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Abstract

The simulation of aeroacoustic problems sets demanding requirements on nu-
merical methods, particularly in terms of accuracy. Runge-Kutta Discontinuous
Galerkin (RKDG) schemes are increasingly popular for such applications,
because they converge at an arbitrarily high order rate, they can deal with
complex geometries, and they are amenable to parallel computing. However,
they are still considered to be computationally costly. The work presented in
this thesis aims at improving the computational efficiency of RKDG methods
for linear aeroacoustic applications.

The first part of the work is dedicated to the study of the stability and accuracy
properties that affect the performance of RKDG methods applied to hyperbolic
problems. An analysis technique inspired by the classical von Neumann method
is used to determine the stability restrictions of the schemes, as well as their
accuracy properties in terms of dissipation and dispersion. It is first used to
investigate the influence of the element shape on CFL conditions with triangular
grids, in order to improve the determination of the maximum allowable time
step in practical simulations. Alternative methods to the CFL conditions are
also devised for this purpose. Moreover, Runge-Kutta schemes specifically
designed to maximize the computational efficiency of RKDG methods for wave
propagation problems are derived.

The second part of the work deals with the application of RKDG methods to
linear aeroacoustics. RKDG formulations for the linearized Euler and Navier-
Stokes equations are introduced, along with validation cases. Then, higher-
order treatments of curved wall boundaries, needed to fully benefit from the
efficiency of high-order RKDG methods in aeroacoustic propagation problems,
are studied. Finally, the methods developed in this work are used in a hybrid
approach to characterize the acoustic behaviour of orifices in plates under
grazing flow. The results show a clear qualitative improvement over the existing
analytical approaches.
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Beknopte Samenvatting

De simulatie van de aero-akoestische problemen stelt hoge voorwaarden aan
numerieke methoden, in het bijzonder voor de nauwkeurigheid. Runge-
Kutta Discontinue Galerkin (RKDG) methoden worden steeds populairder
voor dergelijke toepassingen, omdat ze convergeren voor een willekeurige hoge
orde, complexe geometrieën kunnen behandelen, en geschikt zijn voor parallele
berekeningen. Ze worden echter nog beschouwd als erg rekenintensief. Het
werk gepresenteerd in dit proefschrift is gericht op het verbeteren van de
computationele efficiëntie van RKDG methoden voor lineaire aero-akoestische
toepassingen.

Het eerste deel van het werk is gewijd aan de studie van de stabiliteits- en
nauwkeurigheidseigenschappen, die de prestaties van RKDG methoden voor
hyperbolische problemen beïnvloeden. Een analysetechniek, geïnspireerd door
de klassieke von Neumann methode, wordt gebruikt om de stabiliteitgrenzen
van de schema’s, evenals om de nauwkeurigheid op het gebied van dissipatie
en dispersie te bepalen. Deze techniek wordt eerst gebruikt om de invloed van
de vorm van elementen op de CFL voorwaarden met driehoekige roosters te
onderzoeken, met het oog op het verbeteren van de bepaling van de maximaal
toegelaten tijdstap in toegepaste simulaties. Alternatieve methoden voor de
CFL voorwaarden zijn tevens ontworpen voor dit doel. Bovendien worden
Runge-Kutta schema’s ontworpen, die de rekenefficiëntie van RKDG methoden
maximaliseren voor golfvoortplantingsproblemen.

Het tweede deel van het werk behandelt de toepassing van RKDG methoden
op lineaire aero-akoestiek. RKDG formuleringen voor de gelineariseerde
Euler en de gelinearizeerde Navier-Stokes vergelijkingen worden voorgesteld,
en toegepast op enkele validatiegevallen. Vervolgens worden hogere orde
behandelingen van gebogen wanden bestudeerd, die nodig zijn om de efficiëntie
van hoge orde RKDG methoden in aero-akoestische voortplantingsproblemen
volledig tot zijn recht te laten komen. Tot slot worden de in dit werk
ontwikkelde methoden gebruikt in een hybride methodologie om het akoestisch
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vi BEKNOPTE SAMENVATTING

gedrag van openingen in platen onder scherende stroming te karakteriseren. De
resultaten vertonen een duidelijke kwalitatieve verbetering ten opzichte van de
bestaande analytische benaderingen.
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Chapter 1

Introduction

1.1 Computational Aeroacoustics

1.1.1 Aeroacoustics

Aeroacoustics can be defined as the field concerned with the interaction between
aerodynamic flows and acoustic fields. This interaction includes the generation
and absorption of sound by flow features, as well as the acoustic propagation
through moving and often non-uniform fluid media.

The history of aeroacoustics is inseparable from that of its industrial
applications. It can be traced back to the pioneering work of Lighthill [93, 94]
in the early 1950’s, triggered by the concerns over the noise produced by the
jet engines of that time [95]. Jet noise remained the prime subject of study in
aeroacoustics until the mid-1970’s, when the noisy turbojet engines had been
replaced with more quiet high-bypass-ratio turbofan engines [144]. In order to
further reduce the noise level emitted by conventional airplanes, as well as novel
aircraft designs, the scientists and engineers then turned their attention towards
airframe and propeller noise [142], that involve different physical phenomena.
At the same time, the interest for studying and controlling flow-generated
sound diffused to the automotive industry [142], wind power generation [142],
HVAC and other applications involving complex pipe systems [40] and even
musical instruments [40]. Nowadays as ever, the development of aeroacoustics

3



4 INTRODUCTION

as a science and its application for engineering purposes are mainly driven
by a growing customer demand for acoustic comfort, and stricter regulations
integrating the noise issue into more general environmental considerations.

Until the 1980’s, the dominant approach to aeroacoustic problems was the
so-called acoustic analogy pioneered by Lighthill [93, 94]. It consists in
splitting the Navier-Stokes equations, that model all fluid phenomena including
acoustics, into a wave operator and a source term. The limited sound
production region can then be considered as a set of equivalent acoustic sources
depending only on the aerodynamic variables, and a classical radiation and/or
scattering problem can be solved to calculate the acoustic field in the rest
of the domain. One of the most important achievements of this theory is
the prediction that the power of the sound generated by turbulence varies
with the eighth power of the flow velocity. The analogy was extended in
the following decades, most notably to include the effect of solid walls [36]
and surfaces in arbitrary motion [49]. At that point, the knowledge of the
aerodynamic variables for use in the analogies, as well as the understanding of
the basic physical mechanisms of sound generation, were mainly coming from
experimental data or semi-analytical derivations [48].

1.1.2 Computational Aeroacoustics

With the advent of computational methods in the 1990’s, aeroacoustics entered
a “second golden age”, according to Lighthill [96]. Although the great impact
of numerical methods on the field of fluid dynamics was promising, it is now
generally acknowledged that applying directly the methods of Computational
Fluid Dynamics (CFD) to aeroacoustic problems has had a limited success [35,
133, 142, 144].

Computational Challenges

The relative failure of traditional CFD numerical methods is due to a number
of challenges that distinguish the field of Computational Aeroacoustics (CAA)
from typical fluid dynamics problems [35, 133, 142]:

Time dependence The generation of sound is an intrinsically unsteady
process. At the modeling level, Reynolds-Averaged Navier-Stokes (RANS)
simulations are thus irrelevant, and unsteady RANS modeling is generally
too limited [142]. At the numerical level, the broadband nature of flow-
generated noise, including high-frequency components, sets challenging
accuracy requirements on the numerical method: if the scheme requires
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more than a few Degrees of Freedom (DoF’s) per wavelength to resolve
acoustic waves, the number of DoF’s needed to correctly predict the high-
frequency acoustic field in the whole domain becomes prohibitively large.

Propagation distance CAA is most often used to simulate the radiation of
flow-generated sound in the mid- and far-field. In order to predict the
correct sound level and directivity, the numerical schemes shall introduce
minimal dissipation and dispersion errors.

Magnitude disparity The radiation efficiency of aeroacoustic sources is very
low: for low-Mach-number flows, only a fraction of the flow energy
(typically a ratio of five or six orders of magnitude) is transformed into
sound. Thus, the amplitude of the acoustic fluctuations is much smaller
than the mean flow, which represents an additional constraint on the
numerical accuracy.

Length scale disparity Finally, the typical length of flow features is usually
much smaller than the acoustic wave length (with a ratio similar to the
Mach number for turbulence noise). This may result in a prohibitive
computational cost, if all length scales are resolved directly in the same
computation.

These considerations call for the development of specific computational
methods for CAA, with a strong emphasis on accuracy.

Direct and Hybrid Approaches

In this context, two main computational approaches to aeroacoustic problems
coexist. They are applied to different problems, for different purposes.

The direct approach consists in computing both the unsteady flow and the
generated sound in one simulation by solving the compressible Navier-Stokes
equations. Ideally, this is performed by Direct Numerical Simulation (DNS), i.e.
with no further modeling than the plain compressible flow equations. Because
of the lack of modeling approximations, the direct methodology with DNS is
the method of choice for studying the physical phenomena of sound generation,
and for obtaining benchmark solutions used to assess sound generation models.
However, its computational cost is very high, so that it is applicable only
to simple flows at relatively low Reynolds number [35], even with high-
performance computing resources. The use of Large-Eddy Simulation (LES),
that models the smallest dissipative flow scales while still resolving the more
dynamically important scales, relaxes the computational requirements but is
still hardly feasible for industrial-size cases. Moreover, the effect of the subgrid
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modeling on the generated sound is not yet fully mastered. A more detailed
review of the direct methodology in CAA can be found in Ref. [35, 142].

On the contrary, the hybrid approach consists in separating the flow simulation,
often performed only in the limited region of sound production, from the
computation of the acoustic field. This methodology takes advantage of the
disparity in length scale and domain extent, by enabling to use different
numerical methods for the two calculations. Many combinations are possible.
The acoustic analogies mentioned in Sec. 1.1.1 can be applied to the
unsteady flow computed by DNS or LES, that may be either compressible
or incompressible. In some cases, the flow can be obtained through vortex
methods [35], or even steady RANS simulations augmented with a stochastic
model for the reconstruction of the turbulent fluctuations from the averaged
turbulent variables [142]. The acoustic field is computed analytically only in
case of free-field radiation or very simple scattering problems, otherwise the
numerical methods of classical acoustics are used. When the mean flow in
the mid- and far-field is non-uniform, many authors resort to linearized flow
equations, mainly the linearized Euler equation and its variants, to simulate
the acoustic propagation [35]. In some methods based on compressible flow
computations, the determination of the acoustic sources involves separating
the hydrodynamic part of the flow solution from the acoustic part by means of
filtering techniques [37, Chap. 6].

1.2 Numerical Methods for Linear Aeroacoustics

1.2.1 Linear Aeroacoustics

This work focuses on computational methods for linear aeroacoustic problems.
The main application of such methods is the simulation of acoustic propagation
in non-uniform mean flows, including convection, refraction and scattering
effects. They can of course be applied to a wide range of problems in the
framework of hybrid methodologies, but they can also be used independently
for the passive acoustic characterization of objects subject to flows, such as
duct systems. The most obvious governing equations for linear propagation
problems in non-uniform mean flows are the linearized Euler Equations
(LEE). However, they inconveniently support unstable vortical modes that
tend to be triggered in sheared mean flows. The lack of viscous diffusion
and non-linear saturation effects may let the instabilities overwhelm the
acoustic solution. In order to avoid this problem, several authors have
proposed alternative governing equations, in combination with appropriate
source terms [28, 46, 115, 125]. Nevertheless, the plain LEE have the interesting
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ability of modeling generalized scattering phenomena, including the scattering
of vortical or entropic fluctuations into sound [35].

As mentioned in Sec. 1.1.2, the physical mechanisms of aerodynamic sound
generation are unsteady in essence, and the resulting acoustic field is of
broadband nature in most aeroacoustic problems. This suggests a time-domain
formulation of the governing equations. In the literature, time-dependent
models dominate to the point that most recent review articles on CAA do
not even mention frequency-domain methods [35, 91, 133, 142]. This may
be partly explained by the historical link of the aeroacoustic community with
fluid dynamics rather than with acoustics, but the efficiency of time-domain
simulations compared to frequency-domain simulations has also been put in
evidence [26, 56]. Therefore, the work described in this thesis focuses on the
time-domain formulation of linear aeroacoustic equations.

1.2.2 Requirements for Numerical Methods

We are thus concerned with numerical methods for hyperbolic systems of
Partial Differential Equations (PDE’s), that include the equations of linear
aeroacoustics, and more generally all systems of PDE’s governing convection
and wave propagation phenomena. As explained in Sec. 1.1.2, aeroacoustic
problems set high accuracy requirements on the numerical schemes, which can
be expressed in terms of dissipation and dispersion errors. Such requirements
are shared by other kind of wave propagation problems, so that the numerical
methods used to simulate those phenomena are often eligible for application to
aeroacoustics.

When using any numerical scheme, a trade-off is to be made between accuracy
and computational cost. The accuracy is usually improved by refining
the computational mesh, i.e. increasing the number of DoF’s in a fixed
computational domain, which requires more computation time and memory.
A numerical method can be characterized by its convergence rate, that is,
the dependence of the error on a grid parameter inversely proportional to
the number of DoF’s. If the dependence is asymptotically equivalent to a
polynomial of degree q as the number of DoF’s tends to infinity, the method
is said to have an (algebraic) convergence order of q [21, Chap. 2]. If q is
unbounded (i.e. the error decreases faster than polynomially with the number
of DoF’s), the method is said to have spectral (or exponential) convergence [21,
Chap. 2]. The classical CFD methods are of order 2: while they are efficient
for the typically low accuracy required by fluid dynamics problems, their error
decreases too slowly with respect to the number of DoF’s, so that the cost
becomes prohibitive for the high accuracy needed to solve wave propagation
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problems, as mentioned in Sec. 1.1.2. For instance, Astley et al. [7] mention
orders of magnitude of 10 million grid points for axisymmetric models and
35 billion grid points for full 3D models of large turbofan intakes, based on
the accuracy of classical second-order methods. Thus, most of the numerical
schemes used in the field of aeroacoustics are high-order methods (i.e. methods
of convergence order q > 2).

Another desirable feature of a numerical method is its flexibility with respect
to the geometry of the computational domain. Some methods can only operate
on structured grids, i.e. grids for which the position of the DoF’s can be indexed
in a system of Cartesian, rectilinear or curvilinear coordinates. Even if multi-
domain (or multi-block) strategies extend their possibilities, such grids are
very tedious or even impossible to generate for the complex geometries found
in industrial problems. On the other hand, irregular tessellations of simple
shapes (generally simplices), known as unstructured grids, can be more easily
created by modern meshing software, even for complex geometries.

Finally, the suitability of a numerical method to parallel computation is
regarded as an important aspect. Nowadays, large computation resources
are made available through massively-parallel machines, that are generally
communications-limited: the data transfer between processors is slow compared
to their computation power. Most numerical methods are based on local
approximations, so that they can be naturally parallelized by partitioning the
domain. However, the scaling of the computational efficiency with the degree
of parallelization is much better with compact methods, that use as little non-
local information as possible.

With these criteria in mind, we review various numerical methods designed for
solving systems of hyperbolic PDE’s, in order to select the most appropriate
for linear aeroacoustic problems.

1.2.3 Spatial Discretization Techniques

We first examine the numerous spatial discretization methods available for
hyperbolic conservation laws, that could be applied to linear aeroacoustics.

Finite Volume Methods

Finite Volume Methods (FVM) are the methods of choice in CFD. They are
routinely used in both academic and industrial contexts to solve a broad range
of fluid dynamics problems, and can be run efficiently on massively parallel
computers. However, the attempts to apply the classical, second-order FVM to
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aeroacoustic problems succeeded only partially (see for instance Ref. [68]), due
to the excess of numerical dissipation and dispersion introduced by the schemes.
FVM optimized for aeroaoustics have been introduced [109] and applied to
rotorcraft noise prediction [141]. Loh and Lin [99] applied a third-order FVM to
internal acoustic propagation and cavity noise radiation benchmark problems.
Second-order finite volume schemes of increased accuracy have been shown to
work for simple acoustic problems [50, 100]. However, the development of these
methods for aeroacoustics and their demonstration on complex problems has
not been carried out, to our knowledge.

Boundary Element Methods

Boundary Element Methods (BEM) are mature numerical methods that are
very commonly applied to frequency-domain acoustics both at academic and
industrial levels. Their main advantage is that they require the discretization
of the scatterers only, instead of a whole volume domain mesh. They lead
to relatively small, though dense, linear systems. However, they rely on the
availability of a fundamental solution of the PDE being discretized, so that
they are only suited to uniform mean flows [7]. Moreover, their time-domain
formulation raises implementation issues, in addition to the usual difficulties
related to the evaluation of singular integrals [144].

Spectral Methods

Spectral methods are very popular in the field of CFD, particularly for appli-
cations requiring very high accuracy, as the study of turbulence through DNS.
Their most interesting property is obviously their exponential convergence rate
for both dissipation and dispersion errors [83], that make them particularly
appropriate for aeroacoustics. However, they suffer from a lack of geometrical
flexibility, due to the global nature of the underlying approximation. This
difficulty can be alleviated by means of multi-domain methods [84, 86]. Spectral
methods have been applied to simple aeroacoustic cases [18, 73, 85, 103, 126]
as well as many other wave propagation problems.

Residual Distribution Schemes

Residual Distribution Schemes (RDS), or Fluctuation Splitting Methods, are a
family of schemes that combine aspects of FVM and FEM. They are well-suited
to unstructured grids, and have high-order convergence capabilities. Their
genuine multi-dimensional upwinding nature ensures good dissipation and
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dispersion properties [79]. They have very recently been applied to aeroacoustic
propagation problems [79].

Finite Difference Methods

Finite Difference Methods (FDM) are probably the most popular schemes in
the field of aeroacoustics. While classical schemes were found to be unsuitable
for aeroacoustic problems, families of central explicit [131], compact [76] and
upwind [98] stencils have been specifically designed to optimize the dissipation
and dispersion properties. In addition to their computational efficiency, FDM
are easy to implement and relatively amenable to parallelization. However,
they can only be formulated on structured grids. Detailed reviews of this
class of methods and its numerous aeroacoustic applications can be found in
Refs. [35, 91, 133].

Continuous Finite Element Methods

The classical, continuous class of Finite Element Methods (FEM) is widely
used for frequency-domain wave problems and has been successfully applied
to fluid dynamics, but is subject to very little attention for time-domain wave
propagation problems [77]. Yue and Guddati [148] devised a formulation with
improved accuracy for plain transient acoustics. To our knowledge, the only
documented application of continuous FEM to time-domain aeroacoustics is
the discretization of the wave equation for Lighthill’s analogy [45]. These
methods are naturally suited to unstructured grids. However, the classical
FEM formulation is unstable when applied to convection-dominated problems,
for which more complex stabilized formulations must be used. Moreover, their
parallel efficiency mainly relies on the performance of parallel linear solving
techniques, due to the strong coupling between elements.

Discontinuous Galerkin Methods

The Discontinuous Galerkin Method (DGM) combines aspects from different
discretization techniques mentioned above. They are based on local polynomial
approximations, as in continuous FEM, and can thus be used on unstructured
grids. The order of the approximation is arbitrarily high, similarly to spectral
methods. Unlike continuous FEM, approximations on neighbouring elements
are allowed not to coincide on the shared element boundary, and the coupling
is realized through a numerical flux formulation, in the manner of FVM. This
weak coupling ensures efficient parallel computation capabilities, although the
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discontinuity at element boundaries implies additional DoF’s. The accuracy of
DGM has been thoroughly studied and characterized in terms of dissipation
and dispersion [4, 55, 70, 72]. Unsurprisingly, this discretization technique is
increasingly popular for aeroacoustic propagation problems [8, 14, 16, 20, 38,
42, 118, 119].

1.2.4 Time Discretization Techniques

In this section, we review the different possibilities for the time discretization.
The semi-discrete equations resulting from the space discretization can be
integrated by implicit or explicit Ordinary Differential Equation (ODE) solvers,
following a method of lines. Alternatively, the time can be discretized with the
same scheme as spatial dimensions.

Explicit Schemes

Explicit time integration schemes calculate the solution at a later time directly
through formulas depending explicitly from the solution at earlier times. They
are easy to implement, and computationally efficient for convergence order
up to four. However, they have the drawback of being conditionally stable:
the Courant-Friedrichs-Levy (CFL) condition, that sets a maximum bound
on the time step, may lead to large computation times in the case of stiff
semi-discrete problems. In the literature, the vast majority of time integration
schemes applied to linear CAA is explicit, with a preference for Runge-Kutta
(RK) schemes, and to a lesser extent multi-step Adams-Bashford methods [35,
91, 132, 142]. Recent attempts to use more flexible explicit time discretization
methods include schemes of ADER and Lax-Wendroff type [42, 116], as well as
local time stepping techniques [97].

Implicit Schemes

On the other hand, implicit schemes determine the solution at a later time
by solving a linear system that depends on the solution a earlier times.
Although its implementation is more complex, this method allows for much
larger time steps than explicit schemes, and can even be unconditionally stable.
The larger time step usually compensates the additional computation time
required to solve the linear system, but the method requires a global system
matrix formulation that makes efficient parallelization more difficult. Above
all, the most widely used implicit methods lack accuracy, and show low-order
convergence. To our knowledge, no plain implicit time integration scheme has
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been applied to aeroacoustic propagation, but hybrid implicit-explicit methods
could be of interest to mitigate the effects of grid-induced stiffness (i.e. the
stiffness of the semi-discrete operator caused by the broad range of element
size in the computational domain) [78].

Space-Time Discretization

Another possibility is to use the same discretization scheme for the time as
for the spatial dimensions, that is, to discretize the continuous equations
directly in space-time. To our knowledge, such method has not been applied to
aeroacoustic propagation yet, but a space-time approach using a scheme such
as DGM could bring the flexibility of unstructured discretization to the time
dimension [2, 47, 111, 140].

1.3 Research Goals

From the discussion on numerical methods in Sec. 1.2, it emerges that the
numerical method combining DG space discretization and explicit RK time
integration fulfills the requirements for application to linear aeroacoustic
problems: it is flexible with respect to the geometry, provides high-accuracy
solutions through high-order convergence, and can be efficiently parallelized.
Additional benefits are the hp-refinement possibilities offered by the arbitrary
order of the local polynomial approximation associated to unstructured grids,
and the easy specification of boundary conditions through the numerical flux
formulation. The RKDG method was introduced and analyzed by Cockburn
and Shu [30, 31, 32], and has since been successfully applied to a broad range
of problems, including aeroacoustic propagation [8, 14, 20, 38, 118, 119]. This
work is set in the continuation of Reymen [122].

However, the RKDG method suffers from some shortcomings, and numerical
methods based on finite difference schemes are still considered computationally
more efficient. In particular, RKDG methods can be criticized on two points:

1. The time step restriction due to the conditional stability of the explicit
RK scheme is very restrictive, compared to finite difference schemes.
The maximum time step can be orders of magnitude smaller than the
characteristic time scale of the physical phenomena to be simulated, which
leads to a high computation time.

2. The discontinuous nature of the DG discretization implies that the
approximation at inter-element boundaries is double-valued. This means
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that more DoF’s are used to represent the solution, compared to a
continuous approximation of the same order. These additional DoF’s
can be regarded as a waste of memory and computation time.

The restriction on the time step can probably not be radically relaxed without
changing the profound nature of the numerical method. However, a significant
improvement may be obtained by filling two gaps in the current knowledge
of RKDG methods. First, the dependence of the time step restriction on
the computational grid in multiple spatial dimensions is not well understood,
above all with unstructured grids. Consequently, users of RKDG methods
can evaluate the maximum allowable time step only inaccurately, and they
prefer to set a significantly suboptimal time step for safety. A more accurate
quantification of the stability restriction would thus help them to set up more
efficient simulations in practice. Second, none of the RK schemes that are
currently used in RKDG methods were designed for this purpose. Specifically
optimized RK scheme may bring an efficiency gain.

The problem of the additional DoF’s due to discontinuities at element
boundaries can be mitigated by increasing the order of the polynomial
approximation. Indeed, the number of DoF’s required for an approximation
of order p varies like p in 1D, p2 in 2D and p3 in 3D. Thus, the ratio of the
number of DoF’s required to represent the solution on the element boundary
to the total number of DoF’s in the element decreases when p increases. In a
more general perspective, DG discretizations of higher order are expected to
be more efficient than those of lower order, because they require less DoF’s for
the same accuracy. However, the error due to the discretization of the domain
boundary may become dominant at high order. Improved boundary treatment
are thus needed to fully benefit from the efficiency of high-order schemes.

With theses considerations in mind, the work described in this thesis aims at:

• Improving the understanding of the stability restriction of RKDG
methods, and providing methods for the evaluation of the maximum
allowable time step with unstructured grids,

• Deriving RK schemes that are specially designed to optimize the
computational efficiency of RKDG methods,

• Proposing advanced treatments of curved wall boundaries for aeroacoustic
applications,

• Applying the improved RKDG method to a linear aeroacoustic problem
of scientific and practical relevance.
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1.4 Outline of the Thesis

This dissertation is composed of four main parts.

Part I comprises this introductory Chap. 1.

Part II deals with the study of the stability and accuracy properties of RKDG
methods for hyperbolic equations, that impact directly their intrinsic efficiency:

Chap. 2 introduces the RKDG method from a theoretical point of view, and
shows efficient implementation techniques. It also describes a method for
the analysis of RKDG methods in terms of stability and accuracy, which
is used subsequently in the thesis.

Chap. 3 presents a study of the CFL conditions that characterize the stability
restrictions of RKDG methods on triangular grids. This study sheds light
on the dependence of the maximum allowable time step on the shape of
the elements, and provides guidelines for the determination of the time
step in practical simulations.

Chap. 4 reports on methods for evaluating the stability of RKDG methods by
more advanced means than the CFL conditions. It contains algorithms
for the calculation of the time step in practical simulations.

Chap. 5 deals with the derivation of RK schemes specifically designed for
RKDG methods. Three new schemes that maximize the computational
efficiency of RKDG methods are presented.

Part III focuses on the application of the RKDG method to linear aeroacoustics:

Chap. 6 introduces the linearized Euler and linearized Navier-Stokes equa-
tions, that govern linear aeroacoustic problems. It discusses the specifics
of the RKDG method applied to these equations, and presents the
validation of the method on simple cases.

Chap. 7 describes higher-order treatments of curved wall boundaries in
aeroacoustic propagation simulations. It shows, with various examples,
that these treatments are required to fully benefit from the efficiency of
high-order RKDG simulations.

Chap. 8 presents a concrete application of the RKDG method in the
framework of a hybrid approach. The method is used to characterize
the acoustic behaviour of orifices in plates subject to grazing flow. The
numerical methodology proves valuable in producing realistic results that
theoretical models are unable to predict.
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Finally, in Part IV, Chap. 9 summarizes the outcome of the investigations
reported in this thesis, and gives perspectives for future research.





Part II

Stability and Accuracy of

RKDG Methods
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Chapter 2

Runge-Kutta Discontinuous

Galerkin Methods

This chapter is dedicated to the derivation and the analysis of RKDG methods
in terms of stability and accuracy. The equations governing the propagation
and linear generation of sound in non-uniform flows, that are introduced in
Chap. 6, belong to the category of hyperbolic conservation laws. Here, we
consider only the scalar advection equation, that is the simplest equation of this
kind, in order to provide a clear description of the numerical method. Moreover,
most of the analysis of RKDG methods for the scalar advection equation can
be generalized to hyperbolic systems of practical interest, which makes it the
equation of choice for the evaluation and optimization of the schemes, like in
the work presented in Chap. 5, 3 and 4.

2.1 Derivation of RKDG Methods

In this section, we present the method of lines combining discontinuous
Galerkin schemes for the spatial discretization with Runge-Kutta time integra-
tors, as introduced by Cockburn and Shu [32]. This approach takes advantage
of the computational efficiency of explicit integration methods for moderately
stiff PDE’s, such as those used in the field of CAA that presented in Part III.

19
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Considering an arbitrary domain Ω in d spatial dimensions, the scalar advection
equation can be formulated in a general form as:

∂q

∂t
+ ∇ · f = 0 (2.1)

where q ∈ L2 (Ω) is the unknown, t is the time, x is the vector of space
coordinates, and f = qa is the flux vector, a being the advection vector. The
boundary conditions are assumed to correspond to a well-posed problem, and
their numerical treatment will not be detailed in this section.

2.1.1 Discontinuous Galerkin Space Discretization

Discontinuous Galerkin Formulation

The derivation of the space discretization scheme starts by multiplying Eq. (2.1)
by a test function φ and integrating it over a subset T of Ω, to obtain the weak
formulation:

∫

T

[
∂q

∂t
+ ∇ · f

]
φ dx = 0 ∀φ ∈ L2 (Ω)

where the divergence term can be integrated by parts, resulting in:
∫

T

∂q

∂t
φ dx −

∫

T

f · ∇φ dx +
∫

∂T

f · n φ dx = 0 ∀φ ∈ L2 (Ω) (2.2)

where ∂T is the boundary of T and n is the outgoing unit normal to ∂T .

Then, we consider the subdivision Sh = {T} of the computational domain Ω
into elements T . The finite element subspace Vh ∈ L2 (Ω) associated to Sh is
defined as:

Vh =
{

φ ∈ L2 (Ω) : φ|T ∈ Pp (T ) ∀T ∈ Sh

}

where Pp (T ) is the space of polynomial functions of degree at most p on T .
For simplex elements (i.e. segments in 1D, triangles in 2D and tetrahedra in
3D), one has:

Np = dim Pp (T ) =
∏d

r=1 (p + r)
d!

It is important to note that there is no assumption on the continuity of a
function φ ∈ Sh between elements, unlike the classical FEM. Following the
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Galerkin method applied to the weak formulation of Eq. 2.2, an approximation
qh ∈ Pp (T ) of q is sought such that for all T ∈ Sh:

∫

T

∂qh

∂t
φ dx −

∫

T

fh · ∇φ dx +
∫

∂T

f̂h φ dx = 0 ∀φ ∈ Vh (2.3)

where fh = qha, and f̂h is the so-called numerical flux [32].

The presence of the approximation f̂h of f · n in the boundary integral term is
made necessary by the fact that qh is not uniquely defined on the element
boundaries ∂T interior to the computational domain Ω. It also allows to
prescribe the boundary conditions in a weak sense where ∂T is a boundary
of Ω. The expression of f̂h as a function of qh is thus a key ingredient of the
numerical scheme. A numerical flux function is generally required to fulfill two
properties [6]:

• Consistency: f̂h = f |∂T for any smooth function f that satisfies the
Dirichlet boundary conditions (if any),

• Conservation: f̂h is single-valued on ∂T .

A basic idea is to use a numerical flux f̂h that depends only on the two values
q−

h and q+
h of qh on elements T − and T + that locally share ∂T , respectively. A

possibility is the central flux:

f̂h =
1
2

(
f−

h + f+
h

)
· n

This formulation yields a conservative scheme which fails to damp the spurious
modes of the system, so that it is rarely used in practical simulations. Therefore,
it will disregarded in this work. A valid alternative is the Lax-Friedrichs flux:

f̂h =
1
2

[(
f−

h + f+
h

)
· n − ‖a‖

(
q+

h − q−

h

)]
(2.4)

where the second term stabilizes the scheme by adding dissipation, ‖a‖ being
a particular choice of the dissipative constant. Another option is upwind flux:

f̂h =

{
f−

h · n, a · n ≥ 0
f+
h · n, a · n < 0

(2.5)

Both choices fulfill the conditions required for stability and convergence to the
exact solution [32]. They are the most widely used to solve linear PDE’s, the
Lax-Friedrichs flux because of its simplicity and low computational cost, and
the upwind flux because of its optimal dissipation properties.
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Then, a basis BT
p =

{
ϕT

j , j = 1. . .Np

}
of Pp (T ) is introduced. We can express

in this basis the restrictions qT
h , fT

h and f̂T
h of qh, fh and f̂h respectively on T :

qT
h (x, t) =

Np∑

j=1

qT
j (t) ϕT

j (x)

fT
h (x, t) =

Np∑

j=1

fT
j (t) ϕT

j (x) (2.6)

f̂T
h (x, t) =

Np∑

j=1

f̂T
j (t) ϕT

j (x)

The choice of representing qT
h , fT

h and f̂T
h in the same basis BT

p is made for the
sake of an easy and efficient implementation. However, it may be problematic
in case the advection vector a is not uniform, because then qT

h a /∈ Pp (T ), and
fT
h is a lower-order approximation of qT

h a. This problem, that often occur in
practical applications of DG methods, is tackled in Sec. 6.2.3.

