KATHOLIEKE UNIVERSITEIT Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering
Department of Computer Science

Macodo: Architecture-Centric Support for
Dynamic Service Collaborations

Robrecht HAESEVOETS

Dissertation presented in partial
fulfilment of the requirements for
the degree of Doctor

in Engineering

February 2012

Macodo: Architecture-Centric Support for Dynamic

Service Collaborations

Robrecht HAESEVOETS

Jury:

Prof. dr. ir. Paul Sas, chair

Prof. dr. Tom Holvoet, promotor

Prof. dr. Danny Weyns, co-promotor
(Linnaeus University)

Prof. dr. ir. Wouter Joosen

Prof. dr. ir. Eric Steegmans

Prof. dr. ir. Frank Piessens

Prof. dr. Virginia Dignum
(Delft University of Technology)

February 2012

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor

in Engineering

© Katholieke Universiteit Leuven — Faculty of Engineering
Celestijnenlaan 200A, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from
the publisher.

D/2012/7515/15
ISBN 978-94-6018-476-5

Abstract

Flexible integration and collaboration of information systems, both within and
across company borders, has become essential to success in current business
environments. In the domain of supply chain management, for example, the
arrival of a new order can no longer be handled by a single system. Instead, it
requires complex collaborations, between multiple systems and services across
companies, that constantly have to be adapted to changing market needs. The
primary goal of information technology in such domains is to support flexible
integration and collaboration between these systems. Without proper integration
and collaboration, systems can easily become islands of information, resulting
in inefficient and inflexible solutions. Realizing collaborations and building the
supporting infrastructures, however, poses huge engineering challenges, from
architectural design to actual implementation. To address these challenges, current
state of practice relies on middleware, workflow management, service-oriented
architecture, and Web services.

In this thesis, we argue that several engineering challenges are insufficiently
addressed by current state of practice, such as modularization of collaborations,
managing complexity, and separation of concerns. This often leads to faults,
complex solutions with little reuse, and reduced productivity. Most of these
problems relate to the lack of proper collaboration abstractions and the missing
reification of these abstractions throughout the development process. To address a
number of these problems, we present Macodo, an approach that consists of three
complementary parts: (1) a set of abstractions for dynamic service collaborations,
(2) a set of architectural views that reify these abstractions at architectural level,
allowing to build and document service collaborations in terms of software elements,
and (3) a middleware infrastructure that supports the collaboration abstractions
at implementation level. Macodo focusses on service collaborations that take place
in a restricted collaboration environment, managed by a trusted party. To validate
the contributions of this thesis, we apply them in a supply chain management
case and evaluate them in a controlled experiment. Results show that the use of
Macodo, compared to state of practice, can provide an improvement in terms of
fault density, design complexity, level of reuse, and productivity.

Samenvatting

Flexibele integratie en samenwerking van informatiesystemen, zowel binnen als
tussen verschillende bedrijven, worden alsmaar belangrijker om succesvol te zijn
in allerlei sectoren. Een voorbeeld is het domein van supply chain management.
Elk bedrijf in een supply chain heeft een waaier aan systemen, vaak verspreid
over verschillende afdelingen en locaties. Een eenvoudige bestelling kan niet
langer afgehandeld worden door een geisoleerd systeem, maar vereist een complexe
samenwerking tussen allerlei systemen en services van verschillende bedrijven. Deze
samenwerkingen moeten bovendien voortdurend aangepast worden aan de steeds
evoluerende markt. Zo kunnen leveranciers en klanten van vandaag morgen reeds
veranderen. Zonder flexibele integratie en samenwerking worden systemen al snel
informatie-eilanden, wat leidt tot inefficiénte en niet-flexibele oplossingen. De
belangrijkste rol van informatietechnologie in dergelijke sectoren is dan ook het
ondersteunen van flexibele integratie en samenwerking tussen informatiesystemen.
Het realiseren van zulke samenwerkingen en het bouwen van de ondersteunende
infrastructuur stelt echter enorme uitdagingen op het vlak van ontwikkeling,
architecturaal ontwerp en implementatie. Om deze uitdagingen aan te pakken
berust men momenteel op middleware, workflow management, service-oriented
architecture en Web services.

In deze thesis stellen we dat verschillende problemen onvoldoende aangepakt worden
door de huidige oplossingen. Belangrijke probleemgebieden zijn de modularisatie
van samenwerkingen, het beheren van complexiteit en het scheiden van concerns.
Dit leidt vaak tot fouten, complexe oplossingen, weinig herbruik en in het algemeen
een lagere ontwikkelingsproductiviteit. De meeste van deze problemen zijn het
gevolg van het gebrek aan de juiste samenwerkingsabstracties en het gebrek aan
ondersteuning van deze abstracties doorheen het software-ontwikkelingsproces. Om
deze problemen aan te pakken, presenteert deze thesis Macodo. Macodo bestaat
uit drie complementaire contributies:

e Een conceptueel model voor dynamische samenwerkingen [207,
101, 103]. Dit model beschrijft een set van samenwerkingsabstracties
en definieert de ‘taal’ voor Macodo. Het model consolideert eerdere
onderzoeksresultaten en is gebaseerd op rol-gebaseerde modelleringstechnieken
uit verschillende domeinen. De abstracties laten toe om complexe

iv SAMENVATTING

samenwerkingen te modulariseren en om interacties, gedrag en het beheer
van samenwerkingen voor te stellen als aparte concerns [99, 102, 206].

e Een set van architecturale views voor het ontwerpen en documen-
teren van samenwerkingen in termen van software elementen [208].
De architecturale views bieden modelleringsconcepten aan die de samen-
werkingsabstracties voorstellen op architecturaal niveau. Dit laat toe om
samenwerkingen te ontwerpen en te documenteren, maar ook om te redeneren
over samenwerkingskwaliteiten in termen van software-elementen.

e Een proof of concept middleware infrastructuur die de samen-
werkingsabstracties ondersteunt als programmeerabstracties [208,
104, 100, 98]. Deze middleware infrastructuur biedt een concreet
platform aan om samenwerkingen, ontworpen in de architecturale views,
effectief te ontwikkelen en te implementeren. De middleware mapt
de samenwerkingsabstracties op bestaande Web service technologie en
ondersteunt ze als programmeerabstracties zonder de nood aan nieuwe
standaarden.

Om de contributies van deze thesis te valideren, passen we ze toe in een supply
chain management case en evalueren we het conceptueel model en de architecturale
views in een gecontroleerd experiment. Resultaten van het experiment tonen aan
dat het gebruik van Macodo, vergeleken met de huidige oplossingen, effectief kan
leiden tot minder fouten, minder complexe oplossingen, meer herbruik en een hogere
ontwikkelingsproductiviteit.

Dankwoord

Verschillende personen hebben een belangrijke rol gespeeld in het realiseren van dit
onderzoek. Eerst en vooral zijn er mijn promotoren Danny Weyns en Tom Holvoet.
Danny is altijd een drijvende, inspirerende en kritische kracht geweest achter dit
werk. Tom bood alle vertrouwen en vrijheid om aan interessant onderzoek te
doen, maar op de juiste momenten ook de nodige kritische reflectie. Zowel Tom als
Danny hebben er bovendien voor gezorgd dat dit onderzoek effectief kon gevalideerd
worden met studenten. Deze validatie vormt een belangrijk luik van dit onderzoek.
Ook juryleden Virginia Dignum, Wouter Joosen, Frank Piessens en Eric Steegmans
hebben verschillende suggesties gegeven die in de finale versie van deze tekst zijn
verwerkt. Daarnaast hebben de talloze discussies en samenwerkingen met collega’s
en ex-collega’s van AgentWise en DistriNet zeker hun impact gehad.

Tot slot, aan alle vrienden en familie, we hebben het misschien niet vaak over
onderzoek gehad, jullie hebben in elke geval voor de nodige afwisseling en steun
gezorgd.

Robrecht
Januari 2012

Contents

Abstract i

Contents vii

1 Introduction 1
1.1 Context e 2
1.1.1 Middleware and Enterprise Application Integration 3
1.1.2 Business Process and Workflow Management 4
1.1.3 Service-Oriented Architecture and Web Services 5
1.2 Scope of this Thesis 6
1.3 Problem Statement L L oo 7
1.3.1 Lack of Proper Decomposition Mechanisms 8
1.3.2 Focus on Functional Decomposition 9

1.3.3 Missing Reification of Collaboration Abstractions Through-
out the Development Cycle 10
1.3.4 Main Research Questions 11
1.4 Contributions 11
1.5 Overview of this thesis 12
2 Background 15
2.1 Imtroduction L 15

2.2 Role-Based Modeling 16

vii

viii

CONTENTS

2.3

24

2.5

2.6
2.7

2.2.1 History of Role-Based Modeling 16
2.2.2 Roles in Object-Oriented and Conceptual Modeling 17
2.2.3 Roles in Business Process Modeling 18
Roles and Organizations in Multi-Agent Systems 19
2.3.1 Organization-Oriented Modeling of Multi-Agent Systems . 19

2.3.2 Organization-Oriented Implementation of Multi-Agent Systems 23

Software Architecture 24
2.4.1 Component & Connector Views 25
2.4.2 Module Views. 26

2.4.3 From Abstract Concepts to Domain-Specific Building Blocks 26

Web Service Technologies and Standards 26
251 WebService oo 27
252 WSDL 27
253 SOAP . . . 28
254 WS-BPEL. 29
255 BPMN. 31
Virtual Organizations and Enterprises 32
Supply Chain Management 34
2.7.1 Background Lo 34
2.7.2 Running Example: A Supply Chain Management Case . . . 36

2.7.3 lustration of Problem Statements in the Supply Chain
Management Case 41

The Macodo Model: A Conceptual Model for Dynamic Collaborations 49

3.1
3.2

Introductiono o 49
Macodo Core Abstractions 51
3.2.1 Organization 51
3.2.2 Actor 54

3.23 Role e 54

CONTENTS ix

3.24 Conversation o 57
325 Behavior.o o 61

3.3 Additional Abstractions L. 64
33.1 RoleState. 64
3.3.2 Organization Dynamics 65
3.3.3 Capability 66

3.4 Conclusions 69
4 Macodo Architectural Views 71
4.1 Imtroduction 71
4.2 Organization Module View, 74
4.2.1 Elements, Relations and Their Properties 74
4.2.2 Constraints 78
4.2.3 What the Organization Module View Is For 78
424 Notation. L 79
4.2.5 Relation to Other Views 79
426 Examples o 81

4.3 Organization & Actor View 86
4.3.1 Element Types, Relation Types, and Properties 86
4.3.2 Constraintso 87
4.3.3 Documenting Dynamics and Runtime Adaptation 88
4.3.4 What the Organization & Actor View Is For 89
435 Notation.o 89
4.3.6 Relation to Other Views 91
4.3.7 Exampleso 91

4.4 Role & Conversation View 95
4.4.1 Elements, Relations, and Their Properties 95
4.4.2 Constraints o 98

4.4.3 Documenting Dynamics and Runtime Adaptation 99

x CONTENTS

4.4.4 What the Role & Conversation View Is For 101
4.45 Notation. L 101
4.4.6 Relation to Other Views 104
4.47 Examples 104
4.5 Using Macodo Views o 110
4.6 Conclusions L 111
Proof of Concept Middleware Infrastructure 113
5.1 Introduction 113
5.2 Implementing Organizations 115
5.2.1 Specifying Capabilities 116
5.2.2 Implementing Conversation Modules 117
5.2.3 Implementing Behavior Modules 118
5.2.4 Implementing Role Modules 120
5.2.5 Implementing Organization Modules 121
5.3 Deploying and Using Organizations 123
5.3.1 Registering Actors 123
5.3.2 Managing the Life-Cycle of Organization Connectors and
Role Components 124
5.3.3 Using Role Components 126
5.4 Proof of Concept Middleware Architecture 128
5.4.1 High-Level Component & Connector View 128
5.4.2 Prototype Implementation 130
5.5 Conclusions L 135
Evaluation: A Controlled Experiment 137
6.1 Introduction 137
6.2 Experiment Planningo oo 138
6.2.1 PilotStudyo 139

6.2.2 Subjects 139

CONTENTS xi
6.2.3 Experimental Materials 140
6.2.4 Hypotheses and Variables 142
6.2.5 Experiment Design 0L 146

6.3 Execution Lo 149
6.4 Analysis 150
6.4.1 Data Collection 150
6.4.2 Data Set Preparation 150
6.4.3 Selection of Statistical Tests 151
6.4.4 Fault Density oL 152
6.4.5 Design Complexity 153
6.4.6 Levelof Reuse 154
6.4.7 Productivity o 156
6.4.8 Debriefing Questionnaire 158

6.5 Discussion 158
6.5.1 Interpretation of Results 158
6.5.2 Threats to Validity 161
6.5.3 Inferences 164
6.5.4 Lessons Learned 164

6.6 Conclusions e 165
7 Related Work 167
7.1 Existing Organization Models and Infrastructures 167
7.1.1 Electronic Institutions 167
712 OperA 169
7.1.3 Moise 170
7.1.4 TeamCore oo e 171
715 ROPE 172
7.1.6 BRAIN 172

7.3 Decomposition and Modularization of Business Processes and
Workflows
7.3.1 First-Class Support for Sub-Processes and Sub-Workflows .
7.3.2 Aspect-Based Approaches
7.3.3 View-Based Approaches
7.3.4 Commitment-Based Approaches

7.4 Conclusions

Conclusions

8.1 Contributions

8.2 Future Worko

8.3 Closing Reflection

Macodo View Documentation Example

Al
A2

A3
A4

A5

Primary Presentation
Element Catalog o
A.2.1 Role Components.
A.2.2 Conversation Connectors
A.2.3 Behavior Components
A.2.4 Capabilities and Element Interfaces
A.2.5 Element Behavior
Context Diagram L
Variability Guide o oo
A.4.1 Possible Role States
A.4.2 Possible Conversation Connectors.

Rationale

Macodo View Documentation Example: Capabilities and Interfaces

B.1

Vmi Vendor Capability

B.1.1 Conversation Capabilities

CONTENTS

174

CONTENTS

B.1.2 Behavior Capabilities

B.2 CallOff-Caller Capability

B.2.1 Conversation Interface

B.2.2 Participant Interface L.

C Middleware Appendix
C.1 XML Schemas . .

C.2 Macodo Management Service

D Evaluation Appendix

D.1 Calculating Function Points

D.2 Notations Used in the Experiment

D.3 Measuring Changes

Bibliography

xiii

203
204
204
206

209
209
212

215
215
218
224

225

Chapter 1

Introduction

In today’s volatile business environments, flexible integration and collaboration
of information systems, both within and across company borders, is essential to
success. Take the domain of supply chain management. Each company in the
supply chain relies on a multitude of systems, ranging from ERP systems' to
procurement and transport tracking systems, often spread across departments
and locations. The arrival of a new order can no longer be handled by a single
system, but requires complex collaborations among multiple systems and services
across companies. Without the proper integration and collaboration, these systems
become islands of information, resulting in inefficiency, inflexibility, and poor
visibility in supply chains [182]. Furthermore, the dynamic and unpredictable
market is causing a constant change in the supply chain network. Today’s suppliers
and customers might change tomorrow. This requires collaborations to be easily
adapted to current market needs. The primary goal of information technology is
to support flexible integration and collaboration among these systems, both within
and across companies borders [182, 121].

Realizing collaborations that can easily be adapted and building the supporting
information systems poses huge engineering challenges, from architectural design
to actual implementation. To address these challenges, current state of practice
relies on middleware, workflow management, service-oriented architecture (SOA)
and Web services. Several challenges, however, are still insufficiently addressed.
Key problem areas are modularization of collaborations, managing complexity,
and separation of concerns. This can lead to faults, complex solutions with little
reuse, and reduced productivity. Most of these problems relate to the lack of
proper collaboration abstractions, and the missing support for these abstractions
throughout the development cycle (from architecture to actual implementation).
The need for abstractions has been recognized in general software engineering [11,
17, 51], business process modeling [50] and SOA [186, 122].

1ERP: Enterprise Resource Planning.

2 INTRODUCTION

In this thesis we present Macodo to address a number of these problems.
Macodo consists of three complementary parts: (1) a set of abstractions for dynamic
collaborations, (2) a set of architectural views, based on these abstractions, to build
and document collaborations in terms of software elements, and (3) a middleware
infrastructure that supports the collaboration abstractions at implementation
level. Macodo focusses on service collaborations that take place in a restricted
collaboration environment, managed by a trusted party. We apply the main
contributions in a supply chain management case and evaluate them in a controlled
experiment.

Overview. Section 1.1 starts by elaborating the challenges in engineering dynamic
collaborations and discusses the available solutions based on middleware, workflow
management, SOA and Web services. Next, Sect. 1.2 defines the scope of this
thesis. Within this scope, Sect. 1.3 formulates a set of concrete problem statements,
related to engineering collaborations, which are insufficiently addressed by current
solutions. Finally, Section 1.4 lists the contributions of this thesis, and Sect. 1.5
gives an overview of the following chapters.

1.1 Context

A collaboration can be defined as the process of entities working together to achieve
a set of goals. Collaborations are typically realized using a form of coordination,
which organizes entities to act in a coherent and structured way [150]. Coordination
relies on direct or indirect communication between the entities [143] and requires a
shared ‘language’. Engineering collaborations among distributed software entities
is a complex task and poses huge engineering challenges.

These challenges can be divided into business challenges, technological challenges
and design challenges. The main business challenges are establishing trust,
maintaining communities of possible collaboration partners, selecting partners,
and setting up collaboration agreements [8, 146]. Technology challenges range
from integrating and inter-operating distributed and heterogeneous information
systems and realizing coordination and mutual understanding among participating
systems [143], to the actual deployment and operation of required software in
each participant. Apart from these challenges, engineering dynamic collaborations
leads to another set of problems. How do we manage the design complexity?
How do we express the main decisions on how the system achieves the required
functions and realizes the required qualities? How do we communicate these
decisions to other stakeholders, such as developers, clients and maintainers, to
achieve mutual understanding? Without proper support, this leads to complex and
inflexible systems, in which it is hard to react to dynamics, both on short-term
(quickly adjusting collaborations) and mid-term (adapting software or re-engineering
collaborations).

CONTEXT 3

Collaborations can take place in several types of environments, differing in terms of
openness, stability, flexibility, and trustfulness [52]. The type of environment
is a major influence on the engineering efforts required to realize successful
collaborations. Open environments, such as the Internet, put no restrictions
on participants. This leads to high flexibility, but makes it hard to predict the
outcome of interactions or to establish any mutual trust. Closed environments (e.g.,
within one company) are able to provide stability and trust with smaller engineering
efforts, but do not allow external participants. To build realistic collaborations,
developers require semi-open or semi-closed environments?. Such environments,
which are gaining prominence [165, 47, 16, 164], take a more pragmatic approach.
The maintainer of the software, deployed in such an environment, puts restrictions
on the participants. This allows to achieve the necessary stability and trust [140],
while still allowing selected participants to join. In the supply chain domain, trusted
third-parties are providing such environments. Examples are 3PLs and 4PLs (third-
party and fourth-party logistics providers), or companies like SupplyOn?® and GXS*.
By acting as trusted integrators, these companies are able to realize controlled
collaborations among multiple supply chain partners [177], without the need of
complex peer-to-peer protocols.

The rest of this section discusses the most prominent solutions to engineer dynamic
collaborations. Middleware (Sect. 1.1.1) provides a conventional solution to address
the challenges of integrating and inter-operating distributed and heterogeneous
information systems. Enterprise Application Integration (EAI) (Sect. 1.1.1) extends
the capabilities of middleware to integrate heterogeneous applications at intra-
enterprise level. EAI is typically used in combination with workflow management
(WfM) and business process management (BPM). WfM and BPM (Sect. 1.1.2)
allow to express and realize the actual integration and collaboration logic. Service-
oriented architecture (SOA) and Web services (WS) (Sect. 1.1.3), two more
recent developments, address challenges related to integration and collaboration
in distributed, but also open, environments. Web services have revived the use of
BPM and WfM and can be seen as another extension to middleware and EAI to
go from intra-enterprise to inter-enterprise integration.

1.1.1 Middleware and Enterprise Application Integration

Middleware is commonly defined as the software layer that sits between the
operating system and the applications on each site of a distributed system [137].
In a broader sense, it can be seen as the set of software services that enables the
interoperation of distributed software components running on different machines
and operating systems. Middleware offers a set of programming abstractions to

2Semi-open environments allow the controlled joining of selected participants. In semi-closed
environments, new participants do not really join, but selected participants can get a trusted
representative in the collaboration.

3www.supplyon.com

4www.gxs.com

www.supplyon.com
www.gxs.com

4 INTRODUCTION

facilitate the development of complex distributed systems. Good abstractions
are key to successful software engineering [86, 210, 138]. Abstractions can hide
low level details of hardware, networks and distribution, and provide developers
access to functionality that they otherwise would have to implement from scratch.
But middleware is also infrastructure. For abstractions to be useful, they
need good supporting infrastructure, providing a comprehensive platform for
developing and running complex distributed systems [12]. The main types of
conventional middleware are remote-procedure calls (RPC), transaction processing
(TP) monitors, object request brokers (ORB) and message-oriented middleware
(MOM). When systems become too heterogeneous in nature and functionality
(e.g., different interfaces, data formats, and interaction protocols), conventional
middleware can lead to complex solutions that are hard to realize and maintain.

Enterprise application integration (EAI) can be seen as the next step in the evolution
of middleware [178]. While conventional middleware focusses on integrating
systems or sub-systems that are physically close, EAI extends these features
to integrate systems that are complete applications on their own [12]. EAI
addresses the two main concerns of intra-enterprise integration: (1) dealing with
heterogeneity, by providing a uniform view to the applications that integrate
the systems, and (2) defining, enacting, and managing the actual application
integration and composition logic. To deal with heterogeneity, EAI relies on the use
of message brokers and adapters. Message brokers, an extension of the conventional
MOM, allow to flexibly route information between system entities, creating a ‘hub
and spoke’ communication structure. Adapters map heterogeneous data formats,
interfaces, and protocols to a common model and format. A modern example
of such an infrastructure is the enterprise service bus (ESB) [161]. The actual
integration within EAT is realized using workflow management systems (W{MS),
where workflows describe the different execution steps of the integration process.

Web services can be seen as another extension to conventional middleware and EAI.
They provide the technology that allows companies to go from intra-enterprise
integration to inter-enterprise integration [12].

1.1.2 Business Process and Workflow Management

Business process management (BPM) and workflow management (WfM) are often
used to express and realize the actual integration or collaboration logic (e.g., in
EAI). BPM and WM have a long history and are closely related [202, 160]. BPM
is often seen as a process-oriented management discipline, in which WfM can be
used as a concrete flow management technology [109]. Others see WM as a subset
of BPM in terms of features [136].

The Workflow Management Coalition defines a workflow as “The automation of
a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set
of procedural rules” [1]. Others have defined a workflow as “a coherent set of

CONTEXT 5

activities carried out by a collaborating group to achieve a goal” [160]. The first
workflows consisted of policies and procedure manuals, describing how things were
done inside a company or organization. In the 90s, workflow management systems
(WIMS) emerged, providing active support for simple business processes. Once
created, however, the processes in these systems were hard to change. With the
introduction of business process management systems (BPMS), the process has
become a first-class object, which can be defined, enacted, managed, and easily
changed [160].

In the context of EAI, WIM has caused a shift of programming in the small, to
assembling or programming in the large, avoiding the hard-coding of business
processes into the application [202, 12]. More recently, Web service composition
has revived the use of WfM and BPM [12]. New composition languages, such as
WS-BPEL® [5], allow to orchestrate Web services using workflow concepts. Hill
et al. [110] and Ko et al. [136], however, make an explicit distinction between
processes in service-oriented architecture (SOA) and business processes. Ko et
al. [136] see BPM as a process-oriented management discipline aided by IT, while
SOA is an IT architectural paradigm. Hill et al. [110] say BPM “organizes people
for greater agility” while SOA “organizes technology for greater agility”.

1.1.3 Service-Oriented Architecture and Web Services

Service-oriented architecture (SOA) and Web services (WS) address several
challenges related to integration and collaboration in distributed, but also open,
environments. SOA offers a set of design principles and architectural patterns
to develop and integrate distributed systems. The main characteristics of SOA
are loose coupling, service abstraction, service autonomy, discoverability, but also
reuse and service composability [68, 161]. SOA typically implies the use of Web
services, the most prominent technology stack to realize SOA. The term Web
service is also used to define a piece of software that exposes some functionality (or
service) and makes it available through standard Web technologies [12]. The main
logical elements of SOA are service providers, service clients, and service registries.
Service providers register their Web service in service registries, where they can
be discovered by clients. Clients can then invoke the actual Web services using
XML-based messages via standard Internet protocols.

A key principle of SOA is service orchestration [68]. Service orchestration allows
to combine, or orchestrate, the functionality of multiple services. Orchestration is
typically described as a workflow, defining the order of service invocations, which
can be executed using an orchestration engine. The most prominent language for
orchestration is WS-BPEL [5]. The two main uses of orchestration are service
composition and application integration. Service composition uses orchestration to
encapsulate the functionality of multiple services into a new composite services,
hiding the details of the underlying services. Clients of composite services no

5WS-BPEL: Web Services Business Process Execution Language

6 INTRODUCTION

longer know whether the are using a ‘basic’ or composite service. The other use of
orchestration is to integrate applications, often in the context of EAI, but also for
inter-enterprise collaborations.

The use of orchestration typically leads to a layered or hierarchical service
architecture [68, 161]. Each layer represents a different level of service abstraction.
At the lowest levels, application services provide access to basic application logic
and functionalities. In the middle levels, business services compose application
and other business services into reusable blocks of business logic. At the highest
levels, process services orchestrate business services to realize the actual integration,
collaboration, and business processes of enterprise systems.

In the context of inter-enterprise integration, orchestration is often seen as a
private process, because it has to be executed in a central place, by a single party.
In such a setting, choreography can be used to describe a public coordination
or integration protocol between services of multiple enterprises. Choreography
defines the externally visible (public) behavior of a service, while an orchestration
defines the internal (private) behavior of a service. Choreographies are described
similarly to orchestrations using workflow-based languages, such as WS-CDL [128].
A choreography, however, is not executable, but has to be translated to local
(private) orchestrations.

There are two main perspectives on the real value of SOA and Web services [12].
One is to see Web services as a revolutionary technology that will change the
way we think about middleware, application integration, and how we use the
Internet. This would lead to dynamic interactions and seamless integration of IT
infrastructures in completely open communities of businesses. The more pragmatic
view is to see Web services as just another step in the evolution of middleware and
EAI In this view, Web services are no more than an additional layer on top of
existing middleware and EAI platforms, and provide a set of simple, lowest common
denominator interfaces for interactions across the Internet. This view is in line with
the use of trusted third-parties, providing a restricted collaboration environment,
by hosting the shared ‘middleware’ or executing a central orchestration. To this
day, Web services are still mostly used for conventional EAT and inter-enterprise
integrations in restricted settings [12]. The main reason for this, is that many
complexities of inter-enterprise integration in open environments, such as trust,
legal issues, mutual semantics, and complexities related to decentralization and
peer-to-peer interaction, are not solved by current Web services.

1.2 Scope of this Thesis

Engineering collaborations is a very broad domain. To realize any useful
contribution, it is important to take a proper scope. In this thesis, we focus
on service collaborations that can be defined as follows:

PROBLEM STATEMENT 7

The controlled interchange of information between a set of distributed
entities (e.g., Web services) and the controlled execution of related tasks
by these entities in order to achieve a set of goals.

In addition, the scope of this thesis is limited to collaborations that take place in a
restricted environment, characterized by the following properties:

o there is a central owner or maintainer (e.g., a trusted third-party), responsible
for managing the collaborations;

e participation is controlled, it can be considered a semi-open or semi-closed
collaboration environment;

e participants have a pre-established trust in the environment and its
maintainer;

¢ there is a common ontology or mutual understanding between the participants;
e participants communicate using standard Web service technology.
e collaboration dynamics are restricted to:

— creating new and terminating ongoing collaborations of predefined types
in a controlled way;

— dynamically adding and removing collaboration participants in a
consistent manner.

Examples of such restricted environments are intra-company collaborations, EAT
platforms, integration services provided by trusted 3rd-parties (e.g., 4PLs in the
supply chain domain), and inter-company collaborations between strategic partners.

1.3 Problem Statement

Although state of practice addresses several engineering challenges, some key
challenges remain unanswered. Research on middleware, BPM, and SOA has
mainly focussed on individual service interactions, isolated processes and low-level
infrastructure, neglecting the problems of how services collaborate [186, 122, 166].
This is partly caused by the focus of many approaches on decentralized or peer-
to-peer coordination protocols [12], and the functional decomposition perspective
taken by most service composition approaches.

When engineering dynamic collaborations, however, we are also confronted with
other (often less technical) problems. How do we manage the design complexity?
How do we express the main decisions on how the system achieves the required
functions and realizes the required qualities? How do we communicate these

8 INTRODUCTION

decisions to other stakeholders, such as developers, clients and maintainers, to
achieve mutual understanding?

Software architecture provides an answer to these questions. The architecture of a
software system defines its essential structures, which comprise software elements,
the externally visible properties of those elements and the relationships between
them [17], and with the environment [4]. Software architecture is a way to deal
with complexity and serves as a vehicle of communication with stakeholders for
mutual understanding and negotiation. Software architecture manifests the earliest
set of design decisions and provides the main structures to realize both the required
functionalities and quality attributes.

In this section we formulate a set of key problems in the domain of engineering
dynamic collaborations that should be addressed at conceptual, architectural, and
implementation level. We look at the lack of proper mechanisms to decompose and
modularize complex collaborations, the focus of current solutions on functional
decomposition, and the missing reification of collaboration abstractions throughout
the development cycle. Based on these problem statements, we can define the main
research questions of this thesis. The problem statements are further illustrated in
Section 2.7.3 using a supply chain management case.

1.3.1 Lack of Proper Decomposition Mechanisms

Current languages for business process modeling, service orchestration, and
service choreography, such as WS-CDLS® [128] and WS-BPEL’ [5], provide
limited decomposition mechanisms. In addition, there are currently no standard
mechanisms or high-level views, that allow to reason about collaboration
management on a higher level of abstraction or at architectural level [158, 147].
Several process modeling languages even lack support for standard interaction
patterns related to dynamics [202, 136].

Realizing collaborations, or even a single business process [48], however, involves
the integration of many concerns such as interaction functionality, participant
responsibilities, management, robustness, and variability. Due to the lack of
proper decomposition mechanisms, models, and abstractions, conventional methods
address most, if not all, of these concerns at implementation level [158, 147] and
often in a single model or process description [122, 194]. This results in monolithic
models and processes, for which development and maintenance complexity rapidly
increases, and productivity decreases as the number of involved systems and services
grows. Working with monolithic models also increases fault probability and limits
possible reuse.

Some approaches try to address this problem by externalizing part of the behavior
or management of processes, using business rule management systems [79, 176].

6WS-CDL: Web Services Choreography Description Language
"WS-BPEL: Web Services Business Process Execution Language

PROBLEM STATEMENT 9

While the process describes the main functionality, external business rules describe
variable business and management rules. Such approaches, however, lack proper
abstraction and result in a complex set of ‘if-then’ rules, which do not represent
the collaboration structure and are hard to represent at architectural level.

Key Problems

e The lack of proper decomposition mechanisms leads to monolithic processes
and models. This increases complexity and fault probability, and limits reuse
and productivity.

o A single model or process addresses multiple concerns (e.g., interaction
functionality, participant responsibilities, and management), affecting the
separation of concerns.

Key Challenges

Identify and describe concepts that:

e provide more natural units of decomposition for collaborations to promote
reuse and improve understandability;

« allow to separate different concerns, such as interactions, participant behavior
and responsibilities, and collaboration management.

1.3.2 Focus on Functional Decomposition

BPM promotes reuse through sub-processes (when supported®). SOA promotes
modularization by encapsulating orchestration and composition of services as a
reusable service (often called composite services). The use of sub-processes and
composite services, however, leads to a functional decomposition of processes and
services [68]. Such a functional decomposition does not preserve the underlying
collaboration structure and makes it hard to capture interactions and represent
the responsibilities of each participant. Interaction logic, participant behavior, and
management are easily scattered across multiple processes and services. Developers
cannot express or reason about collaborations in terms of relevant collaboration
concepts. This can lead to increased complexity and faults, while making reuse in

8Current standards for orchestration and choreography, such as WS-CDL [128] and WS-
BPEL [5], do not support the notion of sub-process. BPMN (Business Process Model and
Notation) [6], a graphical notation for orchestration and choreography, does support sub-processes,
but this is not reified by execution languages such as WS-BPEL.

10 INTRODUCTION

terms of collaborations harder. The use of composite services further aggravates
this problem by hiding the underlying services or participants®.

Key Problems

e Functional decomposition of collaborations does not preserve the underlying
collaboration structure, affecting the understandability of systems.

¢ Collaboration management is easily scattered across system components or
is not expressed in terms of underlying collaboration structures and relevant
collaboration concepts. This reduces the understandability and adaptability
of systems.

Key Challenges

e Support decompositions that preserve the underlying collaboration structures
and that allow to explicitly represent participants, behavior, and interactions
as separate concepts.

1.3.3 Miissing Reification of Collaboration Abstractions Through-
out the Development Cycle

Several domains do provide useful abstractions to represent collaborations. Exam-
ples are role-based abstractions in conceptual and object-oriented modeling [190, 95],
agent organizations [73, 213, 114], and role-based techniques for BPM [48, 160, 26].
Conventional middleware and current Web service infrastructures, however, do
not reify these abstractions in software architecture, design, or implementation.
As a result the problems identified by the previous two problem statements are
not addressed throughout the development cycle. Furthermore, the introduction
of new abstractions into the technology stack often requires new standards and
languages. The current technology stack, however, is already getting confusing,
and contains an abundance of languages and models [199, 136].

Key Problems

e Lack of modeling and programming abstractions that reify relevant
collaboration concepts. This retains the problems of the first two problem
statements and limits developers and other stockholders in expressing and
reasoning about concerns and quality attributes of collaborations.

9 A related trend can be observed in process-oriented views for services [186], in which a service
is not only represented by its functional interface, but also exposes part of its internal process
structure.

CONTRIBUTIONS 11

Key Challenges

¢ Reify collaboration concepts at architectural level and implementation level.
e Represent and document collaborations in terms of software elements.

o Integrate programming abstractions in current technology stacks without the
need for new standards.

1.3.4 Main Research Questions

The three problem statements lead to the following research questions:

(1) What are good abstractions to support and promote modulariza-
tion of service collaborations, in order to reduce the number of faults,
better manage complexity, and improve reuse and productivity?

(2) How can these abstractions be reified and supported throughout
the development cycle (i.e., architecture, design, and implementation)?

1.4 Contributions

To address the research questions, this thesis provides three main contributions:

1. A conceptual model for dynamic collaborations [207, 101, 103]. The
conceptual model describes a set of collaboration abstractions that define
the vocabulary for Macodo. The model consolidates earlier research results
and is based on role-based modeling techniques from several domains. The
abstractions support a more natural decomposition and modularization of
collaborations that maintains the underlying collaboration structures. They
also allow to model interactions, individual responsibilities, behavior of
participants, and management of collaborations as separate concerns [99, 102,
206].

2. A set of architectural views to design and document collaborations
in terms of software elements [208]. The architectural views provide
architectural modeling abstractions that reify the collaboration abstractions of
the conceptual model at architectural level. They allow to design, document,
and reason about collaborations and their qualities in terms of software
elements.

3. A proof of concept middleware infrastructure supporting collabora-
tion abstractions as programming abstractions [208, 104, 100, 98].

12 INTRODUCTION

The proof of concept middleware infrastructure provides a concrete platform
to develop and implement collaborations that are designed in the architectural
views. The middleware maps collaboration abstractions to concrete Web
service technology (e.g., WSDL and WS-BPEL) and supports them as
programming abstractions without the need for new standards.

To validate these contributions, we apply them in a supply chain management case
and evaluate the Macodo conceptual model and architectural views in a controlled
experiment. Results of the experiment show that the use of Macodo, compared
to state of practice, can provide an improvement in terms of fault density, design
complexity, level of reuse, and productivity.

1.5 Overview of this thesis

We conclude this chapter with an overview of this thesis.

Chapter 2 gives a concise overview of the most important domains in which
the work of this thesis is situated: role-based modeling, software architecture,
Web service technology, and supply chain management. We give the necessary
background information to understand the following chapters, and illustrate the
problem statements in a supply chain management case.

Chapter 3 presents the Macodo model, a conceptual model for dynamic
collaborations. The model specifies a set of collaboration abstractions, independent
of design and implementation concerns. It defines the vocabulary for Macodo and
serves as a guide for developers and readers of this thesis. The model also provides
the foundation for the subsequent chapters.

Chapter 4 introduces the architectural views for Macodo. These views map
the collaboration abstractions of the conceptual model to architectural modeling
abstractions and allow to design and document collaborations in terms of software
elements.

Chapter 5 presents a proof of concept middleware infrastructure that maps the
software elements of the architectural views to Web service technology. The
middleware supports the collaboration abstractions at implementation level.

Chapter 6 evaluates two main contributions of this thesis, the conceptual model
and the architectural views, using a controlled experiment. In the experiment, we
compare Macodo with a reference approach in the context of designing systems
that support centrally managed collaborations among a set of Web services.

Chapter 7 positions the contributions of this thesis with respect to related work.
We focus on existing organization models and infrastructures, techniques to deal
with variation in processes and collaborations, and decomposition mechanisms for
business processes and collaborations.

OVERVIEW OF THIS THESIS 13

Chapter 8 draws conclusions, summarizes the main contributions, and discusses
possible opportunities for future work.

Chapter 2

Background

The work presented in this thesis is situated in several domains. This chapter
discusses the most important domains and gives a concise overview of background
information required to understand the following chapters.

2.1 Introduction

Four key domains form the basis for Macodo: role-based modeling, software
architecture, Web services, and supply chain management (Fig. 2.1).

Software Web Service
Architecture Technology
Role-Based Supply Chain
Mode“ng architectural middleware Management
views support
collaboration
abstractions casBidy

Macodo

Middleware Support for Dynamic
Collaborations

Figure 2.1: The four most important background domains of Macodo.

Role-based modeling provides the conceptual basis for the Macodo collaboration
abstractions on which the work of this thesis is founded. Software architecture

15

16 BACKGROUND

provides mechanisms, such as architectural views, to deal with complexity and
communicate with stakeholders. This thesis uses architectural views to describe and
document collaborations in terms of software elements. To implement architectures
described in these views, we use the Web service technology stack to create a proof
of concept middleware infrastructure. To illustrate the problem statements of
this thesis, and the different concepts throughout the following chapters, we use
a supply chain management case. Supply chain management is a domain where
collaborations play a primary role. This domain has been one of the key drivers
for research tracks such as virtual organizations.

Overview. Section 2.2 starts by discussing role-based modeling techniques in the
fields of business process modeling, and object-oriented and conceptual modeling.
Section 2.3 gives an overview of roles and organization in the domain of multi-
agent systems. Next, Sect. 2.4 discusses software architecture views, and Sect. 2.5
gives a concise overview of the most important Web service technologies. Finally,
Sect. 2.6 and Sect. 2.7 discuss the domains of virtual organizations and supply
chain management. Section 2.7 also introduces a running example, and illustrates
the problem statements of this thesis in the running example.

2.2 Role-Based Modeling

Roles and organizations have a rich history in social science [162], organization
theory [167, 35], and multi-agent systems [54, 85, 152, 61]. They are accepted
as valuable abstractions to structure and manage both human and artificial
societies [52], and to design interactions in multi-agent systems [124, 191, 85].
The concept of role is also recognized as an important modeling concept
in object-oriented and conceptual modeling [190, 95], and business process
modeling [48, 160, 26]. Even tough, the role concept has not received the attention
it deserves and there is no consensus on the definition of roles or how they should
be integrated in established modeling frameworks and mainstream programming
languages [190, 95, 26, 108].

We first give a brief historical overview of roles (Sect. 2.2.1), and then discuss
roles in conceptual and object-oriented modeling (Sect. 2.2.2), and business process
modeling (Sect. 2.2.3). Section 2.3 provides an overview of roles and organizations
in multi-agent systems.

2.2.1 History of Role-Based Modeling

Interest in roles started in the late 1920s when social scientists started to use roles
to study patterns of human behavior and social structure. Roles were used to
represent social positions and associated behavior. This idea was inspired by actors

ROLE-BASED MODELING 17

taking up a role in a play. In computer science, roles first made their entrance
in data models, when people observed that most conventional file records were
role-oriented [14]. For example, files typically dealt with employees, customers,
patients or students. The influence of roles on today’s data models, however, is
rather modest [190].

Later on, roles were further defined by making a distinction between ‘natural types’
and ‘role types’ [188]. Natural types relate to the essence of an entity, while a role
type depends on an accidental relationship to some other entity. In this context,
role types were often seen as subtypes of natural types, for example, the role types
employee and student are subtypes of the natural type person. This idea has
further developed into an ontological distinction between role types and natural
types [92]. To be considered a role, a concept has to be founded (to belong to a
role requires relationships to others) and has to lack semantic rigidity (entities
can enter and leave a role without losing their identity). A natural type is not
founded (to belong to a natural type does not require relationships to others) and
has semantic rigidity (entities cannot drop their natural type without losing their
identity). For example, an employee is a role, but person is a natural type. To be
an employee requires a relation to a company (founded) and persons can enter and
leave the role of employee without losing their identity (lacks semantic rigidity).
Some concepts are neither, to be a teenager, does not require a relation to others
(lacks foundation), and persons can stop being a teenager without losing their
identity (lacks semantic rigidity). Such concepts are typically states or phases of
an individual.

2.2.2 Roles in Object-Oriented and Conceptual Modeling

In object-oriented and conceptual modeling, roles are often seen as a natural
complement to objects and relations, but there is an ongoing discussion on how
to integrate roles into contemporary object-oriented and conceptual modeling
languages. Steimann [190] identifies three common ways to see roles. Each way has
its benefits and drawbacks. The first and most simple way, is to see roles as named
places in a relationship. For example, the unified modeling language (UML) [193]
uses roles to name association ends. Using roles in this way, shows that roles exist
in the context of a relationship.

A second way is to see roles as subtypes (e.g., of natural types). Although this is
often used, it leads to conceptual problems. For example, the roles customer and
supplier can be seen as subtypes of the natural type person. But they can also be
seen as subtypes of the natural type company. This means, that customers and
suppliers are a subset of the intersection of persons and companies, which is either
very small or empty. Similar problems are encountered when modeling roles as
super-types or generalizations (e.g., of natural types). Guizzardi [95], tries to avoid
this problem by introducing an ontological design pattern for role modeling, based
on generalization and specialization.

18 BACKGROUND

The third way is to see roles as independent types of which the instances represent
role specific state and behavior, but not identity. Roles are related to objects by
a played-by relation. Picking up a role creates a new instance of the role type.
Dropping a role destroys it. When playing a role, an object and the role become
indivisible from the outside. In RM-ODP [197], for example, a role identifies, in
a template for a composite object, a behavior to be associated with one of the
component objects. Despite being useful metaphor, it requires serious changes to
most conceptual modeling languages [95].

Although many researchers have argued the advantages of roles in programming
languages, the concept of role has not found its way into mainstream programming
languages [108]. Some languages do support roles, such as PowerJava [15],
ObjectTeams [108], and Perl 6. In these languages, roles allow objects to evolve
over time. Fach role is associated with an interface. Objects change their roles
depending on the context and can play multiple roles at a time.

2.2.3 Roles in Business Process Modeling

In business process modeling, most prominent approaches rely on a procedural
or data-oriented view of a process. Processes are described as activities and the
data flows between them. This leads to a functional decomposition, in which
activities carried out by individual systems or people are scattered throughout
the model. This makes it hard to abstract away from the details of the process,
or to capture the interactions between the systems or people who carry out the
activities [168, 26, 131]. Ould [160] calls for collaboration-centric BPM. The essence
of a process is a collaboration between a set of people or systems. In collaboration-
centric BPM, collaboration is a primitive to model processes. A BPM system would
support roles and mediate their interactions and make the intended collaboration
happen.

Several researchers have proposed role-based BPM techniques [48, 160, 26]. Two
prominent examples are Role Interaction Nets [183] (RIN) and Role Activity
Diagrams (RAD) [113, 159]. Both languages have a formal underpinning (such
as Petri nets [163]) and are based on organizational role theory. Key concepts
in RIN and RAD are roles and interactions. In RIN, a ‘role interaction network’
is composed of a set of roles. The behavior of each role is described as a set of
interactions with itself (solitary actions) and with other roles. In RAD, a process
is a coherent set of activities, carried out by a collaborating set of roles to achieve
a goal (i.e., a set of desired states). A role type defines a responsibility within a
process. It is described as a set of actions (or activities) and interactions with other
roles. A role instance is an instance of a role type that operates independently and
concurrently. Role instances can be associated with an actor, that carries out the
role, but role instances can also exist without an actor. In RAD, role instances
can create other role instances, but this does not say anything about the actors

Thttp://dev.perl.org/perl6/

http://dev.perl.org/perl6/

ROLES AND ORGANIZATIONS IN MULTI-AGENT SYSTEMS 19

playing the instance, instantiating a role only creates the responsibility within a
process. Interactions allow role instances to coordinate their activities, by aligning
the states of the interacting activities. Riva [160] presents a BPM method based
on RAD. The overall process design consists of case processes (handling units of
work), case management processes (managing case processes) and case strategy
processes (changing case processes and case management process in the long-term).
Each type of process is described using RAD concepts.

