always singular and
a filtered solution should be computed. One way of obtaining an accurate filtered
solution is by means of the singular value decomposition, which in this case costs
O( 8

3N
3R3I3) flop. Let itgn be the number of inner iterations in each outer iteration,

then the cost of the exact Gauss–Newton algorithm with dogleg trust-region is given
by

O( 3
2N

2R2I2) (Evaluating JHJ)

O(2NRIN ) (Cogradient evaluation)

O( 8
3N

3R3I3) (Solving the linear system)

O(itgn2RIN ) (Function evaluation)

O(2(N + itgn)RIN + 8
3N

3R3I3) flop/iteration.
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In the proposed inexact adaptations of these nonlinear least squares methods,
the Levenberg–Marquardt and Gauss–Newton steps are solved iteratively using a
preconditioned conjugate gradient algorithm. To compute the matrix-vector product

JHJ ·p, where p is defined as in Theorem 4.6, the matrices A(n)TA
(n)

and B(n)TA
(n)

should first be precomputed (the former need only be computed once). These products

cost O(R2
∑N
n=1 In) and O(2R2

∑N
n=1 In) flop, respectively. The contribution of the

diagonal blocks Π(n,n) · vec(B(n)) is obtained by first computing W {n} from W {} and

then the matrix products B(n) ·W {n}, which costs a total of O(
∑N
n=1( 1

2R
2 + 2InR

2))
flop. There are several ways to compute the contribution of the off-diagonal blocks.
We propose to compute them row by row, which has the advantage that only one
multiplication by A(n) is needed per row. The cost of the contribution of the off-
diagonal blocks can then be shown to be O(

∑N
n=1( 1

2R
2 + 1

2 (N − 1)R2 + (N − 1)R2 +
(N − 2)R2 + 2InR

2)) flop. Applying a block-diagonal preconditioner costs a further

O( 1
3NR

3+2R2
∑N
n=1 In) flop per conjugate gradient iteration. Let itcg be the number

of conjugate gradient iterations required to solve the linear system to a prescribed
accuracy, then the inexact Levenberg–Marquardt and Gauss–Newton algorithms cost

O(2NRIN ) (Cogradient evaluation)

O(itlmitcg( 5
2N

2R2 + 8NR2I + 1
3NR

3)) (Solving the linear system)

O(itlm2RIN ) (Function evaluation)

O(2(N + itlm)RIN + itlmitcg( 5
2N

2R2

+ 8NR2I + 1
3NR

3))
flop/iteration

and

O(2NRIN ) (Cogradient evaluation)

O(itcg( 5
2N

2R2 + 8NR2I + 1
3NR

3)) (Solving the linear system)

O(itgn2RIN ) (Function evaluation)

O(2(N + itgn)RIN + itcg( 5
2N

2R2

+ 8NR2I + 1
3NR

3))
flop/iteration,

respectively.
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