Substituting Eq. (2.6) into Eq. (2.3), and taking successively each basis function
ϕT

j as test function φ yields:

∫

T

Np∑

j=1

∂qT
j

∂t
ϕT

j ϕT
k dx −

∫

T

Np∑

j=1

fT
j ϕT

j · ∇ϕT
k dx

+
∫

∂T

Np∑

j=1

f̂T
j ϕT

j ϕT
k dx = 0, k = 1 . . . Np

Separating the computation of the boundary integral term for each face ∂Ti of
T gives:

Np∑

j=1

∂qT
j

∂t

∫

T

ϕT
j ϕT

k dx −

Np∑

j=1

fT
j ·

∫

T

ϕT
j ∇ϕT

k dx

+
b∑

i=1

Np∑

j=1

f̂∂Ti

j

∫

∂Ti

ϕT
j ϕT

k dx = 0, k = 1 . . . Np (2.7)

where b is the number of faces of the element, and f̂∂Ti

j are the components of

the restriction f̂∂Ti

h of f̂T
h on ∂Ti. For simplex elements, b = d + 1. Expressed
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in Cartesian coordinates, Eq. (2.7) can be recast in matrix form:

MT ∂qT

∂t
−

d∑

r=1

KT
r fT

r +
b∑

i=1

M∂Ti f̂∂Ti = 0 (2.8)

where r is the r-th Cartesian coordinate and qT , fT
r and f̂∂Ti represent vectors

collecting all components qT
j , arqT

j and f̂∂Ti

j respectively, ar being the r-th
Cartesian component of a. The element mass matrix MT , the element stiffness
matrices KT

r and the face matrices M∂Ti are defined as:

MT
kj =

∫

T

ϕT
k ϕT

j dx

(
KT

r

)
kj

=
∫

T

∂ϕT
k

∂xr
ϕT

j dx (2.9)

M∂Ti

kj =
∫

∂Ti

ϕT
k ϕT

j dx

Eq. (2.8) can be expressed for all elements in the computational domain and
assembled in a more general form as:

dq
dt

= L (t) q (t) (2.10)

where q is the vector concatenating qT for all elements T ∈ Sh, and L is the
spatial semi-discrete operator.

Implementation Details

To complete the numerical scheme, the polynomial basis BT
p needs to be defined

for all T ∈ Sh. This is conveniently done by mapping each element T in the
computational domain onto a reference element R, following the quadrature-
free [9] technique:

MT :
R → T
ξ 7→ x

We also introduce the parametrization x∂Ti of the face ∂Ti needed to calculate
the face matrices in Eq. (2.9), and define the mapping M∂Ti of ∂Ti onto the
corresponding face ∂Ri of R:

M∂Ti :
∂Ri → ∂Ti

ξ
i

7→ x∂Ti
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The Jacobian matrices of MT and M∂Ti are defined respectively as JT = ∂x
∂ξ

and J∂Ti = ∂x
∂Ti

∂ξ
i , and the change of variables in Eq. (2.9) yields:

MT
kj =

∫

R

ϕkϕj

∣∣JT
∣∣ dξ

(
KT

r

)
kj

=
d∑

s=1

∫

R

(
JT
)−1

sr

∂ϕk

∂ξs
ϕj

∣∣JT
∣∣ dξ (2.11)

M∂Ti

kj =
∫

∂Ri

ϕkϕj

∣∣J∂Ti
∣∣ dξ

i

The specification of BT
p for all T ∈ Sh is thus reduced to the definition of a

unique polynomial basis Bp = {ϕj , j = 1 . . . Np} on the reference element R.
Moreover, if JT is constant over the element (which is the case for triangles
with straight edges, or tetrahedra with plane faces), the Jacobian terms can be
taken out of the integrals in Eq. (2.11) to give:

MT =
∣∣JT

∣∣MR

KT
r =

d∑

s=1

(
JT
)−1

sr

∣∣JT
∣∣KR

s (2.12)

M∂Ti =
∣∣J∂Ti

∣∣M∂Ri

with:

MR
kj =

∫

R

ϕkϕj dξ

(
KR

s

)
kj

=
∫

R

∂ϕk

∂ξs
ϕj dξ (2.13)

M
∂Ri

kj =
∫

∂Ri

ϕkϕj dξ
i

Given that the reference element R and the basis Bp are defined as part of

the scheme, the matrices MR, KR
s and M

∂Ri can be precomputed analytically,
hence the name of quadrature-free technique. Then, one just needs to store
the Jacobians JT and J∂Ti in memory during the computation, instead of
storing the element matrices MT , KT

r and M∂Ti , that can be retrieved through
Eq. 2.12. This represents a significant gain in memory storage.
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For elements in which JT is not constant, such as curvilinear simplices, the
integrals in Eq. (2.11) must be computed by quadrature and stored in memory
during the computation. In this work, Gauss-Lengendre quadrature rules of
order p+2 are used, which ensures sufficient accuracy for elements of geometric
order 2 (i.e. quadratic mappings MT and linear Jacobians JT ). Note that an
alternative method could be to include the non-constant Jacobian JT in the
approximation qT

h , so that it would disappear from the integrals in Eq. (2.11),
and the quadrature-free technique would still be possible. However, this would
come at the price of an accuracy loss, as it would prevent the solution from
being approximated up to order p. Another consequence of using elements with
curved faces is that the normal n is not constant over T : as f̂T

h ∈ Pp (T ), the
terms fh in the numerical flux expressions of Eq. (2.4) and Eq. (2.5) are not
approximated up to order p. This can be fixed, at the expense of additional
storage, by defining additional face matrices that include the normals n∂Ti to
∂Ti:

(
M∂Ti

kj

)
r

=
∫

∂Ri

ϕkϕjn∂Ti
r

∣∣J∂Ti
∣∣ dξ

i

and reformulating the boundary integral term. For instance, Eq. (2.8) becomes,
with the Lax-Friedrichs of Eq. (2.4):

MT ∂qT

∂t
−

d∑

r=1

KT
r fT

r

+
b∑

i=1

1
2

[
d∑

r=1

M∂Ti
r

(
f

T +
i

r + fT
r

)
− ‖a‖ M∂Ti

(
qT +

i − qT
)]

= 0

where T +
i is the element sharing the face ∂Ti with T .

Following Hesthaven and Warburton [58, 60], the basis functions ϕj are defined
as basis Lagrange polynomials of order p on the reference element R. Thus, the
unknowns qT

j are the values of qT
h taken at a set of nodes in R. Provided that

this nodal set includes enough points located on ∂R, this facilitates considerably
the computation and the integration of the numerical flux f̂h, because the
trace of qT

h on ∂T is immediately available [60]. Although the choice of BT
p

does not influence the basic properties of the DG space operator in principle,
it has been shown that the quality of the interpolation strongly affects the
conditioning of the mass matrix MT that has to be inverted, above all at
high order p. Therefore, the Lagrange-Gauss-Lobatto points are chosen as
nodal set on the 1D segment, and specially optimized nodal sets are used
on the triangle [57] and on the tetrahedron [59]. The computation of the
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integrals involving ϕj does not rely on an explicit definition of the Lagrange
basis functions ϕj . Instead, the element matrices are computed in a polynomial
basis that is orthogonal and analytically integrable in R, and transformed back
to the nodal basis through Vandermonde matrices based on the interpolation
properties of Lagrange polynomials [58, 60].

2.1.2 Runge-Kutta Time Discretization

Following the method of lines, Eq. (2.10) is integrated in time as an ODE by
means of a s-stage Runge-Kutta scheme:

dq(1) = L (tn, qn)

dq(i) = L


tn + ci ∆t, qn + ∆t

i−1∑

j=1

aij dq(j)


 , i = 2 . . . s (2.14)

qn+1 = qn + ∆t

s∑

i=1

bi dq(i)

where ∆t = tn+1 − tn is the time step, and qn and qn+1 represent the value
of q at time tn and tn+1 respectively. The coefficients aij , bi and ci can be
summarized in matrix/vector form by the Butcher tableau:

c A
bT

By definition:

ci =
s∑

j=1

aij

In this work, only explicit self-starting schemes are considered:

aij = 0, j ≥ i

thus c1 = a11 = 0.
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For the scheme to be third-order accurate, the RK coefficients must fulfill the
conditions [22]:

s∑

i=1

bi = 1 (2.15a)

s∑

i=1

bici =
1
2

(2.15b)

s∑

i=1

bic
2
i =

1
3

(2.15c)

s∑

i,j=1

biaijcj =
1
6

(2.15d)

among which Eq. (2.15a) and (2.15b) are required for first and second order of
accuracy respectively. For fourth-order accuracy, the coefficients are subject to
the additional constraints [22]:

s∑

i=1

bic
3
i =

1
4

(2.16a)

s∑

i,j=1

biciaijcj =
1
8

(2.16b)

s∑

i,j=1

biaijc2
j =

1
12

(2.16c)

s∑

i,j,k=1

biaijajkck =
1
24

(2.16d)

The RK scheme can be characterized in terms of accuracy and stability by
applying it to integrate the model equation:

dq

dt
= λq

during a time step ∆t = tn+1 − tn. This results in the complex amplification
factor [22]:

R (z) =
qn+1

qn
= 1 + zbT (I − zA)−1 1 (2.17)
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with z = λ · ∆t. The stability is determined by the condition:

|R (z)| ≤ 1

and the stability region of the RK scheme is defined as the locus S =
{z : |R (z)| ≤ 1}. For a scheme of order q, the polynomial R (z) =

∑s
k=0 γkzk

is subject to the constraints [22]:

γk =
1
k!

, k = 1 . . . q (2.18)

These conditions are sufficient to guarantee the order of accuracy q with linear,
homogeneous and autonomous systems of ODE’s [10]. However, the linear
equations governing wave propagation problems are often solved in practice
with time-dependent, nonlinear source terms, so that it is necessary to consider
the full sets of non-linear order conditions such as Eq. (2.15) and Eq. (2.16), in
which the linear conditions of Eq. (2.18) are included.

The implementation of a RK scheme following Eq. (2.14) obviously requires
the storage of sN floating-point numbers in memory, where N is the number
of unknowns in q. However, several authors have developed alternative
formulations [23, 146] that are only equivalent to a subset of all possible RK
schemes allowed by Eq. (2.14), but reduce the storage requirement to 2N .

2.2 Stability and Accuracy of RKDG Methods

Stability and accuracy are the two basic properties that govern the performance
of RKDG methods. It is thus necessary to quantify them in order to determine
and optimize the limits of the numerical method, as done in Chap. 3, 4, and 5.

Strong theoretical results, obtained in the framework of convergence proofs,
exist in the literature. The original analysis of the DG method gave an error
bound in O (hp), where h is the element size. This was later improved to
O
(
hp+1/2

)
, and even O

(
hp+1

)
with particular constraints on the grid. Further

details on these results can be found in Ref. [149]. Concerning stability, the
RKDG method was shown to be linearly stable under a CFL condition [33]
that limit the allowable time step. However, these accuracy and stability
bounds only provide theoretical estimates, and numerical studies are necessary
to obtain practical guidelines.

In this section, a methodology similar to the one presented in Ref. 89 and 90 is
developed, for the analysis of the stability and the accuracy of the schemes
derived in Sect. 2.1. The main difficulty lies in the determination of the
dispersion relation for the spatial scheme, which is explained first.
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2.2.1 Dispersion Relation of the Spatial Scheme

The first step is to notice that the DG spatial schemes derived in Sect. 2.1 are
linear: when applied to the linear continuous Eq. (2.1), they yield a linear semi-
discrete Eq. (2.10). Thus, the spatial scheme can be entirely characterized by
the spectral properties of the semi-discrete operator L.

In this analysis, we focus on the impact of choices in the spatial scheme
(such as the type of numerical flux or the order p), and the influence of
the shape of individual elements, excluding other aspects like the effect of
boundary conditions. Therefore, an unbounded domain is considered (in
practice, periodic boundary conditions are imposed), and grids made up only
of congruent elements are used: in 1D, the grids are simply uniform, and in
2D, they consist of a structured assembly of periodic patterns, as illustrated in
Fig. 2.1.

(a) (b)

Figure 2.1: Structured grid (a) and sketch of the periodic pattern of elements
(b) used for stability and accuracy analysis.

However, the accurate quantification of the accuracy and stability properties of
the spatial scheme requires a high number of elements, and thus a high number
of unknowns, particularly in 2D and at high order p. The computation cost of
the eigenvalue problem scales like the cube of the dimension of L, thus it can
become prohibitive.

Therefore, it is preferable to analyze the spatial scheme by means of a classical
technique that is similar to the von Neumann (or Fourier) method commonly
used with finite difference stencils. It basically consists in comparing the
behaviour of harmonic waves between the discrete and the continuous equations.
The method is explained here with one spatial dimension, starting from the
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solution of the continuous Eq. (2.1):

q (x, t) = q̃eı(kx−ωt) (2.19)

with the physical dispersion relation k = ω
a , the advection velocity a being

constant over the whole domain Ω. The elements T = [xi, xi+1], that are all of
equal size ∆x, can be indexed with i. Thus, the matrices in Eq. (2.9) are the
same for all T , and Eq. (2.8) can be rewritten as:

M
∂qi

∂t
− Kf i + MR f̂R − MLf̂L = 0 (2.20)

where R represents the right face of element i (i.e. the point x = xi + 1), and L
represents the left face of element i (i.e. the point x = xi). Assuming a solution
in the form of Eq. (2.19) and a > 0, the periodicity can be exploited to express
the numerical fluxes as:

f̂R = aqi

f̂L = aqi−1 = ae−ık∆xqi

that is valid for both Lax-Friedrichs fluxes and upwind fluxes in 1D. Eq. (2.20)
can then be rewritten as:

dqi

dt
= L (k) qi (2.21)

with

L (k) = M−1a
(
K − MR + MLe−ik∆x

)
(2.22)

Inserting Eq. (2.19) into Eq. (2.21) leads to an eigenvalue problem that stands
for the dispersion relation of the spatial scheme: the eigenvalues λm (k) of L (k)
represents the numerical approximation of ıω for a solution of wavenumber
k. The eigenvalues λm (k) that correspond to physical modes are those that
approximate best the continuous dispersion relation, whereas the others are
associated to spurious modes that are highly damped [3, 69]. The λm (k) have
to be computed for many values of k, but as the L (k) is defined on one element,
it has dimensions of only Np × Np, so that the analysis is still much faster than
assembling the operator L and solving the eigenproblem for a whole grid. With
several spatial dimensions, the operator L (k), where the wavenumber k is a
vector, can be defined in a similar way on a pattern of elements.

Apart from the wavenumber k, the operator L (k) depends on the advection a,
the geometry of the elements through JT , the type of numerical fluxes f̂h, and
the basis functions ϕj . It can be shown that the particular choice of ϕj does not
affect the eigenvalues λm, as long as the basis BT

p spans the same polynomial
space Pp (T ), i.e. for the same order p [20]. The rest of the parameters influence
the stability and accuracy properties of the scheme.
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2.2.2 Accuracy

The error due to the spatial discretization can be defined as [117]:

Espace (k, ∆t) =
eλm(k)t

eıωt

and |Espace| is the dissipation part of the error, while arg (Espace) is the
dispersion part.

For the analysis of the temporal scheme, the function R (z), defined in
Sect. 2.1.2, is applied to Eq. (2.21). The error due to the time scheme alone
can be defined as [117]:

Etime (k, ∆t) =
eR(λm(k)∆t)

eλm(k)∆t

with |Etime| the dissipation part of the temporal error, and arg (Etime) the
dispersion part.

The error for the fully discrete scheme is then:

Etotal (k, ∆t) =
eR(λm(k)∆t)

eıω∆t
= Espace (k, ∆t) · Etime (k, ∆t) (2.23)

where |Etotal| = |Espace| |Etime| and arg (Etotal) = arg (Espace) + arg (Etime)
are the total dissipation and dispersion error respectively.

2.2.3 Stability

Unlike implicit schemes, explicit RK integrators feature a stability threshold
that the time step ∆t shall not exceed for the scheme to remain stable. The
stability restriction, illustrated in Fig. 2.2, is expressed for the fully discrete
scheme as:

|R (λm · ∆t)| ≤ 1, ∀λm (2.24)

From the theory of the method of lines, this condition is known to be necessary
and sufficient only if L is normal (LtL = LLt) [121]. In the general case,
Relation (2.24) is only a necessary condition for absolute stability, the sufficient
condition being more complex [87, 121]. However, it provides an excellent
guideline for the choice of ∆t [60, Chap. 4, p. 95].

In practice, a simple bisection method is used to find the maximum allowable
time step ∆t∗ for stability. The method iteratively reduces the bracket interval



32 RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS

[∆tlow, ∆thigh] subject to the conditions:
{

|R (λm · ∆tlow)| ≤ 1, ∀λm

∃λm : |R (λm · ∆thigh)| > 1

In 1D, the stability constraint can be expressed as the so-called CFL condition:

ν = a
∆t

∆x
≤ ν∗ = a

∆t∗

∆x
(2.25)

in which the maximum allowable Courant number ν∗ depends only on the
numerical method, that is, on the order p of the polynomial approximation in
the spatial DG scheme and on the RK scheme.

-3

-2

-1

 0

 1

 2

 3

-3.5 -3 -2.5 -2 -1.5 -1 -0.5  0  0.5

Im
(z

)

Re(z)

|R(z)|=1
λm•∆t

Figure 2.2: Illustration of the stability condition in 1D for p = 2, with the
standard fourth-order RK scheme: the values λm · ∆t all lie within the RK
stability region S = {z : |R (z)| ≤ 1}.

2.3 Conclusion

In this chapter, we have presented the derivation and the analysis of the
RKDG method that is used throughout this thesis. Both the spatial and the
temporal discretization schemes have been established from a theoretical point
of view in Sect. 2.1. The efficient implementation of the method has also been
considered, mentioning in particular the quadrature-free technique and nodal
basis functions for the spatial DG scheme, and low-storage RK schemes for
time integration. In Sect. 2.2, we have introduced a von Neumann-like method
that can be used to quantify the accuracy and stability of the RKDG method.
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The parameters that influence the performance of the scheme through these
two properties have been identified.

The details provided in this chapter put in evidence the benefits of the RKDG
methods mentioned in Chap. 1. The order of convergence depends only on the
order p of the polynomial approximation, that can be freely chosen. Moreover,
the compact nature of the DG scheme, due to the loose coupling between
neighbouring elements, is preserved by the explicit character of the RK scheme.
The only operation that is non local to the element, namely the calculation of
the numerical flux, is computationally cheap because it only involves the trace
of the solution on faces, whereas the local operations, that include integrations
over the whole element, are more expensive. This makes the method very
amenable to parallelization. Finally, the numerical fluxes also allow us to easily
prescribe the boundary conditions in a weak manner, without any need for ghost
unknowns like with finite difference stencils.





Chapter 3

CFL Conditions on Triangular

Grids

In this chapter, the relation between the shape of 2D triangular elements
and stability restrictions is investigated in a systematic way, with the aim of
providing CFL conditions that could be used to set the time step in practical
simulations. The method described in Sec. 2.2 is used to analyze numerically
the stability of RKDG methods on grids composed of congruent elements, so
that a given element shape can be associated to a stability limit. This method
is applied to a broad range of triangle shapes, and results are presented in
the form of values for the maximum Courant number, calculated with different
geometrical parameters for the element size. Conclusions are drawn on the
ability of each size measure to take into account the influence of element shape
in the CFL condition. The study is repeated for two types of numerical fluxes,
namely the Lax-Friedrichs flux and the upwind flux, and several RK schemes
that are commonly used with DG space discretization, in order to provide fairly
general results.

3.1 Context

As mentioned in Sec. 2.2.3, the RKDG method is subject to stability
restrictions that are illustrated by the well-known Courant-Friedrichs-Levy
(CFL) Inequality (2.25). In the context of a general multi-dimensional

35
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hyperbolic system, the CFL condition can be written as:

ν = ‖a‖
∆t

h
≤ ν∗ (3.1)

where h is the element size, and ‖a‖ represents the magnitude of the largest
characteristic velocity of the hyperbolic system (i.e. the advection velocity in
the case of a simple advection equation). The maximum Courant number
ν∗ depends on the spatial and time discretization methods. In practice,
this relation imposes a superior bound on the time step, thus limiting the
computational efficiency of the numerical method.

With one spatial dimension, a DG space discretization using polynomials of
degree p, associated to a (p + 1)-stage RK time integrator of order p + 1, was
formally proven to be stable under Condition (3.1) with:

ν∗ =
1

2p + 1

up to p = 2 [30], this condition being optimal for p = 0 [32] and p = 1 [31].
Moreover, numerical evidence was given that these values are less than 5%
smaller than the optimal CFL limit for p ≥ 2 [32]. Kubatko et al. [89] studied
the linear stability of stage-exceeding-order SSP RK schemes with DG spatial
discretization, and gave values for the maximum Courant number, for p ≤ 3.

In the case of multiple spatial dimensions, the conditional stability of the
method was demonstrated in Ref. 33. However, no clear link between the
element geometry and the stability bound was put in evidence. In practice,
engineers and researchers use Condition (3.1) in 2D and 3D to determine
the maximum time step to be set in their simulations, choosing empirically
a measure for the element size h. The analysis of Ref. 89 was extended to
2D [90] for two structured triangular grid configurations, and a grid parameter
h was proposed. However, that work does not address the influence of the
element shape on the stability bounds. The work described in this chapter
aims at filling this gap, by quantifying the impact of the element shape on the
CFL condition with different element size measures h, for several variants of
the numerical method (numerical fluxes, RK scheme).

3.2 Method

3.2.1 Exploration of Triangle Shape

To determine the dependence of the stability bound on the triangle shape,
the von Neumann-type stability analysis procedure introduced in Chap. 2 is
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applied to various grids made up of periodic patterns (see Fig. 2.1(b)). As
in Ref. 89 and 90, a harmonic wave assumption is used to formulate a semi-
discrete operator L (k) depending on the wavenumber k, thus avoiding the need
to assemble the operator for a whole grid containing a large number of elements.
The eigenvalues λm (k) of L (k) are then computed, and a bisection method is
applied to find the maximum time step ∆t∗ satisfying the stability condition
|R (λm · ∆t)| ≤ 1 for all eigenvalues λm (k), where R (z) is the amplification
factor of the RK scheme. The procedure is extensively described in Sec. 2.2.
A key point of the method is that in each grid, all elements are congruent, so
that a stability limit can be associated to each element shape. The influence
of the element shape on the stability restriction can thus be investigated by
repeating the stability analysis for various grids representing a broad range of
element shapes, which is not carried out in Ref. 89 and 90.

In order to explore triangle shapes in a systematic way, consider first that a
triangle is uniquely determined by specifying the length of its three sides l1, l2
and l3. Now, consider two similar triangles differing only by a scale factor α:
it can be deduced from Eq. (2.8) and (2.11) that the semi-discrete operator L
is inversely proportional to α. Thus, l1 is fixed:

l1 = ∆x

and only two independent parameters (l2, l3) need to be studied. The choice
of ∆x is arbitrary, here it is set to 2 for l1 to be equal to the length of the
corresponding side [−1, 1] in the reference triangle R. Furthermore, l2 and l3
are interchangeable, so that only half of the two-parameter space needs to be
explored:

l2 ≥ l3

Finally, the triangle inequalities:

l1 ≤ l2 + l3

l2 ≤ l1 + l3

reduce the region to be explored as illustrated in Fig 3.1. In order to
characterize the triangle shapes in a simple manner, a measure γ, that is
commonly used for grid quality assessment in meshing methods, is chosen:

γ = 2
rinner

rcircum

where rinner is the radius of the inscribed circle and rcircum is the radius of
the circumcircle of the triangle. Fig. 3.2 shows the value of the grid quality
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measure as a function of l2 and l3. A set of 52 points, indicated in Fig. 3.2,
is chosen in the parameter space (l2, l3), spanning a large variety of triangle
shapes, as the grid quality measure γ varies from 0.031 to 1, with a mean of
0.45. The actual shape of these 52 triangles is illustrated in Fig. 3.3.

l2

l2 l3

l1 l2l3

l2 l1l3

l3

Figure 3.1: Parameter space (l2, l3). The region to be effectively explored is
colored in grey.
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Figure 3.2: Mesh quality measure γ in function of the triangle side lengths
l2 and l3. Black stars represent the position of the chosen triangles in the
parameter space (l2, l3).



METHOD 39

3.2.2 RKDG Method

As shown in Sec. 2.2.3, the maximum time step allowed for stability depends
both on the eigenvalues λm of the semi-discrete operator L and the choice
of the RK scheme. In this section, we explain which aspects of the space
and time discretization methods affect the stability bound, and the choices
made to obtain results that can be applied to practical simulations. Two areas
of application, where the use of RKDG methods is becoming popular, are
particularly targeted, namely linear wave propagation problems and non-linear
problems. It is to be noted that with non-linear equations, conditions for linear
stability are usually more restrictive than those for non-linear stability, but the
method must be linearly stable to prevent round-off errors from ruining the
high-order accuracy [32]. Thus, the CFL conditions presented in Sec. 3.3 may
be of interest for both linear and non-linear applications.

Space Discretization

It can be deduced from Eq. (2.8) and (2.11) that, apart from the grid, the
operator L depends on the basis functions ϕj and the numerical flux f̂h.
Nevertheless, as mentioned in Sec 2.2.1, it can be shown [20] that the choice of
ϕj does not influence the eigenvalues λm of L, as long as the basis BT

p spans the
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Figure 3.3: Triangle shapes used for the stability analysis: global view (a) and
zoom (b).
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same polynomial space Pp (T ). This means that the stability bound depends
only on the order p of the polynomial approximation. In Sec. 3.3, results are
presented for order p from 1 to 10, as most practical simulations are performed
within this range.

The choice of the numerical flux f̂h strongly influences the stability of the
method. The Lax-Friedrichs flux and the upwind flux, described in Sec. 2.1.1,
are studied in this work because they are the most commonly used with linear
equations. In this work, the constant in the dissipative term of the Lax-
Friedrichs flux is taken as the advection velocity ‖a‖, following Eq. (2.4). For
non-linear equations, popular choices are the Lax-Friedrichs flux again, the
Godunov flux [32] and the Engquist-Osher [44] (or Osher-Salomon [110]) flux.
The Godunov flux reduces to the upwind flux in the linear case, so does the
Engquist-Osher flux in regions where the sign of the characteristic velocity is
constant [44, 110].

Time Discretization

Numerous RK schemes can be chosen in the framework of the method of
lines. The schemes used in this chapter are summarized in Table 3.1, and
the coefficients γk of their amplification factor R (z), that determines their
stability properties, are listed in Appendix A. The choice of a particular
scheme generally results from a trade-off between accuracy and stability, thus
it depends on the application targeted. In this chapter, the focus is on two
types of RK schemes.

In a first step, we study a group of RK schemes commonly used with, or
specifically designed for linear wave propagation problems, for which the DG
method is increasingly popular. All of them are fourth-order accurate for linear
equations. They are all designed with five or more stages, so that the coefficients
for higher stages, that are not used to fulfill the order conditions, provide extra
degrees of freedom for optimization. Carpenter and Kennedy [25] were among
the first to propose a 2N-storage scheme, that they optimized with respect to
stability. Allampalli et al. [5], Mead and Renaut [104] also presented schemes
with optimal stability region. Hu et al. [71] devised RK schemes optimized
with respect to dissipation and dispersion, for which Stanescu and Habashi
[127] gave a 2N-storage implementation. A similar methodology was followed
by Berland et al. [15]. Finally, Calvo et al. [24], as well as Tselios and Simos
[139], optimized their scheme with respect to both stability and accuracy. It
is to be noted that the schemes proposed by Berland et al. [15] and Calvo
et al. [24] are almost the same, although they were obtained through different
methods. Absolute stability regions of all these schemes are shown in Fig. 3.4.
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They were all optimized with respect to finite-difference semi-discrete operators,
except those of Mead and Renaut [104] who used pseudo-spectral operators. As
high-order finite-difference methods are usually based on central schemes, they
are non-diffusive, thus the eigenvalue spectra of the corresponding operators lie
on the imaginary axis. This explains why the stability region of RK schemes
optimized for stability are larger along the imaginary axis, but not necessarily
along the real axis. As seen from the stability plot in Fig. 2.2, the extent of
the RK stability region along the real axis is more relevant for RKDG stability,
but to our knowledge, no RK method has been specifically designed for DG
space operators yet. This is addressed in Chap. 5.

In a second step, optimal strong-stability-preserving (SSP) RK schemes, that
are used with non-linear applications [53, 124], are studied. To our knowledge,
non-linear stability of RKDG methods has only been demonstrated with SSP
schemes [32]. The optimal three-stage third-order scheme is classical [53]. For
non-linear fourth-order accuracy, a minimum of five stages is required, and
the optimal scheme used here is obtained through a numerical optimization
procedure [124]. Absolute stability regions of the SSP RK schemes studied in
this work are shown in Fig. 3.5.

Finally, simple low-storage RK schemes [74] with p + 1 stages are used for
comparison purpose. They yield a formally (p + 1)-order RKDG method up to
fourth order. Their stability regions are plotted in Fig. 3.6. One can note that
the 3-stage and 4-stage schemes are equivalent to the (3,3)-SSP and “standard”
fourth-order RK schemes respectively, as all s-stage, sth-order RK schemes have
the same stability region.

3.3 Results

3.3.1 Advection Velocity and Numerical Flux

Before studying the CFL conditions, it is interesting to qualitatively assess the
influence of the advection velocity on stability. It can be seen from Eqs. (2.7),
(2.4) and (2.5) that L is proportional to the advection velocity ‖a‖, so that we
set ‖a‖ = 1, and study only the effect of the advection direction θ with a =
(cos θ, sin θ). Additionally, it can be deduced from symmetry considerations
that the problem is invariant with respect to the sign of a (i.e. the results
are π-periodic in θ). In this section, results obtained with Jameson RK are
presented, but the same behavior is found with other RK schemes.

Fig. 3.7 shows the mesh pattern and maximum time step ∆t∗ in function of the
advection direction θ for an equilateral triangle (which is the triangle shape of
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Figure 3.4: Absolute stability regions of RK schemes for linear wave
propagation problems, optimized with respect to stability (a), to accuracy (b),
and to both stability and accuracy (c).
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Name Order Stages Storage
Carpenter [25] 4 5 2N
Mead RKC [104] 4 6 5N
HALE-RK6 [5] 4 6 2N
HALE-RK7 [5] 4 7 2N
HALE-RK67 [5] 4 6+7 2N
Hu LDDRK6 [71] 4 6 3N (2N [127])
Hu LDDRK46 [71] 4 4+6 3N
Hu LDDRK56 [71] 4 5+6 3N (2N [127])
Berland [15] 4 6 2N
Calvo LDDRK46 [24] 4 6 2N
Tselios DDAS47 [139] 4 7 2N
Optimal (3,3)-SSP [53] 3 3 3N
Optimal (5,4)-SSP [124] 4 5 5N
Jameson [74] Variable p+1 2N

Table 3.1: Main characteristics of RK schemes used in this chapter.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1

2-Stage
3-Stage
4-Stage
5-Stage
6-Stage

(a)

-6

-4

-2

 0

 2

 4

 6

-6 -5 -4 -3 -2 -1  0  1

7-Stage
8-Stage
9-Stage

10-Stage
11-Stage

(b)
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highest quality, γ = 1). One can see that the time step is almost constant for
the Lax-Friedrichs flux, whereas the dependence on θ is stronger but moderate
for the upwind flux. The same plots are presented in Fig. 3.8 for a triangle of
lower quality. The time step variation in function of θ remains moderate with
the Lax-Friedrichs flux, but with upwind flux the time step becomes much larger
in the advection direction parallel to the longest triangle sides. We verify that
this behavior is qualitatively the same for higher order p.

In practical simulations, the governing system of multidimensional hyperbolic
equations often has characteristics that do not degenerate into lines. Instead,
there is an infinite set of characteristic directions forming a Monge cone. Thus,
a unique advection direction cannot be identified for each characteristic variable,
and all advection directions have to be considered. This is the case, for
instance, with the acoustic modes featured by the Euler equations in fluid
dynamics. Thus, only the minimum value ∆̂t of the time step with respect to
θ is considered for the assessment of the CFL conditions in Sec. 3.3.2:

∆̂t = min
θ

(∆t∗)

which is the value that ensures stability for all advection directions. For this
purpose, θ sweeps the range [0, 180◦] with a step of 4◦, and a stability analysis
is carried out for each value of a.

