Comparing NiMMiT and Data-Driven Notations
for Describing Multimodal Interaction

Joan De Boeck, Chris Raymaekers, and Karin Coninx

Hasselt University, Expertise Centre for Digital Media (EDM)
and transnationale Universiteit Limburg
Wetenschapspark 2, B-3590 Diepenbeek, Belgium
{joan.deboeck, chris.raymaekers,karin. coninx}@uhasselt.be

Abstract. In the past few years, multimodal interaction is gaining im-
portance in virtual environments. Although multimodality makes inter-
action with the environment more intuitive and natural for the user, the
development cycle of such an environment is often a long and expensive
process. In our overall field of research, we investigate how model-based
design can help shorten this process by designing the application with
the use of high-level diagrams. In this scope, we developed ‘NiMMiT”’,
a graphical notation especially suitable for expressing multimodal user
interaction. We have already experienced the benefits of NIMMIiT in sev-
eral in-house applications, and are currently assessing the value of NiM-
MiT with respect to existing notations. In this paper we report on our
comparison of NIMMIiT against some well known data-driven modeling
notations.

Introduction

Interactive Virtual Environments (IVEs) are computer generated worlds that
allow the user to intuitively interact with the data or objects in this world.
To improve the intuitiveness of the interaction, the communication between the
human and the system often is multimodal: information is not only exchanged
visually and kinesthetic, but also via haptics, sounds or spoken messages. Due
to the complexity of the virtual worlds, and the complexity of the human senses,
designing such IVEs is more often than not a very time consuming and expensive
process.

For several years, our lab has been conducting research on optimising in-
teraction in IVEs using multimodal techniques. Several solutions using force
feedback [1], speech or two handed input [2] already have been described in our
former work. Even though we have gradually developed a code framework, each
solution ended up in hundreds of lines of code to be written before being able
to use the proposed interface. To shorten the design and development cycle, we
developed NIMMiT (Notation For Multimodal Interaction Techniques), a visual
notation optimised to describe human interaction in such IVEs.

NiMMiT has already shown its usefulness in several in-house applications,
and will soon be integrated in other domains and other frameworks. At the

same time, there is a growing need for tool support. NIMMiT has been devel-
oped, driven by the specific needs to model multimodal interaction techniques
at a high level, minimising the amount and the complexity of the code to be
written. For the development of NIMMiT we conducted a thorough research and
studied several other existing graphical notations. As our current experience,
and the future applications allow us to conclude that the NiMMiT approach
looks promising, we decided to perform a more formal evaluation of the current
version of NIMMiT against other existing solutions. In this paper, we will specif-
ically focus on the data-driven notations, other state-driven notations will be
evaluated similarly in our next work.

In the next section, we first briefly explain how we developed NiMMiT. There-
after, we show the basic building blocks of our notation. In section 3, as an
example, we explain the Voodoo-Dolls interaction technique [3] using NiMMiT.
Subsequently, we try to express the same technique using some other diagrams.
Finally we discuss the comparison of the different notations and state our con-
clusions.

1 Describing User Interaction

A possible solution to shorten the development cycle of an interaction technique
(IT) is to describe the interaction, rather than implementing it. The description
can be performed using a high-level graphical notation. The proposed notation
should be suitable for

— allowing designers to communicate about the functionality of an IT, using
an easy-to read diagram

— allowing an application framework to interpret (an XMI-based equivalent
of) the diagram, so it can be used for automatic execution.

The notation must provide enough low-level information for a framework to
execute the diagrams, but it also needs to be high-level and easily readable for
a designer to reason about the IT. Several general notations exist, such as State
Charts [4], Petri-nets, Coloured Petri-nets [5] and UML [6]. Other notations, are
extended or optimised to support user interaction in particular. Examples are
InTml [7], ICon [8] and ICO [9][10].

