
KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — 3001 Leuven

Simulation of Distributed Control Applications in Dynamic

Environments

Promotoren :

Prof. Dr. T. HOLVOET

Prof. Dr. ir. Y. BERBERS

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Alexander HELLEBOOGH

Mei 2007

KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — 3001 Leuven

Simulation of Distributed Control Applications in Dynamic

Environments

Jury :

Prof. Dr. ir. P. Van Houtte, voorzitter

Prof. Dr. T. Holvoet, promotor

Prof. Dr. ir. Y. Berbers, promotor

Prof. Dr. ir. F. Piessens

Prof. Dr. D. De Schreye

Prof. Dr. ir. W. Joosen

Prof. Dr. A. Uhrmacher (University of Rostock)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Alexander HELLEBOOGH

U.D.C. 681.3∗I6, 681.3∗C24, 681.3∗D2

Mei 2007

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2007/7515/69
ISBN 978-90-5682-835-6

Abstract

Distributed control applications are software systems designed to coordinate and con-
trol the operation of several distributed devices. An example of a distributed control
application is a software system that controls production machines in a manufacturing
environment. The environment in which a distributed control application operates is
typically dynamic. In a dynamic environment the operating conditions of the control
application are continuously changing. For example, in a manufacturing environment
new materials and product orders may arrive; other machines, vehicles and/or humans
are operating, etc. It is essential that a distributed control application takes into ac-
count the dynamic environment in which it operates.

Simulation is imperative for the development of distributed control applications.
Simulation offers a safe and cost-effective way for studying, evaluating and configuring
the behavior of a distributed control application in a simulated environment before
it is deployed in the real world. In this dissertation, we focus on software-in-the-loop

simulation of distributed control applications in dynamic environments. Software-in-
the-loop simulation means that the software of the real distributed control application
is embedded in the simulation, i.e. the control software itself is part of the simula-
tion loop. Existing approaches to support this family of simulations either rely on (1)
general-purpose modeling constructs that are formally specified, but offer no support
specifically targeted at this family of simulations, or on (2) informal abstractions that
offer support specifically targeted at this family of simulations, but of which the mean-
ing is implicit and coupled to the implementation of a particular simulation platform.

We put forward a formally founded modeling framework for software-in-the-loop
simulations of distributed control applications in dynamic environments. The constructs
of the modeling framework offer support that is specifically aimed at this family of
simulations. Moreover, the modeling constructs are formally specified, which is crucial
to decouple the simulation model from the simulation platform to execute the model.

The modeling framework captures core characteristics of this family of simulations
in a first-class manner. The modeling framework comprises an environment part and
a control application part. The environment part offers special-purpose modeling con-
structs for dynamic environments. These modeling constructs capture (1) the structure
of the environment, (2) dynamism in the environment, (3) the way dynamism is af-
fected by the sources of dynamism and (4) the way dynamism can interact. The control

application part offers special-purpose modeling constructs for integrating the software
of a real distributed control application in the simulation model. These modeling con-
structs capture (1) the execution time of the control software and (2) the interface of
the control software for interacting with the environment.

To validate the modeling constructs, we developed a simulation platform that sup-
ports the constructs in an executable simulation, and we used the constructs to under-
pin a simulator for an industrial case, i.e. a distributed control application controlling
unmanned vehicles in a warehouse environment. The simulator comprises a simulation
model that is decoupled from the simulation platform to execute it. This enables cus-
tomizing the simulation model, which is paramount to support the study and evaluation
of different functionalities of the distributed control application.

Voorwoord

Ik heb me vroeger wel eens afgevraagd hoe ik me zou voelen, zo op het einde van
mijn doctoraatsonderzoek. Zou ik vooral tevreden zijn met het werk op zich? Of
eerder opgelucht dat het er op zit? Of wat meer volwassen, een beetje toch? Nu sta
ik, na dik 5 jaar onderzoek, op dat moment waarnaar ik vroeger zo vol verwachting
uitkeek. En het gevoel dat ik bij het terugblikken heb, zou ik misschien nog het best
kunnen omschrijven als een gevoel van “verwondering”, in verschillende opzichten.

In een eerste opzicht is er de verwondering voor het onderzoek zelf. Achteraf
bekeken is het fascinerend hoe ideeën tot stand zijn komen en geëvolueerd zijn.
De ene keer was het een idee dat je plots te binnen schiet, bijvoorbeeld midden in
de nacht, en waarvoor je dan nog even opstaat om het neer te schrijven – al was ik
achteraf bezien soms beter blijven liggen. De andere keer was een opmerking over
een paper, feedback op een presentatie of een losse discussie tijdens de koffiepauze
de aanzet tot nieuwe of andere inzichten. Het heeft mij enorm gefascineerd hoe al
die dingen die vaak op een grillige manier zijn ontstaan, uiteindelijk evolueren tot
puzzelstukjes die een logische plaats krijgen in de grotere puzzel van een doctoraat.

Verwondering voel ik eveneens voor de uitgebreide ondersteuning die ik in mijn
onderzoekswerk heb gekregen. Ik dank mijn promotor, Prof. Tom Holvoet, voor
de kansen, de steun en het vertrouwen die ik de afgelopen jaren onafgebroken heb
gekregen. Mijn co-promotor, Prof. Yolande Berbers, ben ik dankbaar voor de
nodige impulsen voor mijn onderzoek. De andere leden van mijn begeleidingscom-
missie, Prof. Frank Piessens en Prof. Danny De Schreye, dank ik voor hun kritische
feedback op de tekst van dit proefschrift. Tot slot bedank ik ook Prof. Adelinde
Uhrmacher en Prof. Wouter Joosen voor hun bereidwilligheid om in mijn jury te
zetelen. Last but not least dank ik de leden van AgentWise, en Danny Weyns
in het bijzonder, voor de interessante discussies en de vele suggesties voor mijn
onderzoek.

De grootste verwondering zit echter vervat in de ontelbare mooie momenten die
ik tijdens de jaren van mijn doctoraatsonderzoek heb mogen beleven. Ervaringen
samen met vrienden, (oud-)collega’s en familie, die op mij een onuitwisbare indruk
hebben nagelaten. En waaraan ik met een glimlach terugdenk.

Alexander Helleboogh, Mei 2007

i

ii Voorwoord

Aan Ellen
Voor jouw onvoorwaardelijke liefde en steun

iv Voorwoord

Contents

Voorwoord i

1 Introduction 1
1.1 Context . 1

1.1.1 Distributed Control Applications 1
1.1.2 Simulation . 3

1.2 Problem Statement . 5
1.3 Contributions . 7
1.4 Outline . 8

2 Background and Scope 11
2.1 Basic Concepts of Simulation . 11

2.1.1 Different Concepts of Time 12
2.1.2 Modeling Evolution . 12

2.2 Characteristics of Distributed Control Applications 15
2.3 Simulation Modes for Distributed Control Application Development 17

2.3.1 Model-in-the-Loop Simulation Mode 17
2.3.2 Software-in-the-Loop Simulation Mode 19
2.3.3 Hardware-in-the-Loop Simulation Mode 19
2.3.4 Simulation-Based Design 20

2.4 Support for Simulating Distributed Control Applications 20
2.4.1 Case-Specific Simulation Platforms 21
2.4.2 Domain-Specific Simulation Platforms 21
2.4.3 General-Purpose Simulation Platforms 22
2.4.4 Discussion . 22

2.5 Scope . 24

3 Modeling Dynamic Environments 27
3.1 Introduction . 27
3.2 Overview of the Modeling Framework 28
3.3 Structure of the Simulated Environment 31

v

vi CONTENTS

3.3.1 Environmental Entities, Properties and Layout 32
3.3.2 The State of the Simulated Environment 34

3.4 Dynamism in the Simulated Environment 35
3.4.1 Activities . 35
3.4.2 Scenarios . 38
3.4.3 Scenarios and State . 38

3.5 Manipulation of Dynamism . 40
3.5.1 Sources of Dynamism . 40
3.5.2 Influences . 43
3.5.3 Reaction Laws . 45

3.6 Interaction of Dynamism . 51
3.6.1 RoboCup Soccer Environment: Example Interaction Scenario 51
3.6.2 Interaction Laws . 52
3.6.3 RoboCup Soccer Environment: Interaction Law Examples . 53

3.7 The Evolution of the Model . 57
3.8 Discussion . 59

3.8.1 Support for Model Formulation 60
3.8.2 Support for Model Translation 60
3.8.3 Computational Cost . 62

3.9 Related work . 63
3.9.1 Modeling Dynamic Environments with General-Purpose

Modeling Constructs . 63
3.9.2 Modeling Dynamic Environments in Domain-Specific Simu-

lation Platforms . 64
3.10 Conclusions . 65

4 Modeling the Integration of the Control Software 67
4.1 Introduction . 67
4.2 Overview of the Modeling Constructs 68
4.3 An Example Distributed Control Application for RoboCup Soccer

Robots . 71
4.4 Execution Time of a Controller . 73

4.4.1 Duration Primitives and Duration Primitive Invocations . . 74
4.4.2 Duration Mapping . 76
4.4.3 Determining Execution Time 77

4.5 Capturing the Control Interface . 78
4.5.1 Control Primitives and Control Primitive Invocations . . . 78
4.5.2 Mapping the Control Interface 80

4.6 Generating Influences . 81
4.6.1 Influences of Controllers . 82
4.6.2 Influences of Environment Sources 84

4.7 The Evolution of the Model Revisited 86
4.7.1 State of Sources of Dynamism 86

CONTENTS vii

4.7.2 Generating Influences: the NextInfs Function Revisited . 87
4.7.3 Evolution Cycle of Sources of Dynamism: the SoCycle Func-

tion Revisited . 87
4.8 Related Work . 89

4.8.1 Measurement of Execution Time 89
4.8.2 Specification of Execution Time 90

4.9 Conclusions . 91

5 Architecture of the Simulation Platform 93
5.1 Introduction . 93
5.2 Requirements . 94
5.3 Top-Level Module Decomposition View of the Simulation Platform 96

5.3.1 Elements and Their Properties 96
5.3.2 Interface Descriptions . 98
5.3.3 Design Rationale . 99

5.4 Component and Connector View of the Simulated Environment . . 100
5.4.1 Elements and Their Properties 101
5.4.2 Interface Descriptions . 104
5.4.3 Design Rationale . 105

5.5 Component and Connector View of the Simulation Engine 106
5.5.1 Elements and Their Properties 106
5.5.2 Interface Descriptions . 108
5.5.3 Design Rationale . 109

5.6 An Aspect-Oriented Approach to Embed Control Software 109
5.6.1 Aspect-Oriented Programming 110
5.6.2 Providing Support for Tracing a Controller’s Execution

through Aspect Weaving . 110
5.6.3 Design Rationale . 111

5.7 Component and Connector View of the Execution Tracker 112
5.7.1 Elements and Their Properties 112
5.7.2 Interface Descriptions . 114
5.7.3 Design Rationale . 115

5.8 Conclusions . 115

6 Simulating AGV Control Applications in Dynamic Warehouse
Environments 117
6.1 Introduction . 117
6.2 AGV Transportation System . 118

6.2.1 Physical Setup of an AGV Transportation System 118
6.2.2 AGV Control Application 120
6.2.3 The EMC2 Project . 122

6.3 Requirements of the AGV Simulator 124
6.4 Model Formulation: Simulation Model of the AGV Simulator . . . 125

viii CONTENTS

6.4.1 Simulation Model of the Warehouse Environment 125
6.4.2 Simulation Model for Integrating the AGV Controller Software131

6.5 Model Translation . 133
6.5.1 Designing Driving Activities 134
6.5.2 Designing a Collision Law 136

6.6 Evaluating the AGV Simulator . 139
6.6.1 Flexibility of the AGV simulator 139
6.6.2 Measurements of the AGV Simulator 140
6.6.3 EMC2 Research Supported by the AGV Simulator 143

6.7 Conclusions . 144

7 Conclusions 147
7.1 Contributions . 148
7.2 Future work . 151
7.3 Closing Reflection . 153

Bibliography 155

List of Publications 167

Biography 169

List of Figures

2.1 A screenshot of the Packet-World: a discrete model of robots and
packets in a grid world. 13

2.2 Schematic view of a distributed control application in an environment 16
2.3 Simulation modes for distributed control applications. White blocks

are simulated parts. Grey blocks are parts of the real system that
are integrated in the simulation loop. 18

3.1 Overview of the constructs in the modeling framework and their
associations . 29

3.2 A representation of a RoboCup Soccer environment 32
3.3 Activities a1, a2 and a3 in a RoboCup Soccer environment. 36
3.4 Reaction of the environment: activity a0 initiated in response to

influence f1 . 49
3.5 Reaction of the environment: activity a0 replaced by activity a1 in

response to influence f2 . 50
3.6 An scenario with interaction between robots and a ball. 52

4.1 Overview of the modeling constructs for the control software and
their associations . 69

4.2 Class diagram of a simplified RoboCup Soccer controller 70
4.3 Implementation of the executeBehavior() method of ApproachBall-

Behavior . 72

5.1 Top-level module decomposition view of the simulation platform . 97
5.2 Component and connector view of the simulated environment . . . 102
5.3 Component and connector view of the simulation engine 107
5.4 Controller before (left) and after (right) aspect weaving. 112
5.5 Component and connector view of controllers and execution trackers 113

6.1 Three dimensional view on an AGV transportation system. 119
6.2 Deployment diagram of centralized versus decentralized solution. . 123

ix

x LIST OF FIGURES

6.3 Overview of the simulation model of the simulated warehouse envi-
ronment. The grey parts are specific instantiations of the modeling
constructs for the AGV simulator. 127

6.4 Overview of the simulation model for integrating the AGV control
software in a simulation. The grey parts are specific instantiations
of the modeling constructs for the AGV simulator. 132

6.5 Class diagram depicting the DrivingActivity class. 134
6.6 Example of a drive activity in the simulated warehouse environment.135
6.7 Collision detection based on snapshots. The bounding boxes of the

AGVs overlap at time t=6, indicating a collision. 137
6.8 Extract of Java code: the applyLaw() method of the class Collision-

Law. 138
6.9 Performance (in seconds of wallclock time) for simulating 100 sec-

onds of simulation time with the AGV simulator. The four lines
correspond to four different configurations of the collision law: the
collision law deactivated and the collision law detecting with an ac-
curacy of 10 centimeters, 25 centimeters and 100 centimeters respec-
tively. Each point in the graph is the average of 40 measurements,
of which the 99% confidence interval is depicted. 142

Chapter 1

Introduction

The goal of the work described in this dissertation is to underpin the development
of simulations for testing distributed control applications by means of (1) new
modeling constructs for simulating the environment of the control application,
and (2) a plug-and-play manner to embed the control software in a simulation.

In this chapter, we clarify and elaborate on this statement. Section 1.1 outlines
the context of our work. In section 1.2, we pinpoint the main problems our research
is focussed at. We put forward the contributions of our research in Section 1.3.
Finally, we give an outline of the text in Section 1.4.

1.1 Context

In this dissertation, we are concerned with software-in-the-loop simulations for
distributed control applications. We first elaborate on distributed control appli-
cations and afterwards on simulations for such applications.

1.1.1 Distributed Control Applications

We employ the term distributed control applications to refer to a family of appli-
cations which share a number of characteristics.

A control application is a software system connected to an underlying physical
or software environment [HJJ03]. The environment is the part of the external
world with which the control application interacts, and in which the effects of the
control software will be observed. The task of the control application is to ensure
that particular functionalities are achieved in the environment. The interaction
between the control application and the environment happens through sensors and
actuators. An example of a control application is a car’s cruise control system. The
environment of the control application consists of the car and the road it drives

1

2 Introduction

on. The control application interacts with this environment through a sensor that
can be used to observe the car’s speed and an actuator that can be used to adjust
the car’s throttle. The task of the control application is to ensure that the car
drives at a constant speed across the road.

A distributed control application is a control application of which the software is
a distributed application [WSHL05]. A distributed application is a software system
that consists of a number of components that are deployed on distinct computers
connected by a network. An example of a distributed control application is an
application to control a team of RoboCup Soccer robots [NRSSV05]. The task of
the control application is to score goals and to prevent the opponent team from
scoring, by using the robots of the team. The control application is distributed,
as components are deployed on each of the robots. Each of the components has
access to the sensors and actuators of a particular robot, and coordinates by
communicating with other robots of the team in order to achieve the desired
overall behavior.

Typically, the environment of a distributed control application is highly dy-
namic. A dynamic environment is an environment that is under constant
change [RN95]. In a dynamic environment, the operating conditions of a dis-
tributed control application are continuously changing. Dynamism in the envi-
ronment can originate from various sources. For example, in a RoboCup Soccer
environment, dynamism encompasses the ball that is rolling, the movements of
other robots of the team, the movements of the members of the opponent team
and even disturbances such as the limited accuracy of passing the ball in a partic-
ular direction or a sudden breakdown of a particular robot.

A dynamic environment can have a significant impact on the actions of the
distributed control application [FM96, Woo01]. In a dynamic environment, the
actions of a control application do not always proceed as expected, but can be
affected by the environment. For example, the component of a particular RoboCup
robot triggers the actuators to move the robot forward, in order to kick the ball
in front of it to a team member. In a dynamic environment, this action could
be affected in different ways. For example, the robot could collide with other
robots that prevent it from kicking the ball, resulting in damage. Or the robot’s
movement could be affected by jitter in the hardware, causing the robot to hit the
ball under a different angle. Or even if the robot succeeds in kicking the ball in
the right direction, another robot could intercept the pass afterwards by moving
into the path of the rolling ball.

We give other examples of dynamic environments that affect distributed control
applications. Consider a physical manufacturing environment where a distributed
control application controls and coordinates several production machines. The task
of the control application is ensuring that the machines manufacture all products in
time. Examples of dynamism in a manufacturing environment include the arrival
of new product orders, the operation of machines that are manufacturing prod-

1.1 Context 3

ucts, the movement of machines that transport products. Examples of the impact
of the environment on actions of the control application include the obstruction
of machines by other machines, people or obstacles, message loss for machines
moving out of communication range, breakdown of machines. As another exam-
ple, consider a distributed software environment that consists of digital content
providers connected by a peer-to-peer network. The task of a distributed control
application is to enable content sharing across the content providers. Dynamism
in such an environment includes the entrance and exit of content providers, the
exchange of content, changes of the available communication bandwidth. The en-
vironment affects the actions of the control application for example when content
transmissions are delayed due to congestion or interrupted because the content
receiver exits.

1.1.2 Simulation

It is clear that a distributed control application needs to take into account dy-
namism in the environment and its potential impact on actions. Before deploy-
ment of a distributed control application, it is crucial to experiment and test the
behavior of the application in scenarios typically occurring in a dynamic environ-
ment.

Simulation can be defined as “the process of designing a model of a real system
and conducting experiments with this model for the purpose of understanding the
behavior of the system and/or evaluating various strategies for the operation of
the system” [Sha98]. Two important phases of a simulation study are the model
formulation phase, i.e. building a simulation model of the real system, and the
model translation phase, i.e. translating the simulation model to an executable
simulation.

Simulation is crucial to study and test the behavior of the distributed con-
trol application in scenarios typically occurring in dynamic environments [UK00,
HRU03, RR03]. Simulation enables (1) safe experimentation and testing in high-
risk scenarios, (2) executing experiments faster than real-time, and (3) setting
up and monitoring experiments in a less costly way. For example, consider an
experiment that involves a distributed control application to steer robots in a
manufacturing environment. The goal of the experiment is to test the ability
of the robots to avoid collisions in a scenario where communication services are
temporarily unavailable. Performing such a test on physical robots is unfeasible
because of (1) the high risk of damaging the robots, (2) the amount of time it
takes to test long-term scenarios or slow robots, and (3) the cost associated with
setting up and monitoring a large-scale experiment that involves many robots over
an extended time period.

In simulation research and development, support has been developed for the
model formulation and model translation phase:

4 Introduction

1. Modeling constructs support model formulation. Various simulation
paradigms exist that offer established modeling constructs to support for-
mulating a simulation model. For example, discrete-event simulation offers
constructs such as state and events to express a simulation model. A model’s
state is a list of values that are sufficient to define the state of the system at
any point in time [Car03]. An event represents a change in the state of the
simulation that occurs instantaneously at a well-defined point in simulation
time [SB99]. In a discrete-event model, the state remains constant over in-
tervals of time and changes value only at the time an event occurs. Using
state and events, a developer can model a system and its evolution over time
as an initial state and an ordered sequence of atomic state changes specified
by time-stamped events. Other examples are continuous simulation [HW91]
where models are expressed in terms of state variables and equations, and
hybrid simulation [Mos99] where models are expressed in terms of state vari-
ables, equations, time events and state events.

2. Simulation platforms support model translation. Simulation platforms encap-
sulate the functionality that is needed to support the modeling constructs in
an executable simulation. The encapsulated functionality can be reused for
every model expressed in terms of the supported constructs, accelerating the
development of an executable simulation. For example, simulation platforms
for discrete-event simulation encapsulate mechanisms for guaranteeing that
events are always applied in increasing time stamp order [Fuj98], even in the
presence of arbitrary delays in the underlying execution platform. Encapsu-
lating such functionality in a simulation platform prevents that they have to
be developed from scratch for each simulation study.

In this dissertation, we focus on software-in-the-loop simulations of distributed
control applications in dynamic environments. Such simulations are used to test or
configure the software of a distributed control application in a simulated environ-
ment before the software is deployed in its real environment [CK99]. Software-in-
the-loop simulations of distributed control applications in dynamic environments
have the following characteristics:

• The environment to-be-simulated is dynamic. A dynamic environment may
contain sources of dynamism external to the distributed control application.
These sources of dynamism can have a significant impact on the distributed
control application, as they change the operation conditions of the applica-
tion.

• The software of the real distributed control application is embedded in
the simulation. The distributed control application is not substituted by
a model, but the control software itself is part of the simulation loop, which
is denoted by the term software-in-the-loop simulation.

1.2 Problem Statement 5

1.2 Problem Statement

Developing software-in-the-loop simulations of distributed control applications in
dynamic environments is complex. The system-to-be-simulated comprises two
parts: a dynamic environment on the one hand and a distributed control applica-
tion embedded in that environment on the other hand. We illustrate a number of
challenges when building simulations for such systems:

• Simulating dynamic environments is complex. For example, in a dynamic
environment the outcome of actions of a control application cannot be de-
termined a priori [FM96, HHB05]. Other activities that are happening in
the environment can have a significant impact on the outcome of actions.
Consider a robot that was instructed to start driving north. In a dynamic
environment, the action of the robot can be affected in different ways. For ex-
ample, another machine could move into the path of the first robot, blocking
it or pushing it aside. Or the robot’s path could deviate from the intended
path due to jitter in the hardware. Or the robot could run out of energy,
causing its movement to stop prematurely. Even a combination of these
phenomena could occur. When simulating dynamic environments, it is non-
trivial to reproduce the variety of possibly cascading interactions that may
occur and the precise way these interactions have an impact on the actions.

• Integrating the software of a real distributed control application in a sim-
ulation is complicated. For example, the devices on which the distributed
control application is deployed in the real world determine how fast that
application can execute and consequently how much time it takes the appli-
cation to react to changes in the environment. However, the characteristics
of the computer platform on which the simulation is executed, can differ
significantly from the devices on which the control application is deployed in
the real world. Moreover, a simulation can be executed faster or slower than
real time. It is non-trivial to reproduce the real-world timing characteristics
of a distributed control application in a simulation.

To support the development of software-in-the-loop simulations of distributed
control applications in dynamic environments, a developer can rely on general-
purpose simulation platforms or on special-purpose simulation platforms.

• General-purpose simulation platforms support the execution of simulation
models that are described in terms of general-purpose modeling constructs.
For example, JAMES [HRU03] (recently updated to JAMES II) is a simula-
tion platform that supports discrete event models described in terms of the
constructs of DEVS (Discrete EVent System specification) [ZP00]. DEVS is
a modeling framework that supports atomic and coupled discrete event mod-
els. Atomic models are described in terms of modeling constructs such as a

6 Introduction

state set, input and output ports, internal and external transition functions,
etc.

The meaning of general-purpose modeling constructs is formally specified.
This is crucial to decouple the simulation model from the simulation platform
to execute the model. As such, a modeler can use the modeling constructs for
formulating a simulation model, without taking into account the simulation
platform that will be used to execute the model.

However, general-purpose modeling constructs offer no support specifically
targeted at software-in-the-loop simulation of distributed control applica-
tions in dynamic environments. General-purpose modeling constructs sup-
port a broad range of simulations, and their use is not limited to simulating
distributed control applications. Consequently, general-purpose simulation
platforms do not support the developer to tackle specific challenges associ-
ated with modeling distributed control applications in particular.

• Special-purpose simulation platforms are specifically aimed at simulating dis-
tributed control applications. For example, XRaptor [BMP+] is a simulation
platform to study the behavior of a large number of agents in two- or three-
dimensional continuous virtual worlds. XRaptor describes an agent as either
a point, a circular area or a spherical volume that contains a sensor unit for
observing the world, an actuator unit for performing actions and a control
kernel for action selection. Ordinary differential equations are used for mod-
eling movements.

Special-purpose simulation platforms incorporate support specifically aimed
at software-in-the-loop simulation of distributed control applications in dy-
namic environments. For example, in XRaptor there is a world in which
agents controlled by a control kernel can sense and act, etc. Compared to
general-purpose simulation platforms, special-purpose simulation platforms
support the developer to tackle specific challenges associated with simulating
distributed control applications in particular.

However, current special-purpose simulation platforms only provide informal
abstractions of which the precise meaning is implicit and coupled to the de-
sign and implementation of a particular simulation platform. For example,
as the XRaptor abstractions “control kernel”, “actuator unit” and “circu-
lar area” are not formally specified, their precise meaning and relations are
vague. It is unclear how the control kernel triggers movements in the environ-
ment, or to what extent the timing characteristics of the control kernel are
supported. Due to the lack of a formal specification, building a simulation
supported by a special-purpose simulation platform requires detailed knowl-
edge of its design and implementation, and results in a simulation which is
tightly coupled with the simulation platform that is used to execute it.

1.3 Contributions 7

To sum up, existing approaches to support the target family of simulations
either rely on (1) general-purpose modeling constructs that are formally speci-
fied, but offer no support specifically targeted at this family of simulations, or on
(2) informal abstractions that offer support specifically targeted at this family of
simulations, but of which the meaning is implicit and coupled to the design and
implementation of a particular simulation platform.

We conclude that there is a lack of formally specified modeling constructs that
provide support specifically aimed at software-in-the-loop simulation of distributed
control applications in dynamic environments.

1.3 Contributions

The main contribution of the research described in this dissertation is the intro-
duction of a formally founded modeling framework for software-in-the-loop simu-
lations of distributed control applications in dynamic environments. The modeling
framework offers constructs for formulating a simulation model for this family of
simulations and captures core characteristics of these simulations in a first-class
manner. Moreover, the modeling constructs are formally specified to unambigu-
ously specify their meaning and relations. This is crucial to decouple the simulation
model from the simulation platform to execute the model. As such, the modeling
framework enables formulating a simulation model without taking into account
the design and implementation of the simulation platform to execute the model.

Concrete contributions are the following.

The introduction of a modeling framework for software-in-the-loop
simulations of distributed control applications in dynamic environ-
ments [HHB05, HVUM07, HHW04a, HHW04b]. The modeling frame-
work presents a coherent set of modeling constructs that capture core characteris-
tics of this family of simulations in a first-class manner. The modeling framework
comprises two parts: an environment part and a control application part. The
environment part [HHB05, HVUM07] offers special-purpose modeling constructs
for capturing dynamic environments in a simulation model. The control appli-
cation part [HHW04a, HHW04b] offers special-purpose modeling constructs for
integrating the software of a real distributed control application in the simulation
model.

The presentation of a formal specification of the modeling frame-
work [HVUM07, HHWB05a]. We present a formal specification to underpin
the modeling framework. The advantage of the formal specification is twofold.

On the one hand, the formal specification is crucial to decouple the modeling
constructs from their implementation in a particular simulation platform. This
enables using the modeling constructs for formulating a simulation model while

8 Introduction

making abstraction of the simulation platform to execute the model. The formal
specification unambiguously specifies the meaning of the modeling constructs, and
describes the way the constructs are related to each other.

On the other hand, the formal specification enables a developer to consider
several design alternatives for translating a simulation model into an executable
simulation. The formal description specifies the functionality that is needed to
support the constructs in an executable simulation, without commitment to par-
ticular design decisions. As such, the formal specification guides the development
of an executable simulation and prevents reinventing its functionality from scratch.

The development of a simulation platform that supports the model-
ing constructs [HHW04b, WHH05]. We developed a simulation platform
to demonstrate that the modeling framework is feasible for developing executable
simulations. The simulation platform encapsulates the functionality to support the
modeling constructs in an executable simulation. The simulation platform sup-
ports simulations (1) of which the simulation model is described in terms of the
proposed modeling constructs, and (2) in which the software of a real distributed
control application can be embedded.

We advocate that state-of-the-art software engineering principles, such as an
elegant software architecture and advanced separation of concerns, are required
to manage the complexity inherent to a simulation platform in a structured and
evolvable way.

A validation in an industrial case [HHB06, HHWB05b]. To validate the
usability of the modeling framework, we applied the modeling constructs and the
simulation platform for simulating an industrial distributed control application,
i.e. a warehouse transportation system where a distributed control application
instructs automated guided vehicles (AGVs) to move and transport loads through
a manufacturing environment. For this application, it is important to have a
means to test new or altered features of the control application in a safe manner, i.e.
without the risk of damaging the AGVs, and under a variety of scenarios, including
those scenarios in which defects and potential conflicts such as collisions occur.
We demonstrated the usability of the proposed constructs for the development of
a simulation in which (1) the model of the manufacturing environment supports
such scenarios, and (2) the control application can be embedded in a plug-and-play
manner.

1.4 Outline

This dissertation is structured as follows.
Chapter 2, Background and Scope, gives the necessary background on

simulation in the context of distributed control applications, and delineates the

1.4 Outline 9

scope of our research.
Chapter 3, Modeling Dynamic Environments, introduces the environ-

ment part of the modeling framework, together with its formal specification. The
focus is on the specification of the modeling constructs to capture dynamic envi-
ronments in a simulation model. Design and implementation issues to support the
constructs are tackled in Chapter 5.

Chapter 4, Modeling the Integration of the Control Software, intro-
duces the control application part of the modeling framework, together with its
formal specification. The focus is on the specification of modeling constructs to
support the integration of the control software in the simulation model. Design
and implementation issues to support the constructs are tackled in Chapter 5.

Chapter 5, Architecture of the Simulation Platform, shows the feasi-
bility of the modeling framework described in Chapters 3 and 4. We describe the
software architecture of a simulation platform that supports the modeling con-
structs in an executable simulation.

Chapter 6, Simulation of AGV Control Applications in Dynamic
Warehouse Environments, demonstrates the usability of the modeling con-
structs and the simulation platform by applying them on a real-world case:
software-in-the-loop simulation of distributed control applications for automated
guided vehicles in dynamic warehouse environments.

Chapter 7, Conclusions, rounds up this dissertation by giving a high-level
overview of our approach and the way it addresses the problems. We pinpoint the
main contributions and suggest possible tracks for future work. We end with a
closing reflection on the work presented in this dissertation.

10 Introduction

Chapter 2

Background and Scope

In this chapter, we present the necessary background for the following chapters,
and delineate the scope of our research.

Section 2.1 presents basic concepts of simulation in general. In Section 2.2,
we discuss the characteristics of distributed control applications. Section 2.3 elab-
orates on different ways simulations can support the development of distributed
control applications. In Section 2.4, we give an overview of existing simulation
platforms for simulating distributed control applications. Finally, in Section 2.5
we delineate the scope of the research described in this dissertation.

2.1 Basic Concepts of Simulation

Simulation can be defined as “the process of designing a model of a real system
and conducting experiments with this model for the purpose of understanding the
behavior of the system and/or evaluating various strategies for the operation of
the system” [Sha98].

A simulation model is a representation of a real-world system that incorporates
time and evolution, i.e. the changes that occur over time [Car03]. One should
always design the simulation model around the questions to be answered about
the system rather than try to imitate the real system exactly [Sha98]. A simulation
model represents a subset of characteristics of the real system that is sufficient to
serve the objective of the simulation study. A model should neither oversimplify
the system, nor carry so much detail that is becomes expensive to build and run.

We elaborate different ways to incorporate time and evolution in a simulation
model.

11

12 Background and Scope

2.1.1 Different Concepts of Time

There are three different concepts of time that are important in the context of
simulation [Fuj98].

• Physical time is the time in the system to-be-modeled. For example, a
robot system starts operating at physical time 13:00:00 on June 2nd, till
physical time 14:00:00 on June 2nd. In the robot system, a particular robot
could start driving forward at physical time 13:01:34 and stops driving at
physical time 13:01:55. So that particular movement takes the robot 21
physical seconds to complete.

• Simulation time (also called logical or virtual time) is the software rep-
resentation of time used in a simulation. For example, in a simulation of
a robot system, simulation time could be an integer number in the inter-
val [0, 3600], where a unit of simulation time corresponds to one second of
physical time.

• Wallclock time is the time for running the simulation as measured on a
physical clock. For example, a simulation run of the robot system could be
started at 8:02:14 on July 20th and ends at 8:03:11 on July 20th. So it takes
the simulation platform 57 seconds of wallclock time to advance simulation
time from time 0 till time 3600.

According to the way simulation time advances in relation to wallclock time, a
number of execution modes for a simulation can be distinguished [Fuj98]. In
a real-time simulations, simulation time advances in pace with wallclock time.
For example, running the simulation over one second of wallclock time advances
simulation time by one second. In as-fast-as-possible simulations, simulation time
is advanced as quickly as possible, without direct relationship to wallclock time.
For example, running a simulation for 5 minutes of wallclock time may advance
simulation time by 200 seconds, whereas running the simulation for another 5
minutes of wallclock time may only advance simulation time by 25 seconds.

2.1.2 Modeling Evolution

The evolution of a system over time can be modeled in a discrete, continuous or
hybrid way. A vast amount of research exists on discrete, continuous and hybrid
models. Rather than going into details, we limit the discussion to an explanation
of the basic rationale for each group of models, give an example and indicate how
the execution of such models can be supported in a simulation platform.

2.1.2.1 Discrete Event Models

In a discrete event model [CL99], the evolution of a system is modeled as dis-
continuous changes happening at discrete points in simulation time. A discrete

2.1 Basic Concepts of Simulation 13

Figure 2.1: A screenshot of the Packet-World: a discrete model of robots and
packets in a grid world.

event model is based on the concepts state and events. A model’s state is a list
of values that are sufficient to define the state of the system at any point in sim-
ulation time [Car03]. An event represents a change in the state of the simulation
that occurs instantaneously at a well-defined point in simulation time [SB99]. In a
discrete-event model, the state remains constant over intervals of simulation time
and changes value only at the time instant an event occurs. Using state and events,
a developer can model a system and its evolution over time as an initial state and
an ordered sequence of atomic state changes specified by time-stamped events.

As an illustration of a discrete event model, consider the Packet-World sim-
ulation depicted in Figure 2.1. The state of the model comprises the position of
black robots, square packets and circular destinations on a grid. The actions of
the robots are modeled as events that change the position of robots and packets
on the grid in a discrete manner.

We highlight two main approaches to support the execution of discrete event
models in a simulation platform [FT94]:

• Time-driven execution. In this approach, simulation time is discretized
in a number of intervals of equal size, e.g. 1 second intervals. The size of
this interval is called the step size. The model is evolved forward in time by
repeatedly adding the step size to the simulation clock, regardless of whether
events are scheduled at that time or not. A simulation platform using time-
driven execution is MASS [VHL01].

14 Background and Scope

• Event-driven execution. In this approach, events are sorted according to
their time stamp [Lam78, Mis86]. During execution, the next event to be
processed is the one with the smallest time stamp. In contrast to the time-
driven approach, event-driven execution is able to skip periods of inactivity.
A simulation platform using event-driven execution is JAMES [SU01].

2.1.2.2 Continuous Models

In a continuous model, the evolution of a system is modeled as a continuous change
of the state of the model over time. A continuous model is typically expressed as a
differential equation or set of differential equations [S.S99]. The order or dimension
of a continuous model is the number of state variables in the equations. The state
space of a continuous model is the vector space in which the state of the model
takes values.

An example of a one-dimensional continuous model is a differential equation
that models the vertical movement of an object in gravitational free fall:

x′′(t) = −g
x′(0) = 0
x(0) = a

x(t) is the position of the object, x′(t) the first derivative, i.e. its velocity, x′′(t)
the second derivative, i.e. its acceleration, a is the initial height of the object and
−g is the gravitational acceleration.

We highlight two main approaches to support continuous models for conducting
experiments:

• Analytical solution. Solving a continuous model analytically means calculat-
ing a mathematical expression for its trajectory, i.e. an explicit function that
specifies the state of the system for each point in simulation time. For our
example, the trajectory can be expressed as x(t) = a − g∗t2

2 . An analytical
solution for the continuous model specifies the evolution of the model in a
compact and elegant way.

• Numerical approximation. In this case the trajectory is not formulated as a
mathematical expression, but approximated using numerical algorithms for
computing integrals, e.g. Euler or Runge-Kutta integration [FMM77]. Such
algorithms divide simulation time in intervals of equal size, and approximate
the trajectory over each interval.

2.1.2.3 Hybrid Models

In hybrid models [vdSS98], the evolution of the system is both continuous and
discrete. In a hybrid model, the system evolves in continuous phases, alternated by
discrete events. In a continuous phase, time advances, and the values of the state
variables evolve continuously over time as determined by differential equations.

2.2 Characteristics of Distributed Control Applications 15

When a discrete event occurs, the equations and the state variables are altered in
a discontinuous manner. Events can be of two kinds:

• Time events. Time events are scheduled at a predetermined time.

• State events. State events are scheduled at the occurrence of a particular
condition, i.e. when the continuous phase exceeds certain thresholds. As
such, it is not known a priori at what time a state event occurs.

As an example, consider a hybrid model of a bouncing ball. The continuous
phase of the model is a differential equation of motion. As soon as the position of
the ball in the continuous phase reaches the ground, a bounce occurs. A bounce
is represented by a state event that changes the equation of motion and the state
variables in a discontinuous manner, as the speed of the ball changes direction and
has a smaller value as a fraction of the energy is lost.

The main challenge when performing simulation runs with a hybrid model, is
managing state events [Mos99]. In contrast to time events, the simulation time at
which a state event occurs, is not know a priori. Two main approaches exist for
detecting state events and determining the time of their occurrence:

• Retroactive detection [Kam93], i.e. checking after each integrated time step
whether a state event occurred.

• Conservative advancement [HBZ90], i.e. advancing the simulation conserva-
tively by choosing the time step so that no state event will occur during
it.

2.2 Characteristics of Distributed Control Appli-
cations

A distributed control application is a distributed software application that con-
tinuously and autonomously acts in, and reacts to, an underlying environment.
Examples of distributed control applications include manufacturing control sys-
tems [VGVVB06, Bru00], collective robotic systems [GH04, PVR04, BJNT06],
traffic control systems [Wan05, Roo99, DS05] and sensor networks [SSS+03,
DYP06]. Figure 2.2 gives a schematic overview of a distributed control application
in an environment.

A distributed control application consists of several controllers. Controllers
are active software components that are distributed in the environment and that
cooperate to solve a particular problem in the environment. In Figure 2.2, three
controllers are depicted: Controller 1, Controller 2 and Controller 3.

The controllers of a distributed control application are deployed on particular
devices in the environment. A device consists of a software and a hardware part.

16 Background and Scope

Device 2 Device 3Device 1

Controller 3Controller 2Controller 1

Key:
Sensor module

Software component

Information flow

Device

Physical area

S A A C S S A C S A C

S

Actuator moduleA

Communication moduleC
External source of dynamism

Source 1 Source 2

Figure 2.2: Schematic view of a distributed control application in an environment

The software part is one of the controllers that constitutes the distributed control
application, whereas the hardware part comprises sensor, actuator and commu-
nication modules. A controller can use the sensor, actuator and communication
modules of its device to interact with the environment. Figure 2.2 depicts three
devices in the environment: Device 1, Device 2 and Device 3.

The environment of a distributed control application is the part of the external
world in which the problem resides and in which the effects of the control appli-
cation, once installed and set in operation, will be observed [HJJ03]. Typically, a
distributed control application operates in a dynamic environment, i.e. an environ-
ment where other sources of dynamism are present, e.g. other systems, processes
or even humans. These sources of dynamism are external to the distributed con-
trol application. Figure 2.2 depicts two external sources of dynamism present in
the environment: Source 1 and Source 2. The operation of external sources of
dynamism can have a significant impact on a distributed control application.

Designing and testing a distributed control application is complex as it requires
an integrated approach that takes into account the environment in which the
application is situated [HZ05a]. A distributed control application should take into
account dynamism originating from other systems, processes or humans in the
environment and react appropriately to their presence.

2.3 Simulation Modes for Distributed Control Application Development 17

2.3 Simulation Modes for Distributed Control
Application Development

Modeling and simulation approaches are frequently used to support the develop-
ment of distributed control applications. Simulations can help to analyze, design,
configure and test a distributed control application [SPLK01]. The scope of a
simulation for distributed control applications typically comprises the distributed
control application situated in a particular environment. As such, the simula-
tion incorporates external sources of dynamism in the environment that affect the
operation of a distributed control application. In a simulation, the operation of
the control application can be observed within a simulated problem setting in a
dynamic environment.

We make a distinction between different simulation modes: model-in-the-loop
simulation mode, software-in-the-loop simulation mode and hardware-in-the-loop
simulation mode. The simulation modes differ in the way they integrate a control
application “in the simulation loop”. Model-in-the-loop simulation mode relies
on a model to substitute the control application in the simulation. Software-in-
the-loop simulation mode integrates the software of the real distributed control
application in the simulation loop. Hardware-in-the-loop simulation mode inte-
grates the hardware on which the real distributed control application is deployed
in the simulation loop. Figure 6.2 gives a schematic overview of the simulation
modes. We elaborate on each simulation mode and indicate how it can support
the development of distributed control applications.

2.3.1 Model-in-the-Loop Simulation Mode

Model-in-the-loop simulation mode denotes simulations in which the distributed
control application is substituted by a model. Model-in-the-loop simulation mode
is depicted in Figure 2.3(a). The simulation incorporates a model counterpart for
each part of the real system: the controllers that constitute the real distributed
control application are substituted by controller models; the real environment with
real devices is substituted by a simulated environment with simulated devices. In
model-in-the-loop simulation mode, controller models are deployed on simulated
devices in a simulated environment in which simulated sources of dynamism reside.

Model-in-the-loop simulation is typically used during the early stages of ap-
plication development. The controller models represent the behavior (or a part
thereof) of the distributed control application that is to be built later on [Neu04].
Controller models are often used for rapid prototyping, and play a crucial role
for checking important properties of control applications at an early stage of de-
velopment. For example, controller models are used for checking safety guar-
antees [LTS99]. This is particularly important in case of safety critical sys-
tems such as air traffic control [TPS98, GL04, LGLM05] and automated high-

18 Background and Scope

Controller

Device
Hardware

Environment

Controller

Device
Hardware

Controller

Device
Hardware

(a) Model-in-the-loop simulation mode.