By comparing Fig. 3.7 and 3.8, one can observe that the time step ∆t∗ is
significantly greater with the upwind flux than with the Lax-Friedrichs flux
for all advection directions in the case of the equilateral triangle, whereas the
minimum value, ∆̂t, seems to be almost equal with both types of numerical
fluxes in the case of the stretched triangle. We verify that the upwind flux
yields a greater or equal time step in all cases. The maximum and minimum
relative difference in ∆̂t of the set of triangles studied are defined as:

∆max = max
γ

(
∆̂tUpwind − ∆̂tLF

∆̂tLF

)

∆min = min
γ

(
∆̂tUpwind − ∆̂tLF

∆̂tLF

)

where maxγ and minγ denote respectively the maximum and minimum of a
quantity with respect to the element shape, that is, the maximum and minimum
value in the set of triangles studied. The quantities ∆max and ∆min are plotted
for all RK schemes and order p from 1 to 10 in Fig. 3.9. As a general trend, the
differences ∆max and ∆min between both types of flux grow with increasing
order p, that is, the advantage of the upwind flux over the Lax-Friedrichs flux is
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greater at higher order p. The maximum difference ∆max, that varies between
25% and 60%, is always obtained with the equilateral triangle (i.e. the best
quality element). The minimum difference ∆min, increasing from 0% at p = 1
to 33% at p = 10 for most RK schemes, is given by high-aspect-ratio triangles.
The optimal (4,5)-SSP RK, and to a lesser extent the Carpenter and Hu
LDDRK46 RK, seem to give less advantage to the upwind flux than the other
RK schemes studied in this work. They yield a particularly small minimum
difference in ∆̂t at low order p, which occur on highly stretched triangles. This
is important in view of practical simulations, when the upwind flux requires
additional computational effort per time step, because of the characteristic
decomposition of the governing system of equations that it involves. Then the
upwind flux may not be competitive with the Lax-Friedrichs flux in terms of
computational efficiency, especially at low order p with low-quality grids, when
using these less advantageous RK schemes.
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Figure 3.7: Maximum time step ∆t∗ in function of the advection direction
θ with the Jameson RK for an equilateral triangle at p = 1: polar (a) and
Cartesian (b) plots, corresponding mesh pattern (c).
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3.3.2 CFL Conditions

From ∆t∗, the maximum Courant number ν∗ can now be calculated:

ν∗ (a) = ‖a‖
∆t∗

h

and the minimum value ν̂ over all advection directions is considered, as
explained in Sec. 3.3.1:

ν̂ = ‖a‖
∆̂t

h

Various geometrical parameters can be chosen as element size h. Although
different parameters can be interlinked by geometrical relations in the triangle,
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Figure 3.8: Maximum time step ∆t∗ in function of the advection direction θ
with the Jameson RK for a triangle of higher aspect ratio at p = 1: polar (a)
and Cartesian (b) plots, corresponding mesh pattern (c).
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they do not depend on the element shape in the same manner, so that the
influence of the element shape on the maximum Courant number depends on
the parameter chosen as size measure h. In this work, five different element size
measures h are studied: the shortest edge in the triangle (ν∗

l ), the side length
of the equilateral triangle with equal area (ν∗

e ), the radius of the circumscribed
circle (ν∗

c ), the radius of the inscribed circle (ν∗
r ) and the shortest height in

the triangle (ν∗

h). Courant numbers based on the radius of the inscribed
circle are very commonly used in finite volume and finite element methods.
Obviously, the ideal CFL condition would yield the same maximum Courant
number whatever the shape of the element. However, none of the five element
size measures manages to reflect perfectly the influence of element shape on the
stability bound, and there is dispersion among the 52 values of ν̂, corresponding
to the 52 triangles studied, for a given size measure.

We denote by minγ (ν̂) and maxγ (ν̂) respectively, the minimum and maximum
of ν̂ with respect to the element shape, that is, the minimum and maximum
values of ν̂ in the set of triangles studied. The value minγ (ν̂), which ensures
stability for any element shape, is the safest choice for use in practical
simulations, but one may want to use higher values in special cases, as explained
in Sec. 3.3.2. In Appendix B, values of minγ (ν̂) and maxγ (ν̂) are provided for
ν̂ based on the most interesting element size measures, with the two kind of
numerical fluxes and order p ranging from 1 to 10, for all the RK schemes
described in Sec. 3.2.2. As the evolution of the Courant number with respect
to p seems to be more complex than the simple 1/(2p+1) dependence, we assess
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upwind and Lax-Friedrichs fluxes in the set of triangles studied.
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logarithmic relations, and curves of the form:

ln (·) = α0 + α1 ln (p) + α2 [ln (p)]2 (3.2)

are found to fit the data for minγ (ν̂) and maxγ (ν̂) as a function of p, with a
maximum error of approximately 1%. The values of the coefficients α0, α1 and
α2 are also given in Appendix B. To characterize the dependence of the CFL
conditions on the element shape, the deviation of ν̂ is computed with respect
to the minimum value in the set of triangles studied:

D =
maxγ (ν̂) − minγ (ν̂)

minγ (ν̂)

Element Size Measures

Fig. 3.10 shows the value of ν̂ based on each of the five element size measures,
for all triangles, at order p = 1, with the Jameson RK scheme. One can see that
ν̂l, ν̂e and ν̂c, based respectively on the shortest side length, the side length
of the equilateral triangle with equal area and the radius of the circumscribed
circle, exhibit large relative deviations with respect to their minimum value.
This is due to the fact that these measures do not take low values for “flat”,
high-aspect-ratio triangles (under the condition that the three side length are
have the same order of magnitude for ν̂l), whereas such ill-conditioned elements
yield small ∆t∗. As they fail to correctly characterize such “pathological” cases,
the results obtained with the set of triangles described in Sec. 3.2.1 cannot be
generalized, and they are not appropriate for use with arbitrary unstructured
grids. Obviously, the argument stated above being based on geometry, the
same behaviour is observed at higher polynomial order p and with other RK
schemes.

On the contrary, ν̂r and ν̂h exhibit less relative variation with the element
shape, for both types of numerical fluxes. Therefore, only the results for ν̂r

and ν̂h are presented in Appendix B. As seen in Fig. 3.10, ν̂r increases with
γ (more for the upwind flux than for the Lax-Friedrichs flux), whereas ν̂h

decreases (Lax-Friedrichs flux) or remains almost constant (upwind flux). We
verify that the same behaviour is obtained for all RK schemes and all orders
p studied in this work. These remarks can be exploited to fine-tune the value
of ν∗ set in practical simulations. In some applications, the global time step
is more likely to be limited by small or medium-size low-quality elements (for
instance the elements used to mesh the boundary layer in CFD) than by small,
high-quality elements: then minimum values of ν̂r are optimal, whereas with
the Lax-Friedrichs flux, higher values of ν̂h, close to maxγ (ν̂h), are appropriate.
If, on the other side, a grid has uniformly good quality, then minimum values
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of ν̂r are sub-optimal, whereas minima of ν̂h suit the Lax-Friedrichs flux. Fig.
3.11 shows the deviation D in ν̂r and ν̂h with the Lax-Friedrichs flux. D varies
between 7% and 31% for ν̂r, depending on the order p and the RK scheme
used, whereas the deviation is generally higher (between 20% and 42%) for
ν̂h. However, one can see that the CFL condition based on the inner radius is
more accurate only up to order p = 6, the shortest height becoming a generally
better size measure for higher order p. The same quantities are plotted in
Fig. 3.12 for the upwind flux. Surprisingly, the commonly-used inner radius
yields a relatively inaccurate CFL condition (52% to 63% deviation), whereas
the shortest height measure is very reliable (4% to 13% deviation).
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Figure 3.10: Minimum value ν̂ over all advection directions of the maximum
Courant number ν∗, in function of the mesh quality measure γ, at order p = 1,
with the Lax-Friedrichs flux (a) and the upwind flux (b), for Jameson RK
scheme.

Runge-Kutta Schemes

As seen in Fig. 3.11 and 3.12, the CFL conditions have similar accuracy with
most RK schemes, for a given type of numerical flux, a given element size
measure and a given order p. Nevertheless, one can note that the shortest height
measure is more appropriate for the optimal (4,5)-SSP RK scheme whatever
the order p, for the Lax-Friedrichs flux. Also, the CFL conditions seem to be
generally slightly less accurate with the optimal (4,5)-SSP and the Carpenter
RK schemes than with other RK schemes for the upwind flux.

A general comparison the computational efficiency based on minγ (ν̂) is difficult,
as this minimum value is obtained with different triangle shapes depending on
the numerical flux, the element size measure and sometimes even on the order
p. Thus, the exact answer to the question of which RK scheme minimizes the
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Figure 3.11: Deviation D, among all element shapes studied, of ν̂ based on the
inner radius (a) and the shortest height (b), in function of the order p, with
the Lax-Friedrichs flux, for all RK schemes.
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computation time for a practical simulation is grid-specific. However, trends
can be observed in the results reported in Appendix B. As the computational
effort of a RK scheme in one time step is proportional to its number of stages,
the Courant number per stage is taken a measure of the efficiency. It is
assumed here that the accuracy of the scheme can be disregarded, but a more
comprehensive study of the computational efficiency of RKDG methods can be
found in Chap. 5. Fig. 3.13 and 3.14 show the minimum value of the maximum
Courant numbers ν̂r and ν̂h per stage with the Lax-Friedrichs flux and the
upwind flux respectively. In all cases, it can be seen that the Carpenter RK
and the optimal SSP RK schemes are most efficient, which seems logical as
they are all optimized for stability. The Hu LDDRK, Berland RK, Calvo RK
and Tselios RK schemes, designed (at least partially) for high accuracy, are
computationally less efficient. The presence of the HALE RK and Mead RKC
schemes among the least efficients, although they are optimized for stability,
demonstrates that optimizing a RK scheme with respect to Finite Difference
or Pseudo-Spectral spatial operators does not necessarily yield the expected
results with the DG method, as explained in Sec. 3.2.2. Finally, the Jameson
scheme is relatively efficient for order p ≤ 2, but it becomes less interesting for
higher order. In particular, for p > 3, its number of stages increases without
necessarily providing higher order, and the free coefficients are not optimized
for anything.

The values of minγ (ν̂r) given in Tables B.1 and B.7, as well as Fig. 3.13 and
3.14, are barely higher with the upwind flux than with the Lax-Friedrichs flux
for moderate order p. This is because the minima of ν̂ based on the inner
radius are obtained on bad-quality elements, where the upwind flux is less
advantageous, as explained in Sec. 3.3.1.

3.4 Examples

In order to illustrate the application of the results obtained in Sec. 3.3, we
compute the maximum time step ∆t∗ allowed for stability with two different
triangular grids, that are more representative of practical problems than
the structured grids described in Sec. 2.2. The exact ∆t∗ is obtained by
considering periodic boundary conditions and assembling directly the semi-
discrete operator L for the whole grid. The minimum value over all advection
directions is then compared to the CFL conditions based on the inner radius
and on the shortest height. As the advection velocity is uniform over the whole
computational domain, the most restrictive value of ∆t∗ computed by the CFL
conditions is obtained for the smallest element in the grid. We show results
obtained with both minimum values minγ ν̂ (Tables B.1, B.4, B.7 and B.10)
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and maximum values maxγ ν̂ (Tables B.2, B.5, B.8 and B.11) of ν̂ given in
Appendix B.

The first grid, shown in Fig. 3.15, is unstructured and contains 334 triangular
elements. Its quality can be considered as uniformly good, with γ ranging
from 0.78 to 1. The results of time step calculations at order p = 4 are given
in Tables 3.2 for the Lax-Friedrichs flux and Table 3.3 for the upwind flux.
With the Lax-Friedrichs flux, the maximum values of the Courant number
ν̂r in the CFL condition based on the inner radius provide large time steps
that do not exceed the real stability limit, as expected from the discussion on
good-quality grids in Sec. 3.3.2. On the other hand, the time steps obtained
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Figure 3.13: Minimum value minγ (ν̂) of ν̂ per stage, based on the inner radius
(a) and (b), and based on the shortest height (c) and (d), in function of the
order p, with the Lax-Friedrichs flux, for all RK schemes.



EXAMPLES 53

by using maximum values of ν̂h for the CFL condition based on the shortest
height exceed the stability limit with most of the RK schemes, as then ν̂h is
globally decreasing with γ. With the upwind flux, both elements size measures
give better results for high values of the Courant number ν̂, in accordance with
the observations in Sec. 3.3.2.

The second grid, shown in Fig. 3.16, is made up of a structured part and an
unstructured part, like those commonly used to resolve boundary layers in
CFD or CAA applications. It contains 164 triangles of heterogeneous quality
(0.13 < γ < 1), the worst elements being located in the structured part. The
results of time step calculations at order p = 5 are given in Tables 3.4 and 3.5.
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Figure 3.14: Minimum value minγ (ν̂) of ν̂ per stage based on the inner radius
(a) and (b), and based on the shortest height (c) and (d), in function of the
order p, with the upwind flux, for all RK schemes.
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For the Lax-Friedrichs flux, the minimum value of ν̂r and maximum value of
ν̂h yield accurate results, as they are suited to the high-aspect-ratio elements
of the structured zone that restrict the time step on this grid. The minimum
value of ν̂h performs worse, and the maximum value of ν̂r leads to a violation of
the exact stability restriction, in accordance with the conclusions of Sec 3.3.2.
For the upwind flux, only the maximum value of ν̂r yields reasonably good
accuracy, whereas it should give overestimated time steps, according to the
discussion in Sec. 3.3.2.

In these two examples, the relative accuracy of different CFL conditions behaves
in accordance with the qualitative observations of Sec. 3.3.2 with respect to the
type of flux, the kind of grid, and the range of Courant number used. However,
the general level of accuracy can be considered as disappointing in view of the
results of Sec. 3.3.2 (time steps of less than half of the optimal time step with
the hybrid grid and the upwind flux, for instance). The main reason for this
lack of accuracy is not a misprediction in the influence of the element shape on
the time step restriction. It is due to the fact that local criteria, such as the
CFL conditions, can only provide bounds for stability, and the global stability
condition may be less restrictive. This is even more the case when other types
of boundary conditions than periodicity are imposed, because they generally
add constraints to the solution, which may eliminate some of the unstable
modes. Nevertheless, the accuracy of CFL conditions is found to be mainly
independent of the RK scheme used, and the upwind flux yields greater time
steps than the Lax-Friedrichs flux, as in Sec. 3.3.

3.5 Conclusion

In this chapter, the time step restrictions that arise from RKDG discretizations
of the scalar advection equation on triangular grids have been studied. Two
kinds of numerical fluxes, namely the Lax-Friedrichs flux and the upwind flux,
as well as a set of RK schemes targetting both linear wave propagation and
non-linear applications, have been considered. The stability analysis techniques
presented in Sec. 2.2.3 have been applied to derive the linear stability conditions
that restrict the time step. The use of structured grids made up of congruent
elements, as introduced in Sec. 2.2.1, is particularly appropriate to investigate
the influence of triangle shape on the time step limitations. We have focused on
the most restrictive condition over all advection directions, which is relevant for
generalizing the results to the systems of hyperbolic equations used in practical
simulations.

It has been confirmed that the upwind flux generally allows larger time steps
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Figure 3.15: Unstructured grid.

Exact
ν̂r ν̂h

Min. Max. Min. Max.
Carpenter 6.80 4.66 (31.4%) 5.56 (18.2%) 5.21 (23.3%) 6.81 (−0.3%)

Hu LDDRK6 5.06 3.47 (31.4%) 4.15 (18.0%) 3.90 (22.9%) 5.09 (−0.5%)
Hu LDDRK46 4.68 3.22 (31.3%) 3.84 (18.0%) 3.61 (22.9%) 4.71 (−0.6%)
Hu LDDRK56 4.97 3.40 (31.5%) 4.06 (18.3%) 3.83 (22.9%) 5.00 (−0.6%)

Berland 5.94 4.08 (31.4%) 4.86 (18.2%) 4.58 (23.0%) 5.99 (−0.7%)
Calvo 5.99 4.11 (31.3%) 4.90 (18.1%) 4.62 (22.9%) 6.04 (−0.9%)
Tselios 7.32 5.03 (31.3%) 6.00 (18.1%) 5.63 (23.2%) 7.38 (−0.8%)

HALE-RK6 4.71 3.24 (31.3%) 3.86 (18.2%) 3.63 (22.9%) 4.74 (−0.5%)
HALE-RK7 5.78 3.97 (31.4%) 4.74 (18.1%) 4.45 (22.9%) 5.83 (−0.9%)
HALE-RK67 4.97 3.40 (31.6%) 4.08 (17.9%) 3.83 (22.9%) 5.00 (−0.6%)
Mead RKC 5.19 3.57 (31.2%) 4.24 (18.2%) 4.00 (22.9%) 5.21 (−0.5%)

Opt. (3,3)-SSP 3.67 2.52 (31.2%) 3.00 (18.2%) 2.83 (22.9%) 3.69 (−0.6%)
Opt. (4,5)-SSP 7.78 4.79 (38.4%) 6.05 (22.1%) 5.68 (27.0%) 7.12 (8.4%)

Jameson 4.70 3.22 (31.5%) 3.84 (18.2%) 3.62 (22.9%) 4.72 (−0.6%)

Table 3.2: Maximum time step ∆t∗ × 100 for the unstructured grid shown in
Fig. 3.15, at order p = 4, with the Lax-Friedrichs flux: exact value calculated
from the global semi-discrete operator, estimations obtained by minimum and
maximum values of ν̂ for CFL conditions based on the inner radius (ν̂r) and on
the shortest height (ν̂h). The relative error with respect to the exact value is
indicated in parenthesis, with a negative number if the exact value is exceeded.
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Exact
ν̂r ν̂h

Min. Max. Min. Max.
Carpenter 10.3 4.90 (52.3%) 7.77 (24.4%) 6.76 (34.2%) 7.38 (28.2%)

Hu LDDRK6 8.36 4.02 (51.9%) 6.25 (25.2%) 5.63 (32.7%) 5.88 (29.6%)
Hu LDDRK46 7.42 3.60 (51.5%) 5.58 (24.9%) 4.98 (32.9%) 5.42 (27.0%)
Hu LDDRK56 8.21 3.95 (51.9%) 6.14 (25.1%) 5.52 (32.7%) 5.78 (29.6%)

Berland 9.82 4.74 (51.8%) 7.35 (25.2%) 6.61 (32.7%) 6.92 (29.6%)
Calvo 9.89 4.77 (51.7%) 7.41 (25.1%) 6.66 (32.7%) 6.97 (29.5%)
Tselios 12.1 5.83 (51.8%) 9.07 (25.1%) 8.16 (32.6%) 8.52 (29.6%)

HALE-RK6 7.79 3.75 (51.9%) 5.83 (25.1%) 5.21 (33.1%) 5.47 (29.8%)
HALE-RK7 9.55 4.61 (51.8%) 7.15 (25.2%) 6.40 (33.0%) 6.71 (29.8%)
HALE-RK67 8.21 3.95 (51.9%) 6.14 (25.2%) 5.52 (32.7%) 5.78 (29.6%)
Mead RKC 8.57 4.13 (51.8%) 6.42 (25.1%) 5.78 (32.5%) 6.04 (29.5%)

Opt. (3,3)-SSP 6.05 2.93 (51.6%) 4.54 (25.0%) 4.07 (32.8%) 4.27 (29.4%)
Opt. (4,5)-SSP 10.1 4.79 (52.4%) 7.63 (24.2%) 6.61 (34.3%) 7.23 (28.2%)

Jameson 7.76 3.75 (51.7%) 5.82 (25.1%) 5.21 (32.8%) 5.47 (29.5%)

Table 3.3: Maximum time step ∆t∗ × 100 for the unstructured grid shown
in Fig. 3.15, at order p = 4, with the upwind flux: exact value calculated
from the global semi-discrete operator, estimations obtained by minimum and
maximum values of ν̂ for CFL conditions based on the inner radius (ν̂r) and on
the shortest height (ν̂h). The relative error with respect to the exact value is
indicated in parenthesis, with a negative number if the exact value is exceeded.

Figure 3.16: Hybrid grid.
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Exact
ν̂r ν̂h

Min. Max. Min. Max.
Carpenter 1.14 1.03 (9.7%) 1.28 (−11.9%) 0.883 (22.8%) 1.12 (2.4%)

Hu LDDRK6 0.851 0.769 (9.7%) 0.956 (−12.3%) 0.657 (22.8%) 0.831 (2.4%)
Hu LDDRK46 0.804 0.714 (11.2%) 0.884 (−10.0%) 0.607 (24.5%) 0.769 (4.3%)
Hu LDDRK56 0.835 0.753 (9.9%) 0.934 (−11.8%) 0.645 (22.8%) 0.815 (2.5%)

Berland 1.000 0.901 (9.9%) 1.12 (−12.1%) 0.772 (22.8%) 0.975 (2.5%)
Calvo 1.01 0.906 (9.9%) 1.13 (−11.9%) 0.777 (22.8%) 0.982 (2.5%)
Tselios 1.23 1.11 (9.9%) 1.38 (−11.9%) 0.951 (22.8%) 1.20 (2.3%)

HALE-RK6 0.793 0.714 (9.9%) 0.890 (−12.3%) 0.612 (22.8%) 0.773 (2.5%)
HALE-RK7 0.972 0.879 (9.6%) 1.09 (−11.9%) 0.750 (22.8%) 0.949 (2.4%)

HALE-RK67 0.836 0.753 (9.9%) 0.939 (−12.4%) 0.646 (22.7%) 0.815 (2.5%)
Mead RKC 0.872 0.786 (9.9%) 0.978 (−12.1%) 0.673 (22.8%) 0.850 (2.5%)

Opt. (3,3)-SSP 0.617 0.555 (10.1%) 0.692 (−12.2%) 0.477 (22.7%) 0.601 (2.5%)
Opt. (4,5)-SSP 1.31 1.10 (16.1%) 1.38 (−5.3%) 0.948 (27.6%) 1.19 (9.0%)

Jameson 0.873 0.786 (10.0%) 0.978 (−12.1%) 0.674 (22.7%) 0.851 (2.5%)

Table 3.4: Maximum time step ∆t∗ × 1000 for the hybrid grid shown in Fig.
3.16, at order p = 5, with the Lax-Friedrichs flux: exact value calculated
from the global semi-discrete operator, estimations obtained by minimum and
maximum values of ν̂ for CFL conditions based on the inner radius (ν̂r) and on
the shortest height (ν̂h). The relative error with respect to the exact value is
indicated in parenthesis, with a negative number if the exact value is exceeded.

Exact
ν̂r ν̂h

Min. Max. Min. Max.
Carpenter 2.62 1.12 (57.2%) 1.78 (32.0%) 1.15 (56.2%) 1.24 (52.7%)

Hu LDDRK6 2.06 0.928 (55.0%) 1.44 (30.0%) 0.946 (54.1%) 1.01 (51.1%)
Hu LDDRK46 1.84 0.808 (56.1%) 1.28 (30.4%) 0.825 (55.1%) 0.892 (51.5%)
Hu LDDRK56 2.02 0.906 (55.1%) 1.42 (29.9%) 0.926 (54.2%) 0.991 (51.0%)

Berland 2.42 1.09 (55.1%) 1.69 (30.1%) 1.11 (54.1%) 1.18 (51.3%)
Calvo 2.44 1.10 (54.9%) 1.71 (29.9%) 1.12 (54.2%) 1.19 (51.1%)
Tselios 2.98 1.34 (55.0%) 2.09 (29.9%) 1.36 (54.3%) 1.46 (50.8%)

HALE-RK6 1.92 0.862 (55.1%) 1.35 (30.0%) 0.882 (54.1%) 0.941 (51.0%)
HALE-RK7 2.35 1.05 (55.1%) 1.65 (29.9%) 1.08 (54.2%) 1.16 (50.7%)

HALE-RK67 2.02 0.906 (55.2%) 1.42 (29.9%) 0.927 (54.1%) 0.992 (50.9%)
Mead RKC 2.11 0.950 (55.0%) 1.48 (30.1%) 0.970 (54.1%) 1.03 (51.0%)

Opt. (3,3)-SSP 1.48 0.659 (55.5%) 1.04 (29.6%) 0.672 (54.7%) 0.727 (50.9%)
Opt. (4,5)-SSP 2.58 1.10 (57.4%) 1.75 (32.2%) 1.12 (56.7%) 1.20 (53.3%)

Jameson 2.11 0.950 (55.1%) 1.48 (30.1%) 0.970 (54.1%) 1.03 (51.1%)

Table 3.5: Maximum time step ∆t∗ × 1000 for the hybrid grid shown in Fig.
3.16, at order p = 5, with the upwind flux: exact value calculated from the
global semi-discrete operator, estimations obtained by minimum and maximum
values of ν̂ for CFL conditions based on the inner radius (ν̂r) and on the shortest
height (ν̂h). The relative error with respect to the exact value is indicated in
parenthesis, with a negative number if the exact value is exceeded.
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than the Lax-Friedrichs flux. CFL conditions, based on various element size
measures, have been derived. Only two of them, based respectively on the
inner radius and on the shortest height, have been found to be appropriate
for time step calculation in practical simulations, although they are not totally
independent of the element shape. The corresponding values of the Courant
number, as well as their general behaviour with respect to the element shape,
are reported. We have verified that this general behaviour is not strongly
affected by the choice of the RK scheme. A general picture of the relative
merits of the RK schemes in terms of maximum Courant number per stage
has been deduced from the results. The application of these results to two
examples, involving respectively an unstructured grid and a hybrid grid, has
confirmed these conclusions. However, it has showed that the global stability
condition may be much less restrictive than the one given by local criteria such
as the CFL conditions.

Most of RK schemes studied in this chapter were optimized for use with finite
difference or pseudo-spectral space discretization methods. One can wonder
whether a significant gain in computational efficiency could be obtained with
a RK scheme specially designed for DG spatial operators. It is also important
to note that the aspects of computational efficiency that are addressed in
this chapter are solely related to the stability restrictions. They do not deal
with accuracy, which is another important criterion for the choice of a time
integration method, particularly when using high-order space discretizations.
These topics are addressed in Chap. 5.



Chapter 4

Alternatives to CFL

Conditions

In this chapter, alternative methods are studied to determine the stability limit
of RKDG methods, with the objective of obtaining better estimates of the
maximum time step ∆̂t than with the CFL conditions derived in Chap. 3. Two
techniques for straight elements are first described, that are based respectively
on the simplification of the stability analysis procedure introduced in Sec. 2.2
and on the properties of the semi-discrete operator L under the mapping MT .
They are applied to the two grids presented in Sec. 3.4, and their performance is
compared to the CFL conditions. Then, the effect of element curvature on the
maximum time step ∆̂t, that the CFL conditions fail to take into account, is
investigated. Although the qualitative results show that the element curvature
has a strong effect on the conditioning of the semi-discrete operator L, we
cannot isolate a geometrical parameter that correctly characterizes the stability
restriction, and no simple method applicable to practical simulations is derived.

4.1 Introduction

The results reported in Chap. 3 show that the CFL conditions for the RKDG
method may provide an inexact estimation of the maximum time step ∆̂t
that can be set in a simulation, for two main reasons. First, the stability
limit is estimated successively for each element in the grid, and only the most

59
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restrictive element is considered to set the global time step, whereas the global
stability condition may be much less strict. Second, the CFL conditions cannot
reflect exactly the influence of the element shape, because the geometry of the
element is only taken into account through the use of a element size measure
h. In Chap. 3, the effect of the element shape is studied only for straight-edge
triangles. However, the problem is even more acute for curved element, such
as those involved in the advanced boundary treatments presented in Chap. 7.

In order to overcome these difficulties, the exact stability limit for a given
simulation could be determined by assembling the semi-discrete operator L
for the whole grid and computing its eigenvalues, possibly for many advection
directions. As explained in Sec. 2.2.1, this procedure is computationally far
too expensive. Even assuming that the time step can be estimated from
quantities obtained for a lower computational cost, like the spectral radius of L
approximated by iterative techniques, the global assembly of L is still required.
This operation necessitates data structures and algorithms to manipulate large
sparse matrices and link them to the grid topology, which is commonly found in
solvers with implicit time integration, but not in RKDG codes that are designed
to work element-by-element. Thus, the effort of implementing such a procedure
in a RKDG solver only to improve the estimation of ∆̂t is prohibitive.

Therefore, local methods for the determination of the maximum time step ∆̂t,
that are intended to better take into account the element shape than the CFL
conditions, are investigated in this chapter.

4.2 Straight Elements

As a more accurate alternative to CFL conditions, the determination of time
step during the initialization of a simulation could be performed by considering
each element in the grid, and executing stability analyses for the corresponding
periodic pattern with varying advection direction, as described in Sec. 2.2.3.
Unfortunately, this technique is computationally far too costly for practical
applications, so that possible simplifications in the procedure are sought.

4.2.1 Maximum Dissipation Method

In this section, we take the perspective of Chap. 3, and examine more closely
the properties of the eigenvalue spectrum of L (k) obtained for the set of 52
triangles described in Sec. 3.2.1 with varying advection direction θ. From the
resulting observations, a method consisting of 3 steps is derived.
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Estimation of ∆̂t from the Maximum Amount of Dissipation

The stability analysis technique presented in Sec. 2.2.3 involves a time-
consuming non-linear search to find the maximum time step ∆t∗ for which
all values λm · ∆t remain within the RK stability region S = {z : |R (z)| ≤ 1}.
However, we notice that the eigenvalue corresponding to the most unstable
mode (i.e. the eigenvalue λm for which R (λm∆t∗) = 1) is generally the purely
(or almost purely) real one that is most negative. Graphically, it means that
the eigenvalue λm that leaves the stability region first when increasing the time
step is located furthest on the negative real axis (see Fig. 2.2). As the real part
of λm · ∆t corresponds to dissipation and its imaginary part to dispersion, the
most unstable mode is the one that is most dissipative, without being dispersive.
This behaviour calls for an estimation of the maximum time step ∆t∗ as:

∆t∗ ≈
− inf ℜ (S)

− min ℜ (λm)
=

− inf ℜ (S)
δ

(4.1)

where δ = − min ℜ (λm) represents the maximum amount of dissipation. Note
that the most negative eigenvalue located on the real axis is also the largest
one in magnitude, so that δ is equal to the largest spectral radius of L (k).
Obviously, the estimation of the minimum value ∆̂t of ∆t∗ over all advection
directions θ is obtained for δ = maxθ δ.

We verify the accuracy of the estimation of ∆̂t in Eq. (4.1) for all RK schemes
studied in Chap. 3. The mean and maximum error in ∆̂t for the Carpenter,
Hu LDDRK46, (3,3)-SSP and (5,4)-SSP schemes is shown in Tab. 4.1, 4.2, 4.3
and 4.4 respectively. For all the other RK schemes, the maximum error in ∆̂t
at order p > 2 does not exceed 1% with the Lax-Friedrichs flux and 2% with the
upwind flux. Overall, the estimation is very accurate with the Lax-Friedrichs
flux, and less with the upwind flux. The predictions for the (5,4)-SSP scheme,
in particular, are likely to be less interesting than the CFL conditions assessed
in Sec. 3.3.2.

It is to be noted that when Eq. (4.1) is not exact (i.e. when the most
unstable modes are not the most dissipative), the maximum time step ∆t∗

is overestimated. The stability plot in Fig. 4.1 illustrates this situation. Thus,
using Eq. (4.1) in the cases where the error is greater than a few percents may
lead to instability.

Extrapolation from Order p = 2

Although the costly non-linear search can be avoided by estimating ∆̂t from the
maximum amount of dissipation δ, the determination of ∆̂t is still expensive
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p
Lax-Friedrichs Flux Upwind Flux

Mean Err. (%) Max. Err. (%) Mean Err. (%) Max. Err. (%)
1 10.8 16.2 14.5 16.1
2 2.5 6.8 10.8 15.1
3 1.2 2.1 12.0 14.4
4 0.0 0.0 9.1 11.5
5 0.0 0.0 10.3 11.1
6 0.0 0.0 8.3 10.0
7 0.0 0.1 9.6 10.2
8 0.0 0.0 8.0 9.3
9 0.0 0.0 9.2 12.3
10 0.0 0.0 7.7 8.9

Table 4.1: Error in the estimation of ∆̂t from the maximum amount of
dissipation δ, in percent, with the Carpenter RK scheme.

p
Lax-Friedrichs Flux Upwind Flux

Mean Err. (%) Max. Err. (%) Mean Err. (%) Max. Err. (%)
1 5.8 8.8 7.7 8.7
2 0.0 0.1 4.0 5.6
3 0.0 0.5 6.3 6.9
4 0.0 0.1 3.8 4.5
5 0.0 0.2 5.5 6.0
6 0.1 0.5 3.8 4.0
7 0.0 0.1 5.0 5.6
8 0.1 0.8 3.7 3.9
9 0.1 0.8 4.8 7.9
10 0.1 1.0 3.7 3.9

Table 4.2: Error in the estimation of ∆̂t from the maximum amount of
dissipation δ, in percent, with the Hu LDDRK46 scheme.
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p
Lax-Friedrichs Flux Upwind Flux

Mean Err. (%) Max. Err. (%) Mean Err. (%) Max. Err. (%)
1 2.0 4.3 3.2 4.2
2 0.0 0.0 0.1 0.8
3 0.0 0.0 2.0 2.6
4 0.0 0.0 0.1 0.2
5 0.0 0.0 1.3 1.9
6 0.0 0.0 0.1 0.1
7 0.0 0.0 1.0 1.4
8 0.0 0.0 0.0 0.1
9 0.0 0.0 0.8 3.6
10 0.0 0.0 0.0 0.1

Table 4.3: Error in the estimation of ∆̂t from the maximum amount of
dissipation δ, in percent, with the (3,3)-SSP RK scheme.

p
Lax-Friedrichs Flux Upwind Flux

Mean Err. (%) Max. Err. (%) Mean Err. (%) Max. Err. (%)
1 29.4 36.1 34.1 36.0
2 19.1 25.2 29.7 34.9
3 17.7 19.7 31.1 34.1
4 10.3 11.9 27.6 30.7
5 9.0 10.2 28.9 30.3
6 4.0 5.6 26.6 28.7
7 3.1 5.2 27.9 28.7
8 0.4 1.8 26.1 27.8
9 0.2 1.5 27.4 31.0
10 0.0 0.0 25.7 27.3

Table 4.4: Error in the estimation of ∆̂t from the maximum amount of
dissipation δ, in percent, with the (5,4)-SSP RK scheme.
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at high order, because the computational cost of the eigenvalue problem is
proportional to the cube of the number of unknowns, that in turn grows
quadratically with the order p. Thus, the eigenvalue spectra obtained in
Chap. 3 is examined with the hope to find scaling laws for δ with respect
to p.