To our opinion, to describe interaction, a notation should also satisfy the
following criteria:

Event Driven: Interaction techniques are inherently driven by user-initiated
actions, which we define as events. Human interaction is multimodal by
nature. Multimodality can be seen as a combination of unimodal events (e.g.
pointer movement, click, speech command, gesture, etc.). Hence, events are
‘the initiators’ of the interaction.

State Driven: While interacting with it, the system not always has to respond
to all available events. Mostly, certain events must have been occurred before
other events are enabled. Therefore, we define an IT as a finite state machine,

wwwww

.DOMINANT.MOVE

‘‘‘‘‘‘

Fig. 1. NiMMiT Diagram of the VooDoo-doll interaction Technique

in which each state defines to which events the system will respond. The
occurrence of an event invokes some action to the system, followed by a
state transition.

Data Driven: Limiting our vision on interaction techniques solely to a finite
state machine would be too restrictive, and it would violate the requirement
of automatic execution. It is clear that user interaction implies some impor-
tant data flow, internally (e.g. the collision between the virtual hand and
an object in order to move that object). Obviously, certain data must be
exchanged between the different actions within the interaction technique.

Hierarchical Reuse: Some subtasks of interaction techniques recur rather fre-
quently. Selecting objects is an example of a very common component. When
modelling a new interaction technique, the designer should be able to reuse
descriptions that were created earlier. Therefore, the notation should support
a hierarchical build-up, so an existing diagram of an interaction technique
can be reused as a subtask of a new description.

Based upon the aforementioned existing notations, combined with the require-
ments to describe interaction, we developed NIMMiT. In the next section, we
will briefly give an overview of the NIMMIiT syntax.

2 NiMMiT Primitives

Based upon the strengths of the existing notations, we developed NiMMiT, to
fulfill the special needs described in section 1. More details and other examples
can be found in our previous publications [11][12]. In this section, we will briefly
introduce the basic building blocks of the notation, after which, in the next
section, the VooDoo-Doll interaction technique is shown as an example.
Basically, a NIMMIiT diagram can be seen as a state transition diagram. At a
certain time, the IT resides in a certain state, responding to certain events. These
events can be multimodal by nature: gesture recognition, speech recognition,
button clicks,. .. The recognition of an event triggers an activity, changing the
inner state of the application. Thereafter a transition to a next state is performed.
We define the following basic elements (these can be recognised in figure 1):

State: A state is depicted as a circle. The interaction technique starts in the
start-state, and ends with the end-state (if applicable). A state defines a set
of events to which the system responds.

Event: An event is generated by the framework, based upon the user’s input. A
combination of events can be multimodal, containing actions such as speech
recognition, gestures, pointer device events and button clicks. A single event
or a specific combination always triggers the execution of a task chain. Events
are depicted as an arrow pointing away from the state.

Task Chain: A task chain is initiated by an event and is depicted as a shaded
rectangle in the diagram. A task chain is a linear succession of tasks, which
will be executed one after the other.

Task: A task is a basic building block of the actual execution of the interaction
technique. Typically, tasks access or alter the internal state of the applica-
tion. E.g., when running in a typical 3D environment, a task can be ‘collision
detection’, ‘moving objects’, ‘playing audio feedback’,...Tasks can be pre-
defined by the system, but designers can also define their own custom tasks
using C++ or a scripting language. Tasks can have input and output ports,
on which they receive or send parameters or result values. Input ports are
required or optional, indicated by a black or a grey input port respectively.

Labels: As data can be shared throughout a diagram, NiMMiT needs a system
to (temporarily) store values. This is done in ‘labels’, which can be seen
as high-level variables. Labels are depicted in the diagram beside the task
chains and are always connected to the input or output ports of a task.

State Transitions: Finally, when a task chain has been executed completely,
a state transition moves the diagram into the next state. A choice between

multiple state transitions is also possible, based upon the value of a certain
label.

Fig. 2. Execution of a NIMMIiT Diagram

A NiMMiT diagram does not support concurrency in principle, but several di-
agrams can run simultaneously and can be synchronised at any time. More
advanced multimodality such as complementary and redundancy as described
in [13] are possible. This is described more in detail in [12].