In current mainstream business process modeling, roles only play a minor part. In
WS-BPEL [5] roles are only used to distinguish the interfaces (called portTypes)
defined in the partnerLinkTypes. In BPMN [6], a ‘PartnerRole’ can be used to
represent a participant and its multiplicity in a collaboration (i.e., a message
exchange between two or more processes) like roles in UML interaction diagrams.
Lanes (or swim-lanes) can also be used to represent roles, but BPMN does not define
their semantics, so they can be used at the designers will [6]. In WS-CDL [128],
role types define the observable behavior of a party within a collaboration. Each
behavior is defined as an interface. The choreography specifies the actual interaction.
In most of these approaches roles are only used to name the endpoint of binary
relationships and to identify participants in an interaction.

2.3 Roles and Organizations in Multi-Agent Systems

Organizations and roles have also been extensively studied and used in the domain
of multi-agent systems [73, 213, 114, 61]. A multi-agent system (MAS) is a system
composed of multiple interacting computing elements, known as agents. These
agents have two important capabilities: (1) they are capable of autonomous action
(to some extent); and (2) they can interact with other agents [212].

Organizations and roles are used to design and engineer MAS, to constrain and
control behavior in agent societies, and to study and analyze properties of MAS.
In its most general form, an organization can be seen as a cooperation pattern,
or a process, that constraints the actions and interaction of agents towards some
purpose [36]. In a more specific form, an organization can also refer to a collective
entity with an explicit identity [180].

The rest of this section discusses how organizations can be used to both model
MAS (Sect. 2.3.1) and implement MAS (Sect. 2.3.2). The chapter on related work
(Sect. 7.1) gives a more elaborate discussion of existing organization approaches
for MAS.

2.3.1 Organization-Oriented Modeling of Multi-Agent Systems

Within MAS, a distinction can be made between agent-oriented MAS, or agent-
centered MAS (ACMAS), and organization-oriented MAS, or organization-centered

20 BACKGROUND

MAS (OCMAS) [74, 21, 62].

An agent-oriented MAS is designed in terms of agents and their mental states,
taking an individual perspective on the system. This is how many traditional
multi-agent systems are designed, which is reflected in classic agent development
frameworks such as JADE [20] and FIPA-OS [169]. An example is an ant colony [66],
where the ‘organization’ only exists as an observable emergent phenomenon. Inside
the ants, there is no notion of organization.

Purely relying on the agent’s internal architecture, however, is often insufficient
to deal with more complex interactions in a MAS [74]. To address this problem,
several agent methodologies started to take an organization-oriented perspective to
design MAS [213, 73, 215, 129]. Organization-oriented MAS are explicitly designed
in terms of organizations and roles.

Generic Meta-Models and Methodologies

Prominent agent methodologies have adopted organizations [213, 215, 54] and
several researchers have proposed generic meta-models to model MAS using
organizations.

AGR (Agent/Group/Role) [73, 75], for example, is a generic meta-model for MAS
in which agents, playing roles, are organized into groups. Groups define a set of
possible roles (or functional positions), an interaction graph (specifying the valid
interactions between roles), and an interaction language. An organization consists
of a set of groups and an organization structure that relates the roles in different
groups to each other.

Odell et al. [152] also propose a meta-model based on the concepts of agent,
group, and role. This model, inspired by human-based organization techniques,
tries to clarify what the concept of role means in the context of agent-based
systems. These ideas and concepts are then formalized as an extension to the UML
superstructure [151].

In more recent work, PIM4Agents (Platform-Independent Metamodel for Agent
systems) [105] proposes a model to standardize agent-oriented methodologies and
meta-models. It defines an abstract syntax for MAS and relies on model-driven
development to transform PIM4Agent models into executable code for agent
platforms such as JACK [115] and JADE [20].

A&A (Agent & Artifact) [155] is another meta-model that tries to offer a generic
meta-model for MAS. It is based on ideas behind TuCSoN (Tuple Centres Spread
over the Network) [156], and relies on two main concepts: agents and artifacts.
Agents are proactive entities in charge of the goals and tasks. Artifacts are non-
autonomous function-oriented entities providing services and functions to agents
(e.g., blackboards, knowledge bases, shared task schedulers). Although A&A

ROLES AND ORGANIZATIONS IN MULTI-AGENT SYSTEMS 21

does not provide any direct support for organizations, artifacts can encapsulate
organizations, called organizational artifacts [117].

Using Multiple Dimensions to Describe Agent Organizations

Several approaches for agent organizations rely on the use of multiple dimensions or
structures to describe organizations [215, 70, 118, 60, 76]. Three common structures
are:

e An organization or social structure that defines the organization in terms of
roles and how roles relate (e.g., hierarchies and power relations).

o A functional or interaction structure that describes the functional aspects of
an organization (e.g., in terms of tasks, goals, or interactions). This structure
describes how an organization can, or should, achieve its goals. It often
defines reusable patterns of interactions and task divisions. Two common
ways to describes this structure are the use of scenes and goal decomposition
trees.

¢ A normative structure or a set of normative rules. This structure defines
the rights and obligations of agents in the organization. Such rights and
obligations can relate to both the organization structure (e.g., which roles
to play), and the functional or interaction structure (e.g., what tasks or
interactions to execute, or which goals to achieve).

MASQ (Multi-Agent System based on Quadrants) [76] tries to generalize this idea,
by proposing a meta-model that extends the AGR, (Agent/Group/Role) model [73]
and aims to offer abstractions for all aspects of an organization-centered MAS.
MASQ relies on a four-quadrant framework, where the analysis and design of
a system is performed along two axes: an interior/exterior dimension and an
individual/collective dimension.

Norms and Normative Rules

Several organization models for MAS rely on the notion of norms or normative
rules to constrain and structure behavior within agent organizations [69, 118, 60].
Norms are social conventions on how agents should behave and interact with each
other [58]. A norm can be an obligation, a permission, or a prohibition, and can
be modeled using deontic logic [205], a field of logic concerned with obligation,
permission, and related concepts. To constrain the behavior of agents within
organizations, norms can be coupled to roles, interactions, and goals [69, 118, 65].
A norm can read like “when an agent A (1) is committed to a mission M that (2)
includes a goal G, and (3) the mission’s scheme is well-formed, and (4) the goal is
feasible, then agent A is obliged to achieve the goal G before its deadline D” [116].

22 BACKGROUND

Deontic logic, however, does not imply why norms exist or why agents should
adhere to then. It is only a language that allows to describe how agents can
adopt norms, violate norms, or adhere to them [58]. An important aspect within
organizations, therefor, is the enforcement of norms, or making sure that agents
adhere to the norms [83, 91, 80]. Norms are typically enforced in two ways, using
norm regimentation or using norm enforcement.

Norm regimentation is a pro-active technique. It provides mechanisms to prevent
agents from violating norms. Several agent researchers, however, argue that the
violation of norms can be functional to a society as a whole, requiring mechanisms in
which agents can violate norms [91]. Such mechanisms are called norm enforcement.
Norm enforcement is a reactive mechanism, in which a sanction is applied to the
agent after it violates a norm.

Normative rules offer an expressive and fine-grained mechanism to control the
behavior of agents. From an engineering perspective, however, designing norms,
and managing the vast amount of rules that are required to define a complex
systems, poses some serious challenges.

Scene-Based and Goal-Based Approaches

Two common ways to describe the functional aspects of an organization in MAS
are scenes [69, 60, 18] and goal-decomposition trees [118, 171].

A scene describes a possible interaction between the roles in an organization. Scenes
can be combined in a more complex structures that define how an organization
achieves it goals. Such a structure consists of a set of scenes and relations
between these scenes. Relations between scenes allow to define the order of
scenes, synchronization, and parallelism. In addition to these relations, the scene
structure can also define how an actor can go from a role in one scene to a role
in another scene, and whether the actor is free to choose the next scene. The
actual functionality of an organization is realized by agents executing scenes. When
comparing scene-based approaches to workflows, the overall scene-structure can be
seen as a global workflow and individual scenes as sub-workflows.

When using goal-decomposition trees, the focus is on the division of tasks. The
functionality of an organization is decomposed in a set of goals, plans to achieve
goals, and sub-goals that make up these plans. To realize the actual functionality,
goals have to be assigned to specific agents, roles, or groups. In such approaches,
the dominant decomposition is a hierarchy of goals, plans, or tasks, and reuse is in
the form of goals, plans, or tasks. Interactions are not modeled explicitly, but are
the results of one or multiple goals or tasks that make agents interact.

Scene-based and goal-based approaches are often combined with norms. Norms are
used to define which scenes agents can or should execute [69, 60], or which goals
agents can or should realize [118]. The chapter on related work (Sect. 7.1) provides
a more elaborate discussion of specific scene-based and goal-based approaches.

ROLES AND ORGANIZATIONS IN MULTI-AGENT SYSTEMS 23

2.3.2 Organization-Oriented Implementation of Multi-Agent
Systems

This difference in agent-oriented and organization-oriented MAS is not only
present at design-level, but also at implementation-level [21]. In an agent-oriented
implementation of an organization, the focus is on how to develop reasoning
mechanisms that allow agents to reason about organization structures, making
them ‘organization-aware’ [74, 64]. This type of implementation is often used in
combination with norm enforcement, where ‘intelligent’ agents have to be able to
reason about the norms in a system and decide whether to violate them or not [64].

In an organization-oriented implementation (also called system-centered or
institution-centered implementation), the main concern is how to develop the
infrastructure that enforces the organization constraints [71, 120]. Such a type of
implementation is often used in combination with norm regimentation, where the
organization infrastructure makes sure that agents cannot violate any norms of the
organization [71, 120].

Organization infrastructures are typically conceived as a three-layered middleware
architecture (Fig. 2.2) [21, 71, 120, 209]. The bottom layer is an agent
or communication middleware that provides a basic infrastructure for agent
communication, perception, and action. The middle layer is the organization
infrastructure, providing a set of organization services?. The top layer is a domain-
specific agent layer that uses the organization services provided by the organization
infrastructure.

key
Agent Layer
]
|
V4
layer
Organization Infrastructure
| A-->B
Vi
Agent Middleware/ Atig ﬂgged
Communication Middleware

Figure 2.2: A common three-layered middleware used for organization
infrastructures.

Other approaches, such as MadKit [96] (based on AGR [73]) and ORA4MAS [117]
(based on Moise+ [120]) take a more hybrid approach by combining agent-oriented

2Many organization infrastructures also provide an organizational proxy. Such a proxy acts as
a mediator between an infrastructure or middleware-managed organization, and an agent.

24 BACKGROUND

and organization-oriented implementation techniques. ORA4MAS uses CArtAgO
(Common “Artifacts for Agent” Open framework)? [174, 173] a framework for
implementing artifact-based MAS. Instead of having a traditional organization
middleware, organizational artifacts are responsible for norm regimentation, and
the detection of norm violations, while organizational agents are responsible for
the evaluation, and judgment of norm violations.

2.4 Software Architecture

Software architecture plays an important role in the development of complex
software systems. The architecture of a software system can be defined as the
essential structures, which comprise software elements, the externally visible
properties of those elements, and the relationships between them [17], and the
relationships with the environment [4]. Software architecture is a way to deal with
complexity and serves as a vehicle of communication with stakeholders for mutual
understanding and negotiation. Software architecture manifests the earliest set
of design decisions and provides the main structures to realize both the required
functionalities and quality attributes.

The documentation of a software architecture plays an important role throughout
the lifecycle of a software system. This documentation can range from informal
sketches to formal notations, and is is typically structured as a set of views. A view
is a representation of a set of system elements and the relationships associated
with them [17, 4]. It represents a specific perspective on the system with respect
to particular concerns. Examples are the layered view, the deployment view, and
the 441 views from Kruchten [139]. Documenting an architecture is a matter
of documenting the relevant views and then adding documentation that applies
to more than one view [17]. Although no fixed set of views is appropriate for
every system, there are three common views which allow architects to think about
software in three different ways [17]:

o Component-and-connector (C&C) Views: allow to structure the system as a
set of software elements that have runtime behavior and interactions.

e Module Views: allow to structure the system as a set of implementation
units.

e Allocation Views: allow to relate the system to elements in its environment.

Each type of view introduces a set of architectural concepts. We briefly discuss the
concepts that are used in the following chapters.

Shttp://cartago.sourceforge.net/

http://cartago.sourceforge.net/

SOFTWARE ARCHITECTURE 25

2.4.1 Component & Connector Views

The elements of a Component & Connector (C&C) View are components (instances
of component types) and connectors (instances of connector types). Components
(Fig. 2.3) are the principal computation elements and data stores that execute
in a system. They have a set of ports (the interfaces of a component) through
which they interact with other components via connectors. The component type
defines the number and type of ports. Connectors (Fig. 2.3) represent runtime
pathways of interaction between two or more components. They embody a protocol
of interaction and have a set of connector roles (the interfaces of a connector). A
connector role defines how a component can use the connector. The connector type
defines the number and type of connector roles.

Component & Connector Components & Connectors

Types
:Component :Component
Component Port Component Port
Component «attachment» «attachment»
]

L Component Port

Connector Role

Connector Role

[min..max] {

Connector Role
[min..max]

:Connector }

— Component Port

| |
[Connector } Interface Delegation Interface Delegation

| |
,l‘é‘ Component Port
[

Connector Role

Connector Role

:Component :Connector
:Component :Connector
O o o — -

)
=~ component connector component connector attachment interface
port role delegation

a colon (': ") indicates an instances

Figure 2.3: The main architectural concepts of the Component & Connector View.

There are two relations in the C&C view: attachments and interface delegations

26 BACKGROUND

(Fig. 2.3). An attachment associates a component port with a connector role, which
results in a graph of components and connectors. An interface delegation associates
a component port or connector role with a component port or connector role of
the ‘internal’ sub-architecture of a component or connector. This allows to further
decompose components and connectors.

2.4.2 Module Views

The main elements of a module view are modules. A module is an implementation
unit of software that provides a coherent set of responsibilities. There are three
types of possible relations between modules: ‘is part of (defining a part/whole
relationship), ‘depends on’ (defining a dependency between modules), and ‘is a’
(defining a generalization/specialization).

There is not always a one-to-one mapping of component and connector types
to modules. Component and connector types represent pre-composed run-time
elements that are ready to be deployed. Their implementation can be spread over
multiple modules, or a single module can also translate to a set of components and
connectors at runtime.

2.4.3 From Abstract Concepts to Domain-Specific Building
Blocks

Components and modules can be seen as building blocks to create software
architectures. Their true meaning and semantics, however, is only given when
they are applied to specific domains. The simplest example of modules and
components are classes and objects. More complex examples are JAR (Java
ARchive) files and Java beans, and .NET DLL (Dynamic-Link Library) files and
.NET components. The semantics of these modules and components is given by
the underlying programming frameworks and component models.

2.5 Web Service Technologies and Standards

Web services are the most prominent technology stack to realize service-oriented
architecture (SOA). Technologies that belong to this stack are often labeled ‘WS-
*’. In this section, we discuss some prominent technologies that are used in the
following chapters: Web services, the Web Service Description Language (WSDL),
SOAP, the Business Process Execution Language for Web Services (WS-BPEL),
and the Business Process Model and Notation (BPMN).

WEB SERVICE TECHNOLOGIES AND STANDARDS 27

2.5.1 Web Service

The term Web service can be used in two ways. One way is to refer to the Web
service technology stack in general. The second way is to refer to a piece of software
that exposes some functionality, or service, and makes this functionality available
through standard Web technologies [12]. A more concrete definition is given by
the Web service glossary [97]. According to this glossary, a Web service is a
software system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable format
(specifically WSDL [43]), and other systems interact with the Web service as
prescribed by its definition using SOAP-messages [93]. These SOAP-messages
are typically exchanged using HT'TP with an XML serialization in conjunction
with other Web-related standards. Today, Web services can be implemented and
exposed using many standard programming languages, but specialized languages,
such as WS-BPEL, also exist.

2.5.2 WSDL

The Web Services Description Language (WSDL) [43] is an XML-based language
that can be used to describe the functional aspects of a Web service. A WSDL
description, or WSDL definition, has an abstract part and an optional concrete part.
The abstract part describes the interface definitions of one or more Web services.
This description is similar to a method signature in a programming language. The
concrete, optional, part defines a binding of one or more Web services to a set of
concrete endpoints, allowing to make actual calls to the Web services. To describe
the abstract part, WSDL provides the following concepts:

e PortType: Defines a Web service as a collection of provided operations.

e Operation: Defines a single action of a Web service, similar to a method
or function call in a programming language. An operation is defined as an
input, output and fault message. The output and fault message are optional,
depending on the type of operation.

e Message: Contains the information needed to perform operations. Messages
consists of multiple parts of different data types.

e Type: Describes a data type used in a message.

A portType describes the interface of a single Web service. Many interactions
between systems, however, are bidirectional or have a conversational nature.
This means that each interaction partner implements or realizes a Web service
and uses the Web service of its partner. To describe such a conversational
relation, an extension to WSDL can be used to describe partnerLinkTypes [5]. A
partnerLinkType defines up to two roles, each linked to a specific portType. A

28 BACKGROUND

conversation participant then implements one portType and uses the other (Fig. 2.4,
p. 30, left).

To describe the concrete part of a WSDL definition, the following concepts are
available:

e Binding: Specifies a concrete protocol and data format for the operations
and messages of a particular portType. Examples of bindings are SOAP over
HTTP (HyperText Transfer Protocol) and JMS (Java Message Service). A
portType can have multiple bindings, based on different protocols and data
formats.

e Port: Defines a communication endpoint for a specific binding. This endpoint
consists of a concrete address or Url where the Web service can be reached.

e Service: Defines a concrete service as a set of related ports.

By separating the abstract part from the concrete part, interface definitions can
be reused with different types of bindings. This allows to define a Web service
independent of its eventual use. A WSDL definition, therefore, has multiple
purposes. The abstract part can be used to find Web services that provide certain
operations, or to implement a Web service according to the interface specifications.
The concrete part of a Web service is used to make an actual call to a Web service.
In combination with a service registry, a service consumer that knows the abstract
part of the WSDL can use the registry to find a Web service that implements it.

It is important to note that a WSDL definition only describes the different types of
operations and related messages, but not the actual business protocol, such as the
order of messages. For example, a Web service that exposes operations to place
an order, expects messages to arrive in a certain order. To define this business
protocol, or the order of messages between two partners, a service choreography
can be used.

2.5.3 SOAP

SOAP (originally called Simple Object Access Protocol) is a lightweight
protocol for exchanging structured information in a decentralized and distributed
environment [93]. It defines an extensible messaging framework, using XML
technologies, to provide a message construct that can be exchanged over a variety of
underlying protocols, such as Hypertext Transfer Protocol (HTTP) and Simple Mail
Transfer Protocol (SMTP). SOAP is independent of any particular programming
model, and focuses on simplicity and extensibility. Notable extensions are WS-
Security [3], WS-ReliableMessaging [53], and WS-Addressing [94], adding security,
reliability, and correlation features to SOAP. SOAP is often used as the foundation
layer for the Web services protocol stack.

WEB SERVICE TECHNOLOGIES AND STANDARDS 29

2.5.4 WS-BPEL

The Business Process Execution Language for Web Services (WS-BPEL) [5], is an
XML-based workflow language for Web services. It is one of the most prominent
languages to both define and execute service orchestrations and business processes
involving Web services. WS-BPEL can also be seen as a specialized programming
language to implement Web services. WS-BPEL allows to define two types of
processes: abstract processes and executable processes. An abstract processes is
partially specified and is not intended to be executed. A typical use of an abstract
process is to describe a choreography. Executable processes are fully specified and
can be executed on a compatible BPEL engine (e.g., Apache ODE?).

PartnerLinks

A BPEL process can both use Web services and expose Web services. The external
entities with which a BPEL process interacts are called partners. The concrete
interaction points with partners are called partnerLinks (Fig. 2.4). Partners can be
service consumers, service providers, or both (e.g., in a conversational interaction).
A partnerLink corresponds to a specific partnerLinkType, defined in a WSDL
definition. It assigns the roles defined by the partnerLinkType to the BPEL process
(‘myRole’) or to a partner (‘partnerRole’) (Fig. 2.4, left). The ‘myRole’ defines
a Web service exposed by the BPEL process. The ‘partnerRole’ represents an
external Web service, used by the BPEL process. A partnerLinkType can also
define just one role, in which case the corresponding partnerLink represents a
non-conversational interaction point in one direction.

Activities and Control Flow.

A BPEL process defines a sequence or workflow of actions that interact with
the different partnerLinks, by sending data to partners or receiving data from
partners (Fig. 2.4, right). This workflow is defined using BPEL activities. There
are two types of activities: basic activities and structured activities. The main
basic activities are the following:

e invoke: Invokes the Web service of a partner.

e receive: Waits for a partner to invoke an operation on a Web service exposed
by the process.

e reply: Generates a response for a synchronous operation.

e assign: Manipulates internal data.

4http://ode.apache.org/

http://ode.apache.org/

30 BACKGROUND

Partner
:partnerLink
Partner
O O
/ \
/ AY
b N
partnerLink portType/ portType/
= 7
AN 7
\ 7/
myRole partnerRole C <invoke> >—>< >—>< <invoke> >
\ 7/
[partnerLink
L
:Bpel Process
Bpel Process T partnerLink partnerLink T
Partner Partner

A-->B A-->B

partner BPEL partnerLink portType/ Auses B A realizes B
Process Type interface
>
()
~
L] D — — ki
—_—e
ser_vice service
partnerLink activity internal data control flow client

flow

Figure 2.4: Left: A partnerLink of a BPEL process implementing the ‘myRole’
and using the ‘partnerRole’. The ‘myRole’ is used by a partner acting as a service
consumer. The ‘partnerRole’ is implemented by a partner acting as a service
provider. Right: A BPEL process is specified as a set of activities that define a
workflow between the different partnerLinks.

WEB SERVICE TECHNOLOGIES AND STANDARDS 31

e throw: Raises a fault or exception.

o wait: Waits for some time.

e terminate: Terminates the process.
Structured activities allow to define the control flow of the process. The main
structured activities are the following:

e sequence: Structures activities to be invoked in an ordered sequence.

o if: Defines an if-then-else structure.

e while: Defines a conditional loop.

o flow: Enables parallel flows in the process.

o pick: Selects a path based on the occurrence of a specific event.

Message Correlation

When a BPEL process is deployed on a BPEL engine, there can be multiple
process instances that execute in parallel. For example, for an order process that
handles incoming orders, there can be one process instance for each order that
is received. To relate incoming message to the correct process, BPEL relies on
message correlation. A BPEL process can define a correlation set which allows to
correlate message to the right process instance based on the content of the message.
For example, the order process can correlate the messages to the correct process
instance based on the order 1D.

Binding PartnerLinks to Concrete Partners

The partnerLinks of a BPEL process have to be bound to concrete partners. This
binding can happen both external to the BPEL process (e.g., in the concrete part
of a WSDL or by the execution platform), as well as in the process itself. The
latter is called a dynamic partnerLink, which allows a process to change it’s own
partnerLinks. This can be done by retrieving a concrete partner from a service
repository or an incoming message.

2.5.5 BPMN

The Business Process Model and Notation (BPMN) [6] is a graphical language,
maintained by the Object Management Group (OMG), for specifying business

32 BACKGROUND

processes. Its main goal is to provide a notation for business processes that is
readily understandable by business users.

BPMN provides four main graphical elements: flow objects, connecting objects,
swimlanes, and artifacts. Flow objects (e.g., events, activities, and gateways) allow
to define the behavior of a process, and connecting objects (e.g., sequence flow,
message flow, and association) allow to connect flow objects to each other and
other information. Swimlanes (e.g., pools and lanes) can be used to group elements
and to represent participants in a process. Artifacts (e.g., data objects and text
annotations) can be used to provide additional information about elements.

BPMN 2.0 supports three main diagrams: process diagrams, collaboration diagrams,
and choreographies. A process diagram describes a sequence or flow of activities.
It can be used to define both executable and non-executable private processes, and
non-executable public processes. A collaboration diagram depicts the interactions
between two or more business entities. Each participant is represented as a ‘pool’.
The interaction is represented as a set of message flows between these pools.
Collaboration diagrams are often combined with process diagrams. Each pool in
the collaboration diagram is refined as a process (Fig. 2.5). A choreography can be
used to define the expected behavior between a set of interacting participants. It
is in fact a special type of process diagram. While a normal process exists within a
pool, a choreography exists between pools.

BPMN supports decomposition of processes and choreographies in the form of
sub-processes and sub-choreographies. Sub-processes and sub-choreographies can
be used as a visual aid to manage complexity (i.e., collapsing certain parts of a
diagram) or to define a reusable process or choreography definition.

Although the primary goal of BPMN is to provide a graphical presentation of
business processes, BPMN 2.0 also defines formal execution semantics. Tools
are starting to emerge that provide execution support for BPMN 2.0 definitions
(e.g., iBPM® and Bonita Open Solution®). Partial compliance of BPMN 2.0 with
WS-BPEL 2.0 allows to translate a subset of BPMN 2.0 into executable BPEL
code.

2.6 Virtual Organizations and Enterprises

The term Collaborative Networked Organization (CNO) is used to represent
emerging collaborations between a set of organizations [28]. Well-known examples
are Virtual Organizations (VO) and Virtual Enterprises (VE), which are temporary
alliances of organizations or enterprises (i.e., commercial organizations) that share
resources and skills to achieve a goal. The actual collaboration is realized using
computer networks. VOs and VEs are called dynamic or instant if they can

Shttp://www.jboss.org/jbpm
Shttp://www.bonitasoft.com/

http://www.jboss.org/jbpm
http://www.bonitasoft.com/

VIRTUAL ORGANIZATIONS AND ENTERPRISES 33

m
]
§ Recelve Sub Process B Send
8 Message 1 Message 1
o
| |
| | ! |
| ‘ | :
Messége 1 Message 2 Messége 3 Message 4
| | |
| ! \ !
| ‘ | ‘
<
]
? Send > > Recelve
o}
3 Message 1 Sub Process A Message 4 m
o

1O O — = (]) (=)

Q
=~ pool/ start end control message send receive collapsed
participant/ activity activity flow flow activity activity sub-process
process

Figure 2.5: An simple example of a collaboration diagram in BPMN, in which each
pool is refined as a process.

be established in a short time to quickly respond to changing collaboration
opportunities. A special case of a virtual enterprise is the extended enterprise, an
organization in which the dominant enterprise extends its boundaries to all or some
of its partners. Other examples are Virtual Organization Breeding Environments
(VBE), Professional Virtual Communities and Virtual Laboratories [8]. An overview
is of types and formation techniques is given in [27] and [29].

Virtual organizations and enterprises cover a very broad domain. It focusses
on the business aspects of collaborations as well as the technical aspects of
collaborations. PRO-VE?, for example, a working conference on virtual enterprises,
covers topics ranging from self-organizing systems and organizational models, to
value creation and asset management in collaborative networks. The concept of
virtual organization is often applied to the domain of supply chain management [90],
but also to the domain of Grid computing [81]. Agents have been used to both
setup and manage virtual organizations [153, 149, 30].

There have been several research projects aimed at the effective formation of
dynamic virtual organizations and enterprises. One of the more recent projects
is CrossWork [90, 146]. CrossWork has a very broad scope, it aims at supporting

"http:/ /www.pro-ve.org/

34 BACKGROUND

the entire life cycle of a virtual enterprise, from formation and all related business
aspects, to actual operation, evolution and dissolution of a virtual enterprise.
CrossWork builds on two previous projects: CrossFlow [89] and MaBE (Multi-
agent Business Environment) [125]. CrossFlow focused on concepts and technology
for workflow support in dynamic virtual enterprises. MaBE (Multi-agent Business
Environment) set out to deliver an agent-based technology infrastructure suitable
for implementing business support systems.

Another, but older, project is WISE (Workflow based Internet SErvices) [13]. WISE
focusses on providing a platform for process-based B2B e-commerce. In WISE,
services offered by participants are considered black-box. They are linked at design
time into a workflow process, which is executed by a central workflow engine that
controls the cross-organization processes (called virtual business processes).

2.7 Supply Chain Management

In this thesis, we use supply chain management as an application domain to
illustrate the main research results. Our focus on supply chain management comes
from a larger research project DiCoMas®. In this project, together with several
academic and industrial partners, we have studied the use of software agents to
improve integration and collaboration among supply chain partners.

In this section we first provide some background on the supply chain management
domain and introduce a concrete supply chain management case, which we use as
a running example throughout the following chapters. In the next section, we will
use the supply chain management case to illustrate the main problem statements
of the thesis.

2.7.1 Background

A supply chain can be defined as “all parties involved, directly or indirectly, in
fulfilling a customer request; this includes not only the manufacturer and suppliers,
but also transporters, warehouses, retailers, and even customers themselves” [42].
An example is a supply chain network in the food sector (Fig. 2.6). A food supplier
(vendor) provides products for a local supermarket chain (customer), which consists
of retailers (retailer) and a headquarters (retailer HQ). To provide more efficient
replenishment, an inventory is kept in a central warehouse, close to the different
retail outlets. The actual supply chain network consists of both product flows and
information flows between the different supply chain partners.

Supply chain management can be defined as “the coordination of production,
inventory, location, and transportation among the participants in a supply chain

8http://distrinet.cs.kuleuven.be/projects/dicomas/index.html

http://distrinet.cs.kuleuven.be/projects/dicomas/index.html

SUPPLY CHAIN MANAGEMENT 35

Retailer

[T]

N Fa
> Retailer
product return I [T

[Tl
Retailer

[T]

™Mo o Bolh —

vendor warehouse transporter retailer retailer HQ product
(3PL) (3PL) (customer) (customer) flow

key

Figure 2.6: An example of a supply chain network in the food sector.

to achieve the best mix of responsiveness and efficiency for the market being
served” [121]. Supply chain management relies on several models to realize the
actual product flows and information flows in the supply chain network. We briefly
discuss some prominent models that are used in the case study and introduce the
notion of third-party and fourth party logistics providers (3PLs and 4PLs).

Inventory and Replenishment Models

Two common replenishment models are customer managed inventory (CMI) and
vendor managed inventory (VMI). The CMI model represents the classic vendor-
customer relation. The customer issues a purchase order to the vendor and the
vendor realizes this order. The VMI model, on the other hand, omits the normal
order procedure from customer to vendor. Instead, the vendor automatically
replenishes the customer’s inventory when needed, based on various sources of
information, such as inventory levels at the customer’s warehouse or point of
sales (POS) data [179]. A famous example of VMI is the collaborations between
Procter & Gamble and Wal-Mart in the USA, based on monitoring the actual store
shelves. VMI can be extended to CPFR (collaborative planning, forecasting and
replenishment) [2, 187], which is more comprehensive than VMI and allows to better
deal with changing demand patterns (e.g., future promotions). CMI and VMI can
be used together with consignment or charge-on-delivery (i.e., non-consignment)
models. With consignment, inventory remains property of the vendor, even if it is
located at the customer’s location, until it is actually consumed by the customer
(e.g., the actual sale of products in a supermarket). With charge-on-delivery, the
products become property of the customer upon delivery.

36 BACKGROUND

Third-Party and Fourth-Party Logistics Providers

The realization of CMI, VMI, or CPFR models in modern supply chains is becoming
increasingly complex, requiring extensive support in terms of business, technology
and infrastructure [177]. Most supply chain companies lack the knowledge, resources
and capabilities to realize such networks on their own, and have to rely on third-
party and fourth-party logistics providers (3PLs and 4PLs). A 3PL provides
vertical supply chain solutions, that include warehousing, transportation and all
other logistics activities. A 4PL, on the other hand, operates horizontally across the
whole supply chain, acting as an integrator that assembles the resources, capabilities
and services of different supply chain partners and 3PLs, to provide an end-to-end
solution for the customer [44]. One of the main roles of a 4PL is to integrate the
different information systems of each party involved in the supply chain network.
In contrast to a 3PL, which owns actual trucks and warehouses, a 4PL only owns
IT systems and intellectual capital.

2.7.2 Running Example: A Supply Chain Management Case

The running example revolves around a 4PL that provides end-to-end integration
services for supply chain networks in the food sector (e.g., Fig. 2.6). To restrict
the scope of our case study, we make the following assumptions:

o there are collaboration agreements between the different vendors, customers
and 3PLs to set up a specific supply chain network;

¢ vendors, customers and 3PLs have a contract with the 4PL to support these
collaborations;

e supply chain partners have a common ontology or mutual understanding
(e.g., determined in the collaboration agreement);

e supply chain partners communicate with the 4PL using standard Web service
technology.

Even in this restricted setting, there can be a lot of variability in the supply chain
network and the services provided by each party. For example, the number of
retailers can change, a different replenishment model can be used (CMI or VMI
with consignment or charge-on-delivery), or the location of the inventory can vary
(central warehouse versus local inventory at retailer’s location). In terms of services,
one warehouse can offer loading and unloading services, while another does not, or
warehouses can offer a different software interface to access their services. Each
type of variability leads to a different type of collaboration.

The role of the 4PL is to support and manage the collaboration between the
different supply chain partners. The 4PL may have to support multiple supply

SUPPLY CHAIN MANAGEMENT 37

chain networks at the same time, each based on a different type of collaboration. A
collaboration goes beyond an individual interaction. For example, a collaboration
between a vendor, customer and 3PL, includes all the forecasting, replenishment
and call-off interactions that take place in the supply chain network. Management
of a collaboration includes different activities:

e Collaboration setup. The 4PL determines who will collaborate with whom
and the type of collaboration.

¢ Correct execution of interactions. After the setup, the 4PL ensures the
correct execution of the required interactions.

e Changing the collaboration. Once active, a collaboration is likely to
change. Participants can change, for example, a 3PL is switched or a retailer
is added. Services of participants can change, for example, a vendor updates
a service or one of its services becomes unavailable. A collaboration itself can
also change, for example, CMI is switched to VMI or the 4PL finds a bug in
one of the collaborations and issues an update. Many of these changes can
imply a complex change scenario.

e Terminating the collaboration. When a supply chain network is dissolved,
the corresponding collaboration has to be terminated. This can imply a more
complex termination scenario. For example, when termination a supply chain
network with consignment, the remaining inventory in the warehouse has to
be returned to the vendor.

The 4PL also has a number of additional requirements:

¢ Decomposition and modularity. Collaborations can become complex,
and due to variability, several parts of a collaboration will be the same, while
others differ. The 4PL wants to be able to compose collaborations from
reusable modules.

e Separation of concerns. The 4PL wants to be able to introduce new types
of collaborations or change existing types (e.g., fixing a bug, changing the
responsibility of a participants). To ease this process, different concerns
should be separated (e.g., management versus collaboration functionality,
responsibilities versus interactions) and changes should not propagate.

Concrete Scenarios

We focus on two concrete scenarios in this supply chain case (Fig. 2.7). Each scenario
involves a supermarket chain, a vendor, and some 3PLs providing warehousing and
transportation services. The first scenario (Collaboration A) uses a VMI model

38 BACKGROUND
P&G Carrefour Carrefour Carrefour Carrefour
Leuven Heverlee Bierbeek HQ
vendor retailer retailer reta‘ﬂler customer HQ
Collaboration A
VMI with Consignment
warehouse transporter
B-Logistics DHL
warehouse trans;‘Jorter
Collaboration B
CMI with Charge-on-Delivery
vendor retailer retailer retailer customer HQ
. Delhaize Delhaize Delhaize Delhaize
Unilever Leuven Heverlee Kessel-Lo HQ

>
Q
X

company collaboration participation
border

Figure 2.7: Two collaboration scenarios involving two warehouse chains.

together with consignment. The second scenario (Collaboration B) uses a CMI

model with charge-on-delivery.

Collaboration A is specified as follows (Fig. 2.8):

1. Forecast. Customer (retailer HQ) and vendor negotiate on sales and order

forecasts, based on historical data and future promotions.

2. Inventory Report. The warehouse reports the current inventory status to

the vendor on a regular basis.

3. Replenishment Order. Based on the inventory status and the sales and

order forecast, the vendor issues a replenishment order.

SUPPLY CHAIN MANAGEMENT 39

Vendor-Managed Inventory (VMI)

1. Forecast
[T~~~ — — — — m e — e — — — — — e — — — — — e — — — e — —— i ——— - — = |
| I
: 2. Inventory Report !
| ‘“ ”””””””””””””””””””” “ Retailer |
| ! | N |
| R i
RV | 1] N
@ ‘] 2\ [Ha
———4. Replenishment————p» Retailer
11. Product Return m \ ’ M >
-7 L1
AN\ /N 6. Call-Off 77
} 7.Reporting p\ A
! Retailer s
! 7
| [T]
I
I
I

O e T e TS ot T,
v

vendor warehouse transporter retailer retailer HQ product information
(3PL) (3PL) (customer) (customer) flow flow

Figure 2.8: Details of the supply chain collaboration based on VMI with
consignment.

4. Replenishment. The vendor executes the replenishment order, which results
in a product flow from the vendor to the warehouse. The transport is realized
by a 3PL. The products in the warehouse are still owned by the vendor
(consignment).

5. Call-Off Order. A retailer is almost out of a certain product and calls off
some products from the warehouse.

6. Call-Off. The warehouse executes the call-off order, resulting in a product
flow from the warehouse to the retailer. The transport is realized by a 3PL.
The products are now ‘consumed’ by the retailer and no longer property of
the vendor.

7. Reporting. The retailer reports the call-off to the headquarters.
8. Consumption Report. The retailer reports the consumption to the vendor.

9. Invoice. The vendor generates an invoice which is send to the retailer HQ.

40 BACKGROUND

10. Product Return Order. Based on the inventory status and the sales
and order forecast, the vendor decides to retrieve some products from the
warehouse (because they will not be consumed) and generates a product
return order.

11. Product Return. The product return is executed. The transport is realized
by a 3PL.

Customer-Managed Inventory (CMI) with Charge-on-Delivery

1. Forecast
777 .
! |
| 2. Inventory Report }
! R | |
: : Retailer : :
! N | |
| ! N | |
\V [[1T] . Lo
| A
D | =
Retailer
——————4. Replenishment———p» m . m | >
N 7 Lm
N A 7. Call-Off 8. Reporting A
Retailer e !
[1]

S B B~ [P
X

warehouse transporter retailer retailer HQ product information

vendor (3PL) (3PL) (customer) (customer) flow flow

Figure 2.9: Details of the supply chain collaboration based on CMI with charge-on-
delivery.

Collaboration B is specified in a similar way (Fig. 2.9):
1. Forecast. Retailer HQ and vendor negotiate on sales and order forecasts,
based on historical data and future promotions.

2. Inventory Report. The warehouse reports the current inventory status to
the retailers on a regular basis.

3. Replenishment Order. Based on the inventory status and the sales and
order forecast, the retailer HQ issues a replenishment order.

SUPPLY CHAIN MANAGEMENT 41

4. Replenishment. The vendor executes the replenishment order, which results
in a product flow from the vendor to the warehouse. The transport is realized
by a 3PL. The products in the warehouse are now property of the customer
(non-consignment).

5. Invoice. The vendor issues an invoice to the customer (charge-on-delivery).

6. Call-Off Order. A retailer is almost out of a certain product and calls off
some products from the warehouse.

7. Call-Off. The warehouse executes the call-off order, resulting in a product
flow from the warehouse to the retailer. The transport is realized by a 3PL.

8. Reporting. The retailer reports the call-off to the headquarters.

In reality, the different activities (flows) take place in parallel, and each flow of
information can be a complex protocol, involving additional parties.

2.7.3 lllustration of Problem Statements in the Supply Chain
Management Case

In this section, we look at how our 4PL can use choreography and orchestration to
support the supply chain collaborations. We use these examples to illustrate the
problems statements of this thesis (Sect. 1.3).

Choreography-Based Collaborations

When using choreography, the 4PL defines and publishes a set of ‘public’
coordination processes, visible to all supply chain partners. These processes describe
the collaboration and corresponding interactions between the different supply chain
partners. Since current choreography standards do not provide any decomposition
mechanisms”, the 4PL has to use a single monolithic process or a set of separate
processes. This would, for example, result in separate processes for forecasting,
replenishment, call-off, and product return. Given the public coordination process,
each supply chain partner can translate this process into a private process that
implements a part of the public process (Fig. 2.10). Considering the variability
in the supply chain networks, the 4PL may publish different variations of each
public process (e.g., VMI and CMI, with consignment or charge-on-delivery), which
results in different versions of the private processes, called process variability'C.

Using choreography, the 4PL cannot execute any direct control on the supply chain
partners. The actual collaboration is the result of each partner executing their

9BPMN does provide some limited decomposition concepts (e.g., choreography task and
sub-choreography), but it is not defined how this translates or maps to reusable private processes.
10Existing techniques to handle process variation are discussed in Sect. 7.2.

42 BACKGROUND

key
Public
Call-off
Process B . .
% public private
e | AN process process
+" «transformed into» "~ _
. i N
. . N transformed
1z AV \k\' A-- into» —>8
Private Private Private A is transformed
Vendor 3PL Customer into B
Process Process Process

Figure 2.10: Different variations of a public coordination process for call-off
transformed into a set of private processes.

private process. This leads to a decentralized setup (Fig. 2.11). The role of the
4PL is reduced to defining and publishing the public process, assisting partners in
implementing the private processes, and providing service registries (containing
the services exposed by private processes) to set up the collaboration.

L L L L

Public Service Service Service
Processes

Service Private Private Private
Registry Process Process Process
Supply Chain Supply Chain Supply Chain Supply Chain
Partner Partner Partner Partner

) P
5 SOAP/http
X~ service private . company

process registry border

Figure 2.11: Decentralized setup when using choreography-based collaborations.

Since the actual collaboration is executed in a decentralized manner, the private
processes can become a lot more complex than the original public process. This can
lead to complex peer-to-peer protocols embedded in each private process. A number
of researchers are looking into the automatic translation of the public process into

SUPPLY CHAIN MANAGEMENT 43

a set of compatible private processes [131]. This would reduce complexity, but such
methods are not yet available in current practice.

Another consequence of decentralization is that each supply chain partner is
now responsible for the management of the collaboration. Every aspect of
collaboration management has to be realized in a decentralized way, requiring
additional coordination processes. For example, replacing a 3PL in a supply chain
network, with another 3PL, that provides a slightly different service, requires a
reconfiguration or even redeployment of private processes in all other supply chain
partners.

Key Problems. The key problems with choreography-based collaborations can
be summarized as follows:

o Lack of proper decomposition mechanisms leads to monolithic processes.

¢ A single model addresses all concerns, such as functionality, management,
and responsibilities.

e Choreographies typically represent a single interaction. Composing
choreographies is not easily supported. There is no standard way to support
management beyond a single choreography.

e Decentralization and the lack of central control require complex peer-to-peer
protocols.

Orchestration-Based Collaborations

Similar to choreography, the 4PL can use orchestration to define a set of
collaboration processes. However, instead of having each supply chain partner
implement part of this process, the 4PL can execute and manage these processes
itself, and keep control over the correct execution of each process (Fig. 2.12). The
local private processes of each supply chain partner become less complex and focus
on realizing specific Web services. This setup is similar to the one used by the
CrossWorks approach to realize virtual enterprises [90, 146].

Instead of using a monolithic process, that implements the complete process, the
4PL can use sub-processes and composite services to decompose complex supply
chain collaborations, again with the necessary variations (Fig. 2.13). At the highest
level of this decomposition, there is a global orchestration process, in between a set
of reusable business processes, and at the lowest level the actual services provided
by the different supply chain partners.

The use of sub-processes and composite services typically leads to a functional
decomposition. Such a decomposition does not represent the underlying

44 BACKGROUND

4PL

I

. Collaboration Service
Service Process Registry

1 1 il
Service Service Service

Supply Chain Supply Chain Supply Chain
Partner Partner Partner
5) -~
Q SOAP/http
service private . company
process registry border

Figure 2.12: Centralized setup when using orchestration-based collaborations.

collaboration structure. As a result, responsibilities and behavior of individual
participants are easily scattered over multiple processes and services (Fig. 2.14).

When using orchestration, several management tasks — setup, change and
termination — translate to the problem of correctly selecting, binding and invoking
sub-processes and participant services. For example, when a retailer (Carrefour
Ezpress) in Collaboration A (Fig. 2.7), wants to do a call-off, the 4PL should
start a specific variation of the call-off process that supports VMI, invoke a call-
off reporting process that supports consignment, and use the order services of
B-Logistics (the warehouse in this supply chain network).

The realization of this type of management can be done in several ways [79]. A
first option is to embed the management in the process itself. For example, the
call-off process defines that in case of CMI, it should use Call-Off Ordering Process
A, while in case of VMI, it should use Call-Off Ordering Process B. Similarly, the
process can define, that if Carrefour is the customer, it should use the services of
vendor P&G. Embedding the management in the process itself, however, leads to
complex code, which is hard to maintain.

A second option is to put management in external rules and policies, to increase
reuse, maintainability and separation of concerns. This can be done using a
business rules management system (BRMS), which can be exposed as a service
to the processes [176]. For example, when the ordering process needs a concrete

SUPPLY CHAIN MANAGEMENT 45

Call-Off
Process

Orchestration
Services

"

Call-Off Call-Off Call-Off
Ordering Transport Reporting
Process A Process " Process A

Business
Services

g;ir;z‘t)g: Reporting Invoicing
[— Process Process

Ordering
Process
A A A

‘ Order ‘ Client ‘Shipper Carrler Sender Receiver ‘ Seller ‘ Buyer
Service Service Service Serwce Serwce Service Service Service

) O L[]

orchestration business
process process

Participant
Services

key

service

Figure 2.13: Functional decomposition of a collaboration and possible variability.