Controller

Device
Hardware

Environment

Controller

Device
Hardware

Controller

Device
Hardware

(b) Software-in-the-loop simulation mode.

Controller

Device
Hardware

Environment

Controller

Device
Hardware

Controller

Device
Hardware

(c) Hardware-in-the-loop simulation mode.

Figure 2.3: Simulation modes for distributed control applications. White blocks
are simulated parts. Grey blocks are parts of the real system that are integrated
in the simulation loop.

2.3 Simulation Modes for Distributed Control Application Development 19

way systems [LGS98, HCd05]. The safety specifications for the distributed con-
trol application are translated into restrictions on the model’s reachable set of
states. Model-in-the-loop simulation is used to design controller models whose
trajectory is guaranteed to remain within the safe subset of the set of reachable
states [TLSS00]. Besides checking properties such as safety, the controller mod-
els of a distributed control application can also serve as a system specification
that provides a guidance during detailed design and implementation, and enables
deriving test cases [Rut06].

2.3.2 Software-in-the-Loop Simulation Mode

Software-in-the-loop simulation mode denotes simulations in which the software of
the real controllers of the distributed control application is embedded in the sim-
ulation loop. Software-in-the-loop simulation mode is depicted in Figure 2.3(b).
The simulation contains real parts of the system, i.e. the controller software, to-
gether with simulated parts, i.e. the device hardware and the environment. The
executable code of the real controllers is directly embedded in the simulation.
In software-in-the-loop simulation mode, the software of the real controllers is
deployed on simulated devices that reside within a simulated environment with
simulated sources of dynamism.

Software-in-the-loop simulation is typically used during the late stages of ap-
plication development, i.e. after the software of the distributed control application
(or parts thereof) has been implemented. Software-in-the-loop simulation enables
experimenting with the controllers of a distributed control application on simu-
lated devices before deployment on real devices. Software-in-the-loop simulation
is extensively used for the development of control applications for robots. For
example, software-in-the-loop simulations enable testing the robustness and fault-
tolerance of control applications for robots [BKW06, FBT+03] or can facilitate
parameter estimation of a control application for robots [SA06].

2.3.3 Hardware-in-the-Loop Simulation Mode

Hardware-in-the-loop simulation mode comprises simulations that embed not only
the software of the real controllers, but also real device hardware on which the
controllers are deployed. Hardware-in-the-loop simulation mode is depicted in
Figure 2.3(c). The software of the real controllers of the distributed control ap-
plication is deployed on real devices. The real devices are connected to a sim-
ulated environment where additionally simulated devices or simulated sources of
dynamism can be present. The real controllers use real sensors and actuators on
a real devices that are connected to a simulated environment.

Hardware-in-the-loop simulations are typically used during the late stages of
application development, i.e. after the controllers have been implemented and have

20 Background and Scope

been deployed on the devices. Hardware-in-the-loop simulation enables exper-
imenting with real embedded devices in a simulated environment before these
devices are installed in the real environment [Gom01]. For example, hardware-
in-the-loop simulation is used for testing embedded control applications for traffic
lights without disturbing real traffic [BKB+05], or testing controllers embedded in
intelligent vehicles [GPDV06], without exposing the vehicle to real traffic.

2.3.4 Simulation-Based Design

We describe a number of simulation-based design approaches that rely on simu-
lation modes discussed above. Typically, a control application’s implementation
is not derived in any direct way from the controller models that were constructed
during early design. However, simulation-based design approaches aim at bridging
the gap between modeling and implementation artifacts. Examples include:

• MIDAS [BS91] is an approach that supports the design of distributed sys-
tems via iterative refinement of a partially implemented design where some
components exist as simulation models and others as operational subsystems.

• Model Continuity Methodology [HZ05b] is a methodology that supports de-
signing and testing of DEVSJAVA-based controller models by simulation,
and deploying the same controller models on the real target system for exe-
cution.

• Giotto [HKSP03] is a tool-supported design methodology for embedded con-
trol applications that supports a phased evolution to derive executable code
from a high-level controller model.

2.4 Support for Simulating Distributed Control
Applications

There are various ways to support simulations of distributed control applications.
We studied several simulation platforms for simulating distributed control ap-
plications. Based on our study, we make a distinction between three groups of
simulation platforms for simulating distributed control applications: case-specific
simulation platforms, domain-specific simulation platforms and general-purpose
simulation platforms. Case-specific simulation platforms provide support for one
specific simulation case. Domain-specific simulation platforms support a family
of simulations. General-purpose simulation platforms provide support for a broad
range of simulations.

We elaborate on each group by delineating the scope and providing a number
of examples.

2.4 Support for Simulating Distributed Control Applications 21

2.4.1 Case-Specific Simulation Platforms

Case-specific simulation platforms are simulation platforms that offer elaborate
support for one specific case of simulating distributed control applications, i.e.
support for one specific simulation model. The supported simulation model not
only prescribes the kind of system (i.e. the kind of control application, devices and
environment), but also at what level of abstraction the system is represented. Case-
specific simulation platforms have a limited scope of applicability. Case-specific
simulation platforms can only be used in case (1) the system-to-be-simulated
matches the kind of system described in the model, and (2) the abstraction level
of the model is suitable, i.e. not too high nor to detailed for the purpose of the
simulation.

Examples of case-specific simulation platforms for simulating distributed con-
trol applications include:

• Webots [Mic04] is a robot simulation platform that offers support for mobile
robots, including Khepera robots, Fujitsu HOAP-2 humanoid robots and
Sony Aibo ERS-210 robots. The supported model is very fine-grained, and
includes representations of individual servo engines, sensors and physical
volumes, elementary forces, friction between the wheels and the surface.

• Übersim [BT03] is a multi-robot simulation engine for simulating games of
robot soccer. Übersim captures at a reasonable level of resolution the dy-
namics and physical interactions between the robots, field and ball. Übersim
provides a set of predefined robot models.

• NS-2 [USC] is a discrete event simulator targeted at simulating computer
networks. The NS-2 model represents routing, network protocols over wired
and wireless networks and network dynamics such as traffic pattern changes,
node movement and node failure.

• Green Light District [WVvVK04] is a java simulation platform for testing
controllers of traffic lights. The model supports in various maps for repre-
senting road networks and various traffic densities.

2.4.2 Domain-Specific Simulation Platforms

Domain-specific simulation platforms are simulation platforms that support a fam-
ily of simulations, e.g. simulations of distributed control applications. The ap-
plicability of domain-specific simulation platforms is broader than case-specific
simulation platforms, but narrower than general-purpose simulation platforms.

We give examples of domain-specific simulation platforms for simulating dis-
tributed control applications:

22 Background and Scope

• XRaptor [BMP+] is a simulation platform to study the behavior of a large
number of agents in two- or three-dimensional continuous virtual worlds. For
XRaptor, an agent is either a point, a circular area or a spherical volume that
contains a sensor unit for observing the world, an actuator unit for perform-
ing actions and a control kernel for action selection. Ordinary differential
equations are used for modeling movements. Simulations based on XRaptor
include the movement of Braitenberg vehicles, food foraging behavior of ants
and predator-prey scenarios.

• SPARK [OR04] is a simulation platform for physical multi-agent systems in
three dimensional environments. SPARK supports a flexible agent represen-
tation with different sensors, actuators and morphologies.

• SPADES/MPADES [RR03, Ril03] is a simulation platform not tied to a
particular simulation. SPADES/MPADES tracks on a controller’s execution
time between sense and act events.

2.4.3 General-Purpose Simulation Platforms

General-purpose simulation platforms support all simulation models insofar these
models are expressed in terms of particular general-purpose modeling constructs.
General-purpose simulation platforms are not limited to simulating distributed
control applications, but support a much broader range of simulations.

We give examples of general-purpose simulation platforms:

• JAMES [HRU03] (recently updated to JAMES II) is a simulation platform
that supports discrete event models described in terms of the constructs
of DEVS (Discrete EVent System specification) [ZP00] as well as several
extensions of this formalism (e.g. DynDEVS [Uhr01] for dynamic structures).
It supports the construction of composed simulation models based on these
constructs and concurrent, distributed execution of such models.

• JiST [BHvR05] is a Java-based simulation system that supports discrete
event models by embedding event semantics directly into the Java execution
model.

2.4.4 Discussion

In case no case-specific simulation platform suits the needs of the simulation study,
a new simulation must be developed. The development of simulations of dis-
tributed control applications can be supported by means of general-purpose sim-
ulation platforms or domain-specific simulation platforms for distributed control
applications. We elaborate on the support offered by general-purpose simulation
platforms and domain-specific simulation platforms.

2.4 Support for Simulating Distributed Control Applications 23

2.4.4.1 Support Offered by General-Purpose Simulation Platforms

General-purpose simulation platforms support the developer by means of general-
purpose modeling constructs. General-purpose modeling constructs offer no sup-
port that is specifically targeted at software-in-the-loop simulation of distributed
control applications in dynamic environments. General-purpose modeling con-
structs support a broad range of simulations, and their use is not limited to simu-
lating distributed control applications. Due to their broad scope, general-purpose
simulation platforms do not offer special-purpose support to tackle the challenges
associated with modeling distributed control applications in particular. For ex-
ample, JAMES [HRU03] supports discrete event models described in terms of
the constructs of DEVS (Discrete EVent System specification) [ZP00]. DEVS is
a modeling framework that supports atomic and coupled discrete event models.
Atomic models are described in terms of modeling constructs such as a state set,
input and output ports, internal and external transition functions, etc. These con-
structs are not specifically targeted at simulating distributed control applications
in dynamic environments.

General-purpose modeling constructs are formally founded. For example, the
meaning and execution semantics of DEVS modeling constructs is formally speci-
fied. Due to the formal description of their modeling constructs, general-purpose
simulation platforms offer well-defined building blocks for describing a simulation
model. As such, a modeler can use the modeling constructs for formulating a sim-
ulation model, without taking into account the simulation platform that will be
used to execute the model. The formal description of the modeling constructs de-
couples the simulation model from the simulation platform that is used to execute
the model.

2.4.4.2 Support Offered by Domain-Specific Simulation Platforms

Domain-specific simulation platforms for distributed control applications incorpo-
rate support specifically aimed at simulating distributed control applications. For
example, XRaptor [BMP+] supports simulations consisting of a world in which
“agents” can act. An “agent” is described as a point, a circular area or a spherical
volume that contains a “sensor unit” for observing the world, an “actuator unit”
for performing actions and a “control kernel” for action selection. Compared to
general-purpose simulation platforms, domain-specific simulation platforms sup-
port the developer to tackle specific challenges associated with simulating dis-
tributed control applications in particular.

However, the modeling constructs of current domain-specific simulation plat-
forms are not formally founded. Current domain-specific simulation platforms only
provide informal abstractions of which the precise meaning is implicit and coupled
to the design and implementation of a particular simulation platform. For exam-
ple, the XRaptor abstractions “agent”, “actuator unit”, “sensor unit”, “control

24 Background and Scope

kernel”, etc. are not formally specified. As a result, the precise meaning and re-
lation of the building blocks for describing a simulation model is rather vague. In
the case of XRaptor, it is unclear how the control kernel triggers movements in the
environment, or to what extent the timing characteristics of the control kernel are
supported. Due to the lack of a formal specification, building a simulation model
supported by a domain-specific simulation platform requires detailed knowledge
of its design and implementation, and the resulting simulation model is tightly
coupled with the simulation platform that is used to execute it.

2.5 Scope

In this dissertation, we focus on domain-specific support for software-in-the-loop
simulations of distributed control applications in dynamic environments.

To sum up, existing approaches to support this family of simulations either rely
on (1) general-purpose modeling constructs that are formally specified, but offer
no support specifically targeted at this family of simulations, or on (2) informal
abstractions that offer support specifically targeted at this family of simulations,
but of which the meaning is implicit and coupled to the design and implementation
of a particular simulation platform.

Therefore, we put forward a formally founded modeling framework for software-
in-the-loop simulation of distributed control applications in dynamic environments.
The modeling framework comprises modeling constructs that are specifically aimed
at capturing core characteristics of this family of simulations in a first-class manner.
Moreover, the modeling constructs are formally specified to unambiguously specify
their meaning and relations. This is crucial to decouple the simulation model from
the simulation platform to execute the model. As such, the modeling framework
enables formulating a simulation model without taking into account the design
and implementation of the simulation platform to execute the model.

The modeling framework is the result of our experience with simulating dis-
tributed control applications in dynamic environments and is underpinned by cur-
rent state-of-the-art research on modeling such applications. The modeling frame-
work comprises two parts: an environment part and a control application part.

• The environment part offers special-purpose modeling constructs for dy-
namic environments. These modeling constructs capture (1) the structure of
the environment, (2) dynamism in the environment, (3) the way dynamism
is affected by the sources of dynamism in the environment and (4) the way
dynamism can interact in the environment. The modeling constructs of the
environment part are described in detail in Chapter 3.

• The control application part offers special-purpose modeling constructs for
integrating the software of a real distributed control application in the sim-
ulation model. These modeling constructs capture (1) the execution time

2.5 Scope 25

of the control software and (2) the interface of the control software for in-
teracting with the environment. The modeling constructs of the control
application part are described in detail in Chapter 4.

To validate the modeling constructs, we developed a simulation platform that
supports the constructs in an executable simulation, and we used the constructs
to underpin a simulator for an industrial case, i.e. a distributed control applica-
tion controlling unmanned vehicles in a warehouse environment. The simulator
comprises a simulation model that is decoupled from the simulation platform to
execute it. This enables customizing the simulation model, which is paramount
to support the study and evaluation of different functionalities of the distributed
control application. The simulation platform is described in Chapter 5, whereas
the case is described in Chapter 6.

26 Background and Scope

Chapter 3

Modeling Dynamic
Environments

In this chapter, we focus on the environment part of the modeling framework.
We introduce modeling constructs that support the modeling of dynamic environ-
ments of distributed control applications. The focus is on the specification of the
modeling constructs. Design and implementation issues to support the constructs
are tackled in Chapter 5.

3.1 Introduction

We put forward modeling constructs for modeling dynamic environments of dis-
tributed control applications. The proposed modeling constructs capture the char-
acteristics of a dynamic environment in an explicit manner.

The modeling constructs are described in an explicit modeling framework. The
modeling framework specifies the meaning, relations and execution semantics of
all modeling constructs in a formal way. The formal description of the modeling
framework decouples the modeling constructs from a particular implementation in
a simulation platform. This enables a developer to formulate a simulation model
without taking into account the simulation platform that will be used to execute
the model. As such, the formal description of the modeling framework is crucial to
obtain a clean distinction between the model formulation phase, i.e. describing a
simulation model, and the model translation phase, i.e. translating the simulation
model into an executable simulation on a particular simulation platform.

The foundation for the constructs of the modeling framework is twofold. On
the one hand, the modeling framework results from our own experience of build-
ing simulations for distributed control applications in dynamic environments.
Examples include simulations of the Packet-World [WHH05], Lego Mindstorms

27

28 Modeling Dynamic Environments

robots [Bor06] and Automated Guided Vehicles [HHB06]. On the other hand, the
modeling constructs are underpinned by existing practice on modeling dynamic
environments of distributed control applications. We will relate the modeling con-
structs to current state-of-the-art research on simulating dynamic environments of
distributed control applications.

To introduce the modeling constructs of the modeling framework in an intu-
itive manner, we use the modeling constructs for modeling a RoboCup Soccer
environment. RoboCup Soccer [NRSSV05] is a game of soccer that is played by a
team of autonomous robots that competes against an opponent team of human or
robotic players. RoboCup Soccer offers a complex, yet easy to understand prob-
lem domain that is frequently used to illustrate research on distributed control
applications, simulation and collective robotics.

We employ set theory to formally specify the modeling constructs and their
execution semantics. The notation of set theory is compact and easy to under-
stand. Moreover, set theory is frequently used for describing modeling constructs
of general-purpose modeling frameworks. For example, the discrete event modeling
framework DEVS (Discrete EVent System specification) [ZP00] and its derivatives
such as Parallel DEVS rely on set theory to formally specify their modeling con-
structs and execution semantics.

This chapter is structured as follows. We start with a brief overview of the
modeling framework in Section 3.2. In the next sections, we elaborate on each
of the modeling constructs in detail: each construct is explained informally, illus-
trated in the context of RoboCup Soccer and complemented with a formal de-
scription. In Section 3.3 we introduce constructs to model the constituting parts
of the environment, which serve as starting point to describe dynamism in the next
sections. Section 3.4 describes the constructs to reify dynamism as first-class mod-
eling construct in the simulated environment. Section 3.5 focusses on constructs
to describe the various sources of dynamism and the way they affect dynamism
in the environment. Section 3.6 introduces modeling constructs to describe how
dynamism in the environment interacts. Section 3.7 gives a formal description of
the way a simulation model based on the constructs of the modeling framework
can be executed. Section 3.8 discusses the added value of the modeling frame-
work. Section 3.9 relates the modeling constructs to state-of-the-art research on
simulating dynamic environment of distributed control applications. Finally, we
draw conclusions in Section 3.10.

3.2 Overview of the Modeling Framework

We start with an overview of all constructs of the modeling framework for dynamic
environments, before elaborating on each construct in detail in the next sections.

Figure 3.1 gives a graphical overview of the modeling framework for dynamic
environments, depicting all modeling constructs and the relations between the

3.2 Overview of the Modeling Framework 29

Simulated Environment
Sources of Dynamism

Manipulation of Dynamism

Representation
of Dynamism

Structure

Interaction Law

0..*

0..*

applies transformations on

Activity

0..*

0..1

determines reaction in response to

Environmental
EntityEnvironmental

Property

0..*

0..1

describes the evolution of

Environment
Source

Influence
0..*

0..1
is performed by

0..*

0..1

describes the evolution of

Key:
0..*0..*

Reaction Law

is em
bedded in

0..1

1

Controller

Modeling
Construct

Group of
Constructs

Association

0..*

0..*

applies transformations on

Environment
Layout

0..*

arranges

1..*

0..*
arranges

1..*

0..*

is performed by

0..1

is em
bedded in

1

0..1

Figure 3.1: Overview of the constructs in the modeling framework and their asso-
ciations

30 Modeling Dynamic Environments

constructs. The modeling constructs are organized in four groups:

1. Constructs to represent the structure of the environment in the simulation
model.

2. Constructs to represent dynamism in the environment in the simulation
model.

3. Constructs to represent the manipulation of dynamism in the environment
in the simulation model.

4. Constructs to represent the sources of dynamism in the environment in the
simulation model.

We give an overview of the modeling constructs in each group.

Structure of the environment. A first group of modeling constructs cap-
tures the structure of the environment. To capture the constituting parts of
the environment in a simulation model, we put forward the modeling constructs
Environmental Entity and Environmental Property. Examples of environ-
mental entities are all sorts of objects in the environment, such as the robots
on which a distributed control application is deployed. An example of an environ-
mental property is the temperature in the environment. To represent a physical
or logical structure that arranges the different environmental entities and envi-
ronmental properties with respect to each other, we put forward the modeling
construct Environment Layout. An example of an environment layout is a two-
dimensional geometrical arrangement of the entities.

Dynamism in the Environment. A second group of modeling constructs cap-
tures dynamism in the environment in an explicit manner. To represent dynamism
explicitly in the simulation model, we put forward an Activity as a modeling con-
struct. The association between Activity and Environmental Entity and the
association between Activity and Environmental Property expresses that an
activity describes the evolution of a particular environmental entity or property
over time. Examples of activities are the movement of a robot or the rolling of a
ball.

Manipulation of Dynamism. A third group of modeling constructs captures
the way dynamism in the environment can alter, i.e. the way activities arise, in-
teract and terminate. We put forward the modeling constructs Reaction Law and
Interaction Law to capture the way activities in the environment are manipu-
lated.

A Reaction Law is a modeling construct that specifies what happens in the
environment in reaction to a particular trigger of a source of dynamism. An exam-
ple is a reaction law that specifies what happens in the environment in reaction to

3.3 Structure of the Simulated Environment 31

the trigger of a controller to start the engines of a robot. The reaction law specifies
what kind of activity is created, e.g. a movement of that robot characterized by a
particular velocity in a particular direction.

An Interaction Law is a modeling construct to specify the way dynamism
can interact in the environment. For example, an interaction law can specify what
happens in case a robot involved in a movement activity hits a wall or another
robot.

The associations between Reaction Law and Activity on the one hand, and
between Interaction Law and Activity on the other hand, express that reaction
laws and interaction laws alter the activities present in the environment.

Sources of dynamism. A fourth group of modeling constructs captures the
sources of dynamism in the environment. We put forward the modeling constructs
Controller and Environment Source to represent the behavior of the various
sources of dynamism present in the environment.

A Controller is a source of dynamism that is part of the distributed control
application. An example of a controller is the software program that controls a
particular robot. An Environment Source is a source of dynamism that resides
in the environment and that is external to the distributed control application. An
example of an environment source is the behavior of a machine in the environment
that is controlled by a human. Controllers and environment sources are embedded
in some of the environmental entities. For example, a robot contains a source
of dynamism, i.e. its controller, whereas a ball is passive and does not contain a
source of dynamism.

Controllers and environment sources can initiate, terminate or alter dynamism
in the environment. We put forward an Influence as a modeling construct to
capture the attempt of a controller or environment source to affect the environ-
ment. An example of an influence is the attempt of a controller to start or stop
the movement of a robot. The association between Environment Source and
Influence and between Controller and Influence represents that dynamism
can only be manipulated indirectly, i.e. by means of performing influences in the
environment. Reaction laws determine the actual reaction of the environment in
response to influences. This is represented by the association between Reaction
Law and Influence.

3.3 Structure of the Simulated Environment

In this section, we introduce modeling constructs to represent the constituting
parts of the environment. We deliberately kept this part of the modeling frame-
work simple, as this suffices to discuss dynamism in the next sections.

The modeling constructs, together with their formal description, are introduced
in Section 3.3.1. Subsequently, in Section 3.3.2 we define the state of the simulated

32 Modeling Dynamic Environments

Figure 3.2: A representation of a RoboCup Soccer environment

environment.

3.3.1 Environmental Entities, Properties and Layout

We represent the parts that constitute the simulated environment by means of
two constructs: environmental entities and environmental properties. We do not
address methodological issues on how to apply these constructs in practice, as this
is highly dependent upon the objective of the simulation study [Sha98].

• Environmental entities. Environmental entities represent entities charac-
terized by their own, distinct existence in the real environment. The real
environment typically contains numerous entities of different kinds that can
be incorporated as environmental entities in the simulated environment. We
define:

E = {e1, e2, . . . , en} the set of environmental entities.

Environmental entities can be partitioned into a set of disjoint subsets, with
each subset grouping entities of the same kind along the relation'. Formally:

PartE,' = {E1, E2, . . . , Ek} a partition of environmental entities
with:
Ei ⊆ E
E =

⋃
i=1...k Ei

Ei ∩ Ej = φ,∀i 6= j
∀ej , ek ∈ Ei : ej ' ek

For example, consider Figure 3.2, depicting a part of a RoboCup Soccer

3.3 Structure of the Simulated Environment 33

environment [NRSSV05] where a robots play soccer. The environmental en-
tities we distinguish are three robots, a ball, a field and a goal:

E = {robot1, robot2, robot3, ball, field, goal} the set of entities.
PartE,' = {Robot,Ball, F ield, Goal} a partition into four

kinds of entities.
Robot = {robot1, robot2, robot3} the set of robots.
Ball = {ball} the set of balls.
Field = {field} the set of fields.
Goal = {goal} the set of goals.

• Environmental properties. An environmental property is a distributed quan-
tity that represents a measurable, system-wide characteristic of the real en-
vironment. Environmental properties can be directly represented in the sim-
ulated environment if needed. We define:

P = {p1, p2, . . . , pm} the set of environmental properties.
PartP,' = {P1, P2, . . . , Pl} a partition of properties in along the

relation “is the same kind”, denoted by '.

Examples of environmental properties are gravitation and magnetic fields
in the environment. In the RoboCup Soccer environment, the environmen-
tal properties we distinguish are temperature and humidity:

P = {temp, hum} the set of environmental
properties.

PartP = {Heat,Humidity} a partition in two kinds of
properties.

Heat = {temp} the set of temperature properties.
Humidity = {hum} the set of humidity properties.

The set of all constituents is defined as the union of the set of environmental
entities and properties: C = E ∪ P . Constituents can be partitioned according
to their kind, respecting the partitions of entities and properties: PartC,' =
PartE,' ∪ PartP,'. After relabeling: PartC,' = {C1, C2, . . . , Ck+l}.

Environmental entities and/or properties are typically arranged according to
a particular environment layout. An environment layout is a physical or logical
structure that arranges the constituents with respect to each other. The canonical
example of an environment layout is a topology. A topology expresses the spatial
positioning of various entities with respect to each other, for example grid-based
[BDD03], graph-based [KB04] or continuous topologies [HSKM97]. In Figure 3.2,
the environment layout is a two dimensional topology in which the field, the robots,
the ball and the goal are arranged with respect to each other.

34 Modeling Dynamic Environments

3.3.2 The State of the Simulated Environment

The state of the simulated environment is defined by the state of all its con-
stituents, i.e. the state of all environmental entities and properties. We describe
the state of a constituent of the simulated environment as a list of values that
are sufficient to define the status of the constituent. The state typically comprises
time-dependent characteristics of a constituent. We introduce the following defi-
nitions to describe the state of constituents:

SCi the set of all possible states of
constituents of kind Ci.

sc = 〈v1, v2, . . . , vr〉 ∈ SCi
the state of a particular
constituent c ∈ Ci, represented as a tuple
of values vj ∈ Vj , with Vj a value domain.

S =
⋃

Ci∈PartC
SCi

the set of all possible states of
constituents of any kind.

To specify the initial state of each constituent, we define a function Init which
maps a constituent on its initial state:

Init : C → S
Init(c) = sc

For a given constituent c, the function Init specifies the initial state sc ∈ SCi .

For the RoboCup Soccer environment, the state of a robot and a ball is a co-
ordinate in a two dimensional spatial layout:

SRobot = R2 the set of all possible states for a robot.
srobot1 = 〈−→pos〉 ∈ SRobot the state of a robot robot1,

with −→pos ∈ R2 a coordinate in the two
dimensional layout that indicates
the position of robot1.

SBall = R2 the set of all possible states for a ball.
sball = 〈−→pos〉 ∈ SBall the state of a ball ball,

with −→pos ∈ R2 a coordinate in the two
dimensional space that indicates
the position of ball.

We use the shorthand notations sr|pos to select the position of a robot r ∈ Robot
and sb|pos to select the position of a ball b ∈ Ball.

3.4 Dynamism in the Simulated Environment 35

3.4 Dynamism in the Simulated Environment

Starting from the basic model of the structure of the environment, we now elabo-
rate on dynamism. To support the modeler in describing dynamism, we provide a
first-class representation of dynamism in the simulated environment.

We describe the modeling constructs for capturing dynamism in the simulated
environment in Section 3.4.1, then explain how they can be used to describe sce-
narios in Section 3.4.2 and how they specify the state Section 3.4.3. Here, we make
abstraction from the way dynamism is initiated or how it interacts, as these will
be the topics of the next two sections.

3.4.1 Activities

Dynamism in the environment comprises the evolution of environmental entities
and properties over time. We introduce activities as a construct for represent-
ing dynamism in the simulated environment in an explicit manner. An activity
describes a well-specified evolution of a particular constituent of the simulated en-
vironment, that is active over a specific time interval. An example of an activity
in the RoboCup Soccer environment is a robot that is driving during a particular
time interval. An activity comprises the following: the constituent involved, the
time interval of occurrence and the evolution strategy.

• The constituent involved. Dynamism has an impact on particular parts of the
simulated environment. Each activity is associated with the environmental
entity or property it describes the evolution of. For example, in Figure 3.3,
the activity a3 represents the rolling of the ball. The activities a1 and a2

represent the driving of one of the robots.

• The time interval of occurrence. Dynamism occurs over time. Consequently,
each activity is characterized by a specific time interval. The time interval
of an activity specifies the point in time the activity starts and the time
its evolution completes1. In case the activity never ends, the time interval
is infinitely long. For example, in Figure 3.3, activity a1 representing the
driving of a RoboCup robot robot1, starts at time t = 3 after the start of
the game, until t = 5. Activity a2 starts at time t = 6 after the start of the
game, until t = 10. Activity a3 represents the rolling of the ball, starting at
time t = 7, until the moment it stops rolling, at time t = 9.

• The evolution strategy. Dynamism evolves in a particular way. Consequently,
activities are characterized by an evolution strategy that describes the spe-
cific way the status of the involved constituent changes over the time interval

1For now, we make abstraction of the fact that the time interval may not be know at the start
of the activity, as this is discussed in the next section

36 Modeling Dynamic Environments

a1a2

a3

3

5610

7

9

Figure 3.3: Activities a1, a2 and a3 in a RoboCup Soccer environment.

of occurrence. For example, for activity a2 in Figure 3.3, this could corre-
spond to a change of the position of the robot according to a constant velocity
vector.

Before giving a formal description of activities, we first introduce a number of
general definitions:

t ∈ T a particular time instant, with T
the time domain.

∆t ∈ ∆T : t + ∆t = t′ a particular duration, with ∆T
the set of all possible durations,
including ∞.

∆sc ∈ ∆SCk
a state change for a constituent c
of kind Ck, with ∆SCk

the set
of all possible state changes for
constituents of kind Ck.

∆S =
⋃

Ci∈PartC
∆SCi the set of all possible state changes of

constituents of any kind.
⊕ : S ×∆S → S the state-composition operator ⊕
s⊕∆s = s′ defines a new state from a given state

and a state change.
Note that the operator is overloaded
for each kind of constituent.

An activity a is defined as as tuple containing the constituent of the activity,
its starting time, its duration until completion and an evolution strategy. For each
activity, the evolution strategy is defined by a tuple of custom parameters and a

3.4 Dynamism in the Simulated Environment 37

function that is “instantiated” with these custom parameters2:

a = 〈c, t, ∆t, par, F 〉 an activity with the following characteristics:
c ∈ C : the constituent involved.
t ∈ T : the starting time.
∆t ∈ ∆T : the duration until completion.
par = 〈v1, . . . , vr〉 ∈ V1 × . . .× Vr : the
parameters of the evolution strategy.
F : V1 × . . .× Vr ×∆T → ∆S : the
state change function, returning a state
change ∆s ∈ ∆S relative to the
start of the activity, given a tuple of
parameters and any duration not greater
than the duration ∆t of the activity.

We use the following shorthand notations: a|c denotes the constituent, a|t and
a|∆t denote the begin time and duration of activity a, respectively. Furthermore,
a|par denotes the parameters and a|F denotes the state change function of activity
a.

For the RoboCup Soccer scenario in Figure 3.3, consider the following activity
as an example:

a1 = 〈robot1, 3, 2, 〈−→v1〉, Driving〉

Activity a1 represents that constituent c = robot1 starts driving at time t = 3
for a duration of ∆t = 2. The state change is defined by the velocity vector −→v1

and the function Driving.
The function Driving is defined as:

Driving : R2 ×∆T → ∆SRobot

Driving(~v, ∆t) = 〈~v ∗∆t〉

Driving returns a state change ∆s ∈ ∆SRobot for robots that drive with a given
velocity vector ~v ∈ R2 during a given duration ∆t ∈ ∆T . As the state of a robot
is a tuple 〈−→pos〉 (see Section 3.3.2), the state change returned by Driving is the
change of the position −→pos. The change of the position −→pos is expressed as the
function ~v ∗∆t with ∆t the duration since the robot started driving with velocity
~v.

As another example, consider the following activity from the RoboCup Soccer
scenario in Figure 3.3:

a3 = 〈ball, 7, 2, 〈−→v3 ,
−→
d3〉, Rolling〉

2This notation might seem awkward at first sight, but is more expressive when being used in
examples later on.

38 Modeling Dynamic Environments

Activity a3 represents that constituent c = ball starts rolling at time t = 7 for
a duration of ∆t = 2. The state change is defined by velocity vector −→v3 and
deceleration vector −→d3, and the function Rolling.

The function Rolling is defined as:

Rolling : R4 ×∆T → ∆SBall

Rolling(~v, ~d, ∆t) = 〈~v ∗∆t− ~d
2 ∗∆t2〉

The function Rolling returns a state change for a ball that rolls with a initial
velocity vector ~v ∈ R2 and deceleration ~d ∈ R2 during a given duration ∆t ∈ ∆T .
The state of a ball is a tuple 〈−→pos〉 (see Section 3.3.2). The change of the position
returned by Rolling is expressed as the function ~v ∗ ∆t − ~d

2 ∗ ∆t2 with ∆t the
duration since the ball started rolling with velocity ~v and deceleration ~d.

3.4.2 Scenarios

We now focus on how scenarios can be described. Scenarios describe a particular
evolution of the environment and can be expressed in terms of activities for the
various constituents. We define:

a ∈ AΩ AΩ is the set of all possible activities.
2AΩ

the powerset of AΩ, i.e. the set
of all possible subsets of AΩ

A = {a1, a2, . . . , ar} a scenario described by a set of activities,
with A ∈ 2AΩ

The scenario for the RoboCup Soccer environment depicted in Figure 3.3, can
be expressed as:

A = {a1, a2, a3}, with:
a1 = 〈robot1, 3, 2, 〈−→v1〉, Driving〉
a2 = 〈robot1, 6, 4, 〈−→v2〉, Driving〉
a3 = 〈ball, 7, 2, 〈−→v3 ,

−→
d3〉, Rolling〉

3.4.3 Scenarios and State

So far, we introduced activities and illustrated how activities can be used to de-
scribe scenarios. We now elaborate on how a scenario specifies the state of each
constituent at any point in time.

We first define a function Active that returns for a given scenario, a given
constituent and a given time instant, the subset of activities that is active for the

3.4 Dynamism in the Simulated Environment 39

given constituent at the given time instant:

Active : 2AΩ × C × T → 2AΩ

Active(A, c, t) = {a ∈ A | (a|c = c) ∧ (a|t < t ≤ (a|t + a|∆t)}

For a given scenario A, a given constituent c and a given time instant t, the
Active function returns the subset of activities for which the given constituent c is
the constituent involved in the activity, and for which that the given time instant
t is situated between the begin and end of the activity.

For a given initial state and a given scenario, we define a function State that
specifies in a recursive manner the state of any constituent at any particular point
in time.

State : 2AΩ × (C → S)× C × T → S
State(A, Init, c, t) =

State(A, Init, c, a|t)⊕ a|F (a|par, t− a|t)
if a ∈ Active(A, c, t);

State(A, Init, c, tx) with:
tx = max{tk ∈ T |(tk < t) ∧ (Active(A, c, tk) 6= φ)}

if (Active(A, c, t) = φ) ∧
(∃tk ∈ T : tk < t ∧ (Active(A, c, tk) 6= φ));

Init(c, t)
otherwise;

For a particular scenario A and initial state Init, the state of a constituent c
at time t can be derived in the following way. Note that we assume for now that
at a specific time instant, a constituent may be involved in at most one activity.
We explain the three cases in the domain of the State function:

1. In the first case, an activity a is active for the given constituent c and time t.
In this case, the state is recursively defined as the state State(A, Init, c, a|t)
at the start a|t of the activity, composed with the state change specified by
the activity. This state change is obtained by applying the function a|F with
the following arguments: on the one hand the parameters a|par specified by
the activity, and on the other hand the duration t−a|t, i.e. the time elapsed
from the time a|t the activity started, until time t.

2. In the second case, there is no activity that is active for constituent c and
time t; however, there exists an earlier time instant tk at which there is an
activity that is active for c. In this case, the state of the constituent c at
time t is the same as the state of the constituent c at time tx, where tx is the
latest time instant before t at which an activity was active for constituent c.

40 Modeling Dynamic Environments

3. Otherwise, i.e. when there is no activity active for constituent c and time t,
and there are no earlier activities that describe the evolution of c, then the
state of c at time t is the initial state of c.

We illustrate the State function by means of the scenario in the RoboCup Soccer
environment depicted in Figure 3.3. We expand the recursion for:

State(A, Init, robot1, 9)
= State(A, Init, robot1, 6)⊕Driving(−→v2 , 3)
= (State(A, Init, robot1, 5))⊕Driving(−→v2 , 3)
= (State(A, Init, robot1, 3)⊕Driving(−→v1 , 2))⊕Driving(−→v2 , 3)
= ((Init(robot1))⊕Driving(−→v1 , 2))⊕Driving(−→v2 , 3)

We explain the four expansions:

1. In the first expansion, State(A, Init, robot1, 9) is expressed in terms of
State(A, Init, robot1, 6). At time t = 9, activity a2 is active, indicating
that robot1 is driving. Consequently, the expansion is obtained by applying
the first case of the State function.

2. In the second expansion, State(A, Init, robot1, 6) is expressed in terms of
State(A, Init, robot1, 5). At time t = 6, activity a2 is not active yet, i.e.
robot1 is not driving. However, there exists an earlier time at which another
activity, i.e. activity a1, is active. As the robot is not driving between t = 5,
i.e. the end of a1, and t = 6, i.e. the beginning of a2, State(A, Init, robot1, 6)
is the same as State(A, Init, robot1, 5), according to the second case of the
State function.

3. For State(A, Init, robot1, 5), the first case of the State function applies, and
it is expanded in terms of State(A, Init, robot1, 3).

4. For State(A, Init, robot1, 3), only the third case of the State function ap-
plies, which specifies that State(A, Init, robot1, 3) is equal to the initial state
Init(robot1).

3.5 Manipulation of Dynamism

We now focus on the way scenarios arise by relating activities to sources of dy-
namism. In Section 3.5.1, we focus on modeling constructs for representing the
sources of dynamism. In Section 3.5.2 and Section 3.5.3, we elaborate on modeling
constructs to capture the way these sources can manipulate activities.

3.5.1 Sources of Dynamism

Sources of dynamism can initiate, alter or terminate dynamism in the environment.
Embedment is central in describing the relation between a source of dynamism and

3.5 Manipulation of Dynamism 41

the environment. Sources of dynamism are not external to the simulated environ-
ment [Cla96]; they are embedded in environmental entities. The environmental
entity represents the tangible part, e.g. hardware, by means of which a particular
source has access to the environment. We make a distinction between two kinds
of sources:

• Controllers. Controllers are the software components that constitute a dis-
tributed control application. For example, in a RoboCup Soccer game a
distributed control application consists of cooperating controllers embedded
in each of the robots of a team. It is clear that a controller must have a
means to manipulate the entity it is embedded in, as the controllers can
make their robot start driving around, stop driving, etc. We define:

coi ∈ CoΩ a controller coi, with CoΩ the
set of all possible controllers.

Co = {co1, co2, . . . , cop} ∈ 2CoΩ
the set of controllers of a
distributed control application.
2CoΩ

is the power set, i.e. the set
of all subsets of all possible controllers.

• Environment sources. Environment sources are sources of dynamism in the
environment, whose operation is external to the distributed control applica-
tion. For example, in a RoboCup Soccer game the opponent robot team is
remote controlled by humans. The behavior of the opponent team members
is an environment source of dynamism. It is clear that environment sources
can also manipulate entities in the environment, for example the movement
of members of the opponent team. The functioning of environment sources
is external to the distributed control application. We define:

esi ∈ EsΩ an environment source esi,
with EsΩ the set of all possible
environment sources.

Es = {es1, es2, . . . , esq} ∈ 2EsΩ
a set of environment sources.
2EsΩ

is the power set, i.e. the set of
all subsets, of all possible
environment sources.

The set of sources of dynamism is defined as the union of the set of controllers
and the set of environment sources:

42 Modeling Dynamic Environments

soi ∈ SoΩ a source of dynamism soi, with SoΩ the set
of all possible sources of dynamism.

So = (Co ∪ Es) ∈ 2SoΩ
the set of sources of dynamism.
2SoΩ

is the powerset, i.e. the set of
all subsets, of all possible sources of
dynamism.

So = {so1, so2, . . . , sop+q} So after relabeling.

To specify in which environmental entity each source of dynamism is embed-
ded, we define the Embed function that maps a source to the environmental entity
it is embedded in:

Embed : So → E
Embed(so) = e

3.5.1.1 The State of Sources of Dynamism

Here, we put forward an abstract description of the state of sources of dynamism.
This suffices for the remainder of this chapter. A detailed discussion on what
comprises the state of various sources is described in Chapter 4.

The state of the sources of dynamism is the internal status of the controllers
and environment sources. Note that the state of a source of dynamism is distin-
guished from the state of the constituent in which that source is embedded. We
define:

ssoi
∈ SΩ

so the state of a particular source
soi. SΩ

so is the set of all possible states
of a source of dynamism.

Sso = {sso1 , . . . , ssor
} ∈ 2SΩ

so the state of all sources of dynamism in set So.
2SΩ

so is the powerset, i.e. the set of all subsets of SΩ
so.

We use the shorthand notation Sso|soi to select the state of source soi ∈ So.
Hence Sso|soi

= ssoi
.

3.5.1.2 RoboCup Soccer Environment: Sources of Dynamism

For the RoboCup Soccer environment, we consider the following sources of dy-
namism. First, we consider a distributed control application consisting of two
controllers deepblue and deepred, embedded in robot1 and robot2 respectively.
Second, we consider an environment source, more specifically a behavior droid
that is embedded in robot3 and that is not part of the distributed control applica-
tion. droid belongs to the opponent team that is situated in the environment.

3.5 Manipulation of Dynamism 43

Co = {deepblue, deepred}
Es = {droid}
Embed(deepblue) = robot1
Embed(deepred) = robot2
Embed(droid) = robot3

The state of the sources of dynamism:

Sso = 〈sdb, sdr, sd〉
Sso|deepblue = sdb

Sso|deepred = sdr

Sso|droid = sd

3.5.2 Influences

An environmental entity in which a source of dynamism is embedded, mediates
that source’s access to the environment. The embedment of a source determines
the way the source can affect the environment and vice versa. A source of dy-
namism cannot bring about the desired effects directly in the environment. The
desired effects must be brought about indirectly, through the causal properties of
the environment [HJJ03].

The influence-reaction model [FM96] introduces influences and reactions to
model a source’s mediated access. A source of dynamism can only perform in-
fluences. An influence represents the attempt of the source to manipulate the
environment. The reaction models what actually happens in the environment in
response to the attempts. In contrast to the influence-reaction model, we express
the reaction of the environment in terms of manipulation of activities instead of
manipulation of state. Influences initiate and terminate activities in the environ-
ment.

A source of dynamism autonomously decides at what time to perform an influ-
ence. The amount of time it takes a controller to decide upon what to do, results
in a cost, i.e. a delay for all its subsequent influences. To determine the time
instant an influence occurs, an explicit mapping between the computation process
of a source and simulation time is necessary so as to determine how long a source
has been computing or waiting (see Chapter 4).