Fig. 4.2 shows the value of the maximum amount of dissipation δ at order
p = 5 for all triangle shapes against the corresponding value of δ at order
p = 2, with the Lax-Friedrichs flux, for the horizontal advection a = (1, 0). The
scaling of δ when varying the element shape is well described by a linear fit.
However, this linear law depends on the advection direction θ, as made obvious
in Fig. 4.3. In the case of the upwind flux, a proportionality relation appears to
be accurately satisfied, the proportionality constant being independent of the
advection direction θ, as illustrated in Fig. 4.4. We verify the accuracy of the
linear laws for both types of numerical fluxes in all advection directions, the
results are reported in Tab. 4.5. Overall, the linear fits are found to be accurate
for most elements, with a low mean error, whereas only a few elements deviate
with a maximum error of 5% to 15% for orders p ≥ 3.

Now, for reasons mentioned in Sec. 3.2.1, δ is proportional to the inverse of a
scale size, whereas its dependence on the order p is measured for the set of 52
elements with one fixed edge length l1 = ∆x. The scale factor can be taken
into account for an arbitrary triangle by defining a scaled maximum amount of
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Figure 4.1: Stability plot for an equilateral triangle under horizontal advection,
with the upwind flux and the (5,4)-SSP RK scheme, at order p = 4 (∆t = ∆t∗):
the first eigenvalues leaving the stability region are not located on the real axis.
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dissipation δ̄:

δ̄ =
l1

∆x
δ

In the general case, the linear fit for δ̄ can be expressed as:

δ̄ = α δ̄p=2 + β

where the coefficients α and β generally depend on both p and θ. For the
Lax-Friedrichs flux, α and β do depend on θ, whereas α is independent of θ
and β = 0 for the upwind flux. For a given element, the maximum amount of
dissipation δ can then be computed at any order p from the maximum amount
of dissipation δp=2 at order p = 2 through the relation:

δ = α δp=2 + β
∆x

l1
(4.2)

provided that the values of α and β are tabulated for each value of p and, if
applicable, for each value of θ.
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Figure 4.2: Maximum amount of dissipation δ at order p = 5 as a function of
δ at order p = 2, for the Lax-Friedrichs flux, with horizontal advection.

Maximum Amount of Dissipation δ at Order p = 2

The maximum amount of dissipation δ at order p = 2 can be computed by
the procedure described in Sec. 2.2.1. This process is still computationally
intensive, as a whole range of modes k = (kx, ky) has to be considered: the
semi-discrete space operator L (k) must be built and its eigenvalues computed
for each value of k.
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However, the eigenvalue spectra of L computed in Chap. 3 show that for even
values of the order p, the maximum dissipation is obtained for k = (0, 0). We
verify this for all element shapes and all advection directions in the database,
at order p ∈ {2, 4, 6, 8, 10}, with both types of numerical fluxes.

Taking into account this observation, the computational effort for one element
and one advection direction is reduced to one eigenvalue problem on the
operator Lp=2 (0) (i.e. a 12×12 matrix), which is relatively affordable. The
analytical expression of Lp=2 (0) in function of the coordinates of the triangle
vertices can be obtained by means of a Computer Algebra System and plugged
into any RKDG solver.
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Figure 4.3: Maximum amount of dissipation δ at order p = 5 as a function of
δ at order p = 2, for the Lax-Friedrichs flux, with all advection directions.
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Figure 4.4: Maximum amount of dissipation δ at order p = 5 as a function of
δ at order p = 2, for the upwind flux, with all advection directions.
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Full Procedure

To summarize, the full procedure to calculate the maximum time step for an
arbitrary triangular grid is described by the following pseudo-code:

for each element T in the grid do
for each value of θ do

Compute δp=2 for k = (0, 0)
Compute δ from δp=2 with Formula (4.2).
Compute ∆t∗ from δ with Formula (4.1)

end for
Retain ∆̂t = minθ ∆t∗

end for
Retain minT ∆̂t

The accuracy of the estimation of ∆̂t by the full procedure with the Carpenter
RK scheme for the set of 52 triangles is reported in Tab. 4.6. The error with
the Lax-Friedrichs flux, that is mainly due the extrapolation of δ, is about 2%
in average for order p ≥ 2. The error with the upwind flux is higher (about
10% in average), and dominated by the overestimation of ∆t∗ from δ, which
makes this prediction less reliable, because it may exceed the exact stability
limit.

This procedure can even be safely optimized by pre-selecting the elements
T to be analyzed with a geometric criterion based on the CFL condition,
instead of applying it to every element in the computational domain. A further

p
Lax-Friedrichs Flux Upwind Flux

Mean Err. (%) Max. Err. (%) Mean Err. (%) Max. Err. (%)
1 0.4 3.4 0.3 25.3
2 - - - -
3 0.9 4.8 0.3 11.6
4 0.9 6.0 0.1 0.2
5 1.4 9.0 0.2 7.9
6 1.4 9.6 0.2 0.4
7 1.8 11.7 0.3 4.3
8 1.8 12.2 0.4 0.8
9 2.2 14.2 0.6 7.2
10 2.1 14.2 0.6 1.2

Table 4.5: Error in the approximation of the maximum amount of dissipation
δ at arbitrary order p from δ at p = 2 by linear fit, in percent, for all advection
directions.



68 ALTERNATIVES TO CFL CONDITIONS

improvement could be to take advantage of the observations in Sec. 3.3.1 about
the influence of the advection direction on ∆t∗ to further reduce the range of
θ to be swept over.

4.2.2 Mapping Method

Another time step determination method can be derived directly from
considerations on the mapping MT used to perform the integration of the DG
equations, as proposed by Hindenlang [61]. Recalling Eq. (2.8) and choosing
the upwind flux of Eq. (2.5), one can write:

MT ∂qT

∂t
−

d∑

r=1

KT
r arq +

b∑

i=1

M∂Ti
(
a · n∂Ti

)
q± = 0 (4.3)

with

q± =

{
qT , a · n∂Ti ≥ 0
qT +

i , a · n∂Ti < 0

Using the element mapping MT and the reference element coordinates ξ

instead of the local mapping M∂Ti and the local parametrization ξ
i
, all face

integral terms in Eq. (2.13) can be expressed with the element Jacobian JT

instead of the face Jacobians J∂Ti . With straight elements, JT is constant,

p
Lax-Friedrichs Flux Upwind Flux

Mean Err. (%) Max. Err. (%) Mean Err. (%) Max. Err. (%)
1 10.3 15.6 15.5 18.0
2 2.5 6.8 10.8 15.1
3 2.1 6.4 12.5 15.8
4 1.2 3.8 9.1 11.8
5 1.9 5.9 10.5 11.9
6 1.8 5.6 8.3 10.0
7 2.3 7.2 9.7 10.5
8 2.2 7.0 7.9 9.0
9 2.7 8.2 9.2 9.7
10 2.4 8.2 7.7 8.9

Table 4.6: Error in the estimation of ∆̂t with the maximum dissipation method,
in percent, for the Carpenter RK scheme.
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and the quadrature-free form of Eq. (4.3) yields:

∣∣JT
∣∣MR ∂qT

∂t
−

d∑

r=1

d∑

s=1

(
JT
)−1

sr

∣∣JT
∣∣ arKR

s q+
b∑

i=1

∣∣JT
∣∣M∂Ri

(
a · n∂Ti

)
q± = 0

where the face matrix is expressed as:

M∂Ri

kj =
∫

∂Ri

ϕkϕj dξ

The normal n∂Ri to ∂Ri can be introduced in the face integral term through
the relation n∂Ti =

(
JT
)−1

n∂Ri , and
∣∣JT

∣∣ can be dropped:

MR ∂qT

∂t
−

d∑

r=1

d∑

s=1

(
JT
)−1

sr
arKR

s q +
b∑

i=1

M∂Ri

[(
JT
)−1

a · n∂Ri

]
q± = 0

Using the image aT =
(
JT
)−1

a of a in the reference space, this can be rewritten
as:

MR ∂qT

∂t
−

d∑

s=1

KR
s aT

s q +
b∑

i=1

M∂Ri
(
aT · n∂Ri

)
q± = 0 (4.4)

Comparing Eq. (4.3) and Eq. (4.4), it becomes clear that the operator L (k)
obtained by applying the analysis described in Sec. 2.2.1 to an element T with
an advection a is the same as the one obtained by applying the analysis to the
reference element R with the advection aT . The maximum time steps are thus
equal:

∆t∗ (a) = ∆t
∗ (

aT
)

This observation, combined with the fact that ∆t∗ is inversely proportional to
‖a‖, is exploited in an efficient method for the determination of ∆̂t. Supposing
that the value of the maximum time step ∆t

∗

is tabulated for the reference
element R as a function of the advection direction θ̄ with aT =

(
cos θ̄, sin θ̄

)
,

then ∆t∗ can be computed as:

∆t∗ (θ) =
∥∥JT aT

∥∥ ∆t
∗ (

θ̄
)

(4.5)

where θ is the advection direction corresponding to a = JT aT . Thus, ∆̂t can
be calculated as:

∆̂t = min
θ̄

∥∥JT aT
∥∥ ∆t

∗ (
θ̄
)
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This technique is much faster than the maximum diffusion method presented
in Sec 4.2.1, because it only involves a matrix-vector product of dimension 2
per advection direction, instead of a eigenvalue problem of dimension 12. Up
to the accuracy of the sampling in θ̄, it gives the exact ∆̂t for a given element.

The derivation of Eq. (4.4) requires the numerical flux to be proportional to
a·n, so that the method is strictly valid for the upwind flux, but not for the Lax-
Friedrichs flux. However, one can wonder in which measure the estimation of
Eq. (4.5) is approximate with the Lax-Friedrichs flux, as it could prove useful
if it was accurate enough, even without being exact. Fig. 4.5 and Fig. 4.6
show a comparison of the exact and estimated values of ∆t∗ as a function of
the advection direction θ at p = 4 for two element shapes respectively. The
variation of ∆t∗ with θ is overestimated, above all with the high-aspect-ratio
triangle. Most importantly, the minimum value ∆̂t of ∆t∗ over all advection
directions is underestimated. The error in the estimation of ∆̂t with the set
of 52 triangles described in Chap. 3 is reported in Tab. 4.7. It is comprised
between 34% and 39% for all values of the order p, so that it is not competitive
with respect to the best CFL conditions derived in Sec. 3.3.2.

p Mean Err. (%) Max. Err. (%)
1 34.5 46.9
2 38.2 49.9
3 37.5 50.2
4 37.9 50.9
5 36.9 49.7
6 36.9 49.8
7 36.2 49.0
8 36.2 49.1
9 35.8 48.5
10 35.8 48.7

Table 4.7: Error in the estimation of ∆̂t with the Lax-Friedrichs flux, in percent,
for the set of triangles described in Sec. 3.2.1.

4.2.3 Examples

In order to illustrate the relative performance of the different methods, the
maximum time step ∆̂t is computed with the Carpenter RK scheme on the two
triangular grids described in Sec. 3.4, shown respectively in Fig. 3.15 and 3.16.
The reference value is the exact ∆̂t, obtained by direct assembly the semi-
discrete operator L for the whole grid. The CFL conditions based on the inner
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radius (ν̂r) and on the shortest height (ν̂h) are compared to the maximum
dissipation and the mapping methods.

For both grids, all methods predict a significantly lower ∆̂t than the exact
one because of their local (element-by-element) character: as mentioned in
Sec. 3.4, local criteria yield more restrictive stability limits than the exact global
condition, which explains why even the mapping method with the upwind
flux provides suboptimal values of ∆̂t. With the Lax-Friedrichs flux, the
mapping method is unsurprisingly much less accurate than the other methods.
The maximum dissipation method, however, yield slightly better results than
the most accurate CFL condition. With the upwind flux, both alternative
methods perform better than the CFL conditions. The fact that the maximum
dissipation method provides a higher accuracy is to be taken with care, because
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Figure 4.5: Exact and estimated maximum time step ∆t∗ in function of the
advection direction θ with the Lax-Friedrichs flux and the Carpenter RK for an
equilateral triangle at p = 4: polar (a) and Cartesian (b) plots, corresponding
mesh pattern (c).
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it comes from the overestimation of ∆̂t for each element taken separately, which
compensates the global under-prediction.

Overall, for the upwind flux, the mapping method gives the exact local ∆̂t
(up to the accuracy of the sampling in θ̄), on top of being very fast and
easy to implement, so that it may be advantageous with respect to the CFL
conditions. For the Lax-Friedrichs flux, the slight gain in accuracy brought
by the maximum dissipation method compared to the CFL conditions is
counterbalanced by its computational cost and by its complexity. It may be
interesting only in simulation of long periods of time, in which case a small
increase in the time step compensates for the slower initialization phase and
justifies the implementation effort.
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Figure 4.6: Exact and estimated maximum time step ∆t∗ in function of the
advection direction θ with the Lax-Friedrichs flux and the Carpenter RK for
a triangle of higher aspect ratio at p = 4: polar (a) and Cartesian (b) plots,
corresponding mesh pattern (c).
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4.3 Curved Elements

The results obtained in Chap. 3 and Sec. 4.2 are restricted to triangles with
straight edges. However, curved elements are also used in practice, for instance
with the advanced boundary treatments presented in Chap. 7. Although the
proportion of curved elements in the whole computational domain is usually
small, these elements are among the smallest and the worst conditioned,
because they lie in the vicinity of wall boundaries. Thus, they may influence
the global time step, and it is important to characterize the influence of the
curvature on the stability of RKDG methods.

4.3.1 Study of the Stability with Curved Elements

The stability of the RKDG method with curved elements is studied by means
of the von Neumann-type analysis technique described in Sec. 2.2, in the same
manner as with straight elements. As in Chap. 3, the analysis is carried out
on grids made up of periodic patterns. However, the elements used here are
of second geometric order, so that the mapping MT is quadratic, and the
Jacobian JT is linear, as mentioned in Sec. 2.1.1. The mappings are defined
through control points on the edges of the element, as commonly done in
classical FEM. The corresponding mesh patterns are shown in Fig. 4.7. A

Lax-Friedrichs Upwind
Exact 6.796 10.27

CFL – ν̂r 4.663 (31.4%) 4.901 (52.3%)
CFL – ν̂h 5.214 (23.3%) 6.763 (34.2%)

Maximum Dissipation Method 5.366 (21.0%) 7.887 (23.2%)
Mapping Method 3.713 (45.4%) 7.311 (28.8%)

Table 4.8: Maximum time step (×100) for the unstructured grid of Fig. 3.15,
at order p = 4.

Lax-Friedrichs Upwind
Exact 8.627 20.44

CFL – ν̂r 7.801 (9.6%) 8.845 (56.7%)
CFL – ν̂h 6.696 (22.4%) 8.977 (56.1%)

Maximum Dissipation Method 7.855 (8.9%) 9.876 (51.7%)
Mapping Method 4.342 (49.7%) 9.895 (51.6%)

Table 4.9: Maximum time step (×104) for the hybrid grid of Fig. 3.16, at order
p = 6.
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semi-discrete operator L (k) depending on the wavenumber k is formulated,
based on a harmonic wave assumption. The maximum allowable time
step ∆t∗ is found through a bisection method that evaluates the stability
condition |R (λm · ∆t)| ≤ 1 for all eigenvalues λm (k) of L (k), R (z) being the
amplification factor of the RK scheme. To our knowledge, there is no report of
such method being applied to curved elements in the literature.

In one spatial dimension, the element cannot be geometrically curved, but
the use of a quadratic mapping mimics the effect of element curvature. This
curvature is quantified by the non-dimensional parameter χ, that is defined as
the distance between the control point and the center of the segment, divided
by the half-length of the segment (see Fig. 4.7). The value χ = 0 corresponds to
a linear mapping MT (i.e. no curvature). The maximum curvature is reached
for χ = 0.5, at which point the Jacobian determinant changes sign over the
segment, so that the numerical method becomes invalid.

In 2D, two parameters χT and χN (see Fig. 4.7(b)), non-dimensionalized with
the edge half-length, are used to quantify the displacement of the control point
of each edge from its center in the tangential and normal directions respectively
(see Fig. 4.7). The maximum curvature that can be reached without affecting
the bijective character of MT depends on the shape of the corresponding
straight-edge triangle. Note that in the case of curved elements in 2D, the
two elements of the grid pattern are not congruent, so that the stability limit
obtained from the analysis may be considered as over-restrictive if the element
shape of interest is the “largest” of both.

(a) (b)

Figure 4.7: Mesh patterns used for the stability analysis with curved elements
in 1D (a) and 2D (b).
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4.3.2 Qualitative Assessment of the Curvature Effect in 2D

Fig. 4.8 shows the result of the progressive deformation of an edge of an
equilateral triangle in the normal direction up to χN = 0.8, with the Lax-
Friedrichs flux and the Standard RK4 scheme, the advection being horizontal.
The eigenvalue spectrum λm of the semi-discrete operator L (k) stretches along
the real axis, which explains the drop of the maximum time step ∆t∗. The plot
of the normalized maximum time step ∆t∗

/∆t∗

χN =0 in Fig 4.8(c) shows that the
decrease of ∆t∗ is proportionally steeper at higher order p. Even for a moderate
curvature of χN = 0.4, for instance, the maximum time step ∆t∗ is 20% to 30%
smaller than with the straight-edge element.

The effect of a tangential deformation when the normal deformation fixed at
χN = 0.4 is shown in Fig. 4.9. Although the drop in ∆t∗ seems to be limited
at low order p, it is much sharper at higher order. The fact that the maximum
time step ∆t∗ undergoes a dramatic variation, whereas the global shape of the
element looks relatively unaffected, explains why the CFL conditions that used
for straight-edge elements, based on the inner radius and the minimum height,
are inappropriate for curved elements.

These observations suggest that the influence of the element curvature on the
time step is governed by localized geometrical properties of the triangle. We
verify that the qualitative behaviour described above is the same irrespective
of the type of numerical flux, the RK scheme, as well as the advection direction
and the shape of the straight-edge triangle that is deformed.

4.3.3 Influence of the Curvature in 1D

In the hope of discovering a possible relation between the maximum time
step ∆t∗ and a geometrical parameter characterizing the element curvature,
the simpler case of one spatial dimension is considered, which avoids the
complications linked to the straight-edge element shape, the advection direction
and the type of numerical flux. As in the 2D configuration, the starting point
is the linear element and a progressive deformation is applied by moving the
control point away from the center of the element.

For geometrically linear 1D elements, it can be deduced from Eq. (2.8)
and (2.12) that the maximum time step ∆t∗ is proportional to

∣∣JT
∣∣. As in

curved 2D element, ∆t∗ apparently decreases when
∣∣JT

∣∣ locally tends to zero,
it seems sensible to test the dependence of ∆t∗ on minξ

∣∣JT
∣∣. Fig. 4.10 shows

the evolution of the normalized maximum time step ∆t∗

/∆t∗

χ=0 as a function
of the normalized minimum Jacobian determinant minξ |JT |/|JT |

χ=0
. Not only
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the dependence of ∆t∗

/∆t∗

χ=0 on minξ |JT |/|JT |
χ=0

is non-linear, but it also varies
with the order p. This is due to the fact that the Jacobian terms cannot be taken
out of the integrals in Eq. 2.11, so that the influence of the element geometry
on the conditioning of the semi-discrete operator L cannot be decoupled from
the polynomial basis BT

p . Thus, the effect of curvature cannot be fully taken
into account by a purely geometrical parameter only.

Then, we consider the dependence of ∆t∗ on the minimum distance ∆xN in
the physical space between the Lagrange-Gauss-Lobatto nodes on which the
base interpolating polynomials ϕT are defined. This parameter depends both
on the polynomial basis BT

p and on
∣∣JT

∣∣. Moreover, it is closely related to
the conditioning of the semi-discrete operator L, as when two nodes i and
j come close to each other, the corresponding basis functions ϕT

i and ϕT
j

tend to become equal, and the mass matrix MT tends to become singular.
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Figure 4.8: Deformation of equilateral elements in the direction normal to an
edge, with the Lax-Friedrichs flux, the Standard RK4 scheme and an horizontal
advection: mesh pattern (a), corresponding stability plot (b) at order p = 1,
and evolution of the normalized maximum time step ∆t∗

/∆t∗

χN =0 for order p
from 1 to 10 (c).



CURVED ELEMENTS 77

Fig. 4.11 shows the normalized maximum time step ∆t∗

/∆t∗

χ=0 as a function
of the normalized minimum node distance ∆xN/∆xN,χ=0. The dependence of
∆t∗

/∆t∗

χ=0 on ∆xN/∆xN,χ=0 is non-linear, and varies with the order p. In the
extreme case of p = 1, ∆xN remains constant under deformation (because
the only two nodes are end points of the segment), whereas ∆t∗ decreases.
Therefore, the minimum node distance ∆xN cannot be used to evaluate the
influence of curvature on the maximum time step ∆t∗.

Finally, the applicability of the maximum dissipation method presented in
Sec. 4.2.1 to curved elements is investigated. For this purpose, the validity
of the extrapolation of the maximum amount of dissipation δ from order
p = 2 is tested for geometrically quadratic elements. The maximum amount of
dissipation δ at order p from 1 to 10 is plotted in Fig. 4.12 against δ at order 2
for a curvature χ varying from 0 to 0.49. The relation is obviously non-linear
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Figure 4.9: Deformation of equilateral elements in the direction tangential to an
edge, the normal deformation being fixed at χN = 0.4, with the Lax-Friedrichs
flux, the Standard RK4 scheme and an horizontal advection: mesh pattern (a),
corresponding stability plot (b) at order p = 1, and evolution of the normalized
maximum time step ∆t∗
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χN =0 for order p from 1 to 10 (c).
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(except of course for p = 2), so that the maximum time step ∆t∗ cannot be
estimated through the procedure presented in Sec. 4.2.1.

Overall, it seems difficult to find a geometrical quantity that characterizes
the influence of the element curvature on the stability of RKDG methods.
Moreover, the observations used in Sec. 4.2 to derive alternative estimation
methods for the maximum time step do not apply to elements of geometrical
order 2. One is thus bound to the full analysis of Sec. 2.2, that is inapplicable
in practical simulations, to determine the stability limits of the RKDG method
with curved elements.
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4.4 Conclusion

In this chapter, we have investigated alternative methods to the CFL conditions
for the determination of the maximum time step ∆̂t that can be set in a RKDG
simulation.

In the case of straight elements, two methods have been derived. The first
one is based on a number of assumptions on the behaviour of the maximum
amount of dissipation δ. These assumptions, that are found to be valid
(exactly or approximately) for the structured grids based on set of triangles
described in Chap. 3, reduce the stability analysis to a 3-step procedure that
is computationally affordable. The second method relies on the equivalence of
the time step for each element between the physical space and the reference
space through the mapping MT , when the upwind flux is used. Both techniques
have been applied to the two examples introduced in Sec. 3.4. With the upwind
flux, it was found that the mapping method is beneficial, because it is reliable,
accurate, computationally inexpensive and simple to implement. For the Lax-
Friedrichs flux, the slight increase in performance brought by the maximum
dissipation method compared to appropriate CFL conditions is balanced by its
complexity and its computational cost.

With curved elements however, the influence of the element curvature on the
conditioning of the semi-discrete operator L cannot be decoupled from the
polynomial basis BT

p , and it is not possible to isolate a geometrical parameter
that properly characterizes the stability restriction. Also, the basic assumptions
leading to the two alternative methods with straight elements do not apply to
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elements of higher geometric order. Thus, there has been no success in deriving
a simple method that could be used to determine of the maximum time step
∆̂t in practical simulations with curved elements.



Chapter 5

Optimized Runge-Kutta

Schemes for Wave

Propagation Problems

In this chapter, the focus is on the time integration part of the numerical
method. The analysis techniques described in Chap. 2 are used to assess the
performance of the fully discrete scheme, which is employed in an optimization
procedure. Two scenarios, deriving from a global view on computational
efficiency, are considered. In the first one, a cost metric involving both stability
and accuracy is defined, following the considerations in Ref. [17, 114]. In the
second one, stability is favored over accuracy. RK schemes of order q of 3 and
4 are examined, with a number of stages s up to q + 4. One scheme is selected
as the best in the first scenario, whereas two are retained in the second one.
The 2N-storage coefficients are given for these three RK schemes, and their
performance is extensively verified.

5.1 Context

In response to the computational challenges raised by CAA and wave
propagation problems in general, several authors have devised specially adapted
RK schemes. Some of them are presented in Chap. 3. The key idea is to
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find the RK coefficients that yield the largest stability limit (thus allowing
the largest time steps), the highest accuracy (often expressed in terms of
dissipation and dispersion), or a combination of both objectives. Moreover, low-
storage formulations [23, 146] reduce the memory requirements of the numerical
method.

Carpenter and Kennedy [25] were among the first to propose a 2N-storage
scheme, that they optimized with respect to stability. Allampalli et al. [5], Mead
and Renaut [104] also presented schemes with optimal stability region. Hu et al.
[71] devised RK schemes optimized with respect to dissipation and dispersion,
for which Stanescu and Habashi [127] gave a 2N-storage implementation. A
similar methodology was followed by Berland et al. [15]. Calvo et al. [24], as
well as Tselios and Simos [139], optimized their scheme with respect to both
stability and accuracy. Finally, Pirozzoli [114] and Bernardini and Pirozzoli [17]
introduced a general framework for performance analysis, and derived families
of schemes optimized for “temporal resolving efficiency”.

All of these RK integrators were optimized with respect to finite difference
methods, except those of Mead and Renaut [104] who used pseudo-spectral
methods, and those of Bernardini and Pirozzoli [17] that are based on exact
spatial discretization. As explained in Sec. 3.2.2, these types of space operators
and DG have very different spectral footprints, so that one can expect the
RK schemes listed above to be sub-optimal when combined with DG. To
our knowledge, no RK method has been specifically designed for DG space
operators yet. The work described in this chapter aims at filling this gap,
providing RK schemes that maximize the computational efficiency of the
RKDG method for linear wave propagation problems.

5.2 Computational Efficiency

In order to characterize the performance of the RKDG method for practical
problems, it is assumed that general indicators can be derived from the
stability and accuracy properties of the 1D numerical method, as described
in Sec. 2.2. However, the generalization to multiple spatial dimensions is not
straightforward, as seen in Chap. 3.

5.2.1 Definition of the Problem

At first sight, it may seem that the issue of computational efficiency is only
linked to the maximum time step ∆t∗ (i.e. to the maximum Courant number ν∗)
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allowed by the CFL Condition (2.25), because larger ∆t imply fewer temporal
iterations to reach a given simulated time. However, the perspective can be
broadened by considering that the end user has control over the meshing of
the computational domain, and that he can exert this control, along with the
choice of the scheme, to find the most efficient way to solve the computational
problem.

For a wave propagation problem, the question can be described in the following
terms: which is the least computationally intensive combination of mesh and
numerical method that guarantees the solution to meet a given accuracy
requirement over a given frequency range? On one side, one may want to
use a numerical scheme that favors stability over accuracy, so that the large
number of small elements needed to reach the required accuracy is compensated
by the higher Courant number. On the other side, one can use a method that
gives priority to accuracy rather than stability, in which case the fewer, larger
elements counteract the lower Courant number. Thus, appropriate measures
need to be derived in order to quantify the effect of both the mesh and the
numerical method on the computational cost and the accuracy.

5.2.2 Cost Measure

Following Ref. [17, 114], a cost measure is defined that takes into account
the trade-off between stability and accuracy, with the objective to compare
and optimize RK schemes. Consider a problem involving a simulated time
period of T and a computational domain of characteristic length L in d spatial
dimensions. Then the computation time is proportional to the number of stages
s of the RK scheme, to the number T/∆t of time iterations, and to the number
of elements in the domain, that varies like (L/∆x)d:

Cost ∝ s
T

∆t

(
L

∆x

)d

For a given wavenumber k, this expression can be normalized by dividing by
the number of time periods T ka/2π and by the number of wavelengths contained
in the domain (Lk/2π)d:

Normalized Cost ∝ s
2π

ka∆t

(
2π

k∆x

)d

= s
∆x

a∆t

(
2π

k∆x

)d+1

Thus, dropping the constant, the normalized cost κ is defined as:

κ (ν, k∆x) =
s

ν (k∆x)d+1
(5.1)
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As explained in Ref. [17], the quantity κ is used to determine in which conditions
(k∆x, ν) a given numerical scheme is most efficient. It is also well-suited to
measure the relative computation time of fully discrete schemes based on the
same spatial method and different RK time integrators. However, it cannot
be used to compare numerical methods based on different spatial schemes
(i.e. different orders p of the DG polynomial approximation), because it does
not take into account the difference in cost when evaluating different spatial
operators for the same number of elements. The derivation of a cost measure
that enables the direct comparison between different orders p is not necessary
for optimizing the RK schemes, therefore it is not addressed in this work.

5.2.3 Error Measure

The error Etotal derived in Sec. 2.2.2 provides a measure of the dissipation
and dispersion introduced by the scheme in one time iteration. However, we
need a definition of the error that is independant of the discretization, in order
to compare different working conditions (k∆x, ν) and different RK integrators.
Thus, the error introduced by the scheme during the travel of a wave over one
wavelength (i.e. during one time period) is computed with:

Emag =
∣∣∣10 log10

(
|Etotal|

2π
ω∆t

)∣∣∣

for the dissipation error expressed in dB per wavelength, and:

Ephase =
2π

ω∆t
arg (Etotal)

for the dispersion error expressed in radians per wavelength.

From Eq. (2.22) and (2.9), one can see that L is proportional to a and ∆x−1

for fixed k∆x, so that λm∆t depends only on k∆x and ν. As ω∆t = k∆x · ν,
Eq. (2.23) shows that Etotal, and thus Emag and Ephase, depend only on k∆x
and ν.

5.3 Optimized RK Schemes

5.3.1 Optimization Objectives

Given the problem posed in Sec. 5.2.1, we look for RK schemes providing the
minimal computational cost κopt for a given error tolerance, as well as the
conditions (k∆x, ν)opt for which this minimal cost is reached. With this, a
given physical problem can be solved in the most efficient way by:
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• Meshing the computational domain so that the maximum wavenumber
of interest kmax satisfies kmax∆x = (k∆x)opt everywhere. This way, the
error tolerance is reached for kmax, and lower wavenumbers are resolved
more accurately, as the error increases monotonically with k.

• Running the simulation with the time step determined by νopt.

In other words, the optimization of the RK scheme affects both the resolution
ability (corresponding to k∆x, that could also be expressed in terms of degrees
of freedom per wavelength) and the stability limit (corresponding to ν) of the
full RKDG scheme, so that a particular combination (k∆x, ν)opt of k∆x and
ν minimizes the computational cost κ. In this way, the user obtains the fastest
possible simulation that solves his physical problem with a given error tolerance,
if he chooses the mesh ∆x and time step ∆t that match (k∆x, ν)opt.

As, to our knowledge, dissipation is usually more problematic than dispersion
in wave propagation problems of engineering and scientific interest solved with
RKDG methods, we seek to optimize RK schemes for a given dissipation
requirement. Emag = 0.01 dB per wavelength is chosen as the typical
dissipation level required for a practical wave propagation application. For
instance, in an acoustic problem, this would correspond to an attenuation of 1
dB in sound intensity at a distance of 5 m from the source for a wave of 3400
Hz. The cost κ is computed for two spatial dimensions (d = 2).

This procedure assumes that the user has complete control over the element
size, as mentioned in Sec. 5.2.1. However, this is not true for all problems: it
can happen that geometrical features of the computational domain constrain
the element size locally or globally, to the point that (k∆x)opt corresponds to a
much higher frequency than needed. The scheme is then unnecessarily accurate.
In this scenario, it is more efficient to use a scheme that favours stability over
accuracy, and RK schemes with the highest maximal Courant number per stage
ν∗

/s are sought.

5.3.2 Existing RK Schemes

It is interesting to evaluate the performance of RK schemes found in literature
with respect to the objectives defined in Sec. 5.3.1, before deriving new ones.
Relevant schemes, along with their main characteristics, are listed in Table 5.1.
The coefficients γk of their amplification factor R (z) are given in Appendix A.