To meet our requirement of execution, a diagram is saved to an XML equiv-
alent. That XML is read and interpreted by an application framework, as shown
in figure 2.

3 Evaluation Approach

In this section, we will first define the evaluation criteria, which we will adopt for
the assessment. Then, we will explain the VooDoo-Dolls interaction technique [3]
as a case study. In the next section, we first elaborate on VooDoo-dolls, using
NiMMiT. Subsequently, we try to describe the same IT using other data-driven
notations. We opted to elaborate on InTML and UML: InTML, because it is a
purely data-driven notation, and UML as it is the most fundamental standard.
Finally, we discuss the different diagrams and their suitability to describe ITs
against the defined criteria.

3.1 Evaluation Criteria

The evaluation of graphical notations is not an exact process which often results
in variegated and/or subjective conclusions. To minimise the impact of subjective
impressions, we will first define on which criteria the notations will be evaluated,
however one can criticise that selection of criteria is subjective in some respect,
as well. The criteria are based on Green’s ‘Cognitive Dimensions of Information
Artefacts’ [14][15]. Cognitive Dimensions are, as the author says, ‘discussion tools
that give names to concepts that their users may only have half-formulated’. The
CD framework comes with 14 dimensions which focus on different aspects of the
notation. Each dimension can either be positive or negative, dependent on the
application in which the notation is applied. Green distinguishes four possible
applications:

Incrementation: Adding new information; e.g. writing a new piece of program-
ming code.

Transcription: Translating from one system to another; e.g. copying book de-
tails to an index card.

Modification: Changing existing information; e.g. rearranging and changing
some parts of a flowchart.

Exploratory design: Combining incrementation and modification, with the
characteristic that the desired end state is not known in advance; e.g. sketch-
ing, programming on the fly (hacking).

In our research domain, exploratory design is one of the most important ap-
plications of a high-level notation. As the notation is mainly intended to easily
design, try and modify interaction techniques, a diagram is often designed step
by step in a trial-and-error manner. Since the evaluation of a dimension is highly
dependent on the application, we evaluate the selected notations in the scope of
‘Exploratory design’.

The CD framework defines the folowing cognitive dimensions: abstraction,
hidden dependencies, premature commitment, secondary notation, viscosity, vis-
ibility, closeness of mapping, consistency, diffuseness, error-proneness, hard men-
tal operations, progressive evaluation, provisionality, role-expressiveness.

In the scope of this paper, and the evaluation of the particular notations, the
following dimensions are relevant:

Abstraction is a grouping of elements to be treated as one entity. The ab-
straction barrier is the minimum number of abstractions that must be
known before the notation can be used. Abstraction tolerant systems al-
low users to make their own abstractions, but don’t require to do so. In our
solution we strive to a low abstraction barrier, but an abstraction tolerant
notation.

Diffuseness expresses the verboseness of a notation. A notation for interaction
techniques must be not to diffuse.

Role-Expressiveness describes how easy it is to distinguish the different com-
ponents or logical blocks in a notation. It is clear that the notation in our
application must be as role-expressive as possible.

Viscosity is the resistance of a notation to change, or in other words the impli-
cations of a small change on the entire diagram. As we take the exploratory
design as the main application for the notation, a high viscosity is adverse.

Progressive Evaluation means that the work in progress can be easily checked
for as far as it is finished. This means that only a part of the entire solution
can be evaluated. It is clear that in exploratory design, this is important.

Premature Commitment expresses in what amount a designer must make
some decisions in advance before the proper information is available.

3.2 VooDoo-Doll Interaction Technique

In order to assess the selected notations, we have chosen to elaborate on the
VooDoo-Dolls interaction technique [3], because it is a well known two-handed
metaphor, which results in fairly easy diagrams in all notations, while still de-
manding most of the requirements of multimodal interaction. We will assume
that if this IT can be easily modelled using the evaluated notations, there is a
good chance that other techniques will fit, as well.