3.5.2.1 Formal Description of Influences

We define an influence as a tuple:

44 Modeling Dynamic Environments

f ∈ InfΩ = 〈so, t, name, 〈v1, . . . , vr〉〉 an influence with following
characteristics:
so ∈ So : the source that performed
the influence.
t ∈ T : the time at which the influence
occurs.
name ∈ InfNames : the name of the
influence. InfNames is the set of all
possible names for influences.
〈v1, . . . , vr〉 ∈ V1 × . . .× Vr : the
parameters of the influence
The set of all possible influences
is InfΩ.

We use shorthand notations f |so, f |t, f |n, f |par and f |vi
to refer to the source,

time, name, the parameters and a specific parameter of the influence, respectively.
For the RoboCup Soccer environment, consider the following influences as an

example:

f1 ∈ InfΩ = 〈deepblue, ta, startDriving, 〈−→v0〉〉
f2 ∈ InfΩ = 〈deepblue, tb, stopDriving, 〈〉〉

The influence f1 represents controller deepblue attempting to start driving with
velocity vector −→v0 at time ta. The influence f2 represents controller deepblue at-
tempting to stop driving at time tb.

3.5.2.2 Sources Performing Influences

Here, we put forward an abstract description of the way influences are performed.
This suffices for the remainder of this chapter. A detailed discussion on the way
influences are performed is described in Chapter 4.

From the point of view of the simulated environment, influences are inputs gen-
erated by sources of dynamism. To specify the next set of influences performed by
the sources of dynamism, we define a function NextInfs that maps the sources
of dynamism and their current state on a set of influences they perform next.

NextInfs : 2SoΩ × 2SΩ
so → 2InfΩ

NextInfs(So, Sso) = { 〈so1, ta, name0, 〈v1, . . . , vr〉〉,
〈so2, ta, name1, 〈v1, . . . , vu〉〉,
. . . ,
〈sok, ta, nameq, 〈v1, . . . , vw〉〉 }

The function NextInfs determines the set of influences with the earliest time
of occurrence ta of all influences performed by a set of sources of dynamism So in
a given state Sso. The details of the function NextInfs are specified in Section 4.7.

3.5 Manipulation of Dynamism 45

Sources of dynamism perform several influences over time. We define a func-
tion SoCycle that returns a new state for the sources of dynamism, based on
their current state. The new state is the result of evolving the current state of
the sources of dynamism until the next time instant one or several of the sources
perform a new influence:

SoCycle : 2SoΩ × 2SΩ
so → 2SΩ

so

SoCycle(So, Sso) = S′so

For a set of sources of dynamism So with current state SSo of the sources of
dynamism, the SoCycle function returns a new state S′so for the sources of dy-
namism. The SoCycle function is described in detail in Chapter 4.

3.5.3 Reaction Laws

Because a source’s access to the environment is mediated, an influence can lead
to a different result than the one intended by the source. For example, consider a
controller embedded in a robot, that performs an influence at a particular point
in time to start moving with a particular velocity in a particular direction. The
activity that is initiated in response to this influence, represents the robot moving
forward. However, the precise characteristics of the activity are determined by
the characteristics of the robot in which the controller is embedded. For example,
due to jitter in the hardware, the direction and velocity of the activity can slightly
differ from the ones specified in the influence. Moreover, a robot is not able to
travel at a higher velocity than the one it is physically able to achieve, even if a
controller attempts to travel faster by performing an influence specifying a higher
velocity.

To capture the sources’ mediated access in a model, we introduce reaction laws.
A reaction law is a rule that specifies the reaction of the environment in response
to an influence. To determine a reaction, a reaction law takes into account (1) the
characteristics of the influence the source performed and (2) the characteristics of
the environmental entity in which the source is embedded. The reaction specified
by a reaction law manipulates the activities that involve the environmental entity
in which the source is embedded. Note that a reaction law does not take into
account other constituents, nor does it manipulate activities of other constituents.
Dealing with interaction between several constituents is the topic of Section 3.6.

3.5.3.1 Formal Description of Reaction Laws

To formalize reaction laws, we first define a transformation of activities:

46 Modeling Dynamic Environments

trans ∈ TransΩ = 〈t, Rem,Add〉 an activity transformation at
time t ∈ T , which removes the
activities of set Rem ∈ 2AΩ

and
adds the activities of
set Add ∈ 2AΩ

. The set of all
possible transformations
is TransΩ.

We use the shorthand notation trans|t to select the time of an activity trans-
formation trans.

We define a function ApplyTrans which returns a set of activities representing
the result of applying a given transformation on a given set of activities:

ApplyTrans : 2AΩ × TransΩ → 2AΩ

ApplyTrans(A, 〈t, Rem, Add〉) = (A \Rem) ∪Add

Reaction laws determine the way the environment reacts to the influences per-
formed by the source. We define:

Rlaw : 2AΩ × (C → S)× InfΩ → InfΩ × TransΩ

Rlaw(A, Init, f) = 〈f, trans〉

A reaction law Rlaw is represented as a function that, for a given scenario A,
a given Init function and a given influence f , returns a tuple containing the influ-
ence and the transformation in response to the influence.

In addition, we define:

Rlaw ∈ RlawsΩ RlawsΩ is the set of all possible
reaction laws.

Rlaws = {Rlaw1, Rlaw2, . . . , Rlawr} a set of reaction laws,
Rlaws ∈ 2RlawsΩ

We define a function ApplyRlaws that applies a set of reaction laws to a given set
of influences to determine a set of reactions to the influences:

ApplyRlaws : 2AΩ × (C → S)× 2RlawsΩ × 2InfΩ → 2InfΩ×TransΩ

ApplyRlaws(A, Init, Rlaws, {f1, . . . , fr}) = {〈f1, trans1〉,
. . . ,
〈fk, transk〉}

3.5.3.2 RoboCup Soccer Environment: Reaction Law Examples

In the RoboCup Soccer environment, we consider two reaction laws as example:
StartDriveLaw and StopDriveLaw.

3.5 Manipulation of Dynamism 47

Example 1: StartDriveLaw. The reaction law StartDriveLaw is responsible
for initiating, in response to an influence, an activity that represents a robot driv-
ing in the environment.

StartDriveLaw : 2AΩ × (C → S)× InfΩ → InfΩ × TransΩ

StartDriveLaw(A, Init, f) =

〈f, 〈f |t, φ, {a}〉〉
a = 〈Embed(f |so), f |t,∞, 〈Jitter(f |−→v0

)〉, Driving〉
if (f |n = startDriving) ∧

(Embed(f |so) ∈ Robot) ∧
(Active(A,Embed(f |so), f |t) = φ) ∧
(‖f |−→v0

‖ ≤ vmax);

undefined
otherwise;

The law StartDriveLaw can be understood as follows. The outcome of the
law is undefined, unless the condition, described after if , is valid. This condition
is a conjunction of four subconditions:

1. The first subcondition expresses that the name f |n of the influence f must
be equal to startDriving.

2. The second subcondition expresses that the source f |so that performed the
influence, must be embedded in a robot.

3. The third subcondition states that the robot in which the source is embedded,
i.e. Embed(f |so) may not yet be driving at the time f |t the influence is
performed. The condition states that no activity is active for the robot at
the time the influence is performed.

4. The fourth subcondition states that the length (expressed by the vector norm
‖.‖) of the velocity vector f |−→v0

of the influence must be smaller than or equal
to the maximum velocity vmax the robot can achieve. Otherwise the robot
will not start driving.

If all these conditions are valid, the robot starts driving. This is expressed in
the outcome of the reaction law StartDriveLaw. The outcome is a tuple con-
sisting of the influence f , and an activity transformation 〈f |t, φ, {a}〉 in response
to f . The activity transformation occurs at the time f |t of the influence, and
results in an extra activity a that is initiated. This activity describes the driving
of the robot in which the source of dynamism is embedded. The activity starts
at the time f |t, i.e. the same time as the influence, and never ends (its duration
is ∞), as the robot will continue driving until instructed otherwise. The velocity

48 Modeling Dynamic Environments

of the robot while driving corresponds to the velocity f |−→v0
described in the influ-

ence, after applying a stochastic perturbation, as described by the Jitter-function:

Jitter : R2 → R2

Jitter(~v) = ~v′

Example 2: StopDriveLaw. The reaction law StopDriveLaw is responsible
for stopping a driving robot in response to an influence:

StopDriveLaw : 2AΩ × (C → S)× InfΩ → InfΩ × TransΩ

StopDriveLaw(A, Init, f) =

〈f, 〈f |t, {a1}, {a2}〉〉
with: a2 = 〈a1|c, a1|t, f |t − a1|t, a1|par, a1|F 〉
if (f |n = stopDriving) ∧

(Embed(f |so) ∈ Robot) ∧
(∃a1 ∈ Active(A,Embed(f |so), f |t) : a1|F = Driving)

undefined
otherwise;

The law StopDriveLaw can be understood as follows. The outcome of the law
is undefined, unless the condition described after if is valid. This condition is a
conjunction of three subconditions:

1. The first subcondition expresses that the name f |n of the influence f must
be equal to stopDriving.

2. The second subcondition expresses that the source f |so that performed the
influence, must be embedded in a robot.

3. The third subcondition states that the robot in which the source is embedded,
i.e. Embed(f |so) is driving at the time f |t the influence is performed. The
condition states that there exists an activity a1 such that a1 is active for the
robot at that time, and such that a1 is a Driving activity.

If all these conditions are valid, the law StopDriveLaw stops the robot from
driving any further: the original driving activity a1 is removed, and a new one a2

is inserted that ends at the time the influence with name stopDriving is performed.
Consequently, this outcome of the law is a tuple consisting of the influence f , and
an activity transformation 〈f |t, {a1}, {a2}〉 in response to f . This transformation
removes the activity a1 that represents the driving of the robot. An extra activity
a2 is added. a2 is the same activity as a1, i.e. the elements in its tuple correspond
to the elements of a1, except for its duration. The duration of a2 is such that the
robot stops driving at time f |t, i.e. the time the influence made it stop.

3.5 Manipulation of Dynamism 49

3.5.3.3 RoboCup Soccer Environment: Example Scenario

As an example of both laws, we illustrate how a controller can generate the sce-
nario of the moving robot in Figure 3.3. We start from the initial situation where
both robots are standing still on their initial position, as defined by Init: we have
A = φ, i.e. no robot is moving yet. Based on their current state Sso, the sources
of dynamism perform the following set of influences:

NextInfs({deepblue, deepred, droid}, Sso) = { f1 }
f1 = 〈deepblue, 3, startDriving, 〈

−→
v′1〉〉

By means of this influence, performed at time t = 3, deepblue indicates that
it wants to start driving. ApplyRlaws determines and applies all reaction laws
that are applicable. In response to this influence, StopDriveLaw is undefined,
but StartDriveLaw is applicable, and returns:

StartDriveLaw(φ, Init, f1) = 〈f1, 〈3, φ, {a0}〉〉
a0 = 〈robot1, 3,∞, 〈−→v1〉, Driving〉

We apply the proposed transformation on A = φ:

ApplyTrans(φ, 〈3, φ, {a0}〉) = {a0}

This represents the situation in Figure 3.4, where robot1 is driving infinitely long.

a0

3

Figure 3.4: Reaction of the environment: activity a0 initiated in response to in-
fluence f1

The state of the sources of dynamism is evolved until one or several sources
perform a new influence:

50 Modeling Dynamic Environments

a1
3

5

Figure 3.5: Reaction of the environment: activity a0 replaced by activity a1 in
response to influence f2

SoCycle({deepblue, deepred, droid}, Sso) = S′so

Based on the new state S′so, we determine the next set of influences:

NextInfs({deepblue, deepred, droid}, S′so) = { f2 }
f2 = 〈deepblue, 5, stopDriving, 〈〉〉

By means of this influence, deepblue indicates it wants to stop driving.
ApplyRlaws determines and applies all reaction laws that are applicable. To
this influence, StartDriveLaw is undefined, but StopDriveLaw is applicable, and
returns:

StopDriveLaw({a0}, Init, f2) = 〈f2, 〈5, {a0}, {a1}〉〉
a1 = 〈robot1, 3, 2, 〈−→v1〉, Driving〉

We apply the proposed transformation on A = {a0}:

ApplyTrans({a0}, 〈5, {a0}, {a1}〉) = {a1}

The scenario now corresponds to Figure 3.5, where the robot stops driving at
time t = 5.

3.6 Interaction of Dynamism 51

3.6 Interaction of Dynamism

Not only sources of dynamism can initiate activities, as entities in which no source
of dynamism is embedded can also be involved in activities. For example, it
is obvious that a ball can roll, although there is no source embedded in a ball.
Activities related to entities in which no source is embedded are typically initiated
indirectly. For example, the rolling of a ball is initiated by a robot that kicks
the ball. Such indirect initiation of activities is possible because of interaction.
Dynamism in the environment can interact.

Interaction of dynamism typically implies a discontinuity in its evolu-
tion [WGW90]. Dynamism can interact in complex ways. Interaction of dynamism
can be unwanted by a controller, typically because it causes a controller’s actions
not to yield the intended result [FM96, Woo01]. For example, a robot that has
started to drive forward in a straight line, hits an obstacle or is pushed aside by
another robot. The result is that the robot reaches a position different from the
one it intended to reach. However, interaction of dynamism can also be desired by
a controller. For example, a robot moves forward into the path of a rolling ball,
because it wants to deviate the ball in the direction of the goal.

Interaction of dynamism plays a crucial role, particularly in scenarios involving
several sources of dynamism, i.e. a number of controllers as well as several envi-
ronment sources. Supporting the modeler to cope with interaction of dynamism,
requires modeling constructs to represent interaction in the simulation model.

In Section 3.6.1, we describe an example scenario of interaction that will be
used throughout the whole section. The modeling constructs to capture interaction
in the simulation model, are introduced in Section 3.6.2.

3.6.1 RoboCup Soccer Environment: Example Interaction
Scenario

We illustrate interaction of dynamism in the context of the RoboCup Soccer sce-
nario in Figure 3.6. The scenario describes two robots that cooperate to score a
goal, but ultimately the goal is prevented by the third robot. We elaborate on the
interaction of dynamism in this scenario. robot2 drives according to activity a3

and interacts with the ball. A robot and a ball are not allowed to penetrate: the
robot kicks the ball when both come into contact, which happens at time t = 5.
As a result of this contact, the ball starts rolling, denoted by activity a4. At time
t = 8, the rolling ball makes contact with robot1, which is at that time driving
according to activity a2. As a result of this interaction, the ball is deviated to-
wards the goal, as indicated by activity a5. However, robot3 has positioned itself
in front of the goal according to activity a6 and blocks the ball to prevent robot1
from scoring.

52 Modeling Dynamic Environments

a1
a5

a2 610

3

5

a3

a4
9 4

88

11

7

10

5
a6

Figure 3.6: An scenario with interaction between robots and a ball.

3.6.2 Interaction Laws

Whereas a reaction law determines a transformation of activities related to one
environmental entity, without taking into account any others, an interaction law
determines the way several environmental entities can interact.

An interaction law represents a domain-specific rule that specifies a way entities
can interact. As such, interaction laws can be used to constrain dynamism in the
simulated environment according to what is possible in the real environment. The
description of an interaction law comprises the following:

• Interaction conditions. An interaction condition specifies the circumstances
for interaction to occur. Interaction conditions are used to check whether an
activity interacts with other entities. An example of an interaction condition
is the penetration of a moving robot and the ball.

• Activity transformations. In case interaction is detected at a particular time
in a given scenario, the interaction law specifies how the interaction affects
the evolution described by the activities involved. An activity transformation
specifies a particular transformation to be applied on the scenario.

Interaction laws are a modeling construct that enables a modeler to define the
interactions that are possible in the simulated environment. An interaction law
encapsulates interaction conditions and activity transformations to describe when
an interaction occurs and what its outcome is.

3.6 Interaction of Dynamism 53

3.6.2.1 Formal Description of Interaction Laws

We define an interaction law as a function that returns an activity transformation
in case its interaction conditions are met:

ILaw : 2AΩ × (C → S) → TransΩ

Ilaw(A, Init) = trans

In addition, we define:

Ilaw ∈ IlawsΩ IlawsΩ is the set of all possible
interaction laws.

Ilaws = {Ilaw1, Ilaw2, . . . , Ilawr} a set of interaction laws,
Ilaws ∈ 2IlawsΩ

We define a function ApplyIlaws that applies a set of interaction laws to a given
scenario to determine a set of activity transformations:

ApplyIlaws : 2AΩ × (C → S)× 2IlawsΩ → 2TransΩ

ApplyIlaws(A, Init, Ilaws) = {trans1, . . . , transk}

3.6.3 RoboCup Soccer Environment: Interaction Law Ex-
amples

For the RoboCup Soccer Environment, we give three examples of an interaction
law: KickBallLaw, DeviateBallLaw and StopBallLaw.

Example 1: KickBallLaw. The interaction law KickBallLaw only applies to
the case in which a stationary ball is hit by a moving robot. KickBallLaw enforces
that the ball starts rolling by returning an activity transformation that initates a
new activity.

54 Modeling Dynamic Environments

KickBallLaw : 2AΩ × (C → S) → TransΩ

KickBallLaw(A, Init) =

〈t, φ, {a}〉
a = 〈b, t,∆t, 〈~v, ~d〉, Rolling〉

if ∃b ∈ Ball;∃t ∈ T ;∃∆t ∈ ∆T ;∃r ∈ Robot;∃a1 ∈ A;∃~v, ~d ∈ R2 :
a1 ∈ Active(A, r, t) ∧
Active(A, b, t) = φ ∧
‖State(A, Init, b, t)|pos − State(A, Init, r, t)|pos‖ = ε ∧
‖State(A, Init, b, t + dt)|pos − State(A, Init, r, t + dt)|pos‖ < ε ∧
~v = Y1(A, Init) ∧
~d = Y2(A, Init) ∧
∆t = Y3(~v, ~d,Rolling)

undefined
otherwise;

The expression of the law can be understood as follows. The condition states
that the law is applicable in case there is a ball b, a time instant t, a duration ∆t,
a robot r, an activity a1 and velocity and deceleration vectors ~v and ~d such that:

1. The robot r is driving at time t, expressed by activity a1.

2. The ball b is not rolling at time t, i.e. none of the activities is active for the
ball at time t.

3. The distance between the position of the ball and the robot at time t is ε. ε
represents the distance at which the bodies of the ball and the robot make
contact. For example, in case the bodies of ball and robot are circles with
radiuses ρb and ρr, then ε = ρb + ρr

4. The distance at time t + dt, with dt an infinitesimal small amount of time,
between robot r and ball b is smaller than ε. This means that the robot
would actually penetrate the ball after time t. This condition is not satisfied
in situations where the robot stops driving right when it touches the ball.

5. The vectors ~v and ~d are determined by functions Y1 and Y2. We make
abstraction on how their precise values are determined.

6. The duration ∆t is determined by function Y3, and corresponds to the time
that elapses until the ball’s speed reaches zero.

If all these conditions are satisfied, KickBallLaw proposes an activity transfor-
mation at time t. The transformation represents the addition of an activity a to
the scenario. a describes the ball b rolling after time t. Note that according to
KickBallLaw, the robot is not affected by hitting the ball.

3.6 Interaction of Dynamism 55

Example 2: DeviateBallLaw. We define the interaction law DeviateBallLaw
to determine the outcome in case a rolling ball is hit by a robot that is driving:

DeviateBallLaw : 2AΩ × (C → S) → TransΩ

DeviateBallLaw(A, Init) =

〈t, {a1}, {a2, a3}〉
a2 = 〈b, a1|t, t− a1|t, 〈a1|~v, a1|~d〉, a1|F 〉
a3 = 〈b, t,∆t, 〈~v, ~d〉, Rolling〉

if ∃b ∈ Ball;∃t ∈ T ;∃∆t ∈ ∆T ;∃r ∈ Robot;∃a1, a4 ∈ A;∃~v, ~d ∈ R2 :
a1 ∈ Active(A, b, t) ∧
a4 ∈ Active(A, r, t) ∧
‖State(A, Init, b, t)|pos − State(A, Init, r, t)|pos‖ = ε ∧
‖State(A, Init, b, t + dt)|pos − State(A, Init, r, t + dt)|pos‖ < ε ∧
~v = Y1(A, Init) ∧
~d = Y2(A, Init) ∧
∆t = Y3(~v, ~d,Rolling)

undefined
otherwise;

The expression of the law can be understood as follows. The condition states
that the law is applicable in case there is a ball b, a time instant t, a duration ∆t a
robot r, an activity a1 and a4 and velocity deceleration vectors ~v and ~d such that:

1. The ball b is rolling at time t, expressed by activity a1.

2. The robot r is driving at time t, expressed by activity a4.

3. The distance between the position of the ball and the robot at time t is ε. ε
represents the distance at which the bodies of the ball and the robot make
contact.

4. The distance at time t + dt, with dt an infinitesimal small amount of time,
between robot r and ball b is smaller than ε. This means that the bodies of
the robot and the ball would actually penetrate after time t.

5. The vectors ~v and ~d are determined by functions Y1 and Y2. We make
abstraction on how their precise values are determined.

6. The duration ∆t is determined by functions Y3, and corresponds to the time
that elapses until the ball’s speed reaches zero.

If all these conditions are satisfied, DeviateBallLaw proposes an activity trans-
formation at time t. The transformation performs two things. On the one hand,

56 Modeling Dynamic Environments

it removes the original activity a1 of the ball, and replaces it with an activity a2

which is identical to a1, except that a2 now stops at the moment ball and robot
make contact. Consequently, ball and robot no longer penetrate. On the other
hand, the transformation adds a new activity a3 that represents the new, deviated
trajectory of the ball after the time t it hits the robot. Note that according to
DeviateBallLaw, the robot is not affected by hitting the rolling ball.

Example 3: StopBallLaw. We define the interaction law StopBallLaw to de-
termine the outcome in case a rolling ball hits a stationary robot:

DeviateBallLaw : 2AΩ × (C → S) → TransΩ

DeviateBallLaw(A, Init) =

〈t, {a1}, {a2}〉
a2 = 〈b, a1|t, t− a1|t, 〈a1|~v, a1|~d〉, a1|F 〉

if ∃b ∈ Ball;∃t ∈ T ;∃r ∈ Robot;∃a1 ∈ A :
a1 ∈ Active(A, b, t) ∧
Active(A, r, t) = φ ∧
‖State(A, Init, b, t)|pos − State(A, Init, r, t)|pos‖ = ε ∧
‖State(A, Init, b, t + dt)|pos − State(A, Init, r, t + dt)|pos‖ < ε ∧

undefined
otherwise;

The expression of the law can be understood as follows. The condition states
that the law is applicable in case there is a ball b, a time instant t, a robot r and
an activity a1 such that:

1. The ball b is rolling at time t, expressed by activity a1.

2. The robot r is not driving at time t, i.e. none of the activities is active for
the robot at time t.

3. The distance between the position of the ball and the robot at time t is ε. ε
represents the distance at which the bodies of the ball and the robot make
contact.

4. The distance at time t + dt, with dt an infinitesimal small amount of time,
between robot r and ball b is smaller than ε. This means that the bodies of
the robot and the ball would actually penetrate after time t.

If all these conditions are satisfied, StopBallLaw proposes an activity transfor-
mation at time t. The transformation removes the original activity a1 of the ball,
and replaces it with an activity a2 which is identical to a1, except that a2 now
stops at the moment ball and robot make contact. Consequently, ball and robot

3.7 The Evolution of the Model 57

no longer penetrate and the ball stops rolling as soon as it hits the robot. Note
that according to StopBallLaw, the robot is not affected by hitting the rolling
ball.

From the definitions of KickBallLaw, DeviateBallLaw and StopBallLaw, it
is clear that the interaction scenario of Figure 3.6 can be supported. In analogy to
the KickBallLaw, DeviateBallLaw and StopBallLaw, an interaction laws can
be defined to determine what happens in case a robot collides with another robot
(that is either stationary or moving), in case a robot or a ball hits the goalpost,
etc.

3.7 The Evolution of the Model

We formally specify the evolution of the model as a whole. This specifies how
simulation models that are described in terms of the modeling constructs can be
executed.

The evolution of the model is defined formally by means of the Evol function:

Evol : 2SoΩ × 2AΩ × 2SΩ
so × (C → S)× 2RlawsΩ × 2IlawsΩ → 2AΩ × 2SΩ

so

Evol(So,A, Sso, Init, Rlaws, Ilaws) = 〈A′, S′so〉 with:
A′ = Cycle(NextInfs(So, Sso), Rlaws, Ilaws, A, Init)
S′so = SoCycle(So, Sso)

The Evol function returns an updated scenario A′ and an updated state of the
sources S′so that comprise the following:

• The updated scenario A′ is the result of applying the NextInfs function that
determines the next set of influences performed by the sources of dynamism
(see Section 3.5.2.2). Subsequently, the Cycle function returns an updated
scenario in reaction to this set of influences, by applying all transformations
specified by the reaction laws and interaction laws in the correct temporal
order.

• The updated state of the sources S′so is the result of applying the SoCycle
function on the current state of the sources (see Section 3.5.2.2).

The Cycle function is defined as follows:

58 Modeling Dynamic Environments

Cycle : 2InfΩ × 2RlawsΩ × 2IlawsΩ × 2AΩ × (C → S) → 2AΩ

Cycle(Inf,Rlaws, Ilaws, A, Init) =

Cycle(Inf \ {f}, Rlaws, Ilaws, ApplyTrans(A, trans), Init)
if ∃f ∈ Inf ;∃trans ∈ TransΩ :

(〈f, trans〉 ∈ ApplyRlaws(A, Init, Rlaws, Inf)) ∧
(6 ∃〈fi, transi〉 ∈ ApplyRlaws(A, Init, Rlaws, Inf) :

transi|t < trans|t) ∧
(∀transj ∈ ApplyIlaws(A, Init, Ilaws) :

trans|t < transj |t)

Cycle(Inf,Rlaws, Ilaws, ApplyTrans(A, trans), Init)
if ∃trans ∈ TransΩ :

(trans ∈ ApplyIlaws(A, Init, Ilaws)) ∧
(6 ∃transi ∈ ApplyIlaws(A, Init, Ilaws) :

transi|t < trans|t) ∧
(∀〈fj , transj〉 ∈ ApplyRlaws(A, Init, Rlaws, Inf) :

trans|t ≤ transj |t)

A
otherwise;

The Cycle function takes as input a set of newly performed influences, the set
of reaction laws and the set of interaction laws, the actual scenario and a function
that returns the initial state. The Cycle function then determines the updated
scenario by applying laws in a recursive manner. There are three possible cases:

1. The first law that is applicable, is a reaction law. This is the case if there
exists an influence f and an activity transformation trans for which the
following three conditions are satisfied:

(a) One of the reaction laws proposes the given transformation trans in
reaction to the influence f of the set of influences. In other words,
the tuple 〈f, trans〉 is an element of the set that is produced by the
ApplyRlaws function.

(b) There does not exist another transformation transi that is also pro-
posed by the ApplyRlaws function and that occurs earlier in time than
trans.

(c) All transformations transj that are proposed by the interaction laws
occur later than the transformation trans.

If all these conditions hold, the transformation trans in response to f is ap-
plicable before any other transformation. Consequently, the function Cycle
is called recursively. The parameters reflect the outcome of the reaction law
that proposed trans: (1) in the set of influences for which the reactions have

3.8 Discussion 59

yet to be determined the influence f is removed, and (2) the scenario is now
the one in which the transformation trans is already applied.

2. The first law that is applicable, is an interaction law. This is the case if
there exists an activity transformation trans for which the following three
conditions are satisfied:

(a) One of the interaction laws proposes the given transformation trans for
the given scenario A. In other words, trans is an element of the set of
transformations that is produced by the ApplyIlaws function.

(b) There does not exist another transformation transi that is also pro-
posed by the ApplyIlaws function and that occurs earlier in time than
trans.

(c) All transformations transj that are proposed by the reaction laws occur
at the same time or later than the transformation trans.

If all these conditions hold, the transformation trans is applicable to A
before any other transformation. Consequently, the function Cycle is called
recursively. The parameters reflect the outcome of the interaction law that
proposed trans, i.e. the scenario is now the one in which the transformation
trans is already applied.

3. No laws are applicable. The current scenario A is returned, as it already
reflects all changes.

Note that all activity transformations are applied in increasing temporal order,
which is required to guarantee correct causal relations. With respect to activ-
ity transformations that occur at the same time, the Cycle function specifies the
following conventions. In case an activity transformation proposed by a reaction
law occurs simultaneously with an activity transformation proposed by an inter-
action law, the transformation of the interaction law is applied first. For activity
transformations proposed by reaction laws that occur simultaneously, the order is
not specified. Finally, for activity transformations proposed by interaction laws
that occur simultaneously, the order is not specified. It is the responsibility of
the developer to specify laws that are consistent with each other, such that the
simulation results cannot be affected by the order in which simultaneous laws are
applied.

3.8 Discussion

We elaborate on the added value of the modeling framework. In Section 3.8.1, we
elaborate on the way the modeling framework supports model formulation. In Sec-
tion 3.8.2, we point out how the modeling framework supports model translation.
Finally, we reflect upon factors that affect the computational cost in Section 3.8.3.

60 Modeling Dynamic Environments

3.8.1 Support for Model Formulation

The modeling framework describes the meaning, relations and execution semantics
of all modeling constructs in a formal way, independent of their implementation in
a particular simulation platform. This enables a developer to focus on formulating
a simulation model, without taking into account the simulation platform that will
be used to execute the model. This raises the abstraction level for the modeler,
making it easier to reason about dynamic environments.

The modeling framework provides explicit modeling constructs for modeling
dynamic environments of distributed control applications. The constructs capture
the characteristics of a dynamic environment in a clear and comprehensive way.
The modeling framework provides modeling constructs that represent in an explicit
manner (1) the structure of the environment, (2) dynamism in the environment,
(3) manipulation, i.e. interaction and reaction, of dynamism in the environment,
and (4) sources of dynamism in the environment.

3.8.2 Support for Model Translation

Decoupling the modeling framework from its implementation in a particular sim-
ulation platform is also beneficial for model translation. We explain that the
modeling framework opens different options for translating a simulation model de-
scribed in terms of the modeling constructs into an executable simulation, rather
than being constrained to one particular simulation platform.

The formal description of the modeling framework specifies the functionality
that is necessary to support the modeling constructs in an executable simulation.
For example:

• The formal description unambiguously specifies how each of the constructs
can be expressed.

• The formal description specifies how the state of any constituent of the en-
vironment can be derived at any time in a given scenario (see Section 3.4.3).

• The formal description specifies the evolution of models that are expressed in
terms of its constructs. In particular it specifies the synchronization between
(1) the execution of the controllers, (2) the enforcement of reaction laws
and (3) the enforcement interaction laws in the simulated environment (see
Section 3.7).

Based on the formal specification, different options can be explored for trans-
lating a simulation model described in terms of the modeling constructs into an
executable simulation. We indicate three possible tracks.

3.8 Discussion 61

Development of a Case-Specific Simulation Platform. A first track is to
develop a case-specific simulation platform that supports one particular simulation
model that is described in terms of the constructs. An example is a simulation
platform that supports the RoboCup Soccer simulation model that was described
throughout this chapter. The formal specification supports for the development
of such a simulation platform by specifying the functionality that is needed to
support such a simulation model in an executable simulation.

Development of a Domain-Specific Simulation Platform. A second track
is developing a domain-specific simulation platform of which the functionality can
be reused for any simulation model described in terms of the constructs of the
modeling framework. Such a simulation platform encapsulates the functionality
to support the modeling constructs in an executable simulation. This track is
discussed in detail Chapter 5.

Mapping onto General-Purpose Modeling Constructs. A third track is
mapping the constructs of the modeling framework into general-purpose model-
ing constructs. Such a mapping would enable transforming a simulation model
described in terms of the modeling constructs for dynamic environments into a
simulation model described in terms of general purpose modeling constructs. As
such, general-purpose simulation platforms can be reused to support an executable
simulation.

As a guideline for future research, we give a first indication on possible ways to
relate the modeling framework to modeling constructs of discrete event simulation
and hybrid simulation.

• Relation to discrete event simulation. In discrete event simula-
tion [BCNN00], models are described in terms of state and events. The
state is a list of values that are sufficient to describe the state of the system
at any point in time. An event is defined as a change of the state that occurs
instantaneously at a specific point in time [SB99].

To support the modeling framework in discrete event simulation, we need
to devise a way for mapping the constructs of the modeling framework onto
state and events. There are various design choices. We briefly indicate two
possible alternatives.

In a first alternative, the constituents are considered to form a state. Activi-
ties can be represented as a combination of state and events: the parameters
of an activity are described as a state, attributed to a particular constituent,
whereas the start and the end of each activity are translated into two suc-
cessive events.

Supporting activity transformations that result from reaction and interaction

62 Modeling Dynamic Environments

laws, is less trivial, as this requires additional infrastructure for inspecting
and manipulating the event queue.

In a second alternative, the set of activities is considered to form a state,
and the activity transformations proposed by the laws are represented as
events. Consequently, the state of the constituents is defined implicitly, and
the State function specified in Section 3.4.3 has to be implemented to derive
the state.

• Relation to hybrid simulation. In hybrid simulation [Mos99, EK04], the
evolution of the system is continuous and discrete. Continuous phases are
alternated by discrete events. In a continuous phase, time advances, and the
values of the state variables are determined by equations as a function of
time. When a discrete event occurs, the equations and the state variables
are altered in a discontinuous manner.

Events can be of two kinds:

– Time events. Time events are scheduled at a predetermined time.

– State events. State events are scheduled at the occurrence of a partic-
ular condition, i.e. when the continuous phase exceeds certain thresh-
olds. As such, it is not known a priori at what time a state event occurs.
Consequently, the simulation engine has to detect whether state events
occur, and at what time their occurrence takes place.

To map the modeling framework on the concepts of hybrid simulation, we
need to devise a way for translating the constructs of the modeling framework
onto state variables, equations, time events and state events. We give some
further indications.

The state of the constituents could be translated into state variables, and
activities represented by equations. As interaction laws represent conditions
on the continuous phase, they can be represented as state events. Supporting
influences and reaction laws requires further investigation. Reaction laws are
triggered by influences. Influences are performed by sources of dynamism
that autonomously decide when and which influences to perform. As such,
the occurrence of influences is not known beforehand whereas time events
are predetermined. Moreover, state events are expressed as conditions on
the continuous phase, whereas influences result from discrete computation
performed by the sources of dynamism.

3.8.3 Computational Cost

The formal description serves as a specification, not committed to specific algo-
rithmic solutions to underpin it. As such, the formal description enables the use

3.9 Related work 63

of custom algorithmic solutions that are optimized for a specific simulation study.
The computational cost of executing a model that is based on the modeling frame-
work, is dependent upon the following:

• Complexity of the model. The inherent complexity of the model has a sig-
nificant impact on the computational cost to execute it. The complexity of
a model is determined by the granularity of the activities, the quantity and
complexity of the laws, etc.

• Characteristics of the experiments. For a particular model, the experimental
setting can have an impact on the computational cost. For example, the
initial position and the density of robots can have an impact on the frequency
at which collisions occur.

• Algorithmic solutions. For a particular model and experiment, the chosen
algorithmic solutions can have an impact on computational cost. Examples
are fast collision detection algorithms, efficient mechanisms for matching
reaction laws with influences, excluding activities that can never interact
from checks by the interaction laws, etc.

A measurement of the computational cost, in the context of a specific simulation
study is described in Chapter 6.

3.9 Related work

Various simulations exist that incorporate characteristics of dynamic environ-
ments. We first elaborate on approaches that rely on general-purpose modeling
constructs to represent dynamic environments. Afterwards, we elaborate on the
support offered by domain-specific simulation platforms.

3.9.1 Modeling Dynamic Environments with General-
Purpose Modeling Constructs

We give examples of existing approaches that use general-purpose modeling con-
structs to incorporate the characteristics of dynamic environments in a simulation
model.

• [SU01] uses the constructs of discrete event simulation to represent the Tile-
World [PR90], a grid environment where robots can transport tiles. The
requests from the agents are decoupled from the reaction of the environ-
ment. Events are used to capture the request (i.e. influence) of an agent to
move, as well as for representing the actual movement (i.e. activity) that re-
sults from it. Protocols (i.e. reaction laws) are used to specify the movement
events that correspond to request events.

64 Modeling Dynamic Environments

• [EKP01] uses the constructs of hybrid simulation [Mos99, EK04] to represent
an environment of automated guided vehicles. The movements (i.e. activ-
ities) of the vehicles are modeled by means of differential equations that
define the position and velocity of each vehicle as a function of time. State
events are used to model interaction laws that happen at the occurrence of a
particular condition, i.e. when the values of the differential equations exceed
certain thresholds.

• Rigid body simulation [Mir00] applies the concepts of hybrid simulation to
simulate fine-grained interactions of non-deformable bodies: fast collision
detection algorithms [GLM96, Mir98, Hub96], impact models and methods
to enforce general motion constraints – especially the non-penetration con-
straints [Bar94] – have been developed.

The examples illustrate that general-purpose modeling constructs allow the char-
acteristics of dynamic environments to be incorporated in a simulation model. The
meaning of general purpose modeling constructs is formally documented, which
facilitates their use. However, their meaning does not specifically refer to dy-
namic environments of distributed control applications. As such, general-purpose
modeling constructs do not support dynamic environment in an explicit manner.

3.9.2 Modeling Dynamic Environments in Domain-Specific
Simulation Platforms

We give examples of simulation platforms for simulating distributed control ap-
plications in dynamic environments, and investigate the modeling constructs they
offer to incorporate the characteristics of dynamic environments in a simulation
model.

• XRaptor [BMP+] is a simulation platform that supports two- or three-
dimensional continuous environments to study the behavior of a large number
of agents. XRaptor offers a number of abstractions to support simulations of
mobile devices in an environment: an agent is either a point, a circular area
or a spherical volume that contains a sensor unit for observing the world, an
actuator unit for performing actions and a control kernel for action selection.
Ordinary differential equations are used for modeling movements.

It is clear that supported abstractions are not general-purpose modeling con-
structs, but are targeted towards simulations of mobile devices in an environ-
ment. However, the precise meaning and responsibilities of the abstractions
is not documented in a formal way. Consequently, using the constructs for
a specific simulation study requires investigating the design and implemen-
tation of the simulation platform, e.g. to understand the precise meaning
of an agent, the relation of an agent to the sensor and actuator units, the

3.10 Conclusions 65

responsibilities of sensor and actuator units, the relation between agents and
points, circular areas and volumes the environment, etc.

• SPARK [OR04] is a simulation platform for physical multi-agent systems in
three dimensional environments. SPARK supports a flexible agent represen-
tation with different sensors, actuators and morphologies. These abstrac-
tions are described as follows [OR04]:

“Agent programs are external processes for the simulator. The represen-
tation of the agent properties inside the simulator is almost equal to the
representation of all other objects in the simulation. There are bodies (i.e.
mass and a mass distribution) for the physical simulation. Additionally,
agents possess perceptors and effectors. Perceptors provide sensory input to
the agent program associated with the representation of the agent in the sim-
ulator, and the agent program uses the effectors to act in its environment.
Other objects in the simulation and the physics of the system can affect the
situation of agents; this is reflected in the respective aspects by changing the
positions or velocities.”

It is clear that the supported abstractions are targeted at simulations of
mobile devices in a dynamic environment. However, the precise meaning
and responsibilities of all abstractions is not documented in a formal way
and requires detailed knowledge of the design and implementation of the
simulation platform.

The examples above illustrate that simulation platforms for simulating dis-
tributed control applications in dynamic environments offer constructs that are
targeted at capturing dynamic environments of distributed control applications.
However, the meaning of these modeling constructs is only described in an in-
formal manner. Consequently, formulating a simulation model in terms of such
constructs requires detailed knowledge of the design and implementation of the
simulation platform.

3.10 Conclusions

In this chapter, we presented a modeling framework that contains formally spec-
ified modeling constructs that are specifically aimed at modeling dynamic envi-
ronments of distributed control applications. The modeling framework supports
in an explicit manner a number of characteristics that are pertinent for modeling
dynamic environments of distributed control applications:

• A dynamic environment has a particular scope. Environmental entities, en-
vironmental properties and environment layout are modeling constructs to
represent all constituting parts in the environment and the way they are
arranged with respect to each.

66 Modeling Dynamic Environments

• A dynamic environment encapsulates its own dynamism. Activities capture
the evolution of all entities in the environment in an explicit manner.

• A dynamic environment regulates its own dynamism. By means of reac-
tion laws, the environment governs how dynamism is affected in response to
influences. By means of interaction laws, interactions of dynamism in the
environment can be supported.

• A dynamic environment embeds sources of dynamism. These sources can
be controllers of the distributed control application or environment sources
external to the distributed control application. Sources of dynamism are
inherently part of the environment, as they are embedded in environmental
entities. Nevertheless, sources of dynamism are restricted in their ability to
affect dynamism in the environment. Sources can only affect dynamism in
an indirect manner, using influences.

We illustrated the modeling framework by applying it for modeling a dynamic
RoboCup Soccer environment.

For software-in-the-loop simulations of distributed control applications in dy-
namic environments, the contribution of the modeling framework is the twofold.
On the one hand, the modeling framework provides explicit support for model
formulation by offering formally specified constructs for modeling dynamic envi-
ronments. The formal specification enables a modeler to formulate a simulation
model without taking into account a particular simulation platform. On the other
hand, the modeling framework support model translation by specifying the func-
tionality that is needed to support the constructs in an executable simulation.

Chapter 4

Modeling the Integration of
the Control Software

In this chapter, we focus on the control application part of the modeling frame-
work. We introduce modeling constructs aimed at modeling the integration of the
software of a real distributed control application in a simulation. The focus is on
the specification of the modeling constructs. Design and implementation issues to
support the constructs are tackled in Chapter 5.

4.1 Introduction

In software-in-the-loop simulations, the software of the real controllers of the dis-
tributed control application is embedded in a simulated environment. We put
forward modeling constructs that enable a modeler to specify the way the control
software of a distributed control application is integrated in the simulation model.

The modeling constructs are part of the modeling framework. The modeling
framework specifies the meaning, relations and execution semantics of the modeling
constructs. The formal description decouples the modeling constructs from their
implementation in a particular simulation platform.

To introduce the modeling constructs in an intuitive manner, we use the mod-
eling constructs for modeling the integration in a simulation of a simplified dis-
tributed control application for steering RoboCup Soccer robots.

This chapter is structured as follows. Section 4.2 gives an overview of all mod-
eling constructs of the control application part of the modeling framework. In
Section 4.3, we describe a simplified distributed control application for RoboCup
Soccer robots that will be used as an example throughout this chapter. In the
next sections, we elaborate on each of the modeling constructs in detail: each con-
struct is described informally, illustrated in the context of the example distributed

67

68 Modeling the Integration of the Control Software

control application and complemented with a formal specification. In Section 4.4,
we introduce modeling constructs to capture the execution time of each controller.
Section 4.5 focusses on modeling constructs for capturing the way the software of
a controller affects the environment. We focus on the way executing the control
software generates influences in Section 4.6. In Section 4.7, the evolution of the
model is revisited to include the evolution of the control software and the envi-
ronment sources of dynamism. Finally, we discuss related work in Section 4.8 and
draw conclusions in Section 4.9.