Forecasting RemZ:ItSh_ Call-Off
Process Process Process

;O @ O -

orchestration business

service uses
process process

Figure 2.14: An example of responsibilities and behavior of a participant (black
circles) being scattered over multiple processes and services.

46 BACKGROUND

participant service, it queries the policy service to find the correct endpoint reference.
Exposing policies as a service to processes, however, does not make management
transparent to the processes. A more recent solution to this problem is the use of
a router or a dynamic process assembler together with a BRMS [148, 144]. Instead
of querying the policy service, a process just sends all its invocations to the router.
The router then determines which endpoints are to be used at runtime based on
the incoming request, its context and the current rules and policies (Fig. 2.15).

Call-Off
Process

A key

Call-Off

Ordering component W_eb
Process , service

Context -
Router / gsjlg%ﬁ C] >

Dynamic Assember P 9
rocess)))
B orchestration information
Policies process flow
and Rules

// \’\ business repository
process

Order Order
Service 1 Service 2

Figure 2.15: Dynamic router in orchestration.

When using policies as a service, routers, or dynamic process assemblers, we are
confronted with another problem. Policies and rules are expressed as traditional
rules in business rules management systems, which are basically ‘if-then’ statements.
Such rules are useful for typical business policies (e.g., using a different process
for ‘regular’ and ‘privileged’ users), but make it hard to express the semantics of a
collaboration. This results in a complex set of ‘if-then’ statements, which do not
represent any of the collaboration structure. An example is shown below:

rule "VMI with Warehouse"

if
inventorylLocation == "warehouse" &&
replenishmentModel == "VMI"

then

use "Call-0ff Process A"
end

SUPPLY CHAIN MANAGEMENT 47

rule "CMI with warehouse"

if
inventoryLocation == "warehouse" &&
replenishmentModel == "CMI"

then

use "Call-0ff Process B"
end

rule "VMI with Consignment"

if
replenishmentModel == "VMI" &&
inventoryOwnerShip == "Consignment"
then

use "Call-Off Reporting Process A"
end

rule "CMI with Charge-On-Delivery"

if
replenishmentModel == "CMI" &&
inventoryOwnerShip == "Charge-on-Delivery"
then

use "Call-0ff Reporting Process C"
end

Key Problems. The key problems with orchestration-based collaborations can be
summarized as follows:

e Functional decomposition does not preserve the underlying collaboration
structure.
e Participant behavior and individual responsibilities are easily scattered.

o Adaptability (management, dynamics) is addressed in a single model, or when
separated, hard to express in terms of collaboration concepts and structures.

Chapter 3

The Macodo Model:
A Conceptual Model for
Dynamic Collaborations

This chapter presents the Macodo model, a conceptual model that describes
abstractions for dynamic collaborations. The model defines the vocabulary for
Macodo and serves as a guide for developers and readers of this thesis. The model
also provides the foundation for the following chapters. Chapter 4 introduces a
set of architectural views that map the collaboration abstractions to architectural
modeling abstractions, allowing to design and document collaborations in terms of
software elements. Chapter 5 presents a proof of concept middleware infrastructure
that maps these software elements to Web service technology and supports the
collaboration abstractions at implementation level. The model presented in this
chapter is not intended to be used directly by developers. Actual modeling is done
using the Macodo architectural views.

3.1 Introduction

Macodo® supports the development of dynamic collaborations by providing a set of
collaboration abstractions and supporting these abstractions at architectural level
and implementation level. An important step in providing such support is to define
the meaning and scope of these collaboration abstractions. The Macodo model
defines the key abstractions independent of design and implementation concerns.
The type of collaborations the conceptual model intends to conceptualize are

IMacodo is an abbreviation for Middleware Architecture for COntext-driven Dynamic
Organizations.

49

50 THE MACODO MODEL

defined by the scope of this thesis. These collaborations are defined as follows:
“the controlled interchange of information between a set of distributed entities (e.g.,
Web services) and the controlled execution of related tasks by these entities in
order to achieve a set of goals”. Furthermore, the Macodo model is restricted to
collaborations that take place in a restricted environment (see Sect. 1.2).

Most existing organization models [59, 73, 18] start from a top-down approach,
trying to model how entities collaborate. Macodo uses a bottom-up perspective.
Starting from current state of practice on middleware, BPM, and SOA, it introduces
role-based abstractions to improve modularization of service collaborations. To do
so0, Macodo consolidates earlier research results [207, 101, 102] and borrows concepts
from several domains, such as object-oriented modeling [190, 95], BPM [183, 160, 26],
and agent organizations [59, 73, 18]. The different perspective of Macodo, however,
does not allow to take any existing models ‘as-is’.

The model presented in this chapter is the result of several iterations. There are
three main drivers behind these iterations:

e The conceptual challenges identified by the problem statements of this thesis:

— Providing more natural units of decomposition for collaborations that
preserve the underlying collaboration structures.

— Providing better concepts for collaboration management to improve
adaptability.

— Improving the separation of concerns, such as collaboration functionality
from collaboration management, and participant responsibilities from
interactions.

e The application of the model in an in-depth supply chain management case
study.

o Extensive feedback from the initial pilot study of Macodo. In this study,
subjects used the Macodo architectural views to design and document
collaborations in a software system?.

Overview. The rest of this chapter introduces the conceptual model in detail.
Section 3.2 defines the core abstractions of Macodo. Section 3.3 introduces a
number of additional abstractions to better represent the modularization and
adaptability of collaborations. After introducing each concept, we give examples
using our running example in the supply chain management case.

2This study is described in Chapter 6.

MACODO CORE ABSTRACTIONS 51

3.2 Macodo Core Abstractions

The core abstractions of Macodo are organization, actor, role, conversation, and
behavior (Fig. 3.1). Organizations define reusable collaborations as a set of roles
and conversations between these roles. Actors represent entities in the environment
capable of playing roles. Each role defines a coherent set of rights and responsibilities
in the organization. These rights and responsibilities can range from executing
behaviors to participating in conversations with other roles.

Organization enables »—— Conversation
has ¥
has ¥ 0..*
0.*| Conversation
Role
v
0. Qo¥° 0.
0.*)
Actor plays » Role realizes A
[S)
€c,
U[SSA
Behavior

Figure 3.1: The core Macodo abstractions and their relations.

3.2.1 Organization

An organization represents a collaboration between a set of actors. It is defined
as a set of roles, played by actors, and the conversations between these roles.
Roles define the rights and responsibilities in the collaborations, and conversations
represent the interactions between these roles. Organizations can be created and
destroyed and there can be multiple organizations of the same type. By allowing the
existence of multiple concurrent organizations, unlike many existing organization
models, Macodo allows to represent multiple concurrent collaborations taking place
within a single system. Organization provides a concept to represent collaborations
at a higher level of abstraction. Hierarchies of organizations are not explicitly
supported, but can be realized in an application-specific manner.

52 THE MACODO MODEL

Example. The supply chain case introduced two types of supply chain
collaborations: a VMI-based supply chain (Fig. 2.8, p. 39) and a CMI-based
supply chain (Fig. 2.9, p. 40). Both collaboration types can be defined as an
organization: the Vmi Organization and Cmi Organization.

The running example (Fig. 2.7, p. 38) can then be modeled as two concrete
organizations: orgA and orgB (Fig. 3.2).

To support other supply chains, the 4PL can create additional organizations.
When supply chains no longer need to be supported, the 4PL can destroy the
corresponding organizations.

MACODO CORE ABSTRACTIONS 53

Carrefour Carrefour Carrefour
PEE Leuven Heverlee Bierbeek Caisiiour e
I I 1 I I
L L
Vmi Vendor Vmi Retailer Vmi Retailer Vmi Retailer Vmi Retailer HQ
orgA : Vmi Organization
Warehouse Transporter
]]
L L
B-Logistics DHL
I I
Warehouse T Transporter
orgB : Cmi Organization
Cmi Vendor Cmi Retailer Cmi Retailer L Cmi Retailer Cmi Retailer HQ
L L L
’ Delhaize Delhaize Delhaize .
Unllzees Leuven Heverlee Kessel-Lo Dt (10

.] o () o

actor provided organization role plays
role capability

ke

Figure 3.2: Mapping the collaborations of the supply chain example (Fig. 2.7, p. 38)
to organizations (capabilities are explained in Sect. 3.3.3).

54 THE MACODO MODEL

3.2.2 Actor

An actor represents an entity in the environment capable of participating in a
collaboration, by playing a role in an organization. In a concrete system, actors can
be computer systems, business entities, software agents, services, or even people.
The concept of actor allows to make abstraction of collaboration participants and
focus on the collaboration itself.

Example. The supply chain partners and their systems in the running example
(e.g., PG and Carrefour Leuven) can be represented as actors that play roles in
one or more organizations (Fig. 3.2).

3.2.3 Role

A role represents a coherent set of rights and responsibilities inside an organization.
These rights and responsibilities are defined in terms of conversation roles the role
can play, and behaviors the role can execute. Conversation roles allow the role to
interact with other roles. Behaviors describe additional role functionality, such as
the execution of tasks, or how to realize specific conversation roles.

Roles are played by actors, and can be reused across organizations. To join
an organization, an actor starts playing a role. To leave the organization, the
actor stops playing the role. Roles can have a cardinality greater than one. This
means that there can be multiple role instances of the same role type in a single
organization. Each role instance has a unique identity. This allows multiple
actors to play the same role, while still being able to address each role instance
individually.

The Macodo model makes an explicit distinction between roles, conversation
roles, and behaviors. An alternative would be to unify the concepts of role
and conversation role, or even behavior. Roles in Macodo, however, encapsulate
responsibilities and functionalities that go beyond individual conversation roles
and behaviors. They allow to combine multiple conversation roles and behaviors
as a reusable unit, improving modularization and reuse in complex collaborations.

MACODO CORE ABSTRACTIONS 55

Example. The Vmi Organization (Fig. 3.2) defines five types of roles. The roles
of Warehouse and Transporter are used in both the Vmi Organization and Cmi
Organization.

In the running example, each supply chain partner plays a role in the
corresponding organization (Fig. 3.2). The role of Vmi Retailer, for example,
is played by multiple actors in orgA.

The roles in an organization are not static. The 4PL can create and destroy
roles as supply chain partners join and leave supply chain collaborations. At 71,
for example, there are two retailers in OrgA (Fig. 3.3). At T2, Carrefour Bierbeck
has joined as retailer, and a new Vmi Retailer role is created. At T8, Carrefour
Hewverlee is no longer a retailer, and the corresponding role is destroyed.

56

THE MACODO MODEL

T
Carrefour Carrefour
Leuven Heverlee
[[
Vmi Retailer Vmi Retailer
(‘;‘ orgA : Vmi Organization ‘
T2
Carrefour Carrefour Carrefour
Leuven Heverlee Bierbeek
Vmi Retailer Vmi Retailer Vmi Retailer
(‘;‘ orgA : Vmi Organization ‘
T3
Carrefour Carrefour
Leuven Bierbeek
[[]
Vmi Retailer Vmi Retailer
((orgA : Vmi Organization {(
. -
(0]
X~
actor provided organization role plays
role capability

Figure 3.3: The roles in an organization can change over time.
and remove retailers from the supply chain organizations.

The 4PL can add

MACODO CORE ABSTRACTIONS 57

3.2.4 Conversation

A conversation represents a reusable interaction inside an organization. It is
defined as an interaction protocol and a set of conversation roles. The interaction
protocol is application-specific and can, for example, specify the type and order
of messages exchanged between the conversation roles, or possible interactions
states. The conversation roles are played by roles of an organization and represent
specific responsibilities in the interaction. A conversation role can be an initiator
or participant of the interaction, and can have a cardinality greater than one.

Example. To support the interactions in the Vmi Organization and Cmi
Organizations, we define a set of conversations, such as Inventory Reporting
Conversation, Call-Off Conversation, and Transport Conversation. Each type
of conversation defines a set of conversation roles and an interaction protocol. The
Inventory Reporting Conversation and Call-Off Conversation (Fig. 3.4), for example,
each define two conversation roles. In the Inventory Reporting Conversation,
Inventory is the initiator, with a cardinality of one, and Client is participant with
an unlimited cardinality.

The interaction protocol of the Call-Off Conversation defines that the caller first
sends a call-off order to the stock, which can be accepted or rejected. If accepted,
the stock sends a confirmation and the delivery info. The caller sends a delivery
report after the call-off is completed.

The possible conversations in an organization are defined by the organization and
not by the roles. Roles only define which conversation roles they can play. This
keeps roles independent of each other and allows both roles and conversations to be
reused across organizations. Together with roles, conversations provide a natural
decomposition mechanism for collaborations.

Example. The Vmi Organization enables multiple conversations between its roles
(Fig. 3.5). To realize inventory reporting, for example, the Warehouse role can
initiate the Inventory Reporting Conversation with the Vmi Vendor and Vmi
Customer HQ) role (both roles play the Client conversation role).

The Cmi Organization also uses the Inventory Reporting Conversation (Fig. 3.6),
but enables it between the Warehouse role and the Cmi Customer HQ role.

Within the Vimi Organization, the Transport Conversation can be used to realize
call-off, replenishment, and product return.

58

Inventory Reporting Conversation

Client [*]

Call-Off Conversation

Inventory [1]

inventory report———

confirmation——————>

THE MACODO MODEL

Stock [1] Caller [1]
| |
| —
. call-off order————
Opt)
[accepted] confirmation————
delivery info

delivery report:

Opt
[condition]

key

life-line

async
message

optional part,
only executed
if condition
holds

Figure 3.4: The Inventory Reporting and Call-Off conversation are defined as a
set of conversation roles and an interaction protocol.

MACODO CORE ABSTRACTIONS 59

Vmi Vendor [1] Warehouse [1] Vmi Retailer [1..%] Vmi Customer HQ [1] Transporter [1]
(Vendor) (Customer)
Forecasting
Conversation
(Client) (Inventory) (Client)
Inventory Reporting
Conversation
(Stock) (Caller)
Call-Off
Conversation
(Shipper) (Carrier)
Transport
Conversation
(Seller) (Consumer) (Buyer)
| Consumption Reporting
Conversation
q>_>‘ conversation initiating participating @
x conversation conversation
role role

Figure 3.5: A subset of the possible conversations in the Vmi Organization to
enable forecasting, inventory reporting, and product call-offs.

60

THE MACODO MODEL

Cmi Vendor [1]

Warehouse [1]

Cmi Retailer [1..%]

Cmi Customer HQ [1]

Transporter [1]

(Vendor)

Forecasting

(Customer)

L]

Convel

(Inventory)

I:li

rsation

Inventory Reporting

[]

(Client)

—{

Conversation
(Stock) (Caller)
Call-Off
Conversation
(Shipper) (Carrier)
Transport
Conversation
q>)‘ conversation initiating participating E
X conversation conversation role
role role

Figure 3.6: A subset of the possible conversations in the Cmi Organization to
enable forecasting, inventory reporting, and product call-offs.

MACODO CORE ABSTRACTIONS 61

3.2.5 Behavior

A behavior represents a coherent part of reusable role functionality. Behaviors
describe how a role should mediate the actions of its actor with the rest of the
organization. These actions can range from executing particular tasks, to realizing
specific conversation roles. Behaviors are executed by roles. The execution of a
behavior can be initiated by the actor of a role, a conversation, or the role itself.
Like a conversation, the internal realization of a behavior is application-specific. A
behavior can, for example, be realized as a business process or BPEL process that
orchestrates the actions of the actor with different conversations in which the role
participates.

Behavior provides a concept to decompose role functionality in addition to individual
conversation roles. Conversations and conversation roles encapsulate concerns
related to specific interactions. Behaviors encapsulate additional concerns, such
as the execution of tasks, or concerns that cross-cut multiple conversation. This
allows to reuse behaviors and conversations across roles and organizations.

Example. The Warehouse role defines two behaviors: the Inventory Reporting
Behavior and the Call-Off Fulfillment Behavior (Fig. 3.7). The Inventory Reporting
Behavior is initiated by the actor. This behavior can be seen as an adapter for
the conversation role Stock. It defines how to collect the required information on
inventory levels and how to pass it to the conversation role. By separating the
behavior from the conversation role, we separate two concerns: the collection of
inventory data, and the distribution of inventory data among clients. This allows
to change the way data is collected, independent of the distribution, and vice versa.
It also allows to reuse the conversation with warehouses that collect data in a
different manner.

The Call-Off Fulfillment Behavior is initiated by a Call-Off Conversation and
can initiate a Transport Conversation. This behavior encapsulates a responsibility
beyond an individual interaction: the responsibility of the Warehouse Role to
initiate a transport interaction to fulfill the call-off. A representation of this
behavior is given in Fig. 3.8. The vertical lanes represent the actor of the role and
the conversations in which the behavior participates (as seen from the perspective
of the behavior). The behavior starts by receiving a call-off order from from the
call-off conversation. Next, it sends this call-off order to the actor of the role, who
responds with a confirmation. This confirmation is passed back to the call-off
conversation, and so on.

Other behaviors encapsulate similar responsibilities. The Call-Off Behavior of
the retailer role, for example, initiates a Consumption Reporting Conversation after
a successful call-off.

62

THE MACODO MODEL

Vmi Vendor [1]

Warehouse [1]

Vmi Retailer [1..*]

Vmi Retailer HQ [1]

Transporter [1]

(Vendor)

Forecasting

(Customer)

L]

(Client)

T

Inventory
Convel

Convel

Inventory Reporting
Behavior

(Inventory)

rsation

[]

(Client)

Reporting
rsation

L]

(Carrier)

Call-Off Fulfillment Call-Off Behavior
Behavior
(Stock) (Caller)
Call-O
Conversation
(Shipper)
Transport
Conversation

L]

(Seller) (Consumer) (Buyer)
| Consumption Reporting
Conversation
@ conversation initiating participating conversation role ‘ -
g conversation conversation that initiates role behavior actor can
role role behavior mmat_e
behavior

Figure 3.7: Roles, behaviors, and conversations in the Vmi Organization. Roles
can play conversation roles and execute behaviors. Behaviors can also realize
conversation roles.

MACODO CORE ABSTRACTIONS

63

Call-Off Fulfillment Behavior

Actor

Call-Off Conversation

Transport Conversation

key

behavior
(vertical lanes represent
actor or external

g d Call-Off & Receive conversation with which
enc Lak Call-Off behavior interacts)
Order
Order
™~
Receive Send startof end of
Confirmation Confirmation behavior behavior

] ’
Send [confirmed]
Transport <& sequence
Order Request
q [rejected] flow
™ Receive B send <>
Transport P Transport decision
Order Order point
= 5 Receive
Send o -
. < Shipment
Delivery Info
Info send message
to actor or conversation
represented by lane
5 Receive B send
Delivery » Delivery
Report Receipt

receive message
from actor or conversation
represented by lane

Figure 3.8: A representation of the call-off fulfillment behavior. The vertical
lanes represent the actor of the role and the conversations in which the behavior
participates (as seen from the perspective of the behavior).

64 THE MACODO MODEL

3.3 Additional Abstractions

To better represent the modularity and adaptability of collaborations, we introduce a
set of additional concepts and abstractions. The abstraction of role state (Sect. 3.3.1)
allows to describe the adaptability of individual roles. Organization Dynamics
(Sect. 3.3.2) describes how role states together with the other abstractions can be
used to realize the adaptability of an entire collaboration. Finally, the abstraction
of capability (Sect. 3.3.3) provides a way to decouple actors, roles, behaviors, and
conversations to improve reuse and modularity.

3.3.1 Role State

The concepts of organization and role allow to create and terminate collaborations
and to add and remove participants. These concepts, however, are insufficient to
terminate collaborations or remove participants in a controlled manner. Terminating
organizations or removing participants in the presence of active conversations and
executing behaviors can lead to inconsistencies within a collaboration.

To address this problem, the model introduces the abstraction of role state (Fig. 3.9).
Every role is always in a specific state, that can change over time. This state
constrains the conversation roles a role can play and the behaviors a role can
execute. The concept of role state allows to introduce role life-cycles that put roles
in a safe state, before terminating a collaboration or removing a specific role.

Role has » Role State g? E E

core additional
abstraction abstraction

Figure 3.9: A role is always in a specific role state.

ADDITIONAL ABSTRACTIONS 65

Example. To support the addition and removal of a Vmi Retailer role, we
introduce three possible role states (Fig. 3.10, top): Active, Deactivating, and
Inactive. Fach state defines which conversation roles and behaviors can be initiated
and how many concurrent conversation roles and behaviors there can be.

In the Active state, all conversation roles can be played and all behaviors can
be executed. In the Deactivating state, no new conversation roles or behaviors can
be started, but there can still be active conversation roles and behaviors. In the
Inactive state there can be no active conversation roles or behaviors.

Using these three role states, a possible life cycle of the Vmi Retailer role can be
as follows (Fig. 3.10): creating a retailer role puts it in the Inactive state, activating
the role puts it in the Active state, initiating the deactivation behavior puts it in
Deactivating state, and after all interactions and behaviors have terminated, the
role returns to the Inactive state.

[all behaviors and conversations terminated]
@édestroy initiate
Inactive activate Active deactivation
tcreate behavior

Figure 3.10: A possible life cycle for the Vmi Retailer role based on three role
states.

Deactivating

T UML20
X

The Macodo model does provide any concepts for conversation states and behavior
states. The motivation for this, is that while roles are specific to the Macodo model,
conversations and behaviors, used in real systems, are often application specific and
can take many different forms. As a result, introducing a general concept of state
for conversations and behaviors would limit the applicability of the Macodo model.
When concretely modeling conversations and behaviors, using the architectural
views, or implementing organizations using supporting middleware, application-
specific notions of state can be introduced.

3.3.2 Organization Dynamics

Collaborations are typically not static. Collaborations can be set up and destroyed,
and participants can join and leave, execute new behaviors, and start new
conversations. To support this type of adaptability, the Macodo model defines a
set of basic organization dynamics:

66 THE MACODO MODEL

¢ Creating and destroying organizations. Organization can be created
and destroyed. Destroying an organization destroys all roles, behaviors and
conversations within the organization.

e Creating and destroying roles. Roles can be created and destroyed.
Creating a role assigns the rights and responsibilities to a specific actor in a
particular organization. The actor and organization of a role cannot change
during the lifetime of the role. Destroying a role terminates all behaviors of
the role.

o Evolving role states. The state of a roles can evolve. Once changed, the
behavior and conversation constraints defined by the role state apply. A role
is always in one state.

e Initiating and Terminating Conversations. Conversations can be
initiated and terminated. Roles can only play conversation roles that are
available in their current state.

o Initiating and Terminating Behaviors. Behaviors can be initiated and
terminated. Roles can only execute behavior available in their current state.

3.3.3 Capability

Actors can play roles, roles can play conversation roles and execute behavior, and
behaviors can also realize conversation roles. Defining roles and behaviors with
explicit references to each other or to conversations creates dependencies. These
dependencies can can limit reuse and modularity. To address this problem, the
model introduces the abstraction of capability.

A capability describes the requirements to play a role, play a conversation role,
or execute a behavior. In a concrete system, these requirements could translate
to a set of required and provided interfaces, and a corresponding usage protocol.
Capabilities can be used as an intermediate to describe the dependencies between
the different collaboration concepts. There are three types of capabilities (Fig. 3.11).

Conversation roles require a conversation capability to be played. Behaviors require
a behavior capability to be executed. Behaviors, however, can also provide one
or more conversation capabilities. This allows behaviors to realize conversation
roles. A behavior providing a certain conversation capability can thus play any
conversation role that requires this capability. This allows a behavior to be reused
with different types of conversations.

A role requires a role capability. This capability specifies the requirements to play
a role and is defined as a set of conversation capabilities (one for each conversation
role the role can play that is not realized by a behavior) and a set of behavior
capabilities (one for each behavior the role can execute). Actors can provide such
a role capability. This means that they are capable of playing the conversation

ADDITIONAL ABSTRACTIONS 67

Actor provides » 0. ROIG.' . 174 requires Role
Capability
‘0--* ‘o..*
. . ke
Conversation |o.* Behavior y
Capability Capability E
i i
core
requires A provides A requil"es A abstraction
Conversation .
Behavior additional
Role abstraction

Figure 3.11: Conversation roles require a conversation capability to be played.
Behaviors require a behavior capability to be executed, but can also provide
conversation capabilities to realize certain conversation roles. A role requires a
role capability, which can be provided by an actor. This role capability consists of
the conversation capability for each conversation role the role can play that is not
realized by a behavior, and the behavior capability for each behavior the role can
execute.

roles of the role, and executing the behaviors of the role. Actors providing a
role capability can play any role requiring this capability. This avoids any direct
dependency between actors and roles.

Example. The Vmi Retailer role requires a role capability, which consists of a
conversation capability and a behavior capability (Fig. 3.12). This capability is
provided by three actors, allowing them to play the Vmi Retailer role.

The different conversation roles require a conversation capability. The Client
conversation role of the Inventory Reporting Conversation, for example, requires
the Client Capability.

The Call-Off Behavior requires one behavior capability and provides two
conversation capabilities. The Caller Capability allows the Call-Off Behavior
to play the Caller conversation role of the Call-Off Conversation. The Consumer
Capability allows the Call-Off Behavior to play the Consumer conversation role of
the Consumption Reporting Conversation. Note that the Call-Off Behavior can be
reused with any conversation that has conversation roles requiring the provided
conversation capabilities.

THE MACODO MODEL

68
«Actor» «Actor» «Actor»
Carrefour Carrefour Carrefour
Leuven Heverlee Bierbeek

V4 v

Y

«Role Capability»
Vmi Retailer Capability

«Behavior Capability»
Call-Off Capability

«Conversation Capability»
Inventory Reporting-
Client Capability

«Behavior Capability»
Call-Off Capability

«Behavior»
Call-Off Behavior

/N , \
/ A\
’ \
Il D/ \
. . Conversation Capability»
«Role» «Conversation Capability» « -
Vmi Retailer Role CallOff-Caller R Consumptlon
o eporting-Consumer
Capability Capability
«Conversation Capability» «Conversation Capability» “Con\gg?]a;ﬁ:qgggabmty»
Inventory Reporting- CallOff-Caller Reporting-Consumer
Client Capability Capability e
A Cag/abnny
/	\
1 1 1
. . «Conversation Role»
«Conversation Role» «Conversation Role» : ;
Inventory Reporting Call-Off Conversation Consg:)nn;zlt;org al‘?’ii;:]ortlng
Conversation.Client Conversation.Caller T adp— :
A---- B A----- B
> Q > >
3 Macodo core capability A provides A requires
concept capability B capablility B

Figure 3.12: An example of actors, roles, behaviors, and conversation roles requiring

and providing capabilities.

CONCLUSIONS 69

3.4 Conclusions

This chapter presented a conceptual model for dynamic collaborations. It introduced
a set of collaboration abstractions that define the vocabulary for Macodo and
provide a foundation for the subsequent chapters. The model, however, is not
intended to be used directly by developers. Actual modeling is done using the
Macodo architectural views.

The core abstractions of the model are organization, actor, role, conversation,
and behavior. Organizations define reusable collaborations as a set of roles and
conversations between these roles. Actors represent entities in the environment
capable of playing roles. Fach role defines a coherent set of rights and responsibilities
in the organization. These rights and responsibilities can range from executing
behaviors to participating in conversations with other roles.

Apart from the core abstractions, the model introduced three additional concepts.
The concept of role state and organization dynamics allow to better describe
the adaptability of individual roles and collaborations. The concept of capability
allows to decouple actors, roles, behaviors, and conversations to improve reuse and
modularity of collaborations.

Chapter 4

Macodo Architectural Views

Chapter 3 introduced a conceptual model for dynamic collaborations and defined
a set of collaboration abstractions independent of design and implementation
concerns. This chapter presents a set of architectural views that allow to use
these abstractions to design, document, and reason about collaborations in terms
of software elements. Each architectural view introduces a set of architectural
modeling abstractions that reify the collaboration abstractions at architectural level.
The next chapter (Chapter 5) presents a middleware infrastructure that provides a
platform to implement service collaborations, designed in the architectural views,
using standard Web service technology.

4.1 Introduction

Software architecture plays an important role in the development process of software
systems [17]. Tt provides a way to deal with complexity and it serves as a vehicle
of communication with stakeholders for mutual understanding and negotiation.
Software architecture manifests the earliest set of design decisions and provides the
main structures to realize both the required functionalities and quality attributes.

The documentation of software architecture is a key element in the successful
development of complex software systems. This documentation can range from
informal sketches to formal notations, and is typically structured as a set of
architectural views [139, 4, 84]. A view is a representation of a set of system
elements and the relationships associated with them. Each view takes a specific
perspective on the system with respect to a particular set of concerns. It only
shows those parts of the system that are relevant to addressing these concerns.
This allows to manage complexity and provides a way to communicate specific
architectural decisions to relevant stakeholders.

71

72 MACODO ARCHITECTURAL VIEWS

This chapter introduces a set of architectural views that allow to design and
document collaborations in terms of software elements. Each architectural view
introduces a set of architectural modeling abstractions that reify the collaboration
abstractions of the Macodo model at architectural level. The motivation, or
architectural drivers, for these views are derived from the problem statements of
this thesis:

o Functionality. One of the primary drivers is the ability to express and reason
about collaboration functionality.

e Managing Complexity and Separation of Concerns. When designing
collaborations, several concerns need to be documented. Each view should
provide a different perspective on collaborations and focus on specific concerns.

o Understandability and Expressibility. By providing modeling abstractions
for collaborations, views can allow architects and other stakeholders to
express and reason about collaboration qualities and concerns in terms of
collaboration concepts (e.g., representing availability in terms of roles or
relating performance to specific actors).

e Reuse. To promote modular design, views should provide mechanisms to
decompose complex collaborations into reusable building blocks.

e Modifiability and Runtime Adaptation. Collaborations have to be easy to
modify, both at design time and runtime. Collaborations can be created and
destroyed and participants can join and leave. Views should provide ways to
promote modifiability and document runtime adaptation.

o Conceptual Integrity. Conceptual integrity is about achieving a unified theme
or vision in the design of a system at all levels [17], and has been considered
one of the most important considerations in the design of a system [22]. Views
should allow to document collaborations in a uniform way at different levels
of abstraction.

Based on these drivers we present three architectural views for Macodo:

o Organization Module View (Sect. 4.2). The Organization Module
View is a Module View that describes the collaborations in a system in terms
of implementation units. It promotes modularity, reuse, and modifiability,
by decomposing collaborations into reusable organization modules, and by
expressing commonalities and variations among these modules.

o Organization & Actor View (Sect. 4.3). The Organization & Actor
View is a Component & Connector (C&C) View that identifies and describes
the main actors in a system and the organizations between them. Actors are
represented as components and organizations as connectors encapsulating
complex collaborations. The Organization & Actor View allows to express

INTRODUCTION 73

and reason about runtime qualities of collaborations at the highest level of
abstraction.

* Role & Conversation View (Sect. 4.4). The Role & Conversation View is
a C&C View that identifies the main roles inside an organization, their
behaviors, and the conversations between the roles. Roles are represented as
components, conversations as connectors encapsulating reusable interactions,
and behaviors as sub-components of role components. The Role &
Conversation View can be used to refine the internal architecture of an
organization connector. It provides abstractions to model behaviors and
interactions as separate concerns, and allows to describe runtime qualities
and adaptation of collaborations in detail.

To design and document the architecture of a complete system, developers will
need to combine the Macodo views with other existing architectural views. The
deployment of collaborations, for example, can be described using normal allocation
views [84].

To define each type of Macodo view, this chapter follows the style guide proposed
by Bass et al. [84]. A style guide provides a manual on how to use a type of view.
It starts by introducing and describing the possible elements and relations that can
occur in a view. Elements are the architectural building blocks that can be used in
the view. Relations are the possible associations between elements that allow them
to work together to realize actual functionality and quality of a system. Next, the
style guide defines a set of constraints and rules that apply to the elements and
relations of a view in order to create a valid instance of a view. Finally, the guide
describes what the view is for, what type of notation can be used, and how it relates
to other types of views. Each view is also illustrated with concrete examples from
the supply chain management case. An extended example of a view documentation
can be found in Appendix A.

Overview. Section 4.2, 4.3, and 4.4 describe the style guide for each Macodo view.
Section 4.5 discusses how to document an actual instance of a Macodo view.

74 MACODO ARCHITECTURAL VIEWS

4.2 Organization Module View

The Organization Module View is a Module View that defines the principle
implementation units of the collaborations in a system and the relations between
them. Types of organizations, roles, conversations, and behaviors are represented as
modules (Fig. 4.1). Capabilities of roles, conversations, and behaviors are mapped
to interfaces that are required and provided by these modules.

Organization Module Role Module

Conversation

Module Behavior Module

Role Module

A A
[j [j B B
>
0]
x
organization role conversation behavior e dule A | dule A
dule module module module organization module role modu'e
mo uses role module B and uses behavior
conversation module C module B

Figure 4.1: Types of organizations, roles, conversations, and behaviors can be
mapped to modules. Left: An organization module uses a set of role modules and
conversation modules. Right: A role module uses a set of behavior modules.

4.2.1 Elements, Relations and Their Properties
Elements

Organization Module. An organization module represents the implementation
unit of a specific collaboration type. It defines a set of possible roles and
conversations, and depends on a set of role modules and conversation modules
(Fig. 4.1, left). These dependencies are represented by the ‘uses’-relation, which is
explained below.

Role Module. A role module models the implementation unit of specific role type.
It specifies a coherent set of responsibilities within an organization and depends
on a set of behavior modules, which represent the behaviors of the role (Fig. 4.1,
right).

ORGANIZATION MODULE VIEW 75

Conversation Module. A conversation module represents the implementation
unit of a specific conversation type. It defines a reusable type of interaction, which
can be used by one or more organization modules.

Behavior Module. A behavior module models the implementation unit of a
specific behavior type. It specifies a reusable unit of role functionality that can be
used by roles modules.

Interfaces of Elements

At architectural level, the concept of capability can be used to group the interfaces
of the different modules. Each conversation and behavior capability defines a pair
of interfaces. A role capability becomes a set of these interfaces (Fig. 4.2). The
documentation of such interfaces can include a business protocol that defines how
to use the interfaces.

Role Capability

Conversation Capability Behavior Capability
Conversation Participant Behavior Actor
Interface Interface Interface Interface

O @ O 0O (e

role behavior conversation interface capability A consists of
capability capability capability capabilities B and C

Figure 4.2: Capabilities can be used to group the interfaces of different modules.

A conversation capability defines a conversation interface and a participant interface.
Requiring a conversation capability translates to using the participant interface
and realizing the conversation interface. Providing a conversation capability means
to realize the participant interface and to use the conversation interface. Similarly,
a behavior capability defines a behavior interface and an actor interface. Using
this concept of capability we can define the interfaces of each module as a set
of required and provided capabilities. Organization modules, however, have no
explicit interfaces.

The interfaces of a role module can be modeled as a required role capability and
a set of provided conversation capabilities (Fig. 4.3, left). This means, the role
module realizes a set of conversation and behavior interfaces, which can be used

76 MACODO ARCHITECTURAL VIEWS

by the actor of the role, and uses a set of participant and actor interface, which
can be realized by the actor of the role (Fig. 4.3, right). To play conversation
roles, the role module also realizes a set of participant interfaces, and uses a set of
conversation interfaces.

Role Capability
Conversation Capability Behavior Capability
Role Capabi"ty Conversation Participant Behavior Actor
Interface Interface Interface Interface
1 T
N \ / 7/
N \ , %
N A / 7
N \ / ’
Role Module Role Module
! \
I \
! \
! \
! \
I \
v T
v AV}
: Conversation Participant
Convers_a_tlon Interface Interface
Capability ! —
Conversation Capability

A—{>B A——=B A--{>B A--->B
>
gg A provides A requires A realizes A uses
capability B capability B interface B interface B

Figure 4.3: The interfaces of a role module can be modeled as a required role
capability and a set of provided conversation capabilities.

The interfaces of a conversation module can be defined as a set of required
conversation capabilities (Fig. 4.4). These capabilities correspond to the
conversation roles of the conversation.

The interfaces of a behavior module can be modeled as a required behavior capability,
and a set of provided conversation capabilities (Fig. 4.5). The provided conversation
capabilities allow the behavior to play one or more conversation roles.

Relations

Uses. The uses relation is a form of the depends-on relation [17]. Modules can
use other modules. Module A uses module B, if A depends on the presence of a
correctly functioning B to satisfy its own requirements.

ORGANIZATION MODULE VIEW 7

Conversation Capability key
Conversation - —
Capability e || Fintereee! A—>B
N Wi .
= Al A requires
\ ! capability B

A-->B A-->B

Conversation Conversation A realizes A uses
Module Module interface B interface B

Figure 4.4: The interfaces of a conversation module can be modeled as a set of
required conversation capabilities.

. Behavior Capability
Behavior Bohavi "
HR ehavior ctor
Capablllty ‘ Interface Interface ‘
N il
= Al
\ 7
\ !
\ /
\ /
Inventory key
Reporting Behavior Module
Behavior A—>B A—>8B
, \ A provides A requires
/ | capability B capability B
! \
/ \
1 \
= = A--{>B A-->>B
Conversation Conversation Participant A realizes A uses
Capability interface B interface B
Conversation Capability

Figure 4.5: The interfaces of a behavior module can be modeled as a required
behavior capability and a set of provided conversation capabilities.

78 MACODO ARCHITECTURAL VIEWS

Uses Interface. The uses interface relation is a form of the uses relation for
interfaces. Modules can use specific interfaces. Module A uses interface C, if A
depends on the presence of a correctly functioning realization of interface C to
satisfy its own requirements.

Interface Realization. The interface realization relation is a form of the
generalization relation. Module A realizes interface B, if it correctly implements
interface B.

Capability Provision. The capability provision relation is a combination of the
uses interface relation and the interface realization relation. Module A provides
behavior capability B, if A realizes the actor interface and uses the behavior
interface of capability B. Module A provides conversation capability C, if A realizes
the participant interface and uses the conversation interface of C.

Capability Requirement. The capability requirement relation is also a combina-
tion of the uses interface relation and the interface realization relation. Module
A requires behavior capability B, if A uses the actor interfaces and realizes the
behavior interface of capability B. Module A requires conversation capability C, if
A uses the participant interface and realizes the conversation interface of C.

4.2.2 Constraints

The following constraints apply to the elements and relations of the Organization
Module View:

e An organization module can use a set of role modules and conversation
modules. It cannot be involved in any interface realization, capability
provision, or capability requirement relation.

¢ A role modules can use a set of behavior modules. It always requires one role
capability, consisting of a set of behavior and conversation capabilities, and
it can provide a set of conversation capabilities.

e A conversation module can require a set of conversation capabilities.

e A behavior module always requires one behavior capability and can provide
a set of conversation capabilities.

4.2.3 What the Organization Module View Is For

The Organization Module View shows how the collaborations in a system are
structured in terms implementation units. Architects can use the Organization

ORGANIZATION MODULE VIEW 79

Module View to identify the responsibilities of different modules and to document
and organize the interfaces of these modules in terms of provided and required
capabilities. Such information can be used by developer of organizations and
developers of actors, but also by managers, testers, and maintainers who want to
understand the system.

In addition, the Organization Module View allows to express and reason about
particular collaboration qualities:

¢ Modularity. Architects can decompose complex collaborations in a set of
organization modules, role modules, conversation modules, and behavior
modules, each with their specific responsibilities. This allows architects,
developers, and managers to better grasp the system and can reduce design
and implementation faults.

¢ Reusability. Organization modules, role modules, conversation modules
and behavior modules can be defined as reusable building blocks. To further
promote reuse, architects can express commonalities and variations among
these modules. This information is useful to designers and implementers.
Reuse of existing modules and code can increase productivity.

4.2.4 Notation

The Organization Module View can be described using a graphical notation
(Fig. 4.6). The graphical notation is mainly used for the primary presentation. It
gives a visual representation of the different modules inside a system.

4.2.5 Relation to Other Views

Organization modules can be mapped to organization connectors in the
Organization & Actor View (Sect. 4.3). Role modules, conversation modules,
and behavior modules can be mapped to role components, conversation connectors
and behavior components in the Role & Conversation View (Sect. 4.4).

80

MACODO ARCHITECTURAL VIEWS

<organization-
<role-module>
module>
<conversation- <behavior-
module> module>

<conversation-
capability>

<role-capability>

<behavior-
capability>

Modules

Modules are represented as follows:

- organization modules: white rounded rectangle

- role modules: white rectangle

- conversation modules: light gray rounded
rectangle

- behavior modules: dark gray rectangle

Capabilities

Capabilities are represented as rounded
rectangles with a gray border. Interfaces of a
capability are not shown graphically. Role
capabilities are white, conversation capabilities
are light gray, and behavior capabilities are
dark gray.

<organization-module>

<role-module>

Figure 4.6: The elements of the graphical notation for the Organization Module

View.

<behavior-
<role-m le>
ole-module TEsliEs
<conversation-
module>
<module> <capability>
<module> <capability>

Uses Relation

The uses relation is represented by
placing the module being used inside
the other module. For example, to
represent an organization using a
role module and conversation
module, the role module and
conversation module are placed
inside the organization module.

Capability Requirement and
Provision Relation

The capability requirement
relation is represented by a line
with an open arrow head.

The capability provision relation
is represented by a line with a
closed arrow head.

ORGANIZATION MODULE VIEW 81

4.2.6 Examples

The supply chain case introduced two types of supply chain collaborations: a VMI-
based supply chain (Fig. 2.8, p. 39) and a CMI-based supply chain (Fig. 2.9, p. 40).
Both collaboration types can be modeled as an organization module: the Vmi
Organization and Cmi Organization (Fig. 4.7). Each organization module uses a set
of role modules and conversation modules. The role modules Warehouse Role and
Transporter Role, and the conversation modules Forecasting Conversation, Inventory
Reporting Conversation, Call-Off Conversation, and Transport Conversation are
used by both organization modules.

Conversation module Inventory Reporting Conversation requires two conversation
capabilities, Inventory Capability and Client Capability, one for each of its
conversation roles (Fig. 4.8).

The Warehouse Role module requires the Warehouse Role Capability and provides a
set of Conversation Capabilities such as Inventory Capability (Fig. 4.9). This allows
the role to realize the Inventory role of the Inventory Reporting Conversation. The
Warehouse Role module also uses a set of behavior modules, such as the Inventory
Reporting Behavior and the Call-Off Fulfillment Behavior.

The Inventory Reporting Behavior module requires the Inventory Reporting
Behavior Capability and provides the Inventory Capability, allowing the behavior
to realize conversation roles that require this capability (Fig. 4.10).

82

Vmi Organization

Vmi Vendor Role

Warehouse Role

Vmi Retailer Role

Transporter Role

Vmi Retailer HQ

Role
. d Inventory h
Forecasting Reporting Call-Off
Conversation S Conversation
%

Vmi Cg]espuor?t?gg)n Transport
Replenishment ST Conversation
_ /
Y
Product Return
Conversation

Cmi Organization

Cmi Vendor Role

Warehouse Role

Cmi Retailer Role

Transporter Role

Cmi Retailer HQ

Role
Forecasting ggs::t?r% Call-Off
Conversation S e Conversation
Cmi Transport
Replenishment Conversation

Figure 4.7: Two organization modules supporting two

collaborations.

MACODO ARCHITECTURAL VIEWS

key

)

organization
module

role
module

)

conversation
module

organization module A
uses role module B and
conversation module C

types of supply chain

ORGANIZATION MODULE VIEW 83

Inventory
Reporting-
Inventory
Capability

iy CallOff-Stock

Capability

CallOff-Caller

Reporting-Client

Capability Capability

Inventory Reporting Conversation Call-Off Conversation

Consumption
Reporting-
Consumer
Capability

Consumption

Consumption
Reporting-Seller

Reporting-Buyer
Capability

Capability

Consumption Reporting Conversation

Transport-Shipper Transport-Carrier

Capability Capability

Transport Conversation

>
Q
4

conversation conversation A reqyjres
apability module capability B

Figure 4.8: A subset of the conversation modules and their required conversation
capabilities.

84 MACODO ARCHITECTURAL VIEWS

Warehouse

Capability

Warehouse Role

Inventory Call-Off Fulfillment
Reporting Behavior
Behavior

Inventory

Reporting- Transport-Shipper CallOff-Stock K
Inventory Capability Capability ey
Capability
Replenishment- ProductReturn-
Stock Inventory | behavi
ili ili role enavior
Capability Capability module module

Vmi Retailer

Capability role conversation
capability apability

A——>B A—>B
Vmi Retailer Role
A requires A provides
. capability B capability B
Call-Off Behavior
A
B

Consumption | dule A
CallOff-Caller Reporting- {ises behavior
Capability Consumer module B

Capability

Figure 4.9: A subset of the role modules. Each module only shows a subset of the
behavior modules and provided conversation capabilities.

ORGANIZATION MODULE VIEW

85

Inventory
Reporting- CallOff-Stock Transport-Shipper
Inventory Capability Capability
Capability
O @ W e e
>
£
conversation behavior behavior A reqyires A proy[des
apability apability module capability B capability B

Figure 4.10: A subset of the behavior modules used by the different role modules.

86 MACODO ARCHITECTURAL VIEWS

4.3 Organization & Actor View

The Organization & Actor View is a Component & Connector View that identifies
the main actors in a running system and the organizations between them. Actors
are represented as components and organizations as connectors that encapsulate
complex collaborations (Fig. 4.11).

:Actor :Actor :Actor
Component Component Component
1

[—
T Role Port T Role Port T Role Port
Role Role Role

[:Organization Connector }

o () o —

actor role port organization role 'plays’
component connector attachment

key

Figure 4.11: Organization instances are mapped to connectors encapsulating
complex collaborations. Role instances are mapped to connector roles. Actors are
mapped to components that can be attached to these roles.