In the scenario assuming free element size, the performance of RK schemes
can be illustrated by plotting the iso-lines of Emag and κ in the parameter
space (k∆x, ν) [17]. For a given error level, the optimal working conditions
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(k∆x, ν)opt are found at the point where the iso-Emag line intersects the “right-
most” iso-κ line. Such plots are shown for the standard fourth-order RK scheme
at p = 5 and for the Carpenter RK scheme at p = 10 in Fig. 5.1. One can
see that for error levels of Emag = 0.01 dB per wavelength and greater, the
minimal cost is obtained at νopt = ν∗, because the iso-Emag lines are almost
vertical (constant k∆x). This is due to the fact that the error from the spatial
scheme is dominant in this range of accuracy, even at maximal Courant number
ν∗ and high order p, as illustrated in Fig. 5.2. We verify that νopt = ν∗ for
order p ranging from 1 to 10, and for all RK schemes listed in Table 5.1, except
the third-order (3,3)-SSP scheme. Therefore, in Sec. 5.3.3 the new RK schemes
are optimized for the minimal cost κ∗

opt at maximum Courant number ν∗:

κ∗

opt = min
k∆x

κ (k∆x, ν∗)

instead of searching for the minimal cost over both k∆x and ν, so that the
optimization procedure becomes computationally affordable. The efficiency
of the different RK schemes from literature is compared for p = 1, p = 5
and p = 10 in Fig. 5.3. For high accuracy requirements (Emag ≤ 0.005 dB
per wavelength), the Tselios DDAS47 and Calvo LDDRK46 schemes are most
efficient, whereas the Carpenter and (5,4)-SSP schemes yield a lower cost at
lower accuracy (Emag ≥ 0.01 dB per wavelength). Both third-order schemes
are particularly inefficient at moderate to high accuracy.

Regarding the scenario in which elements are constrained to a small size, the
performance of the different RK schemes from literature in terms of maximal
Courant number per stage ν∗

/s is compared in Fig. 5.4. The Carpenter and
both SSP schemes yield the best results, whereas the Bernardini ORK37-3

Name Order Stages Storage
Bernardini ORK37-3 [17] 3 7 2N
Calvo LDDRK46 [24] 4 6 2N
Carpenter [25] 4 5 2N
HALE-RK7 [5] 4 7 2N
HALE-RK67 [5] 4 6+7 2N
Hu LDDRK6 [71] 4 6 3N (2N [127])
Hu LDDRK56 [71] 4 5+6 3N (2N [127])
Mead RKC [104] 4 6 5N
Optimal (3,3)-SSP [53] 3 3 3N
Optimal (5,4)-SSP [124] 4 5 5N
Tselios DDAS47 [139] 4 7 2N
Standard 4 4 4N (2N [74])

Table 5.1: RK schemes from literature.
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scheme is the least efficient. We verify that the most unstable mode is purely
dissipative (i.e. corresponding to a real negative eigenvalue λm), or almost, for
all schemes except the SSP. Even for the SSP schemes, the argument of the
eigenvalue leaving first the stability region S is comprised between 137◦ and
166◦, showing a significant dissipative character. This behaviour, mentioned in
Sec. 4.2.1 for the 2D case, indicates that the extent of the RK stability region
S along the real axis is important for the stability of RKDG methods.

Overall, the Carpenter and (5,4)-SSP RK schemes are the most appropriate for
use with DG space operators. The (3,3)-SSP scheme works well in the scenario
with constrained element size, but is too inaccurate to be competitive when
the element size is free. The Bernardini ORK37-3 scheme, that was optimized
for an exact spatial discretization, yield particularly poor performance in
combination with the DG method. This confirms that the performance of RK
time integrators is very specific to each spatial scheme, so that a substantial
improvement over existing schemes can be expected from an optimization
procedure based on DG space operators.
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Figure 5.1: Contours of the dissipation error Emag (solid line, labelled in dB
per wavelength) and of the cost κ (dashed line) in the space (k∆x, ν): standard
fourth-order RK scheme at p = 5 (a) and Carpenter RK scheme at p = 10 (b).

5.3.3 Optimization of RKDG Performance

Procedure and Scope

Eq. (2.18) shows that all s-stage RK schemes of order q = s share the same
linear accuracy and stability properties. Therefore, schemes with s > q
are focused, so that the free parameters {γk, k = q + 1. . .s} can be used for
optimization. Once the optimal γk have been determined, a set of coefficients
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Figure 5.2: Error due to the spatial scheme, the temporal scheme and the fully
discrete scheme at ν = ν∗ as a function of k∆x: standard fourth-order RK
scheme at p = 5 (a) and Carpenter RK scheme at p = 10 (b).
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Figure 5.3: Minimal cost κopt at p = 1 (a), p = 5 (b) and p = 10 (c), as a
function of the dissipation error Emag with all RK schemes listed in Table 5.1.
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aij , bi and ci satisfying the definition of R (z) and the non-linear order
conditions is searched for. In this work, only schemes with s ≤ q + 4
are investigated, because the cost of the optimization procedure becomes
prohibitive for a higher number of free parameters.

The scope of this study is also limited to third- and fourth-order schemes.
Indeed, the non-linear order conditions for q > 4 impose s > q, with
constraints on {γk, k = q + 1. . .s} [22]. The optimization procedure is then
more complicated and costly, because the parameters γk cannot be optimized
independently of the RK coefficients. Moreover, the reduced freedom for the
additional coefficients is less likely to compensate with accuracy and stability
the increased computation time implied by additional stages.

Unfortunately, the optimization problem consisting in finding the free pa-
rameters {γk, k = q + 1. . .s} that result in the minimal cost or in the
maximal stability is strongly non-linear, and it is difficult to find a global
optimum. In practice, a sufficiently large region in the space of parameters
{γk, k = q + 1. . .s} is sampled, the objective function is evaluated for each of
the sampled points, and the best few points are used as initial guesses for a
sequential quadratic programming routine.

“Free Element Size” Scenario

We first consider the “free element size” scenario, and search for the parameters
γk that yield the lowest cost κ∗

opt for an error of Emag = 0.01 dB per wavelength
(typical dissipation requirement), with each s-stage scheme of order q. In
practice, the evaluation of κ∗

opt for given parameters γk is performed by first
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Figure 5.4: Maximal Courant number per stage ν∗

/s for p = 1 . . . 5 (a) and for
p = 6 . . . 10 (b) with all RK schemes listed in Table 5.1.
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determining the maximum time step ∆t∗ by the bisection method described
in Sec. 2.2.3, then using Eq. (2.23) with ∆t = ∆t∗ to find the value k = kopt

yielding Emag = 0.01 dB per wavelength, and finally calculating κ∗
opt from ν∗

and (k∆x)opt with Eq. (5.1). As the DG operator depends on the order p of
the polynomial approximation, the optimization is performed for each value of
p ranging from 1 to 10 individually. The resulting RK schemes are referred to
with the generic nomenclature RKFsqPp.

For each pair (s, q), we notice that the parameters γk for schemes RKFsqP2 to
RKFsqP10 are very similar, RKFsqP1 being the only scheme deviating. For
the sake of presenting RK schemes that are useful over a large range of orders
p, and considering that the DG method is of limited interest at order p = 1, the
RKFsq schemes are derived by optimizing the parameters γk for the minimal
mean relative cost over the range p = 2 . . . 10, using the objective function:

ObjRKFsq =
1
9

10∑

p=2

(
κ∗

opt,RKFsq

κ∗
opt,RKFsqPp

− 1

)

Table 5.2 shows that the RKFsq schemes are close to the optimal RKFsq-
Pp schemes for order p between 2 and 10, with a mean difference of 3%
at most. The absolute performance of these schemes in terms of κ∗

opt is
summarized in Table 5.3. The RKF84 scheme is the most efficient for all
values of the order p, and is selected as the scheme of choice in this scenario.
Practical information needed to use this scheme, like the working conditions
and corresponding performance for different dissipation error requirements, is
given in Appendix C.1.

p \ sq 43 53 63 73 54 64 74 84
1 7.8 0.7 13.0 25.6 0.6 6.0 9.2 8.2
2 0.0 0.4 2.4 2.6 0.4 2.5 2.4 2.4
3 0.0 0.0 0.1 3.1 0.0 0.0 0.9 3.1
4 0.0 0.4 1.0 4.0 0.3 0.8 0.6 3.4
5 0.0 0.5 1.1 2.6 0.4 0.9 0.3 2.9
6 0.0 0.2 0.6 1.2 0.2 0.5 0.2 2.8
7 0.0 0.1 0.2 0.4 0.0 0.1 0.1 2.7
8 0.0 0.0 0.1 0.2 0.0 0.0 0.0 2.7
9 0.0 0.2 0.4 0.5 0.2 0.4 0.2 2.5
10 0.0 0.4 1.0 0.8 0.5 1.1 0.4 1.8

Mean 0.0 0.2 0.8 1.7 0.2 0.7 0.6 2.7

Table 5.2: Relative difference in κ∗
opt (%) between RKFsq and RKFsqPp

schemes for all values of the order p, and mean over the range p = 2 . . . 10.
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“Constrained Element Size” Scenario

In the “constrained element size” scenario, the parameters γk that yield the
largest maximal Courant number per stage ν∗

/s are searched for. As in the
“free element size” scenario, optimal s-stage RK schemes of order q, called
RKCsqPp, are first derived for each value of p individually. Then, considering
that these schemes are very similar for all values of the order (p = 1 . . . 10), the
RKCsq schemes that are optimal in average over the range of order p = 1 . . . 10
are obtained by minimizing the objective function:

ObjRKCsq =
1
10

10∑

p=1

(
1 −

ν∗
RKCsq

ν∗
RKCsqPp

)

One can see in Table 5.4 that the RKCsq schemes perform nearly optimally
over the whole range of order p, the mean difference with RKCsqPp schemes
being 2% at most. The maximum Courant number per stage ν∗

/s is summarized
in Table 5.5. Here, third order schemes are generally more efficient than fourth-
order schemes, above all for lower order p. However, as shown in Sec. 5.3.3,
third-order schemes achieve this high stability limit at the expense of much
lower accuracy, thus they become computationally interesting only for very
small element sizes. Therefore, both RKC73 and RKC84 are selected as
schemes of interest in this scenario. Practical information on these schemes
is reported in Appendices C.2 and C.3.

p \ sq 43 53 63 73 54 64 74 84
1 32370 27750 27110 26580 27770 27170 26480 25140
2 920.3 786.7 750.4 719.7 787.1 751.2 718.2 690.9
3 178.2 154.7 143.1 132.5 154.6 143 132.8 129.1
4 65.53 57.34 52.27 47.48 57.31 52.19 47.71 46.62
5 32.45 28.41 25.82 23.32 28.4 25.77 23.45 22.89
6 19.03 16.6 15.13 13.7 16.59 15.11 13.75 13.4
7 12.45 10.79 9.896 9.000 10.79 9.889 9.023 8.772
8 8.785 7.562 6.983 6.396 7.562 6.982 6.391 6.194
9 6.551 5.604 5.208 4.808 5.606 5.209 4.797 4.622
10 5.094 4.333 4.049 3.764 4.336 4.052 3.75 3.596

Table 5.3: Cost κ∗
opt × 100 of RKFsq schemes for all values of the order p.
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Performance of Optimized Schemes

Considering the “free element size” scenario, Fig. 5.5 shows the minimal cost
κopt and minimal cost at maximum Courant number κ∗

opt for the optimized
schemes. For the RKF84 scheme, the minimal cost is obtained at maximum
Courant number in almost all the range of accuracy considered, which justifies
a posteriori the idea of optimizing the scheme for κ∗

opt instead of κopt. For
the RKC73 however, κopt is lower than κ∗

opt in most of the accuracy range
considered. This is due to the inaccuracy of the RKC73 scheme that
overwhelms the error due to the spatial discretization, as explained in Sec. 5.3.2.
Fig. 5.6 compares the three optimized schemes with the Carpenter and Tselios

p \ sq 43 53 63 73 54 64 74 84
1 0.0 −2.9 −3.8 −4.3 −0.3 −2.3 −3.9 −3.2
2 0.0 −2.1 −3.2 −4.2 −0.1 −1.7 −3.3 −3.1
3 0.0 −1.5 −2.2 −2.8 0.0 −1.1 −2.3 −1.8
4 0.0 −1.0 −1.3 −1.5 0.0 −0.8 −1.5 −0.5
5 0.0 −0.7 −0.6 −0.4 0.0 −0.5 −0.9 −0.6
6 0.0 −0.4 0.0 −0.5 0.0 −0.3 −0.4 −1.3
7 0.0 −0.2 −0.5 −1.0 0.0 −0.2 0.0 −1.6
8 0.0 0.0 −1.0 −1.4 0.0 −0.1 −0.5 −2.1
9 0.0 −0.3 −1.3 −1.7 0.0 −0.4 −0.8 −2.5
10 0.0 −0.6 −1.6 −2.2 0.0 −0.6 −1.2 −2.6

Mean 0.0 −1.0 −1.6 −2.0 −0.1 −0.8 −1.5 −1.9

Table 5.4: Relative difference in ν∗

/s (%) between RKCsq and RKCsqPp
schemes for all values of the order p, and mean over the range p = 1 . . . 10.

p \ sq 43 53 63 73 54 64 74 84
1 15.23 16.31 17.17 17.82 13.58 14.33 14.94 15.71
2 7.898 8.479 8.886 9.152 7.042 7.447 7.73 8.077
3 4.949 5.362 5.658 5.855 4.401 4.713 4.923 5.165
4 3.436 3.75 3.984 4.149 3.047 3.296 3.466 3.659
5 2.545 2.794 2.985 3.125 2.252 2.454 2.596 2.721
6 1.972 2.174 2.334 2.43 1.742 1.908 2.028 2.104
7 1.579 1.747 1.864 1.944 1.393 1.532 1.635 1.683
8 1.297 1.44 1.527 1.595 1.142 1.261 1.34 1.381
9 1.087 1.203 1.278 1.335 0.9564 1.054 1.12 1.156
10 0.9258 1.023 1.087 1.135 0.8139 0.8958 0.9527 0.984

Table 5.5: Maximum Courant number per stage ν∗

/s × 100 of RKCsq schemes
for all values of the order p.
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DDAS47 schemes in terms of κopt, and shows that the RKC73 becomes less
interesting with higher accuracy requirement. The RKF84 scheme is the most
efficient in a broad range of error level, although it was optimized specifically
for Emag = 0.01 dB per wavelength. The RKC84 scheme lies in between and is
globally as effective as the Carpenter scheme. Table 5.6 shows that the RKF84
scheme outperforms the RKC84, Carpenter and Tselios DDAS47 schemes by
22% to 29% for an error of Emag = 0.01 dB per wavelength, while the RKC73
is about twice as expensive computationally.

In the scenario assuming a constrained, small element size, Fig. 5.7 shows the
maximal Courant number per stage ν∗

/s for the optimized and Carpenter RK
schemes. The RKC73 is clearly the most efficient scheme, while the RKC84,
RKF84 and Carpenter schemes are respectively about 13%, 17% and 27% less
efficient, as reported in Table 5.7. Fig. 5.8 compares the stability region of
these RK schemes with that of the standard RK4 scheme. The stability region
of optimized schemes is much more extended along the real axis, as expected
from the observations in Sec. 5.3.2.

In summary, the best scheme from literature is about 22% less efficient than the
RKF84 scheme for Emag = 0.01 dB per wavelength in the “free element size”
scenario, and about 27% and 16% less efficient than the RKC73 and RKC84
schemes respectively in the “constrained element size” scenario. Yet, in order
to make the most of the optimized RK schemes, it is necessary to know where
the border between both scenarios lies, that is, which of the three schemes is the
most efficient for a given element size constraint k∆x ≤ (k∆x)max. Obviously,
for (k∆x)max ≥ (k∆x)opt,RKF84, the constraint is not restrictive, so that the
most efficient scheme is the RKF84 used in optimal working conditions, as
in the “free element size” scenario. For (k∆x)max < (k∆x)opt,RKF84, i.e. in
over-accurate conditions, the most efficient scheme is the one that allows the
largest Courant number per stage ν/s while fulfilling the accuracy requirement.
The choice of the most efficient scheme in function of (k∆x)max can be made
by means of Fig. C.1. For low accuracy requirements, the RKC73 scheme is
the best over a large range of (k∆x)max. For higher accuracy requirements,
the RKC73 scheme becomes useful only for the most restrictive element size
constraints, and the choice of the RKC84 scheme is justified for a large range
of higher values of (k∆x)max. When very high accuracy is required, there is
even a significant range of constraints for which the RKF84 scheme is the most
efficient, although it was not optimized to work in over-accurate conditions.
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Figure 5.5: Minimal cost κopt (solid line) and minimal cost at maximum
Courant number κ∗

opt (dotted line) for p = 1, p = 5 and p = 10, with the RKC73
(a), RKC84 (b) and RKF84 (c) schemes, as a function of the dissipation error
Emag.

p Carpenter Tselios DDAS47 RKC73 RKC84
1 10.2 25.0 42.3 −4.5
2 14.1 26.4 166.5 7.8
3 21.8 26.8 216.0 26.6
4 26.2 27.0 230.6 34.4
5 27.7 28.0 232.3 36.5
6 27.0 29.1 227.6 35.6
7 25.4 30.3 219.9 33.2
8 23.6 31.4 211.1 30.1
9 22.0 32.4 201.6 26.7
10 20.5 33.3 192.0 23.1

Mean 21.9 29.0 194.0 25.0

Table 5.6: Relative difference in κopt (%) of optimized RKC, Carpenter and
Tselios DDAS47 RK schemes with respect to the RKF84 scheme at Emag =
0.01: values for order p from 1 to 10, and mean over the range p = 1 . . . 10.
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Figure 5.6: Minimal cost κopt at p = 1 (a), p = 5 (b) and p = 10 (c), as a
function of the dissipation error Emag with optimized RK schemes, as well as
Carpenter and Tselios DDAS47 schemes.
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Figure 5.7: Maximal Courant number per stage ν∗

/s for p = 1 . . . 5 (a) and for
p = 6 . . . 10 (b) with the optimized and Carpenter RK schemes.
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Figure 5.8: Stability regions for the Standard RK4 scheme, for the Carpenter
scheme and for the optimized RK schemes.

p Carpenter RKC84 RKF84
1 −23.8 −11.8 −16.2
2 −23.1 −11.7 −15.4
3 −24.8 −11.8 −15.9
4 −26.6 −11.8 −16.8
5 −27.9 −13.0 −17.6
6 −28.3 −13.4 −17.9
7 −28.3 −13.4 −18.1
8 −28.4 −13.4 −18.2
9 −28.3 −13.4 −18.3
10 −28.3 −13.3 −18.2

Mean −26.8 −12.7 −17.2

Table 5.7: Relative difference in ν∗

/s (%) of RKF84, RKC84 and Carpenter RK
schemes with respect to the RKC73 scheme for order p from 1 to 10, and mean
over the range p = 1 . . . 10.
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Low-Storage Coefficients

The results obtained in this section show that with proper optimization, adding
stages can improve the efficiency of RK schemes in terms of computational time.
However, the classical RK formulation of Eq. (2.14) can lead to large memory
consumption due to the sN storage requirement, as mentioned in Sec. 2.1.2.
Therefore, the coefficients of the RKF84, RKC73 and RKC84 schemes are
sought in the 2N-storage formulation of Williamson [146]:

dq(i) = Ai dq(i−1) + ∆t L
(

tn + ci ∆t, q(i−1)
)

q(i) = q(i−1) + Bi dq(i), i = 1 . . . s

with A1 = 0, as explicit, self-starting schemes are considered. The link between
the 2N-storage coefficients Ai and Bi and the classical coefficients aij , bi and
ci is given by the recurrence relation [146]:

Bi = ai+1,i, i = 1 . . . s − 1

Bs = bs

Ai =
bi−1 − Bi−1

bi
, i = 2 . . . s, bj 6= 0 (5.2)

Ai =
ai+1,i−1 − ci

Bi
, i = 2 . . . s, bj = 0

Eq. (5.2) is used in a numerical procedure to solve the system in Eq. (2.17),
along with the non-linear order conditions in Eq. (2.15) and (2.16), directly
for Ai and Bi. The system is under-determined, and a solution with increasing
ci is chosen. The coefficients for the RKF84, RKC73 and RKC84 schemes are
given in Tables C.1, C.7 and C.13 respectively.

5.4 Examples

5.4.1 2D Advection Test

The first application of the optimized RK schemes consists in a 2D advection
case, in which a square domain of side length 10 with periodic boundary
conditions is discretized with structured triangular meshes, as illustrated in
Fig. 5.9. An initial harmonic wave of wavelength 2 is convected in the y-
direction during time 100 at a velocity of 1, so that at the final time, the exact
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solution is equal to the initial solution. The numerical solution can then be
compared to the exact solution by computing the L2 error:

Err =
‖qend − qinit‖2

N

where q is the vector of all unknowns, as in Eq. (2.10), and N is the number
of unknowns. The order of the DG polynomial basis is set to p = 6, and
simulations are carried out at maximum Courant number with grid resolutions
from 3 × 3 elements to 10 × 10 elements, corresponding to 3.14 ≤ k∆x ≤ 10.5.
A comparison of the efficiency (in terms of L2 error and CPU time) between
the schemes derived in Sec. 5.3.3 and three other 2N-storage RK integrators is
shown in Fig. 5.10. The RKC73 scheme is interesting only for very low accuracy.
For moderate accuracy, the RKC84 scheme is the most efficient one, and the
RKF84 scheme dominates for higher accuracy, in accordance with the results
of Sec. 5.3.3.
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Figure 5.9: Example of a mesh used for the 2D advection test.

5.4.2 Acoustic Properties of an Elliptical Muffler

The second example, taken from Part III, is an acoustic problem featuring
an elliptical muffler with square inlet and outlet ducts. The Euler equations
linearized about a quiescent mean flow, equivalent to the acoustic wave equation
(see Chap. 6), are used to compute the transmission loss. The case, as well as
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the methodology to compute the transmission loss, are described in detail in
Sec. 7.3.4.

Considering a maximum frequency of fmax = 3000 Hz, waves travel at most
over about 220 wavelengths until the final simulation time is reached. For
an accuracy of 1 dB in transmission loss, that corresponds to a maximum
attenuation of 0.5 dB in wave amplitude at final time, the requirement on the
dissipation error is then approximately Emag = 0.002 dB per wavelength.

When meshing the computational domain, the size of the elements is severely
constrained by the confined nature of the problem, and by the necessity of
correctly representing the curved boundaries. Two different unstructured,
tetrahedral meshes are used. The first one, named Grid 1 in Sec. 7.3.4, is
made as coarse as possible (199 elements) by using curved tetrahedra to model
the elliptic chamber (see Chap. 7). The order of the DG polynomial basis is
set to p = 5 for computations with this grid. The second mesh, called Grid 4
in Sec. 7.3.4, is only made up of straight elements, so that it has to be finer
(1322 elements) to correctly represent the curved geometry, and a polynomial
order of p = 4 is sufficient.

Using the inradius of the tetrahedron as element size, we estimate (k∆x)max =
0.25 and (k∆x)max = 0.16 for the smallest elements of grids 1 and 4 respectively.
Based on these values, Fig. C.1(d) suggests that the RKC73 and RKC84
schemes are more efficient than the RKF84 scheme. For the largest elements of
grids 1 and 4, (k∆x)max = 1 and (k∆x)max = 0.75 respectively, and Table C.11
show that the RKC73 and RKC84 schemes could be accurate enough in the
whole domain at maximum Courant number.
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Figure 5.10: Comparison of the CPU time as a function of the L2 error between
the optimized RK schemes and three other RK integrators for the 2D advection
test.
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Simulations are performed with the three optimized schemes, as well as four
other RK schemes using Williamson’s 2N-storage formulation (namely, the
Carpenter, HALE-RK7, Hu LDDRK6 and (3,3)-SSP schemes). The results
in terms of transmission loss, shown in Fig. 5.11, are practically equal for all
RK schemes on the same grid. Tables 5.8 and 5.9 contain the maximum time
step, determined by trial-and-error, and the corresponding CPU time, for each
grid respectively. With the fine grid 4, the RKC73 is clearly the fastest scheme,
and the RKC84, RKF84 and Carpenter schemes are respectively 10%, 15%
and 24% slower. With the coarse grid 1, the RKC84 scheme is the fastest,
while the RKF84 and Carpenter schemes are almost as efficient (+4% and
+6% CPU time respectively). The surprisingly low performance of the RKC73
scheme with grid 1 (+12% CPU time with respect to the RKC84 scheme)
could be explained by the fact that the element curvature affects the spectral
footprint of the DG space operator, which would not fit the stability region of
this particular RK scheme as well as with straight elements. This effect is more
thoroughly investigated in Chap. 4.
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Figure 5.11: Transmission loss obtained from the reference solution and from
the simulations for the muffler case. As the results for the different RK schemes
tested are undistinguishable, they are all represented by the same dashed line.

5.5 Conclusion

In this chapter, the performance of methods of lines combining DG spatial
schemes with explicit RK time integrators has been studied, in order to derive
optimal RK methods. The issue of computational efficiency has been tackled
from the point of view of the user, who aims to use the combination of mesh and
numerical method that solves in the shortest time a given physical problem with



CONCLUSION 101

a given accuracy requirement. Classical 1D stability and accuracy analysis has
been applied to define objective error and computational cost measures, that
make it possible to compare and optimize fully discrete RKDG schemes based
on different RK integrators for DG spatial schemes of same polynomial order
p.

Two scenarios have been considered. In the first one, the user has total control
over the element size, so that the computation cost depends on both accuracy
and stability limit. In the second one, the element size is constrained by the
geometry of the computational domain, so that the scheme is assumed to work
in over-accurate conditions, and the efficiency depends only on stability. In each
case, relevant RK schemes from literature have been assessed. Then optimal
RK schemes of order q from 3 to 4 and number of stages s up to q+4 have been
derived, and the performance of the best ones has been thoroughly analyzed.

In the first scenario, it was found that the error is dominated by the DG spatial
scheme for most of the RK schemes in literature, even at maximum Courant

RK Scheme ∆t CPU Time
Carpenter 0.00124 41 min 28 s (+6%)

HALE-RK7 0.00106 1 h 7 min 43 s (+73%)
Hu LDDRK6 0.00092 1 h 6 min 53 s (+71%)

(3,3)-SSP 0.00067 45 min 59 s (+17%)
RKF84 0.00202 40 min 39 s (+4%)
RKC73 0.00165 43 min 47 s (+12%)
RKC84 0.0021 39 min 8 s

Table 5.8: Time step and CPU time for the 3D muffler case with the optimized
and other 2N-storage RK schemes on grid 1. The relative difference in CPU
time with respect to the best RK scheme (RKC84) is shown in brackets.

RK Scheme ∆t CPU Time
Carpenter 0.00105 3 h 5 min 15 s (+24%)

HALE-RK7 0.000897 5 h 3 min 49 s (+103%)
Hu LDDRK6 0.000786 4 h 56 min 34 s (+98%)

(3,3)-SSP 0.00057 3 h 24 min 49 s (+37%)
RKF84 0.00179 2 h 52 min 36 s (+15%)
RKC73 0.00181 2 h 29 min 47 s
RKC84 0.00189 2 h 44 min 52 s (+10%)

Table 5.9: Time step and CPU time for the 3D muffler case with the optimized
and other 2N-storage RK schemes on grid 4. The relative difference in CPU
time with respect to the best RK scheme (RKC73) is shown in brackets.
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number. Therefore, the new RK schemes have been obtained by minimizing the
cost at maximum Courant number, which makes the optimization procedure
computationally affordable. The new 8-stage, fourth-order scheme, called
RKF84, has been selected as the most efficient. It brings a mean improvement
in computational cost of about 22% over the best scheme from literature, for
a dissipation error requirement of 0.01 dB per wavelength. In the second
scenario, it was found that the 7-stage, third-order scheme, called RKC73,
is most efficient, with a mean improvement of 27% over literature. However,
it achieves a high stability limit at the expense of a great accuracy loss, which
limits its interest to very small element size restrictions. Therefore, we have
also retained the 8-stage, fourth-order RKC84 scheme, that is less efficient for
small element size restrictions, but is accurate enough to be beneficial with
larger element size.

Finally, the coefficients for a 2N-storage implementation of the RKF84, RKC73
and RKC84 schemes have been provided, as well as the information needed
by users to correctly employ them. Their benefits have been demonstrated
in two examples involving respectively a 2D advection test and the acoustic
characterization of an elliptical muffler. However, extrapolating the theoretical
performance of these RK schemes in 1D to arbitrary, multi-dimensional
problems is not straightforward, above all when curved meshes are involved.

Although the new RK schemes devised in this chapter have a beneficial
impact on the performance of RKDG methods on their own, they could also
be combined with other techniques such as implicit-explicit (IMEX) time
integration, local timestepping, or non-uniform polynomial order over the
computational domain, in order to further increase the computational efficiency.



Part III

RKDG Methods for

Aeroacoustics
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Chapter 6

RKDG Methods Applied to

Aeroacoustics

This chapter presents the application of the numerical method described in
Chap. 2 to linear aeroacoustics. We first introduce the continuous equations
governing the physical phenomena to be modeled, namely the Linearized Euler
Equations (LEE) and the Linearized Navier-Stokes Equations (LNSE). The
decomposition of these hyperbolic equations into characteristic variables, which
plays a role in the numerical method, is also explained. Then, the specifics of
the RKDG method applied to the LEE and LNSE are discussed, with the
formulation of the discrete problem along with the corresponding boundary
conditions. Practical difficulties related to the issue of high-order interpolation,
that impact the fidelity and the stability of the simulations, are also considered.
Finally, we describe how the numerical method is implemented and how the
different aspects of the code are verified.

6.1 Linear Equations in Aeroacoustics

This section deals with the derivation of the equations that govern linear
aeroacoustic phenomena. In the literature, the main interest for linear
aeroacoustics is the propagation of sound in non-uniform flows, including effects
like convected propagation and refraction. However, the governing equations
presented here also model the evolution of other kind of perturbations than
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acoustic waves, as explained in Sec. 6.1.2. Thus, they can be used to study
phenomena of linear sound generation resulting from the interaction of these
different modes, as in Chap. 8, in addition to the mere acoustic propagation.

6.1.1 Linearized Euler and Navier-Stokes Equations

Linearization of the Navier-Stokes Equations

The most general case, a flow not subject to body forces nor external heat
source is governed by the Navier-Stokes equations:

∂ρ

∂t
+ ∇ · (ρu) = 0 (6.1)

∂(ρu)
∂t

+ ∇ · (ρu ⊗ u) + ∇p − ∇ · τ = 0 (6.2)

∂(ρe)
∂t

+ ∇ · [(ρe + p) u] − ∇ · (τ · u) = 0 (6.3)

where ρ is the density, u is the velocity vector, p is the pressure, e is the specific
energy, and τ is the viscous stress tensor expressed as:

τ = µ
[
∇ ⊗ u + (∇ ⊗ u)T

]
+ λ (∇ · u) I (6.4)

with the dynamic viscosity µ and the coefficient λ being linked by Stokes’
hypothesis 2µ + 3λ = 0. Decomposing the total energy e into internal and
kinetic energy, and using the ideal gas law as equation of state, yields:

ρe =
p

γ − 1
+

1
2

ρu · u

where γ is the ratio of specific heats. The energy equation can then be
replaced with a pressure equation through the combination (6.3) − u · (6.2) +
1/2 (u · u) (6.1):

∂p

∂t
+ γp∇ · u + u · ∇p − (γ − 1) τ : (∇ ⊗ u) = 0 (6.5)

While the Navier-Stokes equations (6.1), (6.2) and (6.5) model all possible
phenomena encountered in aerodynamics, their numerical treatment is compu-
tationally very intensive, mainly because of the non-linear terms. As explained
in Chap. 1, the small amplitude of acoustic perturbations can be exploited to
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derive a linearized version of the governing equations, that is computationally
less demanding.

It is assumed that each variable (ρ, u and p) can be decomposed into the
sum of a time-averaged quantity and a smaller unsteady quantity [37]: (·) =
(·)0 + (·)′. The linearization can be performed in different ways, that come
down to equivalent formulations at first order [20].

The Linearized Euler Equations

In most problems of sound propagation, the viscous effects can be neglected.
In this case, the Navier-Stokes equations are reduced to the Euler equations,
and their linearization yields the LEE. In this work, we use the conservative
form of the LEE [20], that is the most relevant for discretization by the
DG method. Using Cartesian coordinates and dropping the prime for the
perturbation variables, they can be expressed as:

∂ρ

∂t
+

∂

∂xr
(ρ0ur + ρu0r) = Sdens (6.6)

∂(ρ0us)
∂t

+
∂

∂xr
(ρ0usu0r + p) + (ρ0ur + ρu0r)

∂u0s

∂xr
= Smom,s

(6.7)

∂p

∂t
+

∂

∂xr
(γp0ur + pu0r) + (γ − 1)

(
p

∂u0r

∂xr
− ur

∂p0

∂xr

)
= Spress (6.8)

where s = 1 . . . 3 for the momentum equations (6.7), and Einstein’s summation
convention is used over the index r. The system is excited by the source terms
S in the right-hand side. In case the LEE are used to model the propagation of
the sound generated by non-linear phenomena, the sources S are calculated as
an approximation of the non-linear terms of the full Navier-Stokes equations.
The LEE can be reformulated in matrix notation:

∂q
∂t

+
∂Arq
∂xr

+ Cq = S (6.9)
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with

q =




ρ
ρ0u1

ρ0u2

ρ0u3

p




Ar =




u0r δ1r δ2r δ3r 0
0 u0r 0 0 δ1r

0 0 u0r 0 δ2r

0 0 0 u0r δ3r

0 c2
0δ1r c2

0δ2r c2
0δ3r u0r




C =




0 0 0 0 0
u0r

∂u01

∂xr

∂u01

∂x1

∂u01

∂x2

∂u01

∂x3
0

u0r
∂u02

∂xr

∂u02

∂x1

∂u02

∂x2

∂u02

∂x3
0

u0r
∂u03

∂xr

∂u03

∂x1

∂u03

∂x2

∂u03

∂x3
0

0 (1−γ)
ρ0

∂p0

∂x1

(1−γ)
ρ0

∂p0

∂x2

(1−γ)
ρ0

∂p0

∂x3
(γ − 1) ∂u0r

∂xr




S =




Sdens

Smom,1

Smom,2

Smom,3

Spress




where the sound velocity c0 can be calculated as c2
0 = γp0/ρ0. The matrices Ar

are the flux Jacobians, and the term Cq accounts for the non-uniform mean
flow effects.