4.2 Overview of the Modeling Constructs

We start with an overview of all constructs of the modeling framework for dis-
tributed control applications, before elaborating on each construct in detail in the
next sections.

Figure 4.1 is a detailed view on the group of concepts to represent the sources
of dynamism in Figure 3.1, with additional modeling constructs for the controller.
We give an overview of the modeling constructs in the controller. The model-
ing constructs focus on representing the following characteristics of the control
software explicitly in the simulation model:

• Representing the real-world execution time of the software in the simulation
model. The real-world execution time of a controller is the amount of wall-
clock time that elapses until that controller triggers its next action. The
execution time of a controller determines the timing of its actions. In a dy-
namic environment, the timing of actions is crucial as opportunities come
and go.

To capture the real-world execution time of a controller in the simulation
model, we put forward the modeling constructs Duration Primitive and
Duration Mapping. A duration primitive represents a code segment that
takes an amount of execution time in the real world that is pertinent for
the simulation. An example of a duration primitive is a particular java
method foo() in the software of a particular controller. A duration mapping
is a modeling construct that specifies the execution time for invocations of
duration primitives of a controller. For example, a duration mapping can
specify that invoking the method foo() takes 0.338 seconds.

• Capturing the interaction of the software with the environment. The software
of a controller interacts with its environment. Consequently, the execution
of the software of a controller will trigger particular things to happen in the
environment. When integrating the software of the controllers with the sim-
ulated environment, it is crucial to identify the set of software instructions

4.2 Overview of the Modeling Constructs 69

Sources of Dynamism

Controller

Key:
0..*0..*Modeling

Construct

Group of
Constructs

Association

Duration
Mapping

Control
Name

Mapping

Control
Parameter
Mapping

Duration
Primitive

Control
Primitive

Influence

is based on the
invocation of

1..*

0..*

is based on the
invocation of

1..*

0..*

determines the
parameters of

1..*

0..*

determines the
name of

1..*

0..*

determines the
timing of

1..*

0..*

is based on the
invocation of

1..*

0..*

Environment
Source

0..*
is performed by

0..1

Figure 4.1: Overview of the modeling constructs for the control software and their
associations

that are used by the controller to interact with the environment, and to spec-
ify the precise consequences in the environment that result from triggering
these instructions.

To capture the interaction of the software with the environment in a simu-
lation model, we put forward the modeling constructs Control Primitive,
Control Name Mapping and Control Parameter Mapping. A control prim-
itive represents a particular software instruction that can be used by the

70 Modeling the Integration of the Control Software

executeBehavior()
ApproachBallBehavior

senseBall():Position
senseRobots():Position[]
driveTo(Position,Int)
stop()
sendMessage(String)
receiveNextMessage():String

RobotAPIestimatePosition(Position p1,
Position p2, Position p3): Position

PlanLibrary

run()
BehaviorSelector

executeBehavior()
Behavior

executeBehavior()
KickBallBehavior

executeBehavior()
PassBallBehavior

Figure 4.2: Class diagram of a simplified RoboCup Soccer controller

control software to interact with its environment. An example of a control
primitive is a java method bar() that triggers the engine of a robot to start
running at full power. The modeling constructs Control Name Mapping
and Control Parameter Mapping specify the name and the parameters of
the influence that result from invoking a control primitive. A control name
mapping and control parameter mapping decouple the signature of control
primitives from the specific representation of influences that is used in the
simulated environment. For example, a control name mapping specifies that
an invocation of bar() corresponds to an influence with name startDriving,
whereas a control parameter mapping specifies that the invocation of bar()
results in the value 10 to be associated with the parameter of the startDriving
influence to indicate the speed.

4.3 An Example Distributed Control Application for RoboCup Soccer Robots 71

4.3 An Example Distributed Control Application
for RoboCup Soccer Robots

We describe a simplified distributed control application that will be used as an ex-
ample throughout this chapter. The distributed control application is targeted at
the RoboCup Soccer robots presented in Chapter 3: the distributed control appli-
cation comprises two controllers deepblue and deepred, embedded in two different
RoboCup Soccer robots, i.e. robot1 and robot2 respectively (see Section 3.5.1.2).
We describe a simplified design for the RoboCup Soccer controllers.

The class diagram of a single controller is depicted in Figure 4.2. The controller
design comprises of the following classes:

• BehaviorSelector is responsible for selecting the active behavior for the
robot. BehaviorSelector can switch the active behavior depending on the
circumstances.

• Behavior encapsulates a particular behavior of the robot. A behavior
instructs the robot to achieve a particular goal. The behaviors include
ApproachBallBehavior to move towards the ball, PassBallBehavior to
pass the ball towards a team member, and KickBallBehavior to kick the
ball towards the goal.

• RobotAPI is a class that represents the interface to the hardware of the
robot. RobotAPI provides a number of methods to instruct the sensors and
actuators of the robot: senseBall and senseRobots use the robot’s sensors
to return the current position of the ball and the positions of other robots
respectively; driveTo uses the robot’s actuators to start driving towards a
given position with a given velocity; stop causes the robot to stop driving.
Finally, sendMessage and receiveMessage use a robot’s communication
module to send and receive messages to and from other robots.

• PlanLibrary is a class that encapsulates logic to support
the ApproachBallBehavior. PlanLibrary provides a method
estimatePosition that uses an extrapolation algorithm to return an
estimated future position based on three position samples.

We focus on the ApproachBallBehavior. This behavior continuously moves
its robot towards the ball, based on a rough estimate of where the ball will be
positioned in the future. The implementation of the executeBehavior method
of ApproachBallBehavior is shown in Figure 4.3. executeBehavior runs in a
loop as long as ApproachBallBehavior is active (line 16). The loop comprises the
following:

• Sampling the position of the ball (lines 19 to 23): three samples (i.e.
ballpos1, ballpos1 and ballpos1) of the position of the ball are taken

72 Modeling the Integration of the Control Software

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

public class ApproachBallBehavior extends Behavior{

 /**
 *Override Behavior.executeBehavior()
 */
 public void executeBehavior() {

 //variables representing position samples of the ball
 Position ballpos1;
 Position ballpos2;
 Position ballpos3;
 //variable representing the target position of the robot
 Position targetpos;

 //enter the control loop as long as this behavior is active
 while (getBehaviorSelector().isActive(this)) {

 //sample ball position three times with a 400ms interval
 ballpos1 = getRobotAPI().senseBall();
 Thread.sleep(400);
 ballpos2 = getRobotAPI().senseBall();
 Thread.sleep(400);
 ballpos3 = getRobotAPI().senseBall();

 //log position samples
 Logger.log("Sensed ball positions: "+ballpos1+ballpos2+ballpos3);

 //estimate future position of ball
 targetpos = getPlanLibrary().estimatePosition(ballpos1,ballpos2,ballpos3);

 //move towards estimated position with velocity 10
 getRobotAPI().driveTo(targetpos,10);

 //log target position
 Logger.log("Started driving towards "+targetpos);

 //wait 1 second while the robot is moving
 Thread.sleep(1000);
 }
 //stop driving to end this behavior
 getRobotAPI().stop();
 }

//other methods omitted
}

Figure 4.3: Implementation of the executeBehavior() method of ApproachBallBe-
havior

4.4 Execution Time of a Controller 73

by invoking senseBall on RobotAPI. In between, DecisionTaker invokes a
Thread.sleep(400) to suspend its execution during 400 milliseconds.

• Logging the sampled positions (line 26).

• Estimating the future position of the ball (line 29): based on the three
samples, the future position targetpos of the ball is estimated by invoking
estimatePosition on the PlanLibrary.

• Driving to the estimated position of the ball (line 32): the robot is instructed
to start driving to the estimated position targetpos of the ball by invoking
driveTo on RobotAPI.

• Logging the target position of the robot (line 35).

• Waiting one second (line 38): while driving, DecisionTaker invokes a
Thread.sleep(1000) to suspend its execution during 1 second before pro-
ceeding with the next cycle of the loop.

When exiting the loop, the robot is instructed to stop driving (line 41) by invoking
stop on RobotAPI before the executeBehavior method ends.

4.4 Execution Time of a Controller

We put forward modeling constructs that enable a developer to specify the exe-
cution time of a control application in an explicit manner. We advocate that an
explicit model of the execution time of a distributed control application is imper-
ative:

• An explicit model of execution time is platform independent. The execution
time of a controller is dependent upon the devices on which the controllers
are deployed in the real world. However, the computer platform on which a
distributed control application is deployed for simulation purposes can differ
significantly from the characteristics of the devices on which the controllers
are deployed in the real world. Consequently, during a simulation run on
a particular platform, the execution time of the controllers typically differs
from their execution time in the real world. An explicit model specifies the
execution time in the real world, independent of the computer platform that
is used to execute the simulation.

• An explicit model of execution time is selective. To support application de-
velopment, auxiliary software is often inserted in controllers of a distributed
control application. Auxiliary software can comprise code for debugging, log-
ging to file, configuration, interfacing with the user, implementation stubs,
etc. Typically this auxiliary software is removed from the distributed control

74 Modeling the Integration of the Control Software

application before it is deployed in the real environment and as such it does
not affect the execution time of a controller in the real environment. An
explicit model can selectively specify which parts of the controller software
have a relevant execution time.

• An explicit model of execution time enables repeatable simulations. The ex-
ecution time of a controller is typically non-deterministic, i.e. small random
variations are possible with respect to the execution time. In simulation,
non-determinism must always be supported in a controlled manner, i.e. in a
simulation all non-determinism should be based on random numbers origi-
nating from a random number generator with a known seed. Using the same
seed for the random number generator then guarantees the same trace of
random numbers during a simulation run, which is a prerequisite to obtain
simulation results that can be repeated over and over again. By specifying
all random variations on the execution time explicitly, an explicit model of
execution time supports non-determinism in a controlled manner.

To model the execution time of a distributed control application, we introduce
modeling constructs (1) for identifying all computations of which the execution
time is relevant according to the modeler (see Section 4.4.1), and (2) for specifying
the real-world execution time for each of these computations in an explicit model
(see Section 4.4.2).

4.4.1 Duration Primitives and Duration Primitive Invoca-
tions

We introduce duration primitives and duration primitive invocations as modeling
constructs to identify computations of a controller with an execution time that is
pertinent for the simulation.

• A duration primitive identifies a code segment that takes an amount of exe-
cution time in the real world that is pertinent for the simulation. A modeler
can identify duration primitives at a desired level of granularity. An example
of employing duration primitives at a high level of granularity, is the case
where duration primitives are used to pinpoint time-consuming methods,
functions or procedures in the controller’s code. An example of employing
duration primitives at a lower level of granularity, is the case where dura-
tion primitives are used to pinpoint language primitives of the programming
language in which the controller’s code is written.

We define:

4.4 Execution Time of a Controller 75

dpi ∈ DPΩ the set of all possible
duration primitives.

DPcoi
= {dp1, dp2, . . . , dpn} ⊆ DPΩ the set of duration primitives

of controller coi ∈ Co.

• A duration primitive invocation represents an invocation of a particular
duration primitive of a particular controller with particular parameters. We
define:

dpi = 〈coi, dpj , par〉 a duration primitive invocation
with the following characteristics:
coi ∈ CoΩ : the controller of which a
duration primitive is invoked.
dp ∈ DPΩ : the duration primitive invoked.
par = 〈v1, . . . , vr〉 ∈ V1 × . . .× Vr : a tuple
containing the parameters of the invocation,
with Vi the value domain of parameter vi.

dpi ∈ DPI Ω the set of all possible duration primitive
invocations.

2DPIΩ
the powerset, i.e. the set of all subsets, of
duration primitive invocations.

We use the following shorthand notations: dpi|co to select the controller, dpi|dp to
select the duration primitive, dpi|par to select the tuple of parameters, and dpi|vi

to select a specific parameter vi.

An Example. We apply the constructs on the ApproachBallBehavior
described in Section 4.3. We consider two methods, i.e. Thread.sleep and
PlanLibrary.estimatePosition, that take a relevant amount of execution time.
Consequently, we identify the following duration primitives:

DPdeepblue = {Thread.sleep, P lanLibrary.estimatePosition}
DPdeepred = {Thread.sleep, P lanLibrary.estimatePosition}

As examples of duration primitive invocations, we consider the following
invocations of Thread.sleep and PlanLibrary.estimatePosition of deepblue
and deepred:

dpi1 = 〈deepblue, Thread.sleep, 〈400〉〉
dpi2 = 〈deepblue, P lanLibrary.estimatePosition, 〈pos1, pos2, pos3〉 〉
dpi3 = 〈deepred, Thread.sleep, 〈1000〉〉
dpi4 = 〈deepred, P lanLibrary.estimatePosition, 〈pos4, pos5, pos6〉 〉

The arguments of each method call are represented in the parameter tuple

76 Modeling the Integration of the Control Software

of the respective duration primitive invocation. posi is a position. Note that
these duration primitives exclude auxiliary code such as logging.

4.4.2 Duration Mapping

We introduce a duration mapping as a modeling construct that specifies a duration
for all duration primitive invocations that can happen in a distributed control
application. The specified duration represents the real-world execution time of a
particular duration primitive invocation.

We define a duration mapping as a function DurMap:

DurMap : DPI Ω → ∆T
DurMap(dpi) = ∆t

DurMap is a function that specifies a duration ∆t for a given duration
primitive invocation dpi.

An Example. We describe an example duration mapping for the distributed
control application described in Section 4.3 that consists of controllers deepblue
and deepred:

DurMap(〈coi, dpj , par〉) =



par|v1/1000
if dpj = Thread.sleep

Gauss(0.120, 0.010)
if dpj = PlanLibrary.estimatePosition ∧

coi = deepblue

Gauss(0.200, 0.015)
if dpj = PlanLibrary.estimatePosition ∧

coi = deepred

The duration mapping DurMap can be understood as follows. The expres-
sion contains three cases:

1. The first case applies if the duration primitive is Thread.sleep. In this case,
the duration of the duration primitive invocation is the value of its parameter,
i.e. the argument specifying the number of milliseconds the thread should
sleep, divided by 1000 (to rescale the duration expressed in milliseconds to
seconds).

2. The second case applies if the duration primitive is
PlanLibrary.estimatePosition and the controller is deepblue. In this
case, the duration of the duration primitive invocation is returned by the
Gauss function, which generates a Gaussian random number with given

4.4 Execution Time of a Controller 77

mean and given standard deviation. Note that Gauss is an example of
supporting non-determinism in a controlled manner, which allows repeatable
simulation results. In this case, Gauss returns a Gaussian random number
with mean 0.120 and standard deviation 0.010.

3. The third case applies if the duration primitive is
PlanLibrary.estimatePosition and the controller is deepred. In this
case, the duration of the duration primitive invocation is a Gaussian
random number with mean 0.200 and standard deviation 0.015.

We apply the example duration mapping on the example duration primitive
invocations of Section 4.4.1:

DurMap(〈deepblue, Thread.sleep, 〈400〉〉) = 0.400
DurMap(〈deepblue, P lanLibrary.estimatePosition, 〈pos1, pos2, pos3〉 〉) = 0.123
DurMap(〈deepred, Thread.sleep, 〈1000〉〉) = 1.000
DurMap(〈deepred, P lanLibrary.estimatePosition, 〈pos4, pos5, pos6〉 〉) = 0.194

4.4.3 Determining Execution Time

Based on a duration map, determining the execution time of a controller happens
by counting the durations of all duration primitives invocations that happen during
the execution of that controller.

We define a function ExTime that determines the execution time of a set of
duration primitive invocations of a controller according to a specified duration
map:

ExTime : 2DPIΩ × (DPI Ω → ∆T) → ∆T
ExTime(DPI , DurMap) =

DurMap(dpi) + ExTime(DPI \ {dpi})
if dpi ∈ DPI

0
if DPI = φ

Based on a particular duration map DurMap, the ExTime function speci-
fies in a recursive manner the execution time for performing a set of duration
primitive invocations DPI ∈ 2DPIΩ

. We assume that all duration primitive invo-
cations in DPI are of the same controller: ∀dpii, dpij ∈ DPI : dpii|co = dpij |co.
We explain the two cases in the domain of the ExTime function:

1. The first case applies when the set of duration primitive invocations DPI is
non-empty, i.e. DPI contains at least one duration primitive invocation dpi.
In this case, ExTime is recursively specified as the sum of (1) the duration
DurMap(dpi), i.e. the duration of duration primitive invocation dpi ∈ DPI

78 Modeling the Integration of the Control Software

according to duration map DurMap, and (2) the duration ExTime(DPI \
{dpi}), i.e. the execution time of the duration primitive invocations of the
set DPI in which duration primitive invocation dpi has been removed.

2. The second case applies when the set of duration primitive invocations DPI
equals the empty set φ. In this case, the outcome of ExTime is zero.

An Example. We illustrate the ExTime function on the following set of
duration primitive invocations:

DPI = {dpi1, dpi2, dpi3} with:
dpi1 = 〈deepblue, Thread.sleep, 〈400〉〉
dpi2 = 〈deepblue, P lanLibrary.estimatePosition, 〈pos1, pos2, pos3〉 〉
dpi3 = 〈deepblue, Thread.sleep, 〈1000〉〉

We expand the recursion for applying ExTime for the set DPI and the
example duration mapping DurMap described in Section 4.4.2:

ExTime({dpi1, dpi2, dpi3}, DurMap)
= DurMap(dpi1) + ExTime({dpi2, dpi3}, DurMap)
= DurMap(dpi1) + (DurMap(dpi2) + ExTime({dpi3}, DurMap))
= DurMap(dpi1) + (DurMap(dpi2) + (DurMap(dpi3)+

ExTime(φ,DurMap)))
= 0.400 + (0.123 + (1.000 + 0))
= 1.523

The total execution time for the three duration primitive invocations of
controller deepblue is 1.523 seconds.

4.5 Capturing the Control Interface

Each controller uses a particular control interface to interact with the entity in
which it is embedded. The control interface delineates the possible ways of a
controller to access the environment. We introduce modeling constructs to capture
the control interface of each particular controller in Section 4.5.1, and modeling
constructs to specify the influences that result from triggering this interface in
Section 4.5.2.

4.5.1 Control Primitives and Control Primitive Invocations

We introduce control primitives and control primitive invocations as modeling
constructs to capture the control interface and the way it is triggered.

We define:

4.5 Capturing the Control Interface 79

cpj ∈ CPΩ CPΩ is the set of all possible control primitives.
CPcoi = {cp1, . . . , cpn} the control primitives cpj that constitute the

control interface CPcoi
of controller coi.

An Example. For the example control application described in Section 4.3, the
control primitives of the control interface of deepblue and deepred are:

CPdeepblue = CPdeepred = {RobotAPI.senseBall,
RobotAPI.senseRobots,
RobotAPI.driveTo,
RobotAPI.stop,
RobotAPI.sendMessage,
RobotAPI.receiveNextMessage}

In analogy with duration primitive invocations, a control primitive invocation
is the invocation of a particular control primitive. We define:

cpi = 〈coi, cpj , par〉 a control primitive invocation
with the following characteristics:
coi ∈ CoΩ : the controller of which a
control primitive is invoked.
cp ∈ CPΩ : the control primitive invoked.
par = 〈v1, . . . , vr〉 ∈ V1 × . . .× Vr : a tuple
containing the parameters of the invocation,
with Vi the value domain of parameter vi.

cpi ∈ CPI Ω the set of all possible control primitive
invocations.

2CPIΩ
the powerset, i.e. the set of all subsets, of
control primitive invocations.

We use the following shorthand notations: cpi|co to select the controller,
cpi|cp to select the control primitive, cpi|par to select the tuple of parameters, and
cpi|vi

to select a specific parameter vi.

An Example. As examples of control primitive invocations, we consider the
following invocations of RobotAPI.stop and RobotAPI.driveTo of deepblue and
deepred:

cpi1 = 〈deepblue,RobotAPI.stop, 〈〉 〉
cpi2 = 〈deepred,RobotAPI.driveTo, 〈pos, 10〉 〉

80 Modeling the Integration of the Control Software

4.5.2 Mapping the Control Interface

In the real environment, a controller employs its control interface to bring about
desired effects in the environment. In the simulated environment, influences are
used to reify the attempts to manipulate the environment. Consequently, when
embedding controllers in the simulated environment, all invocations on a control
interface should be mapped to the corresponding influences in the simulated envi-
ronment.

We introduce modeling constructs to capture this mapping explicitly in the
simulation model. An explicit mapping decouples the definition of a control inter-
face from the representation of influences in the simulated environment, such that
both control interface and influence representation can evolve independently.

In Section 4.5.2.1, we describe an explicit mapping that defines the name of
the influence that results from a particular control primitive invocation. In Sec-
tion 4.5.2.2, we describe an explicit mapping that defines the parameters of the
influence that results from a particular control primitive invocation.

4.5.2.1 Control Name Mapping

We introduce a control name mapping as a modeling construct that specifies the
name of the influence that results from a particular control primitive invocation.
We define a control name mapping as a function NameMap:

NameMap : 2CPIΩ → InfNames
NameMap(cpi) = infname

NameMap is a function that specifies a name infname for a given control
primitive invocation cpi.

An Example. We describe a control name mapping for control primitive
invocations of two control primitives of the ApproachBallBehavior described in
Section 4.3:

NameMap(cpi) =


startDriving

if cpi|cp = RobotAPI.driveTo

stopdriving
if cpi|cp = RobotAPI.stop

The control name mapping NameMap can be understood as follows. The
expression contains two cases:

• The first case applies if the control primitive is RobotAPI.driveTo. The
name of the corresponding influence is startDriving (see Section 3.5.2).

4.6 Generating Influences 81

• The second case applies if the control primitive is RobotAPI.stop. The name
of the corresponding influence is stopdriving.

4.5.2.2 Control Parameter Mapping

We introduce a control parameter mapping as a modeling construct that specifies
the parameters of the influence that results from a given control primitive
invocation. We define a control parameter mapping as a function ParMap:

ParMap : 2CPIΩ → V1 × . . .× Vn

ParMap(cpi) = 〈v1, . . . , vn〉

An Example. We describe a control parameter mapping for control primitive
invocations of two control primitives of the ApproachBallBehavior of the
example distributed control application described in Section 4.3:

ParMap(cpi) =


〈V elocityV ector(cpi|par)〉

if cpi|cp = RobotAPI.driveTo

〈〉
if cpi|cp = RobotAPI.stop

The control parameter mapping ParMap can be understood as follows.
The expression contains two cases:

• The first case applies if the control primitive is RobotAPI.driveTo. The
parameters of the control primitive invocation are a target position and an
integer denoting the speed. However, the parameter of the corresponding
startDriving influence is the velocity vector of the movement (see Sec-
tion 3.5.2). Consequently, the parameters of the control primitive invocation
need to be translated into the parameters of a startDriving influence. The
function V elocityV ector returns a velocity vector for a given tuple contain-
ing a target position and speed. We make abstraction on the way the value
of this vector is determined.

• The second case applies if the control primitive is RobotAPI.stop. No pa-
rameters are necessary for the corresponding influence.

4.6 Generating Influences

In this section, we elaborate on the way influences are generated by the various
sources of dynamism.

82 Modeling the Integration of the Control Software

In Section 4.6.1, we elaborate on influences that originate from the controllers
of a distributed control application. In Section 4.6.2, we elaborate on influences
that originate from the environment sources of dynamism.

4.6.1 Influences of Controllers

We describe the way influences originate from the controllers of a distributed
control application. We first elaborate on the state of controllers in Section 4.6.1.1.
Afterwards, we describe the way controllers generate influences in Section 4.6.1.2.
Finally, we elaborate on the execution cycle of controllers in Section 4.6.1.3.

4.6.1.1 State of a Controller

A controller is an active software component. The state of a controller is a snapshot
of the controller at a particular time during its execution. We consider the state
of a controller each time it performs a control primitive invocation. We assume
that a controller has a single thread of control.

The state of a controller comprises two parts. The first part describes all
duration primitive invocations a controller executed so far. The second part
comprises the current control primitive invocation. We define:

scoi = 〈{dpi1, . . . , dpir}, cpi〉 ∈ SΩ
co the state of a particular controller

coi ∈ Co, represented as a 2-tuple with
the following characteristics:
{dpi1, . . . , dpir} ∈ 2DPIΩ

the set of
duration primitive invocations
already performed by controller co.
cpi ∈ CPI Ω the current control
primitive invocation of controller co.
SΩ

co is the set of all possible states
of the controllers.

We use the following shorthand notations: scoi |DPI to select the set of du-
ration primitive invocations performed by controller coi, scoi |cpi to select the
current control primitive invocation of controller coi.

An Example. As an example, consider the following state of controller deepblue:

sdeepblue = 〈{dpi1, dpi2, dpi3}, cpi1〉 with:
dpi1 = 〈deepblue, Thread.sleep, 〈400〉〉
dpi2 = 〈deepblue, Thread.sleep, 〈400〉〉
dpi3 = 〈deepblue, P lanLibrary.estimatePosition, 〈pos1, pos2, pos3〉 〉
cpi1 = 〈deepred,RobotAPI.driveTo, 〈pos, 10〉 〉

4.6 Generating Influences 83

4.6.1.2 Generating Influences

We describe the way influences are derived from the state of a controller. To
specify the current influence of a controller, we define a function CurCoInf that
returns the current influence of a given controller in a given state:

CurCoInf : Co× SΩ
co → InfΩ

CurCoInf(coi, scoi
) = 〈coi, t, name, par〉 with:

t = 0 + ExTime(scoi
|DPI)

name = NameMap(scoi
|cpi)

par = ParMap(scoi |cpi)

The function CurCoInf specifies the current influence given a particular
controller coi with state scoi . The resulting influence has the following character-
istics:

• The source that performs the influence, is the given controller coi.

• The time of occurrence of the influence is determined by the execution time
of all duration primitives scoi

|DPI that the controller performed so far.

• The name of the influence is determined by the control name mapping ap-
plied the current control primitive invocation scoi

|cpi.

• The parameters of the influence are determined by the control parameter
mapping applied the current control primitive invocation scoi

|cpi.

An Example. We illustrate the CurCoInf function on the example state of
controller deepblue described in Section 4.6.1.1:

CurCoInf(deepblue, 〈{dpi1, dpi2, dpi3}, cpi1〉) =
〈deepblue, 0.923, startDriving,~v〉 with:

0.923 = 0 + ExTime({dpi1, dpi2, dpi3})
= 0 + 400 + 400 + 123

startDriving = NameMap(cpi1)
~v = ParMap(cpi1)

= V elocityV ector(cpi1|par)

The current influence of controller deepblue is an influence with name startDriving
with parameter ~v that occurs at time T = 0.923.

84 Modeling the Integration of the Control Software

4.6.1.3 Execution Cycle of a Controller

We describe the way controllers execute over time. An execution cycle of a con-
troller comprises the execution of that controller from its current control primitive
invocation until the next control primitive invocation.

We define a function ExecCo that determines the next state of a controller
that is the result of executing that controller from its current state until its next
control primitive invocation:

ExecCo : CoΩ × SΩ
co → SΩ

co

ExecCo(coi, 〈DPI, cpi〉) = 〈{dpi1, . . . , dpir} ∪DPI, cpi′〉

The function ExecCo returns a new state with the following characteristics:

• The set of duration primitive invocations of the new state is the union of
the duration primitive invocations DPI of the old state and a set of newly
performed duration primitive invocations {dpi1, . . . , dpir}.

• The current control primitive invocation of the new state is cpi′ instead of
cpi.

An Example. We illustrate the ExecCo function on the example state of
controller deepblue described in Section 4.6.1.1:

ExecCo : CoΩ × SΩ
co → SΩ

co

ExecCo(deepblue, 〈{dpi1, dpi2, dpi3}, cpi1〉) =
〈{dpi1, dpi2, dpi3, dpi4, dpi5, dpi6, dpi7}, cpi2〉 with:

dpi4 = 〈deepblue, Thread.sleep, 〈1000〉〉
dpi5 = 〈deepblue, Thread.sleep, 〈400〉〉
dpi6 = 〈deepblue, Thread.sleep, 〈400〉〉
dpi7 = 〈deepblue, P lanLibrary.estimatePosition, 〈pos′1, pos′2, pos′3〉 〉
cpi2 = 〈deepred,RobotAPI.driveTo, 〈pos′, 10〉 〉

The four new duration primitive invocations dpi4, dpi5, dpi6 and dpi7 and
the new control primitive invocation cpi2 are the result of executing one loop of
controller deepbleu in Figure 4.3: the execution cycle starts from cpi1 (i.e. the
invocation of line 32), over dpi4 (i.e. the invocation of line 38), dpi5 (i.e. the
invocation of line 20), dpi6 (i.e. the invocation of line 22), dpi7 (i.e. the invocation
of line 29) until cpi2 (i.e. the next time line 32 is invoked).

4.6.2 Influences of Environment Sources

We elaborate on influences that originate from environment sources. From the
point of view of the modeling framework, each environment source is a black-box
source of influences. Modeling the internal behavior of an environment source is

4.6 Generating Influences 85

outside the scope of this dissertation. The internal behavior of an environment
is highly dependent upon the simulation study, and can range from a simple pre-
determined schedule of influences towards a complex cognitive model or even the
code of another distributed control application that is embedded in the simulation.

We focus on capturing the influences that are generated by environment
sources. We make abstraction of the internal behavior of an environment source
that determines when to perform which influence. We start from a basic model of
the state of an environment source in Section 4.6.2.1. Afterwards, we describe a
mapping of the state of environment sources to influences in Section 4.6.2.2 and
describe the evolution of an environment source in Section 4.6.2.3

4.6.2.1 State of an Environment Source

We limit ourselves to an abstract representation of the state of an environment
source. In analogy with the state of a controller, the state of an environment
source is a snapshot of the environment source at the moment it performs an
influence. The state of an environment source is defined as:

sesi
∈ SΩ

es the state of a particular environment source esi ∈ EsΩ

SΩ
es is the set of all possible states of environment sources.

4.6.2.2 Generating Influences

We describe a mapping between the state of environment sources and influences.
To specify the current influence associated with an environment source that is in
a given state, we define a function CurEsInf that returns the current influence
of a given environment source in a given state:

CurEsInf : Es× SΩ
es → InfΩ

CurEsInf(esi, sesi) = f

The function CurEsInf specifies the current influence f of a particular
environment source esi with state sesi

.

4.6.2.3 Evolution Cycle of an Environment Source

An evolution cycle of an environment source specifies a state snapshot of that
environment source at the moment it generates its next influence. We define
the ExecEs function to advance an environment souce until it performs its next
influence:

ExecEs : EsΩ × SΩ
es → SΩ

es

ExecEs(esi, sesi
) = s′esi

86 Modeling the Integration of the Control Software

The function ExecEs determines the next state s′es for an environment
source esi with given state sesi .

4.7 The Evolution of the Model Revisited

We revisit the evolution of the model that was described in Section 3.7. The
evolution of the model relies on the functions NextInfs and SoCycle that were
defined only in an abstract manner, see Section 3.5.2.2.

Here, we formally specify these functions. This integrates the evolution of the
model with the way influences are generated by executing the controller software
and by the environment sources.

Recall from Section 3.5.2.2 that the function NextInfs should determine the
set of influences with the earliest time of occurrence of all influences performed by
a set of sources of dynamism in a given state. The function SoCycle should specify
a new state for the sources of dynamism, based on their current state. The new
state is the result of evolving the current state of the sources of dynamism until
the earliest time instant one or several of the sources perform a new influence.

To define NextInfs and SoCycle, we integrate the way controllers (Sec-
tion 4.6.1) and environment sources (Section 4.6.2) generate influences and evolve
their state.

In Section 3.5.1, we defined:

So = Co ∪ Es = {so1, . . . , sor} the set of sources of dynamism
in the environment.

4.7.1 State of Sources of Dynamism

We generalize the state of controllers (Section 4.6.1.1) and the state of environ-
ment sources (Section 4.6.2.1) into the state of sources of dynamism in general.
The state of a source of dynamism is a snapshot of that source at the moment it
performs an influence. We define:

ssoi
∈ SΩ

so = SΩ
co ∪ SΩ

es the state of a particular source soi.
SΩ

so is the set of all possible states
of all sources of dynamism.

Sso = {sso1 , . . . , ssor
} ∈ 2SΩ

so the state of a set of sources of dynamism.
2SΩ

so is the powerset, i.e. the set of all
subsets of SΩ

so.

We use the shorthand notation Sso|soi
to select the state of source soi.

Hence Sso|soi = ssoi .
Note that the state description is identical to the one given in Section 3.5.1.1.

4.7 The Evolution of the Model Revisited 87

4.7.2 Generating Influences: the NextInfs Function Revis-
ited

To determine the current influence of a source of dynamism with given state,
we define a function CurInf that integrates the functions CurCoInf for con-
trollers (Section 4.6.1.2) and CurEsInf for environment sources (Section 4.6.2.2):

CurInf : SoΩ × SΩ
so → InfΩ

CurInf(soi, ssoi
) =


CurCoInf(soi, ssoi

)
if soi ∈ CoΩ

CurEsInf(soi, ssoi)
if soi ∈ EsΩ

In case the source soi is a controller, the function CurInf returns the cur-
rent influence as defined by CurCoInf . In case the source soi is an environment
source, the function CurInf returns the current influence as defined by
CurEsInf .

We define a function AllInfs that determines the set of all current influences
of a given set of sources of dynamism and a given set of states of these sources:

AllInfs : 2SoΩ × 2SΩ
so → 2InfΩ

AllInfs(So, Sso) =
{f ∈ InfΩ | ∃soi ∈ So : f = CurInf(soi, Sso|soi

)}

We now define the function NextInfs of Section 3.5.2.2. The function
NextInfs determines the set of influences with the earliest time of occurrence of
all influences performed by a set of sources of dynamism in a given state. We define:

NextInfs : 2SoΩ × 2SΩ
so → 2InfΩ

NextInfs(So, Sso) =
{f ∈ AllInfs(So, Sso) | ∀fi ∈ AllInfs(So, Sso) : f |t 6 fi|t) }

For a given set of sources of dynamism So and a given set of states Sso of
these sources, NextInfs returns a set that contains all influences f of the set of
all current influences AllInfs(So, Sso) for which the following holds: the time of
occurrence f |t of the influences f must be smaller than or equal to the time of
occurrence fi|t of each influence fi within the set of all current influences.

4.7.3 Evolution Cycle of Sources of Dynamism: the SoCycle
Function Revisited

To determine a new state for a source of dynamism, we define a function ExecSo
that integrates the functions ExecCo for controllers (Section 4.6.1.3) and ExecEs

88 Modeling the Integration of the Control Software

for environment sources (Section 4.6.2.3). We define the ExecSo function to
execute a source until it performs its next influence:

ExecSo : SoΩ × SΩ
so → SΩ

so

ExecSo(soi, ssoi
) =


ExecCo(soi, ssoi

)
if soi ∈ CoΩ

ExecEs(soi, ssoi)
if soi ∈ EsΩ

In case the source soi is a controller, the function ExecSo returns the next
state as defined by ExecCo. In case the source soi is an environment source, the
function ExecSo returns the next state as defined by ExecEs.

We now define the function SoCycle of Section 3.5.2.2. The function SoCycle
returns a set of new states for the sources of dynamism, based on their current
states. In this set of new states, only the state of those sources is updated whose
current influence is in the set of earliest occurring influences of all sources:

SoCycle : 2SoΩ × 2SΩ
so → 2SΩ

so

SoCycle(So, Sso) =
{s′ ∈ SΩ

so | ∃soi ∈ So : s′ = Sso|soi
∧ CurInf(soi, Sso|soi

) /∈ NextInfs(So, Sso))
∨

∃soi ∈ So : (s′ = ExecSo(soi, Sso|soi)) ∧
(CurInf(soi, Sso|soi

) ∈ NextInfs(So, Sso)) }
The SoCycle function can be understood as follows. Given a set of sources
of dynamism So and a set Sso of current states for these sources, the SoCycle
function determines a set of new states for these sources. The new states s′ in the
result set are defined as follows (we explain the two cases separated by the logical
∨):

• The first case states that the new state s′ of a source is equal to the old state
of that source, i.e. s′ = Sso|soi

. This is the case if the current influence of
that source is not part of the set NextInfs(So, Sso), i.e. the set of influences
with the earliest time of occurrence of all influences of the set of sources So
in states Sso.

• The second case states that the new state s′ of a source is updated to
the outcome of ExecSo on the current state of that source, i.e. s′ =
ExecSo(soi, Sso|soi

). This is the case if the current influence of that source is
part of the set NextInfs(So, Sso), i.e. the set of influences with the earliest
time of occurrence of all influences of the set of sources So in states Sso.

4.8 Related Work 89

4.8 Related Work

Simulation platforms use various approaches to integrate a control application. We
focus on the way the simulation platforms support the execution time of a control
application. We make a distinction between approaches that incorporate execution
time based on direct measurement and approaches that rely on a specification of
execution time.

4.8.1 Measurement of Execution Time

A first group of approaches rely on a direct measurement of the execution time
during a simulation run. Examples include:

• Player/Stage [GVH03] supports software-in-the-loop simulations in which
the execution time in taken into account implicitly. The controllers of the
distributed control application run on remote hosts and interact with the
simulated environment over a network connection. The simulation proceeds
in real-time. The execution time is taken into account implicitly: the timing
of the actions of the controllers is determined by their arrival time at the
host that manages simulated environment. This means that the execution
time of a controller is influenced by the performance of the remote host on
which the controller is deployed, but also by the latency of the computer
network.

• DGensim [And00] supports software-in-the-loop simulations in which wall
clock time stamps are used to measure the execution time. Each controller
runs on a remote host and interacts with the simulated environment over
a network connection. At fixed time intervals, perceptions are given to the
controllers, and a controller has a fixed window of time to react to the per-
ception. Before transmitting the actions to the simulated environment, the
remote host attaches a time-stamp with the wall clock time of each action.
At the host of the simulated environment, all actions within a time window
are arranged according to their time stamp in wall clock time. The use of
wall clock time stamps reduces the effect of network latencies on the ordering
of actions. However, problems arise in case network latencies cause actions
do not reach the simulated environment within the time window.

• SPADES [RR03] supports software-in-the-loop simulations with a direct
measurement of execution time. Each controller of the distributed control
application runs on a dedicated host together with a SPADES communi-
cation server, which sends the actions of that controller to the simulated
environment. The SPADES communication server supports low-level per-
formance monitoring by means of perfctr, a linux kernel driver that offers
low-level performance monitoring with per-process CPU-cycle counters. The

90 Modeling the Integration of the Control Software

controller operates in a sense-think-act cycle, and notifies the SPADES com-
munication server of the start and end of each cycle. The simulation time of
the actions corresponds to applying an linear scale factor to the performance
measurement of the perfctr driver.

Measurement is an easy and intuitive way to incorporate the execution time
of controllers of a distributed control application in a simulation. Nevertheless,
compared to an explicit model of the execution time, measuring the execution time
during a simulation has a number of drawbacks [And97]:

• Measurements are platform dependent. The computer platform on which a
distributed control application is deployed for simulation purposes typically
differs from the (heterogeneous) devices on which the controllers are deployed
in the real world. Consequently, the measurement of the execution time of a
controller is not necessarily a decent estimate of the execution time of that
controller in the real world.

• Measurements are not selective. A measurement takes into account auxil-
iary code for debugging, logging to file, configuration, interfacing with the
user, although this auxiliary code is removed from the distributed control
application before it is deployed in the real environment. Auxiliary code
can significantly affect the execution time that is measured of a particular
controller.

• Measurements jeopardize repeatable simulation runs. The measurements that
are employed are non-deterministic, i.e. small random variations are possible
when measuring the execution time. In simulation, non-determinism must
always be supported in a controlled manner, i.e. in a simulation all non-
determinism should be based on random numbers originating from a random
number generator with a known seed. Using the same seed for the random
number generator then guarantees the same trace of random numbers during
a simulation run, which is a prerequisite to obtain simulation results that
can be repeated over and over again. However, measuring the execution
time of a controller during a simulation is an example of supporting non-
determinism in an uncontrolled manner. As the trace of measurements of
the execution time during a simulation run cannot be controlled, it can be
extremely difficult or even impossible to reproduce the same simulation result
twice.

4.8.2 Specification of Execution Time

A second group of approaches specify the execution time of a distributed control
application instead of using measurements. Examples include:

4.9 Conclusions 91

• MESS [AC96] supports software-in-the-loop simulation of controllers written
in the Common Lisp programming language. To model the execution time
of a controller, individual language instructs of Common Lisp are associated
with a particular duration. MESS relies on TCL (Timed Common Lisp) to
derive the execution time of a controller. TCL is an extended version of
Common Lisp that advances a clock upon execution of each Common Lisp
primitive. The duration for each primitive can be specified by the modeler.
Auxiliary code can be annotated such that its duration is not taken into
account.

• EyeSim [BKW06] supports software-in-the-loop simulations of controllers for
robotic systems based on the RoBIOS, a list of library functions for motor
control, sensor feedback and multi-tasking. To incorporate the execution
time of a controller, EyeSim employs a duration for each of the RoBIOS
system calls. The duration of all code besides the function calls to the
RoBIOS library is disregarded.

• The Packet-World [WHH05] employs a very coarse-grained model to specify
the execution time of a controller. Each controller has a fixed, constant
execution time between consecutive actions, irrespective of the amount of
computation it needs to determine its next action. This is a suitable model
in case the execution time of a controller in the real world does not vary a
lot, or in case only a rough estimate is sufficient.

The examples illustrate that the constructs of the modeling framework intro-
duced in this chapter are underpinned by existing approaches. Existing simulation
platforms incorporate the execution time based on different approaches at different
levels of abstraction.

The added value of the modeling framework is that it puts forward explicit
modeling constructs for capturing the execution time. The formal specification of
the modeling framework decouples the modeling constructs from their implemen-
tation in a particular simulation platform. As such, the execution time can be
specified in a simulation model without taking into account a specific simulation
platform.

4.9 Conclusions

In this chapter, we presented a modeling framework that contains formally speci-
fied modeling constructs that are specifically aimed at integrating the software of
a distributed control application in a simulation.

The modeling framework presents and supports in an explicit manner a number
of challenges that are pertinent when embedding the software of real controllers
of a distributed control application in a simulation:

92 Modeling the Integration of the Control Software

• The real-world execution time of the control software should be represented
explicitly in the simulation model. Duration primitives specify segments of
code of which the execution time is relevant for the simulation. A duration
mapping specifies a duration for each invocation of a duration primitive.

• The control interface of the control software should be represented explicitly
in the simulation model. Control primitives specify the control interface that
each controller uses to access the environment. A control name mapping and
control parameter mapping specify the influences in the environment that
result from invoking a control primitive.

We illustrated the modeling framework for describing the execution time and
the control interface of a distributed control application for controlling RoboCup
Soccer robots.

For software-in-the-loop simulations of distributed control applications in dy-
namic environments, the contribution of the modeling framework is twofold. On
the one hand, the modeling framework provides explicit support for model formula-
tion by offering formally specified constructs for representing the way the software
of a real distributed control application is integrated in a simulation. The formal
specification enables a modeler to specify how the software is integrated in a sim-
ulation, irrespective of the design and implementation of a particular simulation
platform. On the other hand, the modeling framework provides explicit support
for model translation by specifying the functionality that is needed to support the
constructs in an executable simulation.