4.3.1 Element Types, Relation Types, and Properties
Elements

Actor Components. Actor components represent the actors in the system that
are able to participate in collaborations. Actor components have a set of role ports
(Fig. 4.11). These roles ports define points of potential interaction with other
actor components through an organization connector. Actor components can have
multiple role ports of the same type (e.g., when it can play the same role multiple
times).

Organization Connectors. An organization connector represents a specific
organization instance in the system. It encapsulates a complex collaboration
between a set of actor components. The roles of an organization are mapped to

ORGANIZATION & ACTOR VIEW 87

connector roles (Fig. 4.11). These roles specify how the organization connector can
be used by actor components to participate in the encapsulated collaboration. An
organization connector can have multiple roles of the same type (e.g., when a role
can be played multiple times in parallel).

Interfaces of Elements

Roles define the runtime interfaces of organization connectors. These interfaces
correspond to a required role capability. Role ports define the runtime interfaces of
actor components. The interfaces defined by a role port correspond to a provided
role capability. All interfaces of elements should be properly documented in the
element catalog (see Sect. 4.5).

Reusable Element Types

To reuse organization connectors, an explicit organization connector type can be
defined. An organization connector type defines a reusable type of organization
connector, with its possible roles and their multiplicity, and can be mapped to a
specific organization module. A running system can have multiple organization
connector instances of the same type.

Relations

Attachment. An attachment represents the ‘plays’ relation between an actor and
a role. It connects a role port of an actor component to a role of an organization
connector (Fig. 4.11). An attachment relation indicates the participation of an
actor component in the collaboration encapsulated by an organization connector.

4.3.2 Constraints

The following constraints apply to the elements and relations of the Organization
& Actor View:

e Actor components can only be attached to organization connectors, not to
other actor components.

¢ Organization connectors can only be attached to actor components, not to
other organization connectors.

e An attachment can only be made between a compatible role port and
organization role.

88 MACODO ARCHITECTURAL VIEWS

e A role port is compatible with an organization role, if the role port provides
the role capability required by the organization role.

4.3.3 Documenting Dynamics and Runtime Adaptation

At architectural level, the organization dynamics defined by the Macodo model
(see Sect. 3.3.2) can be mapped to architectural variation points that are exercised
at runtime. A variation point is a place in an architecture where a specific type of
flexibility or variability has been built in [17]. Variability is the ability to quickly
achieve change in a preplanned way through some sort of variation mechanism.
When variation is performed at runtime, the architecture is called a dynamic
architecture.

Variability is documented in the variability guide of the architectural views (see
Sect. 4.5) in which the variability applies. The Organization & Actor View can
be used to document two types of organization dynamics: creating and destroying
organizations, and creating and destroying roles.

Creating and Destroying Organizations

Mapping to Architectural Variability. Organizations are created by instantiating
an organization connector of a specific organization connector type. Organizations
are destroyed by destroying the corresponding organization connector.

Documenting the Variability. The documentation should include a list of possible
organization connector types in the system. Each type should be properly described
in the Organization & Actor View.

Creating and Destroying Roles.

Mapping to Architectural Variability. A role is created by instantiating a
connector role on an organization connector and attaching it to the role port
of the corresponding actor component. A role is destroyed by destroying the
corresponding connector role and removing the attachment.

Documenting the Variability. The documentation should include a list of possible
connector roles for each organization connector type, and the minimum and
maximum number of concurrent instances. To document this variability, the
graphical notation for an organization connector type can be used (see Sect. 4.3.5,
p. 89), or a simple textual table. This table has the following form:

ORGANIZATION & ACTOR VIEW 89

<organization-connector-type>
- <role-component-type> [<min-occur>..<max-occur>|

Each organization connector type has a set of role types and their minimum and
maximum occurrences.

4.3.4 What the Organization & Actor View Is For

The Organization & Actor View identifies and describes the main actors in a
system and the organizations between them. Architects can use the Organization
& Actor View to describe running systems in terms of concrete collaborations, and
to assign roles to specific actors, while making abstraction of organization details.
This enables managers, analysts, and users of organizations to reason about the
collaborations in the running system and the assignment of responsibilities.

In addition, the Organization & Actor View allows to express and reason about a
set of runtime qualities at a high level of abstraction:

e Collaboration qualities. Architects can express runtime qualities of
collaborations in terms of roles and actor components. Examples are
expressing availability in terms of roles or relating performance to specific
actor components. This allows developers of actor components, managers,
and analysts to reason about these qualities using collaboration concepts.

¢ Reuse. Architects can describe how organization connector types are reused
throughout a running system. This information is useful for managers,
analysts, and testers to assess the scope and impact of runtime elements.

¢« Runtime Adaptation. Architects can use the Organization & Actor View to
express organization dynamics or runtime adaptation at a high level of
abstraction, in terms of creating and destroying organization connectors and
attaching roles to actor components. Information on runtime adaptation is
useful for developers, managers, analysts, and users who want to understand
the working of the system.

4.3.5 Notation

The Organization & Actor View can be described using a graphical notation
(Fig. 4.12). The graphical notation is mainly used for the primary presentation. It
gives a visual overview of the actor components in the system and the organization
connectors between them.

A colon (:’) in the name of an element indicates that the element is an instance of
a certain component or connector type. The part before the colon represents the
name of the instance. The part after the colon represents the type.

90 MACODO ARCHITECTURAL VIEWS

Actor Component

<name>:<type> An actor component is represented as a

— rectangle. Role ports are shown as little squares

L T <role-port> (with a name) on the border of the actor
component.

Organization Connector

<role> <role> . . .
An organization connector is represented as a
<name>:<organization-connector-type> rounded rectangle. Roles are shown as little
<role> circles (with a name) on the border of the

organization connector.

Organization Connector Type
<role> [min..max] <role> [min.maxj L D€ nNOtation can also be used to represent
at ot organization connector types. A type has no
- " > .
erganizafion-gonnector-ype instance name, and for each role there can be

<role> [min..max] a range indicator to define the minimum and
maximum number of occurences.

'Plays' Attachment

<name>:<type>
I The attachment of an organization role to a role
<port> port is represented by a line that connects the
organization role with the role port.

<role>

(<name>:<organization-connector-type>)

Figure 4.12: The elements of the graphical notation for the Organization & Actor
View.

ORGANIZATION & ACTOR VIEW 91

4.3.6 Relation to Other Views

The Organization Module View (Sect. 4.2) shows the implementation units for an
organization connector. The Role & Conversation View (Sect. 4.4) can be used
to refine the internal architecture of an organization connector. Every role of an
organization connector is refined as a role component.

4.3.7 Examples

The supply chain case described a set of concrete collaborations (Fig. 2.7, p. 38).
To support these collaborations, we can structure the architecture of our system
using actor components and organization connectors (Fig. 4.13). The different
supply chain partners, participating in the collaborations, are represented as actor
components. The collaborations between the supply chain partners are realized
by a set of organizations connectors. The actor component of each participating
supply chain partner is attached to a corresponding organization role.

Since there can be multiple organization connectors of the same type, we define a
set of organization connector types (Fig. 4.14). Each organization connector type
encapsulates a specific type of collaboration. Multiple organization connectors can
be instantiated of the same type.

The organization connector types can be easily mapped to the organization modules
we defined before (see Fig. 4.7, p. 82). This type of information should be
documented in the mapping between views:

Element in Element in
Organization & Actor View Organization Module View

Vmi Organization Vmi Organization Module
Cmi Organization Cmi Organization Module

Runtime Adaptation. The 4PL in our supply chain case has the ability to
dynamically create and destroy organizations and roles. This type of dynamics
is documented in the variability guide of a view. It contains a list of possible
organization connector types in the system, and defines the possible roles for each
type of organization connector. So far there are two possible organization connector

types:

e Vmi Organization

e Cmi Organization

Each organization connector type has a set of possible roles:

92 MACODO ARCHITECTURAL VIEWS
X Carrefour Carrefour Carrefour .
P&G: Leuven: Heverlee: Bierbeek: Carrefour HQ:
] [[[]
Vmi
Vmi Vmi Vmi Vmi Customer
Vendor Retailer Retailer Retailer HQ
orgA : Vmi Organization
Warehouse Transporter
L L
B-Logistics: DHL:
[[
Warehouse Transporter
orgA : Cmi Organization
Cmi Cmi Cmi Cmi Cmi
Vendor Retailer Retailer Retailer Customer
HQ
L [[[L
. . Delhaize Delhaize Delhaize . i
Unilever: Leuven: Heverlee: Kessel-Lo: Delhaize HQ:
. -
Q
X
actor role port organization role 'plays’
component connector attachment

Figure 4.13: An example of an Organization & Actor View showing two organization

connectors attached to a set of actor components.

ORGANIZATION & ACTOR VIEW 93

ke
Vmi Vendor [0..1] Vmi Retailer [0..*] Vmi Customer HQ [0..1] y

Vmi Organization
organization

connector type

Warehouse [0..1] Transporter [0..1]
role
Vmi Vendor [0..1] Vmi Retailer [0..%] Vmi Customer HQ [0..1]
Cmi Organization [min..max]
min and max
number of
Warehouse [0..1] Transporter [0..1] occurences

Figure 4.14: An example of organization connector types for two types of supply
chain collaborations. Each organization connector type defines a set of organization
roles and their multiplicity.

Vmi Organization Cmi Organization

- Vmi Vendor [0..1] - Cmi Vendor [0..1]

- Warehouse [0..1] - Warehouse [0..1]

- Vmi Retailer [0..%] - Vmi Retailer [0..%]

- Vmi Retailer HQ [0..1] - Vmi Retailer HQ [0..1]
- Transporter [0..1] - Vmi Retailer HQ [0..1]

The same information was already defined using the graphical notation in Fig. 4.14,
p- 93.

Using the possible variation points, the 4PL can define an application-specific
organization management logic that creates and destroys organization connectors
and roles (Fig. 4.15).

94 MACODO ARCHITECTURAL VIEWS
-Sj >
:Simple > UML 2.0
Management x
Logic
] orgA:
———create——® Vmi Organization
Connector
| . . .
create(actor = Carrefour Leuven)———————p> .leRRetaller
‘ ole
|
|
| |
L |
- ‘ ‘
destroy | g

é X

destroy4>D

Figure 4.15: A simple management logic creates and destroys an organization

connector and role.

ROLE & CONVERSATION VIEW 95

4.4 Role & Conversation View

The Role & Conversation View is a Component & Connector View that refines
the internal architecture of an organization connector in terms of roles, behaviors,
and conversations between roles. Roles are mapped to components, behaviors to
sub-components of role components, and conversations to connectors between role
components (Fig. 4.16). The notation in Fig. 4.16 is only used to illustrate the
mapping of Macodo concepts to architectural abstractions. An alternative and
recommended notation for the Role & Conversation View is presented in Sect. 4.4.5.

4.4.1 Elements, Relations, and Their Properties
Elements

Role Components. A role component represents a specific role instance inside
an organization connector. It mediates the actions of a particular actor component
with those of the rest of the organizations. Role components have two types of
ports: an actor port and a set of conversation ports (Fig. 4.16). The actor port
allows the role component to interact with the actor component that ‘plays’ the
role. Conversation ports allow the role component to interact with other role
components through conversation connectors. Role components always have one
actor port and can have multiple conversation ports of the same type, allowing a
role component to have parallel conversations of the same type.

Conversation Connectors. A conversation connector represents a specific
conversation in an organization connector. It encapsulates an interaction between
a set of role components. The conversation roles of a conversation are mapped to
connector roles (Fig. 4.16). These connector roles specify how the conversation
connector can be used by role components to participate in the encapsulated
interaction. An conversation connector can have multiple conversation roles of the
same type (e.g., when a conversation role can be played multiple times in parallel).

Behavior Components. Behavior components represent a behavior that is
executed by a role component. It encapsulates the execution of a specific
role functionality. A behavior component has two types of ports: an actor
port and a set of conversation ports (Fig. 4.16). The actor port allows the
behavior component to interact with the actor component of the encapsulating role
component. Conversation ports allow a behavior component to realize some of the
conversation ports of the encapsulating role component. Actor components always
have one actor port and can have multiple conversation ports of the same type.

96 MACODO ARCHITECTURAL VIEWS

Role Role Role
P x x
[~ Actor Port [~ Actor Port 7 Actor Port
L L L
:Role Component :Role Component :Role Component
]
Conversation Port Conversation Port Conversation Port
Conversation Role Conversation Role Conversation Role
:Conversation Connector
:Organization Connector

! Actor Port
:Role Component \7‘(‘
|
(! :
ﬁ Actor Port : ,‘—‘ Actor Port
L] | L
|
:Behavior I :Behavior
Component l Component
|
| [
| W Conversation Port
|
|
|
|
|
|
| |
LI conversation Port L Conversation Port
> |:| D
[0
x .
component connector component connector attachment interface
port role delegation

Figure 4.16: Roles are mapped to components, conversations to connectors
that encapsulate reusable interactions, and behaviors to sub-components of role
components. The notation in this diagram is only used to illustrate the mapping

of Macodo concepts.

ROLE & CONVERSATION VIEW 97

Interfaces of Elements

Conversation roles define the runtime interfaces of conversation connectors. These
interfaces correspond to a required conversation capability. Actor ports and
conversation ports define the runtime interfaces of role components and behavior
components. The interfaces defined by an actor port of a role component correspond
to a required role capability. The interfaces defined by an actor port of a behavior
component correspond to a required behavior capability. Interfaces of conversation
ports correspond to a provided conversation capability. All interfaces of elements
should be properly documented in the element catalog (see Sect. 4.5).

Properties of Elements

Role States. Role components are always in a specific role state. This state is
documented as an additional property of a role component. The state of a role
component constraints the number and type of conversation ports and behavior
components. Role states are documented in the variability guide (see Sect. 4.4.3).

Initiating and Participating Conversation Roles. Conversation roles have a
property indicating whether they are an initiator or participant of the interaction
encapsulated by the conversation connector.

Behavior Component Creation. Behavior components have a property that
defines how they are created. There are three options: by the actor of the
role, through a conversation, or by the role itself. This is also documented in the
variability guide.

Reusable Element Types

To reuse role components, conversation connectors, and behavior components,
explicit component and connector types can be defined. Such types define the
number and type of component and connector ports, and can be mapped to specific
role modules, conversation modules, and behavior modules. A running system can
have multiple component and connector instances of each type.

Relations

Attachments. An attachment represents the ‘plays’ relation between an organiza-
tion role and a conversation role. It connects a conversation port of a role component
to a conversation role of a conversation connector. An attachment relation

98 MACODO ARCHITECTURAL VIEWS

indicates the participation of a role component in the interaction encapsulated by
a conversation connector.

Interface Delegations An interface delegation delegates the interfaces of one port
to the interfaces of an other port. This allows to refine the ‘internal’ architecture
of a component. In the Role & Conversation View, interface delegation is used
for delegating conversation ports of role components and actor ports of behavior
components.

¢ Delegating Conversation Ports of Role Components. From an
external view, the conversation port of a role component provides a
conversation capability. Internally, however, we need to define how to realize
these capabilities. This can be done in two ways. A first option is to delegate
the conversation port to the actor port of the role component. This delegates
the act of providing the conversation capability to the actor of the role. To
be valid a valid delegation, the conversation capability should be part of
the role capability. A second option is to delegate the conversation port to
the conversation port of a behavior component. This makes the behavior
component responsible for providing the actual conversation capability.

e Delegating Actor Ports of Behavior Components. The actor port of a
behavior component requires a behavior capability. To provide this capability,
we use the interface delegation relation to delegate the actor port of the
behavior component to the actor port of the encapsulating role component.
This means that the actual behavior capability has to be provided by the
actor of the role. To be a valid delegation, the behavior capability should be
part of the role capability.

4.4.2 Constraints

The following constraints apply to the elements and relations of the Role &
Conversation View:

e Role components can only be attached to conversation connectors, not to
other role components.
e A role component is always in a specific role state.

¢ Conversation connectors can only be attached to role components, not to
other conversation connectors, and cannot appear in isolation.

e An attachment can only be made between a compatible conversation port
and conversation role.

e A conversation port is compatible with a conversation role, if the actor port
provides the conversation capability required by the conversation role.

ROLE & CONVERSATION VIEW 99

e An interface delegation can only be defined only between two compatible
component ports. Ports are compatible if the capabilities of the delegated
port is a subset of the capabilities of the target port.

e A conversation port of a role component can only be delegated to the actor
port of the role component, or to a conversation port of an encapsulated
behavior component.

e The actor port of a behavior component can only be delegated to the actor
port of an encapsulating role component.

e Actor ports of role components, and actor ports and conversation ports of
behavior components cannot be attached to any connector in this view.

4.4.3 Documenting Dynamics and Runtime Adaptation

Organization dynamics and runtime adaptation can be documented in the variability
guide of a view (as discussed in Sect. 4.3.3). The Role & Conversation View can
be used to document three types of organization dynamics: evolving role states,
initiating and terminating conversations, and initiating and terminating behaviors.

Evolving Role States

Mapping to Architectural Variability. The state of a role is changed by changing
the state of the corresponding role component.

Documenting the Variability. The documentation includes the following ele-
ments:

o A list of possible role states for each type of role component.

o A specification of each role state in terms of conversation and behavior
constraints. For each type of conversation port and behavior component, these
constraints define whether new instances can be created and the maximum
number of parallel occurrences. For behaviors, the state also indicates how the
behavior can be created (i.e., by the actor of the role, through a conversation,
or by the role itself).

o Additional constraints on how the state of a role component can change.
Individual role states can be defined using a textual table. The possible role states

and the constraints on how this state can change can be documented using a UML
state diagram [193].

100 MACODO ARCHITECTURAL VIEWS

Initiating and Terminating Conversations

Mapping to Architectural Variability. A conversation is initiated by creating a
new conversation connector between a set of role components. This also creates a set
of conversation ports on the role components and attachments to the conversation
roles of the conversation connector. A conversation is terminated by terminating
the corresponding conversation connector and removing possible attachments.

Documenting the Variability. The documentation includes the following ele-
ments:

o A list of possible conversations between the different types of role components.
A possible conversation is defined by a conversation connector type and a
mapping of possible conversation roles to conversation ports of role component

types.

e Dependencies on other variation points. The creation of conversation
connectors and the attachment to role components depends on the current
state of these components. These states define the type of maximum number
of parallel conversation ports.

The documentation of this variability can be done using a textual notation or using
the graphical notation of the Role & Conversation View (see Sect. 4.4.5, p. 101).
In the textual notation, possible conversations are specified by a conversation
connector type and a mapping of conversation roles to conversation ports of role
component types as follows:

<conwversation-connector-type>
- <conwversation-role> — <role-component-type>.<conversation-port>

Each conversation connector type has a set of conversation roles that are mapped
(=) to the conversation port of a specific role component type.

Initiating and Terminating Behaviors

Mapping to Architectural Variability. A behavior is initiated by instantiating a
new behavior component in a role component. Only behavior components available
in the current state of the role component can be instantiated. A behavior is
terminated by terminating the corresponding behavior component.

Documenting the Variability. This type of variability is documented in the
possible role states of a role component (see Sect. 4.4.3).

ROLE & CONVERSATION VIEW 101

4.4.4 What the Role & Conversation View Is For

The Role & Conversation View identifies the main roles inside an organization,
their behaviors and responsibilities, and the conversation between these roles.
Architects can use the Role & Conversation View to refine the internal architecture
of organization connectors. This information is useful for developers of organization
connectors, but also for developers of actor components, managers, maintainers,
and testers who need to understand how organization connectors work.

In addition, the Role & Conversation View allows to express and reason about
runtime qualities of collaborations in more detail:

e Collaboration Qualities. Architects can express runtime qualities of
collaborations in detail, using role components, conversation connectors
and behavior components. Examples are expressing robustness in terms of
behaviors, or describing throughput in terms of conversations. This allows
developers of actor components, managers, and analysts to reason about
these qualities using detailed collaboration concepts.

e Reuse. Architects can describe how role component types, conversation
connector types, and behavior component types are reused within organization
connectors. This information is useful for managers, analysts, and testers to
assess the scope and impact of runtime elements.

¢« Runtime Adaptation. Architects can use the Role & Conversation View to
express organization dynamics or runtime adaptation in detail, by showing
how the state of individual roles can evolve, and which conversation connectors
and behavior components can be instantiated. Information on runtime
adaptation is useful for developers, managers, analysts, and users who want
to understand the inner workings of an organization connector.

4.4.5 Notation

The notation used to introduce the elements of this view (Fig. 4.16) easily leads
to cluttered diagrams. To describe more complex organization connectors, an
alternative graphical notation can be used (Fig. 4.17 and Fig. 4.18). This notation
is mainly used for the primary representation. It gives a visual representation of how
an organization connector is structured as a set of role components, conversation
connectors, and behavior connectors.

A colon (‘) in the name of an element indicates that the element is an instance
of a certain component/connector type. The part before the colon represents the
name of the instance. The part after the colon represents the component/connector

type.

102 MACODO ARCHITECTURAL VIEWS
Behavior Component
<name>:<beh-type> A behavior component is represented as a white
rectangle with a name and a type. Conversation
<beh-conv-port> ports are shown as little squares (with a name)
inside this rectangle. The actor port is not shown.
— Horizontal waves (‘=’) can be used to indicate that
- — — — | certain parts of the behavior component are omitted.
<| >:<beh-type> < >:<beh-type> . . .
ramemhenpe ramezhenpe The notation can also be used to indicate how a
<beh-conv-port> <beh-conv-port> behavior component is created. A wide border

indicates the behavior component is created by the
actor of the role. A conversation port with a cross

| (°x’) indicates the behavior component is created by
" | an incoming interaction. A plain border and no

marked conversation port indicates the behavior is
created by the role itself.

<name>:<role-type>
(<role-state>)

Role Component

<role-conv-port>

A role component is represented as a vertical lane with
a name, a type, and a state. Conversation ports are
shown as little squares (with a name) inside this
rectangle. The actor port is not shown.

Horizontal waves (‘=’) can be used to indicate that

(<conv-role>)

<name>:<conv-type>

certain parts of the role component are omitted.

Conversation Connector

(<conv-role>) A conversation connector is represented as a
horizontal line with a name and a type.
Conversation roles are shown as squares on this
line with a name between round brackets.
Initiator roles are indicated by a wide border.

Figure 4.17: The elements of the graphical notation for the Role & Conversation

View (part 1).

ROLE & CONVERSATION VIEW 103

Interface Delegation

<name>:<role-type>
(<role-state>)

The delegation of an actor port of a behavior component
to and actor port of a role component is shown by placing

<name>:<beh-type> . ..
the behavior component inside the role component.

<beh-conv-port> - <role-conv-port>

The delegation of a conversation port of a role
component to a conversation port of a behavior
component is shown by placing the conversation port of
the behavior component over the conversation port of the
Iiii —— role component. The names of both conversation ports
are separated by a hyphen (‘-").

<name>:<role-type>
(<role-state>) Attachment

‘“}'5;31“(;{;‘;"> The attachment of a conversation port to a conversation

role is represented by placing the conversation role of a
conversation connector over the conversation port of a
role component.

<name>:<beh-type>

<beh-conv-port> - <role-conv-port>
(<conv-role>)

Figure 4.18: The elements of the graphical notation for the Role & Conversation
View (part 2).

104 MACODO ARCHITECTURAL VIEWS

Actor ports of role components and actor ports of behavior components are omitted,
since their visual representation does not contribute to the content of this view.
Despite this simplification, all elements and their ports have to be properly defined
in the element catalog of a view.

4.4.6 Relation to Other Views

The Role & Conversation View can be used to define the inner-architecture of an
organization connector defined in the Organization & Actor View (Sect. 4.3). Every
role component corresponds to an organization role of the organization connector.
Creating an organization connector role in the Organization & Actor View (Sect. 4.3)
corresponds to the creation of a role component in the Role & Conversation
View. Destroying an organization connector role in the Organization & Actor
View corresponds to destroying a role component in the Role & Conversation
View, which also destroys all encapsulated behavior components. The Organization
Module View (Sect. 4.2) shows the implementation units for role components,
conversation connectors, and behavior components.

4.4.7 Examples

The organization connectors defined in the Organization & Actor View (see Fig. 4.13,
p. 92) can be further refined. The organization connector orgA:VmiSupplyChain,
for example, can be refined as a set of role components and a set of conversation
connectors between them (Fig. 4.19)!. Each role component can also be refined
with a set of behavior components.

Since there can be multiple role components, conversation connectors, and behavior
components of the same type, we can define a set of component and connector types.
These types can be easily mapped to the role modules, conversation modules, and
behavior modules defined in the Organization Module View (see Fig. 4.8, Fig. 4.9,
and Fig. 4.10, p. 85). This type of information is typically documented in the
mapping between views:

Element in Element in
Role & Conversation View Organization Module View
Vmi Vendor Vmi Vendor Role Module
Warehouse Warehouse Role Module
Inventory Reporting Behavior Inventory Reporting Behavior Module

Inventory Reporting Conversation Inventory Reporting Conversation Module

1The example only shows one Vmi Retailer role component.

ROLE & CONVERSATION VIEW

105

:Vmi Vendor :Warehouse :Vmi Retailer [*] :Vmi Retailer HQ :Transporter
(active) (active) (active) (active) (active)
forecastPort forecastPort
(Vendor) (Customer)
:Forecasting
Conversation
:Inventory Reporting
Behavior
invPort invPort-invPort invPort
(Client) (Inventory) (Client)
:Inventory Reporting
Conversation
:Call-Off Fulfillment :Call-Off Behavior
Behavior
callOffPort-callOffPort callOffPort-callOffPort
(Stock) (Caller)
:Call-Off
Conversation
transportPort-transportPort transportPort
(Shipper) (Carrier)
‘Transport
Conversation
consPort consPort-consPort consPort
(Seller) (Consumer) (Buyer)
| :Consumption Reporting
Conversation

>
2 conversation initiating participating conversation
connector conversation conversation creates behavior
role role component

—

role
component

behavior actor creates
component behavior
component

Figure 4.19: An example of a Role & Conversation View showing the refinement of
an organization connector (orgA:VmiSupplyChain). The organization connector
is realized by five role components and a set of conversation connectors between
them. (Note: the example only shows one Vmi Retailer role component.)

106 MACODO ARCHITECTURAL VIEWS

The actual behavior of a conversation connector or behavior component can be
documented using BPMN diagrams (Fig. 4.20 and 4.21). In this notation, we use
vertical lanes to represent connector roles, and component ports. This allows us to
document the behavior of the conversation connector or behavior component in
terms of messages send to or received from these connector roles and component
ports.

Call-Off Conversation Transport Conversation
Stock Caller Shipper Carrier
= = & Receive = Send
Send Call-Off Receive Transport » Transport
Order Call-Off Order Order
EI = - Send = Receive
Receive Send Shipment |« Shipment
Delivery Info Delivery Info info Info
= . EI & Receive = Send
Send Receive Delivery » Delivery
Delivery & Delivery Receipt Receipt
Report Report
OO —
>
()
X connector .
(vertical lanes represent start end control send message receive message
connector roles) activity activity flow to connector role from connector role

represented by lane represented by lane

Figure 4.20: The documentation of the behavior of two conversation connectors
using BPMN. Vertical lanes represent connector roles.

Runtime Adaptation. The roles of the VmiSupplyChain and CmiSupplyChain
organization connector types have a set of possible states. For the Vmi Retailer
role component, the possible states are defined in a table (Fig. 4.22; top). How
these states can change is documented in a UML state diagram (Fig. 4.22, bottom).

ROLE & CONVERSATION VIEW

107

Call-Off Fulfillment Behavior

actorPort

]
Send Call-Off

callOffPort

& Receive

4

Order

v

= Send
Transport
Order Request

& Receive

Call-Off
Order

Transport
Order

(]
Send

v

& Receive
Delivery
Report

Delivery Info -

transportPort

= Send
Transport
Order

v

& Receive
Shipment
Info

= Send
Delivery
Receipt

key

component
(vertical lanes represent
component ports)

SNe

start end
activity activity

—»

control
flow

send message
to component port
represented by lane

receive message
from component port
represented by lane

Figure 4.21: The documentation of the behavior of a behavior component using a
BPMN diagram. Vertical lanes represent component ports.

108 MACODO ARCHITECTURAL VIEWS
role state
Active Deactivating Inactive
creation max occur. creation max occur. creation max occur.

CEEEER callOffPort yes * no * no 0

[P consPort yes * no * no 0

behaviors | Call-Off Behavior | actor * no * no 0

D UML 20 [no more behavior components or conversation ports]

Figure 4.22: Top: The possible role states of the Vmi Retailer role component.
Bottom: A state diagram defining how these states can change.

Each organization connector type enables a set of possible conversations between the
different role component types. The Vmi Organization enables several conversations.
The Transport Conversation connector is used between both the Warehouse and
Transporter role, and the Vmi Vendor and Transporter role (see Appendix A).:

Forecasting Conversation

- Vendor — VmiVendor.forecastPort

- Customer — VmiRetailerHQ.forecastPort
Inventory Reporting Conversation

- Inventory — Warehouse.invPort

- Client — VmiVendor.invPort

- Client — VmiRetailerHQ.invPort
Call-Off Conversation

- Caller — VmiRetailer.callOffPort

- Stock — Warehouse.callOffPort
Transport Conversation

- Shipper — Warehouse.transportPort

- Carrier — Transporter.transportPort
Consumption Reporting Conversation
- Consumer — VmiRetailer.consPort

- Buyer — VmiRetailerHQ.consPort

- Seller — VmiVendor.consPort
Transport Conversation

- Shipper — VmiVendor.tranportPort

- Carrier — Transporter.transportPort

ROLE & CONVERSATION VIEW 109

The conversations in this table can also be represented using the graphical notation
of the Role & Conversation View (see Fig. 4.19, p. 105).

Using the possible states of the Vmi Retailer role component, the management
logic of the 4PL (see Fig. 4.15, p. 94) can be further refined (Fig. 4.23).

:Simple q>;- UML 2.0
Management X
Logic
— orgA:
create P Vmi Organization
Connector

! :Vmi Retailer
create(actor = Carrefour Leuven)————— P>
(‘) Role Component

acti\;/atc

g
deac‘tivate4blm
"]
X

destroy
|

|
destroygbi
X

Figure 4.23: A simple management logic creates and destroys an organization
connector and role component, and evolves the state of the role component.

110 MACODO ARCHITECTURAL VIEWS

4.5 Using Macodo Views

Using the style guide of a Macodo view, concrete instances of this view type can
be created to document the actual architecture of a system. An example of such a
view documentation can be found in Appendix A. The documentation of a view
instance has five sections:

e A Primary Presentation shows the elements and relations in the view, typically
represented in a graphical way. It is the starting point for documenting a
view. The primary presentation may consists of more than one diagram. For
example, a diagram for each type of organization in the system. This chapter
provided a graphical notation for each type of Macodo view.

e An Element Catalog details at least those elements depicted in the primary
presentation. It should include a description of all elements and relations
in the view, and a specification of the element interfaces and behaviors.
Interfaces of Macodo architectural elements can be documented like standard
interfaces. Interfaces only need to be documented once. For example, to
document the interfaces of actor ports and conversation ports, the element
catalog can refer to interfaces defined in an Organization Module View.
To document the behavior of Macodo architectural elements, semi-formal
notations such as UML sequence diagrams and activity diagrams [193] and
BPMN [154], or formal notations such as Z [189] and Alloy [123] can be used.

e A Context Diagram shows how the system or portion of the system depicted
in the view relates to its environment.

e A Variability Guide shows how to exercise any variation points that are part
of the architecture shown in the view. This section can be used to document
both design time variability as well as runtime dynamics and adaptation.
This chapter discussed how the variability guide of the Organization &
Actor View and the Role & Conversation View can be used to document
runtime adaptation of organization connectors, role components, conversation
connectors, and behavior components.

¢ A Rationale section should explain the main architectural decisions that are
made in the view.

In addition to the documentation of each view, the complete documentation of
an architecture also contains elements such as an overview, a mapping between
views, and general rationale. The mapping between views is of particular interest
to document how the different elements of each view are related to each other.

CONCLUSIONS 111

4.6 Conclusions

In this chapter we presented a set of architectural views to design, model, and
document collaborations in terms of software elements. Each view introduces a set of
architectural modeling abstractions that reify some of the collaboration abstractions
introduced in Chapter 3. The different views address the main architectural drivers
derived from the problem statements of this thesis:

o Functionality. The three Macodo views allow to document collaboration
functionality in terms of collaboration abstractions such as role components
and conversation connectors.

e Managing Complezity and Separation of Concerns. The different Ma-
codo views provide modeling abstractions to model participants respon-
sibilities, individual behavior, and interactions as separate concerns.

o Understandability and Fxpressibility. Each Macodo view allows architects
and other stakeholders to express and reason about particular collaboration
qualities and concerns in terms of collaboration concepts.

e Reuse. The Organization Module View allows to decompose collaborations in
terms of modules and to express commonalities and variations among these
modules. The Organization & Actor View and Role & Conversation View can
be used to express reuse of different connector and component types.

e Modifiability and Runtime Adaptation. The Organization & Actor View and
Role & Conversation View can be used to focus on different aspects of
runtime adaptation. The Organization & Actor View allows to express the
creation and termination of collaborations, and the addition and removal
of participants. The Role & Conversation View allows to reason about
the concurrency of interactions within a collaboration, and to express the
dynamics of individual roles in terms of evolving role states.

e Conceptual Integrity. FEach Macodo view reifies a set of collaboration
abstractions. Clear mappings between the elements of different Macodo views
allow to describe a system in a uniform way.

Chapter 5

Proof of Concept Middleware
Infrastructure

In this chapter we present a proof of concept middleware infrastructure for Macodo.
The scope of this middleware is defined by two main goals. First, we want to provide
a proof of concept platform to implement collaborations that are designed using
the Macodo architectural views, presented in Chapter 4. Second, we want to show
how Macodo can be integrated in the current technology stack without the need for
new standards. This is done by mapping the Macodo collaboration abstractions to
concrete Web service technology and supporting them as programming abstractions.

This chapter does not introduce any new concepts to Macodo. To fully understand
the technical exposition in this chapter, a basic knowledge about Web service
technologies, introduced in Chapter 2, is required.

5.1 Introduction

Middleware is commonly defined as the software layer that sits between the
operating system and the applications on each site of a distributed system [137].
In a broader sense, it can be seen as the set of software services that enables the
interoperation of distributed software components running on different machines and
operating systems. Middleware typically offers a set of programming abstractions
to facilitate the development of complex distributed systems. Good abstractions
are key to successful software engineering [86, 210, 138]. Abstractions can hide low
level details of hardware, networks and distribution, and provide developers access
to functionality that otherwise would have to be implemented from scratch. But
middleware is also infrastructure. For abstractions to be useful, they need good

113

114 MIDDLEWARE INFRASTRUCTURE

supporting infrastructure, providing a comprehensive platform for developing and
running complex distributed systems [12].

In this chapter we present the Macodo middleware, a middleware that supports
the Macodo abstractions at implementation level. The middleware is based on
a mapping of the Macodo architectural modeling abstractions to concrete Web
service technologies. A discussion of these technologies can be found in Sect. 2.5,
p- 26.

Middleware Mapping in a Nutshell

An informal overview of the middleware mapping is shown in Fig. 5.1. Conversation
and behavior capabilities are mapped to partnerLinkTypes and can be defined
using the Web Services Description Language (WSDL). A role capability becomes
a set of these partnerLinkTypes. Providing and requiring a capability translates to
the ability to expose and use a set of Web services.

Application / Actor Component

Provided Behavior Provided Role
Capability [0..*] Capability [0..*]
Management
Service

Actor Conversation
1 " 1Role [0..*

Conversation 1 f

Role [0..7] .
Conversation
Connector

Organization

Connectors & Role Behavior
Components Component

Conversation
Port [0..4]

Macodo Middleware

-] L) o O O

external BPEL partner middleware middleware
3 partner process Link infrastructure managed
X data
SOAP/HTTP

Xis deployed on binding
the middleware Web T
infrastructure €0 SeIVICe \veb service

client

Figure 5.1: An informal overview of the mapping of Macodo architectural modeling
abstractions to Web service technology.

Actor components can then be mapped to components or systems that interact with
the conversation connectors, behavior components, and the Macodo middleware
using SOAP over HTTP. The role port of an actor component translates to a set of

IMPLEMENTING ORGANIZATIONS 115

provided behavior capabilities and conversation capabilities. Actor components can
also use a management service, exposed as a Web service by the Macodo middleware,
which allows to register actor components in the Macodo middleware and manage
the life-cycle of organization connectors and role components.

Conversation connectors and behavior components are defined and executed as
BPEL (Business Process Execution Language) processes. Conversation roles
of conversation connectors, and actor ports and conversation ports of behavior
components become partnerLinks of these BPEL processes (Fig. 5.1). Concrete
instances of conversation connectors and behavior components become process
instances that execute on a BPEL engine.

Organization connectors and role components do not have a direct mapping to Web
service technology. They become data structures maintained by the middleware.
The Macodo middleware uses these data structures to mediate the interactions
between actor components, conversation connectors, and behavior components
according to the current organizations and roles.

Overview. Section 5.2 discusses how to implement organizations using the
Macodo middleware. Next, Sect. 5.3 covers how to concretely deploy, manage
and use organization connectors and role components. Sect. 5.4 gives a high-level
overview of a proof of concept middleware architecture and discusses a prototype
implementation. Section 5.5 concludes and discusses possible extensions to the
proof of concept middleware and the current prototype implementation.

5.2 Implementing Organizations

In terms of implementation units, the Macodo middleware can be seen as a software
layer that is used by a set of application layers (Fig. 5.2). The application layers can
be divided in an actor layer and an organization layer. The actor layer is allowed
to use the organization layer and consists of the actors in a system and other
application specific modules. The organization layer contains a set of application
specific organization modules, role modules, conversation modules, and behavior
modules, and is allowed to use the Macodo middleware layer. The architectural
design of the organization layer can be described using the Organization Module
View (Sect. 4.2).

Using a bottom-up approach, this section discusses how each module of the
organization layer can be implemented in the Macodo middleware using XML
(Extensible Markup Language), WSDL, and WS-BPEL. This results in a set of
implementation packages. An overview of these packages is shown in Fig. 5.3.
The complete XML schema definitions for the different modules can be found in
Appendix C.1. The implementation of the actor layer is outside the scope of this
thesis.

N

© ®w N o o«

116 MIDDLEWARE INFRASTRUCTURE

key
Actor Layer
o | |
g 3 v
© | Organization Layer
c | layer
2 i Organization Conversation
_S | Modules Modules
.)
& 1
: Behavior Role Modules layer
! Modules 4
! segment
- V A-->B
. Ais allowed
Macodo Middleware Layer to use B

Figure 5.2: The Macodo middleware can be seen as a software layer that is used
by an application specific organization layer and actor layer.

5.2.1 Specifying Capabilities

Conversation and behavior capabilities can be specified using XML and WSDL.
A capability is defined in an XML file, which contains a name, a reference to a
WSDL definition, and a mapping of the capability interfaces to portTypes defined
in the WSDL definition. An example of a behavior capability for the Inventory
Reporting Behavior and a conversation capability for the Inventory conversation
role is given below.

<behaviorCapability name="InventoryReportingCapability"
interfaceSpecification="InvRepBehCap.wsdl"
actorPortType="actorPortType"
behaviorPortType="behaviorPortType"/>

<conversationCapability name="InventoryReportingInventoryCapability"
interfaceSpecification="InvCap.wsdl"
participantPortType="participantPortType"
conversationPortType="conversationPortType"/>

IMPLEMENTING ORGANIZATIONS

<conversation-capability>.jar

[<conversation-capablity>.xml }

[<interface-specifiction>.wsdl }

<conversation-module> jar

{ <conversation-module.xml> }

<conversation-protocol-
specifiction>.bpel

<role-module>.jar

{ <role-module>.xml }

117
<behavior-capability>.jar
{ <behavior-capablity>.xml }
{ <interface-specifiction>.wsdl }
<behavior-module>.jar
(<behavior-module.xml> }
key
[<behavior-specifiction>.bpel J
package
<organization-module>.jar D
(<organization-module>.xml }
file

Figure 5.3: The organization layer can be specified in the Macodo middleware

using XML, WSDL, and WS-BPEL.

5.2.2 Implementing Conversation Modules

A conversation module defines a specific conversation connector type. It consists
of an XML file, which defines the key properties of the conversation connector
type, and a BPEL definition, which specifies the conversation protocol as a BPEL

process. The XML file has the following elements:

e The name of the conversation connector type.

e A reference to the BPEL definition that specifies the conversation protocol.

e A set of possible conversation roles. Each conversation role has a name,
a required conversation capability, a minimum and maximum number of
parallel occurrences, and a reference to a partnerLink of the BPEL definition.
The latter maps the conversation role to a concrete partnerLink of the BPEL

definition.

118 MIDDLEWARE INFRASTRUCTURE

An example of a conversation module is given below, showing the specification
of a conversation connector type for the Inventory Reporting Conversation. The
conversation has two possible conversation roles, Inventory and Client:

<conversationConnectorType name="InventoryReportingConversation"
protocolSpecification="InvRepConversation.bpel">
<conversationRole name="Inventory"

conversationCapability="InventoryReportingInventoryCapability"

minOccur="1" maxOccur="1" initiator="true"
partnerLink="Inventory"/>
<conversationRole name="Client"

conversationCapability="InventoryReportingClientCapability"

minOccur="1" maxOccur="unbounded" initiator="false"
partnerLink="Client"/>
</conversationConnectorType>

The BPEL definition specifies the conversation protocol. It has a partnerLink for
each conversation role. This partnerLink implements the conversation interface
defined in the partnerLinkType of the corresponding conversation capability, and
uses the participant interface. A graphical overview (using BPMN) of such a BPEL
definition is given in Fig. 5.4.

5.2.3 Implementing Behavior Modules

A behavior module defines a specific behavior component type. It consists of an
XML file, defining the key properties of the behavior component type, and a BPEL
definition, specifying the actual behavior as a BPEL process. The XML file has
the following elements:

e The name of the behavior component type.
o A reference to the BPEL definition that specifies the actual behavior.

e An actor port. The actor port has a required behavior capability and a
reference to a partnerLink of the BPEL definition.

e A set of possible conversation ports. Each conversation port has a name,
a provided conversation capability, and a reference to a partnerLink of the
BPEL definition.

These elements allow to map the actor port and conversation ports of the behavior
component to concrete partnerLinks of the BPEL definition. An example of a
behavior module is given below, specifying a behavior component type for the
Inventory Reporting Behavior. The behavior has an actor port and one conversation
port, allowing the behavior to play the Inventory conversation role.

o N e G A W N e

IMPLEMENTING ORGANIZATIONS 119

Inventory (Conversation Role)
7 A
| |
: \
c |
> 22 :
2ED Is\fgr?tlgre Distribute Collect
229 y Report Feedback
Zz &) g Report
O \ \ A
| | |
; ; }
|
V4 V4 S
Client (Conversation Role)
=) ® O —» o
> [+]
2
partner process collapsed initial end control message
sub-process receive activity flow flow
activity

Figure 5.4: The BPEL definition for the inventory reporting conversation,
represented in BPMN.

<behaviorComponentType name="InventoryReportingBehavior"
behaviorSpecification="InvRepBehavior.bpel">
<actorPort behaviorCapability="InventoryReportingCapability"
partnerLink="ActorPort"/>
<conversationPort name="InventoryReportingPort"

conversationCapability="InventoryReportingInventoryCapability"

partnerLink="InventoryReportingPort"/>
</behaviorComponentType>

The referenced BPEL definition specifies the actual behavior. It has one partnerLink
for the actor port and one for each conversation port. The partnerLink for the
actor port implements the behavior interface defined in the partnerLinkType
of the corresponding behavior capability, and uses the actor interface. The
partnerLinks for each conversation port implement the participant interface and
use the conversation interface of the corresponding conversation capabilities. A
graphical overview (using BPMN) of such a BPEL definition is given in Fig. 5.5.

120 MIDDLEWARE INFRASTRUCTURE

ActorPort
v ANV AN AN
| | | | |
| | | | | |
A v Ay
225 v
< £ > Receive Generate Process
§ q%% Request @ Collect Data Report Feedback
Eym [+] EN
\[/
| |
! 1
\V &
InventoryReportingPort (Conversation Port)

Figure 5.5: The BPEL definition for the inventory reporting behavior, represented
in BPMN (key can be found in Fig. 5.4).

5.2.4 Implementing Role Modules

A role module defines a specific role component type. A role module is specified in
an XML file containing the following elements:

e The name of the role component type.

e A set of possible conversation ports. Each conversation port has a name and
a provided conversation capability.

e A set of possible behavior types. Each behavior type has a name and a
behavior component type, defined in a behavior module.

e A set of interface delegations. Each interface delegation delegates a
conversation port of the role component to a conversation port of one of the
behavior types. Actor ports are automatically delegated. These delegations
do not have to be specified.

e A set of possible role states. Each role state defines a set of conversation
constraints and behavior constraints. A conversation constraint defines
whether a specific type of conversation port can be created and the maximum
number of concurrent instances. A behavior constraint defines whether a
behavior component of a specific behavior type can be created and the
maximum number of concurrent instances.