Voodoo-Dolls is a two-handed IT used to manipulate (distant) objects in
3D. By moving one of the hands, a crosshair cursor (attached to that hand) is
moved accordingly. If the cursor moves over an object and the index and thumb
of that hand are closed (‘pinch’-event) a ‘doll’ is created and attached to the
corresponding hand. A doll is a representation of the original virtual object,
but scaled and attached to the movements of that hand. As soon as two dolls
are defined, the manipulation phase of the IT starts. By moving the doll of the
dominant hand, with respect to the doll of the non-dominant hand, the original
object is moved with respect to the other object. When the thumb and the index
are released, the doll is removed and the original object keeps its new location.
The aim of this IT is to manipulate objects at any scale (close-by and far) with
respect to each other. E.g. if the user creates a doll of a tea-pot in the dominant
hand, and a table on the other side of the room in the non-dominant hand, he
can easily put the pot on the table by moving both dolls with respect to each
other.

4 Evaluation Results

4.1 NiMMiT
NiMM:iT Diagram

Referring to figure 1, the IT starts in the ‘Select’-state. Here the system re-
sponds to four events: either a move of the dominant or the non-dominant hand,
or a ‘pinch’ (closing thumb and index) of one of the hands. If a ‘pinch’ occurs,
dependent on the hand, one of the task chains at the right side of the diagram
is executed, creating a doll for that hand. Each time one of the hands moves,
the crosshair cursors of both hands are updated and the system checks if there
are already two dolls present. If not, a state-transition to the original state is
performed. Otherwise, we arrive at the ‘VooDoo’-state. If the hands are moved
now, the activated task chain calculates the object’s new position with respect
to the reference object (attached non-dominant hand’s doll), and the object and
the dolls are moved accordingly. When the user releases the pinch of one of the
hands, a transition to the ‘Select’-state is performed and a new doll can be made.

FEvaluation

If we compare the NIMMiT diagram against the aforementioned criteria, we see
that NIMMiT has a reasonable abstraction barrier, since it consists of about 10
constructs. It is allowed for a designer to define custom abstraction at the level
of hierarchical diagrams. Concerning the diffuseness, there are no unnecessary
structures, although one can have objections against the explicit internal labels
within a task chain (see bottom-most task chain in figure 1). As there is a clear
syntactic difference between states, task chains, events and transitions, the nota-
tion is enough role-expressive. The viscosity is reasonable, although changes
in a task-chain can have an influence on the data flow of the entire diagram.
As the diagram must not be fully functional before it can be run, progressive
evaluation is supported. Finally, as a drawback of any graphical notation, some
premature commitments are required for positioning the primitives within
the diagram.

4.2 InTML
InTML Diagram

InTML [7] is a purely data-driven notation to describe the execution of an
application at a high level. It does not support states, but uses ‘filters’ instead.
A filter can be seen as a ‘black box’, performing some activity based upon its
inputs, while returning the output at its output ports. Important to know is that
the control flow of the diagram is implicitly driven by the data, as a filter is only
executed as soon as it contains a valid input on all of its input ports.

Figure 3 shows a possible diagram in InTML of the VooDoo-Dolls interaction
technique.

At the left hand side, the user’s input is shown. The positions of the user’s
dominant and non-dominant hand always are valid inputs. Hence, the filters
moving the cursors (crosshairs) are constantly executed. As soon as the user
closes the thumb and the index of a hand, the ‘Pinch’-variable becomes valid,
and a doll is created. The ‘Create Doll’ filters create a doll from the object which
is indicated by the crosshair cursor. It returns the object and its doll. As soon as
both dolls are created, the ‘checkdolls’ filter returns ‘true’, as it has a valid input
on all ports. The returned value activates the ‘MoveDolls’ and ‘MoveObject’
filters, which moves the dolls and the object according to the movements of the
user’s hands. As soon as a pinch is released and a valid doll exists, the doll is
released in the ‘ReleaseDoll’ filter.