Chapter 5

Architecture of the
Simulation Platform

In this chapter, we describe the architecture of a simulation platform that sup-
ports the modeling constructs of the modeling framework described in Chapters 3
and 4. The simulation platform can be used to execute simulation models that
are described in terms of these modeling constructs. The simulation platform
shows the feasibility of the modeling framework for simulating distributed control
applications in a dynamic environment.

5.1 Introduction

We motivate the simulation platform from both a research perspective and a sim-
ulation developer’s perspective. From a research perspective, the simulation plat-
form illustrates the feasibility of the modeling framework to support simulations
of distributed control applications in dynamic environments. Furthermore, the
simulation platform incorporates state-of-the-art software engineering technology
to address a number of difficult engineering challenges that are paramount when
building simulations for distributed control applications. An example is the use of
aspect-oriented programming technology to modularize simulation concerns that
crosscut with the control application. From a simulation developer’s perspective,
the simulation platform facilitates building executable simulations. The simulation
platform encapsulates the functionality to support the constructs of the modeling
framework in an executable simulation. The simulation platform can be reused
for different simulation models insofar as they are formulated in terms of the con-
structs of the modeling framework. The simulation platform prevents developers
from reinventing the functionality to support the modeling framework from scratch
for each simulation study. The simulation platform raises the abstraction level for

93

94 Architecture of the Simulation Platform

building executable simulations.
We describe the architecture of a simulation platform that supports the model-

ing framework. The software architecture of a system is defined as “the structure
or structures of the system, which comprise software elements, the externally vis-
ible properties of those elements, and the relationships among them” [BCK03].
The software architecture of a system realizes the functionality of the system in a
way that its quality requirements are satisfied.

We use several architectural views to document the architecture of the sim-
ulation platform. A view is a representation of a coherent set of architectural
elements and the relations among them [BCK03]. Each view presents a particular
perspective on the architecture or a part thereof. The documentation of the ar-
chitecture of the simulation platform includes a module decomposition view and
several component and connector views. For each view, we start with a general
explanation of the goal of the view and the software elements and relations be-
tween elements that are considered in that view. Afterwards, we document each
view for the simulation platform using a graphical notation and we explain how
important quality requirements are realized.

This chapter is structured as follows. In Section 5.2, we put forward the func-
tional and quality requirements of the simulation platform. In the following sec-
tions, we elaborate on the different architectural views. We start with a top-level
module decomposition view in Section 5.3. We describe a component and connec-
tor view of the functionality to support dynamic environments in Section 5.4. We
elaborate on a component and connector to explain the simulation engine that syn-
chronizes all parts of the simulation in Section 5.5. In Section 5.6, we put forward
an aspect-oriented approach to integrate the control software in the simulation.
We describe a component and connector view of the functionality that keeps track
of the execution time of a controller in Section 5.7. Finally, we summarize and
draw conclusions in Section 5.8.

5.2 Requirements

The goal of the simulation platform is to provide run-time support for software-in-
the-loop simulations of distributed control applications in dynamic environments,
of which the simulation model is described in terms of the modeling constructs
proposed in Chapters 3 and 4. We discuss the functional and quality requirements
that are the main drivers for the architecture of the simulation platform.

The main functional requirements for the simulation platform are the following:

• Support the modeling constructs for dynamic environments. The simulation
platform should encapsulate the functionality to support the modeling con-
structs for dynamic environments described in Chapter 3. This functionality
includes (1) managing the sources of dynamism and the influences that result

5.2 Requirements 95

from their execution (2) applying the appropriate reaction laws to determine
the reaction of the environment to the various influences (3) handling all ac-
tivities in the environment during a simulation run, and (4) applying the
interaction laws to enforce interactions between activities.

• Support the modeling constructs for the control software. The simulation
platform should encapsulate the functionality to support the modeling con-
structs for embedding the software of real controllers, described in Chapter 4.
This functionality includes (1) keeping track of the duration primitives in-
voked by each of the controllers (2) keeping track of the control primitives
invoked of each of the controllers, (3) deriving the nature and the timing of
the influences that result from executing the controllers.

• Support consistent simulation runs. The simulation platform should encap-
sulate the functionality to carry out simulation runs that are consistent with
the described simulation model. The simulation model specifies the causal
relations between all influences, activities, reaction and interaction laws by
means of simulation time, e.g. by means of specifying the duration of the var-
ious controllers in simulation time, specifying the start and duration of each
activity in simulation time, etc. To obtain causal relations in accordance to
the specification of the simulation model, the progress of all parts of the sim-
ulation, i.e. the progress of the various controllers and environment sources of
dynamism and of applying the various reaction and interaction laws, should
happen in the order of increasing simulation time. Given the unpredictable
delays introduced by the underlying execution platform on which the sim-
ulation platform runs, an explicit synchronization between all parts of the
simulation is necessary to regulate their relative progress.

We describe the main quality requirements of the simulation platform:

• Flexibility of embedding the software of the control application. The simu-
lation platform should provide support for embedding the software of the
control application in a flexible way, i.e. with minimal effort from the de-
veloper. The fact that some simulation concerns crosscut with the control
application’s functionality hampers embedding the real controllers in a flex-
ible way. We rely on state-of-the-art software engineering technology to
modularize crosscutting simulation concerns in order to insert and remove
them in the control application in a plug-and-play manner.

• Modifiability of the simulation platform. Modifying core parts of the simula-
tion platform should be relatively easy, and the impact of such modifications
should be as local as possible. Core parts of the simulation platform include
the simulation engine and the functionality to support simulated environ-
ment.

96 Architecture of the Simulation Platform

• Performance of the simulation platform. The simulation platform should
support as-fast-as-possible simulation, to enable executing simulation runs
faster than real time. Simulation platforms that support software-in-the-
loop simulations are typically limited to real-time simulation, i.e. simulation
time advances in pace with wallclock time during a simulation run (see Sec-
tion 2.1).

5.3 Top-Level Module Decomposition View of the
Simulation Platform

The goal of a module decomposition view is to show how the simulation platform
is decomposed into manageable software implementation units. A module decom-
position view is a static view on a system’s architecture. The elements depicted
in a module decomposition view are modules. A module is an implementation
unit of software that provides a coherent unit of functionality. The relationship
between the modules is is-part-of that defines a part/whole relationship between a
submodule and the aggregate module. Modules are recursively refined, revealing
more details in each decomposition step. The basic criteria for module decompo-
sition is the achievement of quality requirements. For example, parts of a system
that are likely to change, are encapsulated in separate modules to support modi-
fiability. Another example is the separation of functionality of a system that has
higher performance requirements from other functionality.

The module decomposition view includes a description of the interfaces of each
module that documents how a module is used in combination with other modules.
The interface description distinguishes between provided and required interfaces.
A provided interface specifies what functionality the module offers to other mod-
ules. A required interface specifies what functionality the module needs from
other modules; it defines constraints of a module in terms of the services a module
requires to provide its functionality.

The top-level module decomposition view of the simulation platform is depicted
in Figure 5.1. We first discuss the main elements and their properties. Afterwards,
we describe their interfaces and explain how important qualities are realized.

5.3.1 Elements and Their Properties

The simulation system is decomposed in two main subsystems: Controller and
Simulation Platform.

• Controller is a module that of the real distributed control application that
is embedded in the simulation platform in order to test or configure it. A
distributed control application consists of several controllers working in par-
allel and cooperating to solve a problem in the environment. A controller has

5.3 Top-Level Module Decomposition View of the Simulation Platform 97

Simulation
Platform

1

Simulated Environment Simulation
Engine

Controller

Control API

<<aspect>>
Trace

Trace

Trace

Sync
Sync

Notify

Control API

Control API

Execution
Tracker

Notify
Notify

Sync

KEY
n

Module with n
runtime instances

Provided Interface

Required Interface
Delegates

Dependency

n

n
1

1

Interface Required
by an Aspect

<<aspect>>

Figure 5.1: Top-level module decomposition view of the simulation platform

98 Architecture of the Simulation Platform

well-defined ways to sense the environment and to act upon it. An example
of a controller is a program to controls a particular robot in a manufacturing
plant.

• Simulation Platform is the medium in which controllers of a distributed
control application are embedded in order to test or configure them. The
main responsibilities of the simulation platform are:

– To simulate the real dynamic environment of the control application.

– To manage the execution of all controllers of the control application
according to the specified duration model.

– To execute simulation runs as-fast-as-possible, thus enabling simula-
tions faster than real time.

The simulation platform is further decomposed in three different modules: Sim-
ulated Environment, Simulation Engine and Execution Tracker.

• Simulated Environment is responsible for managing a simulation model
of the real environment of the distributed control application. The Simu-
lated Environment encapsulates all functionality to support the modeling
constructs described in Chapter 3.

• Simulation Engine is responsible for managing the evolution of all parts
of the simulation in correspondence to the specifications of the simulation
model. The simulation engine encapsulates all functionality to synchronize
the progress of the simulated environment with the progress of all execution
trackers of the controllers that are embedded in the simulation. This guar-
antees correct causal relations in correspondence to the specifications of the
simulation model.

• Execution Tracker is responsible for tracing the execution of a particular
controller of the distributed control application. This module encapsulates
all functionality to support the modeling constructs for the control software
described in Chapter 4. Tracing the execution of a controller includes (1)
determining the execution time consumed by a particular controller of the
distributed control application according to the duration mapping, and (2)
synchronizing the execution of that controller with the simulation engine,
which is necessary to enable as-fast-as-possible simulations. At runtime,
there is an instance of the execution tracker module for each controller.

5.3.2 Interface Descriptions

The simulation platform module provides two interfaces to the controller: Control
API and Trace.

5.3 Top-Level Module Decomposition View of the Simulation Platform 99

• Control API supports the application concerns of a controller. Control API
is the control interface required by the controller to interact with its envi-
ronment. The Control API provided by the simulation platform is identical
to the control interface the controller uses to interact with its sensors and
actuators in the real environment. By providing the Control API interface,
the simulation platform cannot be distinguished from the real environment
from point of view of a controller.

• Trace supports the simulation concerns for a controller. Trace is the in-
terface provided by the simulation platform to manage the execution of a
controller. The Trace interface enables (1) monitoring the execution time
consumed by the controller and (2) intercepting and synchronizing the exe-
cution of the controller with the simulation engine. The Trace interface is
further explained in Section 5.6.

The simulation platform module delegates the Control API interface to the
simulated environment module, and the Trace interface to the execution tracker
module.

The simulation engine governs the progress of the simulation by means of the
provided Notify and required Sync interfaces. We elaborate on Notify and Sync
in Section 5.4.

5.3.3 Design Rationale

Each module in the decomposition encapsulates a particular functionality of the
simulation platform. By minimizing the overlap of functionality among modules,
the architect can focus on one particular part of functionality. Allocating differ-
ent functionalities of the simulation platform to separate modules results in a clear
design. It helps to accommodate change and to update one module without affect-
ing the others, and it supports reusability. We elaborate on the core architectural
decisions.

Low coupling between Controller and Simulation Platform. As we are
concerned with software-in-the-loop simulations, one of the main architectural
decisions is a low coupling between the software application on the one hand, i.e.
the controllers, and the simulation platform in which it is embedded on the other
hand. The Control API interface enables all communication, sensing and acting to
be directed to the simulation platform transparently. The Trace interface connects
the controller with a dedicated Execution Tracker in the Simulation Platform.
Section 5.6 illustrates an aspect-oriented approach to provide existing controllers
with support for the Trace interface.

Two advantages of a low coupling between Controller and Simulation platform
are (1) reuse, i.e. the simulation platform can be reused for testing various con-

100 Architecture of the Simulation Platform

trollers, and (2) modifiability, i.e. the controllers can be modified without affecting
the simulation platform.

Low coupling between Simulated Environment and Simulation Engine.
In the simulation platform, we make an explicit distinction between the simulated
environment on the one hand, and the simulation engine on the other hand. The
simulated environment maintains a model of the real environment. The simulation
engine manages the simulation main loop, i.e. advancing simulation time by syn-
chronizing the progress of all parts of the simulation. Simulated Environment and
Simulation Engine are coupled by means of well-defined interfaces, i.e. Notify and
Sync. This enables (1) the Simulated Environment to make abstraction of how and
with whom synchronization is required, and (2) the Simulation Engine to focus on
reliable and efficient synchronization, without knowledge of the internal working
of each party that needs synchronization.

Two advantages of the low coupling between Simulated Environment and Sim-
ulation Engine are (1) reuse, i.e. it facilitates the integration of a different simula-
tion engine into the simulation platform, and (2) manageability, i.e. the design of
the Simulated Environment is facilitated because abstraction can be made of all
synchronization issues.

Explicit support for as-fast-as possible simulations. In as-fast-as possi-
ble simulations, there is no fixed relation between the progress of the simulation
engine and wallclock time. This enables simulation runs faster than real time.
To support as-fast-as-possible simulation, the execution of each controller must
be synchronized explicitly with the simulation engine in the simulation platform.
Execution Trackers and the Trace interface encapsulate the functionality to Trace
and synchronize the execution of the controllers with the simulation engine in an
explicit manner.

5.4 Component and Connector View of the Sim-
ulated Environment

A component and connector view [CBB+02, ICG+04] shows a system as a set of
cooperating units of execution. A component and connector view is a run-time
view on a system’s architecture. The elements of the component and connector
view are run-time elements of computation and data storage, such as repositories
and components. Components are run-time instances that perform calculations
that typically require data from one or more data repositories. Data repositories
store data and mediate the interactions among components. A data repository
can provide a trigger mechanism to signal data consumers of the arrival of in-
teresting data. Besides reading and writing data, a data repository may provide

5.4 Component and Connector View of the Simulated Environment 101

additional support, such as support for concurrency and persistency. The relation-
ship between elements within a component and connector view are connectors. A
connector is a path for communication that links connecting ports on two or more
elements. A port is an interaction point on a run-time element through which
data is sent and received according to a specific interface. A port is similar to an
interface in that it describes how an element interacts with its environment, but is
different in that each port is a distinct interaction point of its element [ICG+04].

The component and connector view of the Simulated Environment is depicted
in Figure 5.2. This view gives a detailed perspective on the Simulated Environ-
ment module of Figure 5.1. The Simulated Environment supports the modeling
constructs for dynamic environments described in Chapter 3. We first discuss
the main elements and their properties. Afterwards, we describe how they are
connected and explain how important qualities are realized.

5.4.1 Elements and Their Properties

The Simulated Environment contains various components that are connected to
five possible repositories: State, Activities, Influences, Reaction Laws and Interac-
tion Laws. We elaborate on each of the five repositories. Afterwards, we describe
the components they are connected to.

• State repository contains values for all variables to describe the state of
the environment. The values of the state describe a snapshot of the envi-
ronment at a particular instant of simulation time, i.e. the snapshot time.
The state of the environment includes the state of all environmental entities
and properties of the environment. Examples are the position and battery
level of each robot in the environment, the position of various objects in the
environment, the temperature of the environment.

• Activity repository maintains the activities as first-class elements. Activ-
ities describe the evolution of the state of the environment over time. Ac-
tivities are always expressed relative to the snapshot of the state stored in
the States repository. Examples of activities are an activity that describes
the driving of a robot and an activity describing the rolling of a ball in a
RoboCup Soccer environment.

• Influence repository contains the influences as first-class elements. Influ-
ences are attempts to start, stop or alter activities. Influences originate from
the controllers of the distributed control application on the one hand, and
from environment sources external to the distributed control application on
the other hand.

• Reaction Law repository maintains the reaction laws of the environment
model as first-class elements. The reaction laws determine the way influences
have an impact on the activities in the simulation.

102 Architecture of the Simulation Platform

Notify of
Simulation

Engine

Notify of
Simulation

Engine

:Simulated
Environment

:API
Translator

:Activity
Transformer

:Environment
Inspector

:State Updater

Get

Transform

Sync

Notify

SQuery

AQuery

Inspect
Flush

Sync

Update

Control API

Control API

:Environment
Source

:API
Translator

Control API

:Influences

Put

Notify

:Interaction
Laws

:Reaction
Laws

Read

Read

:Activities

:State

Notify

Sync of
Simulation

Engine

Control API of
Controller

KEY Repository

:T Runtime Component
of type T

Port

Provided Interface

Required InterfaceDelegates

Control API

Control API
of Controller

Notify

Sync
Sync of

Simulation
Engine

Sync

Notify of
Simulation

Engine

Sync

Notify

Sync of
Simulation

Engine

Notify

Sync

Figure 5.2: Component and connector view of the simulated environment

5.4 Component and Connector View of the Simulated Environment 103

• Interaction Law repository maintains the interaction laws of the environ-
ment model as first-class elements. The interaction laws determine the way
activities may interact in the environment.

The components are runtime instances of corresponding modules within the
Simulated Environment:

• Environment Inspector acts as the facade that regulates all inspections of
both state and dynamics of the environment. This includes supporting the
State function (described in Section 3.4.3) to retrieve the state of a part of
the environment at any particular point in simulation time, based on the
actual content of the State repository and Activity repository.

• State Updater prevents activities from piling up in the Activity repository
during a simulation run. The State Updater periodically flushes activities
from the Activity repository and updates the corresponding values in the
State repository such that they represent the state at a later snapshot time.

• Activity Transformer is responsible for applying all laws present in the
Reaction Law repository and Interaction Law repository. The laws are
black-box elements for the Activity Transformer, which only orchestrates
applying all laws. Applying the laws includes (1) checking whether laws
are applicable and (2) manipulating the activities in the Activity repos-
itory in correspondence to the applicable laws. To check whether laws
are applicable, the Activity Transformer verifies for each law whether its
conditions are satisfied. For interaction laws, this involves contacting the
Environment Inspector; for reaction laws, this this also involves contacting
the Influence repository besides the Environment Inspector. To apply a
reaction law, the Activity Transformer removes the respective influences
from the Influence repository, and performs the activity transformation
proposed by the reaction law on the activities in the Activity repository.
To apply an interaction law, the Activity Transformer performs the ac-
tivity transformation proposed by the interaction law on the activities in the
Activity repository.

• API Translator is responsible for translating a controller’s invocations on
the Control API interface into the concepts of the environment model. More
specifically, the API Translator maps all triggering of actuators (e.g. (de-
)activating motors or sending communication messages) into influences that
are stored in the Influence repository, according to the control param-
eter mapping (see Section 4.5.2.2) and control name mapping (see Sec-
tion 4.5.2.1). The API Translator realizes all triggering of sensors (e.g.
readout of sensor values or received communication messages) by querying

104 Architecture of the Simulation Platform

the Environment Inspector. In Figure 5.2, two API translators are de-
picted. Each API translator is connected to a controller of the distributed
control application.

• Environment Source is responsible to mimic the behavior of a source of
dynamism in the environment that is external to the distributed control ap-
plication. Environment Sources are capable of performing influences and
sensing the environment. Examples of Environment Sources are other ma-
chines or humans that reside in the environment of the distributed control
application. In Figure 5.2, one instance of an Environment Source is de-
picted.

5.4.2 Interface Descriptions

Figure 5.2 depicts the interconnections between the repositories and the internal
components of the simulated environment.

The State repository provides two interfaces:

• SQuery is the interface provided by the State repository to read the current
values of the variables.

• Update is the interface provided by the State repository to enable updating
the state to a new snapshot time.

The Activity repository provides three interfaces:

• AQuery is the interface for inspecting activities. Inspection is based on
matching: the requester specifies a condition that must hold for all activities
that are returned.

• Flush is the interface to (partially) empty the Activity repository. The re-
quester specifies a point in simulation time. Flush returns all activities that
finish before the specified time instant. In contrast to the AQuery interface,
the activities returned by the Flush interface are removed from the Activity
repository.

• Transform is the interface to manipulate the activities in the Activity repos-
itory. The requester specifies an activity transformation to be performed on
the activities. This corresponds to the ApplyTrans function described in
Section 3.5.3.1.

The Reaction Law repository and Interaction Law repository provide one in-
terface:

• Read is the interface that can be used to access the laws in the corresponding
repository.

5.4 Component and Connector View of the Simulated Environment 105

The Influence repository provides two interfaces:

• Put is the interface for storing new influences in the Influence repository.

• Get is the interface for returning influences out of the Influence repository.
The requester can specify (1) a condition that must be satisfied by each
influence that is returned, and (2) whether the returned influences should be
removed from the Influence repository.

The Environment Inspector provides the Inspect interface that assembles a
snapshot of the state of the environment at any particular instant of simulation
time. The Notify and Sync interfaces are described in Section 5.5, when the
simulation engine is discussed.

5.4.3 Design Rationale

Low coupling due to data repositories. The use of data repositories de-
couples the various components within the simulated environment. Low coupling
improves modifiability (as the changes in one element do not affect other elements),
and reuse (as elements are not dependent on too many other elements). Decoupled
elements do not require detailed knowledge about the internal structures or opera-
tions of other elements. Furthermore, decoupled elements are easier to understand
due to clear and coherent responsibilities.

For example, the Influence repository gathers all influences, regardless
of whether these influences originate from controller actions that are trans-
lated by API translators, or from Environment Sources external to the con-
trol application. As such, the Influence repository decouples the Activity
Transformer from the various sources of influences, i.e. API Translators and
various Environment Sources.

Decoupling synchronization from the Simulated Environment. The
elements that need synchronization are Environment Source, Activity
Transformer and State Updater. All synchronization is delegated to the simu-
lation engine by means of the Notify and Sync interfaces. Synchronization will
be discussed in Section 5.5.

Customizable presentation of the environment state. The Environment
Inspector acts as a facade to hide the internal representation of the environment
state in terms of state and activities. As such, the internal representation is
decoupled from the way the state is presented towards other components, such as
the API Translators, Environment Sources and the various laws managed by
the Activity Transformer. The Inspect interface enables the use of a custom
representation for each component it is connected to.

106 Architecture of the Simulation Platform

Customizable state updating strategy. The strategy to update the state is
encapsulated in the State Updater. This offers the developer the ability to apply
a custom updating strategy. For example, in case the execution trace should be
logged, the State Updater can be deactivated easily, such that all activities are
aggregated in the Activity repository and can be inspected afterwards.

Reusable Infrastructure. Finally, we emphasize the reusability of the archi-
tecture of the simulated environment. The internal components and repositories
of the simulated environment comprise the infrastructure necessary to handle in-
fluences, activities, reaction laws and interaction laws. This infrastructure can be
reused for all simulation studies whose simulation models are described in terms
of these constructs.

5.5 Component and Connector View of the Sim-
ulation Engine

The Simulation Engine is responsible for advancing simulation time by synchro-
nizing all parts of the simulation such that everything happens in the order of
increasing simulation time. This guarantees correct causal relations in correspon-
dence with the specifications of the simulation model.

We focus on the way the Simulation Engine regulates the progress of all parts
of the simulation. The component and connector view of the Simulation Engine
is depicted in Figure 5.3. We first discuss the main elements and their proper-
ties. Afterwards, we describe how they are connected and explain how important
qualities are realized.

5.5.1 Elements and Their Properties

The Simulation Engine is responsible for executing a simulation run by syn-
chronizing the progress of various components. Synchronization is necessary to
ensure causality, i.e. to enforce that everything happens in the order of increas-
ing simulation time. The components the need synchronization are the following:
the various sources of dynamism that act in parallel, i.e. the Controllers of the
distributed control application and the Environment Sources external to the dis-
tributed control application, the Activity Transformer that applies the reaction
and interaction laws and the State Updater that updates the state to a new
snapshot time.

We discuss each component, explain why it needs synchronization and the way
it relies on the Simulation Engine for synchronization.

• Environment Source (see Section 5.4.1). An Environment Source can ac-
cess the environment in several ways, i.e. by performing an influence or sens-

5.5 Component and Connector View of the Simulation Engine 107

Simulation
Platform

:Simulation Engine

:Controller

Trace

:Execution
Tracker

:Controller

Trace

: Execution
Tracker

:Simulated
Environment

:Activity
Transformer

:State Updater

Sync

Control API

:Environment
Source

Notify

Control API

Sync
Sync

Sync

Notify

Sync

Control APIControl API

<<aspect>>

<<aspect>>

Notify

Sync

Sync Sync

Notify

KEY Runtime Component

Port

Provided Interface

Required InterfaceDelegates

Notify

Notify
Notify Notify

Trace Trace

Interface Required
by an Aspect

<<aspect>>

Components omitted

Figure 5.3: Component and connector view of the simulation engine

108 Architecture of the Simulation Platform

ing the environment. To ensure correct causal relations between its environ-
ment access and other things happening in the simulation, an Environment
Source synchronizes its execution with the Simulation Engine: before per-
forming an influence or sensing the environment, an Environment Source
notifies the Simulation Engine at what moment in simulation time it wants
to access the environment and suspends its execution until it is granted per-
mission to proceed by the Simulation Engine.

• Execution Tracker (see Section 5.6). An Execution Tracker manages the
execution of a Controller. An Execution Tracker keeps track of the exe-
cution time consumed by a Controller to deduce at what moment in simu-
lation time a Controller accesses the environment. To determine whether
a controller accesses the environment, an execution tracker keeps track of all
control primitive invocations on the Control API. Synchronization is neces-
sary to ensure correct causal relations between the access of a controller to
the environment and other things happening in the simulation, Each time
a control primitive of the Control API is invoked, the Execution Tracker
notifies the Simulation Engine and suspends that Controller’s execution
until it is granted permission to proceed by the Simulation Engine.

• Activity Transformer (see Section 5.4.1). An Activity Transformer
changes the activities in the Activity repository by applying the reaction
and interaction laws. To ensure correct causal relations between activity
transformations and other things happening in the simulation, the Activity
Transformer notifies the Simulation Engine before applying an activity
transformation and suspends its execution until it is granted permission to
proceed by the Simulation Engine.

• State Updater (see Section 5.4.1). A State Updater updates the State
repository to a new snapshot time by flushing activities. To guarantee correct
causal relations with the rest of the simulation, the State Updater notifies
the Simulation Engine of the new snapshot time it wants to update the
State repository to and suspends its execution until permission to proceed
is granted by the Simulation Engine.

5.5.2 Interface Descriptions

Figure 5.3 illustrates how the various components are connected with the
Simulation Engine. The synchronization of all components happens through
a uniform interface:

• Notify is the interface provided by the Simulation Engine to enable com-
ponents to publish new events. To notify the Simulation Engine of a new
event, a component specifies (1) the simulation time stamp of the event and

5.6 An Aspect-Oriented Approach to Embed Control Software 109

(2) a callback identifier of the component. The callback identifier is used for
granting permission to that component when it is safe to execute that event.

• Sync is the interface required by the Simulation Engine to grant permission
to a component for executing an event.

5.5.3 Design Rationale

The Simulation Engine encapsulates all synchronization. An impor-
tant architectural decision is that the main components within the Simulation
Platform can make abstraction of all synchronization with other components.
The Simulation Engine encapsulates the actual synchronization algorithm (in
our case a conservative synchronization algorithm [CM81]) that maintains and
manages all synchronization partners. The Simulation Engine uses the Notify
and Sync interfaces to synchronize various components. As such, the Simulation
Engine does not depend upon the internal working and functionality of these
components.

5.6 An Aspect-Oriented Approach to Embed
Control Software

We explain the way the software of the real controllers is embedded in the sim-
ulation platform. Recall that a Controller is connected to the Simulation
Platform by means of two interfaces: the Control API interface the Trace inter-
face, as is depicted in Figures 5.1 and 5.3. The Trace interface enables monitoring
the execution of a controller by tracking its duration primitive invocations and con-
trol primitive invocations (see Chapter 4). However, in contrast to the Control
API interface, the Trace interface is not a native interface of a controller. The
Trace interface is solely necessary for simulation purposes, i.e. to enable synchro-
nizing the execution of a controller with the simulation. Consequently, embedding
a controller in the simulation platform would require the developer to modify the
design of the controller such that it supports the Trace interface. This would be
a time-consuming and error-prone job, which we would like to avoid.

We describe an approach to extend a control application transparently, i.e.
without requiring the developer to perform changes in the design of the con-
trollers. Our approach uses aspect-oriented programming to achieve this. We first
introduce aspect-oriented programming in Section 5.6.1. The way aspect-oriented
programming is used in the simulation platform is described in Section 5.6.2. We
emphasize how important qualities are realized in Section 5.6.3.

110 Architecture of the Simulation Platform

5.6.1 Aspect-Oriented Programming

Tracking the execution of a controller is a crosscutting concern, i.e. the function-
ality to do this crosscuts a control application’s basic functionality. The problem
of crosscutting concerns is that they can not be modularized with traditional ob-
ject oriented techniques. This forces the functionality to monitor the execution
of a controller to be scattered throughout the code of the control application,
resulting in “tangled code” that is excessively difficult to develop and maintain.
Aspect-oriented programming [KLM+97, KHH+01] handles crosscutting concerns
by providing aspects for expressing these concerns in a modularized way. An aspect
is a modular unit of crosscutting implementation. Aspect-oriented programming
does not replace existing programming paradigms and languages, but instead, it
can be seen as a co-existing, complementary technique that can improve the util-
ity and expressiveness of existing languages. It enhances the ability to express the
separation of concerns which is necessary for well-designed, maintainable software
systems.

A language extension to Java which supports aspect-oriented programming, is
AspectJ. In AspectJ, defining an aspect is based on two main concepts: pointcuts
and advice. A pointcut is a language construct in AspectJ that selects particular
join points, based on well-defined criteria. Each join point represents a particular
point in the execution flow of a program where the aspect can interfere, e.g. a
point in the flow when a particular method is called. As such, pointcuts are a
means to express the crosscutting nature of an aspect. Advice on the other hand
is a language construct in AspectJ that defines additional code that runs at join
points specified by an associated pointcut. An aspect encapsulates a particular
crosscutting concern and can contain several pointcut and advice definitions. The
process of inserting all crosscutting code of an aspect at the appropriate join
points within the original program code, is called aspect weaving. Aspect weaving
is performed at compile-time in AspectJ.

5.6.2 Providing Support for Tracing a Controller’s Execu-
tion through Aspect Weaving

We describe a way to flexibly embed a control application in the simulation plat-
form, i.e. without requiring the developer to alter the design of the controllers.
We use aspect-oriented programming technology to plug and unplug into a con-
trol application all functionality required for simulation purposes.

To embed the controller in a simulation platform, the controller must be ex-
tended with following tracing functionality:

• Tracing duration primitive invocations. The simulation platform tracks the
execution time consumed by each controller according to the duration map-
ping, so it must be able to monitor all duration primitives invocations of

5.6 An Aspect-Oriented Approach to Embed Control Software 111

a controller. To support this kind of monitoring, the controller should be
extended with functionality that notifies the simulation platform each time
the controller executes a duration primitive.

• Tracing control primitive invocations. The simulation platform synchronizes
a controller’s invocations on the Control API with the rest of the simulation
(see Section 5.5.1). To support such synchronization, the simulation plat-
form must be capable of intercepting a control primitive invocation and of
temporarily suspending a controller’s execution.

Figure 5.4 depicts the way the above tracing functionality is inserted in the
controller software. This figure shows an example Controller that consists of a
Decision Taker module and a Plan Library module.

The left hand side of the figure depicts the original controller. Note that
this controller does not support the Trace interface. The left hand side of the
figure also depicts an Aspect. The Aspect is a separate module that encapsulates
all tracing functionality. The Aspect is generated from the specification of the
duration primitives and control primitives. The pointcut definition of the aspect
specifies all duration primitive invocations and control primitive invocations as
join points. The advice of the aspect comprises a call to the Trace interface to
notify the simulation platform.

The black arrow on the figure illustrates the process of aspect weaving. Aspect
weaving happens at compile time, and automatically extends the Controller with
all tracing functionality necessary to embed it in the simulation platform.

The right hand side of Figure 5.4 depicts the outcome of the weaving process.
Within the Controller, the Decision Taker and Plan Library modules are
now extended with additional tracing functionality that is the result of weaving
the aspect’s advice. The added tracing functionality crosscuts the modules of a
controller, as depicted by the grey blocks. Note that due to aspect weaving, the
controller now supports the Trace interface at the appropriate locations without
requiring the developer to perform manual modifications to the control software.

5.6.3 Design Rationale

Flexibility of embedding a control application. Aspect weaving supports
flexibly embedding the control application in a simulation: the developer is no
longer bothered to modify a control application and manually insert or remove all
code necessary for tracing its execution.

Separating simulation from application concerns. Aspect technology en-
ables modularizing simulation concerns that crosscut the control application’s
functionality. This leads to a clean separation between application concerns and
simulation concerns, as both are encapsulated in separate modules (as depicted on
the left hand side of Figure 5.4).

112 Architecture of the Simulation Platform

Controller_WController

Decision
Taker_W

Plan
Library_W

Control API

Plan

Control API

Trace

Aspect Trace

Plan

Trace

Trace

Trace

Trace

Decision
Taker

Plan Library

Control API

Plan

Control API

Plan

KEY
Module Provided Interface

Required Interface
Delegates

Dependency Woven Aspect Advice

Aspect Weaving

Figure 5.4: Controller before (left) and after (right) aspect weaving.

5.7 Component and Connector View of the Exe-
cution Tracker

We focus on the Execution Tracker. An Execution Tracker is responsible for
tracing the execution of a particular controller of the distributed control applica-
tion. Tracing the execution of a controller includes (1) determining the execution
time consumed by a particular controller of the distributed control application ac-
cording to the duration mapping, and (2) synchronizing the execution of that con-
troller with the simulation engine, which is necessary to enable as-fast-as-possible
simulations.

Figure 5.5 depicts a component and connector view of two controllers embedded
in the simulation platform. The focus is on the Execution Trackers and the way
they interact with a controller on the one hand, and with the simulation engine
on the other hand. We first discuss an Execution Tracker’s main elements and
their properties. Afterwards, we describe how they are connected and explain how
important qualities are realized.

5.7.1 Elements and Their Properties

Figure 5.5 depicts two Execution Trackers, each connected to a Controller.
Each Execution Tracker comprises the following components and repositories:

• Clock Manager is responsible for managing the simulation clock of a par-

5.7 Component and Connector View of the Execution Tracker 113

:Simulation
Platform

:Simulation Engine

:Controller_W

Trace

:Execution Tracker

:Simulated
Environment

Control API

Control API

Sync

Notify

Trace

:Decision
Taker_W

:Plan
Library_W

Control API

Plan

:Clock
Manager

:Duration
Mapping

:Execution
Blocker

Trace

Block

Read

KEY Repository

:T Runtime Component
of type T

Port

Provided Interface

Required InterfaceDelegates

Woven Aspect Advice

Sync

Notify

:Controller_W

Trace

:Execution Tracker

Control API

Control API

Sync

Notify

Trace

:Decision
Taker_W

:Plan
Library_W

Control API

Plan

:Clock
Manager

:Duration
Mapping

:Execution
Blocker

Trace

Block

Read

Sync

Notify

Notify

Sync

Figure 5.5: Component and connector view of controllers and execution trackers

114 Architecture of the Simulation Platform

ticular Controller. The simulation clock indicates how much execution
time that particular Controller consumed. As a Controller executes, the
Clock Manager is notified of the duration primitives invocations performed
by that controller, and advances the simulation clock with the duration that
is specified by the duration mapping (see Section 4.4.2). As such, the sim-
ulation clock of the Clock Manager is kept up-to-date with the execution
time of the Controller.

• Duration Mapping repository is responsible for maintaining the duration
mapping of a particular controller. For each duration primitive invocation,
the Duration Mapping repository specifies a duration in simulation time.

• Execution Blocker is responsible for synchronizing the execution of a
Controller with the Simulation Engine. For each control primitive in-
vocation, the Execution Blocker can temporarily suspend the execution of
a Controller until access is granted by the Simulation Engine.

5.7.2 Interface Descriptions

Figure 5.5 depicts the interconnections between the various elements of an
Execution Tracker:

• Trace is the interface provided by the Clock Manager to keep track of the
execution of a Controller. By means of aspect weaving (see Section 5.6) a
Controller’s execution is intercepted and redirected to the Clock Manager
each time a duration primitive invocation or control primitive invocation is
performed. The caller of the Trace interface specifies the characteristics of
the duration primitive invocation or control primitive invocation (see Sec-
tion 4.4.1 and Section 4.5.1).

• Read is the interface provided by the Duration Mapping repository to en-
able retrieving the duration in simulation time of various duration primitive
invocations. The caller specifies the characteristics of the duration primitive
invocation. Read returns the associated duration for that duration primitive
invocation according to the duration mapping.

• Block is an interface provided by the Execution Blocker to synchronize
the execution of a Controller with the Simulation Engine. The caller
of the Block interface specifies a simulation time instant until which the
execution of the Controller should be suspended. The Clock Manager calls
the Block interface with the current value of its simulation clock in case it
traces a control primitive invocation. This guarantees synchronization with
the Simulation Engine each time a Controller accesses the environment.

5.8 Conclusions 115

5.7.3 Design Rationale

Separating monitoring from synchronization. The Clock Manager encap-
sulates all functionality to monitor the execution time of a Controller. The
Execution Blocker encapsulates the functionality to synchronize the execution
of a Controller with the Simulation Engine. Because both components have
low coupling, a Clock Manager can make abstraction of synchronizing the execu-
tion of a Controller, whereas the Execution Blocker can make abstraction of
monitoring a Controller’s execution time.

Reuseable infrastructure. We emphasize the reusability of the architecture
of the Execution Tracker. The internal components of the Execution Tracker
are independent of the specified duration mapping. The duration mapping is
encapsulated in the Duration Mapping repository, where it can be adapted easily.

5.8 Conclusions

We developed a simulation platform to demonstrate that the modeling framework
is feasible for developing executable simulations. The simulation platform en-
capsulates the functionality to support the modeling constructs in an executable
simulation. The simulation platform supports simulations (1) in which the soft-
ware of real controllers can be embedded, and (2) of which the simulation model
is described in terms of the proposed modeling constructs.

We put forward an architecture for such a simulation platform, and documented
this architecture using several architectural views. The top-level module decom-
position view of the architecture of the simulation platform comprises three main
modules that each encapsulate a core functionality of the simulation platform:

1. The Simulated Environment module is responsible for managing the model
of the environment. This module encapsulates all functionality to support
the modeling constructs for dynamic environments.

2. The Execution Tracker module is responsible for tracing the execution of
the software of a real controller of the distributed control application. This
module encapsulates all functionality to support the modeling constructs for
the control software.

3. The Simulation Engine module is responsible for managing the evolution
of all parts of the simulation in correspondence to the specifications of the
simulation model. The simulation engine encapsulates all functionality to
synchronize the progress of the simulated environment with the progress of
all execution trackers of the controllers that are embedded in the simulation.

116 Architecture of the Simulation Platform

The architecture uses aspect technology for plug-and-play integration of the
control software in a simulation. Aspect technology is used to weave all tracing
functionality required for the simulation into the control software. This contributes
to a clean separation between application concerns and simulation concerns.

Chapter 6

Simulation of AGV Control
Applications in Dynamic
Warehouse Environments

In this chapter, we apply and evaluate the modeling framework and the simulation
platform on a real-world case. We developed an automated guided vehicle (AGV)
simulator that supports the evaluation of new or altered features of distributed
control applications that control automated guided vehicles (AGVs) in warehouse
environments.

6.1 Introduction

We demonstrate the modeling framework and the simulation platform in the con-
text of a real-world case. The case comprises the development of distributed
control applications that control automated guided vehicles (AGVs) in warehouse
environments. An automated guided vehicle (AGV) control application was de-
veloped in the EMC2 (Egemin Modular Controls Concept) project. Egemin N.V.
is a Belgian manufacturer of AGVs, and develops control software for automat-
ing logistics in warehouses and manufactories using AGVs. AGVs are unmanned,
battery-powered vehicles that are able to transport loads through a warehouse or
factory.

In the context of the EMC2 project, we developed an AGV simulator, i.e. a case-
specific simulation platform that supports evaluating new or altered functionalities
of the AGV control application in a simulated warehouse environment. The AGV
simulator enables (1) safe experimentation and testing of AGV control applications
without risk of damaging the real AGVs, (2) executing experiments faster than

117

118 Simulating AGV Control Applications in Dynamic Warehouse Environments

real-time, which is essential when investigating long-term scenarios (3) setting up
and monitoring experiments in a less costly way, e.g. without the cost of buying
AGVs or building particular warehouse layouts.

The goal of this chapter is to illustrate how the modeling framework and the
simulation platform underpin the model formulation and the model translation
phase for developing the AGV simulator, as well as to evaluate the flexibility and
performance of the AGV simulator. Consequently, the goal of this chapter is not
to evaluate the suitability of particular designs for AGV control applications. The
focus is on the AGV simulator that supports such evaluations. The EMC2 project
is considered as providing the context and requirements for the AGV simulator
developed with the aid of the modeling framework and the simulation platform.

This chapter is structured as follows. Section 6.2 describes the setup of an
AGV transportation system within a warehouse, discusses the requirements of the
AGV control application and the goal of the EMC2 project. In Section 6.3, we
elaborate on the requirements of the AGV simulator. In Section 6.4, we formulate
a simulation model for the AGV simulator in terms of the modeling constructs
of the framework. In Section 6.5, we describe the way the simulation platform
supports translating the simulation model of the AGV simulator in an executable
simulation. In Section 6.6, we evaluate the flexibility and performance of the AGV
simulator. We draw conclusions in Section 6.7.

6.2 AGV Transportation System

An AGV transportation system is an industrial transport system using several
automatic guided vehicles (AGVs) in a warehouse that are controlled by an AGV
control application. AGV transportation systems are typically used for repackag-
ing and distributing incoming goods to various branches, or distributing manufac-
tured products to storage locations.

6.2.1 Physical Setup of an AGV Transportation System

Figure 6.1 shows a three dimensional view on an AGV transportation system. An
AGV is an unmanned, computer-controlled transportation vehicle using a battery
as its energy source. AGVs have to perform transports. A transport consists
of picking up a load at a particular spot in the warehouse and bringing it to
its destination. A load ranges from raw materials (e.g. wood, rolls of paper) to
completed products (e.g. tyres, cheese).

The hardware of an AGV comprises the following. An AGV contains engines to
move and turn and a lift to pick and drop loads. An AGV has sensors to observe
its position and battery level. Finally, each AGV has a computer platform on
which control software can be deployed. The computer platform of an AGV uses
wireless communication.

6.2 AGV Transportation System 119

The warehouse is a storage or manufacturing facility that contains various loads
positioned at various locations across the warehouse. Loads are typically stored
in racks. Racks are used to hold loads and are positioned across the warehouse,
usually according a geometrical pattern that combines easy accessibility of the
loads, as well as efficient use of the available room for storage purposes. Typically,
also one or several battery chargers for the AGVs are positioned at particular
locations across the warehouse.

AGVs
Magnet
TrackLoads

Figure 6.1: Three dimensional view on an AGV transportation system.

To support AGVs, the warehouse is usually customized. This typically involves
a custom configuration of the racks. In addition, a complex layout of magnet strips
is built into the warehouse floor to guide the AGVs to move from one spot in the
warehouse to another. This magnet track allows AGVs to maneuver in an accurate
manner according to predefined pathways. Moreover, as magnets are inexpensive
and can be installed easily, magnet guided navigation is relatively cost-effective.