There can be multiple behavior types for the same behavior component type.
This allows to reuse behavior component types (e.g., to apply different behavior
constraints to each behavior type). Actor ports of role components do not need

© 0 N o U A W N e

W oW W NN NN NNNNNRE B R e e R e e e
MR O © 0N O O N RO ©® KN U A ®N =R O

IMPLEMENTING ORGANIZATIONS 121

to be specified, since they can be derived automatically as the aggregation of all
actor ports of behavior types and all conversation ports of the role component
that are not delegated to behavior types. An example of a role module for the
Warehouse role is given below (only some of the interface delegations and role
states are shown). The role module defines a role component type with three types
of conversation ports and two behavior types:

<roleComponentType name="Warehouse">
<conversationPort name="InventoryPort"
conversationCapability="InventoryReportingInventoryCapability"/
<conversationPort name="StockPort"
conversationCapability="CallOffStockCapability"/>
<conversationPort name="ShipperPort"
conversationCapability="TransportShipperCapability"/>

<behaviorType name="InventoryReportingBehavior"
behaviorComponentType="InventoryReportingBehavior"/>

<behaviorType name="CallOffFulfillmentBehavior"
behaviorComponentType="CallOffFulfillmentBehavior"/>

<interfaceDelegation behaviorType="InventoryReportingBehavior"
behaviorConversationPort="InventoryPort"
roleConversationPort="InventoryPort"/>

<roleState name="Inactive">
<conversationConstraint conversationPort="InventoryPort"
creation="false" maxOccur="0"/>
<conversationConstraint conversationPort="StockPort"
creation="false" maxOccur="0"/>
<conversationConstraint conversationPort="ShipperPort"
creation="false" maxOccur="0"/>
<behaviorConstraint behaviorType="InventoryReportingBehavior
creation="false" maxOccur="0"/>
<behaviorConstraint behaviorType="CallOffFulfillmentBehavior"
creation="false" maxOccur="0"/>

"

</roleState>

</roleComponentType>

5.2.5 Implementing Organization Modules

An organization module defines a specific organization connector type. An
organization module is specified in an XML file (Fig. 5.3) containing the following
elements:

e The name of the organization connector type.

© W N U A W N e

NN NN N NN NN R R E R R e R R e e
© 0 N O O s W N R O © KN O oA W N = O

30
31

122

MIDDLEWARE INFRASTRUCTURE

e A set of possible role types. Each role type has a name, a role component
type (defined in an external role module), and the minimum and maximum
number of parallel occurrences.

o A set of possible conversation types. A conversation type specifies a particular
type of conversation between specific role types of the organization. Each
conversation type has a name, a conversation connector type (defined in an
external conversation module), and a set of role mappings. A role mapping
maps a conversation role of the conversation connector type to a conversation
port of a specific role type of the organization connector.

There can be multiple role types for the same role component type, and multiple
conversation types for the same conversation connector type. This allows to reuse
role component types and conversation connector types within an organization
connector type. An example of an organization module for the Vmi Organization is
given below (only some of the conversation types are shown). The module defines
an organization connector type with six role types and a number of conversation

types:

<organizationConnectorType name="VmiOrganization">

<roleType
<roleType
<roleType
<roleType

<roleType

name="Vendor" roleComponentType="VmiVendor"
minOccur="0" maxOccur="1"/>

name="Warehouse" roleComponentType="Warehouse"
minOccur="0" maxOccur="1"/>

name="Retailer" roleComponentType="VmiRetailer"
minOccur="0" maxOccur="1"/>

name="RetailerHQ" roleComponentType="VmiRetailerHQ"
minOccur="0" maxOccur="1"/>

name="Transporter" roleComponentType="Transporter"
minOccur="0" maxOccur="1"/>

<conversationType name="CallOffTransportConversation"”

conversationConnectorType="TransportConversation">

<roleMapping conversationRole="Shipper"

roleType="Warehouse"
conversationPort="ShipperPort"/>

<roleMapping conversationRole="Carrier"

roleType="Transporter"
conversationPort="CarrierPort"/>

</conversationType>
<conversationType name="ReplenishmentTransportConversation"”

conversationConnectorType="TransportConversation">

<roleMapping conversationRole="Shipper"

roleType="Vendor"
conversationPort="ShipperPort"/>

<roleMapping conversationRole="Carrier"

roleType="Transporter"
conversationPort="CarrierPort"/>

</conversationType>

</organizationConnectorType>

[SA B VR R

[SA BV R R

DEPLOYING AND USING ORGANIZATIONS 123

In the above example, the Transport Conversation connector type is used twice.
Once between the Warehouse role and the Transporter role, and once between the
Vendor role and the Transporter role. This means, that in an actual organization
connector of the Vmi Organization type, roles of type Warehouse and Vendor can
initiate a Transport Conversation with the Transporter role.

5.3 Deploying and Using Organizations

Once defined, the modules of the organization layer, can be loaded in the
Macodo middleware. The management service of the Macodo middleware can then
be used to register actors and to manage the life-cycle of concrete organization
connectors and role components. Once a role has been assigned to an actor, the
actor can use the role. The management service of the Macodo middleware is
exposed as a Web service, but illustrated as a Java interface in this section. A
complete specification of the Management Service can be found in Appendix D.

5.3.1 Registering Actors

In order to assign actors to roles in organizations, actors first needs to be registered
in the middleware together with their provided capabilities. The management
service provides a set of operations that allow to register actors and provided
capabilities of actors:

ActorID registerActor (String name) ;

void registerProvidedCapability (ActorID actorComponentID,
ProvidedCapability providedCapability)
throws NoSuchActorException, InvalidCapabilityException;

A provided capability is defined as a reference to a conversation or behavior
capability, and a concrete endpoint for the participant or actor interface of the
capability. An example is given below:

<providedCapability ID="pc35" capability="InventoryCapability">
<endpointReference address="http://acme.com:8080/capabilities”
portType="InventoryCapabilityPort"
serviceName="InventoryCapabilityService"/>
</providedCapability>

By registering provided capabilities of actors in the Macodo middleware, the
middleware knows how and where to reach the actor for each capability.

(SN VR R

® N o

-

Bow N

© o N o w

10
11
12
13
14

124 MIDDLEWARE INFRASTRUCTURE

5.3.2 Managing the Life-Cycle of Organization Connectors and
Role Components

Managing Organization Connectors

The life-cycle of organization connectors is managed using the management service
of the Macodo middleware. There are two main life-cycle operations: creating
organization connectors and destroying organization connectors:

OrganizationConnectorID createOrganizationConnector (
OrganizationConnectorType organizationConnectorType,
String name)
throws InvalidOrganizationConnectorTypeException;

void destroyOrganizationConnector (
OrganizationConnectorID organizationConnectorID)
throws NoSuchOrganizationConnectorException;

Organization connectors can only be created of organization connector types that
are loaded in the Macodo middleware. Destroying an organization connector
destroys all encapsulated role components, conversation connectors, and behavior
components.

Managing Role Components

The life-cycle of role components is also managed using the Macodo management
service. There are three main life-cycle operations: creating role components,
destroying role components, and changing the state of role components:

RoleComponentID createRoleComponent (
OrganizationConnectorID organizationConnectorID,
RoleType roleType,
ActorID actorlID)
throws NoSuchOrganizationConnectorException, IllegalRoleTypeException,
RoleMultiplicityException, NoSuchActorException,
InsufficientCapabilitiesException;

void destroyRoleComponent (RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

void setRoleState (RoleComponentID roleComponentID,
RoleState roleState)
throws NoSuchRoleComponentException, IllegalRoleStateException;

Role components are always created within a specific organization connector, for a
specific role type supported by this organization connector, and for a registered

[N

R VR

© o N o wu

10
11
12
13

DEPLOYING AND USING ORGANIZATIONS 125

actor that provides sufficient capabilities. Destroying a role component destroys all
encapsulated behavior components.

The state of a role component can only be changed to a state defined by the role
component type. The Macodo middleware does not enforce any state machine, this
is an application specific concern.

Once a role component is created, the actor of the role needs to be able to use the
role component. To do so, the actor can retrieve a role endpoint and the current
state of a role component:

RoleEndpoint getRoleEndpoint (RoleComponentID roleComponentID)
throws NoSuchRoleComponentException

Rolestate getRoleState (RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

A role endpoint contains all information for the actor to actually use the role, such
as, the endpoints of each behavior type and conversation type. The role state tells
the actor which conversations and behavior are available. An example of a role
endpoint is given below:

<roleEndpoint roleComponentID="rc543"
roleType="Warehouse">
<behavior behaviorType="InventoryReportingBehavior">
<endpointReference address="http://acme.com:8080/behaviors"
portType="InventoryReportingBehaviorPort"
serviceName="InventoryReportingBehaviorService"/>
</behavior>
<behavior behaviorType="CallOffFulfillmentBehavior">
<endpointReference address="http://acme.com:8080/behaviors"
portType="CallOffFulfillmentBehaviorPort"
serviceName="CallOffFulfillmentBehaviorService"/>
</behavior>
</roleEndpoint>

Example

Fig. 5.6 gives an example of an application component that uses the Macodo man-
agement service to perform a sequence of operations: (1) register an actor; (2)
register a capability of this actor; (3) create an organization connector; (4) create a
role component; (5) retrieve the endpoint of this role component. The role endpoint
is then passed to an actor component (6), which can now ‘play the role’.

126 MIDDLEWARE INFRASTRUCTURE

Actor Application Management
Component Component Service

—(3) createOrganizationConnector}E]
1 -organizationConnectorlD - - -

I

I

|
——(4) createRoleComponent !
1 - - —roleComponentID - - - - -

(5) getRoIeEndpoint—bD
& - - - - roleEndpoint- - - - - - -

E’:‘(i(ﬁ) roleEndpoint T
|

I

I

Figure 5.6: An example of an application component using the Macodo management
service to manage the life-cycle of organization connectors and role components.

5.3.3 Using Role Components

Once an actor is registered in the Macodo middleware and assigned a role component,
it can ‘play’ the role using the role endpoint. Playing a role means the actor
participates in conversations and executes behaviors that are available in the
current role state. To participate in a conversation, an actor interacts with a
conversation connector. To execute a behavior, an actor interacts with a behavior
component. Behavior components can also interact with conversation connectors,
when they realize a conversation role. These interactions can be initiated by an
actor, a conversation connector, or a behavior component.

The interactions between actor components, conversation connectors, and role
components are mediated by the Macodo middleware. All messages pass through
the Macodo middleware, which routes these messages to the correct conversation
connector, behavior component, or actor component.

In order for the Macodo middleware and for actor components to determine the
role component in whose context messages are send, all messages between the
Macodo middleware and the actor components contain additional Macodo data.
In its most simple form, this data consists of a role component ID, which uniquely
identifies the role component to which a message belongs. Macodo data can be

DEPLOYING AND USING ORGANIZATIONS 127

added as a custom SOAP header or as an additional message part®.

Example

Figure 5.7 shows an example of an actor component executing a behavior. The
actor initiates the behavior by sending the initial message to the middleware.
The middleware then creates a new behavior component and routes all messages
between the new behavior component and the actor component. Messages between
the middleware and the actor component contain additional Macodo data.

Actor Component
‘ ZA M AN
| I I |
| 1 | 1
| | |
= ! A \Vi A
s _ V ,
z S Receive Send Receive Send
S € Message A Message B Message C Message D
@ S [+] [+] [+]
Actor Macodo
Component Middleware
| |
#7 message A l
MacodoData e Behavior
——create——P»
Component
|
: message A »
I
I
B ——message B————
' message
MacodoData I
I
message C |
MacodoData L
: message C———— |
|
I
b Ejdimessage D ‘
' message
L MacodoData | ><

Figure 5.7: An example of an actor component executing behavior. Top: The
specification of a simple behavior component (key can be found in Fig. 5.4,
p. 119). Bottom: The middleware creates the behavior component and mediates
the messages.

1This option is only available when using the document style binding.

128 MIDDLEWARE INFRASTRUCTURE

5.4 Proof of Concept Middleware Architecture

In this section we present a proof of concept architecture for the Macodo middleware.
We give a high-level overview of the architecture (Sect. 5.4.1) and briefly discuss a
prototype implementation based on instrumentation (Sect. 5.4.2).

5.4.1 High-Level Component & Connector View

The core architecture consists of four component types (Conversation Container,
Behavior Container, Organization Manager and Organization Mediator) and a set
of shared data repositories (Fig. 5.8). The shared data repositories are used to
persist organization state and to synchronize the actions of different middleware
components.

Conversation containers and behavior containers host the conversation connectors
and behavior components. They are deployed on a separate BPEL engine and
have three main responsibilities: configuring conversation connectors and behavior
components; managing the life-cycle of conversation connectors and behaviors
components; and adding correct Macodo data to all messages send by conversation
connectors and behavior components. Configuring conversation connectors and
behavior components consists of binding each partnerLink (i.e., conversation roles,
actor ports, and conversation ports) to concrete Web services of participants
and actors. Managing the life-cycle of conversation connectors and behaviors
components includes checking whether they can be created given the current role
state of participants and actors. To realize these responsibilities, conversation
containers and behavior containers have access to an organization mediator
service, exposed by the organization mediator components. These organization
mediator components are responsible for mediating the interactions between actors,
conversation connectors, and behavior components, according to the current
organization connectors and role components.

The organization manager components are responsible for the management of
organization connectors and role components. They provide a management service
(discussed in Sect. 5.3) which can be used by the actor components to register
actors, and manage the life-cycle of role components and organization connectors.
Which actors or application components have access to this management service is
an application-specific concern.

To serve multiple clients in parallel, the organization manager and organization
mediator components run as stateless session beans on a Java EE server. Each
client is served by a separate bean instance. Interaction between actor components
and the different middleware components is based on SOAP over HTTP. Every
component exposes and uses a set of Web services.

The organization manager and organization mediator components use a set of
shared data repositories to store data, communicate, and synchronize their actions.

PROOF OF CONCEPT MIDDLEWARE ARCHITECTURE 129
Application / Actor Component
A y y
o v o v
«Bpel Process» «Bpel Process»
Conversation |« p{ Behavior
Connector Component
Conversation Container |}/ Behavior Container
y y
BPEL Engine
o A 4 o
«Stateless Session Bean»
oo «Stateless Session Bean»
O;\%Z:ggg?n Organization Mediator
Java EE Server
o N \
! |
|
| | Organization |
| %/Iodule Organization Process Actor !
\ : ; h
| Repository Registry Registry Registry !
' /‘
Ej | ! <—> <>
>
g component node Java logical JPA+JTA SOAP/HTTP
persistence grouping transactional &
entity persistent
read/write

Figure 5.8: A high-level overview of the Macodo middleware architecture.

130 MIDDLEWARE INFRASTRUCTURE

Interaction with these repositories is done using the Java Persistence API (JPA)
and the Java Transaction API (JTA) to ensure persistence and data consistency.
The data repositories can be divided in four repositories that each store a specific
type of data:

e The Organization Module Repository maintains the specification of the all
available organization connector types, role component types, conversation
connector types, and behavior component types that are loaded in the
Macodo middleware.

e The Organization Registry maintains the current organization connectors and
their role components. This registry also maintains the current state of role
components and references to active conversation connectors and behavior
components.

e The Process Registry maintains all data (i.e., WSDL definitions and service
endpoints) to use currently deployed conversation connector types and
behavior component types.

e The Actor Registry maintains all data on actors and their provided capabilities
that are registered in the Macodo middleware.

Rationale. Using a shared data style between the organization manager and
organization mediator components simplifies synchronization, and allows to keep
instances of middleware services stateless and short-lived. These stateless and
short-lived middleware services can be replicated and deployed on multiple servers
to improve performance and increase availability. Furthermore, the shared data
style decouples data producers and data consumers, and allows to modify existing
middleware services, or add new middleware services, without affecting the way
data is stored and maintained. By dividing the repositories in four sub-repositories,
each repository can focus on a specific type of data, to further increase separation
of concerns.

Using SOAP over HTTP for interactions between the different middleware
components and actors enables interoperability. It allows to distribute middleware
components and actors, and to deploy them on different types of platforms. For
example, conversation connectors and behavior components are deployed on a
BPEL engine, middleware services run on a Java EE server, and actors can be
deployed on any type of platform that supports SOAP over HTTP.

5.4.2 Prototype Implementation

A prototype implementation was built using Java EE and Open ESB2. The
implementation relies on the instrumentation of the BPEL definitions of

2http://openesb-community.org/

http://openesb-community.org/

PROOF OF CONCEPT MIDDLEWARE ARCHITECTURE 131

conversation connectors and behavior components. Instrumentation means that
certain activities, such as service calls and variable assignments are automatically
added or weaved into an existing BPEL definition. Instead of explicitly hosting
conversation connectors and behavior components in a container, container logic is
instrumented in the original BPEL definitions (Fig. 5.9). The resulting instrumented
BPEL definitions are directly deployed on a BPEL engine.

«Bpel Process» «Bpel Code» «Bpel Process» «Bpel Code»
Conversation Container Behavior Container
Component Logic Component Logic
‘—instrumentation— ‘—instrumentation—

«Bpel Process» «Bpel Process»

Instrumented Instrumented
Conversation Conversation
Connector Connector
deployment deployment
\\\ //

«Bpel Process» «Bpel Process»
Instrumented Instrumented
Conversation Behavior
Connector Component
BPEL Engine

Figure 5.9: A conceptual representation of the process to instrument conversation
connectors and behavior components with container logic.

Instances of conversation connectors and behavior components are now created like
normal process instances. That is, by sending messages. More specifically, when
sending a message to a conversation connector or behavior component, the message
is not send directly to the corresponding BPEL process. It is send to the BPEL
engine on which the corresponding BPEL definition is deployed. The BPEL engine
then determines whether a new process instance needs to be created, or whether
the messages needs to be send to an existing process instance. This decision is
made using message correlation (see Sect. 2.5.4). The correlation of messages in
Macodo is similar to normal correlation and is typically application-specific.

The instrumentation of conversation connectors and behavior components adds
three types of container logic: life-cycle management logic, configuration logic, and
Macodo data logic. Life-cycle management logic can be divided into registration
logic and termination logic. Registration logic is added right after the first activity

132 MIDDLEWARE INFRASTRUCTURE

of the BPEL definition (Fig. 5.10, bottom). It registers the conversation connector
or behavior component using the organization mediator service, which checks
whether the conversation connector or behavior component can be created. If
it cannot be created, the organization mediator service generates a fault, which
is passed on to the actor. If registration is successful, it returns all required
information to configure the conversation connector or behavior component.

Configuration and Macodo data logic is added right after the registration logic
(Fig. 5.10, bottom). This logic uses data retrieved from the organization mediator
service to configure all partnerLinks of the BPEL definition and to add Macodo data
to all outgoing messages. The termination logic is added after the final activity
of the BPEL definition (Fig. 5.10, bottom). Termination uses the organization
mediator service to signal that the conversation connector or behavior component
has terminated.

Example

Figure 5.11 shows a sequence diagram of the initiation of a behavior component
defined in Fig. 5.10. The actor initiates the behavior by sending the first message of
the behavior (message A). This message is intercepted by the BPEL engine, which
based on existing correlation data decides to create a new process (or behavior
component) instance. The message is then passed to the newly created behavior
component.

The container logic in the behavior component uses the Macodo data attached
to the first message to register the behavior component with the organization
mediator service. If the actor component has the correct role in the correct state,
the organization mediator service returns all required confirmation data for the
behavior component. If the behavior component cannot be created, the mediator
service returns a fault, which is passed on to the actor.

If registration is successful, the configuration and Macodo data logic in the behavior
component use the returned configuration data to fully configure the behavior
component. The behavior component can now interact with the actor component.
After the final message of the behavior component, the termination logic of the
behavior component signals the termination using the organization mediator service.

PROOF OF CONCEPT MIDDLEWARE ARCHITECTURE 133

Original BPEL defintion

Actor Component

A 7 IA

I
I
I
|
\/
Receive Send Receive Send
Message A Message B Message C Message D

Behavior
Component

Instrumented BPEL defintion

Actor Component

~ ~ ® ~

§ 5 v 5

Lherﬁg/:gﬁ?%e Send Receive Send
Message B Message C Message D

fault
[+] [+] [+]

catch illegal
behavior type fault

Configuration and Termination
Macodo Data Logic Logic

] g

I
I
I
|
\/
Receive
Message A

Registration
Logic

Instrumented Behavior
Component

Organization Mediator Service ‘

N e N e (T e 0

partner process collapsed instrumented control
sub-process collapsed flow
sub-proces
CD
~
® O ot
end activity interrupting end initial message
that throws catch of fault activity receive flow
fault activity

Figure 5.10: An example of a BPEL definition for a behavior component
instrumented with container logic.

134 MIDDLEWARE INFRASTRUCTURE
Organization
Actor) ;
BPEL Engine Mediator
Component Service
o | |
message A } }
MacodoData Behavior !
———create———Pp !
Component !
! |
| |
message A - I
MacodoData i i !
; —registerBehaviorComponent-Jw—
|
[legal behavior] : .
I <« - behaviorComponent _ | |
! Configuration !
< message B |
MacodoData :
|
| |
I I
message C ! :
MacodoData ’ message C I
| MacodoData > |
| |
I I
< message D |
MacodoData I
= | T

signalTermination—bE]
|
|

ffffffffff illegalBehaviorFault- - - - - - - - - - - - - -~
|

| X

Figure 5.11:
component.

An example of an actor component initiating an instrumented behavior

CONCLUSIONS 135

5.5 Conclusions

This chapter presented a proof of concept middleware for Macodo. The middleware
is based on a mapping of Macodo architectural abstractions to concrete Web
service technology. Each type of Macodo module can be implemented using XML,
WSDL, and WS-BPEL. A management service provided by the Macodo middleware
allows applications to register actors and to manage the life-cycle of organization
connectors and role components. This chapter also presented a proof of concept
architecture for the Macodo middleware and discussed a prototype implementation
based on process instrumentation.

Extensions to the Proof of Concept Middleware

The main purpose of the middleware presented in this chapter is to provide a proof
of concept for integrating the Macodo abstractions as programming abstractions
in the current Web service technology stack without the need for new standards.
There are some interesting directions to extend the current middleware architecture
and prototype implementation. Key extensions to the middleware architecture are:

e Supporting conversation connectors and behavior components that are not
BPEL-based. Interesting options for conversation connectors are shared-
data repositories and publish-subscribe mechanisms. Alternative behavior
components could be based on Java EE components or executable BPMN
definitions.

e Supporting the dynamic addition of Macodo modules at runtime.

e Supporting conversations in which participants are determined dynamically
at runtime. In the current middleware architecture, participants of a
conversation connector are fully determined when a conversation connector
is created and cannot change during the execution of the encapsulated
interaction. This extension, however, will make the specification and execution
of conversation connectors more complex.

o Allowing actors to explicitly select the other participants of a conversation.
In the current middleware architecture, the mapping of conversation roles
to organization roles is defined by the organization connector type at design
time. Actor components playing a role in an organization, can only initiate
predefined conversations.

Interesting extensions to the current prototype implementation include:

¢ Automating the instrumentation of conversation connectors and behavior
components. This can be done in a straight-forward manner. The current

136 MIDDLEWARE INFRASTRUCTURE

prototype relies on manual instrumentation of BPEL definitions with container
logic.

e Supporting conversation connectors with conversation roles of a higher
multiplicity. Due to our choice of Open ESB, which currently does not
provide a full implementation of the WS-BPEL 2.0 standard, conversation
role multiplicity is currently limited to one.

Chapter 6

Evaluation: A Controlled
Experiment

In this chapter, we evaluate two main contributions of this thesis: the Macodo model
and the Macodo architectural views. The evaluation consists of a study that
compares Macodo with a reference approach in the context of designing systems
that support centrally managed collaborations between a set of Web services. The
study is performed with students of a Master in Software Engineering program
from universities in Sweden and Ukraine.

6.1 Introduction
The goal of the evaluation is to address the following research question:

Do the modeling abstractions provided by Macodo:
1. reduce fault density,
2. reduce design complexity,
3. increase the level of reuse,
4. increase productivity,

compared to standard approaches for designing centrally managed
collaborations between Web services.

The objects of the study are Macodo and a reference approach. Macodo is
an approach that provides modeling abstractions for service collaborations and
supports these abstractions throughout the development cycle. The reference

137

138 EVALUATION: A CONTROLLED EXPERIMENT

approach, a representative for the current state of practice, is defined as the
following set of techniques and technologies:

« basic service-oriented architecture (SOA) design principles and architectures,
« standard Web services (i.e., WSDL and SOAP over HTTP),

o service orchestration (i.e., WS-BPEL),

o Web service repositories,

o standard process notations (i.e., WS-BPEL and BPMN).

The study takes place in the context of a master course on Web services and is
based on an elaborate pilot study. The subjects of the study are 67 students of
a Master in Software Engineering program from a university in Sweden, and two
universities in Ukraine. The experiment itself is conducted as a block subject-
object quasi-experiment. It consists of two experiment sessions, attended by all
subjects. In each experiment session, subjects have to create a design of a system
that supports a number of centrally managed collaborations between a set of Web
services, using a specific approach.

All materials used in the study can be found in an online experiment package',
including raw data and results.

Overview. The rest of the chapter discusses the study in detail, roughly following
the outline proposed in [181] to report on empirical studies. We start by describing
the experiment planning (Sect. 6.2). Next, we discuss the experiment design
(Sect. 6.2.5) and execution (Sect. 6.3). Finally, we analyze the results (Sect. 6.4)
and discuss our finding (Sect. 6.5), including potential threats to validity.

6.2 Experiment Planning

The goal of the experiment is defined in the introduction. The other three main
tasks of planning the experiment are: selecting the subjects for the experiment
(Sect. 6.2.2), creating the experimental materials (Sect. 6.2.3), and formulating
the hypotheses for the experiment (Sect. 6.2.4). The last task includes defining
the independent and dependent variables, and selecting proper metrics to measure
the dependent variables. We start by discussing the lessons we learned from an
exploratory pilot study.

Thttp://people.cs.kuleuven.be/~robrecht.haesevoets/macodo/

http://people.cs.kuleuven.be/~robrecht.haesevoets/macodo/

EXPERIMENT PLANNING 139

6.2.1 Pilot Study

The study presented in this chapter is based on an elaborate pilot study. The pilot
study had two main goals: get feedback from developers that used Macodo, and
explore opportunities for a controlled experiment.

The pilot study was performed with a group of 11 computer science master
students, and took place as part of an advanced course on software architectures for
distributed systems. During this course, students had to make two projects in teams
of two, in which the focus was on documenting a software architecture using a set of
architectural views. In one project, the architecture was created and documented
using the reference approach and standard architectural views. In the other project
the architecture was created and documented using the Macodo architectural views.

During the course and the study, we gained a lot of experience and received valuable
feedback from the students. We learned the following main lessons:

e Provide an explicit set of building blocks that the subjects can use.
In the pilot study, students came up with very diverse solutions and relied on
different technologies that were hard to compare. As a result, it was unclear
to what we were comparing (Macodo versus any other solution?). To avoid
this problem, it is important to fully constrain the solution and design space
and make choices or diversions in technology impossible.

 Have students perform the experiment in a controlled environment
(e.g., a supervised experiment session). In the pilot study, students
created their projects as a type of home assignment. To gather additional data,
we asked students to keep a log book. Students, however, were sometimes
careless in keeping the requested log book, making such data unreliable.
Furthermore, there was unavoidable communication between the different
teams related to the projects.

¢ Make the assignments concrete and enable uniform measures. The
projects of the pilot study consisted of a set of functional and quality
requirements for a particular system. Even with concrete requirements,
however, the problem was still too open, resulting in students focussing on
different aspects of the system. This made it hard to assess the correctness
of solutions and define reliable, objective, and uniform measures.

6.2.2 Subjects

Due to limited resources?, we use students of a Master in Software Engineering

program as subjects for our study. Although these students do not represent expert
software engineers, they are the next generation of software professionals and are
relatively close to the population of interest [134].

2We rely on convenience sampling. That is, the nearest and most convenient persons are
selected as subjects.

140 EVALUATION: A CONTROLLED EXPERIMENT

More specifically, the subjects are master students that follow a course on Web
services. The course takes place in the Linnaeus University in Sweden, but students
from Ukraine can also take this course. They follow the lectures using a live video
stream. In total, the subjects consists of 37 students from the Linnaeus University
in Sweden?, and 30 students from 2 universities in Ukraine*®. Since all students
have a similar background and follow the same course, we consider them as a
uniform group throughout the rest of the experiment.

6.2.3 Experimental Materials

For the experiment, we use two types of resources: an assignment and a debriefing
questionnaire. All materials can be found in the online experiment package.

Assignments

An assignment is a small project in which subjects are asked to create a design
for a system that supports a number of centrally managed collaborations between
a set of external entities. Communication between the entities and the system is
done using predefined Web services. The system can be seen as a platform that
realizes service orchestrations according to a set of predefined collaboration types.
Collaborations can be dynamically instantiated between different entities.

There are two different assignments (A and B). Having multiple assignments,
allows to have subjects solve a different assignment in multiple experiment sessions
(discussed in Sect. 6.2.5). Assignment A is based on an eHealth case in which
different health care providers have to collaborate on different types of hospital floors.
Assignment B involves a set of automated production lines in a manufacturing
company, where different resources have to collaborate to manufacture a specific
product type. Each type of hospital floor, and each type of production line, is a
collaboration type to be supported.

Both assignments have a requirements document, which has the following elements:
(1) a short problem description; (2) a set of functional scenarios to be supported, in
terms of interactions between the external Web services; and (3) a set of predefined
Web services (parnterLinkTypes) that allow the external entities to interact with
the system and vice versa.

The assignments ask for two deliverables: (1) an architecture of the system in terms
of modules, and (2) a detailed design of each module using a standard process
notation. All deliverables have to be written down using pen and paper on seven
provided answering sheets.

3Department of Computer Science - Linnaeus University (Campus Vixjé), Sweden

4System Programming Department (Institute of Computer Systems) - Odessa National
Polytechnic University, Ukraine

5Software technology department - Kharkiv National University of Radioelectronics, Ukraine

EXPERIMENT PLANNING 141

Scenario 1 Scenario 2 Scenario 3

Interaction a 12 12

Interaction b 5

Interaction c 12

Interaction d 10 10
Total FP 24 22 15

Table 6.1: The adjusted function point count (FP) for assignment A and assignment
B.

Assignment A and B have a similar level of complexity and require an equal amount
of functionality. To measure the amount of functionality in each assignment we
use the Albrecht’s approach to calculate function points [9]. Function points
are intended to measure the amount of functionality in a system described by
its specification. It can also be used as a measure for software size [72]. The
calculation of function points is based on the number of inputs and outputs of a
system and additional complexity. A detailed discussion of how function points are
calculated, can be found in Appendix D.1. The requirements of both assignments
can be divided in three main scenarios (table 6.1). Each scenario consists of two
interactions that have to be supported. Multiple scenarios can require the same
interaction. In total, each assignment has 61 function points to be supported.

To constrain the assignments and their solution space, subjects are allowed to make
a number of assumptions about the assignments and use simplified notations to
create their deliverables.

Assumptions about the Assignments. To deal with the dynamic instantiation
of predefined collaboration types, subjects can make the following assumptions
specific to each treatment:

Reference Approach

A predefined repository is available
that contains all required data on
collaborations (types, specifications,
service endpoints). A predefined Web
service can be used by the system to
query these repositories.

Macodo

Subjects only need to specify the
different types of organizations. The
instantiation of concrete organizations
is outside the scope of the assignment.

External entities are assumed to
have correct service endpoints for the
system.

External entities are assumed to
have correct service endpoints for
behavior components and conversation
connectors.

142 EVALUATION: A CONTROLLED EXPERIMENT

Simplified Notation. There are three notations used for the assignments. For
the architecture of the system in terms of modules, specific notations are provided
for the reference approach and Macodo. For the detailed design, the same
simplified business process notation, based on BPMN, is used for both the reference
approach and Macodo. This simplified process notation makes abstraction of specific
correlation mechanisms and trivial ‘assign’ activities can be omitted. Examples of
all notations can be found in Appendix D.2. A full specification of the notations
can be found in the experiment package.

Debriefing Questionnaire

In addition to the assignments, we also use a questionnaire. The purpose of the
questionnaire is to provide an alternative view on the results from the perspective
of the subjects. The questionnaire is an online form, filled out by the subjects
after each experiment session. The form consists of questions on the experience of
subjects with the experiment and the treatment that was used. These questions
cover the difficulty of using an approach, the confidence subjects have in the
correctness of their design, and the intuitivity of the approach. All questions have a
5-level response scale. The complete questionnaires can be found in the experiment
package.

6.2.4 Hypotheses and Variables

Based on the goals of the experiment, we can formulate a set of hypotheses. Each
goal is mapped to a null hypothesis to be tested, and an alternative hypothesis
to be accepted if the null hypothesis is rejected. Every hypothesis requires the
definition of a set of independent and dependent variables, and a selection of proper
metrics to measure the dependent variables. We also discuss how to handle faulty
designs.

Hypotheses Formulation

We formulate four null hypotheses (Hyp) and four alternative hypotheses (H,):

e Hyy: There is no difference in fault density between a design created using
the reference approach and a design created using Macodo.

Ho - Hfault.densityrer — Hfault.densitynrac (61)

Hg - K fault.densityres > [fault.densityprac (62)

EXPERIMENT PLANNING 143

e Hyy: There is no difference in complexity between a design created using the
reference approach and a design created using Macodo.

Hpy : Heomplexityrer — Hcomplexityrrac (63)
Hgo Hecomplexitype > Ucomplexitynrac (64)

e Hys: There is no difference in the level of reuse between a design created
using the reference approach and a design created using Macodo.

H03 P Hreuseres = Mreusenrac (65)

Hgs - Hreusepes < Hreusenrqc (66)

e Hy,: There is no difference in design productivity between using the reference
approach or using Macodo.

HO4 : MproductivityRef = HMproductivitynrac (67)

Ha4 : ,uproductivityRef < Hproductivitynrac (68)

Independent Variables

Independent variables are variables in the experiment process that can be
manipulated and controlled. In our experiment, there are three independent
variables:

e Approach: The approach used by a subject to solve an assignment. This
variable is the factor of the experiment. That is, the independent variable
that is changed to see the effect on the independent variables. This factor has
two possible values, called treatments: the reference approach and Macodo.
A specific value of a factor is also called a ‘treatment’.

e Subject: The student solving the assignment.

o Assignment: The problem to be solved by the subject (assignment A or
assignment B). Since both assignments have a similar level of complexity and
require the same amount of functionality, the assignment is not considered
as a factor but as a fixed variable. This decision is further supported by
additional statistical tests (see Sect. 6.4.3).

Dependent Variables

Dependent variables are the variables that we want to study to see effect of different
treatments (the reference approach or Macodo). For each hypothesis, we define
the corresponding independent variable and select a proper metric to measure the
effect.

144 EVALUATION: A CONTROLLED EXPERIMENT

Fault Density. Fault density is commonly defined as follows [72]:

known faults
product size

fault density = (6.9)

A fault is a mistake in a software product as the result of a human error®. A fault
is only seen by the developer. Simply counting the number of faults, however, does
not measure the impact of faults. A more precise metric is to measure the amount
of change that is required to make the design work [72].

In our experiment, we measure faults in the detailed design. In the detailed design,
subjects use the same notation for both treatments, allowing to define a uniform
measure for changes. This is not possible for the architecture of the system. A
detailed discussion of how changes are measured and the cost of changes can be
found in Appendix D.3.

There are three common ways to measure the size of a software product: length,
functionality, and complexity. These measures can be applied to specification,
design, and code [72]. We measure size in terms of functionality. Every requirement
(i.e., functional scenario) is divided into a set of function points (see Sect. 6.2.3).
Size is then measured as the total number of function points that are supported
by the design. This also allows us to use incomplete designs that do not cover all
functionality. We can then calculate fault density as follows:

changes

fault density = (6.10)

supported function points

Design Complexity. We measure complexity in the detailed design, where modules
are defined as processes. Two representative measures are: (1) activity complexity
(AC) per function point, and (2) average control flow complexity (CFC) per module.
Activity complexity (AC) is measured by counting the number activities in a module
or process [33]. AC per function point measures the amount of ‘code’ needed to
support a certain amount of functionality. Control flow complexity (CFC) also
takes splits, joins, loops, and ending and starting points into account. We use an
existing CFC metric that has some empirical validation [33, 34]. CFC per module
measures the average complexity of a module.

. . > dul AC(m)
AC t t = memoguies 6.11
per function poin # supported function points ()
CFC
CFC per module = Lom e modules (m) (6.12)

modules

6A fault is different from a failure. A failure is the departure of a system from its required
behavior. Faults can lead to failures. A failure reflects the user’s view of the system.

EXPERIMENT PLANNING 145

Level of Reuse. The level of reuse in a software system is commonly measured
as follows [82]:

lines of reused code in system

level of reuse = (6.13)

total lines of code in system

Instead of counting individual lines, reuse is typically measured per procedure or
module. A procedure or module is considered reused only if it is used by more than
one other procedure or module [82]. Given the context of our experiment, lines of
code are mapped to a representative concept in the detailed design: the activity
complexity (AC) per module [33]. The level of reuse can then be defined as:

Zm, e reused modules AC’(m)
Zm € modules AC(TTL)

level of reuse = (6.14)

To determine which modules are reused, we rely on the architecture of the system
in terms of modules, which is part of the design.

Productivity. The productivity of a programmer or designer is typically measured
as follows [72]:

implemented function points

productivity = (6.15)

person months

Since subjects create a design, we measure the function points supported by the
design. We can then measure design productivity during the experiment as follows:

supported function points

productivity = (6.16)

time spend on design

Measuring in the Presence of Design Faults

Designs are likely to contain faults, which can make it hard to decide whether a
function point is supported or not (e.g., forgetting one activity can break down
an entire scenario). As a result, faults do no only effect fault density, but also
complexity, reuse, and productivity. In addition, designs can contain modules
or parts that are not used, or do not provide any required functionality (e.g.,
since assignments are created using pen and paper, subjects can include process
definitions or left-overs that have no functionality). Taking these parts of a design
into account when measuring will skew results for all types of metrics.

To avoid these problems, we use two counter-measures: (1) we trim designs of
modules and parts that do not contribute to any required function point (these

146 EVALUATION: A CONTROLLED EXPERIMENT

parts are not used in any measurement), and (2) we correct each module in
the trimmed designs before measuring complexity, reuse, and productivity. The
concrete trimming and correction procedure is described in Sect. 6.4.1. The time
required to correct a design is not considered in the productivity measure, due to
the lack of a proper way to estimate this time.

To decide which function points are supported, it is sufficient for the reference
approach, to look at the detailed design. For Macodo, however, the architecture
contains essential elements to make the system work. Since faults are only
measured in the detailed design (due to the lack of a uniform measurement for the
architecture), we cannot just correct faults in the architecture of Macodo. Instead,
when deciding which function points are supported, we take the architecture for
Macodo ‘as is’. More concretely, if a mistake is made in the architecture of Macodo,
this part of the functionality is not supported, independent of the detailed design.

6.2.5 Experiment Design

There are two important aspects to the design of our experiment: the context of
the experiment (i.e., external constraints), and the design of the experiment itself.
We also provide a motivation for our design.

Context of the Experiment

The experiment takes place as part of a 9-week master course on Web services.
The 9-week course is split into 2 parts of 5 and 4 weeks (Fig. 6.1). In part I,
students are educated on the current state of practice for Web services, which
fully covers the reference approach. In part II, students are educated on advanced
techniques for Web services, which includes Macodo. Every part consists of one
or two weeks of lectures, two weeks of home study, and one week for evaluation.
In each part, students have to hand in an obligatory home assignment similar to
the assignments used for the actual experiment. They also receive feedback and a
model solution on these home assignments before the experiment sessions takes
place. The home assignment is the same for both parts, but students have to use
the reference approach in part I and Macodo in part II. In part I, students also
have to do a practical assignment on WS-BPEL. The experiment itself takes place
in the last week of each part. During these weeks, there is a 3 hour time slot, in
which students first receive a short test on the course material (20-30 minutes) and
then the assignment for the experiment. In the context of the course, students
are graded on all tests and experiments. All course material can be found in the
experiment package.

EXPERIMENT PLANNING 147

week

(7] 1

8o

S % 2 Home assignment (Reference)

[0]

» ®

sa 3 Practical BPEL assignment + Feedback & Model solution key

o

=9

5 4

© 2]

o 5 Test | + Experiment Session | (Reference) lectures
2 8 6 Home assignment (Macodo)

Q pn.2

§3¢2 7 Feedback & Model solution home study
> [0]
E g n
=5 g 8
f=] ‘
g 8 9 Test Il + Experiment Session Il (Macodo) evaluation

Figure 6.1: Overview of the course in which the experiment takes place.

Design of the Experiment

The experiment is conducted as a blocked subject-object quasi-experiment. Blocked
subject-object means that each subject receives both treatments (the reference
approach and Macodo). This allows paired comparison of samples. The experiment
is a quasi-experiment [31] because it is performed on a single group and there is no
randomization of the order in which the treatments are applied to the subjects. That
is, all subjects first learn the reference approach and use it in experiment session I,
and then learn Macodo and use it in experiment session II. This experiment design
can be summarized as follows:

X1 01 X9 02 (6.17)

With X representing the exposure of the group to a treatment (learning the reference
approach (X7), or Macodo (X2)), and O an observation (experiment session I (O1),
and experiment session II (Os)).

The experiment uses a set of two assignments (see Sect. 6.2.3). In experiment session
I, half of the subjects receives assignment A, the other half receives assignment B.
This is done in a randomized fashion. In experiment session II, the assignments are
switched: subjects who received assignment A in experiment session I now receive
assignment B, and vice versa.

There are some additional aspects relevant to the experiment design:

148 EVALUATION: A CONTROLLED EXPERIMENT

o Students receive the same home assignment before each experiment session.
This assignment is similar to the assignments used for the experiment sessions,
and serves as a ‘dry run’

o Students are graded on both experiment sessions (with an equal portion of
points), and are aware of this.

e Students are not aware of the experiment until after experiment session II.

o Students do not receive any feedback on the experiment sessions (including
their grades) until after experiment session II.

Motivation.

Using the same order of treatments for all subjects introduces a number of potential
threats to the internal validity of the experiment (discussed in Sect. 6.5.2). There
are, however, a number of practical constraints to motivate this decision:

e The experiment takes place in the context of a course. Students have to learn
both approaches (the reference approach and Macodo).

o Students follow lectures as a single group. It is practically infeasible to give
some students different lectures than others.

e Macodo is an approach that builds on top of the reference approach. Knowing
the reference approach is a prerequisite to use Macodo.

o In reality, developers would always learn and use the reference approach first
and then Macodo.

Given these constraints, we can look at possible alternative experiment designs:

e Completely Randomized Design. Each subject is randomly assigned a
single treatment.

¢ Paired Comparison Design. Each subject receives both treatments but
in a random order.

¢ 4-Period Non-Randomized Crossover Design. Similar to our design,
but after experiment session II, there are two additional sessions, in which
subjects first use the reference approach, and then again Macodo.

The completely randomized design and the paired comparison design, both yield a
‘true’ experiment. Both experiments, however, have to be conducted at the end of
the 9-week course. This is because students cannot learn the reference approach or
Macodo in separate groups. Conducting the experiment at the end of the course
introduces two main problems:

EXECUTION 149

e Subjects know Macodo when using the reference approach. This can
pollute samples for the reference approach, when subjects try to emulate
Macodo using the reference approach.

¢ Students are educated on the reference approach first, then on Macodo. This

would favor Macodo, since it is the last approach they have learned.

For the completely randomized design, students would only be evaluated on one
approach, which can be seen as unfair. The 4-period non-randomized crossover
design would allow to reduce some threats to internal validity. This experiment,
however, requires four experiment sessions, which is practically infeasible.

6.3 Execution

The experiment sessions take place during a normal course moment which all
students attend. This is done in a classroom of the university, and under the
supervision of one or more instructors. Subjects have to perform the experiment
individually, using pen and paper, according to the following procedure:

1. Subject receives an assignment (A or B) and a corresponding requirements
document. The assignment includes 7 blank pages to write down the design.

2. Upon receiving the assignment, the subject writes down the current time
(starting time of assignment).

3. Subject creates and writes down a design for the assignment.

4. Before handing in the assignment, the subject writes down the current time
(finishing time of assignment).

5. Subject hands in the assignment and requirements document.
6. Within 24 hours after the experiment, the subject fills out the online debriefing

questionnaire.

In addition to this procedure, there are a number of constraints that apply during
the experiment:

e Subjects have at most three hours to complete the assignment.

e Subjects work individually and cannot communicate with other subjects.

e Subjects have no access to the internet, course material or course notes.

150 EVALUATION: A CONTROLLED EXPERIMENT

6.4 Analysis

This section summarizes the collected data and describes results of the experiment
devoid of any interpretation. The analysis consists of five parts: the collection
of data (Sect. 6.4.1), the preparation of the data set (Sect. 6.4.2), the selection
of proper statistical tests (Sect. 6.4.3), descriptive statistics for each dependent
variable, and testing the corresponding hypotheses (Sect. 6.4.4 - 6.4.7). Section 6.4.3
also provides support for our decision to treat the assignment as a fixed variable.
In Sect. 6.4.8, we briefly describe the responses to the questionnaires after each
experiment session.

6.4.1 Data Collection

Every design is processed according to a predefined procedure (Fig. 6.2). The
first step is to correct the design. This step is performed independently by two
instructors”. The first step consists of three tasks: (a) determine the supported
function points; (b) trim the design of any excessive parts that do not cover the
supported function points; (¢) correct the trimmed design.

Supported function points are based on the existing modules in the design (i.e., no
additional modules have to be created to support the function point) and whether
the solution is correctable to actually support the function point. Counting the
number of supported function points is done per interaction that is supported (see
Sect. 6.2.3), that is, the complete interaction is supported or not. Trimming the
design excludes parts of the design that do not contribute to the actual functionality.