Fvaluation

InTML has a minimal abstraction barrier, as it only consists of three con-
structs. However, to our knowledge, the notation does not allow users to define
their own abstractions. The low barrier, however, means that the diffuseness
will increase, as for more complex structures more primitives are needed. This

PainterPesition 1 MovePainter!

PointerPesition 2 (O— MovePointer2
%] Check Dolis

-
=
Dail 1 \sok—————— MaveObject

1 -
Binghi o | Create Doll Qnjeett -

Dol 2

MoveDalls

| I—
2
[
iwliv

Create Dall2 Objectz

-
Pinch2 (]

L Objectl g

Poll__p! FieleaseDolll
~Pinch1 (O— 1

Objectz

Dot gl FeleaseDoll2
~Pinch2 (O—

Fig. 3. InTML Diagram of the VooDoo-doll Interaction Technique

will have its implications to the viscosity, as well. E.g. if the ‘Object In Hand’
metaphor [2], with more mutual exclusive phases should be described, more
additional filters will be necessary to enable or disable certain parts of the dia-
gram. Moreover, if one of the first filters must be changed, it has implications
on all subsequent filters. Next, in our opinion, the role-expressiveness of the
notation is not optimal, since recognising functional blocks in the diagram is
only based upon their location. Although difficult to check in practice, we can
imagine that progressive evaluation is supported so that it is not required to
finish the entire diagram before it can be tested. Finally, here again premature
commitments are required for the positioning of the notation’s primitives.

4.3 UML Activity Diagrams

UML Diagram

Figure 4 shows the same interaction technique, modelled using UML activ-
ity diagrams. We start at the topmost node, where we wait for the occurrence of
one of the events. When a pinch is recognised, the doll belonging to that hand is
created, and it is saved in a datastore. When the hands are moving, the crosshair
cursors are constantly updated, and the ‘CheckInput’ activity checks if two dolls
are currently present. When the check fails, the current node is repeated.

As soon as two dolls become available, the bottommost node is executed.
Each time one of the hands is moved, the new position of the dolls and the objects
is calculated. The objects are moved accordingly, restarting the same activity
node again. When a pinch of one of the hands is released, an interruptible edge
brings the token back to the first activity node.

<<structureds=>

g Dominant.Finch Non-dominant.Pinch

Dominant.Move Non-dominant.Move ‘

<Lstryctureds >

|

|

|

|

1 N i
(@emepon f— [S }
|

|

|

|

|

|

.

((GetPointer Position) MoveCross Hair |
/' Dalll, /

I

I

I

! porms

| [—

I

I

| objecra | Object1
I

!
Painter rj(mummuhjmﬂe"'
— 1)
.

Objectl

—
/[(metklnpmjjeﬂmu!

<<datastores>>

<<structureds

Dominant.Move | Dominant.

“CsTructured > » ObjectPos@Rgt.

Fig. 4. UML Activity Diagram of the VooDoo-doll interaction Technique

Fvaluation

The UML abstraction barrier is somewhat higher. In this diagram only 11
constructs are used, but inherently, as the standard is more extensive, it is not
inconceivable that more structures must be known. UML allows for user defined
abstraction but does not requires this, which is the approach we prefer. The
diffuseness of the notation is good, however when we do not define specialised
stereotypes, there is some overhead of specific structures (such as datastores,
structured activity nodes and interruptable regions) which are needed for syn-
tactic and semantic correctness. The role-expressiveness and the viscosity
are acceptable, although there is no syntactic difference between control flow and
data flow, which can be seen as a minus. Finally, it appears that progressive
evaluation can be supported. Finally, within UML, once again, premature
commitments are required for the positioning of the primitives, resulting in a
higher viscosity.

4.4 Discussion

We can summarise the results for the cognitive dimensions in the main applica-
tion of an exploratory design as shown in table 1.