120 Simulating AGV Control Applications in Dynamic Warehouse Environments

6.2.2 AGV Control Application

An AGV control application is a software system that controls a set of AGVs.
We discuss the main functionalities of an AGV control application and elaborate
on the AGV steering system that can be used by an AGV control application to
instruct AGVs.

6.2.2.1 Functionalities of an AGV Control Application

The main functionality of an AGV control application is handling transports, i.e.
moving loads from one place to an other. Transports are typically generated by
order management software, but a transport can also be introduced manually
by employees or operators. Abstracting from the origin of the transports, systems
that generate transports for the AGV control application are called client systems.
Client systems input transports to the AGV control application, and expect a
confirmation from the AGV control application when the transport is done.

In order to handle transports, the AGV control application has to use the
AGVs under its control efficiently. The main functionalities to be performed are
the following.

• Transport assignment: transports originating from client systems must be
assigned to an appropriate AGV. The goal is to assign transports in such a
way that overall, transports are handled in an efficient and timely manner.

• Routing: in order to carry out transports, AGVs need to move to certain
places. For the movement of all AGVs, efficient routes through the warehouse
must be determined. Although the road network determined by the magnet
track is static, the best route for an AGV is in general dynamic, and depends
on the current conditions in the system. For example, the shortest route in
distance may take a long time because there is a “traffic jam”. So, routing
in general may need to be adapted dynamically.

• Collision avoidance: while moving around, AGVs may not collide with each
other. Collisions do not exclusively occur at intersections of paths; AGVs also
need to avoid collisions while passing each other on closely located parallel
paths.

• Deadlock avoidance: since AGVs cannot divert from their path, they are
relatively constrained in their movement. Therefore, deadlocks can occur
when a number of AGVs are in a situation where no AGV can move anymore
without operator intervention. For example, on a bidirectional path AGVs
may be standing head on towards each other. Since AGVs in general cannot
drive in reverse, none of the two AGVs can move forward or backward.
The AGV control application must ensure that manual intervention for such
situations is avoided.

6.2 AGV Transportation System 121

Besides handling transports efficiently, the AGV control application must also
ensure the continued operation of the AGVs.

• Maintenance: AGVs need regular maintenance, which is typically scheduled
in fixed time intervals. Furthermore, AGVs may need to calibrate their
positioning system regularly.

• Battery charging: when an AGVs battery runs out, it must drive to a charg-
ing station. Either the AGV must wait until an operator exchanges the old
battery for a full battery, or the battery is charged using contact points in
the warehouse floor.

• Resource saving: AGVs are expensive and must be used as efficiently as
possible. AGVs that are idle must save their resources, and get out of the
way of the active AGVs. Therefore, idle AGVs are parked at park nodes.

6.2.2.2 AGV Steering System

To control an individual AGV, it is equipped with an AGV steering system devel-
oped by Egemin, called E’nsor1. E’nsor handles the low-level control of an AGV
on the level of reading out sensors and driving actuators. Main functionalities of
E’nsor are keeping the AGV on a path, turning, determining the AGVs current
position, reading out the battery level, etc.

E’nsor can handle a number of actions on its own. These actions are called
jobs. For example, picking up a load is a pick job, dropping it is a drop job and
moving over a specific distance is a move job. A transport typically starts with a
pick job, followed by a series of move jobs and ends with a drop job. The AGV
control application gives jobs to E’nsor, which in turn controls the AGV to handle
the jobs autonomously.

To be able to indicate to E’nsor where to pick and move, the layout (i.e. all the
possible paths the AGVs can follow in the system) of the warehouse is divided into
logical elements: segments and nodes. Segments determine the path an AGV can
follow through the warehouse, and can be either straight or curved with lengths
of typically three to five metres. A segment can either be unidirectional or bidi-
rectional. In the latter case AGVs can drive over the segment in both directions.
Nodes are at the beginning or end of segments. Nodes are the places where an
AGV can stand still, or do an action like picking up a load. In normal operation,
an AGV can only be at rest when standing on a node. Each segment and node
is given a unique identifier. E’nsor is able to steer an AGV on a segment per
segment basis. An AGV can stop on every node, possibly to change direction.
E’nsor can handle five jobs. None of these jobs route the AGV, so the segment
given as argument must be accessible from the node on which the AGV is currently
standing.

1E’nsor is an acronym for Egemin Navigation System On Robot.

122 Simulating AGV Control Applications in Dynamic Warehouse Environments

• Move(segment): this instructs E’nsor to drive the AGV over the given seg-
ment.

• Pick(segment): instructs E’nsor to drive the AGV over the given segment
and pick up the load at the node at the end of the segment.

• Drop(segment): the same as pick, but drops a load the AGV is carrying.

• Park(segment): instructs E’nsor to drive the AGV over the given segment
and park at a park node at the end of the segment.

• Charge(segment): instructs E’nsor to drive the AGV over a given segment
to a battery charging node and start charging batteries there.

Furthermore, E’nsor allows the readout of sensor values of the AGV, of which
the most important are battery level; position in coordinates on the floor; position
in terms of segment and node on the layout; orientation; speed.

6.2.3 The EMC2 Project

Egemin developed an AGV control application that is used in their existing instal-
lations. To investigate the long term possibilities for AGV control applications,
the EMC2 project has two main goals: studying the feasibility of a decentralized
architecture of the AGV control application, and increasing the flexibility of the
existing solution. Each of these goals is sketched in turn.

Decentralisation. Traditionally, the AGV control application is deployed on
one central server, which uses wireless communication to hand out jobs to each
AGV, see Figure 6.2(a). The AGV control application receives transport requests
from the client systems. According to the incoming transports, the AGV control
application plans routes for AGVs and instructs AGVs to perform the jobs, so
that all transports are done and so that AGVs do not collide or enter a deadlock
situation. The server continuously polls the AGVs about their status to monitor
the progress of the transports. When a transport is finished, the server reports
the completion of the transport to the corresponding client system.

In a decentralized approach the AGV control application would be distributed
over the various AGVs and other systems. This puts more autonomy in the AGVs:
decisions are made locally on each AGV, and each AGV coordinates with other
AGVs to ensure the system as a whole processes transports in time.

Figure 6.2(b) shows a possible decentralized architecture for an AGV control
application, i.e. the architecture that was chosen in the course of the project.
The AGV control application is decomposed in transport assigners and AGV con-
trollers. AGV controllers control a single AGV and are deployed on each AGV.

6.2 AGV Transportation System 123

AGV

E'nsor

AGV

E'nsor

Server
AGV Control
Application

Computer

Client System

new transportconfirm transport done

jobs status jobsstatus

Computer Platform

Software System

Communication

KEY:

(a) Deployment diagram of centralized solu-
tion.

AGV

E'nsor

Transport Base

Transport
Assigner

Computer

Client System

new transport

confirm
transport done

Computer Platform

Software System

Communication

KEY:

Transport Base

Transport
Assigner

new transport
confirm

transport done

AGV
Controller

AGV

E'nsor

AGV
Controller

transport assignmenttransport assignment

(b) Deployment diagram of decentralized so-
lution.

Figure 6.2: Deployment diagram of centralized versus decentralized solution.

AGV controllers are responsible for driving the AGV, avoiding collisions and dead-
locks, and executing the transport assigned by transport assigners. AGV con-
trollers thus raise the autonomy of AGVs further, by building on E’nsor and using
the wireless network to coordinate with each other.

Transport assigners are deployed on one or more transport bases, and are re-
sponsible for interacting with client systems, and to assign the incoming transports
to an appropriate AGV. The functionality of assigning and monitoring the progress
of transports can not be completely decentralized, since client systems need a fixed
node to send transport requests to. Also, the transport assigner needs to make
sure that a transport is never lost, and so needs to be deployed on reliable, fixed
infrastructure.

The above shows that neither the centralized, nor the decentralized architecture
is respectively completely under central control, or completely without central
control. In the centralized architecture, E’nsor gives each AGV a considerable
amount of autonomy, since it handles steering the AGV and executing high level

124 Simulating AGV Control Applications in Dynamic Warehouse Environments

actions such as pick and drop. This functionality is practically impossible to
centralize. On the other hand, the decentralized architecture needs to keep an
element of central control in the form of transport bases, since client systems and
operators need a fixed point where they can monitor the AGV system. The aim of
the EMC2 project was to decentralize the system as much as practically possible,
while reusing as much functionality as possible from the existing AGV control
application (i.e. E’nsor, representation of layout, monitoring,. . .).

Flexibility. Flexible AGVs should adapt their behaviour with changing circum-
stances in the AGV transportation system. One aspect of flexibility is that AGVs
should be able to exploit opportunities. For example, while an AGV is on its way
to pick up a particular load, it could be beneficial for the AGV to switch to a new
transport that pops up. AGVs should also be able to anticipate possible difficul-
ties. For example, when the battery level of an AGV decreases, the AGV should
anticipate this and prefer a zone near a charge node. Another aspect of flexibility
is that AGVs should be able to cope with exceptional situations. For example, if
a segment is blocked, the AGVs should avoid that segment.

Introducing more flexibility in the system is in principle independent of whether
a centralized or decentralized approach is used. In a centralized solution, the plan
for the further evolution of the system may be re-evaluated at regular intervals. In
a decentralized solution, flexibility is introduced by designing adaptive protocols
and coordination between the entities in the system. The entities that constitute
the decentralized system must be able to adapt to changing circumstances.

A complete description of the course and conclusions of the EMC2 project is
out of the scope of this text. In the following, we focus the way simulation supports
the development of a decentralized solution for the AGV control application.

6.3 Requirements of the AGV Simulator

We elaborate on the requirements of an AGV simulator that was developed in
the context of the EMC2. The goal of the AGV simulator is to support evaluat-
ing new or altered features of a decentralized AGV control application by means
of software-in-the-loop simulation of AGV controllers in a simulated warehouse
environment. Software-in-the-loop simulation enables evaluating the actual im-
plementation (or parts thereof) of the AGV controllers.

The AGV simulator focusses on evaluating routing, collision avoidance, trans-
port assignment and battery charging.

• Support for routing. To evaluate or compare routing behaviors of AGV
controllers, the AGV simulator should simulate the movements of real AGVs
and realistic layouts of the warehouse. This enables monitoring the path
followed by an AGV, its travel time, the appearance of traffic jams, etc.

6.4 Model Formulation: Simulation Model of the AGV Simulator 125

• Support for collision avoidance. To evaluate the appropriateness of collision
avoidance techniques of AGV controllers, the AGV simulator should simu-
late the movements of AGVs on a warehouse layout and detect situations
in which AGVs could collide. Moreover, to test the robustness of collision
avoidance techniques, the AGV simulator should simulate unreliable commu-
nication between AGVs. This enables a developer to evaluate the adequacy
of collision avoidance techniques under a variety of circumstances.

• Support for transport assignment. To evaluate transport assignment among
AGV controllers, the AGV simulator should simulate several transport pro-
files generated by client systems.

• Support for battery charging. To evaluate the charging strategy of AGV
controllers, the AGV simulator should simulate the energy consumption of
an AGV, the charging of its battery at a charging station and the interruption
of an AGV’s operation in case it runs out of energy.

When building an AGV control application, these functionalities are typically
developed iteratively. The AGV simulator should enable testing partial AGV
control applications in which some of these functionalities are present and others
not yet (fully) operational.

To support evaluating different functionalities of AGV control applications in a
variety of settings, modifying core parts of the AGV simulator should be relatively
easy and the impact of such modifications should be as local as possible. Important
modifications that should be supported by the AGV simulator include altering the
AGV controller software; the layout of the warehouse; the number of AGVs and
their characteristics (e.g. characteristics of movements, energy consumption, etc.
); the quality of service of communication between AGVs; the accuracy of collision
detection; the transport profile of the client systems.

6.4 Model Formulation: Simulation Model of the
AGV Simulator

We formulate a simulation model for the AGV simulator. The simulation model is
described in terms of the modeling constructs of Chapter 3 and Chapter 4. We first
focus on the simulation model of the warehouse environment in Section 6.4.1. Af-
terwards, we elaborate on the simulation model for integrating the AGV controller
software in Section 6.4.2.

6.4.1 Simulation Model of the Warehouse Environment

Figure 6.3 gives a graphical overview of the environment part of the simulation
model of the AGV simulator. This figure shows specific instantiations of the

126 Simulating AGV Control Applications in Dynamic Warehouse Environments

modeling constructs of Figure 3.1. The simulation model is organized in four
parts, in analogy with Figure 3.1:

1. the part representing the structure of the warehouse environment ;

2. the part representing dynamism in the warehouse environment ;

3. the part representing the manipulation of dynamism in the warehouse envi-
ronment ;

4. the part representing sources of dynamism in the warehouse environment.

We give an overview of each of these parts of the simulation model for warehouse
environments.

Structure of the Warehouse Environment. We describe the way the struc-
ture of the warehouse is captured in a simulation model. The structure of the sim-
ulated warehouse environment is modeled in terms of environmental entities
and an environmental layout that arranges the entities with respect to each
other.

The following environmental entities of the warehouse are captured in the sim-
ulation model:

• AGVs. AGVs are robotic vehicles controlled by an embedded AGV con-
troller. AGVs can drive across the warehouse, have a lift to carry a load and
a wireless WiFi module to communicate.

• Loads. Loads are materials, products or goods that are stored in the ware-
house and can be transported by AGVs.

• Warehouse floor. The warehouse floor is the flat area with a particular size.
AGVs can move across the warehouse floor. Loads are positioned on the
warehouse floor.

• Segments. The magnet track is modeled in terms of the logical map represen-
tation that is employed by the AGVs, i.e. in terms of segments and stations.
A segment can be unidirectional or bidirectional and has a particular length.
Each segment connects two stations.

• Stations. Stations are locations that connect adjacent segments. Each sta-
tion can be used for one or several purposes, i.e. as routing location, as
storage location for loads, as parking location and/or as battery charging
location.

• WiFi access points. Wireless access points support the communication
among AGVs. A WiFi access point enables communication between AGVs
and transport bases or among several AGVs.

6.4 Model Formulation: Simulation Model of the AGV Simulator 127

Simulated Environment

Sources of Dynamism

Manipulation of Dynamism

Representation
of Dynamism

Structure
Environmental

Entity

Environment
Source Influence

Key:

Controller

Modeling
Construct

Group of
Constructs

Environment
Layout

AGV
Controller

Transport
Generator

Drive
Influence

Pick
Influence

Drop
Influence

Send
Influence

Charge
Influence

Interaction
Law

Collision
Law

Battery
Law

WiFi QoS
Law

Reaction
Law

Start
Driving

Law

Start
Picking

Law

Start
Dropping

Law

Start
Sending

Law

Start
Charging

Law

Activity

Driving
Activity

Picking
Activity

Dropping
Activity

Sending
Activity

Charging
Activity

AGV

Load

Warehouse
Floor

Segment Station
2D Geometric
Arrangement

Generalization

WiFi Access
Point

Transport
Base

Interrupt
Charging

Law

Drop
Influence

Figure 6.3: Overview of the simulation model of the simulated warehouse environ-
ment. The grey parts are specific instantiations of the modeling constructs for the
AGV simulator.

128 Simulating AGV Control Applications in Dynamic Warehouse Environments

• Transport base. A transport base is a computer that can be used to broadcast
new transport tasks to the AGVs. A transport generator is embedded in a
transport base.

We arrange the entities in the simulated warehouse environment according to
a continuous two dimensional geometric layout. This layout expresses the spatial
positioning of all entities with respect to each other.

Dynamism in the Warehouse Environment. We describe the way dy-
namism in the warehouse environment is captured in a simulation model.
Dynamism in the simulated warehouse environment is modeled in terms of
activities. In the simulated warehouse environment, the following activities
can occur:

• Driving activities. Driving activities represent that AGVs drive across a
segment on the warehouse floor until the station at the other end of that
segment is reached.

• Picking activities. Picking activities represent that AGVs use their lift to
pick up a load at a station.

• Dropping activities. Dropping activities represent that AGVs use their lift
to put down the load they carry at a station.

• Charging activities. Charging activities represent that AGVs recharge their
battery at a charging station.

• Sending activities. Sending activities represent that a WiFi access point is
used to transmit messages from a transport base to AGVs or among AGVs.

Sources of Dynamism in the Warehouse Environment. In the warehouse
environment, several sources of dynamism reside. We make a distinction between
controllers and environment sources. Sources of dynamism can manipulate
the environment by means of performing influences.

We consider the following sources of dynamism:

• AGV controllers. AGV controllers are the control software that is embedded
in an AGV. AGV controllers constitute the AGV control application. Each
AGV controller are responsible for controlling an AGV and for coordinating
with other AGVs for routing, collision avoidance, transport assignment and
battery charging.

• Transport generator. A transport generator broadcasts transport tasks to
the AGVs. A transport generator generates transports according to a trans-
port profile that specifies the characteristics of the stream of transport tasks

6.4 Model Formulation: Simulation Model of the AGV Simulator 129

that should be handled by the AGVs. Transport generators are external to
the AGV control application. Consequently, transport generators are en-
vironment sources of dynamism. A transport generator is deployed on a
transport base.

We consider the following influences:

• Drive influence. A drive influence represents that attempt of an AGV con-
troller to start driving over a given segment in a given direction.

• Pick influence. A pick influence represents that attempt of an AGV controller
to start driving over a given segment in a given direction and to pick up a
load at the station at the end of that segment.

• Drop influence. A drop influence represents that attempt of an AGV con-
troller to start driving over a given segment in a given direction and to put
down the load it carries at the station at end of that segment.

• Send influence. A send influence represents the attempt of an AGV controller
or a transport generator to send a message.

• Charge influence. A charge influence represents the attempt of an AGV
controller to start driving over a given segment in a given direction and to
charge its batteries at the station at the end of that segment.

• Park influence. A park influence represents that attempt of an AGV con-
troller to start driving over a given segment in a given direction and to park
at the station at the end of that segment.

Manipulation of Dynamism in the Warehouse Environment. We de-
scribe the way manipulations of dynamism in the warehouse environment are cap-
tured in the simulation model. The way dynamism in the warehouse environment
can be manipulated is modeled by means of reaction laws and interaction
laws.

We consider the following reaction laws in the warehouse environment:

• Start driving law. Start driving law determines the reaction of the environ-
ment in response to a drive influence or a park influence. A real AGV does
not always start driving when it is instructed to do so. Therefore, start
driving law checks a number of conditions before adding a new driving activ-
ity. These conditions are that the AGV is not already involved in a driving,
picking or dropping activity at the time of the influence; that the segment is
adjacent to the station of the AGV; that the AGV is allowed to drive over
the given segment in the given direction (as segments can be unidirectional).
Start driving law does not define an activity in case one of these conditions
does not hold, to reflect that E’nsor discards the instruction in these cases.

130 Simulating AGV Control Applications in Dynamic Warehouse Environments

• Start picking law. Start picking law determines the reaction of the environ-
ment in response to a pick influence. Start picking law adds two activities,
i.e. a new driving activity and a subsequent picking activity, in case a num-
ber of conditions apply. These conditions capture that a real AGV does not
always start picking when it is instructed to do so. These conditions are that
the AGV is not already involved in a driving, picking or dropping activity
at the time of the influence; that the segment specified by the influence is
adjacent to the station of the AGV; that the AGV is allowed to drive over
the given segment in the given direction (as segments can be unidirectional).
Start driving law does not add activities in case one of these conditions does
not hold, to reflect that E’nsor discards the instruction in these cases.

• Start dropping law. Start dropping law determines the reaction of the en-
vironment in response to a drop influence. Start dropping law adds two
activities, i.e. a new driving activity and a subsequent dropping activity, in
case a number of conditions apply. Start dropping law is analogous to start
picking law.

• Start sending law. Start sending law determines the reaction of the environ-
ment in response to a send influence. Start sending law adds a new sending
activity.

• Start charging law. Start charging law determines the reaction of the en-
vironment in response to a charge influence. Start charging law adds two
activities, i.e. a new driving activity and a subsequent charging activity, in
case a number of conditions apply. These conditions capture that a real AGV
in some cases discards the instruction to go charging. These conditions are
that the AGV is not already involved in a driving, picking or dropping activ-
ity at the time of the influence; that the segment specified by the influence
is adjacent to the station of the AGV; that the AGV is allowed to drive over
the given segment in the given direction (as segments can be unidirectional).
Start charging law does not add activities in case one of these conditions
does not hold.

We consider the following interaction laws in the warehouse environment:

• Collision law. A collision law enforces collisions of AGVs in the warehouse
environment. Based on the driving activities, a collision law determines
whether AGVs collide. In case the collision law detects a collision, it re-
turns an activity transformation that replaces the driving activity/activities
involved with driving activity/activities that stop at the time the collision
occurs.

• Battery law. A battery law enforces that all activities of an AGV are pre-
empted in case it runs out of energy. Based on the energy consumption of

6.4 Model Formulation: Simulation Model of the AGV Simulator 131

driving, picking and dropping activities, a battery law preempts all activities
as soon as an AGV runs out of energy.

• WiFi QoS law. A WiFi QoS law enforces a particular quality of service for
the wireless communication. For example, to enforce a limited communica-
tion range, a WiFi QoS law removes sending activities of which the distance
between sender/receiver and the WiFi access point exceeds this range. To
enforce message loss, a WiFi QoS law can also remove sending activities with
a given probability which could depend on the distance to the WiFi access
point or the current communication load.

• Interrupt charging law. An interrupt charging law enforces that the charging
activity is preempted as soon as an AGV is no longer located at a charging
station, i.e. it started driving again.

6.4.2 Simulation Model for Integrating the AGV Controller
Software

Figure 6.4 gives a graphical overview of the control software part of the simulation
model of the AGV simulator. This figure shows specific instantiations of the
modeling constructs of Figure 4.1. We elaborate on the way the AGV controller
software interacts with the environment and the way the execution time of the
AGV controller software is captured in the simulation model.

Control Interface of AGV Controllers. We describe the way AGV con-
trollers interact with the warehouse environment. The interaction of the AGV con-
troller software with the warehouse environment is modeled in terms of control
primitives and a control name mapping and control parameter mapping.

The following control primitives are captured in the simulation model:

• Ensor.move(segment). Ensor.move(segment) is an E’nsor control primitive
that instructs E’nsor to drive the AGV over the given segment.

• Ensor.pick(segment). Ensor.pick(segment) is an E’nsor control primitive
that instructs E’nsor to drive the AGV over the given segment and pick
up a load at the node at the end of the segment.

• Ensor.drop(segment). Ensor.drop(segment) is an E’nsor control primitive
that instructs E’nsor to drop the load the AGV is carrying at the node at
the end of the segment.

• Ensor.park(segment). Ensor.park(segment) is an E’nsor control primitive
that instructs E’nsor to drive the AGV over the given segment and park at
a park node at the end of the segment.

132 Simulating AGV Control Applications in Dynamic Warehouse Environments

Controller

Duration
Mapping

Control
Name

Mapping

Control
Parameter
Mapping

Duration
Primitive

Control
Primitive

Ensor.move
(segment)

Ensor.pick
(segment)

Ensor.drop
(segment)

Ensor.charge
(segment)

Ensor - Influence
Parameter
Mapping

Ensor - Influence
Name Mapping

AGV Controller
Duration Mapping

Com.send
(message)

Key:
Modeling
Construct

Group of
Constructs Generalization

Ensor.park
(segment)

Thread.sleep
(millis)

Figure 6.4: Overview of the simulation model for integrating the AGV control
software in a simulation. The grey parts are specific instantiations of the modeling
constructs for the AGV simulator.

• Ensor.charge(segment). Ensor.charge(segment) is an E’nsor control primi-
tive that instructs E’nsor to drive the AGV over a given segment to a battery
charging node and start charging batteries there.

• Com.send(message). Com.send(message) is a control primitive that instructs
an AGV’s onboard wireless communication module to send a message.

We employ an Ensor-influence name mapping to determine the name of the
influences that result from the control primitive invocations. The mapping be-
tween control primitive invocations and influences is a straightforward one-to-one
mapping. For example, invocations of the control primitive Ensor.charge will be
mapped on charge influences.

We employ an Ensor-influence parameter mapping to determine the parameters
of the influences that result from the control primitive invocations. For example,

6.5 Model Translation 133

for all control primitives that take a segment as argument, the corresponding in-
fluence requires two parameters: the segment on the one hand, and one of both
end stations of that segment on the other hand (to indicate the direction in which
an AGV will drive over that segment). For invocations of the control primitive
Com.send(message), the corresponding send influence requires the receiver which
is encapsulated in the message as an explicit parameter. The Ensor-influence
parameter mapping takes care of determining all parameters needed for the influ-
ences.

Execution Time of AGV Controllers. We describe the way the execution
time of AGV controllers is captured in a simulation model. The execution time
of AGV controller software is modeled in terms of duration primitives and a
duration mapping.

The duration primitives are typically dependent upon the AGV controller soft-
ware. Therefore, the developer should specify custom duration primitives for the
AGV control software that is to be embedded in the simulation. By default, only
the following duration primitive is captured in the simulation model:

• Thread.sleep(millis). Thread.sleep(millis) suspends the execution of an AGV
controller for the specified number of milliseconds. This control primitive
is used extensively in controllers, as the real environment typically evolves
several orders of magnitude slower than the control application.

We employ an AGV controller duration mapping to specify the duration
of invocations of duration primitives. By default, the AGV controller dura-
tion mapping only associates a duration to invocations of the duration primitive
Thread.sleep(millis). That duration corresponds to the amount of time specified
by the argument millis.

6.5 Model Translation: Building Executable Sim-
ulations of the AGV Simulator

We describe how the simulation model of the AGV simulator can be translated
into an executable simulation. We employ the simulation platform described in
Chapter 5 to support executable simulations based on the simulation model of the
AGV simulator.

We illustrate the way a number of core parts of the simulation model of the
AGV simulator are designed. We focus on the design of driving activities of AGVs
and the design of a collision law. The simulation platform encapsulates all func-
tionality to support these constructs in an executable simulation.

134 Simulating AGV Control Applications in Dynamic Warehouse Environments

6.5.1 Designing Driving Activities

We describe a way of designing driving activities.

Activity()
getEntity()
getStateChange()
getTimeInterval()

entity:EnvironmentalEntity
timeInterval:TimeInterval

Activity

DrivingActivity()
getStateChange()
getAGVSnapshot()
getSegment()
getStation()
getSpeed()
getEnergyConsumptionRate()

segment:Segment
station:Station
speed:Speed
energyConsumption:EnergyRate

DrivingActivity

Figure 6.5: Class diagram depicting the DrivingActivity class.

Figure 6.5 shows that the class DrivingActivity inherits from the abstract
class Activity. Driving activities encapsulate the following state:

• entity is the environmental entity that is involved in the drive activity. For
a DrivingActivity, the subject is an AGV. getEntity() returns the entity
of this DrivingActivity.

• timeInterval is the time interval during which the driving of the AGV hap-
pens. getTimeInterval() returns the time interval of this DrivingActivity.

• segment is the segment on the warehouse floor over which the AGV drives.
getSegment() returns the segment of this DrivingActivity.

• station is the target station on that segment, which indicates the direction
the AGV drives over the given segment. getStation() returns the station
of this DrivingActivity.

• speed is the velocity of the movement of the AGV. getSpeed() returns the
speed of this DrivingActivity.

6.5 Model Translation 135

• energyConsumption is the rate of energy the AGV consumes for this driv-
ing activity. getEnergyConsumptionPerTimeUnit() returns the amount of
consumed energy per second for this driving activity.

In addition to the methods described above, driving activities offer the following
methods:

• DrivingActivity(EnvironmentalEntity e, TimeInterval i, Segment
s, Station st, Speed v, EnergyRate r) creates a new driving activity
with given entity, time interval, segment, station, speed and energy rate.

• getStateChange() returns a StateChange object that encapsulates the state
change of this activity for the time instant this activity completes. The state
change encapsulates a state update of (1) the position of the AGV and (2)
the battery level of the AGV.

• getAGVSnapshot(TimePoint t) returns a new AGV object that encapsu-
lates the AGV state at time instant t. The snapshot time t belongs to the
time interval of this driving activity.

T=3 T=5

T=(2 7)

2

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor Drive Activity over
interval (t1 t2)

1
3

2

1
3

A

2

1
3

A

T=t1 T=t2

T=2

T=7

Figure 6.6: Example of a drive activity in the simulated warehouse environment.

136 Simulating AGV Control Applications in Dynamic Warehouse Environments

In Figure 6.6, an example of a drive activity of AGV A over time interval
(2 → 7) is depicted. We depict each drive activity as a hull that wraps the
intermediate positions that are taken by the AGV over time. In Figure 6.6, the
evolution represented by the drive activity is illustrated using two snapshots of the
AGV within time interval (2 → 7): getAGVSnapshot(3) and getAGVSnapshot(5),
showing the instant position of the AGV at time instants 3 and 5 respectively.

6.5.2 Designing a Collision Law

We describe a way of designing a collision law. We focus on detecting whether
and when collisions occur.

Snapshot-Based Collision Detection: Example. Figure 6.7 illustrates a
collision law by means of an example. The example comprises two AGVs. AGV B
is involved in a driving activity over time interval (1 → 7). AGV C is involved in a
driving activity over time interval (4 → 9).

To detect collisions, a collision law takes consecutive snapshots of the interme-
diate positions of AGVs and determines whether the bounding boxes of the AGVs
overlap. Figure 6.7 depicts six snapshots with a one second snapshot interval.
In the snapshot at time instant T = 6, a collision occurs as the bounding boxes
of both AGVs overlap. When detecting a collision, the collision law proposes an
activity transformation that preempts both driving activities at the moment the
collision occurs. The right hand side of Figure 6.7 illustrates the result of applying
the activity transformation. AGV B and AGV C are involved in driving activities
that end at time instant T = 6, i.e. the time instant the collision occurs.

The time interval between two consecutive snapshots determines the accuracy
of detecting collisions. Suppose we want to detect overlap of the bounding boxes of
AGVs with an accuracy of 10 centimeter. In case AGVs drive at a maximum speed
of 1 meter per second, it takes an AGV 0.1 seconds to move over 10 centimeter. In
case two AGVs travel at top speed, their relative position changes at a maximum
rate of 2 meters per second. Consequently, to detect collisions with an accuracy
of 10 centimeter, a snapshot to detect collisions must happen at least every 0.05
seconds.

Snapshot-Based Collision Detection: Implementation. Figure 6.8 shows
the implementation of the applyLaw() method of the CollisionLaw class.
applyLaw() uses the principle of snapshot-based collision detection.

The applyLaw() method is implemented as a nested loop.

• The outer while-loop is executed once for each snapshot time.

• The inner nested for-loop performs pairwise checks to determe whether the
bounding boxes of some of the AGVs overlap at the snapshot time. The

6.5 Model Translation 137

Key:

Station

Unidirectional
Road Segment

Nr ID AGV

Bidirectional
Road Segment

Warehouse floor
(partial)

T=4
3

2 6

1

T=5
3

2 6

1

T=6
3

2 6

1

T=1
3

2 6

1

T=2
3

2 6

1

T=3
3

2 6

1

B

AGV Bounding box

C

B

C

B

C

C

B

C

B
C

B

Drive Activity of AGV X
over interval (t1 t2)XT=t2T=t1

T=(1 9)
3

2 6

1
C

T=9

T=4

B
T=7

T=1

T=(1 9)
3

2 6

1

C
T=6

T=4

B
T=6

T=1

Apply
Collision

Law

Figure 6.7: Collision detection based on snapshots. The bounding boxes of the
AGVs overlap at time t=6, indicating a collision.

138 Simulating AGV Control Applications in Dynamic Warehouse Environments

/**
 * Returns an array of activity transformations that occur within a
 * given time interval.
 *
 * @param inspector The environment inspector
 * @param interval The time interval in which this law should
 * check for occurrences of collisions
 * @return An array of activity transformations
 */
public ActivityTransformation[] applyLaw(EnvironmentInspector inspector,

TimeInterval interval) {

 //This law is executed timestep based. The timestep
 //determines the accuracy of detecting collisions

 TimePoint snapshotTime=interval.getStartTime();
 AGV[] agvs = inspector.getAGVs();
 BoundingBox box1;
 BoundingBox box2;
 Vector<Collision> collisions = new Vector<Collision>();

 //loop to check snapshots within the given time interval for collisions
 while (! snapshotTime.after(interval.getEndTime())) {
 //nested loop to check collisions
 for (int i = 0; i < agvs.length; i++) {
 //retrieve the bounding box of the AGV
 box1=inspector.getState(agvs[i],snapshotTime).getBoundingBox();
 //check for overlap with bounding boxes of remaining AGVs
 for (int j = i+1; j < agvs.length; j++){
 box2 = inspector.getState(agvs[j],snapshotTime).getBoundingBox();
 //check whether a collision occurs
 if (box1.overlapsWith(box2)){
 collisions.add(new Collision(agvs[i],agvs[j],snapshotTime));
 }
 }
 }
 //increase the snapshot time with a given interval
 //the snapshot interval determines the accuracy of detecting collisions
 snapshotTime.increase(getSnapshotInterval());
 }
 //determine activity transformations for the collisions that were detected.
 return getActivityTransformations(collisions);
}

Figure 6.8: Extract of Java code: the applyLaw() method of the class CollisionLaw.

EnvironmentInspector is responsible for composing the snapshots of the
AGVs, as described in Section 5.4.

The applyLaw() method relies on the getActivityTransformations()

6.6 Evaluating the AGV Simulator 139

method to return an activity transformation for each of the detected collisions.
The activity transformation of a collision encapsulates (1) the removal of the driv-
ing activity/activities that are involved in the collision and (2) the addition of a
new driving activity or new driving activities that represent the movement of the
AGV(s) until the time instant the collision occurs.

6.6 Evaluating the AGV Simulator

In the previous sections, we illustrated the way the modeling framework and the
simulation platform underpin the development of the AGV simulator. We now
focus on the AGV simulator and evaluate its flexibility and performance.

In Section 6.6.1, we discuss the flexibility of the AGV simulator. We demon-
strate both flexibility and performance of the AGV simulator by means of experi-
ments in Section 6.6.2. Finally, in Section 6.6.3 we discuss research on AGV control
applications in the EMC2 project that was supported by the AGV simulator.

6.6.1 Flexibility of the AGV simulator

To use the AGV simulator, the developer specifies the characteristics of the AGV
control software and the simulated warehouse environment.

• To embed the AGV control software in the simulation, the developer spec-
ifies the execution time of the control software. This is done by identifying
duration primitives and configuring a duration mapping for these primitives.
The control primitives and the control mapping are predefined for all E’nsor
control primitives.

• The developer can specify the characteristics of the simulated warehouse en-
vironment in which the control software is embedded. Besides the physical
setup of the warehouse (i.e. the number and positioning of AGVs, nodes, seg-
ments, etc.), the developer can also select appropriate environment sources
of dynamism (e.g. the transport generator), reaction laws and interaction
laws.

Flexibility of the AGV simulator is important to enable experiments with AGV
control software of which the functionality is not yet fully operational. We give a
number of examples of core parts of the AGV simulator that can be customized
to suit the needs of a particular simulation study.

• The battery law can be disabled when performing tests with AGV control
software of which the battery charging functionality is not yet operational.
This prevents AGVs from running out of energy.

140 Simulating AGV Control Applications in Dynamic Warehouse Environments

• The quality of service of the communication channel can be adjusted by
means of the WiFi QoS law. Disabling this law ensures reliable transmission
of all messages. To simulate degraded quality of service of the communication
channel, the law can be configured with the desired behavior, e.g. reduced
communication range, message loss, message delay, etc.

• Collision detection can be configured by means of the collision law. The
collision law can be configured with the accuracy that is required for detect-
ing collisions. By deactivating the collision law, AGVs can drive across the
warehouse without affecting each other.

• The activities can be customized to reflect the physical characteristics of the
AGVs. For example, driving activities encapsulate the specific velocity or
acceleration profile of the AGVs.

• The transport profile of the transport generator can be customized to suit
the needs of a particular simulation study.

6.6.2 Measurements of the AGV Simulator

We measure the performance of the AGV simulator and demonstrate its flexibility.
We focus the collision law of Section 6.5.2, as this law is a dominant factor for the
performance of the AGV simulator. It is not our goal to apply optimizations to
increase the performance of the AGV simulator.

6.6.2.1 Setup of the Experiments

The goal of the experiments is to illustrate both flexibility and performance of the
collision law in the AGV simulator. We performed experiments with 4 different
configurations with respect to the collision law:

1. The collision law deactivated. In this particular configuration, the collision
law is not used in the simulation. This setting is typically used in simulation
studies in which collision avoidance is out of focus.

2. The collision law configured with an accuracy of 10 centimeters. As AGVs
drive at a maximum speed of 1 meter per second, it takes an AGV 0.1
seconds to move over 10 centimeter. In case two AGVs travel at top speed,
their relative position changes at a maximum rate of 2 meters per second.
Consequently, to detect collisions with an accuracy of 10 centimeter, the
snapshot frequency is 0.05 seconds.

3. The collision law configured with an accuracy of 25 centimeters. This corre-
sponds to a snapshot frequency of 0.125 seconds.

6.6 Evaluating the AGV Simulator 141

4. The collision law configured with an accuracy of 100 centimeters. This cor-
responds to a snapshot frequency of 0.5 seconds.

The setup of the experiments is the following:

• The warehouse consists of 40 stations connected by 69 segments over an area
of 1400 by 900 meters.

• The number of AGVs varies from 2 to 12. These are typical sizes of AGV
warehouse transportation systems.

• We use lightweight AGV controllers. This enables us to measure the compu-
tation time consumed by the AGV simulator itself, with minimal bias from
the controllers that are embedded in it. Each AGV controller is programmed
to poll the status of its AGV every second. AGVs drive around randomly:
as soon an AGV controller notices it has reached the next station, it ran-
domly selects a next segment to drive on. AGVs rely on segment locking for
avoiding collisions.

The simulations are executed on an Intel Pentium 4 computer with a processor
speed of 2.8GHz and a 512MB of memory.

6.6.2.2 Measurements

Figure 6.9 shows the measured performance of the AGV simulator for each of the
four configurations of the collision law discussed above. Each configuration of the
collision law was tested in 11 different settings, i.e. from 2 to 12 AGVs. Each
point in the graph is the average of 40 measurements, of which the 99% confidence
interval is depicted. We discuss a number of observations.

From the measurements it is clear that the AGV simulator enables simulation
runs faster than real-time. Even for detecting collisions of 12 AGVs with an
accuracy of 10 centimeters, the simulation speedup is about factor 5, i.e. to simulate
100 seconds of (simulation) time in the AGV transportation system, the computer
consumes about 20 seconds of wallclock time.

From the measurements it is clear that the collision law dominates the per-
formance of the AGV simulator. The configuration in which the collision law is
deactivated scales linearly as the number of AGVs increases, whereas all configura-
tions with the collision law activated scale quadratically with the number of AGVs.
This is within the line of expectations, as the complexity of the collision law is
O(n2), with n the number of AGVs. This can be derived from its implementation
depicted in Figure 6.8, which contains a double for-loop over the AGVs.

The performance that can be gained by reducing the accuracy of the collision
law seems less than expected. For example, the snapshot frequency of the 10 cen-
timeter law is 2.5 times smaller than the snapshot frequency of the 25 centimeter
law, i.e. 0.05 seconds versus 0.125 seconds respectively. So one could expect a

142 Simulating AGV Control Applications in Dynamic Warehouse Environments

 0

 5

 10

 15

 20

 25

 30

2 3 4 5 6 7 8 9 10 11 12

W
al

lcl
oc

k
Ti

m
e

(s
)

Number of AGVs

No collision law
10 cm
25 cm

100 cm

Figure 6.9: Performance (in seconds of wallclock time) for simulating 100 seconds
of simulation time with the AGV simulator. The four lines correspond to four
different configurations of the collision law: the collision law deactivated and the
collision law detecting with an accuracy of 10 centimeters, 25 centimeters and 100
centimeters respectively. Each point in the graph is the average of 40 measure-
ments, of which the 99% confidence interval is depicted.

performance difference of factor 2.5. Nevertheless, the difference in performance
between both is only about a factor two. Moreover, the snapshot frequency of
the 25 centimeter law is 4 times smaller than the snapshot frequency of the 100
centimeter law, i.e. 0.125 seconds versus 0.5 seconds respectively. However, the
difference in performance between both is small, and certainly not a factor 4.
This diminished performance gain of more coarse-grained laws can be explained
as follows. From the description of the evolution of the model in Section 3.7, it
is clear that the laws must be checked each time new influences are available. In
our experiments, each AGV controller interacts with the environment on aver-
age once a second. Consequently, for an experiment with n AGVs, on average n
AGVs access the environment during each second of simulation time. This means
that new influences are generated on average each 1/n second of simulation time.

6.6 Evaluating the AGV Simulator 143

Consequently, the collision law is triggered on average each 1/n second of simu-
lation time, i.e. the start time of the argument interval of an invocation of the
applyLaw() method (see Figure 6.8) is on average only 1/n seconds later than
the start of the interval that was given as an argument in the previous invoca-
tion. Decreasing the accuracy of a collision law only leads to a significant gain of
performance as long as the snapshot frequency remains significantly smaller than
the arrival rate of the influences. For example, for 8 AGVs each acting on average
once every second, there is little use of employing a collision law with a snapshot
interval larger than 0.125 seconds.

6.6.3 EMC2 Research Supported by the AGV Simulator

The AGV simulator was extensively used during the development of AGV con-
trollers in the EMC2 project. The AGV simulator provides the necessary support
for a developer to evaluate different functionalities an AGV control application in
isolation, or to compare alternative solutions. We give a number of examples.

• Virtual environment based routing [WSH05]. In this approach, AGV con-
trollers use a middleware, called virtual environment, for routing purposes.
The virtual environment provides a graph-like map of the paths through
the warehouse that the AGV controllers use for routing. Signs on the map
specify the cost for the AGVs to drive to a given destination. To warn other
AGVs that certain paths are blocked or have a long waiting time, AGV
controllers mark segments with a dynamic cost on the map in the virtual
environment. The middleware ensures consistency of the state of the virtual
environment on neighboring AGVs. The simulated warehouse environment
enables AGV controllers to drive over the warehouse layout and it handles
the exchange of messages of the middleware.

• Hull-based collision avoidance. [WSHL05] AGV controllers avoid collisions
by coordinating with other AGVs using the virtual environment. AGV con-
trollers mark the path they are going to drive using hulls in their virtual
environment. The hull of an AGV is the physical area the AGV occupies.
A series of hulls then describes the physical area an AGV occupies along a
certain path. If the area is not marked by other hulls (the AGV’s own hulls
do not intersect with others), the AGV can move along and actually drive
over the reserved path. Afterwards, the AGV removes the markings in the
virtual environment. In case of a conflict, the virtual environments execute
a mutual exclusion protocol to determine which of AGVs involved can move
on. The simulated warehouse environment handles the exchange of messages
between virtual environments.

• Field-based transport assignment [WBH06, Sch05]. In this approach, trans-
port tasks emit fields into the virtual environment that attract idle AGVs.