In step 2, the corrected designs are compared and merged. In step 3, the metrics
for each dependent variable are applied to the corrected design.

6.4.2 Data Set Preparation

In total, 67 subjects participated in the first experiment session, and 62 subjects in
the second experiment session (5 subjects did not show up). In addition, 2 subjects
did not agree to have their data used, and 7 subjects provided unusable data in 1
or 2 experiment sessions (i.e., missing designs or designs that did not cover any
functionality). Ten subjects did not provide usable time data and are excluded
for the productivity measure. In total, we have the following samples, usable for
paired comparison:

7One instructor is the author of this thesis. The other instructor is a teaching assistant
of the course on Web services, who has experience in Web services, but had no knowledge of
Macodo prior to the course.

ANALYSIS 151

1. Correct design
(performed independently by multiple instructors)

a. Determine
supported b. Trim design trir‘r?ﬁw(égr;ee(gi n
function points 9

2. Compare and merge corrections of different instructors

v

3. Apply metrics

Figure 6.2: An overview of the data collection procedure.

Experiment Session I Experiment Session II
Assignment A 30 subjects 23 subjects
Assignment B 23 subjects 30 subjects

For the questionnaires, 54 subjects submitted the online form after each experiment
sessions and agreed to have their data used.

6.4.3 Selection of Statistical Tests

For each dependent variable we do a descriptive analysis of the measurements for
both treatments and the paired difference between the treatments. The paired
difference is defined as follows:

Zi=M;—R; fori=1,...n (6.18)

M; and R; are the measurements of subject i for respectively Macodo and the
reference approach; n is the number of subjects that produced usable data for both
treatments.

To select a proper statistical test, we compare the distribution of Z; for each
dependent variable with the standard normal distribution, using the Anderson-
Darling test [87]. This results in the following p-values:

152

EVALUATION: A CONTROLLED EXPERIMENT

Anderson-Darling test (p-value)

Fault density

AC per function point
CFC per module
Level of reuse
productivity

5.29 x 10~7
0.0713
4.87 x 1079
1.53 x 107
0.431

With a significance level («) of 0.05, we assume Z; to be normally distributed only
for the dependent variables ‘AC per function point’, and ‘productivity’. Based on
this assumption, we use the paired t-test [211] to test our hypotheses for ‘AC per
function point’, and ‘productivity’, and the Wilcoxon signed-rank test [112] to test
our hypotheses for the other dependent variables.

In Sect. 6.2.4, we decided to use the assignment (A or B) as a fixed variable. To
support this decision, we compare the mean and distribution of each dependent
variable for both assignments using the Wilcoxon signed-rank test [112] and the
Kolmogorov-Smirnov Test [87]. The p-values for both tests are given below:

Wilcoxon (p-value) Kolm.-Smir. (p-value)

(means) (distribution)
Reference Macodo Reference Macodo
Fault density 0.700 0.899 0.719 0.596
AC per function point 0.907 0.632 0.519 0.710
CFC per module 0.328 0.700 0.462 0.999
Level of reuse 0.892 0.985 1.00 0.826
productivity 0.590 0.276 0.770 0.499

With a significance level () of 0.05, we assume that there is no difference in the
mean and distribution of each dependent variable between both assignments.

6.4.4 Fault Density
Descriptive Analysis

The following table and boxplot (Fig. 6.3(b)) describe the measurements of fault
density for both treatments, and the paired difference between the treatments. The
table also provides the number of subjects that performed better, equal, or worse
for Macodo:

Fault density (number of changes per supported function point)

mean () median st.dev better equal worse
Reference 0.451 0.306 0.459
Macodo 0.157 0.082 0.237 42 4 7
Paired Diff (M; — R;) -0.293 -0.176 0.369

ANALYSIS 153
£ 20 o 2
o
o
c
2 o o outlier
3]
] 15 - 1 —— —Q3+15xIQR
2o 1 ° ‘
a2 i —aQ3
! —_ mean —f—+
% 8_ 1.0 ! 0 ! —— median
=g | = o
82 = ° -
8 o : : Q1-1.5xIQR
L Q1-15x
@ 0.5 —_ -1 8
g’ H 8 Q1 = cuts off lowest 25% of data
2 median = cuts data set in half
o ' Q3 = cuts off highest 25% of data
#* 0.0 —— -2 IQR = Q3- Q1
Reference Macodo . .
paired diff.
treatment (M-R)

(a) Fault density.

(b) Key for box plot.

Figure 6.3: Box plots for the fault density measurements.

Hypothesis Testing

We test the following H, with alternative H,:

HOl P Ufault.densitypey = Mfault.densitynrae

Hal : ﬂfault.densitykef > Hfault.densitynrac

The paired Wilcoxon signed-rank test results in the following p-value:

p-value = 2.80 x 107%

(6.19)

With a significance («) of 0.05, the null hypothesis is rejected.

6.4.5 Design Complexity

Descriptive Analysis

The following tables and box plots (Fig. 6.4) describe the measurements for the
activity complexity (AC) per function point, and the average control flow complexity

(CFC) per module:

154 EVALUATION: A CONTROLLED EXPERIMENT

Activity complexity (AC) per function point

mean (1) median st.dev better equal worse

Reference 1.120 1.070 0.372
Macodo 0.588 0.508 0.153 51 1 1
Paired Diff (M; — R;) -0.531 -0.465 0.353

Average control flow complexity (CFC) per module

mean (u) median st.dev better equal worse

Reference 83.300 56.000 79.600
Macodo 7.690 8.000 0.878 51 1 1
Paired Diff (M; — R;) -75.600 -48.000 79.600

Hypothesis Testing

We test the following H, with alternative H,:
Hoz : trcomplezitype; = Heomplezitynrac
Hoo : preomplexitype; > Heomplezitynrae

The paired t-test for ‘AC per function point’ results in the following p-value:
p-value = 2.04 x 10715 (6.20)

The paired Wilcoxon signed-rank test for ‘CFC per module’ results in the following
p-value:

p-value = 1.97 x 10710 (6.21)

With a significance (a) of 0.05, the null hypothesis is rejected for both types of
complexity.

6.4.6 Level of Reuse
Descriptive Analysis

The following table and box plot (Fig. 6.5) describe the measurements for the level
or reuse:

ANALYSIS

155

. n N w
o o o o

activity complexity (AC)
5

per supported function point

o
o

° 2
1
_ o
- o E
o 1
: —_— o]
E ' [¢]
o -2
Reference Macodo paired diff.
treatment (M-R)

(a) Activity complexity (AC) per function point.

400

300

200

per module

100

control flow complexity (CFC)

o 400
200
o
: ==
: 200 | B
o
L —_—— -400 o
Reference Macodo paired diff.
treatment (M-R)

(b) Average control flow complexity (CFC) per module.

Figure 6.4: Box plots for the complexity measurements.

Level of reuse (percentage)

mean (x) median st.dev better equal worse
Reference 1.84 0.00 9.77
Macodo 68.90 87.10 27.20 o1 2 0
Paired Diff (M; — R;) 67.00 87.10 27.60

156 EVALUATION: A CONTROLLED EXPERIMENT

100 —_ 100 —_

80
50

60

40

level of reuse
(percentage)
o

20

0 — —— -100

Reference Macodo paired diff.

treatment (M-R)

Figure 6.5: Box plots for the level of reuse measurements.

Hypothesis Testing

We test the following H, with alternative H,:
Hos : freusene; = Hreusenrae
H,s - Hreuserey < Hreusenrac
The paired Wilcoxon signed-rank test results in the following p-value:
p-value = 1.76 x 10~ *° (6.22)

With a significance («) of 0.05, the null hypothesis is rejected.

6.4.7 Productivity
Descriptive Analysis

The following table and box plot (Fig. 6.6) describe the measurements for
productivity:

ANALYSIS 157

Productivity (number of supported function points per time unit)

mean (1) median st.dev better equal worse

Reference 0.289 0.300 0.134
Macodo 0.542 0.530 0.229 39 0 4
Paired Diff (M; — R;) 0.253 0.236 0.184

210 B 1.0

3 1

£ '

1S —_

2 08 E 05 .

%) \ .
—
5806 :
35 —_ 00 +—=
T = '

o O '
a5o04 :

o :

2 ! -0.5

02 5

Qo —_

g '

@ 1

* —_ -

<00 1.0

Reference Macodo paired diff.
treatment (M-R)

Figure 6.6: Box plots for the productivity measurements.

Hypothesis Testing
We test the following H, with alternative H,:
Hou : tiproductivityper = Hproductivitynac
Haa @ pproductivitypey < Hproductivitynrac
The paired t-test results in the following p-value:
p-value = 1.16 x 107! (6.23)

With a significance («) of 0.05, the null hypothesis is rejected.

158 EVALUATION: A CONTROLLED EXPERIMENT

6.4.8 Debriefing Questionnaire

We discuss the results of four questions. Open questions and two questions with
dubious formulation are not discussed®. Each question has a 5-level response scale:

Question 1: “How would you rate the difficulty to create a design for the exercise
test using (SOA, Web services, and BPEL)/(Macodo)?”
Response Scale: very hard, hard, average, easy, very easy.

Question 2: “How would you rate your confidence in the correctness of your
design for the exercise test?”
Response Scale: very poor, poor, average, good, very good.

Question 3: “Did you ever have the feeling that you did not know the real
consequences of your design decisions?”
Response Scale: very often, often, sometimes, rarely, never.

Question 4: “How would you rate the overall intuitivity of (SOA, Web services
and BPEL)/(Macodo) to model and design collaborations?”
Response Scale: very poor, poor, average, good, very good.

Subjects answered these questions after each experiment session. Figure 6.7 shows
the improvement for Macodo on the 5-level response scale, when comparing the
answers of subjects after the two sessions. For example, for ‘design difficulty’, 26
subjects gave an equal score for the reference approach and Macodo, 17 subjects
gave a score that was 1 level higher, 6 subjects a score that was 2 levels higher,
and 1 subject a score that was 3 levels higher for Macodo. Four students gave a
score that was one level lower for Macodo.

6.5 Discussion

In this section, we interpret and discuss the findings of our analysis. We start
by interpreting the results (Sect. 6.5.1). Next, we identify potential threats to
validity (Sect. 6.5.2), and try to generalize our interpretations given these threats
(Sect. 6.5.3). Finally, we discuss some lessons learned (Sect. 6.5.4).

6.5.1 Interpretation of Results

Based on the descriptive analysis, we can conclude there is a clear improvement
for each dependent variable between experiment session I, in which subjects used
the reference approach, and experiment session II, in which subjects used Macodo.
This is confirmed by the statistical tests, which reject all four null hypotheses with
a significance level («) of 0.05.

8 All questions and responses can be found in the experiment package.

DISCUSSION

subjects

subjects

Figure 6.7: Improvement for Macodo on the 5-level response scale of each question.

35

30

25

20

15

10

35

30

25

20

15

10

159

Question 1: Design difficulty

26

17

4
0 o0 1
—

-3 -2 -1 0 +1 +2 +3
Improvement for Macodo on 5-level response scale
(very hard, hard, average, easy, very easy)

Question 3: Unknown consequences
of design decisions

28

17

3 3
-3 -2 -1 0 +1 +2 +3

Improvement for Macodo on 5-level response scale
(very often, often, sometimes, rarely, never)

subjects

subjects

35

30

25

20

15

10

35

30

25

20

15

10

Question 2: Confidence in design

27

16

3
l;| 0 _|;|

-3 -2 -1 0 +1 +2 +3
Improvement for Macodo on 5-level response scale
(very poor, poor, average, good, very good)

Question 4: Intuitivity of approach

31

16

1

0 0 I

0

-3 -2 -1 0 +1 +2 43
Improvement for Macodo on 5-level response scale
(very poor, poor, average, good, very good)

160 EVALUATION: A CONTROLLED EXPERIMENT

Fault Density.

The average fault density (changes per supported function point) for the reference
approach is 0.451, for Macodo it is 0.157, an improvement of 65%. Out of 53
subjects, 42 scored better for Macodo, and only 7 scored worse. This is reflected in
a low p-value (2.80 x 10798).

Two possible explanations for this improvement are: (1) a better modularization of
designs, and (2) reduced design complexity. On average, there are almost double the
amount of modules per supported function point for Macodo (0.0812), compared to
the reference approach (0.0476). Activity complexity per supported function point
for Macodo is reduced by 50% compared to the reference approach, and control
flow complexity per module is reduced by 91%. A better modularization and a
reduction in complexity are likely to lead to less code and a smaller chance on
faults.

The reduced fault density for Macodo is also reflected in the experience reported
by subjects. Questionnaire responses show that 24 out of 54 subjects, find it easier
to create a design with Macodo compared to reference approach, and only 4 find
it harder. Similarly, 20 out of 54 have more confidence in the correctness of their
design, compared to 7 which have less confidence.

Design Complexity.

The average activity complexity (AC) per function point is 1.120 for the reference
approach, and 0.588 for Macodo (AC counts the number of activities). This is a
reduction of almost 50%. For control flow complexity (CFC) per module there is a
reduction of 91% (CFC takes splits, joins, and loops into account). For both types
of complexity, 51 out of 53 subjects scored better with Macodo, and only 1 scored
worse. Again, this is reflected in low p-values (2.04 x 10715 and 1.97 x 10719).

Possible explanations for this improvement are: (1) a better modularization, (2)
a better separation of concerns, and (3) the use of higher level abstractions. As
mentioned before, the number of modules per supported function point is almost
double for Macodo. In the reference approach, subjects have to deal with the
management of collaborations at the lowest level (i.e., everything is expressed
in a single process model). In contrast, Macodo provides abstractions that hide
a number of implementation details, and allow to express the design in a more
compact way.

It is also interesting to look at design complexity from the perspective of the subjects.
Questionnaire responses show that 17 out of 54 subjects rated the Macodo approach
more intuitive than the reference approach, and only 6 rated Macodo less intuitive
than the reference approach.

DISCUSSION 161

Level of Reuse.

The average level of reuse for the reference approach is only 1.84%, while for
Macodo this is 68.90%. In fact, for the reference approach, only two subjects
have any form of reuse, while for Macodo only two subjects have no reuse. This
is supported by a low p-value (1.76 x 1071Y). A possible explanation is that the
reference approach does not stimulate reuse of sub-processes in typical service
orchestrations. Macodo, however, provides abstractions that allow to modularize
designs in terms of organizations, roles, conversations, and behaviors. Using the
concept of capability, conversation connectors and behaviors components can easily
be reused in different organization and role types.

Productivity.

The average productivity (supported function points per minute) for the reference
approach is 0.289, for Macodo this is 0.542, an increase of 88%. 39 out of 43 subjects’
increased their productivity with Macodo, only 4 had a lower productivity. This is
reflected in a low p-value (1.16 x 10711).

Three possible explanations for this improvement are: (1) improved reuse, (2)
reduced design complexity, and (3) the use of higher level abstractions. For the
reference approach, there is almost no reuse, while for Macodo, the average reuse
level is almost 70%. More reuse can easily lead to a higher productivity. A reduction
in design complexity and the availability of higher level abstractions can further
improve productivity, by allowing subjects to reason about the system and its
functionality at a higher level of abstraction.

The higher productivity for Macodo is also confirmed by the questionnaire responses.
Macodo scores better than the reference approach in terms of design difficulty,
confidence in correctness, and intuitivity.

6.5.2 Threats to Validity

Given the design of the experiment (Sect. 6.2.5), a number of potential threats to
validity [45, 211] can identified.

Threats to Construct Validity

Construct validity is the degree to which the operationalization of measures in the
study actually represent the constructs in the real world.

910 subjects provided unreliable time data.

162 EVALUATION: A CONTROLLED EXPERIMENT

FEvaluation Apprehension. Students might try to perform better with Macodo to
impress, or favor the course holders. To reduce this threat, the experiment sessions
are executed by external instructors. Students are not aware of the experiment,
and Macodo is presented as an external approach. In addition, students are graded
(and aware of this) on both experiment sessions for an equal amount of credits.

Momno-Operation Bias. The experiment relies on a set of two assignments. These
assignments might not fully represent the type of problem on which we want to test
both treatments. This threat could be reduced by using more than two assignments.

Mono-Method Bias. The measurements for fault density and complexity only
consider faults and complexity in the design of each individual module. Faults and
complexity at higher levels of complexity (i.e., the architecture) are not accounted
for.

Ezxperimenter Expectancies. The experimenter can transfer expectations to the
participants in a way that affects performance in favor of Macodo. To reduce this
threat, the main author of Macodo never has any direct contact with the subjects,
and the actual experiment sessions are executed by external instructors.

Threats to Internal Validity

Internal validity is the extent to which independent variables (e.g., treatments) are
actually responsible for the effects seen to the dependent variables.

History. The two experiment sessions take place on two different days, this difference
can be a confounding factor in the results. To reduce this threat, both experiment
sessions take place during a regular course moment on a monday morning.

Maturation, Learning Effects, and Testing. For all subjects, the effect of the first
treatment (reference approach) is observed in experiment session I (week 5), and
the effect of the second treatment (Macodo) is observed in experiment session II
(week 9). This introduces a number of potential threats:

¢ Subjects can mature between the two observations. For example, subjects
can take the course and the assignments more seriously and better prepare
themselves.

e Subjects are tested twice, allowing them to learn the type of questioning
and assignment, and the way the experiment is executed. They also have
performed the home assignment twice.

e A subject’s understanding of certain concepts can increase between the first
and the second observation. In specific, subjects can become better at using
the process notation (used for both treatments), and at reasoning in terms of
processes.

DISCUSSION 163

To reduce these threats, a number of counter-measures have been taken:

e For each part of the course, we use the same home assignment, which is similar
to the actual experiment. This serves as a ‘dry run’ and allows subjects to
get acquainted with the way the assignments work. By using the same home
assignment twice, subjects are less likely to get any additional insights related
to the assignments between the two observations.

e Subjects have five weeks to prepare for the first experiment session and are
aware that they will be graded on this.

e In the second part of the course, the focus is no longer on the content of the
first part (e.g., process notation).

Despite these counter-measures there is still a potential impact on the actual results.
More specifically, maturation, learning, and testing will likely have a positive effect
on the reduction of fault density, the increase in productivity, and the reduction of
complexity.

These threats could be reduced (or at least evened-out over both treatments) by
randomizing the order of the treatments. As discussed in Sect. 6.2.5, this was
practically infeasible and would have introduced other problems.

Threats to External Validity and Conclusion Validity

External validity is the degree to which findings of the study can be generalized
to other participant populations and settings. Conclusion validity concerns
generalizing the result of the experiment to the concept or theory behind the
experiment.

Interaction of Selection and Treatment. Due to limited resources, we use students of
a Master in Software Engineering program as subjects for our study. Although these
students do not represent expert software engineers, they are the next generation of
software professionals and are relatively close to the population of interest [134]. To
further engage students in the experiment, students were graded on each experiment
sessions.

Interaction of Setting and Treatment. The experiment relies on a set of two
assignments. These assignments are created by the author of Macodo. As a
result, there is a threat that the assignments are no realistic representation of
the underlying problem domain, and favor Macodo over the reference approach.
This threat could be reduced by introducing multiple assignments, prepared by
external domain experts. Due to time and resource constraints, however, this was
not possible for the experiment.

To scope the experiment, we also made a number of decisions out of practical
necessity that should be taken into account when generalizing our findings:

164 EVALUATION: A CONTROLLED EXPERIMENT

e the use of pen and paper to write down designs;

o allowing subjects to make a number of assumptions about the systems,
considered in the assignments, and their context;

« using a simplified notation for process definitions (the same notation is used
for both treatments);

o the assignments use a set of predefined Web services to define the external
entities.

Reliability of Measures. Measures are applied to corrected and trimmed designs.
To increase the reliability and objectiveness of measures, designs are corrected and
analyzed independently by two instructors. The corrected designs are then merged.

6.5.3 Inferences

In our interpretation of the results, we concluded that there is a clear improvement
for each dependent variable over the two observations and we can reject each null
hypothesis. We attributed these improvements and rejections mainly to the use
of Macodo, compared to the use of the reference approach. Given the potential
threats to validity, however, this can be a distorted view. We cannot rule out that
maturation, testing, and learning between the two observations has a positive effect
on the reduction of fault density, the increase in productivity, and the reduction of
complexity. Nevertheless, given the explicit differences between both observations
(i.e., an average improvement of 50% or more) and the counter-measures taken for
these threats, it is unlikely that the measured effect is only caused by maturation,
testing and learning.

We can also compare the effort required to learn and use Macodo to the effort
required to learn and use the reference approach. Subjects had five weeks to
learn the reference approach and four weeks to learn Macodo from scratch. Given
the results, it is clear that Macodo can be learned in a reasonable amount of
time, leading to a clear improvement in developer productivity. The questionnaire
responses also show that the majority of the subjects (48 out of 54) find Macodo as
intuitive or more intuitive than the reference approach.

In terms of generalizing our findings, it is important to take the potential threats
to construct and external validity into account. We conclude that the results
give a strong indication that Macodo, within the restrictions of the experiment,
provides an improvement over the reference approach in terms of fault density,
design complexity, level of reuse, and productivity.

6.5.4 Lessons Learned

Setting up and executing an experiment takes a lot of time and many things can
go wrong. Given the practical constraints, we were not able to set up a ‘true’

CONCLUSIONS 165

experiment. Nevertheless, performing an experiment is not only useful to do
measurements and test hypotheses, it is also an excellent opportunity to focus
research and get valuable feedback from reality.

Both the pilot study and the actual experiment, forced to make everything concrete
and clear. Actual people had to use Macodo. The execution of the experiment
provided additional feedback:

e People are creative. Even if a concept is well-defined, developers will make
assumptions they cannot make. This was already clear in the pilot study,
but still present, though less explicit, in the experiment. An interesting way
to counter this, could be to provide tools that constrain developers and allow
them to validate their designs.

e A number of students complaint that it was not always clear how to exactly
use the abstractions provided by Macodo. More specifically, the concepts
of conversation connector and behavior component allow to decompose
collaborations in different ways. From the pilot study, we already noticed
that students sometimes ‘over-decomposed’. For example, some conversation
connectors consisted of single messages. By providing additional guidelines
in the documentation of Macodo, this improved in the controlled experiment.
Additional methodological guidelines, however, could further improve this
issue.

o Similarly, a minority of students did not reuse certain behavior components,
although the behaviors were identical. This appears to be caused by a
misunderstanding of the capability concept, which could be improved by
additional guidelines.

6.6 Conclusions

The evaluation presented in this chapter addressed the following research questions:
“Do the modeling abstractions provided by Macodo: (1) reduce fault density;
(2) reduce design complexity; (3) increase the level of reuse; and (4) increase
productivity, compared to standard approaches for designing centrally managed
collaborations between Web services?”.

These research questions were translated to a set of four hypotheses and
corresponding dependent variables. Given the practical constraints, the experiment
was designed as a quasi-experiment. That is, all subjects first learned the reference
approach and used it in a first experiment session and then learned Macodo and
used it in a second experiment session.

From the descriptive analysis, we can conclude that there is a clear improvement
for each dependent variable between experiment session I, in which subjects used
the reference approach, and experiment session II, in which subjects used Macodo.
In addition, the statistical tests show that each null hypothesis can be rejected.

166 EVALUATION: A CONTROLLED EXPERIMENT

Considering the potential threats to validity, however, we cannot fully attribute
these improvements and rejections only to the difference in treatment. We cannot
rule out that maturation, testing, and learning between the two observations has
a positive effect on the reduction of fault density, the increase in productivity,
and the reduction of complexity. Given the explicit differences between both
observations, however, it is unlikely that the measured effect can only be attributed
to maturation, testing, and learning.

We conclude that the results give a strong indication that Macodo, within
the restrictions of the experiment, provides an improvement over the reference
approach in terms of fault density, design complexity, level of reuse, and
productivity.

Chapter 7

Related Work

Chapter 2 situated Macodo in several background domains. This chapter discusses
the contributions of this thesis with respect to related work. The discussion
focusses on the main topics of this thesis and its evaluation: the decomposition and
modularization of complex collaborations, and the separation of concerns. More
specifically this chapter focusses on existing organization models and infrastructures
(Sect. 7.1), techniques to deal with variation in processes and collaborations
(Sect. 7.2), and decomposition mechanisms for business processes and collaborations
(Sect. 7.3).

7.1 Existing Organization Models and Infrastructures

Although the work presented in this thesis does not directly target multi-agent
systems (MAS), Macodo relies on several related concepts. Therefore, it is
interesting to compare (be it at a conceptual level) existing organization models to
the Macodo model presented in Chapter 3. We also compare existing organization
infrastructures to the proof of concept middleware presented in Chapter 5. We
limit our discussion to a number of representative approaches.

7.1.1 Electronic Institutions

Electronic institutions (EIs) [70] are inspired by the notion of institutions in
the human world, which set and enforce laws, monitor them, and respond to
violations. Els try to guarantee the overall behavior of open MAS to exhibit desired
properties without compromising the agents’ autonomy. They are an example of an
organization-oriented MAS that uses regimentation to enforce norms and scenes to
represent the functional aspects of an organization (see Sect. 2.3). Formally, an EI

167

168 RELATED WORK

can be defined as a set of roles (played by agents), a performative structure (defining
the possible interactions), and a set of normative rules (defining the obligations of
agents as a result of their actions). In addition, agents in an institution have to
share a dialogic framework, which defines a common language and ontology.

The performative structure is defined as a set of scenes and the relations between
these scenes. A scene (or scene protocol) defines a specific interaction protocol
as a graph. Each node represents a state of the interaction protocol and arcs
define transitions, triggered by speech acts of agents. Relations between scenes can
define causal dependencies, synchronization, parallelism, or choice points. Role
flow policies define how roles can go from one scene to another.

Normative rules can constrain the behavior of agents at two levels: intra-scene,
or how to behave within a scene, and inter-scene, or how to go from one scene to
another. Normative rules allow to define obligations across scenes (e.g., if an agent
wins an auction in one scene, it is obliged to pay in another).

Two prominent works on electronic institutions are ISLANDER [69] and Ameli [71].
ISLANDER defines a specification language and editor for Els, allowing to model
and verify EIs. Ameli [71] provides middleware to execute EIs. Ameli is an example
of a three-layered middleware for institution-centered MAS (see Sect. 2.3.2). It
consists of an agent layer, a social or Ameli layer, and a communication layer. The
social layer is agent-based, meaning that it is realized by four types of dedicated
agents: institution manager (create EI), transition managers (control movement
across scenes), scene managers (govern scene execution), and governors (mediate
access between agent and infrastructure).

Electronic institutions have also been used in the domain of virtual enterprises,
where the institution is used as a normative framework to validate and enforce
virtual enterprise contracts, which define the cooperation agreements [32, 141].
The institution provides specific services such as brokering, reputation, negotiation
mediation, and contract related services.

There are a number of similarities between Macodo and electronic institutions.
Both take an organization-centered perspective on the system (at design level, as
well as at implementation level), provide support using a three-layered middleware
architecture, and rely on regimentation to constrain the behavior of agents'. One
of the main difference between Macodo and electronic institutions lies in the
scene-based interaction structure and the use of explicit normative rules. Scenes
provide an abstraction for reusable interaction, but individual behavior is not
well encapsulated and harder to reuse. Behavior of agents is partly defined by
scenes, partly by scene transitions, and partly by normative rules. In addition,
Macodo provides architectural views that allow to specify collaborations in terms
of software elements, and reason about software qualities in terms of collaboration
abstractions.

IMacodo does not rely on explicit norms, but required behavior is enforced (or regimented) by
role components.

EXISTING ORGANIZATION MODELS AND INFRASTRUCTURES 169

7.1.2 OperA

OperA (Organizations per Agents) [203, 60, 64] is a model and methodology for
organizational interaction, and is supported by a modeling tool, called OperettA [63].
It allows to describe multi-agent systems at a conceptual level using three types
of interrelated models: an organization model, a social model, and an interaction
model.

The organization model describes a social system from the perspective of the
organization. It defines an intended organizational structure and the laws that
govern interaction among the agents. The social model describes a specific society,
in terms role-enacting agents. A role-enacting agent has a social contract to play a
specific role in a society. The interaction model describes the concrete interactions
within a society.

OperA relies on four types of structures to define the organization model: social,
interaction, normative, and communicative. The social structure describes the roles
in a society, their objectives, and the dependencies between roles. The interaction
structure describes the activities that are necessary to realize the overall objective
of a society. The normative structure defines a set of norms that constrain the
behavior of actors within a society. These norms can be used within the social and
interaction structure. The communicative structure describes the communication
primitives in terms of ontologies and communicative acts.

The interaction structure is similar to the performative structure in electronic
institutions. It is defined as a set of scenes and relations between scenes. Compared
to electronic institutions, where scenes represent formal protocols, scenes in OperA
do not completely fix the protocol in advance, and only define a type of ‘interaction
skeleton’ using the concept of landmarks. These ‘skeletons’ only specify some key
parts (‘landmarks’) that need to be achieved in an interaction. Different concrete
protocols can exist that realize a scene. This allows to maintain ‘collaboration
autonomy’ [62]. Which concrete protocol is used, is modeled in the interaction
model of OperA. Agents have to interpret the scene scripts and negotiate, to
determine the concrete interaction protocols to use. To which interaction protocol
they commit is then fixed in interaction contracts. In the normative structure,
OperA allows to define three types of norms: role norms that describe expected
behavior independent of what is expected in interactions, scene norms that describe
expected behavior within a scene, and transition norms that constrain the flow
between scenes.

In the context of the ALIVE research project?, OperA has also been used in the
domain of service-oriented architectures [59, 10]. The ALIVE approach combines
model-driven development with coordination and organization mechanisms and aims
to support reorganization and adaptation of services at design time and runtime.
The approach relies on three levels of design and management: organization
level, coordination level, and service level. The organization level provides a

2http:/ /www.ist-alive.eu/

http://www.ist-alive.eu/

170 RELATED WORK

social context for service interactions through an explicit representation of an
organizational structure (based on OperA). The coordination level defines possible
interactions by specifying high-level interaction patterns between services. This
level relies on ‘agentified’ services that are organization-aware and can reason about
system objectives and generate and change workflows at runtime. The service
level describes how interaction patterns can be realized using available services,
and supports the semantic description and selection of services. The three levels
of design and management are bound using model-driven engineering, providing
automatic transformation of models from one level to another.

Unlike Macodo, the ALIVE approach relies on ‘intelligent agent’ that can reason
about workflows and adapt them at runtime. Its focus on dynamic selection
and discovery of services and the automatic generation of plans and workflows at
runtime is outside the scope of Macodo.

7.1.3 Moise

Moise/Moise+ (Model of Organization for multl-agent SystEms) [107, 118, 116]
is an organizational modeling language that decomposes the specification of
an organization in three dimensions: a structural specification, a functional
specification, and a set of norms.

The structural specification defines roles, groups of roles, and relations between
roles. The functional specification defines how global organization goals should
be achieved. This is done by specifying a set of schemes and a set of missions.
Schemes are basically decomposition trees of goals. Global goals are decomposed
in plans (to achieve these goals), which in turn are decomposed subgoals and so
on. A mission is a set of coherent goals (taken from a scheme) which can then be
assigned to concrete roles. But roles are not directly linked to missions. Moise
uses norms to define the permissions and obligations of roles to execute specific
missions.

A concrete instance of an organization is called an organizational entity. It
corresponds to an organization specification and has a set of agents, groups and
scheme instances. A scheme instance represents the commitment of agents to specific
missions, and a set of achievements that map agents to the goals they have reached.
In newer versions, Moise relies on a normative programming language (NOPL)
as the basis for semantics and implementation [116]. Organization specifications
and organizational entities are translated to this language and loaded into an
organization platform, such as S-Moise+ [120].

Similar to Macodo, Moise describes organization dynamics as a set of possible
organizational actions. There are four types of organizational actions: role
adaption/leaving, groups becoming responsible for schemes, agents committing to
or leaving missions, and agent achieving goals. Unlike Macodo, Moise uses the
concept of goal as unit of decomposition. Global goals are decomposed in plans

EXISTING ORGANIZATION MODELS AND INFRASTRUCTURES 171

and sub-goals, which are then assigned in the form of missions to agents, using the
concept of norm. Moise does not provide any concepts to explicitly model behavior
or interaction of roles as reusable units. Concrete behavior and interactions are the
result of a set of complex norms that define which goals each role has to achieve.
A norm can read like ‘when an agent A: (1) is committed to a mission M that (2)
includes a goal G, and (3) the mission’s scheme is well-formed, and (4) the goal is
feasible, then agent A is obliged to achieve the goal G before its deadline D’ [116].

S-Moise/S-Moise+3 [119, 120] is a MAS implementation framework that follows
the Moise model. It is also called the S-Moise+ organizational middleware. It
has a three-layered middleware architecture consisting of an agent middleware
(e.g., JASON), an organization layer, and an agent layer. The organization layer
consists of an ‘OrgManager’ and one ‘OrgBox’ per agent. The OrgBox mediates
the access of an agent to the organization layer and allows the agents to perform
organizational actions (such as picking up a role, or committing to a mission). The
OrgManager is a special agent that maintains the current state of the organizational
entity.

7.1.4 TeamCore

TeamCore [172, 171] provides a platform for ‘team-oriented programming’. Team-
oriented programming creates a ‘team program’, which consists of three main
artifacts: an organization hierarchy (defining a set of roles), a hierarchy of team
plans, and the assignment of roles to team plans. Roles are described as a set of
capabilities, similar to an interface description, describing the tasks an actor of a
role can perform. A team plan expresses a joint activity as a set of ‘team-level’
actions. These actions often defined as abstract goals, assuming the agent or team
playing a role know how to achieve this goal. The order (or sequence) of plans is
defined by the hierarchy of plans.

Once a team program is defined, the specification can be loaded in the KARMA
component of TeamCore. This component derives the requirements for roles (based
on the capabilities), locates matching agents (e.g., using middle-agents), and assist
developers in assigning agents (or groups of agents) to roles. When roles have been
assigned, a set of TeamCore proxies is launched. These proxies interact with the
agents, assigned to roles, and synchronize with each other using the TeamCore
broadcast net and the KQML agent communication language. TeamCore proxies
execute the team plans and perform actions required by the plans on their agents.

The dominant decomposition of TeamCore is a hierarchy of plans and tasks. As a
result, TeamCore mainly provides abstractions to reason about a collaboration in
terms of such plans and tasks. Interaction protocols are not explicitly modeled. A
required interaction, becomes and abstract tasks to be realized by some role. In
contrast, Macodo provides abstractions to reason about collaborations in terms

3http://moise.sourceforge.net,/

http://moise.sourceforge.net/

172 RELATED WORK

of behaviors and interactions. Reuse within Macodo is supported at the level of
roles, behaviors and conversations, while in TeamCore, it is only supported in
terms of plans. In addition, Macodo uses the concept of capability, to support the
encapsulation of agents, roles, behavior, and conversations. In TeamCore, plans
are not well encapsulated, and capabilities are only used to represent the interfaces
provides by agents and teams.

7.1.5 ROPE

ROPE (ROle-based Programming Environment) [18] is a role-based programming
environment and architecture for developing MAS. It is based on the concepts of
cooperation process and role. A cooperation process models an interaction as a
set of phases (or states) and phase transitions, similar to scene-based approaches
(Sect. 2.3.1). Cooperation processes are defined using a Petri net based language
and can be executed on a ROPE engine. Each phase of a cooperation process
defines a set of roles, and each role defines a small behavior to be performed in this
phase. This behavior is defined in Java and resembles a method which can use and
manipulate data available in the cooperation process (e.g., to trigger transitions),
and use services provided by the agent playing the role. Phase transitions allow to
move from one phase to another and define how agents assigned to a role in one
phase have to be assigned to the roles of the new phase.

Compared to Macodo, ROPE decomposes a collaboration in terms of phases and
roles in these phases. Although roles can be reused, they do not provide the same
level of abstraction as roles, conversations, and behaviors in Macodo. A role in
ROPE represents a small piece of behavior in a specific phase of an interaction,
a role in Macodo defines a set of coherent complex behaviors, and conversations
encapsulate reusable interactions. In addition, ROPE does not make a clear
separation between the individual behavior of a role and the interactions between
roles. Both have to be defined within role definitions, and the specification of an
actual interaction is likely scattered over multiple role definitions.

7.1.6 BRAIN

BRAIN [25] is a role-based framework to develop interactions in MAS. It consists
of XRole [24], an XML-based notation for roles, and RoleX [24, 23], an agent
framework (or add-on to existing agent frameworks) that supports the execution
of roles specified in XRole.

A role in XRole is defined by a name, a high-level description, a set of keywords
(allowing to search for roles), a set of actions (or methods) available to the agent
playing the role, and a set of events that the agent is expected to accept. The
RoleX framework consists of a role descriptor repository, where agents can look for
specific roles based on keywords, and a role implementation repository, which can

DEALING WITH PROCESS VARIATION 173

be used to find concrete role implementations. The RoleX framework also supports
SOAP-based messaging between roles.

The definition of roles in XRole is very similar to a WSDL definition [43] and the
delta with WSDL is not entirely clear. Compared to Macodo, the definition of
behaviors in XRole is limited to a set of operations, and interactions are modeled in
a rather indirect way (an interaction between roles occurs when one role performs
an action and this action translates to an event that is accepted by an other role).
Although the RoleX framework tries to be platform independent, it is conceived as
a Java-based agent framework. Agents have to run java classes that implement
roles, which can be dynamically loaded into the agent using a ‘class-loader’.

7.2 Dealing with Process Variation

As illustrated in Sect. 2.7.3, an important problem in building and managing
collaborations is to deal with variation. Variation is intrinsic to many application
domains such as supply chain management, where a 4PL, for example, has to deal
with different variations in supply chain networks, each requiring a similar, yet
different solution. These solutions often implement a common reference process [77,
78] or well-known workflow patterns [201], but each implementation is slightly
different due to the concrete context [77]. Such variation leads to multiple versions
of business processes and workflows, which have to be properly designed and
managed [106].

Traditional approaches and most BPM (Business Process Modeling) tools consider
variants as separate process models, or variation is hidden or hard-wired in the
control flow of business processes. This leads to redundancy, and as the number of
variants grows, maintenance becomes a time-consuming and error-prone task [88].

To address this problem, several authors have proposed solutions where variants
and adaptations to reference processes, are treated as first-class objects. These
approaches define explicit change operations and adjustment points to configure
process variants as a configurable workflow model [88]. A configurable workflow
model adds a configuration layer on top of the workflow model. This configuration
layer allows to alter predefined routes through the workflow during a configuration
phase, and thus allows to instantiate specific variations of a workflow or business
process. The configuration layer can be realized by creating different views on
the process models [19], by adding and removing elements from processes [49, 170,
175, 88], or by parameterizing processes [126, 127]. The Provop approach [106],
for example, configures processes by deleting an inserting process fragments, or
moving specific activities.

Compared to Macodo, the above approaches do not focus on providing high-level
abstractions to increase reuse. Instead they focus on making the difference and
variation between processes first-class objects. In fact, most of these approaches

174 RELATED WORK

can be considered orthogonal to the work presented in this thesis. They provide
generic mechanisms to handle variation, which could also be applied to create
variants of behavior components and conversation connectors in Macodo.

7.3 Decomposition and Modularization of Business
Processes and Workflows

A key feature of Macodo are abstractions that provide more natural decomposition
units for dynamic collaborations. Several authors have proposed other mechanisms
to decompose and modularize business processes, workflows, and business protocols.
We focus our discussion on first-class support for sub-processes and sub-workflows
(Sect. 7.3.1), the use of aspects (Sect. 7.3.2) and views (Sect. 7.3.3), and commitment-
based approaches (Sect. 7.3.4).

7.3.1 First-Class Support for Sub-Processes and Sub-Workflows

The concept of sub-processes and sub-workflows can be used to decompose and
modularize business processes and workflows. It can also be used to reuse specific
fragments. In current Web service standards the concept of sub-process and sub-
workflow has limited to no support. WS-BPEL [5] and WS-CDL [128] do not
provide any support for decomposition. BPMN [6] supports decomposition of
processes and choreographies in the form of sub-processes and sub-choreographies.
Sub-processes and sub-choreographies can be used as a visual aid to manage
complexity (i.e., collapsing certain parts of a diagram) or to define a reusable
process or choreography definition.

There are several ongoing research efforts to support sub-processes and sub-
workflows as first class-concepts, both at design, as well as at runtime. We
look at techniques that rely on fragmentation of processes and workflows, and
efforts to extend WS-BPEL with support for sub-processes.

Fragmentation of Processes and Workflows

Several authors present the idea of process or workflow ‘fragmentation’. A fragment
is a piece of process or workflow code similar to the concept of ‘sub-process’.
Fragments can be created from scratch or extracted from existing processes, and
can be used to compose processes and reuse specific parts. Fragmentation can be
done by hand or in a semi-automatic manner, in which a modeler is supported
by a set of algorithms. A number of definitions for process fragments have been
proposed.

DECOMPOSITION AND MODULARIZATION OF BUSINESS PROCESSES AND WORKFLOWS __ 175

Ma and Leymann [142] propose a formal definition of BPEL fragments. Like normal
BPEL processes, fragments are specified in XML, using a new construct, named
< fragment >, which inherits from < process >. The fragment construct allows
to define behavioral context on variables, partnerLinks, and message exchanges.
Fragments can be created from scratch or extracted from existing processes.

Eberle et al. [67] introduce a fragment definition to represent partial process
knowledge. Based on the premise that no single person can have the entire process
knowledge, they use fragments to define process building blocks. Fragments can be
modeled by different persons, and are kept in a fragment repository. A fragment
composer tool can implement a set of composition operations that allows fragments
to be ‘glued’ together. This composition can be done at design time or at runtime.
Actual tool support for these approaches is currently lacking.

Similar to the notion of process fragment, Adams et al. [7] present the concept of
‘worklet’ for workflow languages. A worklet is a small, self-contained, sub-workflow
that handles a specific task or action in a larger, composite workflow. A top-level
or parent workflow model captures the entire workflow at a macro level. Concrete
worklets are dynamically selected from a ‘repertoire’ at run-time, based on the
current context and a set of selection rules. Worklets have been implemented in
YAWL (Yet Another Workflow Language) [198] as a custom service. The YAWL
engine [200] (similar to a BPEL engine) uses this custom service to retrieve actual
worklets when executing the parent process.

Compared to Macodo, the above approaches focus on providing generic mechanisms
to decompose processes and workflows. The decomposition and modularization
focusses on functionality, and does not provide support for underlying collaboration
structure. They could, however, be combined with Macodo to enable the
decomposition and modularization of more complex behavior components and
conversation connectors.

Process fragmentation has also been used to execute processes in a decentralized
manner [131, 130, 142]. Khalaf [131, 130] proposes a method for ‘role-based’
decomposition of business processes using BPEL. The main motivation for their
approach is ‘business process outsourcing’ and ‘mobile workforces’. In business
process outsourcing, some parts of a private workflow are given to external parties
for execution. In a mobile workforce, mobile entities can ‘check out’ part of a
workflow and execute it. The proposed method allows to partition an existing
BPEL process into several compliant BPEL processes or fragments, which can
be enacted by each participant. The approach is based on modeling a process
using swim-lanes. Each swim-lane represents a partner (e.g., an external party or
a mobile entity) to which a fragment of the process is ‘outsourced’. The authors
propose an algorithm to translate a process with a swim-lane-based decomposition
into a set of separate processes that communicate and synchronize using a set of
‘wiring’ messages.

Although the authors present their method as a ‘role-based approach’, the notion

176 RELATED WORK

of role is limited to a swim-lane (similar to BPMN). In addition, they are mainly
concerned with the partitioning of existing processes, not with decomposition or
reuse. In the end, the original specification is still a single processes, which is
semi-automatically fragmented to enable distributed execution.

Efforts to Extend WS-BPEL

Reuse of fragments has also been studied in the context of WS-BPEL. There are a
some proposals to extend WS-BPEL with native support for sub-processes [135, 196].
Kloppmann et al. [135] investigate possible options to extend WS-BPEL to support
sub-processes. A sub-process is a fragment of BPEL code that can be reused
within a process or across multiple processes. Two main options are considered:
standalone sub-processes and inline sub-processes. Standalone sub-processes are
sub-processes defined as normal BPEL processes. Interaction with these processes
is like interacting with any other process. Such processes do not require any
adaptation of the WS-BPEL standard or execution platforms. But they do not
fully support the idea of a sub-processes. Standalone sub-processes can be compared
to the way behavior components and conversation connectors are mapped to BPEL
processes (Sect. 5.1).

Inline sub-processes can be defined as part of the definition of another process.
Inline sub-processes can access data from its parent process directly (standalone
sub-processes have to use normal service invocations). Inline sub-processes therefor
provide a more natural realization of a true sub-process. Supporting inline sub-
processes, however, requires adaptation to both the WS-BPEL standard and the
execution platforms. Such extensions have not yet made their way into these
infrastructures or the WS-BPEL standard.

7.3.2 Aspect-Based Approaches

Aspect-oriented programming (AOP) is a well known approach to support the
separation of crosscutting concerns [133, 132]. Cross-cutting concerns are concerns
that affect the implementation of multiple modules in a system. In AOP, cross-
cutting concerns are typically modularized in aspect modules. These aspect modules
can be weaved into existing code at specific ‘join points’ The inserted code is called
the ‘advice’. A join point is a well-defined point in the execution of a program
(e.g., the call of a method). Pointcuts can be used to define sets of joint points
across different modules (i.e., cross-cutting) in a query-like manner. Several authors
advocate an aspect-oriented approach for Web service composition [37, 46]. In
the context of service composition, AOP can be used to extend process-oriented
composition languages with aspect-oriented modularity mechanisms.