The Linearized Navier-Stokes Equations

In some cases studied in this work, namely those presented in Chap. 8 where the
dissipation of vortices is a significant aspect of the physical phenomena to be
simulated, it is necessary to model the viscous effects. However, the dissipative
effects in these cases are still small enough for the process to be considered as
isentropic, so that the perturbation approximately verifies the relation:

∂p

∂ρ
= c2

0 =
γp0

ρ0
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With this assumption, the energy equation (6.8) becomes redundant, and can
be removed from the system, yielding:

∂ρ

∂t
+

∂

∂xr
(ρ0ur + ρu0r) = Sdens

(6.10)

∂(ρ0us)
∂t

+
∂

∂xr

(
ρ0usu0r + c2

0ρ + τ sr

)
+ (ρ0ur + ρu0r)

∂u0s

∂xr
= Smom,s

(6.11)

The isentropic assumption thus lowers the computational cost by reducing the
number of variables and equations. Above all, it removes the complex terms
deriving from the linearization of the viscous part in the energy equation, which
are difficult to implement. On the contrary, the viscous stress term in Eq. (6.2)
is a linear function of the velocity u, so that it does not induce any non-uniform
mean flow term outside the flux, and the perturbation τ is expressed as in
Eq. (6.4). The matrix formulation yields:

q =




ρ
ρ0u1

ρ0u2

ρ0u3




Ar =




u0r δ1r δ2r δ3r

c2
0δ1r u0r 0 0

c2
0δ2r 0 u0r 0

c2
0δ3r 0 0 u0r




C =




0 0 0 0
u0r

∂u01

∂xr

∂u01

∂x1

∂u01

∂x2

∂u01

∂x3

u0r
∂u02

∂xr

∂u02

∂x1

∂u02

∂x2

∂u02

∂x3

u0r
∂u03

∂xr

∂u03

∂x1

∂u03

∂x2

∂u03

∂x3




S =




Sdens

Smom,1

Smom,2

Smom,3




6.1.2 Modes of Fluctuation and Characteristics

Although the LEE are commonly used to model acoustic phenomena in non-
uniform flows, they support other modes of fluctuation than the mere sound
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propagation. Chu and Kovásznay [29] showed that the Navier-Stokes equations
perturbed about a uniform mean flow support three modes, namely the acoustic
mode, the vorticity mode and the entropy mode.

Whereas these three modes can easily be put in evidence with one spatial
dimension through a characteristic decomposition of the equations, the multi-
dimensional case is less obvious, because the flux Jacobian matrices Ar cannot
be diagonalized with the same eigenvectors. This results in an infinite set of
characteristics forming a Monge cone, which is materialized by the fact that an
isotropic acoustic perturbation propagates in all directions simultaneously.

In order to bring the characteristic form of the LEE to light, the homogeneous
2D version of Eq. (6.9) is projected on an arbitrary direction n = (n1, n2),
assuming a uniform mean flow. Performing an eigendecomposition of the
projected flux Jacobian leads to:

An = A1n1 + A2n2 =




u0n n1 n2 0
0 u0n 0 n1

0 0 u0n n2

0 c2
0n1 c2

0n2 u0n


 = LΛL−1

where u0n = u0 · n = u01n1 + u02n2, and:

L =




1 0 1
2c0

1
2c0

0 n2
n1

2 − n1

2
0 −n1

n2

2 − n2

2
0 0 c0

2
c0

2




Λ =




u0n 0 0 0
0 u0n 0 0
0 0 u0n + c0 0
0 0 0 u0n − c0
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Left-multiplying Eq. (6.9) by L−1, the LEE can then be reformulated in a
system of advection equations by [62, 137]:

∂w1

∂t
+ u · ∇w1 = 0 (6.12)

∂w2

∂t
+ u · ∇w2 =

c0

2
(t · ∇) (w3 + w4) (6.13)

∂w3

∂t
+ (u + c0n) · ∇w3 = c0 (t · ∇) w2 (6.14)

∂w4

∂t
+ (u − c0n) · ∇w4 = c0 (t · ∇) w2 (6.15)

where t = (−n2, n1) and the characteristic variables can be calculated as:




w1

w2

w3

w4


 = L−1q =




ρ − p
c2

0

n2ρ0u1 − n1ρ0u2

n1ρ0u1 + n2ρ0u2 + p
c0

−n1ρ0u1 − n2ρ0u2 + p
c0




In the system of Eq. (6.12)-(6.15), the coupling introduced by the right hand
side is due to the variation of the variables w2, w3 and w4 in the direction t
normal to n. Equations (6.12) and (6.13) govern the entropy and vorticity
modes, represented respectively by the characteristic variables w1 and w2:
they are simply convected by the mean flow with characteristic velocity u0.
Equations (6.14) and (6.15) describe the propagation of the two acoustic modes
corresponding to the variables w3 and w4.

The characteristic decomposition for the plain LNSE is the same, as it is
performed only on the hyperbolic part of the equation. However, the isentropic
assumption suppresses the entropy mode, so that the decomposition matrices
become:

L =




0 1
2c0

1
2c0

n2
n1

2 − n1

2
−n1

n2

2 − n2

2




Λ =




u0n 0 0
0 u0n + c0 0
0 0 u0n − c0
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and the characteristic variables are:



w1

w2

w3


 =




n2ρ0u1 − n1ρ0u2

c0ρ + n1ρ0u1 + n2ρ0u2

c0ρ − n1ρ0u1 − n2ρ0u2




leaving only the vorticity mode and the two acoustic modes.

In the case of a non-uniform flow, the presence of the term Cq induces a
coupling between the entropy, vorticity and acoustic modes, in which the energy
is not conserved. This effect is sometimes modeled on purpose, like in the cases
studied in Chap. 8. However, it can lead in sheared flows to the unbounded
growth of the vorticity mode, that pollutes the solution when the goal is to
simulate only the acoustic propagation.

6.2 DG Method for Linear Aeroacoustic Equations

6.2.1 Discretization

LEE

Following the work of Reymen [122], the numerical method described in Chap. 2
is applied to the LEE, in order to come up with the semi-discrete formulation:

MT ∂qT

∂t
−

d∑

r=1

KT
r AT

r qT +
b∑

i=1

M∂Ti f̂∂Ti + MT CT qT = MT ST (6.16)

where qT , f̂∂Ti and ST are matrices in which each column corresponds to a
variable.

The definition of the numerical fluxes has to be adapted to the LEE, that can
be seen as a system of advection equations deriving from the characteristic
decomposition along the normal n to the face ∂Ti, as described in Sec. 6.1.2.
The local Lax-Friedrichs flux is calculated by replacing the advection velocity
‖a‖ in Eq. (2.4) with the largest characteristic velocity found in the diagonal of
Λ. The upwind flux defined in Eq. (2.5) is adapted by performing the upwinding
on each characteristic variable independently, yielding:

f̂ = L
(

Λ+L−1qT + Λ−L−1qT ′

)

where T ′ is the element sharing the face ∂Ti with T , and Λ+ and Λ− are
respectively the positive and negative parts of Λ.
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LNSE

The application of the DG method to the LNSE is more complex, because of the
second derivatives of the velocity contained in the viscous terms. Unfortunately,
the treatment of these terms consisting in applying twice the DG derivation
operator leads to an unstable formulation [60, Chap. 7]. Therefore, we resort to
the so-called “BR1” mixed finite element formulation [6, 13], that was originally
developed by Bassi and Rebay [11]. In this method, the gradients of the velocity
q are treated as independent variables, and extra equations are added to the
system in order to solve for them:

ws −
∂q
∂xs

= 0 (6.17)

∂q
∂t

+
∂Arq
∂xr

+
∂fv

r

∂xr
+ Cq = S (6.18)

where fv = fv
(
w1, w2, w3

)
is the viscous flux vector, and Eq. (6.17) gives the

derivative ws of the variables q in the direction xs, with s = 1 . . . 3.

Both equations are discretized with the DG method, using the same polynomial
space Pp (T ) for the sake of simplicity, although ws is of lower degree.
Equation (6.17) is solved for ws first, using central numerical fluxes. Then,
Eq. (6.18) is solved in the same way as the LEE in Eq. (6.16), with the extra
viscous term. The viscous flux contribution is integrated by parts just like its
convective counterpart, but the central flux is chosen over the Lax-Friedrichs
or upwind fluxes to calculate the element boundary part, because the diffusive
nature of this term does not exhibit any preferred direction.

This formulation is known to be unstable when the convective term is negligible
with respect to the viscous term. The more sophisticated “BR2” formulation
has better stability properties [6, 13], but its use of complex lift operators makes
it computationally more costly in an explicit RKDG framework, in addition to
being more difficult to implement. Another issue is the significant adverse
effect of diffusion on the conditional stability of the method: the so-called
viscous CFL condition, that depends on the square of the element size h, can
severely restrict the maximum time step ∆t∗. In this work however, the LNSE
is employed in cases dominated by the convection effects (see Chap. 8), so that
the “BR1” formulation is sufficient, and the stability and accuracy properties
of the scheme are similar to description in Part II, just like with the LEE.
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6.2.2 Boundary Conditions

As mentioned in Chap. 2, the boundary conditions are prescribed in a weak
manner through the specification of the numerical flux at boundary faces.
In this work, two main kinds of boundaries are considered: rigid walls (i.e.
walls with infinite acoustic resistance and no reactance) and non-reflecting
boundaries, that enable the modeling of infinite physical domains by finite
computational domains.

Rigid Wall Boundary Conditions

Rigid wall boundaries are modeled by slip condition that imposes a zero normal
velocity perturbation:

u · n = 0

where n is the normal to the boundary. The precise boundary treatment, in
particular the definition of n and its implications for acoustic problems, are the
subject of Chap. 7.

With the LEE, the boundary condition is imposed only by specifying the
numerical flux as

f̂ = ArnrqBC (6.19)

where qT
BC is the vector of variables on the boundary, where the velocity

perturbation u is replaced with its tangential component u − (u · n) n.

With the LNSE, the prescription of the viscous part of the numerical flux
is necessary, on top of Eq. (6.19), to complete the boundary condition for
Eq. (6.18):

f̂v = fv
r nr (6.20)

where the viscous flux vector fv on the boundary is not modified, as there is no
condition imposed on the velocity gradients w. In the auxiliary equation (6.17),
the numerical flux is simply taken as q.

Non-Reflecting Boundary Conditions

Non-reflecting boundary conditions are necessary to simulate acoustic problems
in infinite domains by limiting the computational domain to the region
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of interest. Many kinds of non-reflecting boundary conditions have been
developed for different applications. A review can be found in Ref. [34].

In this work, the classical characteristic boundary conditions are considered,
because they are efficient, easy to use and simple to implement. The
characteristic decomposition of the LEE presented in Sec. 6.1.2 is performed
along the boundary normal n, so that the incoming waves (corresponding to
negative eigenvalues in Λ) can be controlled, and the numerical flux is expressed
as:

f̂ = L
(
Λ+L−1qT + Λ−L−1qBC

)
(6.21)

where qBC can be used to introduce an excitation in the domain. If the
boundary is meant to be passively absorbing, then qBC = 0, and only the
outgoing characteristics contribute to the numerical flux.

For the LNSE, the viscous effects are assumed to be small compared to the
convective effects, so that the quality of the non-reflective boundary condition
formulated in Eq. (6.21) remains unaffected. As in the case of walls, there
is no specific condition on the velocity gradients, so that the viscous part of
the numerical flux is given by Eq. (6.20). Similarly, the numerical flux in the
auxiliary equation (6.17) is q.

The characteristic non-reflective boundary condition given by Eq. (6.21)
actually results from the approximation that the outgoing wavefronts are locally
parallel to the boundary, i.e. the right-hand side of Eq. (6.12)-(6.15) is neglected.
If the waves reach the boundary with a significant tangential incidence, acoustic
reflections may occur. This is often the case when vorticity is convected through
the boundary.

6.2.3 High-Order Interpolation

As mentioned in Chap. 2, the numerical scheme considered in this work is a
nodal version of the DG method, which means that the basis functions ϕT

are basis Lagrange polynomials. In practice, some operations can then be
efficiently performed by working directly on the unknowns, which implies a
transparent interpolation. This is the case, for instance, of the multiplication
of two fields in an element T , or the restriction of a field in T to the
element boundary ∂T . However, the numerical method is preferably used with
high order p of the polynomial approximation, for reasons of computational
efficiency. The well-known problems associated to high-order interpolation
(Runge’s phenomenon, aliasing) may then alter the fidelity and the stability
of the numerical method [60, Chap. 5]. These difficulties occur mainly in the
specification of the mean flow, and in the computation of the fluxes.
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Mean Flow Specification

In some of the problems that studied in this work, the mean flow about which
the Euler and Navier-Stokes equations are linearized is not uniform. It is
either obtained from an incompressible CFD simulation (i.e. available as a
set of points and variable values corresponding to the vertices of the CFD
mesh), or calculated from an analytical solution. Following the principles of
the numerical method introduced in Chap. 2, each mean flow variable (density,
velocity components, pressure) is approximated in an element T with a function
qT ∈ Pp (T ), that is defined by its components qT

j in the basis BT
p . Each

component qT
j represents the value of qT at the node j associated with the

basis Lagrange polynomial ϕT
j .

In order to illustrate the implications of this approximation for the mean
flow, we consider the case of the function q (y) = 0.1 · [tanh (3y) + 2], that
could represent the velocity in a mixing layer with hyperbolic tangent profile
between two flows of non-dimensional velocity 0.1 and 0.3. This function is
approximated at order p = 7 on a square domain of size 20×20, with a mesh of
42 triangles. The mesh and the analytical solution q (y) are shown in Fig. 6.1.

An obvious way of obtaining the mean flow data is thus to calculate qT
j as

qT
j = q

(
yT

j

)
, where yT

j is the y coordinate of node j in element T . This results
in unwanted “wiggles” in the mixing layer zone, which can be seen in Fig 6.2.
Thus, the direct computation of qT

j (by a closed expression or by interpolation
from CFD data) is to be avoided if some features of the mean flow are not
totally resolved: it may cause spurious spatial oscillations of qT at high order
p, due to Runge’s phenomenon.

In order to alleviate this problem, a least-square approach is used that fits the
approximation qT to the ideal solution. The function q (y) (or, in the general
case, the CFD data) is first sampled on a dense cloud of points in each element
T . The nodal set corresponding to the Lagrange polynomial basis BT

p of order
p + 4 is usually used for this purpose. Then, a least-square technique is used
to find the polynomial qT that best approximates the sampled values. To do
so, the least-square system can simply be solved in each element T individually.
This reduces the spurious oscillations in the vicinity of under-resolved mean
flow features, but it may result in discontinuities between elements, as shown
for the example case in Fig. 6.3. Therefore, a global procedure is preferred,
in which some degrees of freedom are removed by imposing the continuity of
the approximation between the elements, and the least-square system is solved
simultaneously for all elements in the domain. As shown in Fig. 6.4, this
technique reduces the spurious oscillations, while maintaining a continuous
approximation over the whole domain.
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(a) (b)

Figure 6.1: Example case of mean flow specification: mesh (a) and analytical
solution (b).

Figure 6.2: Example case of mean flow specification: direct interpolation.
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Figure 6.3: Example case of mean flow specification: local least-square
procedure.

Figure 6.4: Example case of mean flow specification: global least-square
procedure with imposed continuity between elements.
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Flux Computation

The non-uniformity of the mean flow may also cause problems related to high-
order interpolation in the computation of the fluxes AT

r qT and, to a lesser
extent, in the computation of the mean flow gradient term CT qT . Indeed, the
mean flow (thus the flux Jacobians AT

r ) and the vector of variables qT are both
defined in Pp (T ). The product AT

r qT should then be represented exactly by
polynomials of degree 2p. However, it is defined in Pp (T ) in this work, so that
the matrices KT

r and MT corresponding to the basis BT
p can be used.

The representation of AT
r qT in Pp (T ) is then obtained very easily by

calculating the product at each node j:
(
AT

r qT
)

j
= AT

r,jqT
j . This implies an

interpolation of a polynomial of degree 2p by a polynomial of degree p, which
is prone to the so-called aliasing phenomenon: the modes of order higher than
p are transformed into spurious contributions to modes of order lower than p
by the interpolation. This effect, that is described at length in Ref. [60, Chap.
5], is a major cause of instability in the numerical method.

A natural remedy to this problem is to compute the fluxes AT
r qT , as well as the

mean flow term CT qT , by projection rather than by interpolation. This can
be carried out in the reference space, introducing the projection matrix Pp,q

from a base Bq =
{

ϕq
j , j = 1. . .Nq

}
of Pq (T ) to a base Bp = {ϕp

k, k = 1. . .Np}
of Pp (T ):

Pp,q
kj =

∫

R

ϕp
kϕq

j dξ

The fluxes AT
r qT in Pp (T ) can then be computed as AT

r qT = Pp,2p
(
AT

r qT
)2p

,

where the fluxes
(
AT

r qT
)2p

in P2p (T ) are obtained by interpolation at order
2p:

(
AT

r qT
)2p

j
=
(
P2p,pAT

r

)
j

(
P2p,pqT

)
j

This interpolation is not subject to aliasing, as P2p,pAT
r and P2p,pqT contain

only modes of order lower or equal to p, although they are defined on BT
2p.

However, this stabilization method is computationally very expensive: it adds
three multiplications by matrices of size N2p × Np or Np × N2p, and the flux
is computed for N2p unknowns, while Np grows like p2 in 2D and p3 in 3D.
Therefore, the more pragmatic filtering approach described in Ref. [60, Chap.
5] is preferred. It consists in applying to each mode of the solution a filter of
the form:

σ (n) =

{
1, n ≤ nCO

exp
[
−α

(
n−nCO

p−nCO

)s]
, n > nCO
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where n is the degree of the polynomial, nCO is the cut-off degree of the filter,
s is the order of the filter (that must be even), and α = 36 is a constant. The
filter is defined in the modal approach, that is, it acts on each component of
the underlying polynomial basis that is orthogonal in the reference element. In
the nodal setting used in this work, it results in a Np ×Np matrix by which the
solution is multiplied at each stage of the RK scheme. This technique amounts
to damping the higher-order modes in a controlled manner, for a reasonable
direct computation cost (one Np × Np matrix multiplication). By adjusting
the filter parameters nCO and s, the user can add just the right amount of
dissipation to avoid the aliasing instability, so that the accuracy is not too
degraded. Typical values of the parameters are nCO = 0 and s = 16, for which
an example of the filter function σ (n) is drawn in Fig. 6.5.
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Figure 6.5: Filter function σ (n) with parameters nCO = 0 and s = 16, for
order p = 7.

6.3 Implementation and Verification

6.3.1 Implementation

The method described in Sec. 6.2.1 and in Chap. 2 is implemented in a
numerical code, that is able to solve the LEE or LNSE with non-uniform
mean flow. It runs on triangular meshes in 2D and tetrahedral meshes in
3D, with possibly curved elements. It is an extension of the code written
by Reymen [122], that was restricted to straight tetrahedral elements, with
limited non-uniform mean flow capabilities. The implementation follows the
work of Hesthaven and Warburton [58, 60], in particular for the definition
and manipulation of the Lagrange polynomial basis along with the underlying
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modal basis. Besides the handling of the grid data structure and the RKDG
procedure, the code is supplemented with algorithms to generate output at
regular intervals of time. The first type of output is the value of the solution,
obtained directly from the polynomial approximation, on a user-specified set of
points. The second type of output is the solution in the whole computational
domain for visualization. Both pre- and post-processing are performed through
the Gmsh software [51], that particularly suits DG methods because of its
ability to generate high-order grids and to visualize high-order solutions.

The C++ programming language is chosen for the implementation, because
it is available on most computing platforms, and because its object-oriented
character facilitates the design and the maintenance of a large numerical code.
As seen in Sec. 6.2.1, most basic operations are of matrix-vector and matrix-
matrix type. For efficiency reasons, these calculations are carried out by BLAS
routines [19] from external libraries (for instance ATLAS [145]).

6.3.2 Grid Convergence

In order to verify the correct implementation of the numerical scheme, a grid
convergence study is performed for the free-field propagation of a Gaussian
pressure pulse with the 2D LEE. An analytical solution is available for this
problem, that provides accurate data for comparison with the present numerical
results [131].

The computational domain consists of a square of non-dimensional size 200 ×
200, centered at the origin. The initial conditions are:

p|t=0 = ρ|t=0 = e−(ln 2) x2+y2

52

u1|t=0 = u2|t=0 = 0
(6.22)

The mean flow velocity is set to zero, with a sound speed of c0 = 1, and the
Gaussian pressure pulse is left propagating until a non-dimensional time of
t = 20. This ensures that the wave front remains inside the domain, to prevent
the solution from being polluted by any spurious reflection at boundaries.
Several grids with increasing refinement are used, their characteristics being
summarized in Table 6.1. The order p of the polynomial approximation varies
from 1 to 6. For all grids and all values of the order p, the error in L2 norm
with respect to the analytical solution at the final time is measured.

Fig. 6.6 shows the error as a function of the square root of the number of
elements, that can be considered as inversely proportional to the element size.
The scheme exhibits the correct convergence behaviour, and the theoretical
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order of accuracy p + 1 featured of the DG method is reached as long as the
number of elements is sufficiently high.

Fig. 6.7 shows the duration of the computations in CPU time as a function
of the error. While the advantage of increasing the order p is unclear for very
low accuracy, computations at higher order p are clearly more efficient when
the pulse is accurately resolved. For instance, the computation with Grid 2 at
order p = 5 yields as accurate results as the computation with Grid 5 at order
p = 1, but is 15 times faster.
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Figure 6.6: Grid convergence study: error in L2 norm as a function of the
square root of the number of elements. The dashed lines correspond to the
theoretical order of accuracy p + 1.

6.3.3 Boundary Conditions

In order to verify the correct behaviour of the non-reflective boundary
conditions introduced in Sec. 6.2.2, a test problem similar to the one described
in Sec. 6.3.2 is used. The initial Gaussian pressure pulse defined in Eq. (6.22)
is left propagating until non-dimensional time t = 300 in a square domain
of non-dimensional size 100 × 100, where non-reflecting boundary conditions
are imposed at each side. The mean flow is uniform, with a non-dimensional
horizontal velocity of u01 = 0.5 and a sound speed of c0 = 1. Thus, the pulse

Grid Nr. 1 2 3 4 5
Vertices 122 435 1654 6455 25519
Elements 242 868 3306 12908 50236

Table 6.1: Characteristics of the grids used for the grid convergence study.
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front reaches first the right boundary at t ≈ 33, and it completely leaves the
domain through the upper left corner at t ≈ 109, as can be seen from the
numerical solution shown in Fig. 6.8. A sufficiently fine grid of 800 triangular
elements is used, while the order of the polynomial approximation is set to
p = 6. The L2 norm of the pressure is computed on a set of 100 × 100 points
evenly distributed in the domain:

Lp =

√√√√
10000∑

i=1

p2
i

where pi is the value of pressure at point i.

The measured quantity Lp , normalized by its initial value Lp (t = 0), is
compared in Fig. 6.9 to the reference value obtained from the analytical
solution [131]. For time t > 109, the residual pressure is higher in the numerical
results than in the reference solution. This is due to the reflections that occur
when the pulse front reaches the boundary with oblique incidence, as shown
in Fig. 6.8. However, both curves remain almost superimposed for t < 109,
indicating that the amplitude of the reflections at boundaries is small compared
to the amplitude of the incident front.

The implementation of the more simple rigid wall boundary condition is verified
extensively in the test problems presented in Chap. 7.
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Figure 6.7: Grid convergence study: error in L2 norm against the CPU time.
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(a) (b)

(c) (d)

Figure 6.8: Verification of the non-reflecting boundary conditions: pressure
perturbation field (numerical solution) at t = 0 (a), t = 30 (b), t = 60 (c) and
t = 110 (d).
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6.3.4 Non-Uniform Flow

Finally, a general verification of the code is performed with a problem involving
a non-uniform mean flow. The test consists in simulating the 2D sound
radiation of a monopole located in a boundary layer [14, 128]. It corresponds
to Case D of Ref. [128], where the free-stream Mach number is M∞ = 0.3,
the acoustic wavelength (at M = 0) is equal to the boundary layer thickness,
and the Reynolds number (based on the free-stream velocity and the acoustic
wavelength at M = 0) is Re = 3.75 ·103. The directivity of the sound radiation
computed with the LEE and the isentropic LNSE is compared to reference data
obtained from a DNS computation [128].

The case is set up in a semi-circular domain of radius 23, centered at (x1, x2) =
(7, 0), as can be seen in Fig 6.10. A rigid wall boundary condition is imposed
on the lower flat boundary, and the other boundaries are non-reflective. The
mean flow density and pressure are ρ = 1 and p = 1/γ respectively, so that
the sound speed is uniformly c0 = 1. The mean flow velocity is given by the
Polhausen profile for a flat plate boundary layer of thickness 1 [14]:

u01 =

{
M∞

(
2y − 2y3 + y4

)
, 0 ≤ y < 1

M∞, y ≥ 1
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Figure 6.9: Verification of the non-reflecting boundary conditions: normalized
L2 norm of the pressure Lp/Lp (t=0) as a function of the time t, for the numerical
and reference solutions.



126 RKDG METHODS APPLIED TO AEROACOUSTICS

For the LNSE, the viscosity coefficient is set to µ = 8 · 10−5. The acoustic
monopole is modeled by a source term of the form:

S =




1
0
0
1


 e−(ln 2) x2+y2

0.12 sin (2πt)

for the LEE (the pressure source term is removed for the isentropic LNSE). The
simulation is run until non-dimensional time t = 30. A grid of 3366 triangular
elements is used, while the order of the polynomial approximation is set to
p = 7.

The pressure perturbation field at t = 30 is shown in Fig. 6.10: the solution
features channeled waves within the downstream boundary layer, free-field
radiation in an angle range of [7◦, 160◦] around the source, and a shadow zone
upstream.

The RMS pressure is measured on a circle of radius 15, centered on the
monopole. As the monopole is modeled differently in the reference DNS and
in the present simulations, the results are normalized with respect to the
maximum RMS pressure in the direct radiation zone [14]. The directivity plot
in Fig. 6.11 compares the reference data with the results from the LEE and
LNSE simulations. There is a discrepancy between the results obtained here
and the DNS data for the channeled waves and the very low angle radiation
(below 10◦), which is likely to be due to the difference in boundary layer
profile [14]. However, the radiation directivity at higher angle is well predicted.
In the downstream region, the results with the LNSE are slightly closer to
the reference data than with the LEE. In addition to a weak viscous effect,
this may be explained by the isentropic assumption: the significant size of the
monopole source model in the sheared flow may interact with the entropic mode
of the LEE, which is probably not the case in the reference DNS simulation
where the source is much more localized. The peak angle (130◦ and 129◦ for
the LEE and LNSE results respectively against 129◦ for the reference data),
as well as the critical angle (beyond which there is no radiation), are well
predicted in both cases. Overall, given the modelization differences between
the present simulations and the DNS (governing equations, boundary layer
profile, monopole), the agreement can be considered as satisfactory.

6.4 Conclusion

In this chapter, we have explained how the RKDG method can be used to
tackle aeroacoustics problems that involve linear sound generation and acoustic
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propagation in non-uniform flows. First, two sets of governing equations have
been derived by linearization of the Navier-Stokes equations: the LEE, that
exclude viscous effects, and the LNSE, that is simplified with the assumption
of isentropic flow. Several modes of fluctuation supported by these systems have
been put in evidence through a characteristic decomposition: the acoustic mode,
the vorticity mode and, in the absence of isentropic assumption, the entropy
mode. Then, the application of the RKDG method to the governing equations
has been described, detailing the basic discretization and two types of boundary
conditions (rigid wall and non-reflecting boundary condition). In practical
cases, problems can arise because of the high-order interpolation that is implied
by the nodal approach, and remedies to these difficulties have been presented.
Finally, we have shortly explained how the method is implemented. The
numerical behaviour of the code has been assessed through a grid convergence
study, and the correctness of the boundary and mean flow treatments has been
verified.

Figure 6.10: Case of a monopole in a boundary layer: pressure perturbation
field at t = 30.

 0  0.2  0.4  0.6  0.8  1

Ref.
LEE

LNSE

Figure 6.11: Directivity plot for the case of a monopole in a boundary layer:
normalized RMS pressure for the reference, LEE and LNSE solutions.
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Although the accuracy of the basic scheme and the non-reflecting boundary
conditions has been tested in this chapter, the influence of the wall boundary
condition has not been thoroughly addressed. This is the subject of Chap. 7.
The developments presented in both chapters pave the way for the application
of the method to a practical case, which is reported in Chap 8.



Chapter 7

Curved Boundary Treatments

for Aeroacoustic Propagation

This chapter deals with the impact of the discretization of curved wall
boundaries on the accuracy of the DG method presented in Chap. 6, in the
context of acoustic propagation. In addition to the classical linear treatment
of wall boundaries, two treatments involving a second-order representation
of the geometry are introduced. The simulation of acoustic scattering
problems confirms that the linear treatment can limit the accuracy at high
order p, and demonstrates how the boundary treatment involving curved
elements overcomes this restriction while avoiding unnecessary grid refinement.
The benefits of higher-order treatments are also assessed for more realistic
geometries, namely a high-lift airfoil and an elliptical muffler.

7.1 Introduction

As mentioned in Chap. 1, the question of the accuracy of the DG spatial scheme
for wave propagation problems has been thoroughly addressed in the literature,
by means of theory and numerical experiments [4, 55, 70, 72]. In this work, a
technique for the analysis of the accuracy is presented in Chap. 2 and applied
in Chap. 5 to assess the relative computational efficiency of RKDG schemes.
The convergence rate of our implementation for linear aeroacoustics is verified

129
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in Chap. 6. All these studies deal with the DG scheme in itself, and exclude
purposely the issue of the error that is due to the boundary conditions.

The performance of the non-reflective boundary condition that are used in
this work for aeroacoustic applications is evaluated in Chap. 6. However, the
rigid wall treatment poses different issues. When the wall to be modeled is
flat, the boundary condition does not introduce any error in the simulation.
This is not the case with curved geometries: the grid is classically composed
of straight-sided elements, resulting in a piecewise linear approximation of the
curved boundary. If the spatial discretization scheme is accurate enough, the
error due to the approximate modelization of the wall may dominate.

In the framework of the non-linear Euler equations, the necessity of a higher-
order treatment of curved wall boundaries was put in evidence by Bassi and
Rebay [12], and is now generally accepted [88]. Ref. [12] and [88] suggest that
the accuracy mainly depends on the correct representation of the normals to the
geometry, when dealing with 2D Euler flows. However, this might not be the
case with acoustic propagation problems. Concerning the LEE, Atkins reported
the use of higher-order geometry description and its benefits on problems of
acoustic scattering [8].

In this chapter, the impact of boundary treatments for curved walls is
investigated. Academic problems of acoustic scattering in 2D and 3D are used
to show how the linear treatment of wall boundaries limits the accuracy. The
improvement brought by two different boundary treatments based on a higher-
order geometry representation is evaluated for these problems. The benefits of
higher-order boundary treatments are also applied to more realistic geometries,
with the computation of sound scattering by a high-lift airfoil and the analysis
of transmission loss in an elliptical muffler. In all test cases presented in
this chapter, the LEE are used with quiescent mean flow, so that results are
restricted to pure acoustics, in order to isolate the accuracy and stability issues
raised by boundary treatments.

7.2 Higher-Order Wall Boundary Treatments

In this section, two wall boundary treatments based on a second-order
representation of the geometry are introduced, in addition to the classical linear
one. The higher-order geometrical modelization implies not only a different
numerical treatment of the boundary in the DG space discretization, but also
specific capabilities for the meshing software.
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7.2.1 Wall Treatments

As explained in Chap. 6, the wall boundary conditions are prescribed in a weak
manner by specifying the numerical flux at boundary faces. The numerical flux
at a face ∂Ti is computed from the fluxes through Eq. (6.19), imposing the slip
boundary condition:

u · n = 0

where n is either the normal n to ∂Ti, or the local normal ng to the
quadratically-represented geometry. In this work, three different wall boundary
treatments, illustrated in Fig. 7.1, are considered:

1. ∂Ti is a straight edge and n = n. In this case the treatment of wall
boundaries is fully linear, and the quadrature-free DGM is used, as
described in Chap. 2.