144 Simulating AGV Control Applications in Dynamic Warehouse Environments

To avoid multiple AGVs driving towards the same transport, AGVs emit
repulsive fields. AGVs combine received fields and follow the gradient of the
combined fields that guide them towards locations of transports. The AGVs
continuously reconsider the situation in the environment and task assign-
ment is delayed until the load is picked, which improves the flexibility of the
system. The simulated warehouse environment provides the infrastructure
to add new tasks in the system and it handles the exchange of messages to
spread fields in the virtual environment.

• Protocol-based transport assignment [WBHS06]. Besides field-based trans-
port assignment, a dynamic version of the Contract Net protocol [Smi80] was
developed to assign transports to AGVs. This protocol, called DynCNET,
allows AGV controllers to reconsider the assignment of transports while they
drive towards a transport. An extensive series of simulation tests with real
world warehouse layouts and order profiles show that both approaches have
similar performance characteristics.

The AGV simulator also supports evaluating the integration of different func-
tionalities of an AGV control application. For example, a modular AGV con-
troller [DL07] was developed that manages combinations of functionalities. A
combination consists of a particular approach for routing, a particular approach
for collision avoidance, a particular approach for transport assignment and/or a
particular approach for battery charging.

6.7 Conclusions

In this chapter, we applied the modeling framework and the simulation platform
in an industrial case. We developed an AGV simulator that supports software-
in-the-loop simulation of distributed control applications that control AGVs in
warehouse environments.

The modeling framework underpins the simulation model of the AGV simula-
tor. The constructs of the modeling framework are used to capture key character-
istics of the AGV system in a first-class manner. A developer can adapt the model
of the AGV simulator to the needs of a particular simulation study by activating,
deactivating and customizing first-class elements of the simulation model.

The simulation platform underpins the execution of the AGV simulator. The
simulation platform encapsulates the functionality to execute simulation models
that are customized for a particular AGV simulation study.

A real AGV control application encapsulates several complex functionalities,
such as routing, collision avoidance, transport assignment and battery charging.
These functionalities are typically developed incrementally, focussing on partic-
ular functionalities and abstracting from others. The AGV simulator provides
the necessary support for the developer (1) to evaluate different functionalities

6.7 Conclusions 145

of the AGV controllers in isolation, (2) to compare several approaches for each
functionality, and (3) to enable the systematic integration of the functionalities.

146 Simulating AGV Control Applications in Dynamic Warehouse Environments

Chapter 7

Conclusions

The research presented in this dissertation focusses on the development of software-
in-the-loop simulations for distributed control application in dynamic environ-
ments. This family of simulations has the following characteristics:

• The environment to-be-simulated is dynamic. In a dynamic environment,
the operating conditions of a distributed control application are continuously
changing.

• The control software of the real distributed control application is embedded
in the simulation.

We started from the observation that developing this family of simulations is com-
plex. An important reason for this complexity is the lack of special-purpose model-
ing constructs to support such simulations. Existing support comprises either (1)
general-purpose modeling constructs of which the meaning is formally specified,
but which fail to provide support explicitly targeted at this family of simulations,
or (2) informal abstractions of which the meaning is implicit and coupled to the
design of a simulation platform.

In this dissertation, we presented an approach to support the development of
such simulations. Core ingredients of the approach are special-purpose model-
ing constructs for this family of simulations, an explicit modeling framework that
formally specifies these constructs and a simulation platform that supports the
modeling constructs in an executable simulation. These ingredients enable a de-
veloper to handle the complexity that is involved in building the target family of
simulations as follows.

Our approach enables a developer to disentangle the model formulation phase
from the model translation phase. The model formulation phase is supported
by special-purpose modeling constructs that are formally specified to enable a
modeler to formulate a simulation model without taking into account a particular

147

148 Conclusions

simulation platform. The model translation phase is supported by means of a
simulation platform that can be used to execute simulation models expressed in
terms of the modeling constructs.

In the remainder of this concluding chapter, we first summarize the contribu-
tions of our research in Section 7.1. Afterwards, we put forward suggestions for
further research in Section 7.2 and a closing reflection in Section 7.3.

7.1 Contributions

The main contribution of the research described in this dissertation is the intro-
duction of an explicit modeling framework for software-in-the-loop simulations of
distributed control applications. The modeling framework offers constructs for
formulating a simulation model for this family of simulations and captures core
characteristics of these simulations in a first-class manner. Moreover, the model-
ing constructs are formally specified, which is crucial to decouple the simulation
model from the simulation platform to execute the model.

Specific contributions of the research described in this dissertation are (1) the
introduction of a modeling framework with special-purpose modeling constructs
to support the development software-in-the-loop simulations of distributed control
applications in dynamic environments, (2) the development of a formal specifica-
tion of the modeling framework, (3) the development of a simulation platform that
supports the modeling constructs in an executable simulation, and (4) the evalu-
ation of the usability of all constructs of the modeling framework in an industrial
case. We elaborate on each of the contributions.

The introduction of a modeling framework for software-in-the-loop
simulations of distributed control applications in dynamic environ-
ments [HHB05, HVUM07, HHW04a, HHW04b]. The modeling frame-
work enables a developer to capture key characteristics of this family of simulations
in a first-class manner. The modeling framework comprises two complementary
parts:

• The environment part [HHB05, HVUM07] of the modeling framework com-
prises modeling constructs that capture in an explicit manner a number of
key characteristics and relations that are pertinent for modeling dynamic
environments of distributed control applications:

– A dynamic environment has a particular scope. We put for-
ward environmental entities, environmental properties and
environment layout as modeling constructs to capture all constituting
parts in the environment and the way they are arranged with respect
to each other.

7.1 Contributions 149

– A dynamic environment encapsulates dynamism. We put forward
activities to capture the evolution of all entities in the environment
in an explicit manner.

– A dynamic environment embeds sources of dynamism. We put for-
ward controllers and environment sources to capture sources of dy-
namism that are part of the distributed control application and sources
of dynamism that are external to the distributed control application,
respectively. Controllers and environment sources are embedded in en-
vironmental entities. Controllers and environment sources are restricted
in their ability to affect dynamism in the environment. We put forward
influences to reify the attempt of a source of dynamism to affect the
environment.

– A dynamic environment regulates dynamism. We put forward reaction
laws to capture the way the environment reacts to influences originat-
ing from the sources of dynamism, and interaction laws, to capture
interactions of dynamism in the environment.

• The control application part [HHW04a, HHW04b] of the modeling frame-
work comprises modeling constructs that capture key characteristics of the
software of the distributed control application that is embedded in the sim-
ulation:

– The software of a distributed control application has a particular execu-
tion time in the real world. We put forward duration primitives and
a duration mapping as modeling constructs to specify the real-world
execution time of a distributed control application in an explicit model.

– The software of a distributed control application has a particular con-
trol interface to access the environment. We put forward control
primitives and a control mapping to capture the control interface
and the influences that result from invoking that interface in the simu-
lation model.

The development of a formal specification of the modeling frame-
work [HVUM07, HHWB05a]. We developed a formal specification based
on set theory to underpin the modeling framework. The formal specification de-
couples the modeling constructs from their implementation in a specific simulation
platform. The advantage of the formal specification is twofold.

On the one hand, the formal specification enables using the modeling constructs
for formulating a simulation model while making abstraction of the simulation
platform to execute the model. The formal specification unambiguously specifies
the meaning of the modeling constructs, and describes the way the constructs are
related to each other.

150 Conclusions

On the other hand, the formal specification enables a developer to consider
several design alternatives for translating a simulation model into an executable
simulation. The formal specification specifies the functionality that is needed to
support the constructs in an executable simulation, without commitment to par-
ticular design decisions. As such, the formal specification guides the development
of an executable simulation and prevents reinventing its functionality from scratch.

The development of a simulation platform that supports the model-
ing constructs [HHW04b, WHH05]. We developed a simulation platform
to demonstrate that the modeling framework is feasible for developing executable
simulations. The simulation platform encapsulates the functionality to support
the modeling constructs in an executable simulation. The simulation platform
supports simulations (1) in which the software of real controllers can be embed-
ded, and (2) of which the simulation model is described in terms of the proposed
modeling constructs.

We put forward an architecture for such a simulation platform, and documented
this architecture using several architectural views. The top-level module decom-
position view of the architecture of the simulation platform comprises three main
modules that each encapsulate a core functionality of the simulation platform:

1. The Simulated Environment module is responsible for managing the model
of the environment. This module encapsulates all functionality to support
the modeling constructs of the environment part of the modeling framework.

2. The Execution Tracker module is responsible for tracing the execution of
the software of a real controller of the distributed control application. This
module encapsulates all functionality to support the modeling constructs of
the control application part of the modeling framework.

3. The Simulation Engine module is responsible for managing the evolution
of all parts of the simulation in correspondence to the specifications of the
simulation model. The simulation engine encapsulates all functionality to
synchronize the progress of the simulated environment with the progress of
all execution trackers of the controllers that are embedded in the simulation.

The architecture uses aspect technology for plug-and-play integration of the
control software in a simulation. Aspect technology is used to weave all tracing
functionality required for the simulation into the control software. This contributes
to a clean separation between application concerns and simulation concerns.

A validation in an industrial case [HHB06, HHWB05b]. We applied the
modeling framework and the simulation platform in an industrial case. We de-
veloped an AGV simulator that supports software-in-the-loop simulation of dis-
tributed control applications that control AGVs in warehouse environments.

7.2 Future work 151

The modeling framework underpins the simulation model of the AGV simula-
tor. The constructs of the modeling framework are used to capture key character-
istics of the AGV system in a first-class manner. A developer can adapt the model
of the AGV simulator to the needs of a particular simulation study by activating,
deactivating and customizing first-class elements of the simulation model.

The simulation platform underpins the execution of the AGV simulator. The
support offered by the simulation platform enables executing simulation models
that are customized for a particular simulation study.

A real AGV control application encapsulates several, complex functionalities,
such as routing, collision avoidance, transport assignment and battery charging.
These functionalities are typically developed incrementally, focussing on partic-
ular functionalities and abstracting from others. The AGV simulator provides
the necessary support for the developer (1) to evaluate different functionalities
of the AGV controllers in isolation, (2) to compare several approaches for each
functionality, and (3) to enable the systematic integration of the functionalities.

7.2 Future work

We give a number of directions for future research.

Extending the Modeling Framework. The modeling framework could be
extended with additional constructs. We suggest a number of avenues for future
research.

• Supporting perception. Currently, the modeling framework does not provide
modeling constructs to capture the way a distributed control application
senses or perceives the environment. Consequently, modeling perception
must still be tackled by the modeler without explicit support. In analogy
with dynamism, perception is not limited to a mere state snapshot of the
environment. Perception is affected by the environment [WSH04]. For ex-
ample, a camera cannot perceive entities that are positioned behind other
entities, and its perception could be affected by the amount of ambient light.
Moreover, perception is not limited to a static state snapshot of a part of
the environment, but closely related with dynamism. For example, sensors
can be capable of registering the movement of entities in the environment,
rather than their momentary position. Investigating the relation between
perception and dynamism is an interesting challenge.

• Supporting environment sources. Currently, the modeling framework does
not provide explicit modeling constructs to model the internals of an en-
vironment source. An environment is a black box source of influences,
and its behavior is specific for a particular simulation study. More elab-
orate support for environment sources could focus on modeling constructs

152 Conclusions

for various kinds of behaviors, such as reactive [Bro91, WH06], behavior-
based [Mae91, WSHG05] or cognitive behaviors [HS96, RG95].

Supporting Model Transformations. The modeling framework offers explicit
modeling constructs for modeling software-in-the-loop simulations of distributed
control applications in dynamic environments. The resulting simulation model is
independent of the design of a particular simulation platform. A model transfor-
mation would enable transforming a simulation model described in terms of the
modeling constructs of the modeling framework into a simulation model described
in terms of general-purpose modeling constructs. As such, general-purpose simu-
lation platforms can be reused to support an executable simulation. Supporting
model transformations in an explicit manner poses an interesting challenge (as was
discussed in Section 3.8.2).

Model transformations are closely related to MDA (Model-Driven Architec-
ture) [Gro03, KWB03], a software development approach that relies on a platform
independent model (PIM) to reify the conceptual design of the functionality of a
system in a way that is independent of a particular implementation technology.
The technical realization is supported by model transformations that translate the
PIM into one or several platform specific models (PSM), that support a particular
technology (e.g. CORBA, .Net) to run on computers.

Extending the Simulation Platform. We indicate two directions for extend-
ing the simulation platform.

• Distribution. Currently, the simulation platform does not incorporate sup-
port for distribution. The challenges of distributing the simulation plat-
form are not of pure technical nature: as all parts of the simulation are
explicitly synchronized with the simulation engine, they could technically be
distributed across different hosts. The main challenge is determining which
distribution scheme is most suitable for a particular simulation study. On the
one hand, distribution adds computing power which speeds up a simulation,
on the other hand, distribution requires synchronization to happen over a
network, which slows down a simulation. Simulations with computation-
intensive controllers should benefit more from an expanded distribution
scheme than lightweight, highly interactive controllers. Consequently, dis-
tribution of simulations should be supported in a flexible manner [EHU06],
with distribution schemas that can be adapted or self-adapt to a particular
simulation study.

• Execution tracing. Currently, the simulation platform relies on AspectJ to
trace the execution of each controller. However, AspectJ can only trace the
execution of duration primitives up to a particular level of granularity. An

7.3 Closing Reflection 153

interesting challenge is developing support to trace the execution of more
fine-grained duration primitives, e.g. at the level of machine instructions.

7.3 Closing Reflection

Formulating a simulation model is a matter of identifying the core characteristics
or features of the real system that are sufficient to serve the purpose of a spe-
cific simulation study. A model should neither oversimplify the system nor carry
so much detail that is becomes costly to build and run. Therefore, simulation
modeling is often referred to as an art, instead of a science [Sha98].

However, as the demand for distributed control applications increases, more
and more simulations are built to support their development. The way the simu-
lation models for such systems are constructed, becomes common knowledge. This
kind of common knowledge can be reified in a modeling framework.

For software-in-the-loop simulations of distributed control applications in dy-
namic environments, simulations have been studied and built for a long time. The
efforts of many prominent researchers have laid the foundation on which our re-
search contributions are built. As such, the modeling framework we put forward
reifies the knowledge and expertise we have acquired during our research that is
founded on decades of domain maturing.

The modeling framework demonstrates the way knowledge and practices with
simulating distributed control applications in dynamic environments can be sys-
tematically documented and maturated in a form that has proven its value for
simulation development. Therefore, we believe that simulation modeling is an art
supported by science.

154 Conclusions

Bibliography

[AC96] Scott D. Anderson and Paul R. Cohen. Timed Common Lisp: the
duration of deliberation. SIGART Bull., 7(2):11–15, 1996.

[And97] Scott D. Anderson. Simulation of multiple time-pressured agents. In
WSC ’97: Proceedings of the 29th conference on Winter simulation,
pages 397–404, 1997.

[And00] John Anderson. A generic distributed simulation system for intelligen
agent design and evaluation. In 10th International Conference on AI,
Simulation, and Planning in High Autonomy Systems, pages 36–44,
2000.

[Bar94] David Baraff. Fast contact force computation for nonpenetrating
rigid bodies. Computer Graphics, 28(Annual Conference Series):23–
34, 1994.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice, Second Edition. Addison-Wesley Professional, April 2003.

[BCNN00] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event
System Simulation. Prentice-Hall, Upper Saddle River, N.J., third
edition, 2000.

[BDD03] Michael Batty, Jake Desyllas, and Elspeth Duxbury. The discrete dy-
namics of small-scale spatial events: Agent-based models of mobility
in carnivals and street parades. International Journal of Geographical
Information Science, 17(7):673–697, 2003.

[BHvR05] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Jist: an
efficient approach to simulation using virtual machines: Research
articles. Softw. Pract. Exper., 35(6):539–576, 2005.

[BJNT06] Ansgar Bredenfeld, Adam Jacoff, Itsuki Noda, and Yasutake Taka-
hashi, editors. RoboCup 2005: Robot Soccer World Cup IX, volume
4020 of Lecture Notes in Computer Science. Springer, 2006.

155

156 BIBLIOGRAPHY

[BKB+05] Neil Byrne, Peter Koonce, Robert L Bertini, Chris Pangilinan, and
Matt Lasky. Using hardware-in-the-loop simulation to evaluate signal
control strategies for transit signal priority. Transportation Research
Record: Journal of the Transportation Research Board, (1925):227–
234, 2005.

[BKW06] Thomas Bräunl, Andreas Koestler, and Axel Waggershauser. Fault-
tolerant robot programming through simulation with realistic sensor
models. International Journal of Advanced Robotic Systems, 3(2):99–
106, 2006.

[BMP+] Günter Bruns, Peter Mössinger, Daniel Polani, Ralf Schmitt, Rene
Spalt, Thomas Uthmann, and Stefan Weber. Xraptor - a simula-
tion environment for continuous virtual multi-agent systems - user
manual.

[Bor06] Jan Borgers. ”Hoe realistisch is een simulatie?”: Studie aan de hand
van LEGO Mindstorms. Master’s thesis, K.U.Leuven, Department
of Computer Science, 2006.

[Bro91] Rodney A. Brooks. Intelligence without reason. In John Myopou-
los and Ray Reiter, editors, Proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI-91), pages 569–
595, Sydney, Australia, 1991. Morgan Kaufmann publishers Inc.: San
Mateo, CA, USA.

[Bru00] Sven A. Brueckner. Return From The Ant - Synthetic Ecosystems For
Manufacturing Control. PhD thesis, Humboldt University Berlin,
Department of Computer Science, 2000.

[BS91] R.L. Bagrodia and C.-C. Shen. Midas: Integrated design and simu-
lation of distributed systems. IEEE Transactions on Software Engi-
neering, 17(10):1042–1058, 1991.

[BT03] Brett Browning and Erick Tryzelaar. Ubersim: A realistic simulation
engine for robot soccer. In Proceedings of Autonomous Agents and
Multi-Agent Systems, AAMAS’03, Australia, July 2003.

[Car03] John S. Carson. Introduction to simulation: introduction to model-
ing and simulation. In Winter Simulation Conference, pages 7–13,
2003.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Robert Nord, and Judith Stafford. Documenting
Software Architectures: Views and Beyond. Addison-Wesley Profes-
sional, September 2002.

BIBLIOGRAPHY 157

[CK99] S. G. Choi and W. H. Kwon. Real-time distributed software-in-the-
loop simulation for distributed control systems. In Proc. of the 1999
IEEE International Symposium on Computer Aided Control System
Design, pages 115–119, 1999.

[CL99] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, 1999.

[Cla96] Andy Clark. Being There: Putting Brain, Body, and World Together
Again. MIT Press, Cambridge, MA, USA, 1996.

[CM81] K. M. Chandy and J. Misra. Asynchronous distributed simulation
via a sequence of parallel computations. Commun. ACM, 24(4):198–
206, 1981.

[DL07] Wouter Delbaere and Bart Lamberigts. Ontwikkeling van een gede-
centralizeerd controle systeem voor autonome voertuigen. Master’s
thesis, Katholieke Universiteit Leuven, Belgium, 2007.

[DS05] Kurt Dresner and Peter Stone. Multiagent traffic management: An
improved intersection control mechanism. In Frank Dignum, Virginia
Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and Michael
Wooldridge, editors, The Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, New York, NY, July
2005. ACM Press.

[DYP06] Pedro DeLima, George York, and Daniel Pack. Localization of
ground targets using a flying sensor network. sutc, 1:194–199, 2006.

[EHU06] Roland Ewald, Jan Himmelspach, and Adelinde M. Uhrmacher. A
non-fragmenting partitioning algorithm for hierarchical models. In
WSC ’06: Proceedings of the 37th conference on Winter simulation,
pages 848–855. Winter Simulation Conference, 2006.

[EK04] Joel M. Esposito and Vijay Kumar. An asynchronous integration and
event detection algorithm for simulating multi-agent hybrid systems.
ACM Trans. Model. Comput. Simul., 14(4):363–388, 2004.

[EKP01] Joel Esposito, Vijay Kumar, and George J. Pappas. Multi-agent
hybrid simulation. In Proceedings of IEEE Conference on Decision
and Control, December 2001.

[FBT+03] D. Finkenzeller, M. Baas, S. Thüring, S. Yigit, and A. Schmitt. Vi-
sum: a vr system for the interactive and dynamics simulation of
mechatronic systems. In Virtual Concept 2003, Biarritz, France,
November 2003.

158 BIBLIOGRAPHY

[FM96] J. Ferber and J.P. Müller. Influences and reaction: A model of situ-
ated multiagent systems. In Proceedings of the Second International
Conference on Multi-agent Systems, pages 72–79. AAAI Press, 1996.

[FMM77] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Com-
puter Methods for Mathematical Computations. Prentice-Hall, En-
glewood Cliffs, NJ 07632, USA, 1977.

[FT94] Alois Ferscha and Satish K. Tripathi. Parallel and distributed sim-
ulation of discrete event systems. Technical report, University of
Maryland, College Park, MD, USA, 1994.

[Fuj98] R. Fujimoto. Time management in the high level architecture. Simu-
lation, Special Issue on High Level Architecture, 71(6):388–400, 1998.

[GH04] D. Gu and H. Hu. Teaching robots to coordinate their behaviours. In
Proceedings of IEEE International Conference on Robotics and Au-
tomation, New Orleans, LA, May 2004. Riverside Hilton & Towers.

[GL04] William Glover and John Lygeros. A stochastic hybrid model for
air traffic control simulation. In Rajeev Alur and George J. Pappas,
editors, HSCC, volume 2993 of Lecture Notes in Computer Science,
pages 372–386. Springer, 2004.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchi-
cal structure for rapid interference detection. Computer Graphics,
30(Annual Conference Series):171–180, 1996.

[Gom01] M. Gomez. Hardware-in-the-loop simulation. Embedded Systems
Programming, December 2001.

[GPDV06] O. Gietelink, J. Ploeg, B. De Schutter, and M. Verhaegen. Develop-
ment of advanced driver assistance systems with vehicle hardware-
in-the-loop simulations. Vehicle System Dynamics, 44(7):569–590,
July 2006.

[Gro03] Object Management Group. Mda guide version 1.0.1. Misc, 2003.

[GVH03] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The
player/stage project: Tools for multi-robot and distributed sensor
systems. In ICAR 2003, pages 317–323, Coimbra, Portugal, June
2003.

[HBZ90] Brian Von Herzen, Alan H. Barr, and Harold R. Zatz. Geometric
collisions for time-dependent parametric surfaces. In SIGGRAPH
’90: Proceedings of the 17th annual conference on Computer graphics

BIBLIOGRAPHY 159

and interactive techniques, pages 39–48, New York, NY, USA, 1990.
ACM Press.

[HCd05] Simon Hallé and Brahim Chaib-draa. A Collaborative Driving Sys-
tem based on Multiagent Modelling and Simulations. Journal of
Transportation Research Part C (TRC-C): Emergent Technologies,
13(4):320–345, 2005.

[HHB05] Alexander Helleboogh, Tom Holvoet, and Yolande Berbers. Simulat-
ing actions in dynamic environments. In Conceptual Modeling and
Simulation Conference, CMS2005, Track on Agent Based Modeling
and Simulation in Industry and Environment, 2005.

[HHB06] Alexander Helleboogh, Tom Holvoet, and Yolande Berbers. Test-
ing AGVs in Dynamic Warehouse Environments. In D. Weyns,
V. Parunak, and F. Michel, editors, Environments for Multiagent
Systems II, volume 3830 of Lecture Notes in Computer Science, pages
270–290. Springer-Verlag, 2006.

[HHW04a] Alexander Helleboogh, Tom Holvoet, and Danny Weyns. Time man-
agement adaptability in multi-agent systems. In Proceedings of the
AISB 2004 Fourth Symposium on Adaptive Agents and Multi-Agent
Systems, pages 20–30. University of Leeds, The Society for the Study
of Artificial Intelligence and Simulation of Behaviour, 2004.

[HHW04b] Alexander Helleboogh, Tom Holvoet, and Danny Weyns. Time man-
agement support for simulating multi-agent systems. In Joint work-
shop on multi-agent and multi-agent-based simulation, pages 31–40.
Columbia University, 2004.

[HHWB05a] Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande
Berbers. Extending time management support for multi-agent sys-
tems. In Multi-Agent and Multi-Agent-Based Simulation: Joint
Workshop MABS 2004, New York, NY, USA, July 19, 2004, Revised
Selected Papers, volume 3415 / 2005 of Lecture Notes in Computer
Science, pages 37–48. Springer-Verlag, GmbH, 2005.

[HHWB05b] Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande
Berbers. Towards time management adaptability in multi-agent sys-
tems. In Adaptive Agents and Multi-Agent Systems III: Adaptation
and Multi-Agent Learning, volume 3394 / 2005 of Lecture Notes in
Computer Science, pages 88–105. Springer-Verlag, GmbH, 2005.

[HJJ03] Ian J. Hayes, Michael Jackson, and Cliff B. Jones. Determining the
specification of a control system from that of its environment. In

160 BIBLIOGRAPHY

Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME,
volume 2805 of Lecture Notes in Computer Science, pages 154–169.
Springer, 2003.

[HKSP03] Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A. Sanvido,
and Wolfgang Pree. From control models to real-time code using
giotto. IEEE Control Systems Magazine, 23(1):50–64, 2003.

[HRU03] J. Himmelspach, M. Röhl, and A.M. Uhrmacher. Simulation for test-
ing software agents - an exploration based on JAMES. In Proc. of the
2003 Winter Simulation Conference, New Orleans, USA, December
2003.

[HS96] Afsaneh Haddadi and Kurt Sundermeyer. Belief-desire-intention
agent architectures. Foundations of distributed artificial intelligence,
pages 169–185, 1996.

[HSKM97] Dirk Helbing, Frank Schweitzer, Joachim Keltsch, and Péter Molnár.
Active walker model for the formation of human and animal trail
systems. Physical Review E, 56(3):2527–2539, January 1997.

[Hub96] Philip M. Hubbard. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on Graphics,
15(3):179–210, 1996.

[HVUM07] Alexander Helleboogh, Giuseppe Vizzari, Adelinde Uhrmacher, and
Fabien Michel. Modeling dynamic environments in multi-agent sim-
ulation. Autonomous Agents and Multi-Agent Systems: Special is-
sue on environments for multi-agent systems, 14(1):87–116, February
2007.

[HW91] J. H. Hubbard and B. H. West. Differential equations: a dynamical
systems approach. Part I: ordinary differential equations. Springer-
Verlag New York, Inc., New York, NY, USA, 1991.

[HZ05a] X. Hu and B. P. Zeigler. A simulation-based virtual environment
to study cooperative robotic systems. Integrated Computer-Aided
Engineering (ICAE), 12(4):353 – 367, 2005.

[HZ05b] Xiaolin Hu and Bernard P. Zeigler. Model continuity in the design
of dynamic distributed real-time systems. IEEE Transactions on
Systems, Man, and Cybernetics, Part A, 35(6):867–878, 2005.

[ICG+04] James Ivers, Paul Clements, David Garlan, Robert Nord, Bradley
Schmerl, and Jaime Rodrigo Oviedo Silva. Documenting component
and connector views with uml 2.0. Technical Report CMU/SEI-2004-
TR-008, Software Engineering Institute, 2004.

BIBLIOGRAPHY 161

[Kam93] V. V. Kamat. A survey of techniques for simulation of dynamic
collision detection and response. Computers & Graphics, 17(4):379–
385, 1993.

[KB04] Franziska Klügl and Ana L. C. Bazzan. Route decision behaviour
in a commuting scenario: Simple heuristics adaptation and effect of
traffic forecast. Journal of Artificial Societies and Social Simulation,
7(1), 2004.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold. Getting started with AspectJ. Com-
mun. ACM, 44(10):59–65, 2001.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors, Proceedings European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Hei-
delberg, and New York, 1997.

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565, July
1978.

[LGLM05] Andrea Lecchini, William Glover, John Lygeros, and Jan Ma-
ciejowski. Air-traffic control in approach sectors: Simulation ex-
amples and optimisation. In Manfred Morari and Lothar Thiele,
editors, HSCC, volume 3414 of Lecture Notes in Computer Science,
pages 433–448. Springer, 2005.

[LGS98] J. Lygeros, D. N. Godbole, and S. Sastry. Verified hybrid controllers
for automated vehicles. IEEE Transactions on Automatic Control,
43(4):522—539, April 1998.

[LTS99] John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for
reachability specifications for hybrid systems. Automatica, pages
349–370, 1999.

[Mae91] Pattie Maes. The agent network architecture (ana). SIGART Bull.,
2(4):115–120, 1991.

[Mic04] O. Michel. Webots: Professional mobile robot simulation. Journal
of Advanced Robotics Systems, 1(1):39–42, 2004.

162 BIBLIOGRAPHY

[Mir98] Brian Mirtich. V-clip: fast and robust polyhedral collision detection.
ACM Trans. Graph., 17(3):177–208, 1998.

[Mir00] Brian Mirtich. Timewarp rigid body simulation. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 193–200, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[Mis86] J. Misra. Distributed discrete-event simulation. Computing Surveys,
18(1):39–65, March 1986.

[Mos99] Pieter J. Mosterman. An overview of hybrid simulation phenomena
and their support by simulation packages. In HSCC ’99: Proceedings
of the Second International Workshop on Hybrid Systems, pages 165–
177, London, UK, 1999. Springer-Verlag.

[Neu04] Stephen Neuendorffer. Modeling real-world control systems: beyond
hybrid systems. In WSC ’04: Proceedings of the 36th conference on
Winter simulation, pages 240–248. Winter Simulation Conference,
2004.

[NRSSV05] Daniele Nardi, Martin Riedmiller, Claude Sammut, and José Santos-
Victor, editors. RoboCup 2004: Robot Soccer World Cup VIII, vol-
ume 3276 of Lecture Notes in Computer Science. Springer, 2005.

[OR04] Oliver Obst and Markus Rollmann. SPARK – A Generic Simula-
tor for Physical Multiagent Simulations. In Gabriela Lindemann,
Jörg Denzinger, Ingo J. Timm, and Rainer Unland, editors, Multia-
gent System Technologies – Proceedings of the MATES 2004, volume
3187, pages 243–257. Springer, September 2004.

[PR90] Martha Pollack and Marc Ringuette. Introducing the tileworld: ex-
perimentally evaluating agent architectures. In Thomas Dietterich
and William Swartout, editors, Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 183–189, Menlo Park,
CA, 1990. AAAI Press.

[PVR04] Leslie Pack Kaelbling Paulina Varshavskaya and Daniela Rus. Learn-
ing distributed control for modular robots. In International Confer-
ence on Intelligent Robots and Systems, Sendai, Japan, 2004.

[RG95] A. S. Rao and M. P. Georgeff. BDI agents: From theory to prac-
tice. In Proc. of 1st International Conference on Multi-Agent Systems
(ICMAS), pages 313–319. AAAI Press/MIT Press, 1995.

BIBLIOGRAPHY 163

[Ril03] Patrick Riley. MPADES: Middleware for parallel agent discrete event
simulation. In Gal A. Kaminka, Pedro U. Lima, and Raul Rojas,
editors, RoboCup-2002: Robot Soccer World Cup VI, number 2752
in Lecture Notes in Artificial Intelligence, pages 162–178. Springer
Verlag, Berlin, 2003.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[Roo99] D. Roozemond. Using intelligent agents for urban traffic control
control systems. In Proceedings of the International Conference on
Artificial Intelligence in Transportation Systems and Science, pages
69–79, 1999.

[RR03] Patrick Riley and George Riley. SPADES — a distributed agent sim-
ulation environment with software-in-the-loop execution. In S. Chick,
P. J. Sánchez, D. Ferrin, and D. J. Morrice, editors, Winter Simula-
tion Conference Proceedings, volume 1, pages 817–825, 2003.

[Rut06] Matthew J. Rutherford. Adequate System-Level Testing of Dis-
tributed Systems. PhD thesis, Department of Computer Science,
Univeristy of Colorado at Boulder, August 2006.

[SA06] Carlos M. Velez S. and Andres Agudelo. Control and parameter
estimation of a mini-helicopter robot using rapid prototyping tools.
WSEAS Transactions on Systems, 5(9):2250–2257, September 2006.

[SB99] Thomas J. Schriber and Daniel T. Brunner. Inside discrete-event
simulation software: how it works and why it matters. In WSC
’99: Proceedings of the 31st conference on Winter simulation, pages
72–80. ACM Press, 1999.

[Sch05] Wannes Schols. Gradient Field Based Order Assignment in AGV
Systems. Master’s thesis, Katholieke Universiteit Leuven, Belgium,
2005.

[Sha98] Robert E. Shannon. Introduction to the art and science of simulation.
In Winter Simulation Conference, pages 7–14, 1998.

[Smi80] R. G. Smith. The contract net protocol: High-level communication
and control in a distributed problem solver. IEEE Transactions on
Computers, C-29(12):1104–1113, 1980.

[SPLK01] Rajarishi Sinha, Christiaan J. J. Paredis, Vei-Chung Liang, and
Pradeep K. Khosla. Modeling and simulation methods for design of
engineering systems. J. Comput. Info. Sci. Eng., 1(1):84–91, 2001.

164 BIBLIOGRAPHY

[S.S99] S.S.Sastry. Nonlinear Systems: Analysis, Stability and Control.
Springer Verlag, New York, 1999.

[SSS+03] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. Sastry. Dis-
tributed control applications within sensor networks. In Proceedings
of the IEEE, Special Issue on Sensor Networks and Applications,
August 2003.

[SU01] Bernd Schattenberg and Adelinde M. Uhrmacher. Planning agents
in james. Proceedings of the IEEE, 89(2):158–173, February 2001.

[TLSS00] C.J. Tomlin, J. Lygeros, and S. Shankar Sastry. A game theoretic
approach to controller design for hybrid systems. Proceedings of the
IEEE, 88(7):949–970, July 2000.

[TPS98] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air
traffic management : A study in muti-agent hybrid systems. IEEE
Transactions on Automatic Control, 43(4):509–521, April 1998.

[Uhr01] A. M. Uhrmacher. Dynamic structures in modeling and simulation: a
reflective approach. ACM Trans. Model. Comput. Simul., 11(2):206–
232, 2001.

[UK00] A.M. Uhrmacher and B.G. Kullick. ”Plug and Test” - software agents
in virtual environments. In Proceedings of the 2000 Winter Sim-
ulation Conference, volume 2, pages 1722–1729. Wyndham Palace
Resort & Spa, Orlando, Florida, USA, December 2000.

[USC] The Network Simulator: NS2, http://www.isi.edu/nsnam/ns/.

[vdSS98] A.J. van der Schaft and J.M. Schumacher. Complementarity mod-
eling of hybrid systems. IEEE Transactions on Automatic Control,
43(4):483–490, April 1998.

[VGVVB06] Paul Verstraete, Bart Germain, Paul Valckenaers, and Hendrik
Van Brussel. On applying the prosa reference architecture in multia-
gent manufacturing control applications. In Multiagent Systems and
Software Architecture, 2006.

[VHL01] Regis Vincent, Bryan Horling, and Victor Lesser. An Agent In-
frastructure to Build and Evaluate Multi-Agent Systems: The Java
Agent Framework and Multi-Agent System Simulator. Lecture Notes
in Artificial Intelligence: Infrastructure for Agents, Multi-Agent Sys-
tems, and Scalable Multi-Agent Systems, 1887, January 2001.

[Wan05] Fei-Yue Wang. Agent-based control for networked traffic manage-
ment systems. IEEE Intelligent Systems, 20(5):92–96, 2005.

BIBLIOGRAPHY 165

[WBH06] D. Weyns, N. Boucké, and T. Holvoet. Gradient Field Based Trans-
port Assignment in AGV Systems. In 5th International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems, AAMAS,
Hakodate, Japan, 2006.

[WBHS06] Danny Weyns, Nelis Boucké, Tom Holvoet, and Kurt Schelfthout.
DynCNET: a protocol for flexible task assignment applied in an
AGV transportation system. In Proceedings of the Fourth European
Workshop on Multi-Agent Systems, volume 223, pages 359–370. Uni-
versidade de Lisboa & Do Minho, Portugal, Universidade de Lisboa
& Do Minho, Portugal, 2006.

[WGW90] Andrew Witkin, Michael Gleicher, and William Welch. Interactive
dynamics. In SI3D ’90: Proceedings of the 1990 symposium on Inter-
active 3D graphics, pages 11–21, New York, NY, USA, 1990. ACM
Press.

[WH06] Danny Weyns and Tom Holvoet. From reactive robotics to situated
multiagent systems: A historical perspective on the role of environ-
ment in multiagent systems. In Engineering Societies in the Agents
World VI, Revised Selected and Invited Papers, volume 3963 of Lec-
ture Notes in Computer Science, pages 63–88. Springer, 2006. Invited
paper.

[WHH05] Danny Weyns, Alexander Helleboogh, and Tom Holvoet. The
Packet-World: A testbed for investigating situated multiagent sys-
tems. In Software Agent-Based Applications, Platforms, and De-
velopment Kits, Whitestein Series in Software Agent Technologies,
pages 383–408. Birkhauser Verlag, Basel - Boston - Berlin, Septem-
ber 2005.

[Woo01] Michael J. Wooldridge. Introduction to Multiagent Systems. John
Wiley & Sons, Inc., New York, NY, USA, 2001.

[WSH04] Danny Weyns, Elke Steegmans, and Tom Holvoet. Towards active
perception in situated multi-agent systems. Applied Artificial Intel-
ligence, 18(9-10):867–883, October 2004.

[WSH05] Danny Weyns, Kurt Schelfthout, and Tom Holvoet. Exploiting
a virtual environment in a real-world application. In D. Weyns,
V. Parunak, and F. Michel, editors, 2nd International Workshop
on Environments for Multiagent Systems, pages 1–18, Utrecht, The
Netherlands, 2005.

[WSHG05] Danny Weyns, Kurt Schelfthout, Tom Holvoet, and Olivier Glo-
rieux. Towards adaptive role selection for behavior-based agents.

166 BIBLIOGRAPHY

In Adaptive Agents and Multi-Agent Systems III: Adaptation and
Multi-Agent Learning, volume 3394 of Lecture Notes in Computer
Science, pages 295–314. Springer-Verlag, GmbH, 2005.

[WSHL05] D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. Decentral-
ized control of E’GV transportation systems. In 4th Joint Con-
ference on Autonomous Agents and Multiagent Systems, Industry
Track, Utrecht, The Netherlands, 2005. ACM Press, New York, NY,
USA.

[WVvVK04] M. Wiering, J. Vreeken, J. van Veenen, and A. Koopman. Simulation
and optimization of traffic in a city. In IEEE Intelligent Vehicles
symposium (IV’04), 2004.

[ZP00] Bernard Zeigler and Herbert Praehofer. Theory of Modeling and
Simulation. Academic Press, January 2000.

List of Publications

Articles in international reviewed journals

1. Alexander Helleboogh, Giuseppe Vizzari, Adelinde Uhrmacher, and Fabien
Michel. Modeling dynamic environments in multi-agent simulation. Au-
tonomous Agents and Multi-Agent Systems: Special issue on environments
for multi-agent systems, 14(1):87–116, February 20071.

Parts of books

1. Danny Weyns, Alexander Helleboogh, and Tom Holvoet. The Packet-World:
A testbed for investigating situated multiagent systems. In R. Unland, M.
Klush, and M. Calisti, editors, Software Agent-Based Applications, Plat-
forms, and Development Kits, Whitestein Series in Software Agent Technolo-
gies, pages 383–408. Birkhauser Verlag, Basel - Boston - Berlin, September
2005.

Contributions at international conferences, pub-
lished in proceedings

1. Alexander Helleboogh, Tom Holvoet, and Yolande Berbers. Testing AGVs
in Dynamic Warehouse Environments. In D. Weyns, V. Parunak, and F.
Michel, editors, Environments for Multiagent Systems II, volume 3830 of
Lecture Notes in Computer Science, pages 270–290. Springer-Verlag, 2006.

2. Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande Berbers.
Towards time management adaptability in multi-agent systems. In D. Ku-
denko, D. Kazakov, and E. Alonso, editors, Adaptive Agents and Multi-Agent
Systems III: Adaptation and Multi-Agent Learning, volume 3394/2005 of

1Journal Impact Factor 2.605, ISI Web of Knowledge

167

Lecture Notes in Computer Science, pages 88–105. Springer-Verlag, GmbH,
2005.

3. Alexander Helleboogh, Tom Holvoet, and Yolande Berbers. Simulating ac-
tions in dynamic environments. In F. Barros, A. Bruzzone, C. Frydman,
and N. Giambiasi, editors, Conceptual Modeling and Simulation Conference,
CMS 2005, Track on Agent Based Modeling and Simulation in Industry and
Environment, 2005.

4. Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande Berbers.
Extending time management support for multi-agent systems. In P. Davids-
son, B. Logan, and K. Takadama, editors, Multi-Agent and Multi-Agent-
Based Simulation: Joint Workshop MABS 2004, New York, NY, USA, July
19, 2004, Revised Selected Papers, volume 3415 / 2005 of Lecture Notes in
Computer Science, pages 37–48. Springer-Verlag, GmbH, 2005.

5. Alexander Helleboogh, Tom Holvoet, and Danny Weyns. Time management
adaptability in multi-agent systems. In D. Kudenko, E. Alonso, and D. Kaza-
kov, editors, Proceedings of the AISB 2004 Fourth Symposium on Adaptive
Agents and Multi-Agent Systems, pages 20–30. University of Leeds, The So-
ciety for the Study of Artificial Intelligence and Simulation of Behaviour,
2004.

6. Alexander Helleboogh, Tom Holvoet, and Danny Weyns. Time management
support for simulating multi-agent systems. In P. Davidsson, L. Gasser,
B. Logan, and K. Takadama, editors, Joint workshop on multi-agent and
multi-agent-based simulation, pages 31–40. Columbia University, 2004.

7. D. Weyns, A. Helleboogh, E. Steegmans, T. De Wolf, K. Mertens, N. Boucké,
and T. Holvoet, Agents are not part of the problem, agents can solve the
problem, In C. Gonzales-Perez, editor, Proceedings of the OOPSLA Work-
shop on Agent-Oriented Methodologies, pages 101–112, 2004.

8. K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans, and
D. Weyns, Agent Implementation Patterns, In J. Debenham, B. Henderson-
Sellers, N. Jennings, and J. Odell, editors, Proceedings of the OOPSLA 2002
Workshop on Agent-Oriented Methodologies, pages 119–130, 2002.

Biography

Alexander Helleboogh was born on January 21, 1978 in Bornem (Belgium). He
received a Bachelor of Applied Sciences and Engineering: Civil Engineering de-
gree (Kandidaat Burgerlijk Ingenieur), a Bachelor of Philosophy degree (Kan-
didaat Wijsbegeerte) and a Master of Applied Sciences and Engineering: Com-
puter Science degree (Burgerlijk Ingenieur in de Computerwetenschappen) from
the Katholieke Universiteit Leuven in Belgium. He graduated magna cum laude
in July 2001 with the thesis “A configurable electronic stock market agent: frame-
work and prototype”, supervised by Prof. Tom Holvoet.

