

High-Level Descriptions for Multimodal
Interaction in Virtual Environments

Abstract

Designing non-traditional user interfaces is a

challenging task for designers. NiMMiT, a high level

description for 3D multimodal interaction in virtual

environments, provides a means to design, prototype

or communicate about interaction techniques. The

focus is on making it possible for designers to create

new interaction techniques while lowering

implementation efforts.

Keywords

Multimodal, Interaction techniques, high-level

descriptions

Introduction

User interface design for non-WIMP interfaces is a real

challenge; tools for the creation of such interfaces are

rather seldom than common. A 3D (multimodal) user

interface for a virtual environment not only consists of

traditional WIMP interface elements. The user also

needs to be able to interact with the virtual

environment such that he/she can navigate the virtual

world or select and manipulate virtual objects.

In order to facilitate the design of these multimodal

interaction techniques high-level descriptions have

been developed, such as InTml, ICO and NiMMiT.

Copyright is held by the author/owner(s).

CHI 2008, April 5 –10, 2008, Florence, Italy

ACM 1-xxxxxxxxxxxxxxxxxx.

Chris Raymaekers

chris.raymaekers@uhasselt.be

Lode Vanacken

lode.vanacken@uhasselt.be

Joan De Boeck

joan.deboeck@uhasselt.be

Karin Coninx

karin.coninx@uhasselt.be

Hasselt University

Expertise Centre for Digital Media

and transnationale Universiteit

Limburg

Wetenschapspark 2,

3590 Diepenbeek, Belgium

 2

In the following sections we will discuss NiMMiT, our

own high-level description, followed by an example.

Problems and drawbacks of our notation are thereafter

elaborated on.

NiMMiT

NiMMiT, Notation for MultiModal Interaction Techniques,

is a graphical notation, inheriting the formalism of a

state-chart in order to describe multimodal interaction

within virtual environments. Furthermore, it also

supports dataflow which is important in the user

interaction, as well. A more detailed description of

NiMMiT can be found in [1]. We shortly describe the

most important primitives of NiMMiT. An example of a

NiMMiT diagram can be seen in figure 1.

NiMMiT is basically a state chart, in which a state

(represented as a circle) indicates the possible events

the user can provide and to which the application

listens.

An event is an action a user can perform, such as

moving a pointing device, speaking a command,

clicking a button, etc. When an event or a combination

of events has occurred, the associated arrow, points to

a task-chain (big rectangles) that is to be executed.

A task-chain is a linear succession of tasks that are

executed one after the other. When a task-chain is

finished, a state-transition occurs (light, green, arrow)

bringing the interaction into a new state, responding to

another set of events.

A task (smaller rectangle in a task-chain) is a set of

actions defined to `reach a goal'. Tasks are mostly

predefined, such as querying device positions and

calculating collisions, in order for the designer to easily

pick them from a list. For specialised actions, however,

custom tasks can be written either using LUA script or

C++ code.

NiMMiT also supports dataflow between different tasks.

Labels (high level variables) are used to save output

from a task (output ports are depicted as small squares

at the bottom right of the task symbol), or to provide

input to a task (input ports are depicted at the top-left

of a task).

In order to support the evaluation of interaction

techniques, NiMMiT employs a mechanism, called

probes. (not depicted in figure 1) These allow

measuring the different states, transitions and labels at

different moments during the interaction [2]. This

information can further be filtered and logged to disk.

Recently, we also added support for contextual and

semantic information [3]. Information from an

ontology, describing the virtual world, can be used with

this extension of NiMMiT to define extra constraints

within an interaction technique. For example, with an

interaction for opening a door, one can specify in the

NiMMiT diagram that the object being manipulated

must be a door, without having to hard-code this

constraint. By changing the constraint, we can for

instance also use this interaction technique for opening

windows.

Example

An example of NiMMiT diagram representing a grab

metaphor is depicted in figure 1. In this interaction

technique the user first selects the object through a

selection technique. Afterwards the object moves

according to the movements of the pointing device. If

 3

the user is satisfied with the new position, the object

can be released with a button press.

Figure 1 An example of a NiMMiT Diagram. This diagram

represents a grab Interaction Technique.