2. ∂Ti is a straight edge and n = ng. As in the linear case, the quadrature-
free DGM is used. This treatment, proposed in Ref. [12] and Ref. [88] as
a computationally inexpensive way to improve accuracy, will be hereafter
referred to as mixed.

3. ∂Ti is a curved edge (i.e. n = ng), in this case n = ng and the treatment
is fully quadratic. Integration over the edge ∂Ti and the adjacent element
T is then performed by quadrature, and additional face matrices M∂Ti

r

including the components of n are defined, as explained in Chap. 2.

Lined walls are not considered in this work, because the formulation of an
impedance boundary condition in time domain raises other issues than the mere
boundary treatment: the impedance being formulated in frequency domain,
a costly convolution is required to compute the condition on pressure. An
innovative solution to this problem is proposed in Ref. [123].

7.2.2 Mesh Generation and Robustness

As mentioned in Chap. 6, the software that used for mesh generation is
Gmsh [51], which is able to cope with second-order meshes following a process
illustrated in Fig. 7.2. First-order grids, made out of straight elements, are
generated in a classical manner, as shown in Fig. 7.2(a). From these, second-
order grids are then produced by projecting the mid-point of boundary edges
on the geometry, resulting in curved elements on the boundary. This second-
order information can be used in conjunction with the original first-order grid
for the mixed treatment.
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(a) (b)

(c)

Figure 7.1: Illustration of the linear boundary treatment (a), the mixed
boundary treatment (b) and the quadratic boundary treatment (c). The arrows
represent the normals n used for prescribing the slip condition, solid lines are
the element boundaries on which the flux is integrated.
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The projection step is sometimes not sufficient to obtain satisfying second-order
meshes. It can result in highly curved elements, that have an impact on the
conditioning of the DG spatial operator, as explained extensively in Chap. 4.
Time steps must then be decreased to maintain the stability of computations.
It can even lead to ill-shaped elements for which the mapping degenerates, as
shown in Fig. 7.2(b). The numerical method is unusable with such grids.

Gmsh solves this problem by applying an additional smoothing step that
consists in curving edges away from the boundary and involves edge swapping
where necessary (see Fig. 7.2(c)). Nevertheless, curved elements remain
confined in a region close to the geometry, and the elements in the rest of the
computational domain can be considered as straight. As Gmsh outputs second-
order information for the whole domain, a criterion based on a “distortion”
measure γ is used to discriminate between straight and curved elements:

γ = min
T

(∣∣JT
∣∣

∣∣JT
0

∣∣ ,
∣∣JT

0

∣∣
|JT |

)

where
∣∣JT

0

∣∣ is the Jacobian for the straight element corresponding to a second-
order element T .

7.3 Results

The method described in Sec. 7.2 is applied to four test problems, with the
objective of assessing the benefits of higher-order boundary treatments. As
the interest of the mixed treatment appears to be limited in the two 2D cases
presented in Sections 7.3.1 and 7.3.2, it is not retained for evaluation in the
3D problems. In all cases, coarse meshes are used in conjunction with high
order, in order to maximize the computational efficiency. A satisfying trade-
off between computational cost and accuracy is found at order p = 7 in most
simulations, except for the muffler problem in Section 7.3.4 where lower order
is needed.

7.3.1 Acoustic Scattering by a Cylinder

In order to assess the impact of wall boundary treatments, the problem Nr.
2, Category 1 of the Second CAA Workshop on Benchmark Problems [130] is
studied. It consists in the scattering of a Gaussian pressure pulse by a cylinder.
An analytical solution is available for this case. In addition to the results
presented here, complementary data and a detailed discussion are available in
Ref. [138].
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The computational domain shown in Fig. 7.3 is a disc with a non-dimensional
diameter of 20, containing a cylinder of diameter 1 centered at the origin. The
initial conditions consist of a Gaussian pulse located at point P(4,0):

p|t=0 = ρ|t=0 = e−(ln 2)
(x−4)2+y2

0.22

u1|t=0 = u2|t=0 = 0

The mean flow velocity is set to zero and characteristic-based non-reflecting
boundary conditions are imposed in the far-field. The order of the polynomial
approximation is set to p = 7. A set of grids is generated by progressively
refining the discretization of the cylinder, while maintaining a constant element
size in the far-field. The grid characteristics are summarized in Table 7.1 and
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Figure 7.2: Detail of the meshing process close to the leading edge of the high-
lift airfoil presented in Sec. 7.3.2: first-order mesh (a), primary second-order
mesh (b) and smoothed second-order mesh (c).
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the nomenclature of the test cases is explained in Table 7.2. The simulations
are run until a non-dimensional time of t = 10.

y

x

M

P

Figure 7.3: Computational domain for the 2D acoustic scattering problem.
P(4,0) is the center of the pulse at initial time, M(0,5) is the point where the
pressure is monitored.

Grid Name Vertices on the Cylinder Vertices Elements
C4 4 924 1738
C8 8 1373 2636
C12 12 1618 3122
C16 16 1877 3636
C18 18 2030 3940
C20 20 2153 4184

Table 7.1: Characteristics of grids used for the 2D acoustic scattering problem.

In order to assess the effect of geometry discretization and wall boundary
treatment on the quality of the solution, the pressure is monitored at point (0, 5)
and compared with the analytical solution. The reference solution features a
first maximum at about t = 6.3, corresponding to the direct field, and a second
maximum at t = 8.2, corresponding to the scattered field.

Fig. 7.4 shows the results of computations with the linear boundary treatment
on grids C4, C8 and C16. In all cases, the direct pulse is well resolved.
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All grids are thus sufficiently refined to eliminate spurious dissipation and
dispersion. However, a relatively large error in phase and amplitude appears
in the scattered field on grid C4, and the results converge toward the reference
data with geometry refinement. At p = 7, the accuracy is thus limited by the
rough modeling of the cylinder.
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Figure 7.4: Pressure at point (0,5) with linear boundary treatment on grids
C4, C8 and C16 for the 2D acoustic scattering problem.

Fig. 7.5 shows the effect of higher-order boundary treatments on the scattered
field with the coarsest grid C4. With this mesh, the mixed treatment does
not significantly improve the accuracy (although it can prove useful on more
refined grids, see Ref. [138]). The full quadratic treatment, on the other hand,
yields a significant improvement: as the cylinder geometry is well represented
by the quadratic boundary, the phase error is suppressed. This is the reason
why the solution for case C4Q is even more accurate than results obtained on
refined grids with other boundary treatments, as shown in Table 7.3, that gives

Test Case Name Grid Name Bnd. Treatment
C4L C4 Linear
C4M C4 Mixed
C4Q C4 Quadratic
C8L C8 Linear
C8M C8 Mixed
C12L C12 Linear
C16L C16 Linear
C18L C18 Linear
C20L C20 Linear

Table 7.2: Nomenclature of test cases for the 2D acoustic scattering problem.
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an overview of the accuracy of various simulations in the scattered field. One
can note that 18 linear boundary elements (case C18L) are needed to achieve
a similar accuracy as with 4 quadratic boundary elements (case C4Q), i.e. 4.5
times more. This ratio cannot be generalized to other test problems, as it
depends on how well the real geometry is approximated by second-order edges.
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Figure 7.5: Pressure at point (0,5) with different boundary treatments on grid
C4 for the 2D acoustic scattering problem.

Case Name Error
C4L 2.78 · 10−5

C4M 1.83 · 10−5

C4Q 7.73 · 10−8

C8L 2.63 · 10−6

C8M 1.46 · 10−6

C12L 4.51 · 10−7

C16L 1.28 · 10−7

C18L 7.77 · 10−8

C20L 5.04 · 10−8

Table 7.3: L2 error in pressure at point (0,5) over the time interval [7.5, 10] for
some cases of the 2D acoustic scattering problem.

7.3.2 Sound Propagation around a High-Lift Airfoil

The influence of higher-order wall boundary treatments is assessed on the
problem of a high-lift airfoil. The geometry is a 3-element airfoil based on the
RA16SC1 profile, with the slat and flap deflected by 30◦ and 20◦ respectively.
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The chord of the main element is 480 mm, and the computational domain is a
disc of radius 1000 mm centered on a point P located close to the trailing edge.
The acoustic excitation consists of a monopole source placed at point P, with
the following source terms:

ps = c2
0ρs = A · cos (2πf · t) · e−(ln 2)

(x−xP )2+(y−yP )2

b2

u1s = u2s = 0

with

c0 = 340 m · s−1

b = 3 mm

A = 1 Pa

f = 7816 Hz

No mean flow is applied and characteristic-based non-reflecting boundary
conditions are imposed at the outer limits of the computational domain shown
in Fig. 7.6. Four different grids are generated: the element size remains constant
in the far-field, while the geometry is increasingly refined, particularly around
curved parts of the geometry such as the slat, the leading edge of the main
element and the leading edge of the flap (see Fig. 7.7). The grid characteristics
are summarized in Table 7.4. Order p = 7 is used for the 6 simulations whose
parameters are listed in Table 7.5. The simulations are run until a periodic
regime is reached. The results obtained with the finest grid are taken as
reference data. Fig. 7.8 shows the corresponding pressure field. The pressure
is measured along a circle of radius 750 mm, centered at point P, in order to
evaluate the influence of the boundary treatment on sound directivity.

Grid Vertices Elements
1 1819 3479
2 2481 4781
3 3397 6585

Ref. 6790 13239

Table 7.4: Characteristics of grids used for the high-lift airfoil case.

The directivity of the sound pressure level for grids 1, 2 and 3 with the linear
treatment can be seen in Fig. 7.9. The results obtained on the coarse grid
1 do not match well the reference data, especially in the [π/2, π] and [−π/2, 0]
quadrants; computations with a refined geometry discretization yield better
results.
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Figure 7.6: Computational domain for the high-lift airfoil problem. Solid lines
are the boundaries of the domain, the dashed line represents the surface where
the pressure is monitored. Point P is the center of the domain where the
acoustic monopole source is located.

Test Case Grid Bnd. Treatment
1L 1 Linear
1M 1 Mixed
1Q 1 Quadratic
2L 2 Linear
3L 3 Linear

Ref. Ref. Linear

Table 7.5: Computation parameters used for the high-lift airfoil case.
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Fig. 7.10 shows the effect of higher-order boundary treatments on the coarsest
grid 1. Similarly to the 2D cylinder problem, the mixed treatment does not
significantly improve the accuracy, whereas the solution with the quadratic
treatment is in excellent agreement with the reference data. Table 7.6
indicates the time step, as well as an estimation of the CPU time and memory
requirements, for each computation. It can be noted that the quadratic
treatment only has a minor additional computation cost in view of the
improvement that it brings in accuracy. Although it achieves a lower accuracy
than case 1Q, case 3L has a higher computation cost, due to the higher number
of elements involved and the smaller time step, that is linked to the small
element size. In grids 1 and 2, the smallest element size is limited be the size of
gaps between wing elements, which explains the similar time steps with grids
1 and 2. Without such geometrical constraints, case 1Q would be even more
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Figure 7.7: Details of grids 1 (a), 2 (b) and 3 (c) close to the slat and the nose
of the main element of the high-lift airfoil.
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Figure 7.8: Reference pressure field for the high-lift airfoil case.

 0  20  40  60  80  100

Ref.
Case 1L
Case 2L
Case 3L

Figure 7.9: Directivity of the sound pressure level (dB) for the high-lift airfoil
case: effect of grid refinement.
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advantageous in terms of CPU time, because it would allow for a larger time
step.
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Figure 7.10: Directivity of the sound pressure level (dB) for the high-lift airfoil
case: comparison between the linear, mixed and quadratic treatments on the
coarsest grid.

Test Case Time Step CPU Time Memory
1L 0.68 26 min 33.5 MB
1M 0.68 25 min 34.2 MB
1Q 0.64 28 min 36.0 MB
2L 0.67 35 min 45.2 MB
3L 0.36 1 h 31 min 61.4 MB

Table 7.6: Time step and approximate computational cost for each computation
of the high-lift airfoil case.

7.3.3 Acoustic Scattering by a Sphere

In order to verify the validity of curved boundary conditions in 3D, the problem
of sound scattering by a sphere is studied. The computational domain is a ball
with a non-dimensional diameter of 20, containing a rigid sphere of diameter 2
centered at the origin. A monopole source is located at point (2, 0, 0), so that
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the source terms are:

ps = ρs = cos (ωt) · e−(ln 2)
(x−2)2+y2

b2

u1s = u2s = 0

where

ω =
5
2

π

b = 0.25

The mean flow velocity is set to zero and characteristic-based non-reflecting
boundary conditions are imposed in the far-field. The order of the polynomial
approximation is set to p = 7. The characteristics of the different grids used for
this problem are summarized in Table 7.7. They feature the same element size
in the far-field, but differ in the discretization of the sphere. Table 7.8 explains
the naming convention for the different configurations. The simulations are run
until a periodic regime is reached. The pressure along the circle x2 + y2 = 25
is measured to check the effect of the boundary treatment. The results on the
finest grid with the linear boundary treatment are chosen as reference data.

Grid Faces on the sphere Vertices Elements
S8 8 4889 21553
S32 32 4854 21371
S94 94 5020 22272
Ref. 192 5636 25875

Table 7.7: Characteristics of grids used for the 3D acoustic scattering problem.

Test Case Grid Bnd. Treatment
S8L 1 Linear
S8Q 1 Quadratic
S32L 2 Linear
S94L 3 Linear
Ref. Ref. Linear

Table 7.8: Computation parameters used for the 3D acoustic scattering
problem.

Fig. 7.11 shows the effect of grid refinement with the linear treatment. The
computation with grids S8 and S32 exhibits a small error, whereas the results
obtained with grid S94 are in good agreement with the reference data. Fig. 7.12
shows that the quadratic boundary treatment suppresses the error with the
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coarse geometry discretization of grid S8. Table 7.9, that gives the time
step and the approximate computational cost for each case, demonstrates that
the improvement in accuracy brought by the quadratic boundary treatment
comes for lower additional CPU time than with grid refinement. The higher
computation time in case S92L is mainly due to a smaller time step, as the
number of elements involved is similar to the other cases.
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Figure 7.11: Directivity of the sound pressure level (dB) for the 3D scattering
problem: effect of grid refinement.

Test Case Time Step CPU Time Memory
S8L 0.015 13 h 25 min 786.4 MB
S8Q 0.015 13 h 29 min 937.0 MB
S32L 0.015 13 h 18 min 779.9 MB
S94L 0.010 20 h 41 min 812.0 MB

Table 7.9: Time step and approximate computational cost for each computation
of the 3D scattering problem.

It should be mentioned that for this problem, increasing the frequency of the
acoustic source would better illustrate the effect of the geometry discretization
on sound scattering. Higher frequencies, however, are not investigated in this
work because of the large requirements in computation time.
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7.3.4 Transmission Loss of a Muffler

The last test problem involves an elliptical muffler with square inlet and outlet
ducts, as shown in Fig. 7.13. The chamber has a length of 0.25 m, its elliptical
section has a major semi-axis of 0.23/2 m and a minor semi-axis of 0.13/2 m.
The reference solution for this configuration is computed by means of a modal
expansion [39, 63].

A plane pressure pulse is specified as initial condition in the inlet duct:

p|t=0 = ρ|t=0 = e−(ln 2)
(z+0.21)2

0.012 (7.1)

u1|t=0 = u2|t=0 = 0 (7.2)

No mean flow is applied and characteristic-based non-reflecting boundary
conditions are applied in the inlet and outlet sections. The differents grids,
whose characteristics are given in Table 7.10, differ in the refinement of the
chamber geometry. Order p = 5 is used in all cases, except for grid 4 that is
fine enough to use order p = 4 without significant dissipation nor dispersion
over the frequency range considered. An overview of the different configurations
is given in Table 7.11.
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Figure 7.12: Directivity of the sound pressure level (dB) for the 3D scattering
problem: effect of the boundary treatment.
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(a) (b)

(c)

Figure 7.13: Geometry for the muffler problem.

Grid Vertices Elements
1 75 199
2 114 325
3 223 698
4 432 1322

Table 7.10: Characteristics of grids used for the muffler problem.

Test Case Grid p Bnd. Treatment
1L 1 5 Linear
1Q 1 5 Quadratic
2L 2 5 Linear
3L 3 5 Linear
4L 4 4 Linear

Table 7.11: Computation parameters used for the muffler problem.
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The pressure is measured at two points P1 and P2 in the inlet duct and two
points P3 and P4 in the outlet duct until time t = 7.35·10−2s, when most of the
acoustic energy introduced by the initial pulse has been propagated out of the
system. After translation into the frequency domain by means of Fast Fourier
Transforms, these values are used to calculate the amplitude of right-traveling
(p+) and left-traveling (p−) waves in the inlet and outlet ducts, assuming 1D
propagation (below the cut-off frequency of about 5800 Hz):

[
p+

Inlet

p−

Inlet

]
=
[

e−ıkz1 eıkz1

e−ıkz2 eıkz2

]−1

·

[
p1

p2

]

[
p+

Outlet

p−

Outlet

]
=
[

e−ıkz3 eıkz3

e−ıkz4 eıkz4

]−1

·

[
p3

p4

]

The transmission loss of the muffler is then computed as:

TL = 20 · log
(

p+
Inlet

p+
Outlet

)

Fig. 7.14 shows the effect of grid refinement on the computed transmission loss.
At lower frequencies, the propagation through the chamber is longitudinal, so
that it is not much affected by the discretization of the geometry. Resonances at
680 Hz, 1360 Hz, 2040 Hz and 2720 Hz, corresponding to longitudinal modes,
are captured by all grids. The geometry discretization strongly affects the
simulation of transversal modes that appear above 1500 Hz, and only the finer
grids yield accurate results over the whole frequency range considered.
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Figure 7.14: Transmission loss for the muffler problem: effect of grid refinement.

The improvement in accuracy obtained by the use of the quadratic treatment
on the coarsest grid (case 1Q) is shown in Fig 7.15. The accuracy is comparable
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to the one of the linear treatment applied to the finest grid (case 4L), whereas
its computational cost is much lower, as shown in Table 7.12. In particular,
the CPU time for case 1Q is about 4.4 time lower than for case 4L. As in the
high-lift airfoil problem presented in Sec. 7.3.2, the time step of all simulations
is constrained by the geometry of the inlet and outlet ducts, where the smallest
elements are located. The absence of such geometrical restrictions would make
the combination of curved boundary treatments and coarse grids even more
advantageous over grid refinement in terms of computation time.
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Figure 7.15: Transmission loss for the muffler problem: comparison between
linear and quadratic boundary treatment.

Test Case Time Step CPU Time Memory
1L 0.0012 41 min 8.5 MB
1Q 0.0012 42 min 21.0 MB
2L 0.0012 1 h 10 min 10.7 MB
3L 0.0011 2 h 48 min 17.3 MB
4L 0.0010 3 h 06 min 18.7 MB

Table 7.12: Time step and approximate computational cost for each
computation of the muffler problem.

7.4 Conclusion

In this chapter, wall boundary treatments based on a second-order represen-
tation of the geometry have been introduced and studied. The simulation of
various 2D and 3D problems of acoustic propagation has demonstrated that
the accuracy at high order can be limited by the linear treatment of curved
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geometries. The results of 2D cases show that the mixed treatment consisting in
prescribing wall boundary conditions with normals to the quadratic geometry,
while integrating over elements with straight edges, is of limited interest for
aeroacoustic applications. The full quadratic treatment, involving curved
elements, proves successful in increasing the accuracy with little additional
computation cost for all test cases considered in this work.

The use of meshes featuring curved elements in the vicinity of curved wall
boundaries makes it possible to employ a uniform grid density over the whole
computational domain, without excessive refinement near the geometry, and is
thus necessary to fully benefit from the efficiency of high-order DG methods.
However, few methods for curved mesh generation are available today, and
they still have to undergo development to reach satisfying standards in terms
of robustness and grid quality.





Chapter 8

Acoustic Characterization of

Orifices Under Grazing Flow

This chapter deals with the prediction of the acoustic behaviour of orifices under
grazing flow by numerical means. The RKDG method described in Chap. 6
is used to solve the LNSE, as part of a hybrid approach where the steady,
incompressible mean flow is previously obtained from a RANS simulation. A
methodology involving a virtual impedance tube and two computations for
each case (one with mean flow and one without) make it possible to isolate
the contribution of the mean flow to the orifice impedance. The method is
verified against theoretical models and experimental data from the literature,
and is used to study the influence of orifice geometry variations on the mean
flow contribution to the impedance.

8.1 Introduction

8.1.1 Context

Orifices in the wall of flow ducts, such as the one drawn in Fig. 8.1(a),
are a common feature of industrial products. They can be found in sound
attenuation devices such as mufflers for HVAC and automotive applications, or
lining treatments for jet engines in the aeronautical industry. The presence of

151
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perforations is sometimes dictated by other considerations than acoustic design,
as in film cooling techniques for combustion chambers.

From a theoretical point of view, the acoustic behaviour of an orifice in a
quiescent medium is relatively well understood. In the frequency range of
interest, the wave length of acoustic fluctuations is usually much greater than
the size of the opening, so that the waves can be considered as locally plane,
with uniform pressure and velocity fluctuations over either side of the opening.
It is then convenient to characterize the acoustic behaviour of the orifice
through the jump of impedance between both sides. The dominating effect
is a purely reactive response, that is induced by the inertia of the volume
of fluid in the orifice considered as an incompressible air piston. However,
the one-dimensional assumption is invalid in the vicinity of the opening: the
variation of velocity at each of the two section discontinuities represents a mass
insertion and an additional pressure drop. This can still be included in the
one-dimensional model by virtually increasing the height of the fluid slab, that
can be represented as a fictitious pipe emerging from the opening, as explained
in Fig. 8.1. This length correction accounts for the influence of the orifice
geometry. The one-dimensional model was first formalized by Rayleigh [120,
Chap. XVI] in terms of acoustic conductivity.

In most of the aforementioned applications, the orifices cannot be considered
to lie in a quiescent medium. The acoustic waves are fluctuations around a
non-uniform flow, that is either grazing (i.e. tangential to the orifice), bias (i.e.
flowing through the orifice), or a combination of both. It is a known fact that
this mean flow influences significantly the acoustic properties of the orifices. In
this chapter, the focus is on the case of orifices under grazing flow.

Such configurations have been the subject of many experimental investigations.
Some of the most recent studies can be found in Ref. [41, 52, 80, 82, 92, 101,
112, 136]. The experimental results vary in a large extent, mainly because
they address different orifice geometries and flow conditions [82]. Therefore,
the resulting empirical models of orifice impedance lack generality [41, 112],
particularly in the earlier works that did not consider the boundary layer
characteristics [82]. Only a general trend at low Strouhal numbers is shared by
all experimental studies: the grazing mean flow increases the orifice resistance
and decreases the orifice reactance compared to the no-flow case.

The physical phenomena lying behind the mean flow effects are still not clearly
understood [112], and can be interpreted in a number of ways [41]. Most of
the theoretical models that have been proposed involve some type of empirical
parameter [112], and agree only qualitatively with experimental data [41]. A
purely theoretical method has been derived by Howe [64, 65, 66], Howe et al. [67].
It is based on the linear perturbation of an infinitely thin vortex sheet spanning
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the aperture, which models the interaction between the acoustic fluctuations
and the unstable shear layer that conveys the vortices shed at the upstream
edge. This model has been adapted in Ref. [54] to handle different orifice
geometries, and in Ref. [75, 113] to take into account the finite thickness of
the shear layer. This theory predicts, at least qualitatively, the alternating
frequency ranges of sound absorption and sound generation for a number of
cases.

Numerical simulation can help understanding the underlying physical phe-
nomena, as it enables the direct visualization and measurement of the small-
scale flow features, while being significantly easier and cheaper to set up
than experimental studies. It is relatively widespread in the adjacent field
of cavity noise [129]. Resonators for lining applications have been investigated
through DNS [134, 135], and perforated plates for cooling purpose through
LES [43, 106]. The acoustic response of shear layers has been predicted
in systems like T-joints [102] and corrugations in ducts [108] by combining
incompressible flow simulations with vortex sound theory. A hybrid method
combining incompressible CFD computations with frequency-domain linearized
simulations has been applied to several configurations in ducts [81]. However,
no numerical study focusing on the case of an orifice in grazing flow has been
carried out, to our knowledge. The work described in this chapter aims at
showing that numerical methods, in particular the RKDG method developed
in Chap. 6, can be used to study the acoustic properties of orifices under grazing
flow.

8.1.2 Impedance and Related Quantities

The acoustic impedance of a medium on a surface of area S is expressed as:

Z =
p

Su

where p and u are the amplitude of the acoustic pressure and velocity
fluctuations respectively. The concept of impedance is particularly useful when
combined with the plane wave assumption, as in pipe systems operating below
their cut-off frequency. In this case, the impedance is used to characterize the
system as an acoustic filter [107, Chap. 1]. Small elements of the system, as
the orifice pictured in Fig. 8.1(a), can be modeled in a lumped manner by an
impedance jump ∆Z = Z+−Z−, even if they locally break the one-dimensional
assumption.

Rayleigh [120, Chap. XVI] studied the problem of an orifice of thickness H,
as drawn in Fig. 8.1. The assumption of incompressible acoustic flow, justified
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by the small size of the opening, allowed him to formulate the conductivity
KR using the velocity potential. Considering harmonic waves with a time
dependence in the form eıωt, the conductivity KR can be related to the
impedance jump as:

∆Z = −ıωρ0
1

KR

If the incompressibility assumption holds strictly, the value of KR is purely real
and:

KR =
S

l

where l = δ− + H + δ+ is the effective length that represents the physical
length H of the channel augmented with both end corrections δ− and δ+. In
the more general case of an element that is both resistive and reactive, the

(a)

(b)

Figure 8.1: Orifice in a plate of thickness H in free field. Actual orifice (a): the
plane-wave acoustic variables are not continuous across the opening at both
sides, (·)+

6= (·)+
out and (·)−

6= (·)−

out, because the acoustic flow is not one-
dimensional in the vicinity of the edges. Model of Rayleigh (b): a fictitious
pipe with corrected lengths δ+ and δ− accounts for the mass insertion and
additional pressure drop, in order to recover the continuity of plane-wave
acoustic variables, (·)+ = (·)+

out and (·)− = (·)−

out.
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lumped impedance jump ∆Z can be reformulated as:

∆Z = −
Z0

S
(r + ıkl) (8.1)

where r is a non-dimensional acoustic resistance, k = ω/c0 is the wavenumber,
and Z0 = ρ0c0 is the specific impedance of the medium.

For the orifice drawn in Fig. 8.1(a), the impedance at either side of the element
is defined as Z+ = p+

out/Su+
out and Z− = p−

out/Su−

out, because the plane-wave
amplitudes (pout, uout) are directly measurable and include the end corrections.

8.2 Method

In this work as in most of the studies in the literature, the focus is on orifices
in plates that are subject to a grazing mean flow only on one side. This work
is also restricted to two-dimensional geometries. Thus, the results should be
representative of slit orifices in the high aspect ratio limit. To our knowledge,
the most similar geometries that have been investigated in the literature are
those of Ref. [52] and, to a lesser extent, Ref. [82]. In this section, the
configuration that is most appropriate for the measurement of the impedance
is first determined. Then, the cases to be studied are precisely defined, and the
numerical methodology is described.

8.2.1 Impedance Measurement and Configuration

Considering an orifice through an infinite plate in free field, the most obvious
manner to determine the lumped impedance ∆Z from a simulation is to
measure the quantities (pout, uout) at either side of the orifice, and to directly
calculate the impedances Z+ and Z−. This is difficult or even impossible to
put in practice experimentally, but is easily achieved in a numerical approach.
However, it is not clear where the measure points shall be located. If they are
placed too close to the orifice, they fall in the region where the acoustic flow is
not one-dimensional, and the measured acoustic fluctuations do not represent
the plane-wave amplitudes (pout, uout). If they are placed too far from the
opening, the measured variables do not correspond to the impedance of the
orifice only. Moreover, the non-uniform mean flow in the vicinity of the orifice
creates vorticity perturbations, that are measured along with the acoustic
fluctuations. In the shear layer, the vorticity mode can even dominate. While
it is possible to extract the acoustic information from such measurements [37],
the splitting procedure is complex.
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Therefore, the orifice impedance is measured indirectly by means of an
impedance tube in this work, as in several experimental studies [41, 52, 82].
For this purpose, the side of the orifice that is not subject to grazing flow is
set at the end of a tube of width Ltu and length Htu, as shown in Fig. 8.2. A
Gaussian plane pulse is introduced in the tube through its open end (i.e. the
lower one), and the pressure is measured in two points P1 and P2 until all the
acoustic energy has been propagated away from the system or dissipated. Care
is taken to place P1 and P2 far enough from the orifice to avoid any mean flow
influence, so that only acoustic fluctuations are measured. After obtaining the
pressure fluctuations p1 and p2 in the frequency domain through Fast Fourier
Transforms, the amplitude of up-traveling (p+) and down-traveling (p−) waves
are calculated as:

[
p+

p−

]
=
[

e−ıky1 eıky1

e−ıky2 eıky2

]−1

·

[
p1

p2

]

The reflection coefficient at the orifice is then p−/p+, and the impedance at the
opening can be calculated as:

Z− =
Z0

Stu
·

p+ + p−

p+ − p−

(8.2)

where Stu is the area of the tube cross-section.

In order to isolate the effect of the mean flow on the acoustic properties of the
orifice, the lumped impedance jump ∆Z is split:

∆Z = ∆ZG + ∆ZF

where ∆ZG is the no-flow part depending only on the geometry of the orifice,
and ∆ZF is the contribution of the mean flow. Now, as the radiation impedance
is the same with or without mean flow, Z+ = Z+

G . Recalling Eq. (8.1), one can
write:

∆ZF = Z−

G − Z− = −
Z0

S
(rF + ıkδF )

where rF and δF are the contribution of the mean flow to the non-dimensional
resistance and the end correction respectively. This calculation thus requires
two simulations for each case: one without mean flow to obtain Z−

G , and one
with mean flow to obtain Z−. Using Eq. (8.2), rF and δF can be expressed
directly as:

rF =
S

Stu
ℜ

([
p+ + p−

p+ − p−

]
−

[
p+ + p−

p+ − p−

]

G

)

δF =
S

kStu
ℑ

([
p+ + p−

p+ − p−

]
−

[
p+ + p−

p+ − p−

]

G

)
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In 2D, the ratio of areas reduces to the ratio of dimensions S/Stu = L/Ltu.

Finally, the influence of the mean flow on the acoustic behaviour of the orifice
is characterized through the scaled non-dimensional quantities r̃F and δ̃F [52]:

r̃F =
rF

M∞

δ̃F =
δF

L

where M∞ = U∞/c0 is the free-stream Mach number, and U∞ is the free-stream
mean flow velocity. The use of r̃F and δ̃F is dictated by the fact that these
quantities depend only on the Strouhal number St = ωL/U∞ and on the shear
layer parameters, according to the theory of Howe et al. [67].

Figure 8.2: Schematic view of the computational domain for the orifice case.
Thick solid line: plate, orifice and tube wall boundaries. Dotted line: free-field
boundary for the mean flow simulation. Dashed line: free-field boundary for
the acoustic simulation. Dashed-dotted line: open end boundary of the tube.

8.2.2 Cases

In this work, various orifice and tube geometries are studied. In particular, we
consider several tube widths, orifice lengths and plate thicknesses. The effect
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of round edges, both upstream and downstream, is also assessed. The relevant
geometrical parameters are defined in Fig. 8.3.

The geometries investigated in this work are listed in Table 8.1, along with the
corresponding Reynolds number Re based on the inlet mean flow velocity and
the orifice length. In all cases, the kinematic viscosity is 1.461 · 10−5, and the
inlet mean flow velocity is set to 5 m/s. This relatively low velocity is intended
to avoid non-linear phenomena (see Sec. 8.2.3). The simulations are set up
in such way that the boundary layer thickness δ is approximately 24 mm at
the orifice, which enables a fair comparison with the experimental results of
Ref. [52], where δ lies between 10.9 mm and 38.4 mm.

Case H L Rup Rdown Ltu Re
1 1 7 0 0 14 2396
2 1 7 0 0 21 2396
3 1 7 0 0 28 2396
4 1 14 0 0 28 4791
5 1 21 0 0 28 7187
6 2 7 0 0 14 2396
7 4 7 0 0 14 2396
8 2 7 0.75 0 14 2396
9 2 7 1.5 0 14 2396
10 2 7 0 0.75 14 2396
11 2 7 0 1.5 14 2396

Table 8.1: Characteristics of the orifice cases simulated. All dimensions are
expressed in millimeters.