Comparing the three notations to each other, we can notice that InNTML has
a minimal abstraction barrier with only three constructs. However this will lead

Table 1. Cognitive Dimensions for the notations

InTML UML NiMMiT
Abstraction Minimal barrier Acceptable barrier| Acceptable barrier
No additional abstr Abstr Tollerant Abstr Tollerant
Diffuseness Quite Verbose Some overhead of | Some overhead of
extra structures internal labels
Role-Expressiveness| Functional blocks only Acceptable States and Tasks are
recognisable by location well distinguishable
Viscosity Strong implications Some data flow Some data flow
in subsequent filter issues issues
Progressive
Evaluation Supported Supported Supported
Premature
Commitment Only for location Only for location | Only for location
of primitives of primitives of primitives

to a higher diffuseness. Moreover, IN'TML has no support for other user-defined
abstraction. In contrast, UML and NiMMiT use a higher but comparable number
of constructs. This makes the abstraction barrier higher, but still acceptable.
Both notations have some syntactical overhead, but they do not form a real
problem concerning the readability of the diagrams.

The roll-expressiveness of INTML is low. As a result of the low number
of constructs, the only way to distinguish functional blocks is by their location.
The role-expressiveness of UML is significantly better, but we regret that there
is no syntactic difference to indicate data flow and control-flow, as we prefer to
see both as separate entities within an interaction technique. Because NIMMiT
makes a clear syntactic distinction between states, events, tasks and transitions,
we prefer the role-expressiveness of NIMMiT.

Diagrams in InTML can quickly grow as the interaction technique consists
of more mutual exclusive phases, resulting in a higher viscosity. Moreover,
InTML is based on the principle of executing filters as soon as it receives a
legal value on all of its input ports. This means that a change to a filter, will
inherently propagate to the next filters, resulting in a higher viscosity, again.
UML and NiMMiT appear to have a similar viscosity. Changes to the diagram
will inherently have implications to the data flow of the remainder of the diagram;
however, as data flow is not the main aspect of the diagram, the impact will be
lower as with InTML.

Finally, it appears that all notations support progressive evaluation, which
is desirable in the context of an exploratory design. Since IN'TML, NiIMMiT and
UML are all graphical notations, they all require some premature commit-
ments with respect to the location of the primitives. As far as we can see, this
is the only occurrence of premature commitments, which is acceptable.

In summary, we can conclude that, according to the proposed criteria, InNTML
is less suitable to describe user interaction, in the experimental environment in
which we want to apply it. NIMMiT and UML are very similar and are both

suitable. The overhead of the UML notation in the example can be easily reduced
by defining suitable stereotypes. However, we are somewhat concerned about the
underlying complexity of the entire UML standard, which must be known for
the integration of frameworks for automatic execution and the development of
tool support. Using stereotypes will facilitate the use of the notations, but will
even increase this underlying complexity. UML is indeed a very general and
powerful standard, but only a very small part of it is applicable for describing
user interaction. On the other hand, NiIMMiT is especially designed for describing
user interaction, and is therefore more dedicated to this domain.

Keeping the findings above in mind, it is difficult to make an exclusive choice
between both notations. However, the research in this paper has led to some
concrete recommendations for the NIMMIiT syntax to be improved, such as the
removal of internal labels within a task chain, or an improved abstraction toler-
ance so that complex diagrams can be simplified by user defined abstractions.

5 Conclusions and future work

We evaluated NiIMMIiT, a graphical notation dedicated to describe interaction
techniques against other existing data-driven notations. Compared against cri-
teria, based on Green’s ‘Cognitive Dimensions’, we can conclude that purely
data-driven notations (such as INTML) are less suitable to describe interaction
techniques. The general standard UML appears to be comparable to NIMMiT.
However, we still have our concerns to adopt the UML standard, as this will
complicate the development of tool support and the integration of interpreters
in our model-based approach.

As a result of this research, we will concretely update the NIMMiT notation,
and at the same time keep an eye on the usage of UML in the domain of VE-
development.