One of the most prominent aspect-based approach for service composition is
AO4BPEL [37, 38]. AO4BPEL is an aspect-oriented workflow language for Web

DECOMPOSITION AND MODULARIZATION OF BUSINESS PROCESSES AND WORKFLOWS ___ 177

services composition in which each BPEL activity is a possible join point. Pointcuts
in AO4BPEL are used to refer to a set of join points, across several business
processes, at which crosscutting functionality should be executed. Attributes of
business processes and activities can be used as predicates to choose and define
relevant join points. Similar to AspectJ [132], AO4BPEL supports ‘before’, ‘after’,
and ‘around’ advice.

Supporting AO4BPEL at runtime requires the extension of existing BPEL engines
with an ‘aspect runtime component’ to make them ‘aspect-aware’. A high-level
architecture for such an extension is discussed in [38]. The authors of AO4BPEL
have also proposed an aspect-oriented extension to the Business Process Modeling
Notation (BPMN) in line with AO4BPEL [39].

Similar to AspectJ, AO4BPEL focusses on modularization at implementation level
and does not provide high-level abstractions to structure the architecture of a system.
AO4BPEL, however, provides an interesting alternative to the instrumentation used
in the current prototype implementation of the Macodo middleware (Sect. 5.4.2).
Container logic could be weaved into behavior components and conversation
connectors as a set of aspects, instead of relying on instrumentation.

7.3.3 View-Based Approaches

View-based approaches rely on the concept of a process ‘view’ to provide a
better decomposition and modularization of business processes. These approaches
can focus on a single business processes or on cross-organizational collaborative
workflows.

Tran et al. [194] propose a view-based and model-driven approach for developing
service-oriented architectures, called the View-based Modeling Framework (VbMF).
They rely on a set of extensible views to describe business processes. Three common
views are Flow View, Collaboration View and Information View. The Flow View
(or Orchestration View) describes a process at a high-level, making abstractions of
process details (e.g., data exchange, service communication). The Collaboration
View represents the interactions with other processes and services (i.e., the actual
service operations). The details of these service operations are specified in the
Information View, which also defines data types and messages. In addition to
these views, other views can be added, such as human interaction, data access and
integration [145], or traceability.

The model-driven part of VbMF consists of three main steps: view development,
view integration and code generation. In view development, stakeholders create
different views to describe specific business processes. View integration, which can
be partially automated [195], uses model transformations to produce richer views
(i-e., combination of views). These transformations can also be used to generate
actual executable code (e.g., BPEL code).

178 RELATED WORK

Compared to Macodo, the VbMF does not directly decompose processes or
collaborations. Instead, it decomposes the description of processes in a set
of different views, each focussing on a specific concern. Although the original
work [194] does not explicitly claim to improve reuse, more recent work does [195].
Reuse within VbMF is based on views making abstraction of certain concerns,
resulting in generic and thus more reusable descriptions. As a result, reuse is mainly
shown at the level of individual process elements (e.g., abstract activities) [195].
Macodo focuses on reuse of entire components (behaviors and conversations), which
are well encapsulated.

Although VbMF explicitly provides a ‘Collaboration View’, this view is limited
to showing individual interactions between different partners, by specifying the
partnerLinkType and interaction protocol for each partnerLink of the process.
Macodo, however, provides abstractions to decompose collaborations in terms of
roles, conversations, and behaviors.

View-based techniques have also been used in the context of cross-organizational
workflows [111, 41, 40]. Most of these approaches focus on integrating existing
workflows of different organizations or enterprises. To do so, organizations expose
a view on their local or private workflow. This allows authorized external parties
to access and make use of only the related and relevant parts of the workflow.
These workflow views can then be used to interconnect the different workflows
and create a global cross-organizational workflow. A workflow view can thus
be regarded as either a structurally correct subset of a workflow definition or a
structurally correct composition of workflow definitions [111]. Compared to these
approaches, Macodo focusses on decomposing collaborations from the start, instead
of integrating existing workflows.

7.3.4 Commitment-Based Approaches

Commitment-based approaches [204, 214, 185] provide an alternative approach to
traditional business process modeling. The main idea is to treat interactions at
the level of ‘business meaning’, in contrast to existing approaches such as workflow
management, which often focus at the level of messaging. This is done by capturing
the business meaning of interactions among autonomous parties with commitments.

A commitment is a reification of a directed obligation [184] and can be compared
to a social norm used in multi-agent systems [58]. An example of a commitment
is C(companyA, companyB, invoice Payed), meaning, company A is committed
to company B for paying the invoice. Commitments can be manipulated, using
operations such as create, release, assign, and delegate. Rules can describe how
commitments are discharged. The theory of commitments is based in formal
semantics [55].

Commitments can be used to specify business protocols [56]. A business protocol
specifies an interaction between two or more roles as a set of message declarations

DECOMPOSITION AND MODULARIZATION OF BUSINESS PROCESSES AND WORKFLOWS ___ 179

and logical axioms. These axioms define the effect of messages on commitments,
but also constraints on data flow and event ordering. Messages are given business
meaning by specifying how they affect commitments. The specification of a business
protocol can then be translated into a transition system (similar to a state machine).
Each state represents a specific state of the business protocol and corresponds to a
set of commitments that hold in this state. Transitions between states are triggered
by message exchanges and can manipulate commitments. Commitment-based
business protocols can also be used to verify compliance of participants [204]. That
is, check whether the behavior of an agent complies with the commitment protocol.

Amoeba [57] describes a methodology for using commitment-based protocols as
building blocks to compose more complex business processes. Compositions are
specified using a set of composition axioms. These axioms map roles of the
composed protocol to roles of the individual protocols, specify how messages of
one protocol effect the commitments in another protocol, and constrain the order
of messages between different protocols.

Telang and Singh [192] also propose a meta-model to model business relations in
terms of commitments. Business partners are represented as agents, and Business
relations as a set of roles, played by agents. Each role corresponds to a set of
commitments, expected of the agents who play the role, that refer to tasks or
business activities. These tasks correspond to goals which are desired by agents.
Using this simple model, a set of verification algorithms can be used to check
the completeness and correctness of business models. Correctness means that no
commitments are violated and completeness means that every task that is a goal
of an agent is executed.

Commitment-based approaches are mainly concerned with the specification and
validation of cross-organizational business processes. In contrast to Macodo, the goal
is not to provide any direct runtime support, but rather specify an business protocol
similar to service coordination and choreography. Although commitment-based
approaches do bring more business meaning to the process definition, it still lacks
higher-level abstractions. Instead of composing at the level of individual messages,
composition is done at the level of individual commitments. Meta-models based
on commitments [192] do introduce additional concepts, such as tasks and goals,
but they still represent low-level concepts like individual business activities. While
composition in Macodo is done using high-level building blocks, composition using
commitment is done using low-level composition axioms. Commitments, however,
do provide an interesting option to both formalize and validate the composition of
role components, conversation connectors, and behavior components.

180 RELATED WORK

7.4 Conclusions

This chapter discussed the contributions of this thesis with respect to related
work. When comparing Macodo to existing organization models and organization
infrastructures, there are a number of similarities and differences. Similar to Macodo,
several organization infrastructures follow a layered approach [209] (e.g., Ameli [71],
S-Moise+ [120]). Ameli, S-Moise+, and TeamCore, also rely on the notion of an
organization proxy, which enforces specific organizational constraints, and mediates
the access of agents to the organization infrastructure (e.g., OrgBox in S-Moise+,
governors in Ameli, and TeamCore proxies). These proxies can be compared to
the organization manager and mediator components of the Macodo middleware
architecture.

There are two main differences between Macodo and existing organization models.
The first difference is that Macodo relies on a set of architectural views to describe
organizations. These views directly represent collaborations in terms of software
elements and allow to reason about software qualities in terms of collaboration
abstractions. Many existing organization models describe organizations using
multiple ‘dimensions’ or structures. These dimensions, however, often remain at a
conceptual level, while it is unclear how they can be mapped to software. A second
difference is the way functional aspects of an organization are represented and
decomposed. Macodo relies on well-encapsulated concepts such as role components,
conversation connectors, and behavior components. Most existing organization
models follow a scene-based or goal-based approach. When using a goal-based
approach, the dominant decomposition is a hierarchy of goals or the division of
tasks. Interactions are not modeled explicitly, but are the results of one or multiple
goals or tasks that make agents interact. Scene-based approaches can be compared
to workflows, where the overall scene-structure is similar to a global workflow and
individual scenes can be seen as sub-workflows that represent specific interactions.
Behavior in scene-based approaches, however, is not well encapsulated.

Related work dealing with process variation (Sect. 7.2), and related work on
decomposition and modularization of workflows and cross-organizational business
processes (Sect. 7.3), mainly focusses on providing generic mechanisms, and typically
do not provide explicit concepts to represent underlying collaboration structures.
Since they focus on providing generic solutions, and are often orthogonal to the
work presented in this thesis, they provide interesting opportunities to be combined
with Macodo.

Work on dealing with process variation provides no high-level abstractions to
increase reuse, but focusses on making variation itself a first-class object. This
could be combined with Macodo to handle variation in conversation connectors
and behavior components.

Approaches to support sub-processes and fragments as first-class concepts aim
for a functional decomposition, but do not provide any reification of underlying
collaboration structures. They could be used in Macodo to further decompose

CONCLUSIONS 181

complex conversation connectors and behavior components.

Aspect-based approaches for business processes mainly target ‘implementation-
level’ modularity, but provide no high-level abstractions to structure the
architecture of a system. These approaches do, however, provide an interesting
alternative to instrumentation used in the current prototype implementation of
the Macodo middleware.

View-Based approaches improve reuse by keeping concrete details in separate views,
and thus making more abstract views more reusable, while Macodo focusses on
providing abstractions that fully encapsulate modular parts of collaborations.

Commitment-based approaches are mainly concerned with the specification and
validation of cross-organizational collaborations and business processes. Supporting
collaborations at runtime or reifying them in terms of software elements is outside
the scope of these works. Commitment-based approaches do, however, provide an
interesting option to both formalize and validate the composition of role components,
conversation connectors, and behavior components.

Chapter 8

Conclusions

Flexible integration and collaboration of information systems, both within and
across company borders, has become essential to success in current business
environments. Realizing collaborations and building the supporting information
systems, however, poses huge engineering challenges, from architectural design to
actual implementation. Current state of practice relies on middleware, workflow
management, service-oriented architecture (SOA), and Web services to address
these challenges.

In this thesis, we argued that several engineering challenges are still insufficiently
addressed. We defined three problem statements and illustrated them in a supply
chain management case:

o the lack of proper decomposition mechanisms;

e the focus of current solutions on functional decomposition;

o the missing reification of collaboration abstractions throughout the develop-

ment cycle.

These problem statements lead to the following research questions:

(1) What are good abstractions to support and promote modulariza-
tion of service collaborations, in order to reduce the number of faults,
better manage complexity, and improve reuse and productivity?

(2) How can these abstractions be reified and supported throughout
the development cycle (i.e., architecture, design, and implementation)?

To address these research questions, we presented Macodo, an approach that
consists of three complementary parts: (1) a set of abstractions for dynamic service

183

184 CONCLUSIONS

collaborations, (2) a set of architectural views that reify these abstractions, allowing
to build and document collaborations in terms of software elements, and (3) a
middleware infrastructure that supports these abstractions at implementation level.

Macodo focusses on service collaborations that can be defined as follows: “The
controlled interchange of information between a set of distributed entities (e.g.,
Web services) and the controlled execution of related tasks by these entities in
order to achieve a set of goals.”. In addition, these collaborations take place in a
restricted environment, which implies that there is a central owner or maintainer,
participation is controlled, and participants have a pre-established trust in the
environment and its maintainer.

8.1 Contributions

This thesis presented three main contributions:

o A conceptual model for dynamic collaborations [207, 101, 103]. The
conceptual model describes a set of collaboration abstractions that define
the vocabulary for Macodo. The model consolidates earlier research results
and is based on role-based modeling techniques from several domains. The
core abstractions (organization, role, conversation, and behavior) allow to
modularize complex collaborations and represent interactions, individual
responsibilities, behavior of participants, and management of collaborations
as separate concerns. A set of additional concepts (role state, organization
dynamics, and capability) allow to describe the adaptability of collaborations,
and to improve their reuse and modularity [99, 102, 206].

e A set of architectural views to build and document collaborations
in terms of software elements [208]. The architectural views introduce
architectural modeling abstractions that reify the collaboration abstractions
of the conceptual model at architectural level. Each view addresses some of
the main architectural drivers derived from the problem statements of this
thesis:

— express and reason about collaboration functionality and qualities in
terms of collaboration abstractions;

— separate concerns such as participant responsibilities, individual
behavior, and interactions;

— decompose collaborations to improve reuse and modularity;

— express and reason about modifiability and runtime adaptation of
collaboration;

— describe collaborations at different levels of abstraction, while maintain-
ing conceptual integrity.

FUTURE WORK 185

e A proof of concept middleware infrastructure supporting collabo-
ration abstractions at implementation level [208, 104, 100, 98]. The
proof of concept middleware infrastructure provides a concrete platform to
develop and implement collaborations that are designed in the architectural
views. Each type of Macodo module is mapped to concrete Web service
technology, and can be implemented using XML, WSDL and WS-BPEL. A
management service provided by the Macodo middleware allows applications
to register actors and to manage the life-cycle of organization connectors and
role components. A proof of concept middleware architecture and prototype
implementation show that Macodo can be integrated in the current technology
stack, without the need for new standards.

The first two contributions, the conceptual model and architectural views, were
evaluated in a controlled experiment, performed with computer science master
students. In this experiment, we provided an answer to four research questions: “Do
the modeling abstractions provided by Macodo: (1) reduce fault density; (2) reduce
design complexity; (3) increase the level of reuse; and (4) increase productivity,
compared to standard approaches for designing centrally managed collaborations
between Web services?”.

Given the practical constraints, the experiment was designed as a quasi-experiment.
Taking potential threats to validity into account, the results give a strong indication
that, within the restrictions of the experiment, Macodo provides an improvement
over the reference approach in terms of fault density, design complexity, level of
reuse, and productivity.

8.2 Future Work

In this section, we discuss some interesting opportunities for future work.

Formalization of the Conceptual Model

We have formalized previous versions of the Macodo model [207, 103, 101] using
the Z notation [189] and Alloy [123]. Such formalization allows to precisely define
the scope and meaning of concepts. It can also be used as a basis for future
implementations and verification. An interesting option could be to combine
Macodo with existing work on formal commitments in the context of business
protocols [204, 214, 185]. This could provide a formal basis to validate the
composition of role components, conversation connectors, and behavior components.

186 CONCLUSIONS

A Domain-Specific Extension for Macodo in an Existing ADL

A promising direction is to support the Macodo architectural views as a domain-
specific extension to an existing architecture description language (ADL). An
ADL is a language to specify an architecture in a formal way that is both
human and machine readable. Two prominent examples of formal ADLs are
ACME! and Pi-ADL [157]. Integrating Macodo with an existing ADL can
provide a basis for graphical tool support, automated analysis and verification,
and automatic code generation. Graphical tools can support the graphical
notation presented in this thesis. Automated analysis and verification can be
used to check compositions of conversation connectors and behavior components,
and the compatibility of capabilities. Automatic code generation can translate
Macodo architectural view descriptions to Macodo modules that can be directly
loaded into the Macodo middleware infrastructure.

Extending Macodo with Complementary Decomposition Mechanisms.

Macodo provides organization and role abstractions to support the decomposition
of complex collaborations. There are a number of promising decomposition
mechanisms for workflows and business processes that can be considered orthogonal
to Macodo, and which could provide a valuable addition. Two interesting tracks
are dealing with variation in Macodo modules, and supporting sub-conversations
and sub-behaviors to further decompose complex conversations and behaviors. To
handle variation in Macodo modules, and to increase reuse of Macodo modules in
different contexts, Macodo could be extended with mechanisms that support
parameterization of workflows and business processes [126, 127], or dynamic
configuration at runtime [49, 88, 106]. To support sub-conversations and sub-
behaviors, possible options are using BPMN’s support for sub-processes [6], or
work on process fragments [7, 67].

Building a Mature Middleware Infrastructure

The middleware infrastructure presented in this thesis is intended as a proof of
concept for Macodo. To further valorize Macodo, an essential step is to build a
mature middleware infrastructure that fully supports Macodo and its features. In
addition, there are a number of interesting directions to explore:

e Supporting conversation connectors and behavior components that are not
BPEL-based. Examples are conversation connectors that work as shared
data repositories, or Java-based behaviors.

Thttp://www.cs.cmu.edu/~acme/

http://www.cs.cmu.edu/~acme/

CLOSING REFLECTION 187

e Supporting the dynamic addition of new Macodo modules at runtime. This
allows introduce new types of collaborations at runtime, which can be essential
in certain domains.

o Exploring alternative middleware architectures and implementations. Interest-
ing options are the use of service routers [148, 144] instead of instrumentation,
using aspect-based techniques (e.g., AO4BPEL [37]) to weave in container
logic, or using a framework that supports the execution of native BPMN 2.0
definitions, such as jBPM? or Bonita Open Solution®.

8.3 Closing Reflection

The underlying theme of this thesis is that abstraction is essential to software
engineering. That is, abstraction in the sense of concepts, but also in the way a
system is built and documented.

Many domains have developed useful abstractions and ways to cultivate abstractions.
Other domains provide useful technologies, but have a need for better abstractions
or are missing the reification of abstractions throughout the development cycle.
Cross-fertilization between these domains can lead to new insights and progress.
Macodo can be seen as such an attempt.

Macodo is the result of a long journey, in which many choices were made. Choices
that were essential to scope and move forward. No research track is the result
of a single person, and Macodo is no exception. It is influenced by many people,
projects, and valuable collaborations with researchers and students.

Another major influence on Macodo has been the empirical evaluation. Performing
such an evaluation is not only a great way to evaluate, it also provides invaluable
feedback, and forces to scope. Empirical evaluation within software engineering is
gaining prominence, and this can only be applauded.

2http://www.jboss.org/jbpm
3http:/ /www.bonitasoft.com/

http://www.jboss.org/jbpm
http://www.bonitasoft.com/

Appendix A

Macodo View Documentation
Example

This appendix provides an extended example of a Macodo view documentation.
The complete documentation of the architecture used by the 4PL could include
the following views:

¢ Organization Module Views

— Vmi Organization Module View

— Cmi Organization Module View
¢ Organization & Actor Views

— Carrefour Organization & Actor View
— Delhaize Organization & Actor View

— Acme Organization & Actor View
e Role & Conversation Views

— Vmi Role & Conversation View

— Cmi Role & Conversation View

Allocation Views

— Deployment View
— Install View

— Implementation View

189

190 MACODO VIEW DOCUMENTATION EXAMPLE

For each organization type there is a specific Organization Module View and Role
& Conversation View. For each specific supply chain network that the 4PL has
to support, there is an additional Organization & Actor View. A set of allocation
views (described using standard views) documents the deployment, installation,
and implementation plan of the architecture.

The rest of this appendix focusses on a specific view: the Vmi Role & Conversation
View. This view documents the runtime architecture of the Vmi Organization
Connector. To document this view, we follow the view template proposed by [84].
Some parts of the documentation have been simplified or omitted.

PRIMARY PRESENTATION 191

A.1 Primary Presentation

The primary presentation of the Vmi Role & Conversation View is split in two

parts (Fig. A.2 and A.2).

:Vmi Vendor :Warehouse :Vmi Retailer [*] :Vmi Retailer HQ :Transporter

(active) (active) (active) (active) (active)

forecastPort forecastPort
(Vendor) (Customer)
:Forecasting
Conversation
:Inventory Reporting
Behavior
invPort invPort-invPort invPort
(Client) (Inventory) (Client)
:Inventory Reporting
Conversation

:Replenishment

Behavior
replPort-replPort replPort replPort

(Vendor) (Stock) (Customer)

:Vmi Replenishment
Conversation
transportPort-transportPort transportPort
(Shipper) (Carrier)
‘Transport
Conversation

(] U

X

—

>
g conversation initiating participating conversation role actor creates
connector conversation conversation creates behavior component behavior
role role component component

Figure A.1: Primary presentation of the Vmi Role & Conversation View part I.

192 MACODO VIEW DOCUMENTATION EXAMPLE

:Vmi Vendor :Warehouse :Vmi Retailer [*] :Vmi Retailer HQ :Transporter
(active) (active) (active) (active) (active)
:Call-Off Fulfillment :Call-Off Behavior
Behavior
callOffPort-callOffPort callOffPort-callOffPort
(Stock) (Caller)
:Call-Off
Cor‘wersation
transportPort-ransportPort transportPort
(Shipper) (Carrier)
‘Transport
Conversation
consPort consPort-consPort consPort
(Seller) (Consumer) (Buyer)
| :Consumption Reporting
Conversation

:Product Return
Behavior

returnPort-returnPort returnPort-returnPort returnPort-returnPort
(Seller) (Inventory) (Customer)

:Product Return
Conversation

transportPort-transportPort transportPort
(Shipper) (Carrier)

:Transport
Conversation

=

g conversation initiating participating conversation role behavior actor creates
connector conversation conversation creates behavior component component behavior
role role component component

Figure A.2: Primary presentation of the Vmi Role & Conversation View part II.

ELEMENT CATALOG 193

A.2 Element Catalog

This section describes the different elements depicted in the primary view.

A.2.1 Role Components
Vmi Vendor Role

This role component represents the vendor role of the Vmi Organization. It
encapsulates the responsibility of the vendor related to forecasting, inventory
reporting, replenishment, consumption reporting, and product return. This
component has the following ports:

e Actor Port: requires Vmi Vendor Capability

« Conversation Ports:

forecastPort: provides Forecasting- Vendor Capability

— inventoryPort: provides InventoryReporting-Client Capability
— replPort: provides Replenishment- Vendor Capability

— transportPort: provides Transport-Shipper Capability

— consPort: provides ConsumptionReporting-Seller Capability

— returnPort: provides ProductReturn-Seller Capability

Delegation of conversation ports to the actor port and behavior components is
defined in the primary view.

Warehouse Role

omitted from example

Vmi Retailer Role

omitted from example

Vmi Retailer HQ Role

omitted from example

194 MACODO VIEW DOCUMENTATION EXAMPLE

Transporter Role

omitted from example

A.2.2 Conversation Connectors
Forecasting Conversation

omitted from example

Inventory Reporting Conversation

omitted from example

Replenishment Conversation

omitted from example

Call-Off Conversation

This conversation connector encapsulates the call-off interaction. It allows a caller
to place a call-off order with a stock. The stock, in turn, will provide the necessary
shipment info. The conversation connector is executed as a persistent BPEL
process, and has two connector roles:

o CQaller: requires CallOff-Caller Capability
e Stock: requires CallOff-Stock Capability

All conversation capabilities have asynchronous SOAP-based interfaces. The
conversation connector is created by the Caller conversation role.

Transport Conversation

This conversation connector encapsulates the transport ordering interaction. It
allows a shipper to place a transport order with a carrier. This conversation
handles both the exchange of shipment info and delivery receipts. The conversation
connector is executed as a persistent BPEL process, and has two connector roles:

e Shipper: requires Transport-Shipper Capability

ELEMENT CATALOG 195

e Carrier: requires Transport-Carrier Capability

All conversation capabilities have asynchronous SOAP-based interfaces. The
conversation connector is created by the Shipper conversation role.

Consumption Reporting Conversation

omitted from example

Product Return Conversation

omitted from example

A.2.3 Behavior Components
Inventory Reporting Behavior

omitted from example

Replenishment Behavior

omitted from example

Call-Off Behavior

omitted from example

Call-Off Fulfillment Behavior

This behavior component encapsulates the role functionality to fulfill a call-off
order. It is responsible for initiating a transport conversation after receiving a
call-off order. The behavior component is executed as a persistent BPEL process,
and has the following ports:

e Actor Port: requires Call-Off Fulfillment Capability
o Conversation Ports:

— callOffPort: provides CallOff-Stock Capability
— transportPort: provides Transport-Shipper Capability

196 MACODO VIEW DOCUMENTATION EXAMPLE

Both the behavior capability (required by the actor port) and the conversation
capabilities (provided by the conversation ports) have asynchronous SOAP-based
interfaces. The behavior component is instantiated by a conversation connector,
through the callOffPort.

Product Return Behavior

omitted from example

A.2.4 Capabilities and Element Interfaces

Capabilities and interfaces are described in Appendix B.

A.2.5 Element Behavior

the example only shows the behaviors of some conversation connectors and behavior
components

ELEMENT CATALOG 197

Call-Off Conversation and Transport Conversation

Call-Off Conversation Transport Conversation
Stock Caller Shipper Carrier
= = & Receive = Send
Send Call-Off Receive Transport » Transport
Order < Call-Off Order Order
EI = - Send & Receive
Receive Send Shipment |« Shipment
Delivery Info Delivery Info info Info
= EI & Receive = Send
Send Receive Delivery » Delivery
Delivery & Delivery Receipt Receipt
Report Report —
OO
>
()
< connector .
(vertical lanes represent start end control send message receive message
activity activity flow to connector role from connector role

connector roles
) represented by lane represented by lane

198

Call-Off Fulfillment Behavior

Call-Off Fulfillment Behavior

actorPort callOffPort transportPort
= S
Send Call-Off Receive
Order - Call-Off
Order
= Send
Transport
Order Request
= Receive = Send
Transport P Transport
Order Ordor
- = Receive
Send :
i - Shipment
Delivery Info ol
S Receive M oooq
Delivery > Delivery
Report Receipt

A.3 Context Diagram

N/A

A.4 Variability Guide

A.4.1 Possible Role States

the example is limited to the state of two role components

MACODO VIEW DOCUMENTATION EXAMPLE

key

component

(vertical lanes represent

component ports)

SNe

start end
activity activity

—»

control
flow

send message
to component port
represented by lane

receive message
from component port
represented by lane

VARIABILITY GUIDE

Warehouse Role

199

role state
Active Deactivating Inactive
creation | max occur. | creation |max occur.| creation |max occur.
invPort yes * no * no
repPort yes no * no 0
conversation * %
B callOffPort yes no no 0
transportPort yes * no * no 0
returnPort yes no * no 0
Inventory Reporting P *
Behavior actor no no 0
behaviors
Call-Off Fulfillment | conver- . «
Behavior sation no no 0
3 UML 2.0 r—[no more behavior components or conversation ports|—
~
@édestroy
Inactive activate Active deactivate Deactivating
tcreate
Vmi Retailer Role
role state
Active Deactivating Inactive
creation | max occur. | creation |max occur.| creation |max occur.
e callOffPort yes no * no 0
[consPort yes no * no 0
behaviors | Call-Off Behavior | actor no * no 0
O UML20 [no more behavior components or conversation ports]

Inactive

activateMdeactivate

Deactivating

200

MACODO VIEW DOCUMENTATION EXAMPLE

A.4.2 Possible Conversation Connectors

The following table lists the possible conversation connectors in the Vmi

Organization.

Forecasting Conversation

- Vendor — VmiVendor.forecastPort

- Customer — VmiRetailerHQ.forecastPort
Inventory Reporting Conversation

- Inventory — Warehouse.invPort

- Client — VmiVendor.invPort

- Client — VmiRetailerHQ.invPort
Replenishment Conversation

- Vendor — VmiVendor.replPort

- Stock — Warehouse.replPort

- Customer — VmiRetailerHQ.replPort
Transport Conversation

- Shipper — VmiVendor.tranportPort

- Carrier — Transporter.transportPort
Call-Off Conversation

- Caller — VmiRetailer.callOffPort

- Stock — Warehouse. callOffPort
Transport Conversation

- Shipper — Warehouse.transportPort

- Carrier — Transporter.transportPort
Consumption Reporting Conversation
- Consumer — VmiRetailer.consPort

- Buyer — VmiRetailerHQ.consPort

- Seller — VmiVendor.consPort
Product Return Conversation

- Seller — VmiVendor.returnPort

- Inventory — Warehouse.returnPort

- Customer — VmiRetailerHQ.returnPort

A.5 Rationale

o Using asynchronous interfaces in conversation capabilities allows to support
long-running interactions between supply chain companies.

e Using asynchronous interfaces in behavior capabilities allows to support

long-running behaviors.

e By using SOAP-based interfaces for capabilities, capabilities can be
required and provided using normal Web services. This greatly improves
the interoperability of both role components and actor components, as

RATIONALE 201

well as internal implementations of conversation connectors and behavior
components.

o Executing conversation connectors and behavior components as persistent
BPEL processes allows to automatically recover and resume conversaion
connectors and behavior components in case an application server goes down
(e.g., because of hardware failure, power outages, or maintenance restarts).

« Active role states enable concurrent occurences of conversation connectors
and behavior components. This allows to handle multiple forecastings, call-off
orders, transports, etc. in parallel.

e By introducing a life-cycle for the different roles, we can safely add and
remove role components from the organization.

¢ By instantiating the Call-Off Fulfillment Behavior through the Call-Off
Conversation, the Warehouse role is obliged to organize a transport for
each call-off. Without encapsulating this responsibility in this behavior, the
responsibility would be with the actor of the Warehouse role itself.

additional rationale has been omitted

Appendix B

Macodo View Documentation
Example: Capabilities and
Interfaces

This appendix gives an example of the documentation of capabilities and their
interfaces. We partially follow the template to document interfaces proposed
by [84].

B.1 Vmi Vendor Capability

The Vmi Vendor Capability defines the capability required to play the Vmi Vendor
Role. It consists of a set of conversation and behavior capabilities. These capabilities
are defined in separate sections.

B.1.1 Conversation Capabilities

e Forecasting-Vendor Capability
o InventoryReporting-Client Capability

e ConsumptionReporting-Seller Capability

B.1.2 Behavior Capabilities

¢ Replenishment Capability

203

204 MACODO VIEW DOCUMENTATION EXAMPLE: CAPABILITIES AND INTERFACES

e Product Return Capability

B.2 CallOff-Caller Capability

The CallOff-Caller Capability is the conversation capability required to play the
Caller Conversation Role of the Call-Off Conversation. The capability defines a
conversation and participant interface.

B.2.1 Conversation Interface

Interface Identity

This is a SOAP Web service interface available to the provider of the CallOff-Caller
Capability. This is typically the participant playing the corresponding conversation

role. The main purpose of this interface is to allow the participant to place a
call-off order.

Resources

void sendCallOffOrder(CallOffOrder order);

Send the initial call-off order.

Pre-Conditions

e The CallOffOrder argument must not be null.

e The following components of the CallOffOrder argument must not be null:
orderID, deliveryDeadline, productType, quantity.

Post-Conditions
o A successful call to this interface will pass the call-off order to the conversation.
Error Handling

e InvalidOrderException. The operation throws this exception if the order
or one of the required order components it null.

void sendDeliveryReport(DeliveryReport report);

Send a delivery report after receiving a specific order.

Pre-Conditions

CALLOFF-CALLER CAPABILITY 205

e The DeliveryReport argument must not be null.

¢ The following components of the DeliveryReport argument must not be null:
orderID, productType, quantity, condition.

o This operation can only be invoked after invoking the sendCallOffOrder
operation for the corresponding order, receiving the receiveDeliveryInfo
operation on the participant interface, and physically receiving the order.

Post-Conditions

e A successful call to this interface will pass the delivery report to the
conversation.

Error Handling

e InvalidReportException. The operation throws this exception if the
report or one of the required report components it null.

Data Types and Constants

e CallOffOrder This type is used as an argument for the sendCallOffOrder
operation. It is a data structure that contains all necessary information to
place an order. The attributes of a CallOffOrder object are listed below:

String orderID
— DateTime orderDate
— DateTime deliveryDeadline
— ProductType productType
— Quantity quantity
— Location deliveryLocation
— Contactinfo contactPerson
¢ DeliveryReport This type is used as an argument for the sendDeliveryRe-
port operation. It is a data structure that contains all necessary information
to submit a delivery report. The attributes of a DeliveryReport object are
listed below:
— String orderID
— DateTime deliveryData

ProductType productType
— Quantity quantity

ProductCondition condition

some data types have been omitted from the example

206 MACODO VIEW DOCUMENTATION EXAMPLE: CAPABILITIES AND INTERFACES

B.2.2 Participant Interface

Interface Ildentity

This is a SOAP Web service interface available to the requirer of the CallOff-Caller
Capability. This is typically the conversation (or corresponding conversation role).

The main purpose of this interface is to allow the conversation to pass required
information back to the participant that places a call-off order.

Resources

void receiveDeliveryInfo(DeliveryInfo info);

Receive the delivery info for a specific call-off order.

Pre-Conditions

e The DeliveryInfo argument must not be null.

e The following components of the DeliveryInfo argument must not be null:
orderID, deliveryDeadline, productType, quantity.

e This operation can only be invoked after receiving the sendCallOffOrder
operation for the corresponding order on the conversation interface.
Post-Conditions
o A successful call to this interface will pass the delivery info to the participant.

Error Handling

o InvalidInfoException. The operation throws this exception if the info or
one of the required order components it null.

Data Types and Constants

¢ DeliveryInfo This type is used as an argument for the receiveDeliveryInfo
operation. It is a data structure that contains all necessary information to
notify a participant of the particular delivery details. The attributes of a
CallOffOrder object are listed below:
— String orderID
— DateTime deliveryData
— ProductType productType

CALLOFF-CALLER CAPABILITY 207

— Quantity quantity
— Location deliveryLocation

— Contactinfo contactPerson

some data types have been omitted from the example

Error Handling

All operations in this interface can raise the following exception, in addition to
operation specific exceptions:

¢ RemoteException. The caller receives a RemoteException when there
is a communication problem with the service provider implementing this
interface.

Variatbility

N/A

© 0w N O U A W N e

10

12
13
14

16
17
18
19
20
21
22
23
24

26
27
28

Appendix C

Middleware Appendix

C.1 XML Schemas

The following listing gives a complete specification of the XML schemas used to

specify the different Macodo modules:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

targetNamespace="http://macodo.com/schema/specs"
xmlns:tns="http://macodo.com/schema/specs"
elementFormDefault="qualified">

<!-- CAPABILITIES —-->

<xsd:complexType name="behaviorCapability">

<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute

</xsd:complexType>

name="name"
type="xsd:string"/>
name="interfaceSpecification"
type="xsd:string"/>
name="actorPorthType"
type="xsd:string"/>
name="behaviorPortType"
type="xsd:string"/>

<xsd:complexType name="conversationCapability">

<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute

</xsd:complexType>

name="name"
type="xsd:string"/>
name="interfaceSpecification”
type="xsd:string"/>
name="participantPortType"
type="xsd:string"/>
name="conversationPortType"
type="xsd:string"/>

209

210 MIDDLEWARE APPENDIX

<!-- BEHAVIOR MODULES -->

<xsd:complexType name="behaviorComponentType">
<xsd:sequence>
<xsd:element name="actorPort">
<xsd:complexType>
<xsd:attribute name="behaviorCapability"
type="xsd:string"/>
<xsd:attribute name="partnerLink" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="conversationPort" minOccurs="0"
maxOccurs="unbounded" type="tns:conversationPort"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="behaviorSpecification" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="conversationPort">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="conversationCapability" type="xsd:string"/>
<xsd:attribute name="partnerLink" type="xsd:string"/>
</xsd:complexType>

<!-- CONVERSATION MODULES —->

<xsd:complexType name="conversationConnectorType">

<xsd:sequence>

<xsd:element name="conversationRole" minOccurs="0"
maxOccurs="unbounded" type="tns:conversationRole"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="protocolSpecification" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="conversationRole">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="conversationCapability" type="xsd:string"/>
<xsd:attribute name="minOccur" type="xsd:int"/>
<xsd:attribute name="maxOccur" type="xsd:int"/>
<xsd:attribute name="initiator" type="xsd:boolean"/>
<xsd:attribute name="partnerLink" type="xsd:string"/>
</xsd:complexType>

<!-- ROLE MODULES —->

<xsd:complexType name="RoleComponentType">
<xsd:sequence>

<xsd:element name="conversationPort" minOccurs="0"
maxOccurs="unbounded" type="tns:conversationPort"/>

<xsd:element name="behaviorType" minOccurs="0"
maxOccurs="unbounded" type="tns:behaviorType"/>

<xsd:element name="interfaceDelegation” minOccurs="0"
maxOccurs="unbounded" type="tns:interfaceDelegation"/>

<xsd:element name="roleState"” minOccurs="0"
maxOccurs="unbounded" type="tns:roleState"/>

XML SCHEMAS

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="interfaceDelegation">
<xsd:attribute name="behaviorType" type="xsd:string"/>

<xsd:attribute name="behaviorConversationPort" type="xsd:string"/>
<xsd:attribute name="roleConversationPort" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="behaviorType">
<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="behaviorComponentType" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="roleState">
<xsd:sequence>
<xsd:element name="conversationConstraint" minOccurs="0"
maxOccurs="unbounded"
type="tns:conversationConstraint"/>
<xsd:element name="behaviorConstraint" minOccurs="0"
maxOccurs="unbounded"”
type="tns:behaviorConstraint"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="conversationConstraint">
<xsd:attribute name="conversationPort" type="xsd:string"/>
<xsd:attribute name="creation" type="xsd:boolean"/>
<xsd:attribute name="maxOccur" type="xsd:int"/>
</xsd:complexType>

<xsd:complexType name="behaviorConstraint">
<xsd:attribute name="behaviorType" type="xsd:string"/>
<xsd:attribute name="creation" type="xsd:boolean"/>
<xsd:attribute name="maxOccur" type="xsd:int"/>
</xsd:complexType>

<!-- ORGANIZATION MODULES —->

<xsd:complexType name="organizationConnectorType">
<xsd:sequence>
<xsd:element name="roleType" minOccurs="0"
maxOccurs="unbounded" type="tns:roleType"/>
<xsd:element name="conversationType" minOccurs="0"
maxOccurs="unbounded"
type="tns:conversationType"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="roleType">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="roleComponentType" type="xsd:string"/>
<xsd:attribute name="minOccur" type="xsd:int"/>
<xsd:attribute name="maxOccur" type="xsd:int"/>

© 0w N O U A W N e

NONONNN N NN N R R R R e R e e
© N O R W N RO © KN oA W N = O

212 MIDDLEWARE APPENDIX

</xsd:complexType>

<xsd:complexType name="conversationType">

<xsd:sequence>

<xsd:element name="roleMapping" minOccurs="0"
maxOccurs="unbounded" type="tns:roleMapping"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="conversationConnectorType" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="roleMapping">
<xsd:attribute name="conversationRole" type="xsd:string"/>
<xsd:attribute name="roleType" type="xsd:string"/>
<xsd:attribute name="conversationPort" type="xsd:string"/>
</xsd:complexType>

</xsd:schema>

C.2 Macodo Management Service

The following listing gives a complete specification of the management interface of
the Macodo middleware:

public interface ManagementInterface({

//ACTOR COMPONENTS
ActorID registerActor (String name) ;

void unregisterActor (ActorID actorID)
throws NoSuchActorException;

void registerProvidedCapability (ActorID actorComponentID,
ProvidedCapability providedCapability)
throws NoSuchActorException, InvalidCapabilityException;

boolean unregisterProvidedCapability (
ActorID actorlID,
ProvidedCapabilityID providedCapabilityID)
throws NoSuchActorException, NoSuchCapabilityException;

Set<CapabilityID> getProvidedCapabilities (ActorID actorID)
throws NoSuchActorException;

//ORGANIZATION CONNECTORS

OrganizationConnectorID createOrganizationConnector (
OrganizationConnectorType organizationConnectorType,
String name)
throws InvalidOrganizationConnectorTypeException;

MACODO MANAGEMENT SERVICE

void destroyOrganizationConnector (
OrganizationConnectorID organizationConnectorID)
throws NoSuchOrganizationConnectorException;

Set<OrganizationConnectorID> getOrganizationConnectors();
//ROLE COMPONENTS

RoleComponentID createRoleComponent (
OrganizationConnectorID organizationConnectorID,
RoleType roleType,
ActorID actorID)
throws NoSuchOrganizationConnectorException,
IllegalRoleComponentTypeException,
RoleMultiplicityException, NoSuchActorException,
InsufficientCapabilitiesException;

RoleEndpoint getRoleEndpoint (RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

Set<RequiredCapability> getRequiredCapabilities (RoleType roleType)
throws IllegalRoleComponentTypeException;

set<RoleComponentID> getRoleComponents (
OrganizationConnectorID organizationConnectorID)
throws NoSuchOrganizationConnectorException;

void destroyRoleComponent (RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

void setRoleState (RoleComponentID roleComponentID,
RoleState roleState)
throws NoSuchRoleComponentException, IllegalRoleStateException;

RoleState getRoleState (RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

ActorID getActor (RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

Set<BehaviorComponentID> getBehaviorComponents (
RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

Set<ConversationRoleID> getConversationRoles (
RoleComponentID roleComponentID)
throws NoSuchRoleComponentException;

213

Appendix D

Evaluation Appendix

D.1 Calculating Function Points

As a size measurement, we use the Albrecht’s approach to calculate function
points [9, 72]. Function points are intended to measure the amount of functionality
in a system described by its specification. To compute the number of function
points, we first have to compute the unadjusted function point count (UFC). To
do so, the software is represented in terms of external inputs, external outputs,
external inquiries, external files, and internal files. We only consider external inputs
and outputs. Next, we have to assign each item a subjective “complexity”: ‘simple’,
‘average’, or ‘complex’. The corresponding weights are given below [72]:

Weighting Factor

Item Simple Average Complex
External inputs 3 4 6
External outputs 4 5 7

The actual measure used for size is the adjusted function point count (FP). The
FP is calculated by multiplying the UFC with a technical complexity factor (TFC).
The TFC is calculated by selecting those factors (out of 14) that contribute to
the technical complexity of the system (the complete list can be found in [72])
with a score of 0 (irrelevant), 3 (average), or 5 (essential). We consider two
technical complexity factors: Fy (heavily used configuration) with a rating 5 and
F11 (reusability) with a rating 3. Our technical complexity factor (TFC) results in:

TCF = 0.65+0.01 x (5+3) = 0.73 (D.1)

215

216 EVALUATION APPENDIX

The requirements of both assignments can be divided in three main scenarios.
Each scenario requires two interactions and multiple scenarios can require the
same interaction. An overview of the four possible interactions in assignment A
(eHealth case) is given in Fig. D.1 (interactions for assignment B are similar). The
corresponding unadjusted function point count (FPC) and adjusted function point
count (FP) for the scenarios are given below (calculations are the same for both
assignments):

Unadjusted Function Point Count (UFC)

Scenario 1 Scenario 2 Scenario 3

Interaction a 17 17

Interaction b 7

Interaction c 17

Interaction d 14 14
Total UCF 34 31 21

Adjusted Function Point Count (FP)

Scenario 1 Scenario 2 Scenario 3

Interaction a 12 12

Interaction b 5
Interaction c 12

Interaction d 10 10

Total FC 24 22 15

CALCULATING FUNCTION POINTS 217

Interaction a

Nurse alarm (s)—»
System [----- alarm (c)- - - P Dogtglrl em
& ---alarm (s)-----
Head Nurse
——confirmation (s)—
Interaction b
Nurse alarm (s)—p System |--—-- alarm (s)- - - Doc(::tglrI on
Interaction c
€—report (c) Dogglrl e
& ---report (s)-—---
Head Nurse System
update (s)—p
----update (sy-- ¥ Doctor
Interaction d
< report (s) Dogglrl ol
& - --report (s)---- -
Head Nurse System
update (s)—»
----update (s)y -~ Doctor
- > *x)
)
= system external input output function point complexity
entity (s: simple, a: average,
c: complex)

Figure D.1: An overview of the interactions for assignment A (eHealth case). The
alarm output in interaction a has a higher complexity because it is a conditional
output. The report input of interaction ¢ and d have a different complexity based
on when they can occur.

218 EVALUATION APPENDIX

D.2 Notations Used in the Experiment

Figure D.2, D.3, D4, D.5, D.6, and D.7 give an overview and some examples of
the notation used for Macodo and the reference approach during the evaluation. A
complete discussion of the notation can be found online’

BPEL process

[] partnerLink

partner
(e.g. system, component
or external process)

service repository

service . static service binding
client eI defined at deployment

service . -« service dyqamlc service binding
client defined at runtime

Figure D.2: Key to document the architecture of the system in the reference
approach.

Lhttp://people.cs.kuleuven.be/~robrecht.haesevoets/macodo/

http://people.cs.kuleuven.be/~robrecht.haesevoets/macodo/

NOTATIONS USED IN THE EXPERIMENT 219

binding defined
@run time

Hello Process A

Dynamic - client
Welcome Process PPL e
Client A dynarmic e
GE : Z- | —
] client hello [} Sl Hello Process B
repo N
binding defined
@deployment time Service

Repository | repository

Figure D.3: An example of the notation used to document the architecture in the
reference approach.

220

EVALUATION APPENDIX

BPEL process

BPEL process with
lanes representing
partnerLinks

—» control flow

777777777 1> message flow

Q start

v o JUUL

O stop

async <receive>
(receive message)

async <invoke>
(send message)

sync <invoke> + <receive>
(send + receive message)

<assign>

<if>

<flow>
(parallel flow)

Figure D.4: Key for the simplified process notation used in the detailed design for

both the reference approach and Macodo.

NOTATIONS USED IN THE EXPERIMENT

221

Dynamic Welcome Process (Simplified)

client

Receive R

dynamic hello

repo

SR
Get Hello

Welcome
Request

S
Send Welcome
Response

S
Send Hello

>)
Service

Request

—t

Receive Hello

Response

Figure D.5: An example of the simplified process notation.

222 EVALUATION APPENDIX

The Warehouse role can
execute the Call-Off
Behavior. This behavior
realizes 2 conversation roles.