Figure 8.3: Orifice geometry.
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8.2.3 Numerical Methodology

Linearity and Hybrid Approach

In a quiescent medium, the acoustic propagation is linear up to relatively high
sound pressure levels. However, non-uniform flows can in general be subject
to non-linear mechanisms of sound generation or damping. The presence or
absence of non-linear phenomena is an important aspect in the choice of the
simulation methodology.

The mean flow effect on the acoustic behaviour of orifices in grazing flows
seems to be dominated by the shear layer instability [52]. The qualitative
success of the linear theory of Howe et al. [67] tends to show that this effect
is not non-linear in essence. The experimental study in Ref. [82] indicates
that non-linear phenomena are triggered at lower sound amplitude around the
instability frequency, but the acoustic response is still linear for low-amplitude
excitations. As pointed out in Ref. [64, 113], the non-linear mechanisms result
in the saturation of the shear layer oscillations, but do not significantly affect
the instability frequency. Finally, Kirkegaard [81] successfully simulated the
acoustic behaviour of similar configurations (orifice plates and area expansions
in ducts) with a methodology involving linear governing equations.

These considerations support the fact that simulations based on the LEE or
the LNSE are appropriate to study the acoustics of orifices under grazing
flow. Thus, a hybrid methodology is chosen, in which the mean flow is first
obtained from a steady, fully non-linear CFD simulation, and the linear acoustic
computation is then performed by means of the numerical method presented
in Chap. 6.

Computational Domain

The computational domain for both simulations is shown in Fig. 8.2. The free-
field region, located on the upper side of the plate, is defined by a rectangular
boundary in the mean flow simulation and by a semi-circular boundary in the
acoustic simulation. It extends from 1.5 m upstream to 1.5 m downstream of
the orifice. This large size, compared to a typical orifice length of L = 10 mm,
is due to the necessity of attenuating the acoustic waves before they reach
the boundaries in the acoustic simulation, in order to reduce the amplitude of
spurious reflections.

On the lower side of the plate, only the impedance tube is included in the
simulations. Thus, the impedance tube method has the advantage of reducing
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the size of the computational domain compared to the determination of Z− by
direct measurement of p and u in free-field, so that the computational cost is
lower. The length of the impedance tube is Htu = 200 mm.

Mean Flow Simulation

The mean flow is obtained from a steady RANS simulation by means of the
CFD software OpenFOAM [1]. The SST k-ω turbulence model, that is solved
all the way down to the wall without any specific wall modeling, is used.

The steady, incompressible flow is solved through the SIMPLE algorithm. The
spatial discretization method is a standard FVM in which the convective terms
are treated with upwind fluxes, while the diffusive terms are treated with central
fluxes.

The upper side of the plate, the orifice and the tube walls that are represented
by a no-slip boundary condition. The upper and downstream sides of the free-
field region, as well as the tube lower end, are pressure outlets. The upstream
side of the free-field region is a velocity inlet, that can be set to any velocity
profile. In the present simulations however, the inlet velocity is set to a uniform
profile, because the domain is just large enough for the boundary layer to grow
and reach the desired thickness (about 24 mm) at the orifice. We use hybrid
grids that are structured in the boundary layer and shear layer region, as well as
in the orifice, while they are unstructured in the rest of the domain. An example
of a grid in the region of the orifice is shown in Fig. 8.4. They contain between
27000 and 53000 cells, depending on the geometry of the orifice, and are built
so that the non-dimensional wall distance y+ of the first cell is everywhere of
the order of 1 or lower, in accordance with the requirements of the turbulence
model.

The mean flow velocity and pressure around the orifice of Case 1 are plotted
in Fig. 8.5. It can be seen that the flow over the orifice is mainly grazing,
with a faint stagnation point on the downstream edge and little velocity in the
opening. The weak character of the recirculation in the tube suggests that the
mean flow effect on the acoustic behaviour should mainly depend on the shear
layer over the orifice, and that the tube geometry should have little influence,
as expected. The boundary layer parameters, listed in Table 8.2, are verified
to be nearly identical for all cases.
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Case U∞ δ δ∗ θ H
1 5.047 24.21 4.847 3.205 1.512
2 5.047 24.25 4.845 3.203 1.512
3 5.047 24.32 4.836 3.199 1.511
4 5.047 24.30 4.759 3.160 1.506
5 5.049 24.35 4.705 3.135 1.501
6 5.047 24.19 4.852 3.207 1.513
7 5.047 24.21 4.825 3.195 1.510
8 5.047 24.91 4.688 3.144 1.491
9 5.047 24.86 4.658 3.135 1.486
10 5.047 24.91 4.688 3.144 1.491
11 5.048 24.98 4.727 3.157 1.497

Table 8.2: Boundary layer characteristics at a distance L upstream from
the orifice: free-stream velocity U∞, thickness δ, displacement thickness δ∗,
momentum thickness θ and shape factor H. All dimensions are expressed in
millimeters, and the free-stream velocity U∞ is expressed in meters per second.

X

Y

Z

Figure 8.4: Detail of the CFD mesh in the region of the orifice.
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Acoustic Simulation

The acoustic simulation is performed through the numerical method described
in Chap. 6. The LNSE are chosen as governing equations. Indeed, preliminary
simulations with the LEE result in a very slow damping or even a growth of
the shear layer oscillations, depending on the grid. Thus, the damping of the
instability with the LEE is only due to numerical dissipation, and not to mean
flow effects. This indicates that dissipative effects play a significant role in
the evolution of the shear layer instability, so that the viscous terms must be
included in the model to correctly predict the orifice impedance.

The wall on the plate upper side, in the orifice and in the tube are modeled
with the slip boundary condition described extensively in Chap. 7. The free-
field boundary and the open end of the impedance tube are subject to non-
reflecting boundary conditions. Unstructured grids refined in the orifice and
in the shear layer are used in order to correctly resolve the vortices. On the
contrary, the strong grid stretching in the free-field region provides additional
numerical dissipation that compensates for the limited performance of the
non-reflecting boundary conditions by progressively damping the acoustic (and
possibly vortical) disturbances before they reach the boundary. The grids are
composed of 680 to 1150 elements, depending on the geometry of the orifice.
An example of a grid in the region of the orifice is shown in Fig. 8.6. The
order of the polynomial approximation is set to p = 4. A suitable high-order
representation of the mean flow is obtained from the CFD results by using the
least-square procedure presented in Sec. 6.2.3.

(a) (b)

Figure 8.5: Detail of the mean flow around the orifice for Case 1: velocity
magnitude (a) and pressure (b).
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8.3 Results

In this section, the results obtained for the cases described in Sec. 8.2.2 are
reported, focusing on the effect of the mean flow on the orifice impedance.
The outcome of the acoustic simulations is mainly presented in terms of scaled
non-dimensional resistance r̃F and end correction δ̃F , in order to allow a fair
comparison with theoretical and experimental data from the literature, as well
as between cases with different geometries.

8.3.1 Verification

In order to ensure that the method described in Sec. 8.2 yields realistic results,
the impedance calculated from the simulations is compared to theoretical
and experimental data from the literature. The coherence of the impedance
measurement method is also assessed by varying the tube geometry.

Comparison with Experiments

In order to better assess the correctness of the present simulations, the
numerical results are first compared to the experimental data of Golliard [52].
The two orifice geometries of Cases 1 and 5, with straight edges and plate
thickness H = 1 mm, correspond exactly to those investigated experimentally.
However, the boundary layer characteristics are not identical. The comparison
in terms of scaled non-dimensional resistance r̃F and end correction δ̃F is shown

X

Y

Z

Figure 8.6: Detail of the acoustic mesh in the region of the orifice.
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in Fig. 8.7 and 8.8, for orifices of lengths L = 7 mm and L = 14 mm respectively.
Experimental results are plotted for four different boundary layers, of which the
parameters are listed in Table 8.3. The qualitative behaviour of the numerical
and experimental curves is the same, even if the higher-frequency peak of r̃F

and δ̃F in the L = 14 mm case is not well predicted by the simulations. Bearing
in mind that the experimental data shown in Fig. 8.7 and 8.7 represent averages
of several runs, and that the results between runs vary in amplitude [52], the
agreement with the numerical predictions can be considered as satisfying.

Name U∞ δ θ H
B 39.9 10.9 1.1 1.28
C 39.4 16.3 1.9 1.38
E 38.4 32.0 4.0 1.38
F 39.8 38.4 4.0 1.38

Table 8.3: Experimental boundary layer characteristics, measured 28 cm
upstream from the orifice [52]: free-stream velocity U∞, thickness δ, momentum
thickness θ and shape factor H. All dimensions are expressed in millimeters,
and the free-stream velocity U∞ is expressed in meters per second.
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Figure 8.7: Scaled non-dimensional resistance r̃F and end correction δ̃F for
an orifice of length L = 7 mm: comparison between the simulation and
experimental results [52].

Comparison with Theory

In a second step, the impedance results are compared with the theory of Howe
et al. [67]. For a rectangular orifice subject to grazing flows of velocity U+ and
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U− on the upper and lower side respectively, the Rayleigh conductivity can be
expressed as:

KR =
πb

2 [F (σ1, σ2) + Ψ]
(8.3)

where b is the spanwise dimension of the orifice, and:

σ1 =
ωL

2
1 + ı

U+ + ıU−

σ2 =
ωL

2
1 − ı

U+ − ıU−

F =
−σ1J0 (σ2) [J0 (σ1) − 2W (σ1)] + σ2J0 (σ1) [J0 (σ2) − 2W (σ2)]
σ1W (σ2) [J0 (σ1) − 2W (σ1)] − σ2W (σ1) [J0 (σ2) − 2W (σ2)]

with W (x) = ıx [J0 (x) − ıJ1 (x)], J0 and J1 being Bessel functions. In this
case, the velocities are set U+ = U∞, U− = 0, and the function Ψ accounting
for the acoustic environment of the orifice is [52]:

Ψ =
1
2

(
−γE + ln

16
π

+ ln
Ltu

L
+ ln

1
kL

)

where γE is Euler’s constant. As a 2D problem is considered, the resistance
r and the end correction δ are calculated from the conductivity per unit span
KR/b. Note that the function Ψ only accounts for the reactance of the orifice
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Figure 8.8: Scaled non-dimensional resistance r̃F and end correction δ̃F for
an orifice of length L = 14 mm: comparison between the simulation and
experimental results [52].
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and its environment, and does not include the resistive part. Neglecting the
acoustic boundary layers in the orifice, the geometry-related resistance is only
caused by radiation. In a 2D space, the impedance of an acoustically compact
(kL ≪ 1) plane radiator in a baffle wall can be calculated as [105, Chap. F.20]:

Zrad =
Z0

S

kL

2

The numerical, experimental and theoretical results are compared for Cases 1
and 4, for which the plate thickness is H = 1 mm and the edges are straight.
The numerical and theoretical impedances Z− measured without mean flow are
plotted in Fig. 8.9 in terms of scaled non-dimensional resistance and effective
length. The numerical and theoretical predictions are in good agreement. In the
high frequency range, the computed non-dimensional resistance ℜ (Z−) S/Z0 for
the longer orifice deviates slightly from theory, which can be explained by the
breakdown of the acoustic compactness assumption: at f = 3000 Hz, kL = 0.39.
The numerical impedance curves for both cases feature weak oscillations in the
low frequency range, which may be due to the limited performance of the non-
reflecting boundary conditions in the far field.

The numerical, experimental (with boundary layer E [52]), and theoretical
results for the cases with mean flow are shown in Fig. 8.10 and 8.11. The
theory of Howe et al. [67] predicts that the scaled non-dimensional resistance
r̃F and end correction δ̃F should be independent of the orifice geometry. This
is not the case in the present simulations, nor in the experiments. The
qualitative behaviour of the numerical and experimental results is similar,
whereas have the theoretical results differ fundamentally. This is due to the
crude approximations on which the theory relies (infinitely thin vortex sheet,
zero plate thickness).

Impedance Measurement Method

Finally, the reliability of the impedance measurement method is verified by
performing simulations with different tube widths, while the orifice geometry
is fixed (straight edges with L = 7 mm and H = 1 mm). The results of Cases
1, 2 and 3 are plotted in Fig. 8.12. The three tube widths yield very similar
impedance curves, except in the very low Strouhal number range. However,
they exhibit the expected behaviour in the low frequency limit, with a positive
scaled resistance r̃F corresponding to an increased absorption of sound, and a
negative scaled end correction δ̃F that can be interpreted as the added mass
of the end correction being “blown away” [52].
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Figure 8.9: Scaled non-dimensional resistance ℜ (Z−) S/Z0 and effective length
ℑ (Z−) S/kZ0 without flow for orifices of lengths L = 7 mm and L = 14 mm:
comparison between the simulation and the theory [52, 67, 105].
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8.3.2 Geometry Variations

After having verified the numerical methodology, the interaction of the
geometry and the mean flow effects is investigated by examining the influence
of geometry variations on the scaled non-dimensional resistance r̃F and end
correction δ̃F .

Orifice Length

First, a variation in orifice length is considered. Fig. 8.13 shows the results
obtained with Cases 1, 4 and 5, corresponding to orifices of thickness H = 1 mm
with straight edges. As the orifice is enlarged, the number of oscillations
increase, reaching higher Strouhal numbers, and their amplitude grows. This
effect has also been observed in experimental studies [52, 82]. The Strouhal
number shift is due to the fact that the upper frequency limit for instabilities
of a shear layer depends only on its momentum thickness and exterior velocity.
The boundary layers being identical in all three cases, the shear layers are
unstable in the same frequency range that corresponds to higher Strouhal
numbers for longer orifices, as can be seen in Fig. 8.14. Longer orifices enable
lower-frequency oscillation modes of the vortex sheet in addition to those of
higher-frequency, which explains the increased number of oscillations.
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comparison between simulations with different orifice lengths L.
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Plate Thickness

Fig. 8.15 shows the results of Cases 1, 6 and 7, that correspond to orifices of
length L = 7 mm with straight edges and varying plate thickness H. Although
the effect of plate thickness on the frequency of the shear layer instability is
unclear, the amplitude of the oscillations in scaled non-dimensional resistance
r̃F and end correction δ̃F seem to slightly decrease with increasing thickness.
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Edge Rounding

Finally, the effect of edge rounding is evaluated by considering Cases 6, 8, 9 10
and 11, that correspond to orifices of length L = 7 mm and a plate thickness
of H = 2 mm. As can be seen in Fig. 8.16, the influence of edge rounding on
the amplitude of the oscillations is not obvious. However, the frequency of the
shear layer instability seems to be slightly decreased by rounding the upstream
edge. The r̃F and δ̃F curves are less affected by rounding the downstream edge.
This seems logical, as the vortices that result from the shear layer instability
are shed from the upstream edge.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  1  2  3  4  5

r~ F

St

Straight Edges
RUp = 0.75 mm

RUp = 1.5 mm
RDown = 0.75 mm

RDown = 1.5 mm

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  1  2  3  4  5

δ~
F

St

Straight Edges
RUp = 0.75 mm

RUp = 1.5 mm
RDown = 0.75 mm

RDown = 1.5 mm

Figure 8.16: Scaled non-dimensional resistance r̃F and end correction δ̃F :
comparison between simulations with different edges.

8.4 Conclusion

In this chapter, a numerical methodology for the prediction of the acoustic
properties of orifices under grazing flow has been presented. This hybrid
approach consists of two steps. First, the steady, incompressible mean flow
is simulated through a RANS solver. Then, the RKDG method described in
Chap. 6 is used to solve the LNSE. The orifice is characterized acoustically
by its impedance, expressed in terms of non-dimensional resistance and end
correction, which is indirectly measured by means of a virtual impedance tube.
The effect of the mean flow on the acoustic behaviour of the orifice is isolated
by subtracting the results of a simulation without mean flow from the results
of a simulation with mean flow for the same orifice geometry.
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The method compares well with the theory for no-flow cases, but a large
discrepancy is observed in presence of a mean flow, which is due to the
fundamental shortcomings of the theoretical model. The agreement with
experimental data, measured for the same orifice geometries but under different
boundary layers, is much better. The method has also been used to
study the interaction between the orifice geometry and the mean flow effect.
The consequence of increasing the orifice length correspond to experimental
observations from the literature. However, the influence of varying plate
thickness and rounded orifice edges on the mean flow effect seems to be limited.

The LNSE simulations have proved successful in predicting the behaviour of
the instable shear layer that dominates the mean flow effect on the orifice
impedance. However, these results are only representative of low amplitude
excitations, whereas the higher noise level encountered in realistic applications
may trigger nonlinear saturation phenomena. Moreover, these results have
been obtained for a relatively low free-stream velocity. As the viscous effects
seem to play an important role in the shear layer, the linear simulations may
overestimate strength of the instability for higher free-stream velocities, due
to the lack of turbulent dissipation. Nevertheless, these limitations may affect
only the amplitude of the oscillations in the part of the impedance related
to the mean-flow, so that the prediction of the instability frequencies should
remain accurate.
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Chapter 9

Conclusion

9.1 Summary and Achievements

In Chap. 1, we have explained the context of our research work, and justified
the choice of a RKDG numerical method to study linear aeroacoustic problems.
From a discussion on the shortcomings of the RKDG method, four research
goals have been defined.

9.1.1 Method Description

Before reporting the research work, Chap. 2 has allowed us to formalize the
RKDG method as a method of line associating the DG space discretization
with RK time integration schemes. For this purpose, we have focused on the
scalar advection equation, that is a simple model of the hyperbolic conservation
laws governing linear aeroacoustics. The DG spatial scheme has been derived
for triangular grids, considering two types of numerical fluxes, namely the Lax-
Friedrichs flux and the upwind flux. We have described efficient implementation
techniques that are based on nodal interpolation, and on a mapping of each
element in the computational domain onto a unique reference element. These
techniques enable a quadrature-free evaluation of the local mass, stiffness and
face matrices, in case of straight elements. Then, the theory of RK schemes
has been introduced for time integration. The second part of that chapter
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is dedicated to the presentation of a technique for the stability and accuracy
analysis of the numerical schemes. This technique, that exploits the periodicity
of structured grid composed of congruent elements, is an essential part of the
investigations related in Part II.

In Chap. 6, the equations that govern linear aeroacoustics problems have been
introduced. Two systems of equations have been derived by linearization of the
Navier-Stokes equations: the viscosity-free LEE, and the LNSE simplified by an
isentropy assumption. The modes of fluctuation of these equations, obtained by
characteristic decomposition, have been put in evidence. Then, the application
of the RKDG method to the LEE and the LNSE has been described, including
the basic discretization and two types of boundary conditions, namely the rigid
wall and non-reflecting boundary conditions. We have also explained how the
problems related to the interpolative nature of the spatial discretization can be
circumvented. We have shown that the implementation verifies the theoretical
grid convergence rate, and that the non-reflecting boundary conditions work
correctly. Finally, both the LEE and the LNSE have shown good agreement
with DNS data from the literature for a validation case involving a monopole
in a boundary layer.

9.1.2 RKDG Stability Restrictions

The first research goal defined in Chap. 1 deals with the general understanding
of the stability restrictions of RKDG methods, and the means to accurately
determine the maximum allowable time step in practical simulations using
unstructured grids. These issues have been addressed in Chap. 3 and 4.

In Chap. 3, the influence of the element shape on the CFL conditions has been
investigated with several variants of the RKDG methods, including various RK
schemes from the literature, and both types of numerical fluxes. First, the
superior time stepping capabilities of the upwind flux compared to the Lax-
Friedrichs flux have been confirmed. Then, we have identified two element
size measures that are suited to CFL conditions for triangular grids, and the
values of the corresponding maximum Courant number have been reported in
Appendix B. We have shown that the qualitative influence of the element shape
on the CFL condition is not strongly affected by the choice of the RK scheme,
and we have given a general view of the relative performance of RK schemes
in terms of maximum time step. Finally, two examples have confirmed these
results, although they have proved that the CFL conditions can be significantly
too restrictive compared to the global stability restrictions.

In Chap. 4, we have tried to go beyond the CFL conditions, that take into
account the element shape only through one size parameter. Two methods
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have been derived for the determination of the maximum time step with
unstructured grids composed of straight triangular elements. The first one is a
3-step procedure based on a various assumptions related to the most dissipative
mode of the discrete operator. It is only slightly superior to the CFL conditions,
so that its benefit is questionable, in view of its complexity. The second
method is based on the equivalence of the semi-discrete equations between
the computational space and the reference space. It works only for the upwind
flux, but can be considered as a superior alternative to the CFL conditions.
Also, the impact of the element curvature on the stability restrictions has been
investigated. It was found that the element curvature influences adversely the
maximum allowable time step through the conditioning of the semi-discrete
operator, but this effect could not be isolated and properly quantified.

Overall, the results obtained in these two chapters contribute to the compre-
hension of the stability restrictions on the time step of RKDG methods. The
values of the maximum Courant number provided in Appendix B for use with
the CFL conditions, as well as the advanced time step determination method
for the upwind flux, can help users to set time step values closer to optimal,
in order to reduce the computation time. Only the correct evaluation of the
maximum time step with curved elements remains out of reach.

9.1.3 Optimized RK Schemes

The second research goal defined in Chap. 1 is to improve the computational
efficiency of RKDG methods by deriving specially designed RK schemes. This
is the subject of Chap. 5, in which the computational efficiency has been
defined from the point of view of the user, as the computation time required to
solve a problem with a given accuracy using the optimal combination of mesh
and numerical method. This has allowed us to define objective measures of
the error and the computation cost, which have been used in optimization
procedures. Two main scenarios have been considered. In the first one,
the user has total control over the element size, and the optimization with
respect to both accuracy and stability of the scheme has resulted in a new
8-stage, fourth-order scheme called RKF84. The second scenario, in which
the schemes are forced to work in over-accurate conditions by an element size
constraint, has produced two new schemes. The 7-stage, third-order RKC73
scheme is most efficient, but has a limited applicability due to its inaccuracy.
The 8-stage, fourth-order RKC84 is slightly less efficient, but works for larger
element size restrictions. The performance of all three new schemes has been
thoroughly analyzed, compared to RK schemes from the literature, and verified
on theoretical and practical test cases.
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The new RKF84, RKC73 and RKC84 schemes contribute to the improvement
of the efficiency of RKDG methods by 16% to 27%, depending on the scenario.
Appendix C compiles the low-storage coefficients for these schemes, as well
as all the information required to use them optimally, so that the efficiency
improvements are immediately accessible to the research and engineering
community.

9.1.4 Curved Wall Treatments for Aeroacoustics

The third research goal defined in Chap. 1 is to introduce advanced treatments
for curved wall boundaries in aeroacoustic problems. Chap. 7 has clearly
shown that the accuracy at high order can be limited by the classical, linear
modeling of curved walls, through the results of various 2D and 3D cases of
acoustic propagation. In order to overcome this restriction, wall boundary
treatments based on a second-order representation of the geometry have been
presented. The results of 2D cases show that a mixed treatment, involving the
quadratic representation of the boundary for the slip velocity condition and
the linear representation for the discretization scheme, is of limited interest
for aeroacoustic applications. However, the full quadratic treatment, that is
based on curved elements, shows a significant accuracy improvement with little
computational overhead for all test cases.

The boundary treatments presented in Chap. 7 thus contribute to make the
efficiency of high-order DG simulations accessible, by enabling the use of
a uniform grid density without excessive refinement near curved geometry
features. However, they rely on the high-order capabilities of mesh generation
software, that is under development.

9.1.5 Application to a Linear Aeroacoustics Case

Finally, the fourth research goal defined in Chap. 1 deals with the application
of the RKDG method to a linear aeroacoustic problem of scientific interest. In
Chap. 7, the acoustic behaviour of orifices under grazing flow has been studied
by means of a hybrid methodology, in which the steady, incompressible mean
flow is first obtained from a RANS calculation, before solving the LNSE with
the RKDG method described in Chap. 6. The orifice impedance has been
measured through a virtual impedance tube, and the part due to the mean
flow has been isolated by subtracting the results of simulations without mean
flow to the results of simulations with mean flow. The mean flow contribution
to the orifice impedance has been compared with experimental data and with
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a theoretical model, before carrying out a short study of the impact of various
orifice geometries.

This work contributes to the knowledge of the acoustic behaviour of orifices un-
der grazing flow, by proposing the first numerical model of such configurations
that succeeds to reproduce the experimental observations, at least qualitatively.
Although some questions about the validity range of this model remain open, it
represents the most interesting alternative to experiments, as theoretical models
fail to provide satisfying results for these cases. Moreover, it demonstrates the
capabilities of the RKDG method in a challenging multi-scale problem, where
short vorticity fluctuations produced by the shear layer instability need to be
resolved, in addition to the longer acoustic waves.

9.2 Perspectives for Future Research

The research work presented in this thesis contributes to the improvement of the
computational efficiency of the RKDG method for linear aeroacoustic problems,
both by ameliorating the numerical method (new RK schemes, curved wall
boundary treatments) and by providing information that allows the user to fully
exploit the capabilities of the method (study of the CFL conditions). However,
there may still be significant potential for improvement. Also, the method
could be applied to a broader range of cases.

9.2.1 General Computation Strategy

In this thesis, we have assumed that the order p of the polynomial approxima-
tion is uniform over the whole computational domain. However, this may not
be the most interesting situation from the point of view of the computational
efficiency. Indeed, the accuracy requirement is often not uniform, which is
usually addressed by refining the grid, as in Chap. 8: this is the so-called h-
refinement approach. If the size of the largest elements is constrained, the
scheme is locally over-accurate, which is inefficient. However, non-uniform
accuracy can also be obtained by using approximations of different orders p in
different elements. This approach, called p-refinement, is probably less flexible
than the h-refinement, because in practice only a limited set of values of p are
implemented in RKDG codes, and because the interpolation at the boundary
shared by elements with different approximation orders has a non-negligible
computation cost. However, both approaches can be combined in hp-refinement
methods, that are a subject of intensive research in the field of DGM. This
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approach can also be used for the opposite problem, namely to obtain near-
uniform accuracy when the size of the smallest elements is constrained [27].

An adjacent topic is the question of the element type. The work described
in this thesis is restricted to simplical elements, i.e. triangles and tetrahedra.
A recent study [147] suggests that quadrilateral meshes yield a better
computational efficiency than triangular meshes. In Ref. [147], the lower
number of elements and edges in quadrilateral meshes, as well as the richer
polynomial basis, are credited for this superior efficiency. It can also be
noted that the ratio of the number of DoF’s representing the solution on the
edges of an element to the total number of DoF’s in the element is lower for
quadrilaterals than for triangles. These arguments extend to hexahedral meshes
against tetrahedral meshes in 3D. Therefore, it may be valuable to investigate
a hybrid RKDG method that would associate the usual simplical elements in
the vicinity of complex wall boundaries to large tensor elements in the far-field,
possibly in a non-conforming grid. To our knowledge, the RKDG method has
not been used in this manner, at least for aeroacoustic propagation.

At the implementation level, an obvious improvement to our realization of the
RKDG method for linear aeroacoustics is the parallelization: as mentioned in
Chap. 1, parallel RKDG implementations show very good performance, due
to the compact nature of the scheme. A related subject is that of Graphics
Processing Units (GPU’s), that deliver outstanding numerical performance.
The adaptation of RKDG algorithms to such kind of hardware, involving
parallelization and vectorization techniques, is becoming a popular research
topic.

Finally, the accuracy of our implementation could benefit from improvements
in the mitigation of the high-order interpolation issues mentioned in Chap. 6
(mean flow pre-processing and filtering). Such improvements would reduce the
resolution requirements in regions of highly non-uniform mean flow, and thus
reduce the computation cost.

9.2.2 Time Discretization

The stability restrictions, that severely limit the efficiency of RKDG methods,
have been thoroughly studied in Part. II. An original attempt at relaxing the
stability condition for structured meshes has recently been made [143], but
its extension to unstructured grids is not obvious. The only way to obtain
a significant improvement in the maximum time step is to deeply modify the
discretization technique. Implicit-Explicit (IMEX) time integration and local
time stepping are receiving increased attention and could make use of the
optimized RK schemes that have been derived in Chap. 5, but they are complex
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to implement. It may be worth exploring a space-time DG discretization,
because such method has the potential to bring the high-order and flexible
nature of DG to the time dimension.

9.2.3 Applications

Finally, our RKDG method for linear aeroacoustics could be used to study
a broader range of problems. In the aeroacoustic literature, cases potentially
subject to linear sound generation and scattering such as those of Chap. 8
are extensively documented, due to their practical importance. For instance,
the tendency of slits, corrugations or side branches in duct systems to whistle
under certain flow conditions is of strong industrial relevance. Applying the
hybrid approach described in Chap. 8 to these problems, that are rarely tackled
numerically, would be a methodological innovation that could bring valuable
knowledge.

Also, some aeroacoustic propagation problems have important industrial
implications. This is the case of the fan noise propagation in turbofan nacelles,
and its near-field radiation [7]. Such problem could be efficiently simulated
through an axisymmetric version of our RKDG method, including advanced
impedance boundary conditions [123] to predict the effect of inlet lining.
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Appendix A

Runge-Kutta Amplification

Factor Coefficients

A.1 Jameson and Standard RK Schemes

The Jameson schemes are s-stage RK schemes that are s-order accurate for
linear, homogeneous and autonomous systems, so that the coefficients γk of
their amplification factor R (z) are entirely determined by Eq. (2.18):

γk =
1
k!

, k = 1 . . . s

as explained in Sec. 2.1.2. The standard four-stage, fourth order RK scheme
belongs to this family.

A.2 Third-Order RK Schemes

The first four coefficients γk of third-order RK schemes are constrained by the
linear order conditions of Eq. (2.18):

γ0 = 1 γ1 = 1 γ2 =
1
2

γ3 =
1
6
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This is sufficient to determine all the coefficients of R (z) for the optimal (3,3)-
SSP scheme. The additional coefficients γk of other stage-exceeding-order RK
schemes used in this work are listed in Table A.1.

RKC73 (Chap. 5) Bernardini ORK37-3 [17]
γ4 · 10−2 3.6519899181265 4.07702666666667
γ5 · 10−3 5.10443948218378 8.24394333333333
γ6 · 10−4 4.14954258898683 10.6568888888889
γ7 · 10−5 1.49868460648008 23.0382698412698

Table A.1: Additional coefficients γk of the amplification factor R (z) for
optimized third-order RK schemes used in this work.

A.3 One-Step Fourth-Order RK Schemes

The first five coefficients γk of fourth-order RK schemes are constrained by the
linear order conditions of Eq. (2.18):

γ0 = 1 γ1 = 1 γ2 =
1
2

γ3 =
1
6

γ4 =
1
24

This is sufficient to determine all the coefficients of R (z) for the standard
four-stage, fourth-order scheme. The additional coefficients γk of optimized
one-step, fourth-order RK schemes used in this work are listed in Table A.2.

A.4 Two-Step Fourth-Order RK Schemes

The total amplification factor R (z) of a two-step RK scheme is the product
of the amplification factors of the two one-step schemes that are applied
successively. The amplification factors of both one-step RK schemes are subject
to the linear order conditions of Eq. (2.18), so that the first five coefficients of
R (z) are:

γ0 = 1 γ1 = 2 γ2 = 2 γ3 =
4
3

γ4 =
2
3

The additional coefficients γk of optimized two-step, fourth-order RK schemes
used in this work are listed in Table A.3.
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188 RUNGE-KUTTA AMPLIFICATION FACTOR COEFFICIENTS

Name Hu LDDRK46 [71] Hu LDDRK56 [71] HALE-RK67 [5]
γ5 · 10−1 2.662098 2.657206 2.6331853
γ6 · 10−2 8.85178944444444 8.80242344444444 8.45575444444444
γ7 · 10−2 2.48574388888889 2.46083788888889 2.24687238888889
γ8 · 10−3 5.86956944444444 5.78580611111111 4.97915111111111
γ9 · 10−3 1.15268333333333 1.13155666666667 0.91703375
γ10 · 10−4 1.1931875 1.62856432716667 1.376736989346
γ11 · 10−5 1.0323105495 1.72810749678
γ12 · 10−6 1.4464698912
γ13 · 10−7 1.1630304

Table A.3: Additional coefficients γk of the amplification factor R (z) for
optimized two-step, fourth-order RK schemes used in this work.
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B.2 Results for the Upwind Flux
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C.2 RKC73 Scheme
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C.3 RKC84 Scheme
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C.4 Element Size Constraint
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Figure C.1: Choice of the most efficient optimized RK scheme in function of
the element size constraint (k∆x)max, for order p from 1 to 10, with dissipation
error requirements of Emag = 1 (a), Emag = 0.1 (b), Emag = 0.01 (c), Emag =
0.001 (d) and Emag = 0.0001 (e). In the area above the dash-spaced line
(points 2), the constraint is not restrictive, so that the RKF84 scheme used
in optimal working conditions is the most efficient. Between the dashed line
(points ×) and dash-spaced line (points 2), the RKF84 scheme is still the most
efficient, because it allows for the largest Courant number per stage ν/s, even
though it is too accurate. Between the solid line (points +) and the dashed line
(points ×), the RKC84 scheme is the one yielding the largest ν/s while fulfilling
the accuracy requirement. Below the solid line (points +), the RKC73 scheme
is the most efficient.
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