The start state (Start) uses the idle event, which is

fired immediately. This triggers the Selection task-chain

which performs a selection technique namely Ray

Casting, which in itself is defined by a NiMMiT diagram.

The result is stored in the label selectedobject. After

execution of the task-chain a state transition is

performed to the Manipulation state. This state listens

to two events, a button press and a move event from a

pointing device. The move event triggers the Move

Object task-chain which moves the selected object

according to the movement of the pointer device. If

button 2 is pressed the Deselect task-chain is executed

which deselects the selected object and ends the

interaction technique.

Strengths

NiMMiT allows the designer to communicate about the

functionality of an interaction technique through an

easy-to-read diagram which can be the basis for

exploratory prototyping (with other stakeholders).

NiMMiT diagrams can be created using a tool, called

CoGenIVE, which can save the diagrams in an xml-

format. As this format can be interpreted by our

application framework for virtual environments, we can

support prototyping of multimodal interaction

techniques.

The combination of state charts and the dataflow

mechanism in NiMMiT works very well for designing

interaction, typically during interaction the user reaches

different interaction states and produces data as a

result of interacting which sometimes has to be

transferred for further usage.

Finally, hierarchical reuse of interaction techniques is

supported. An interaction technique can function as a

task, as well, allowing to reuse earlier developed

interaction techniques.

 State (start)

Task-chain

Hierarchical Task

Event

Label

Predefined

Task

 4

Problems and Drawbacks

Experience from using NiMMiT has brought up some

problems and drawbacks. We will discuss them in this

section.

In the example of figure 1 the user’s first task is to

perform a selection of an object. If the user does not

succeed in selecting an object, a rollback mechanism is

executed to undo the steps already taken. For this

purpose, every task contains information needed to be

able to ‘unperform’ itself, but unfortunately this is not

always very straightforward. For example if the user

deleted an object during a physical simulation, the

entire simulation would have to move back in time.

Alternatively, the designer could indicate how to handle

the errors or introduce a cancellation process, but this

would increases the design complexity.

For complex interaction techniques, state explosion, a

common problem in state diagrams, can occur. A

solution for this problem is not straightforward and we

are exploring the possibility of using preconditions at a

task-chain or event level.

Another aspect that needs more attention is the

incorporation of output modalities, such as haptics and

audio. For now, these are always added in a diagram

through the addition of a custom task which is scripted

or coded. Thus, if a designer would like to add a certain

force feedback effect during a manipulation interaction

technique, a custom task has to be designed which

creates the appropriate force feedback. A better

approach of adding such types of feedback is necessary

as visual feedback is currently better covered by

predefined tasks such as ‘highlightobjects’.

Status and Future Work

In our current framework and model based

development process NiMMiT is continuously being

used. The tool CoGenIVE makes it possible to design

and execute NiMMiT diagrams interactively. In the

future we would like to concentrate on the problems

and drawbacks discussed earlier, in particular how to

solve the state explosion problem elegantly and

intuitive error handling. The integration of semantic

information in NiMMiT seems to be a valuable feature.

It might become even more beneficial if automatic and

dynamic coupling to predefined tasks exists instead of

having to use predefined tasks to introduce semantics.

Acknowledgements

Part of the research at the Expertise Centre for Digital

Media is funded by the ERDF (European Regional

Development Fund), the Flemish Government and the

Flemish Interdisciplinary institute for Broadband

Technology (IBBT). The VR-DeMo project (IWT 030248)

is directly funded by the IWT, a Flemish subsidy

organization.

References
[1] De Boeck, J., Vanacken, D., Raymaekers, C. and
Coninx, K. High-Level Modeling of Multimodal
Interaction Techniques Using NiMMiT, Journal of
Virtual Reality and Broadcasting, 4:2, non-periodical,
ISSN 1860-2037.

[2] Coninx, K., Cuppens, E., De Boeck, J. and
Raymaekers C. Integrating support for usability
evaluation into high level interaction descriptions with
NiMMiT, DSVIS 2006, LNCS, volume 4323, pp. 95-108

[3] Vanacken, L., Raymaekers, C. and Coninx, K.
Introducing Semantic Information during Conceptual
Modelling of Interaction for Virtual Environments, MISI

2007 (WS at ICMI 2007) (in press).