The Call-Off Behavior

Role is initiated by the Call-
\ Off Conversation
\ Vendor \ Warehouse/ Retailer Transporter
| call-off Behglior
Sto Buyer
Call-Off
Conversation
Shipper Carrier
Transport
Conversation

\ The Transporter role plays
the Carrier conversation

role. This conversation

role participates in the

The Warehouse role does not
directly play the Shipper

conversation role, but delegates it A conversation enabled

Waves indicate the between the

specification of the roles
is not complete.

to its Call-Off Behavior. This

conversation role can initiate Warehouse role and the

Transporter Role.

conversations.

conversations.
> E |:| I:I
g role conversation initiating participating conversation role behavior actor can
conversation conversation can initiate initiate
role role behavior behavior

Figure D.6: The notation used to document the architecture

with Macodo.

NOTATIONS USED IN THE EXPERIMENT

223

Call-Off Behavior

actor

S
Send

) R
Receive

Call-Off Order ¢

call-off conversation

R
Receive
Call-Off Order

Send

Confirmation

Send S
Transport Order |«

Confirmation

Request

Receive

transport conversation

Send

Transport Order

Transport Order

Figure D.7: An example of the simplified process notation used to document a

behavior in Macodo.

224 EVALUATION APPENDIX

D.3 Measuring Changes

The design of a solution consists of an architecture of the system in terms of
modules, and a detailed design of each module. In our experiment, we only measure
changes required in the detailed design. In the detailed design, subjects use the
same notation for both treatments, allowing to define a uniform measure for changes.
This is, however, not the case for the architecture of the system.

Below we give a table of the possible changes (in the context of the simplified
notation) and their cost:

Type of Change Cost

w

add/replace <if> activity

move/remove <if> activity

add conditions <if> activity

add/replace async <invoke>/<receive> activity
add/replace sync <invoke> activity
move/remove async <invoke>/<receive>
move/remove sync <invoke> activity
inverting <send>/<receive> label of activity
add/remove start/end point

add/replace lane (i.e., partnerLink)

remove unused lane (i.e., partnerLink)

I I S e O JURN NS Y

The cost of changes takes the simplifications of the process notation into account.
More specifically, students could omit trivial assign activities. As a result the cost
of an async <invoke>/<receive> is 2, assuming we require one <assign> activity
before the <invoke> activity, and one <assign> after the <receive> activity. The
cost of a sync <invoke> activity is 3, assuming we require one <assign> activity
before and after this activity.

Bibliography

[1] Workflow Management Coalition Terminology & Glossary. Technical Report 3,
Workflow Management Coalition, 1999.

[2] Collaborative Planning, Forecasting and Replenishment (CPFR) Version
2.0. Technical report, Voluntary Interindustry Commerce Standards (VICS),
2002.

[3] Web Services Security: SOAP Message Security 1.1 (WS-Security 2004).
Technical report, OASIS Open, 2006.

[4] ISO/IEC 42010 systems and software engineering — architectural description.
Technical report, ISO, 2007.

[5] Web Services Business Process Execution Language (WS-BPEL) Version 2.0.
Technical report, OASIS, 2007.

[6] Business Process Model and Notation (BPMN) version 2.0. Technical report,
OMG, 2011.

[7] M. Adams, A. Hofstede, D. Edmond, and W. van der Aalst. Worklets: A
service-oriented implementation of dynamic flexibility in workflows. On the
Mowe to Meaningful Internet Systems CooplS DOA GADA and ODBASE,
4275:291-308, 2006.

[8] H. Afsarmanesh and L. M. Camarinha-Matos. A framework for management
of virtual organization breeding environments. Collaborative networks and
their breeding environments, 23:35-48, 2005.

[9] A. J. Albrecht and J. E. Gaffney. Software Function, Source Lines of Code,
and Development Effort Prediction: A Software Science Validation. IEEE
Transactions on Software Engineering, SE-9(6):639-648, 1983.

[10] H. Aldewereld, J. Padget, W. Vasconcelos, J. Vazquez-Salceda, P. Sergeant,
and A. Staikopoulos. Adaptable, organization-aware, service-oriented
computing. IEEFE Intelligent Systems, 25(4):0-4, 2010.

225

226

[11]

[14]

[15]

[19]

BIBLIOGRAPHY

R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213-249, July
1997.

G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts,
Architectures and Applications. Springer, 2004.

G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, and N. Weiler.
WISE: business to business e-commerce. In Proceedings Ninth International
Workshop on Research Issues on Data Engineering Information Technology
for Virtual Enterprises RIDEVE99, pages 132-139. IEEE Computer Society,
1999.

C. W. Bachman and M. Daya. The Role Concept in Data Models. In
Proceedings of the 3rd International Conference on Very Large Date Bases
VLDB, pages 464-476. IEEE Computer Society, 1977.

M. Baldoni, D. Informatica, and L. V. D. Torre. powerJava : Ontologically
Founded Roles in Object Oriented Programming Languages. Power, pages
1414-1418, 2006.

A. P. Barros and M. Dumas. The Rise of Web Service Ecosystems. [t
Professional, 8(5):31-37, 2006.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 2 edition, Apr. 2003.

M. Becht, T. Gurzki, J. Klarmann, and M. Muscholl. ROPE: role oriented
programming environment for multiagent systems. Proceedings Fourth IFCIS
International Conference on Cooperative Information Systems. CooplS 99
(Cat. No.PR00384), pages 325-333, 1999.

J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka.
Configurative Process Modeling - Outlining an Approach to Increased
Business Process Model Usability. In M. Khosrowpour, editor, Proceedings of
the 15th IRMA International Conference, pages 615-619. IRM Press, 2004.

F. Bellifemine, A. Poggi, and G. Rimassa. Jade, A FIPA-compliant Agent
Framework. In 4th International Conference on Practical Application of
Intelligent Agents and Multi-Agent Technology, London, UK, 1999.

O. Boissier, J. F. Hiitbner, and J. S. Sichman. Organization Oriented
Programming From Closed to Open Organizations. Engineering Societies in
the Agents World VII ESAW 06, 4457(29):86-105, 2007.

F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering,
volume 7. Addison-Wesley, 1995.

BIBLIOGRAPHY 227

23]

[24]

[25]

[29]

[30]

G. Cabri, L. Leonardi, and F. Zambonelli. Separation of concerns in agent
applications by roles. In ICDCSW ’02: Proceedings of the 22nd International
Conference on Distributed Computing Systems, pages 430-438, Washington
DC, USA, 2002. IEEE Computer Society.

G. Cabri, L. Leonardi, and F. Zambonelli. XRole: XML roles for agent
interaction. In Proceedings of the 3rd International Symposium “From Agent
Theory to Agent Implementation”, 2002.

G. Cabri, L. Leonardi, and F. Zambonelli. BRAIN: a framework for
flexible role-based interactions in multiagent systems. In On The Move
to Meaningful Internet Systems 2003: CooplS, DOA, and ODBASE, pages
145-161. Springer, 2003.

A. Caetano, M. Zacarias, A. R. Silva, and J. Tribolet. A Role-Based
Framework for Business Process Modeling. In Proceedings of the 38th Annual
Hawaii International Conference on System Sciences. IEEE, 2005.

L. Camarinha-Matos and H. Afsarmanesh. Elements of a base VE
infrastructure. Computers in Industry, 51(2):139-163, 2003.

L. Camarinha-Matos and H. Afsarmanesh. Collaborative Networked
Organizations: A research agenda for emerging business models. Springer,
2004.

L. Camarinha-Matos and H. Afsarmanesh. The emerging discipline of
collaborative networks. Virtual enterprises and collaborative networks, pages
3-16, 2004.

L. Camarinha-Matos and H. Afsarmanesh. Virtual enterprise modeling and
support infrastructures: applying multi-agent system approaches. Multi-Agent
Systems and Applications, pages 335-364, 2006.

D. T. Campbell and J. C. Stanley. FEzperimental and quasi-experimental
designs for research, volume 20. Rand McNally, 1963.

H. L. Cardoso and E. Oliveira. Virtual Enterprise Normative Framework
Within Electronic Institutions. In Engineering societies in the agents world
V., pages 14-32. Springer, 2005.

J. Cardoso. Control-flow Complexity Measurement of Processes and Weyuker
" s Properties. Engineering and Technology, 8(October):213-218, 2005.

J. Cardoso. Process control-flow complexity metric: An empirical validation.
In International Conference on Services Computing, pages 167-173. IEEE
Computer Society, 2006.

M. C. Carley and L. Gasser. Computational Organization Theory. chapter
Social Dil, pages 201-253. Routledge, 1995.

228 BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

C. Castelfranchi. Modelling social action for Al agents. Artificial Intelligence,
103(1-2):157-182, 1998.

A. Charfi and M. Mezini. Aspect-oriented web service composition with
AO4BPEL. Web Services, 3250:168-182, 2004.

A. Charfi and M. Mezini. AO4BPEL: An Aspect-oriented Extension to
BPEL. World Wide Web Internet And Web Information Systems, 10(3):309—
344, 2007.

A. Charfi and H. Miiller. Aspect-Oriented Business Process Modeling with
AO4BPMN. ECMFA, pages 4861, 2010.

I. Chebbi, S. Dustar, and S. Tata. The view-based approach to dynamic
inter-organizational workflow cooperation. Data & Knowledge Engineering,
56(2):139-173, 2006.

D. Chiu, K. Karlapalem, Q. Li, and E. Kafeza. Workflow View Based E-
Contracts in a Cross-Organizational E-Services Environment. Distributed
and Parallel Databases, 12(2-3):193-216, 2002.

S. Chopra and P. Meindl. Supply Chain Management: Strategy, Planning
and Operation. Pearson Prentice Hall, 2007.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1, 2001.

M. Christopher. Logistics and supply chain management: creating value-added
networks. Financial Times Series. Pearson Education, 2005.

T. Cook and J. Stanley. Quasi-experimentation: Design & analysis issues
for field settings. Houghton Mifflin Company, 1979.

C. Courbis and A. Finkelstein. Towards an aspect weaving BPEL engine.
The Third AOSD Workshop on Aspects Components and Patterns for
Infrastructure Software ACP4IS Lancaster UK, (March), 2004.

M. Cunha. Environments for Virtual Enterprise Integration. International
Journal of Enterprise Information Systems, 5(4):71-87, 2009.

B. Curtis, M. I. Kellner, and J. Over. Process modeling. Communications of
the ACM, 35(9):75-90, 1992.

K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. Generative Programming and
Component Engineering, 3676:422-437, 2005.

N. P. Dalal, M. Kamath, W. J. Kolarik, and E. Sivaraman. Toward an
integrated framework for modeling enterprise processes. Communications of
the ACM, 47(3):83-87, 2004.

BIBLIOGRAPHY 229

[51]

[52]

[53]

[54]

[55]

[56]

[63]

T. H. Davenport. Putting the enterprise into the enterprise system. Harvard
Business Review, 76(4):121-131, 1998.

P. Davidsson. Categories of Artificial Societies. In FEngineering Societies
in the Agents World IT (ESAW), volume 2203 of Lecture Notes in Artificial
Intelligence, pages 1 — 9. Springer-Verlag, 2001.

D. Davis. Web Services Reliable Messaging. Proceedings IEEE International
Conference on Web Services 2004, (February):1-62, 2009.

Y. Demazeau and A. C. R. Costa. Populations and organizations in open
multi-agent systems. In Proceedings of the 1st National Symposium on
Parallel and Distributed Al pages 1-13, 1996.

N. Desai, a.K. Mallya, a.K. Chopra, and M. Singh. Interaction protocols as
design abstractions for business processes. IEEFE Transactions on Software
Engineering, 31(12):1015-1027, Dec. 2005.

N. Desai, A. K. Chopra, and M. P. Singh. Representing and Reasoning About
Commitments in Business Processes. Artificial Intelligence, 22(2):1328-1333,
2007.

N. Desai, A. K. Chopra, and M. P. Singh. Amoeba: A methodology
for modeling and evolving cross-organizational business processes. ACM
Transactions on Software Engineering and Methodology (TOSEM), 19(2):1—
45, 2008.

F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law,
7(1):69-79, 1999.

F. Dignum, V. Dignum, J. Padget, and J. Vazquez-Salceda. Organizing web
services to develop dynamic, flexible, distributed systems. Proceedings of
the 11th International Conference on Information Integration and Web-based
Applications € Services - 1wWAS 09, page 225, 2009.

V. Dignum. A model for organizational interaction: based on agents, founded
in logic, 2004.

V. Dignum. Handbook of research on multi-agent systems: semantics and
dynamics of organizational models. Information Science Reference, Hershey,
New York, USA, 2009.

V. Dignum. The role of organization in agent systems. In V. Dignum, editor,
Handbook of research on multi-agent systems: semantics and dynamics of
organizational models, chapter 1, pages 1-16. Information Science Reference,
Hershey, New York, USA, 2009.

V. Dignum and H. Aldewereld. OperettA: Organization-Oriented
Development Environment. Proceedings of the 3rd International workshop

on Languages Methodologies and Development Tools for Multiagent Systems
LADS2010 Mallow, 2010.

230 BIBLIOGRAPHY

[64]

[65]

[66]

[67]

V. Dignum, F. Dignum, and J.-J. Meyer. An agent-mediated approach to the
support of knowledge sharing in organizations. The Knowledge Engineering
Review, 19(02):147-174, 2005.

V. Dignum, J. Vazquez-Salceda, and F. Dignum. Omni: Introducing social
structure, norms and ontologies into agent organizations. Programming
MultiAgent Systems, pages 181-198, 2005.

A. Drogoul, B. Corbara, and S. Lalande. MANTA : New Experimental
Results on the Emergence of (Artificial) Ant Societies 2 . The MANTA
Agents Model of Behaviour. Behaviour, pages 190-211, 1995.

H. Eberle, T. Unger, and F. Leymann. Process Fragments. In R. Meersman,
T. Dillon, and P. Herrero, editors, On the Move to Meaningful Internet
Systems OTM 2009 Part I, volume 5870 of Lecture Notes in Computer
Science, pages 398—405. Springer, 2009.

T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and
Design. Prentice Hall, 2005.

M. Esteva, D. De La Cruz, and C. Sierra. ISLANDER: an electronic
institutions editor. Proceedings of the First International Joint Conference
on Auton omous Agents and Multiagent Systems, 3:1045-1052, 2002.

M. Esteva and J.-A. Rodriguez-Aguilar. On the Formal Specification of
Electronic Institutions. Agent mediated electronic commerce, 1991:126-147,
2001.

M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Arcos. Ameli: An
agent-based middleware for electronic institutions. In Proceedings of the
Third International Joint Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 236-243. IEEE Computer Society Washington, DC,
USA, 2004.

N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical
Approach, Revised. Course Technology, 1998.

J. Ferber and O. Gutknecht. A meta-model for the analysis and design of
organizations in multi-agent systems. In Proceedings International Conference
on Multi Agent Systems, pages 128-135. IEEE, 1998.

J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations : an
Organizational View of Multi-Agent Systems. In Agent-Oriented Software
Engineering IV, pages 214-230. Springer, 2003.

J. Ferber, F. Michel, and J. Baez. AGRE: Integrating environments with
organizations. In First International Workshop on Environments for Multi-

Agent Systems, volume 3374 of Lecture Notes in Computer Science, pages
48-56, New York, NY, USA, 2005. Springer-Verlag.

BIBLIOGRAPHY 231

[76]

J. Ferber, T. Stratulat, and J. Tranier. Towards an integral approach of
organizations in multi-agent systems: the MASQ approach. Multiagent
Systems Semantics and Dynamics of Organizational Models Virginia Dignum
eds IGI, (March):1-23, 2009.

P. Fettke and P. Loos. Classification of reference models: a methodology and
its application. Information Systems and eBusiness Management, 1(1):35-53,
2003.

P. Fettke, P. Loos, and J. Zwicker. Business Process Reference Models:
Survey and Classification. Business Process Management Workshops,
3812(Bprm):469-483, 2006.

M. Fiammante. Dynamic SOA and BPM: best practices for business process
management and SOA agility. IBM Press, 2009.

N. Fornara and M. Colombetti. Specifying and enforcing norms in artificial
institutions. Declarative Agent Languages and Technologies VI, (2204):1-17,
20009.

I. Foster. The Anatomy of the Grid: FEnabling Scalable Virtual
Organizations. International Journal of High Performance Computing
Applications, 15(3):200-222, Aug. 2001.

W. Frakes and C. Terry. Software reuse: metrics and models. ACM Computing
Surveys, 28(2):415-435, 1996.

A. Garcia-Camino, P. Noriega, and J. Rodriguez-Aguilar. Implementing
norms in electronic institutions. Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems - AAMAS 05,
page 667, 2005.

D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P. Clements, and
P. Merson. Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional, 2 edition, Oct. 2010.

L. Gasser. Perspectives on organizations in multi-agent systems. In Mutli-
agents systems and applications, pages 1-16, New York, NY, USA, 2001.
Springer-Verlag New York, Inc.

C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software
engineering. Jan. 1991.

J. D. Gibbons and D. A. Wolfe. Nonparametric Statistical Inference.
Technometrics, pages 185-194, 2003.

F. Gottschalk, W. van der Aalst, M. Jansen-Vullers, and M. La Rosa.
Configurable Workflow Models. International Journal of Cooperative
Information Systems, 17(2):177-221, 2008.

232 BIBLIOGRAPHY

[89)]

[90]

[91]

[92]

[99]

[100]

[101]

P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-
organizational workflow management in dynamic virtual enterprises.
Computer Systems Science and Engineering, 15(5):277, 2000.

P. Grefen, N. Mehandjiev, G. Kouvas, G. Weichhart, and R. Eshuis.
Dynamic business network process management in instant virtual enterprises.
Computers in Industry, 60(2):86-103, Feb. 2009.

D. Grossi, H. Aldewereld, and F. Dignum. Ubi Lex, Ibi Poena: Designing
Norm Enforcement in E-Institutions. Coordination Organizations Institutions
and Norms in Agent Systems II, 4386:101-114, 2007.

N. Guarino. Concepts, Attributes and arbitrary relations. Data and
Knowledge Engineering, 8(1992):249-261, 1992.

M. Gudgin. SOAP Version 1.2, 2003.

M. Gudgin, M. Hadley, and T. Rogers. Web Services Addressing 1.0 - Core,
2006.

G. Guizzardi. Ontological foundations for structural conceptual models. PhD
thesis, University of Twente, 2005.

O. Gutknecht, J. Ferber, and F. Michel. Integrating tools and infrastructures
for generic multi-agent systems. Proceedings of the fifth international
conference on Autonomous agents, pages 441-448, 2001.

H. Haas. Web Services Glossary, 2004.

R. Haesevoets, B. V. Eylen, D. Weyns, A. Helleboogh, T. Holvoet, and
W. Joosen. Managing Agent Interactions with Context-Driven Dynamic
Organizations. In Engineering Environment-Mediated Multi-Agent Systems,
volume 5049 of Lecture Notes in Computer Science, pages 166—186. Springer-
Verlag, 2008.

R. Haesevoets, E. Truyen, T. Holvoet, and W. Joosen. Weaving the Fabric of
the Control Loop through Aspects. In SOAR: Self-Organizing Architectures,
volume 6090 of Lecture Notes in Computer Science, pages 38-65, 2010.

R. Haesevoets, B. Van Eylen, D. Weyns, A. Helleboogh, T. Holvoet, and
W. Joosen. Context-driven dynamic organizations applied to coordinated
monitoring of traffic jams. In D. Weyns, S. Brueckner, and Y. Demazeau,
editors, Engineering Environment-Mediated Multiagent Systems, pages 126—
143, Dresden, Germany, 2007.

R. Haesevoets, D. Weyns, M. H. Cruz Torres, A. Helleboogh, T. Holvoet,
and W. Joosen. A middleware model in Alloy for supply chain-wide agent
interactions. In Agent Oriented Software Engineering (AOSE), volume 6788
of Lecture Notes in Computer Science, Toronto, Canada, 2010. Springer.

BIBLIOGRAPHY 233

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

R. Haesevoets, D. Weyns, and T. Holvoet. A formal specification of an
organization model and management model for context-driven dynamic
organizations. CW Reports, CW535. Technical report, Department of
Computer Science, K.U.Leuven, Heverlee, Belgium, 2009.

R. Haesevoets, D. Weyns, T. Holvoet, and W. Joosen. A formal model for
self-adaptive and self-healing organizations. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pages 116-125. IEEE, 2009.

R. Haesevoets, D. Weyns, T. Holvoet, W. Joosen, and P. Valckenaers.
Hierarchical organizations and a supporting software architecture for floating
car data. In Environment-Mediated Coordination in Self-Organizing and
Self-Adaptive Systems, pages 31-36. IEEE, 2008.

C. Hahn, C. Madrigal-Mora, and K. Fischer. A platform-independent
metamodel for multiagent systems. Autonomous Agents and Multi-Agent
Systems, 18(2):239-266, Apr. 2008.

A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business
process models: the Provop approach. Journal of Software Maintenance and
Evolution Research and Practice, 22(6-7):519-546, 20009.

M. Hannoun, O. Boissier, J. S. a. Sichman, and C. Sayettat. MOISE: An
organizational model for multi-agent systems. In IBERAMIASBIA, volume
1952 of LNAI pages 156—165. Springer-Verlag, 2000.

S. Herrmann. A precise model for contextual roles: The programming
language ObjectTeams/Java. Applied Ontology, 2(2):181-207, 2007.

J. Hill, M. Pezzini, and Y. Natis. Findings: confusion remains regarding
BPM terminologies. Gartner Research, 501(G0015581), 2008.

J. Hill, J. Sinur, D. Flint, and M. J. Melenovsky. Gartner ’s Position on
Business Process Management , 2006. Gartner Research, (February), 2006.

A. Hofstede, M. Orlowska, and J. Rajapakse. Verification Problems in
Conceptual Workflow Specifications. In 15th International Conference on
Conceptual Modeling, volume 1157 of Lecture Notes in Computer Science,
pages 73-88. Springer, 1996.

M. Hollander and D. A. Wolfe. Nonparametric statistical methods, volume 2.
Wiley-Interscience, 1999.

A. Holt, H. Ramsey, and J. Grimes. Coordination system technology as the
basis for a programming environment. Electrical Communication, 57(4):307-
314, 1983.

B. Horling and V. Lesser. A survey of multi-agent organizational paradigms.
The Knowledge Engineering Review, 19(04):281, Nov. 2005.

234

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

BIBLIOGRAPHY

N. Howden, R. Rénnquist, A. Hodgson, and A. Lucas. JACK intelligent
agents-summary of an agent infrastructure. In 5th International Conference
on Autonomous Agents. Citeseer, Citeseer, 2001.

J. Hiibner. Moise specifications - draft. Technical report, 2010.

J. Hiibner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent
organisations with organisational artifacts and agents. Autonomous Agents
and Multi-Agent Systems, 20(3):369-400, Apr. 2009.

J. Hiibner, J. Sichman, and O. Boissier. MOISE+: towards a structural,
functional, and deontic model for MAS organization. Proceedings of the first

international joint conference on Autonomous agents and multiagent systems
part 1, pages 501-502, 2002.

J. Hiibner, J. Sichman, and O. Boissier. Using the MOISE+ for a Cooperative
Framework of MAS Reorganisation. In SBIA, volume 3171 of LNAI, pages
506-515. Springer, 2004.

J. Hiibner, J. S. a. Sichman, and O. Boissier. S-Moise+ : A middleware
for developing organised multi-agent systems. Coordination Organizations
Institutions and Norms in MultiAgent Systems, 3913:64-78, 2006.

M. Hugos. FEssentials of supply chain management. John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2003.

M. Huhns, M. Singh, M. Burstein, K. Decker, E. Durfee, T. Finin, L. Gasser,
H. Goradia, N. R. Jennings, K. Lakartaju, H. Nakashima, V. Parunak,
J. Rosenschein, A. Ruvinsky, G. Sukthankar, S. Swarup, K. Sycara, M. Tambe,
T. Wagner, and L. Zavala. Research directions for service-oriented multiagent
systems. IEEE Internet Computing, 9(December):65-70, 2005.

D. Jackson. Software Abstractions: Logic, Language, and Analysis, volume 19.
The MIT Press, 2006.

N. Jennings. On agent-based software engineering. Artificial Intelligence,
177(2):277-296, 2000.

A. Karageorgos. Agent-based optimisation of logistics and production
planning. Engineering Applications of Artificial Intelligence, 16(4):335-348,
2003.

D. Karastoyanova, F. Leymann, and A. P. Buchmann. An Approach to
Parameterizing Web Service Flows. Technical report, 2005.

D. Karastoyanova, F. Leymann, J. Nitzsche, B. Wetzstein, and D. Wutke.
Parameterized BPEL Processes: Concepts and Implementation. In Business

Process Management, volume 4102 of Lecture Notes in Computer Science,
pages 471-476. Springer, 2006.

BIBLIOGRAPHY 235

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

N. O. Kavantzas, D. C. O. Burdett, G. N. Ritzinger, T. C. Fletcher, Y. W.
Lafon, and C. A. S. I. Barreto. Web Services Choreography Description
Language Version 1.0. Technical report, W3C, 2005.

E. Kendall. Role Modeling for Agent System Analysis, Design, and
Implementation. IEEE Concurrency, 8(2):34-41, 2000.

R. Khalaf. Supporting business process fragmentation while maintaining
operational semantics: a BPEL perspective, 2008.

R. Khalaf and F. Leymann. E Role-based Decomposition of Business Processes
using BPEL. International Conference on Web Services ICWS 2006, pages
770-780, 2006.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. Main, 2072(4):327-353, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Furopean Conference on
Object-Oriented Programming, Lecture Notes in Computer Science, Vol. 1241,
Berlin, Heidelberg, New York, 1997. Springer-Verlag.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on Software Engineering,
28(8):721-734, 2002.

M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. Von
Riegen, and I. Trickovic. WS-BPEL Extension for Sub-processes - BPEL-SPE.
Joint white paper IBM and SAP, 2006(September):1-17, 2005.

R. Ko, S. Lee, and E. Lee. Business process management (BPM) standards:
a survey. Business Process Management Journal, 15(5):744-791, 2009.

S. Krakowiak. What is middleware, 2003. URL: http://middleware.objectweb.
org/. Date retrieved: July 1, 2011.

J. Kramer. Is abstraction the key to computing? Communications of the
ACM, 50(4):36-42, Apr. 2007.

P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42—
50, 1995.

V. R. Lesser. Reflections on the Nature of Multi-Agent Coordination and Its
Implications for an Agent Architecture. Autonomous Agents and MultiAgent
Systems, 1(1):89-111, 1998.

H. Lopes Cardoso and E. Oliveira. Electronic institutions for B2B: dynamic
normative environments. Artificial Intelligence and Law, 16(1):107-128,
2007.

http://middleware.objectweb.org/
http://middleware.objectweb.org/

236 BIBLIOGRAPHY

[142]

[143]

[144]

[145)

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]
[155]

Z. Ma and F. Leymann. BPEL Fragments for Modularized Reuse in Modeling
BPEL Processes. 2009 Fifth International Conference on Networking and
Services, pages 63—68, 2009.

T. W. Malone and K. Crowston. What is coordination theory and how can
it help design cooperative work systems? In Conf on ComputerSupported
Cooperative Work CSCW, number October, pages 357-370. ACM Press, 1990.

A. Martin. Dynamic business process management (BPM) from IBM.
Technical report, IBM, 2009.

C. Mayr, U. Zdun, and S. Dustdar. View-based model-driven architecture
for enhancing maintainability of data access services. Data € Knowledge
Engineering, 70(9):794-819, 2011.

N. Mehandjiev and P. Grefen. Dynamic business process formation for instant
virtual enterprises. Springer-Verlag, New York, 1 edition, 2010.

A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar. Towards
recovering the broken SOA triangle: a software engineering perspective. In
2nd international workshop on Service oriented software engineering, volume
Dubrovnik, of 978-1-59593-725-0, pages 22-28. ACM, 2007.

B. Naveen, A. N. Chandramohan, A. Chaubal, M. Keen, D. K. Nadgir,
M. Sharma, M. Steele, and A. Tost. Getting Started with IBM WebSphere
Business Services Fabric V6.1. IBM Redbooks, 2008.

T. J. Norman, A. Preece, S. Chalmers, N. Jennings, M. Luck, V. D. Dang,
T. D. Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian. Agent-based
formation of virtual organisations. Knowledge-Based Systems, 17(2-4):103—
111, 2004.

H. S. Nwana, L. C. Lee, and N. R. Jennings. Coordination in Software Agent
Systems. BT Technology Journal, 14(4):79-88, 1996.

J. Odell, M. Nodine, and R. Levy. A metamodel for agents, roles, and groups.
Agent-Oriented Software Engineering (AOSE) V, pages 78-92, 2005.

J. Odell, H. Parunak, and M. Fleischer. The Role of Roles in Designing
Effective Agent Organizations. In Software Engineering for Large-Scale Multi-
Agent Systems, Lecture Notes in Computer Science, Vol. 2603, pages 27-38.
Springer, 2003.

D. E. O’Leary, D. Kuokka, and R. Plant. Artificial Intelligence and Virtual
Organizations. Communications of the ACM, 40(1):52-59, 1997.

O.M.G. The Unified Modeling Language http://www.uml.org/.
O.M.G. Business Process Model and Notation (BPMN). 2010.

BIBLIOGRAPHY 237

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165)]

[166]

[167]

168

[169]

A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432-456, May 2008.

A. Omicini and F. Zambonelli. Coordination for Internet Application
Development. Autonomous Agents and Multi-agent systems, 2(3):251-269,
1999.

F. Oquendo. Pi-ADL: An Architecture Description Language based on the
Higher-Order Typed m-Calculus for Specifying Dynamic and Mobile Software
Architectures. ACM SIGSOFT Software Engineering Notes, 29(3):1-14,
2004.

B. Orriéns, J. Yang, and M. P. Papazoglou. Model driven service composition.
In ICSOC 2003, pages 75-90, 2003.

M. Ould. Business processes: modelling and analysis for re-engineering and
improvement. John Wiley & Sons, 1995.

M. Ould. Business Process Management: A Rigorous Approach. Meghan-
Kiffer Press, 2005.

M. P. Papazoglou. Web Services: Principles and Technology. Pearson
education. Pearson Education, 2008.

T. Parsons. Suggestions for a Sociological Approach to the Theory of
Organizations-1. Administrative Science Quarterly, 1(1):63-85, 1956.

J. L. Peterson. Petri Net Theory and the Modeling of Systems, volume 24.
Prentice-Hall, 1981.

C. Petrie and C. Bussler. The Myth of Open Web Services: The Rise of the
Service Parks. IEEE Internet Computing, 12(3):96-95, 2008.

M. Pezzini and B. Lheureux. Integration platform as a service: moving
integration to the cloud. Technical report, Gartner, Inc., Stamford, CT,
2011.

K. Pfadenhauer, S. Dustdar, and B. Kittl. Challenges and Solutions for
Model Driven Web Service Composition. Information Systems Journal, pages
126-134, 2005.

J. Pfeffer. New directions for organization theory: Problems and prospects.
Oxford University Press, USA, 1997.

K. T. Phalp, P. Henderson, R. J. Walters, and G. A. Abeysinghe. RolEnact:
role-based enactable models of business processes. Information and Software
Technology, 40(3):123-133, 1998.

238

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

BIBLIOGRAPHY

S. Poslad, P. Buckle, and R. Hadingham. The FIPA-OS agent platform:
open source for open standards. In Proceedings of the 5th International
Conference and Exhibition on the Practical Application of Intelligent Agents
and Multi-Agents, volume 355, 2000.

F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske. Variability
Mechanisms for Process Models. Technical Report 17/2005, DaimlerChrysler
Research and Technology, Hasso-Plattner-Institut, 2005.

D. V. Pynadath and M. Tambe. An automated teamwork infrastructure
for heterogeneous software agents and humans. Autonomous Agents and

Multi-Agent Systems, 7(1):71-100, 2003.

D. V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Toward team-
oriented programming. Lecture Notes in Computer Science, 1757/2000:233—
247, 2000.

A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment Programming
in CArtAgO. Communication, pages 259-288, 2009.

A. Ricci, M. Viroli, and A. Omicini. CArtAgO : A Framework for Prototyping
Artifact-Based Environments in MAS. In D. Weyns, H. V. D. Parunak, and
F. Michel, editors, Environments for MultiAgent Systems I1I, volume 4389 of
LNAI pages 67-86. Springer, 2007.

M. Rosemann and W. van der Aalst. A configurable reference modelling
language. Information Systems Journal, 32(1):1-23, 2007.

F. Rosenberg and S. Dustdar. Business Rules Integration in BPEL — A
Service-Oriented Approach. Seventh IEEE International Conference on
ECommerce Technology CECO05, pages 476-479, 2005.

A. Rushton and S. Walker. International logistics and supply chain
outsourcing: from local to global. Kogan Page, London, UK, 1 edition,
2007.

D. S. Linthicum. Enterprise application integration. Addison-Wesley Longman
Ltd., Essex, UK, 2000.

E. Sandberg. The role of top management in supply chain management
practices. PhD thesis, Linkoping University Institute of Technology, Linképing,
Sweden, 2007.

W. R. Scott. Organizations: Rational, Natural, and Open Systems, volume 8.
Prentice Hall, 2003.

F. Shull, J. Singer, and D. I. K. Sjoberg. Guide to Advanced Empirical
Software Engineering, volume 6. Springer London, 2008.

BIBLIOGRAPHY 239

[183)]

[184]

[185)

[186]

[187]

[188]

[189]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi. Designing and managing
the supply chain: concepts, strategies, and case studies, volume 1 of
Irwin/McGraw-Hill series in operations and decision sciences. Irwin/McGraw-
Hill, 2003.

B. Singh and G. L. Rein. Role Interaction Nets (RIN): A process description
formalism, 1992.

M. P. Singh. An ontology for commitments in multiagent systems. Artificial
Intelligence and Law, 7(1):97-113, 1999.

M. P. Singh, A. K. Chopra, and N. Desai. Commitment-Based Service-
Oriented Architecture. Computer, 42(11):72-79, 2009.

M. P. Singh and M. N. Huhns. Service-oriented computing: semantics,
processes, agents. John Wiley & Sons, 2005.

T. Skjoett-Larsen, C. Thernoe, and C. Andresen. Supply chain collaboration:
Theoretical perspectives and empirical evidence. International Journal of
Physical Distribution & Logistics Management, 33(6):531-549, 2003.

J. F. Sowa. Conceptual Structures: Information Processing in Mind and
Machine, volume 33 of Systems Programming Series. Addison-Wesley, 1984.

J. M. Spivey. The Z notation: A reference manual J.M. Spivey. Prentice Hall
International, Hemel Hempstead, United Kingdom, 1989, Price, volume 15
of International Series in Computer Science. Prentice-Hall, 1992.

F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering, 35(1):83-106, 2000.

M. Tambe, D. V. Pynadath, and N. Chauvat. Building Dynamic Agent
Organizations in Cyberspace. IEEE Internet Computing, 4(2):65-73, 2000.

P. R. Telang and M. P. Singh. Business Modeling via Commitments. Service-
Oriented Computing Agents Semantics and Engineering, pages 111-125, 2009.

H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach
for Reducing the Development Complexity in Process-Driven SOA. Intl
Working Conf on Business Process and, pages 105-124, 2007.

H. Tran, U. Zdun, and S. Dustdar. Name-based view integration for enhancing
the reusability in process-driven SOAs. Int J Business Process Integration
and Management, 5(3):229-239, 2011.

I. Trickovic. Modularization and reuse in ws-bpel. Technical report, SAP
Developer Network, 2005.

A. Vallecillo. RM-ODP : The ISO Reference Model for Open Distributed
Processing. Management, 27(8):69-99, 1999.

240

198

[199]

200]

[201]

[202]

203]

[204]

[205]
[206]

207]

208]

209]

[210]

[211]

212]

BIBLIOGRAPHY

W. van de Aalst. YAWL: yet another workflow language. Information Systems
Journal, 30(4):245-275, 2005.

W. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72-76, 2003.

W. van der Aalst, L. Aldred, M. Dumas, and A. H. M. Ter Hofstede.
Design and Implementation of the YAWL System. Proceedings of the 16th
International Conference on Advanced Information Systems Engineering
CAiSE04, 3084:142-159, 2004.

W. van der Aalst, A. Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

W. van der Aalst, A. Hofstede, and M. Weske. Business Process Management
: A Survey. Business, 2678(1):1-12, 2003.

J. Vézquez-Salceda, V. Dignum, and F. Dignum. Organizing Multiagent
Systems. Autonomous Agents and MultiAgent Systems, 11(3):307-360, 2005.

M. Venkatraman and M. P. Singh. Verifying Compliance with Commitment
Protocols. Autonomous Agents and MultiAgent Systems, 2(3):217-236, 1999.

G. H. Von Wright. Deontic Logic. Mind, 60(237):1-15, 1951.

D. Weyns, R. Haesevoets, B. V. Eylen, A. Helleboogh, T. Holvoet, and
W. Joosen. Endogenous versus exogenous self-management. Proceedings of
the 2008 international workshop on Software engineering for adaptive and
selfmanaging systems (SEAMS), pages 41-49, 2008.

D. Weyns, R. Haesevoets, and A. Helleboogh. The MACODO organization
model for context-driven dynamic agent organizations. ACM Transactions
on Autonomous and Adaptive Systems, 5(4):16:1-16:29, 2010.

D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, and W. Joosen. The
MACODO middleware for context-driven dynamic agent organizations. ACM
Transactions on Autonomous and Adaptive Systems, 5(1):3:1-3:29, Feb. 2010.

D. Weyns, A. Helleboogh, T. Holvoet, and M. Schumacher. The agent
environment in multi-agent systems: A middleware perspective. Multiagent
and Grid Systems, 5(3):1-20, 2009.

J. M. Wing. Computational thinking. Communications of the ACM, 49(3),
2006.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering: An Introduction, volume 15 of
Software Engineering. Kluwer Academic Publishers, 2000.

M. Wooldridge. An introduction to multiagent systems. JOHN WILEY &
SONS, LTD, Chichester, West Sussex, England, 2002.

BIBLIOGRAPHY 241

[213] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia Methodology for
Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent
Systems, 3(3):285-312, 2000.

[214] P. Yolum and M. P. Singh. Commitment Machines. Intelligent Agents VIII,
9624425:235-247, 2002.

[215] F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational abstractions
for the analysis and design of multi-agent systems. In Agent-Oriented Software
Engineering, pages 407-422. Springer, 2001.

List of Publications

Articles in Internationally Reviewed Scientific Journals

D. Weyns, R. Haesevoets, and A. Helleboogh. The MACODO organization
model for context-driven dynamic agent organizations. ACM Transactions
on Autonomous and Adaptive Systems, 5(4):16:1-16:29, 2010

D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, and W. Joosen. The
MACODO middleware for context-driven dynamic agent organizations. ACM
Transactions on Autonomous and Adaptive Systems, 5(1):3:1-3:29, Feb. 2010.

Papers at International Conferences and Symposia, Published in Full in
Proceedings

R. Haesevoets, D. Weyns, M. H. Cruz Torres, A. Helleboogh, T. Holvoet,
and W. Joosen. A middleware model in Alloy for supply chain-wide agent
interactions. In Agent Oriented Software Engineering (AOSE), volume 6788
of Lecture Notes in Computer Science, Toronto, Canada, 2010. Springer.

R. Haesevoets, D. Weyns, T. Holvoet, and W. Joosen. A formal model for
self-adaptive and self-healing organizations. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pages 116-125. IEEE, 2009.

R. Haesevoets, E. Truyen, T. Holvoet, and W. Joosen. Weaving the Fabric of
the Control Loop through Aspects. In SOAR: Self-Organizing Architectures,
volume 6090 of Lecture Notes in Computer Science, pages 38-65, 2010.

R. Haesevoets, B. V. Eylen, D. Weyns, A. Helleboogh, T. Holvoet, and
W. Joosen. Managing Agent Interactions with Context-Driven Dynamic
Organizations. In Engineering Environment-Mediated Multi-Agent Systems,
volume 5049 of Lecture Notes in Computer Science, pages 166-186. Springer-
Verlag, 2008.

D. Weyns, R. Haesevoets, B. V. Eylen, A. Helleboogh, T. Holvoet, and
W. Joosen. Endogenous versus exogenous self-management. Software

243

244 LIST OF PUBLICATIONS

Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 41-49,
2008.

e R. Haesevoets, D. Weyns, T. Holvoet, W. Joosen, and P. Valckenaers.
Hierarchical organizations and a supporting software architecture for floating
car data. In Environment-Mediated Coordination in Self-Organizing and
Self-Adaptive Systems, pages 31-36. IEEE, 2008.

e R. Haesevoets, B. Van Eylen, D. Weyns, A. Helleboogh, T. Holvoet, and
W. Joosen. Context-driven dynamic organizations applied to coordinated
monitoring of traffic jams. In Engineering Environment-Mediated Multiagent
Systems, pages 126-143, Dresden, Germany, 2007.

Technical Reports

¢ R. Haesevoets, D. Weyns, and T. Holvoet. A formal specification of an
organization model and management model for context-driven dynamic
organizations. CW Reports, CW535. Technical report, Department of
Computer Science, K.U.Leuven, Heverlee, Belgium, 2009.

Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Computer Science

DistriNet Research Group
Celestijnenlaan 200A
B-3001 Heverlee

/\\Q/ 4:6
I r
O m
%
o &

	Abstract
	Contents
	Introduction
	Context
	Middleware and Enterprise Application Integration
	Business Process and Workflow Management
	Service-Oriented Architecture and Web Services

	Scope of this Thesis
	Problem Statement
	Lack of Proper Decomposition Mechanisms
	Focus on Functional Decomposition
	Missing Reification of Collaboration Abstractions Throughout the Development Cycle
	Main Research Questions

	Contributions
	Overview of this thesis

	Background
	Introduction
	Role-Based Modeling
	History of Role-Based Modeling
	Roles in Object-Oriented and Conceptual Modeling
	Roles in Business Process Modeling

	Roles and Organizations in Multi-Agent Systems
	Organization-Oriented Modeling of Multi-Agent Systems
	Organization-Oriented Implementation of Multi-Agent Systems

	Software Architecture
	Component & Connector Views
	Module Views
	From Abstract Concepts to Domain-Specific Building Blocks

	Web Service Technologies and Standards
	Web Service
	WSDL
	SOAP
	WS-BPEL
	BPMN

	Virtual Organizations and Enterprises
	Supply Chain Management
	Background
	Running Example: A Supply Chain Management Case
	Illustration of Problem Statements in the Supply Chain Management Case

	The Macodo Model: A Conceptual Model for Dynamic Collaborations
	Introduction
	Macodo Core Abstractions
	Organization
	Actor
	Role
	Conversation
	Behavior

	Additional Abstractions
	Role State
	Organization Dynamics
	Capability

	Conclusions

	Macodo Architectural Views
	Introduction
	Organization Module View
	Elements, Relations and Their Properties
	Constraints
	What the Organization Module View Is For
	Notation
	Relation to Other Views
	Examples

	Organization & Actor View
	Element Types, Relation Types, and Properties
	Constraints
	Documenting Dynamics and Runtime Adaptation
	What the Organization & Actor View Is For
	Notation
	Relation to Other Views
	Examples

	Role & Conversation View
	Elements, Relations, and Their Properties
	Constraints
	Documenting Dynamics and Runtime Adaptation
	What the Role & Conversation View Is For
	Notation
	Relation to Other Views
	Examples

	Using Macodo Views
	Conclusions

	Proof of Concept Middleware Infrastructure
	Introduction
	Implementing Organizations
	Specifying Capabilities
	Implementing Conversation Modules
	Implementing Behavior Modules
	Implementing Role Modules
	Implementing Organization Modules

	Deploying and Using Organizations
	Registering Actors
	Managing the Life-Cycle of Organization Connectors and Role Components
	Using Role Components

	Proof of Concept Middleware Architecture
	High-Level Component & Connector View
	Prototype Implementation

	Conclusions

	Evaluation: A Controlled Experiment
	Introduction
	Experiment Planning
	Pilot Study
	Subjects
	Experimental Materials
	Hypotheses and Variables
	Experiment Design

	Execution
	Analysis
	Data Collection
	Data Set Preparation
	Selection of Statistical Tests
	Fault Density
	Design Complexity
	Level of Reuse
	Productivity
	Debriefing Questionnaire

	Discussion
	Interpretation of Results
	Threats to Validity
	Inferences
	Lessons Learned

	Conclusions

	Related Work
	Existing Organization Models and Infrastructures
	Electronic Institutions
	OperA
	Moise
	TeamCore
	ROPE
	BRAIN

	Dealing with Process Variation
	Decomposition and Modularization of Business Processes and Workflows
	First-Class Support for Sub-Processes and Sub-Workflows
	Aspect-Based Approaches
	View-Based Approaches
	Commitment-Based Approaches

	Conclusions

	Conclusions
	Contributions
	Future Work
	Closing Reflection

	Macodo View Documentation Example
	Primary Presentation
	Element Catalog
	Role Components
	Conversation Connectors
	Behavior Components
	Capabilities and Element Interfaces
	Element Behavior

	Context Diagram
	Variability Guide
	Possible Role States
	Possible Conversation Connectors

	Rationale

	Macodo View Documentation Example: Capabilities and Interfaces
	Vmi Vendor Capability
	Conversation Capabilities
	Behavior Capabilities

	CallOff-Caller Capability
	Conversation Interface
	Participant Interface

	Middleware Appendix
	XML Schemas
	Macodo Management Service

	Evaluation Appendix
	Calculating Function Points
	Notations Used in the Experiment
	Measuring Changes

	Bibliography