As stated in the introduction, this paper focussed on the comparison of NiM-
MiT against data-driven alternatives, in particular. In a next step, we plan to
evaluate NIMMIiT in a similar way against the family of the state-driven nota-
tions, such as Petri-Nets and 1CO.

Acknowledgements

Part of the research at EDM is funded by ERDF (European Regional Develop-
ment Fund), the Flemish Government and the Flemish Interdisciplinary Institute
for Broadband Technology (IBBT).

NiMMiT has been developed within the VR-DeMo project (IWT 030248),
which is directly funded by the IWT, a Flemish subsidy organization.

The authors also want to thank Jan Van den Bergh for his valuable contri-
butions applying the UML notation.

References

10.

11.

12.

13.

14.

15.

. De Boeck, J., Raymaekers, C., Coninx, K.: Aspects of haptic feedback in a multi-

modal interface for object modelling. Virtual Reality Journal 6 (2003) 257-270
De Boeck, J., Cuppens, E., De Weyer, T., Raymackers, C., Coninx, K.: Multi-
sensory interaction metaphors with haptics and proprioception in virtual environ-
ments. In: Proceedings of the third ACM Nordic Conference on Human-Computer
Interaction (NordiCHI 2004), Tampere, FI (2004)

Pierce, J., Stearns, B., Pausch, R.: Voodoo dolls: seamless interaction at multiple
scales in virtual environments. In: Proceedings of symposium on interactive 3D
graphics, Atlanta, GA, USA (1999)

Harel, D.: Statecharts: A visual formalism for complex systems. In: Science of
Computer Programming. Volume 8. (1987) 231-274

Jensen, K.: An introduction to the theoretical aspects of coloured petri nets. In:
W.-P. de Roever, G. Rozenberg (eds.): A Decade of Concurrency, Lecture Notes
in Computer Science. Volume 803., Springer-Verlag (1994) 230-272

Ambler, S.: Object Primer, The Agile Model-Driven Development with UML 2.0.
Cambridge University Press (2004)

Figueroa, P., Green, M., Hoover, H.: InTml: A description language for VR appli-
cations. In: Proceedings of Web3D’02, Arizona, USA (2002)

. Dragicevic, P., Fekete, J.D.: Support for input adaptability in the ICON toolkit. In:

Proceedings of the 6th international conference on multimodal interfaces (ICMI04),
State College, PA, USA (2004) 212-219

Navarre, D., Palanque, P., Bastide, R., Schyn, A., Winckler, M., Nedel, L., Freitas,
C.: A formal description of multimodal interaction techniques for immersive virtual
reality applications. In: Proceedings of Tenth IFIP TC13 International Conference
on Human-Computer Interaction, Rome, IT (2005)

Palanque, P., Bastide, R.: Petri net based design of user-driven interfaces using
the interactive cooperative objects formalism. In: Interactive Systems: Design,
Specification, and Verification, Springer-Verlag (1994) 383-400

Coninx, K., Cuppens, E., De Boeck, J., Raymaekers, C.: Integrating support for
usability evaluation into high level interaction descriptions with NiIMMiT. In: Pro-
ceedings of 13th International Workshop on Design, Specification and Verification
of Interactive Systems (DSVIS’06), Dublin, Ireland (2006)

Vanacken, D.; De Boeck, J., Raymaekers, C., Coninx, K.: NIMMiT: A notation for
modeling multimodal interaction techniques. In: Proceedings of the International
Conference on Computer Graphics Theory and Applications (GRAPP06), Setbal,
Portugal (2006)

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four easy
pieces for assessing the usability of multimodal interaction: The CARE properties.
In: Proceedings of INTERACT95, Lillehammer (1995) 115-120

Green, T.: Cognitive dimensions of notations. In: People and Computers, Cam-
bridge University Press, Cambridge, UK (1989) 443-460

Green, T., Blackwell, A.: Cognitive dimensions of information artefacts: a tutorial.
http://www.ndirect.co.uk/ thomas.green/workstuff/papers/ (2005)