He started working as a Ph.D. student at the DistriNet (Distributed systems
and computer Networks) research group of the Department of Computer Science at
the Katholieke Universiteit Leuven in September 2001, as one the first members of
the AgentWise taskforce, under supervision of Prof. Tom Holvoet. During the last
two years of his research, he worked on an IBBT project on E-Health Information
Platforms (E-HIP).

169

Simulatie van Gedistribueerde Controle Applicaties

in Dynamische Omgevingen

Nederlandse samenvatting

Beknopte Samenvatting

Gedistribueerde controle applicaties zijn softwaresystemen die ontworpen zijn om de wer-
king van verschillende gedistribueerde machines te controleren en coördineren. Een voor-
beeld van een gedistribueerde controle applicatie is een softwaresysteem om productie-
machines in een fabrieksomgeving te controleren. De omgeving van een gedistribueerde
controle applicatie is typisch dynamisch. In een dynamische omgeving veranderen de wer-
kingsomstandigheden van de controle applicatie voortdurend. Bijvoorbeeld, dynamiek in
een fabrieksomgeving omvat het toekomen van nieuwe materialen, de werking van andere
machines, voertuigen of mensen, etc. Het is essentieel dat een gedistribueerde controle
applicatie rekening houdt met de omgeving waarin ze zich bevindt.

Simulatie is essentieel voor de ontwikkeling van gedistribueerde controle applicaties.
Simulatie biedt een veilige en kosteneffectieve manier om het gedrag van een gedistribu-
eerde controle applicatie te bestuderen, te evalueren of te configureren in een gesimuleerde
omgeving, voordat die applicatie in gebruik genomen wordt in de echte wereld. In dit
proefschrift ligt de nadruk op software-in-de-lus simulatie van gedistribueerde controle ap-
plicaties in dynamische omgevingen. Software-in-de-lus simulatie betekent dat de software
van een echte gedistribueerde controle applicatie ingebed wordt in de simulatie. Met an-
dere woorden: de controle software zelf maakt deel uit van de simulatie-lus. Bestaande
aanpakken om deze familie van simulaties te ondersteunen, maken gebruik van (1) ofwel ge-
nerische modelleringsconcepten die formeel onderbouwd zijn, maar die geen ondersteuning
bieden die specifiek gericht is op deze familie van simulaties, (2) ofwel informele abstrac-
ties die specifieke ondersteuning bieden voor deze familie van simulaties, maar waarvan de
betekenis gekoppeld is met de implementatie van een bepaald simulatieplatform.

We stellen een formeel onderbouwd modelleringsraamwerk voor ter ondersteuning van
software-in-de-lus simulaties van gedistribueerde controle applicaties in dynamische om-
gevingen. De concepten van het modelleringsraamwerk bieden specifieke ondersteuning
voor deze familie van simulaties. Bovendien zijn de modelleringsconcepten formeel onder-
bouwd. Dit is cruciaal om een simulatiemodel te ontkoppelen van het simulatieplatform
om het model uit te voeren. Het modelleringsraamwerk beschrijft de kernkarakteristieken
van deze familie van simulaties op een expliciete manier. Het modelleringsraamwerk omvat
een omgevingsdeel en een controle applicatiedeel. Het omgevingsdeel omvat modellerings-
concepten voor het beschrijven van dynamische omgevingen. Deze modelleringsconcepten
beschrijven (1) de structuur van de omgeving, (2) dynamiek in de omgeving, (3) de manier
waarop dynamiek bëınvloed wordt door de verschillende bronnen van dynamiek, en (4) de
manier waarop interactie van dynamiek mogelijk is. Het controle applicatiedeel omvat mo-
delleringsconcepten om de controle software van een gedistribueerde controle applicatie te
integreren in een simulatie. Deze modelleringsconcepten beschrijven (1) de uitvoeringstijd
van de controle software, en (2) de interface van de controle software met de omgeving.

Ter validatie van het modelleringsraamwerk, hebben we een simulatieplatform ont-
wikkeld dat de modelleringsconcepten ondersteunt in een uitvoerbare simulatie. Tevens
hebben we de modelleringsconcepten toegepast in een simulator voor een industriële toe-
passing, meer bepaald een gedistribueerde controle applicatie om onbemande voertuigen te
controleren in een fabrieksomgeving. De simulator omvat een simulatiemodel dat ontkop-
peld is van het simulatieplatform om het uit te voeren. Dit vergemakkelijkt het aanpassen
van het simulatiemodel, wat essentieel is om uiteenlopende functionaliteiten van de gedis-
tribueerde controle applicatie te kunnen evalueren.

1

1 Inleiding

1.1 Achtergrond

Dit proefschrift handelt over simulatie van gedistribueerde controle applicaties in
dynamische omgevingen. Eerst gaan we dieper in op gedistribueerde controle ap-
plicaties. Nadien lichten we het gebruik van simulatie voor dergelijke applicaties
toe.

1.1.1 Gedistribueerde Controle Applicaties

We gebruiken de term gedistribueerde controle applicaties om te verwijzen naar een
familie van software toepassingen die een aantal eigenschappen gemeenschappelijk
hebben.

Een controle applicatie is een software systeem dat verbonden is met een on-
derliggende omgeving [6]. De omgeving is het deel van de externe wereld waarmee
de controle applicatie interageert en waarin de effecten van de controle applica-
tie waargenomen worden. De taak van een controle applicatie is om een bepaalde
functionaliteit te verwezenlijken in de omgeving. De interactie tussen de controle
applicatie en haar omgeving gebeurt via sensoren en actuatoren. Een voorbeeld van
een controle applicatie is de snelheidsregelaar van een wagen. De omgeving van deze
controle applicatie omvat de wagen en de weg waarop de wagen rijdt. De controle
applicatie interageert met deze omgeving via een sensor die de actuele snelheid van
de wagen kan meten en een actuator die het vermogen van de motor kan aanpas-
sen. De taak van de controle applicatie is om ervoor te zorgen dat de wagen met
constante snelheid over de weg rijdt.

Een gedistribueerde controle applicatie is een controle applicatie waarvan het
software systeem een gedistribueerde applicatie is. Een gedistribueerde applicatie is
een software systeem dat bestaat uit meerdere componenten die uitvoeren op ver-
schillende computers verbonden door een netwerk. Een voorbeeld van een gedistri-
bueerde controle applicatie is een applicatie om een team van RoboCup Soccer [15]
robots te laten voetballen. De taak van deze controle applicatie is om de robots
van het eigen team te doen scoren en tegelijk het andere team te verhinderen om
te scoren. Deze controle applicatie is gedistribueerd omdat software componenten
uitgevoerd worden op elk van de robots van het team. Elk van de componenten
heeft toegang tot de sensoren en actuatoren van een bepaalde robot, en coördineert
de werking van die robot door te communiceren met andere robots van het team
teneinde het gewenste globale gedrag te realiseren.

De omgeving van een gedistribueerde controle applicatie is typisch zeer dyna-
misch. Een dynamische omgeving is een omgeving die voortdurend verandert [17].
In een dynamische omgeving wijzigen de omstandigheden waarin een gedistribueer-
de controle applicatie moet werken voortdurend. Dynamiek in de omgeving kan
afkomstig zijn van verschillende bronnen. Bijvoorbeeld, dynamiek in een RoboCup
Soccer omgeving omvat het rollen van de bal, de bewegingen van de andere robots

1.1 Achtergrond 2

van het team, de bewegingen van de tegenstanders en zelfs afwijkingen omwille van
de beperkte nauwkeurigheid waarmee de bal getrapt kan worden of omwille van
defecten aan een robot.

Een dynamische omgeving heeft een significante impact op de acties van een
gedistribueerde controle applicatie [5, 22]. In een dynamische omgeving verlopen de
acties van een controle applicatie niet altijd zoals voorzien. Neem het voorbeeld van
een component die een bepaalde RoboCup robot aanstuurt om vooruit te rijden met
het doel om de bal die voor de robot ligt, naar een medespeler te trappen. In een
dynamische omgeving kan deze actie op verschillende manieren bëınvloed worden.
Zo kan de robot botsen met andere robots die hem proberen te verhinderen om
tegen de bal te trappen, wat kan resulteren in schade aan de robot. Of de bal kan
van zijn baan afwijken door kleine onnauwkeurigheden in de mechanische delen van
de robot. Zelfs indien de robot erin slaagt de bal in de juiste richting te trappen,
dan nog kan de bal onderweg onderschept worden door een andere robot die zich in
de baan van de rollende bal positioneert.

1.1.2 Simulatie

Het is duidelijk dat een gedistribueerde controle applicatie rekening dient te houden
met dynamiek die voorkomt in de omgeving en de potentiële impact hiervan op de
uitgevoerde acties. Vooraleer een gedistribueerde controle applicatie in werking
wordt genomen, is het cruciaal om het gedrag van deze applicatie te testen in
scenario’s die typische voorkomen in dynamische omgevingen.

Simulatie kan gedefinieerd worden als “het ontwerpen van een model van een
echt systeem en het uitvoeren van experimenten op dit model met als doel het
begrijpen van het gedrag van het systeem en/of het evalueren van verschillende
strategieën voor de werking van het systeem” [19]. Twee belangrijke fases tijdens een
simulatiestudie zijn de modelleringsfase, d.w.z. het bouwen van een simulatiemodel
van het echte systeem, en de vertaalfase, d.w.z. het vertalen van het simulatiemodel
naar een uitvoerbare simulatie.

Simulatie is essentieel voor het bestuderen en testen van het gedrag van een
gedistribueerde controle applicatie in scenario’s die typisch voorkomen in dynami-
sche omgevingen [20, 14, 16]. Simulatie laat toe om (1) op een veilige manier te
experimenteren met risicovolle scenario’s, (2) experimenten uit te voeren sneller dan
real-time, en (3) het opzetten en opvolgen van experimenten op een relatief kosten-
effectieve manier. Bijvoorbeeld, neem een experiment waarbij een gedistribueerde
controle applicatie betrokken is die robots aanstuurt in een fabrieksomgeving. Het
doel van het experiment is om na te gaan of de robots botsingen kunnen vermij-
den met elkaar in een scenario waarbij communicatie onbetrouwbaar of tijdelijk
onbeschikbaar is. Het uitvoeren van een dergelijk experiment met echte robots is
moeilijk haalbaar omwille van (1) het hoge risico om robots te beschadigen, (2) de
hoeveelheid tijd nodig om langdurige scenario’s te testen, en (3) de hoge kost om
grootschalige experimenten met vele robots op te zetten en te monitoren.

1.2 Probleemstelling 3

Door onderzoek en ontwikkeling rond simulatie is ondersteuning ontwikkeld voor
zowel de modelleringsfase als de vertaalfase:

• Modelleringsconcepten bieden ondersteuning voor de modelleringsfase. Ver-
schillende simulatieparadigma’s bieden gevestigde modelleringsconcepten aan
die het beschrijven van een simulatiemodel ondersteunen. Bijvoorbeeld, dis-
crete event simulatie biedt concepten als toestand en events aan om een simu-
latiemodel uit te drukken. De toestand van een model is een lijst van waarden
die voldoende zijn om de status van het systeem te definiëren [3]. Een event
is een verandering in de toestand van de simulatie die ogenblikkelijk gebeurt
op een welbepaald tijdstip in simulatie tijd [18].

• Simulatieplatformen ondersteunen de vertaalfase. Simulatieplatformen bevat-
ten de functionaliteit die nodig is om de modelleringsconcepten te ondersteu-
nen in een uitvoerbare simulatie. De functionaliteit van een simulatieplatform
kan hergebruikt worden voor elk simulatiemodel dat beschreven is in termen
van de ondersteunde modelleringsconcepten. Op die manier dient de functi-
onaliteit van een simulatieplatform niet opnieuw uitgevonden te worden voor
elke nieuwe simulatiestudie.

In dit proefschrift ligt de focus op software-in-de-lus simulatie van gedistribu-
eerde controle applicaties in dynamische omgevingen. Dergelijke simulaties worden
gebruikt om een gedistribueerde controle applicatie te testen of fijn te stemmen
in een gesimuleerde omgeving voordat de software in gebruik wordt genomen in
de echte omgeving [4]. Software-in-de-lus simulaties van gedistribueerde controle
applicaties in dynamische omgevingen hebben de volgende eigenschappen:

• De te simuleren omgeving is dynamisch. Een dynamische omgeving kan bron-
nen van dynamiek bevatten extern aan de gedistribueerde controle applicatie.
Deze bronnen van dynamiek kunnen een significante impact hebben op de
gedistribueerde controle applicatie omdat ze de werkingsomstandigheden van
de applicatie veranderen.

• De software van de echte gedistribueerde controle applicatie wordt ingebed
in de simulatie. De gedistribueerde controle applicatie wordt niet gesubsti-
tueerd door een model, maar de controle software zelf maakt deel uit van de
simulatielus, zoals vervat zit in de term software-in-de-lus simulatie.

1.2 Probleemstelling

Het ontwikkelen van software-in-de-lus simulaties van gedistribueerde controle ap-
plicaties in dynamische omgevingen is complex. Het systeem dat gesimuleerd moet
worden bestaat uit twee delen: een dynamische omgeving enerzijds en anderzijds
een gedistribueerde controle applicatie die ingebed wordt in die omgeving. We be-
spreken kort enkele uitdagingen die gepaard gaan met het bouwen van dergelijke
simulaties:

1.2 Probleemstelling 4

• Het simuleren van dynamische omgevingen is complex. Bijvoorbeeld, in een
dynamische omgeving kan het resultaat van acties van een controle applicatie
niet a priori bepaald worden [5, 7]. Andere activiteiten die actief zijn in de
omgeving kunnen een significante impact hebben op de uitkomst van acties.
Neem het voorbeeld van een robot die aangestuurd wordt om te beginnen
rijden in een bepaalde richting. In een dynamische omgeving kan deze actie op
verschillende manieren bëınvloed worden. Bijvoorbeeld, een andere machine
kan in het pad van de robot bewegen en de robot blokkeren of opzij duwen;
of door onnauwkeurigheden in het mechanische gedeelte van de robot kan het
pad van de robot licht afwijken van het bedoelde pad; of de batterij van de
robot kan leeg geraken en de beweging van de robot voortijdig beëindigen.
Zelfs een combinatie van deze fenomenen kan voorkomen. Het is niet triviaal
om de variëteit aan mogelijk samengestelde interacties van een dynamische
omgeving te reproduceren in een simulatie om zo de precieze impact van deze
interacties op acties te bepalen.

• Het integreren van de software van een echte gedistribueerde controle applicatie
in een simulatie is complex. Bijvoorbeeld, de apparaten waarop een gedistri-
bueerde controle applicatie zich bevindt in de echte wereld bepalen hoe snel
die applicatie uitvoert en hoeveel tijd de applicatie nodig heeft om te reageren
op veranderingen in de omgeving. Echter, de karakteristieken van het compu-
terplatform waarop de simulatie uitgevoerd wordt, kunnen sterk verschillen
van de apparaten waarop de controle applicatie uitvoert in de echte wereld.
Bovendien kan een simulatie sneller of trager dan real-time worden uitgevoerd.
Het is niet evident om de tijdskarakteristieken van een gedistribueerde controle
applicatie in de echte wereld te reproduceren in een simulatie.

Om de ontwikkeling van software-in-de-lus simulaties van gedistribueerde con-
trole applicaties in dynamische omgevingen te ondersteunen, kan een ontwikkelaar
gebruik maken van generische simulatieplatformen of van specifieke simulatieplat-
formen.

• Generische simulatieplatformen bieden ondersteuning voor het uitvoeren van
simulatiemodellen die beschreven zijn in termen van generische modellerings-
concepten. Bijvoorbeeld, JAMES [14] is een simulatieplatform dat discrete
event modellen ondersteunt die beschreven zijn met de modelleringconcepten
van DEVS (Discrete EVent System specification) [23]. DEVS is een modelle-
ringsraamwerk dat atomische en gekoppelde discrete event simulatiemodellen
ondersteunt. Atomische modellen worden beschreven aan de hand van model-
leringsconcepten als toestandsverzameling, input en output poorten, interne
en externe transitiefuncties, etc.

De betekenis van generische modelleringsconcepten is formeel gespecificeerd.
Dit is cruciaal om het simulatiemodel te ontkoppelen van het simulatieplat-
form dat gebruikt wordt om het model uit te voeren. Op die manier kan een

1.2 Probleemstelling 5

ontwikkelaar de modelleringsconcepten toepassen voor het beschrijven van
een simulatiemodel zonder dat kennis vereist is van het simulatieplatform dat
gebruikt zal worden om het simulatiemodel uit te voeren.

Desalniettemin bieden generische modelleringsconcepten geen ondersteuning
die specifiek gericht is op software-in-de-lus simulatie van gedistribueerde con-
trole applicaties in dynamische omgevingen. Generische modelleringsconcep-
ten zijn toepasbaar op een breed spectrum van simulaties, en hun toepasbaar-
heid is niet beperkt tot simulaties van gedistribueerde controle applicaties.
Bijgevolg bieden generische modelleringsconcepten geen ondersteuning voor
de specifieke uitdagingen die gepaard gaan met het bouwen van simulaties
voor gedistribueerde controle applicaties.

• Specifieke simulatieplatformen zijn gericht op het simuleren van gedistribu-
eerde controle applicaties in het bijzonder. Bijvoorbeeld, XRaptor [2] is een
simulatieplatform om het gedrag te bestuderen van grote aantallen agenten in
twee- of driedimensionale continue virtuele omgevingen. XRaptor omschrijft
een agent als een punt, een cirkelvormig oppervlak of een sferisch volume. Een
agent beschikt over een sensoreenheid bevat om de wereld waar te nemen, een
actuatoreenheid om acties uit te voeren en een controlekern voor actieselectie.
Differentiaalvergelijkingen worden gebruikt om bewegingen te modelleren.

Specifieke simulatieplatformen bieden ondersteuning die specifiek gericht is
op software-in-de-lus simulatie van gedistribueerde controle applicaties in dy-
namische omgevingen. Bijvoorbeeld, XRaptor ondersteunt simulaties die be-
staan uit een wereld waarin agenten, die gecontroleerd worden door een con-
trolekern, kunnen waarnemen en handelen. In vergelijking met generische si-
mulatieplatformen bieden specifieke simulatieplatformen ondersteuning voor
de uitdagingen die gepaard gaan met het bouwen van simulaties voor gedis-
tribueerde controle applicaties.

Specifieke simulatieplatformen bieden enkel informele abstracties aan om een
simulatiemodel te beschrijven. De precieze betekenis van en relatie tussen deze
abstracties is niet formeel gespecificeerd, maar is enkel impliciet vervat in het
ontwerp en de implementatie van het simulatieplatform. Bijvoorbeeld, de ab-
stracties “controlekern”, “actuator eenheid” of “cirkelvormig oppervlak” van
XRaptor zijn niet onderbouwd met een formele specificatie, zodat hun precie-
ze betekenis en onderlinge relatie vaag zijn. Zo is het bijvoorbeeld onduidelijk
hoe de controlekern bewegingen in de omgeving kan activeren, of op welke ma-
nier de tijdskarakteristieken van de controlekern ondersteund worden. Omwil-
le van het ontbreken van een formele specificatie vereist het bouwen van een
simulatie met behulp van een specifiek simulatieplatform gedetailleerde kennis
van het onderliggende ontwerp en de implementatie van dit simulatieplatform.
Dit resulteert in een sterke koppeling tussen het simulatiemodel enerzijds, en
het platform dat gebruikt worden om dat model uit te voeren anderzijds.

1.3 Aanpak 6

Samengevat stellen we dat de ondersteuning die geboden worden door bestaande
aanpakken tekort schiet voor simulatie van gedistribueerde controle applicaties. De
reden is dat bestaande aanpakken gebruik maken van (1) ofwel generische model-
leringsconcepten die wel degelijk formeel onderbouwd zijn, maar die geen onder-
steuning bieden specifiek voor simulaties van gedistribueerde controle applicaties,
(2) ofwel informele abstracties die gericht zijn op simulatie van gedistribueerde con-
trole applicaties, maar waarvan de betekenis impliciet vervat zit in het ontwerp en
implementatie van het simulatieplatform.

We besluiten dat er een gebrek is aan formeel onderbouwde modelleringsconcep-
ten die specifieke ondersteuning bieden voor de karakteristieken van gedistribueerde
controle applicaties in dynamische omgevingen.

1.3 Aanpak

In dit proefschrift stellen we een modelleringsraamwerk voor, ondersteund door een
simulatieplatform, dat specifiek gericht is op het ontwikkelen van software-in-de-lus
simulaties van gedistribueerde controle applicaties in dynamische omgevingen.

Het modelleringsraamwerk omvat een verzameling van formeel gespecificeerde
modelleringsconcepten die specifiek gericht zijn op deze familie van simulaties, en
die de kernkarakteristieken van deze familie van simulaties op een expliciete manier
beschrijven. De modelleringsconcepten van het modelleringsraamwerk zijn formeel
beschreven om hun betekenis en onderlinge relatie ondubbelzinnig voor te stellen.
Dit is cruciaal om de modelleringconcepten te ontkoppelen van hun specifieke im-
plementatie in een bepaald simulatieplatform. Op die manier wordt het mogelijk
om een simulatiemodel te formuleren zonder dat kennis vereist is van het ontwerp
en de implementatie van het simulatieplatform.

Het modelleringsraamwerk is enerzijds het resultaat van onze eigen ervaring
met simulatie van gedistribueerde controle applicaties in dynamische omgevingen
en wordt anderzijds onderbouwd door actueel onderzoek over het modelleren van
gedistribueerde controle applicaties in dynamische omgevingen. Het modellerings-
raamwerk omvat twee delen:

• Een omgevingsdeel dat specifieke modelleringsconcepten aanbiedt om dyna-
mische omgevingen te beschrijven in een simulatiemodel. De modellerings-
concepten van het omgevingsdeel worden beschreven in sectie 2.

• Een controle-applicatiedeel dat specifieke modelleringsconcepten aanbiedt om
de software van een echte gedistribueerde controle applicatie expliciet te in-
tegreren in het simulatiemodel. De modelleringsconcepten van het controle-
applicatiedeel worden beschreven in sectie 3.

We onderzoeken twee alternatieven om een simulatiemodel dat beschreven is
in termen van de concepten van het modelleringsraamwerk, te vertalen naar een
uitvoerbare simulatie.

1.4 Overzicht 7

• Ten eerste, de formele beschrijving van het modelleringsraamwerk specificeert
de kernfunctionaliteit die nodig is om de modelleringsconcepten te ondersteu-
nen in een uitvoerbare simulatie. De formele beschrijving biedt enkel een
specificatie aan om de vertaalfase te ondersteunen, zonder bepaalde ontwerp-
beslissingen of algoritmes op te leggen. Dit maakt het mogelijk om bepaalde
ontwerpbeslissingen of algoritmes te gebruiken die optimaal afgestemd zijn op
een bepaalde simulatiestudie.

• Ten tweede hebben we een simulatieplatform ontwikkeld dat alle functionali-
teit aanbiedt die nodig is om de modelleringsconcepten te ondersteunen in een
uitvoerbare simulatie. Het simulatieplatform illustreert de haalbaarheid van
het modelleringsraamwerk om software-in-de-lus simulaties van gedistribueer-
de controle applicaties in dynamische omgevingen te ontwikkelen. Bovendien
maakt het simulatieplatform gebruik van geavanceerde softwaretechnologie
om een aantal moeilijke ontwerpuitdagingen aan te pakken. Een voorbeeld
is het gebruik van aspect-georiënteerde technologie om (1) een aantal simu-
latieconcerns die de functionaliteit van de gedistribueerde controle applicatie
doorsnijden, te modularizeren, en om (2) de gedistribueerde controle applica-
tie op een gebruiksvriendelijke manier te integreren in de simulatie.

1.4 Overzicht

Deze samenvatting is als volgt gestructureerd.
In sectie 2 introduceren we het omgevingsdeel van het modelleringsraamwerk.

De nadruk ligt op de specificatie van modelleringsconcepten om een dynamische om-
geving te beschrijven in een simulatiemodel. Ontwerp- en implementatiebeslissingen
om de concepten te ondersteunen, worden besproken in sectie 4.

In sectie 3 introduceren we het controle-applicatiedeel van het modelleringsraam-
werk. De nadruk ligt op de specificatie van modelleringsconcepten om de controle
software te integreren in het simulatiemodel. Ontwerp- en implementatiebeslissin-
gen om de concepten te ondersteunen, worden besproken in sectie 4.

In sectie 4 illustreren we de haalbaarheid van de concepten van het modellerings-
raamwerk beschreven in sectie 2 en 3. We beschrijven de software architectuur van
een simulatieplatform dat de modelleringsconcepten ondersteunt in een uitvoerbare
simulatie.

In sectie 5 tonen we de bruikbaarheid van de modelleringsconcepten en het simu-
latieplatform aan door ze toe te passen op een echte wereld toepassing: software-in-
de-lus simulatie van gedistribueerde controle applicaties die onbemande voertuigen
aansturen in een dynamische fabrieksomgeving.

In sectie 6 besluiten we met een kort overzicht van de voornaamste bijdragen
van het onderzoek.

8

2 Modellering van Dynamische Omgevingen

In deze sectie focussen we op het omgevingsdeel van het modelleringsraamwerk.

2.1 Inleiding

We introduceren modelleringsconcepten die specifiek gericht zijn op het modelleren
van dynamische omgevingen. De modelleringsconcepten beschrijven de karakteris-
tieken van een dynamische omgeving op een expliciete manier. Bovendien is de
betekenis, relatie en uitvoeringssemantiek van alle modelleringsconcepten formeel
beschreven. De formele beschrijving van de concepten laat toe om de modelle-
ringsconcepten te ontkoppelen van hun specifieke implementatie in een bepaald
simulatieplatform. Dit maakt het mogelijk om de modelleringsconcepten toe te
passen om een simulatiemodel te beschrijven zonder rekening te houden met het
simulatieplatform dat gebruikt zal worden om het simulatiemodel uit te voeren.

De onderbouw van de concepten van het modelleringsraamwerk is tweeledig.
Enerzijds is het modelleringsraamwerk het resultaat van onze eigen ervaring met het
ontwikkelen van simulaties van gedistribueerde controle applicaties in dynamische
omgevingen. Anderzijds zijn de modelleringsconcepten gefundeerd in de actuele
praktijk van het modelleren van dynamische omgevingen.

In deze samenvatting beperken we ons tot een kort overzicht van de verschillen-
de modelleringsconcepten. Voor een gedetailleerde beschrijving, meer uitgebreide
voorbeelden en een formele specificatie verwijzen we naar de Engelstalige tekst van
dit proefschrift.

2.2 Overzicht van het Modelleringsraamwerk

Figuur 1 toont een grafisch overzicht van het modelleringsraamwerk voor dyna-
mische omgevingen. De figuur toont de verschillende modelleringsconcepten en de
relaties tussen deze concepten. De modelleringsconcepten zijn onderverdeeld in vier
groepen:

1. Concepten die de structuur van de omgeving (Structure) voorstellen in het
simulatiemodel.

2. Concepten die dynamiek in de omgeving (Representation of Dynamism)
voorstellen in het simulatiemodel.

3. Concepten die manipulatie van dynamiek in de omgeving (Manipulation of
Dynamism) voorstellen in het simulatiemodel.

4. Concepten die de bronnen van dynamiek in de omgeving (Sources of
Dynamism) voorstellen in het simulatiemodel.

We geven een overzicht van de modelleringsconcepten in elke groep.

2.2 Overzicht van het Modelleringsraamwerk 9

Simulated Environment
Sources of Dynamism

Manipulation of Dynamism

Representation
of Dynamism

Structure

Interaction Law

0..*

0..*

applies transformations on

Activity

0..*

0..1

determines reaction in response to

Environmental
EntityEnvironmental

Property

0..*

0..1

describes the evolution of

Environment
Source

Influence
0..*

0..1
is performed by

0..*

0..1

describes the evolution of

Key:
0..*0..*

Reaction Law

is em
bedded in

0..1

1

Controller

Modeling
Construct

Group of
Constructs

Association

0..*

0..*

applies transformations on

Environment
Layout

0..*

arranges

1..*

0..*
arranges

1..*

0..*

is performed by

0..1
is em

bedded in

1

0..1

Figuur 1: Overzicht van de modelleringsconcepten voor het modelleren van dyna-
mische omgevingen.

2.2 Overzicht van het Modelleringsraamwerk 10

2.2.1 Structuur van de Omgeving

Een eerste groep van modelleringsconcepten dient om de structuur van de omgeving
te beschrijven. Om de samenstellende delen van de omgeving voor te stellen in een
simulatiemodel, introduceren we de concepten omgevingsentiteit (Environmental
Entity) en omgevingseigenschap (Environmental Property). Voorbeelden van
omgevingsentiteiten zijn de verschillende objecten in de omgeving, zoals de robots
die aangestuurd worden door een gedistribueerde controle applicatie. Een voorbeeld
van een omgevingseigenschap is de temperatuur van de omgeving. Om de fysische
of logische structuur voor te stellen die de verschillende omgevingsentiteiten en
omgevingseigenschappen ordent ten opzichte van elkaar, introduceren we het mo-
delleringsconcept omgevingslayout (Environment Layout). Een voorbeeld van een
omgevingslayout is een tweedimensionale geometrische schikking van de entiteiten.

2.2.2 Dynamiek in de Omgeving

Een tweede groep van modelleringsconcepten dient om dynamiek in de omgeving
op een expliciete manier voor te stellen in het simulatiemodel. We introduceren
het concept activiteit (Activity) om dynamiek expliciet voor te stellen in het si-
mulatiemodel van de omgeving. De associatie tussen activiteit (Activity) en om-
gevingsentiteit (Environmental Entity) en tussen activiteit (Activity) en omge-
vingseigenschap (Environmental Property) drukt uit dat een activiteit de evolutie
van een bepaalde omgevingsentiteit of omgevingseigenschap overheen de tijd be-
schrijft. Voorbeelden van activiteiten zijn de beweging van een robot of het rollen
van een bal.

2.2.3 Manipulatie van Dynamiek in de Omgeving

Een derde groep van modelleringsconcepten dient om te beschrijven hoe dynamiek
in de omgeving kan veranderen, meer bepaald hoe activiteiten ontstaan, in interactie
treden en eindigen. We introduceren de concepten reactiewet (Reaction Law) en
interactiewet (Interaction Law) om te beschrijven hoe activiteiten in de omgeving
gemanipuleerd worden.

Een reactiewet is een modelleringsconcept dat dient om de reactie van de omge-
ving op een bepaalde manipulatiepoging van een bron van dynamiek te specificeren.
Een voorbeeld is een reactiewet die specificeert wat er gebeurt in de omgeving als
reactie op een poging van een controller om de motoren van een robot te starten. De
reactiewet specificeert wat voor activiteit hierdoor gëınitieerd wordt, bijvoorbeeld
een activiteit die een beweging van die robot voorstelt met een bepaalde snelheid
en in een bepaalde richting.

Een interactiewet is een modelleringsconcept dat dient om te specificeren hoe
dynamiek in interactie kan treden in de omgeving. Bijvoorbeeld, een interactiewet
kan gebruikt worden om te specificeren wat er gebeurt in het geval een robot die
onderhevig is aan een bewegingsactiviteit een muur of een andere robot raakt.

11

De associatie tussen reactiewet (Reaction Law) en activiteit (Activity) ener-
zijds en tussen interactiewet (Interaction Law) en activiteit (Activity) ander-
zijds, drukt uit dat reactiewetten en interactiewetten de activiteiten die aanwezig
zijn in de omgeving, kunnen bëınvloeden.

2.2.4 Bronnen van Dynamiek in de Omgeving

Een vierde groep van modelleringsconcepten dient om de bronnen van dynamiek in
de omgeving te beschrijven. We introduceren de concepten controller (Controller)
en omgevingsbron (Environment Source) om het gedrag van de verschillende bron-
nen van dynamiek voor te stellen.

Een controller is een bron van dynamiek die deel uitmaakt van de gedistribueerde
controle applicatie. Een voorbeeld van een controller is het software programma dat
een bepaalde robot aanstuurt. Een omgevingsbron is een bron van dynamiek die
deel uitmaakt van de omgeving zelf en die extern is aan de gedistribueerde controle
applicatie. Een voorbeeld van een omgevingsbron is het gedrag van een machine in
de omgeving die bestuurt wordt door een mens. Controllers en omgevingsbronnen
zijn ingebed in bepaalde omgevingsentiteiten. Bijvoorbeeld, een robot bevat een
bron van dynamiek, namelijk zijn controller, terwijl een bal passief is en geen bron
van dynamiek bevat.

Controllers en omgevingsbronnen kunnen dynamiek in de omgeving initiëren,
veranderen of beëindigen. We introduceren het modelleringsconcept invloed
(Influence) om de poging voor te stellen van een controller of omgevingsbron
om de omgeving te bëınvloeden. Een voorbeeld van een invloed is de poging van
een controller om de beweging van een robot te starten of te stoppen. De associatie
tussen omgevingsbron (Environment Source) en invloed (Influence), en tussen
controller (Controller) en invloed (Influence) drukt uit dat dynamiek enkel in-
direct gemanipuleerd kan worden, namelijk door het uitoefenen van invloeden op
de omgeving. Reactiewetten bepalen de eigenlijke reactie van de omgeving op deze
invloeden. Dit is voorgesteld door de associatie tussen reactiewet (Reaction Law)
en invloed (Influence).

3 Modellering van de Integratie van de Controle
Software

In deze sectie focussen we op het controle-applicatiedeel van het modelleringsraam-
werk.

3.1 Inleiding

In software-in-de-lus simulaties wordt de software van de echte controllers van een
gedistribueerde controle applicatie ingebed in een gesimuleerde omgeving. We in-
troduceren modelleringsconcepten die het mogelijk maken op een expliciete manier

3.2 Overzicht van het Modelleringsraamwerk 12

te beschrijven hoe de controle software van een gedistribueerde controle applicatie
gëıntegreerd wordt in het simulatiemodel. De betekenis, relatie en uitvoeringsse-
mantiek van de modelleringsconcepten zijn formeel beschreven. De formele beschrij-
ving ontkoppelt de modelleringsconcepten van hun implementatie in een bepaald
simulatieplatform.

In deze samenvatting beperken we ons tot een kort overzicht van de verschillen-
de modelleringsconcepten. Voor een gedetailleerde beschrijving, meer uitgebreide
voorbeelden en de formele specificatie verwijzen we naar de Engelstalige tekst van
dit proefschrift.

3.2 Overzicht van het Modelleringsraamwerk

Figuur 2 geeft een grafisch overzicht van het modelleringsraamwerk. Deze fi-
guur toont de groep van concepten voor de bronnen van dynamiek (Sources of
Dynamism) in Figuur 1, met bijkomende modelleringsconcepten voor de control-
ler. De modelleringsconcepten stellen de volgende karakteristieken van de controle
software expliciet voor in het simulatiemodel:

• Voorstelling van de uitvoeringstijd van de controle software in het simulatie-
model. De uitvoeringstijd van een controller in de echte wereld is de hoe-
veelheid tijd die verstrijkt totdat die controller zijn volgende actie initieert.
De uitvoeringstijd van een controller bepaalt de timing van de acties. In een
dynamische omgeving is de timing van acties cruciaal omdat opportuniteiten
typisch komen en gaan.

We introduceren de modelleringsconcepten tijdsduurprimitief (Duration
Primitive) en tijdsduurmapping (Duration Mapping) om de uitvoeringstijd
van een controller te beschrijven in het simulatiemodel. Een tijdsduurprimitief
identificeert een codesegment dat voor de simulatie een relevante hoeveelheid
uitvoeringstijd vraagt in de echte wereld. Een voorbeeld van een tijdsduur-
primitief is een bepaalde Java methode foo() in de software van een bepaalde
controller. Een tijdsduurmapping is een modelleringsconcept dat specificeert
hoeveel uitvoeringstijd de invocatie van tijdsduurprimitieven inneemt. Bij-
voorbeeld, een tijdsduurmapping kan specificeren dat het uitvoeren van de
methode foo() 0.338 seconden duurt.

• Voorstelling van de interactie van de controle software met de omgeving. De
software van een controller treedt in interactie met de omgeving. De uit-
voering van de controle software kan bepaalde dingen laten gebeuren in de
omgeving. Indien de software van controllers gëıntegreerd wordt in een gesi-
muleerde omgeving, is het cruciaal om de software instructies te identificeren
die door een controller gebruikt worden om in interactie te treden met de
omgeving, en om te specificeren wat de precieze gevolgen zijn in de omgeving
indien deze instructies uitgevoerd worden.

3.2 Overzicht van het Modelleringsraamwerk 13

Sources of Dynamism

Controller

Key:
0..*0..*Modeling

Construct

Group of
Constructs

Association

Duration
Mapping

Control
Name

Mapping

Control
Parameter
Mapping

Duration
Primitive

Control
Primitive

Influence

is based on the
invocation of

1..*

0..*

is based on the
invocation of

1..*

0..*

determines the
parameters of

1..*

0..*

determines the
name of

1..*

0..*

determines the
timing of

1..*

0..*

is based on the
invocation of

1..*

0..*

Environment
Source

0..*
is performed by

0..1

Figuur 2: Overzicht van de modelleringsconcepten voor het modelleren van de con-
trole software.

We introduceren de modelleringsconcepten controleprimitief (Control
Primitive), controlenaammapping (Control Name Mapping) en controlepa-
rametermapping (Control Parameter Mapping) om de interactie van de soft-
ware met de omgeving voor te stellen in het simulatiemodel. Een controle-
primitief stelt een bepaalde software instructie voor die gebruikt wordt door
de controle software om in interactie te treden met de omgeving. Een voor-
beeld van een controleprimitief is een Java methode bar() die de motor van
een robot aanstuurt om op volle kracht te draaien. De modelleringsconcepten

14

controlenaammapping en controleparametermapping specificeren de naam en
de parameters van de invloed (Influence) die resulteert van het uitvoeren van
een controleprimitief. Een controlenaammapping en controleparametermap-
ping ontkoppelen de signatuur van de controleprimitieven van de specifieke
representatie van invloeden (Influences) die gebruikt wordt in de gesimu-
leerde omgeving. Bijvoorbeeld, een controlenaammapping kan specificeren
dat een invocatie van bar() overeenkomt met een invloed met naam start-
Rijden; een controleparametermapping kan specificeren dat een invocatie van
bar() resulteert in de toekenning van de waarde 10 aan die parameter van
startRijden die de snelheid voorstelt van de beweging.

4 Architectuur van het Simulatieplatform

In deze sectie beschrijven we de architectuur van een simulatieplatform dat on-
dersteuning biedt voor de modelleringsconcepten van het modelleringsraamwerk
beschreven in Sectie 2 en Sectie 3. Het simulatieplatform kan gebruikt worden om
simulatiemodellen uit te voeren die beschreven zijn aan de hand van de modelle-
ringsconcepten.

4.1 Inleiding

De software architectuur van een systeem realiseert de functionaliteit van een sys-
teem zodanig dat aan de kwaliteitsvereisten voldaan is.

We gebruiken verschillende architecturale views om de architectuur van het si-
mulatieplatform te documenteren. Een view is een voorstelling van een coherente
set van architecturale elementen en de relaties ertussen [1]. Elk view beschouwt de
architectuur (of een deel ervan) vanuit een bepaald perspectief. De architectuurdo-
cumentatie van het simulatieplatform bestaat uit een module-decompositie view en
verschillende component-en-connector views.

Eerst beschrijven we de vereisten van het simulatieplatform. Daarna bespreken
we ter illustratie het module-decompositie view van het simulatieplatform op het
hoogste niveau.

4.2 Vereisten

De belangrijkste functionele vereisten van het simulatieplatform zijn de volgende:

• Ondersteuning bieden voor de modelleringsconcepten voor dynamische omge-
vingen. Dit omvat (1) het beheren van bronnen van dynamiek en de invloeden
die het resultaat zijn van hun uitvoering, (2) het toepassen van de reactiewet-
ten om de reactie van de omgeving op verschillende invloeden te bepalen, (3)
het beheren van alle activiteiten in de omgeving tijdens het uitvoeren van
een simulatie, (4) het toepassen van de interactiewetten om interacties van
activiteiten af te dwingen.

4.3 Module-Decompositie View van het Simulatieplatform 15

• Ondersteuning bieden voor de modelleringsconcepten voor de controle softwa-
re. Dit omvat (1) het opvolgen van de tijdsduurprimitieven die uitgevoerd
worden door de verschillende controllers, (2) het opvolgen van de controlepri-
mitieven die uitgevoerd worden door de controllers, (3) het bepalen van de
aard en de timing van de invloeden die voortkomen uit de uitvoering van de
controllers.

• Ondersteuning bieden om simulaties uit te voeren die consistent zijn met het
beschreven simulatiemodel. Dit omvat het regelen van de uitvoering van de
verschillende delen van de simulatie, namelijk de verschillende controllers,
omgevingsbronnen van dynamiek, reactiewetten en interactiewetten, zodat de
causale relaties overeenstemmen met de specificaties van het simulatiemodel.

De belangrijkste kwaliteitsvereisten voor het simulatieplatform zijn de volgende:

• Flexibiliteit om de software van een controle applicatie in te bedden in de
simulatie.

• Aanpasbaarheid van het simulatieplatform. Het aanpassen van de belangrijk-
ste delen van het simulatieplatform moet relatief makkelijk kunnen gebeuren,
en de impact van dergelijke wijzigingen moet zo lokaal mogelijk zijn. Voor-
beelden zijn het aanpassen van de simulatie-engine en de functionaliteit om
de gesimuleerde omgeving te ondersteunen.

• Performantie van het simulatieplatform. Het simulatieplatform moet het mo-
gelijk maken simulaties uit te voeren sneller dan real-time.

4.3 Module-Decompositie View van het Simulatieplatform

Een module-decompositie view is een statisch perspectief op de software architec-
tuur van een systeem. Het module-decompositie view toont een decompositie van
het simulatieplatform in verschillende modules. Een module is een implementatie-
eenheid die een coherentie functionaliteit aanbiedt. De relatie tussen modules is
“is een deel van” tussen een deelmodule en de overkoepelende module. Modules
kunnen recursief verfijnd worden.

Figuur 3 toont de module-decompositie view van het simulatieplatform op het
hoogste niveau. We beschrijven eerst de verschillende modules. Achteraf leggen we
uit hoe belangrijke kwaliteiten gerealiseerd worden.

4.3.1 Bespreking van de Elementen

De decompositie van het simulatiesysteem bestaat uit twee grote subsystemen: Con-
troller en Simulation Platform.

• Controller is een module van de echte gedistribueerde controle applicatie die
ingebed is in het simulatieplatform met de bedoeling die module te testen of te

4.3 Module-Decompositie View van het Simulatieplatform 16

Simulation
Platform

1

Simulated Environment Simulation
Engine

Controller

Control API

<<aspect>>
Trace

Trace

Trace

Sync
Sync

Notify

Control API

Control API

Execution
Tracker

Notify
Notify

Sync

KEY
n

Module with n
runtime instances

Provided Interface

Required Interface
Delegates

Dependency

n

n
1

1

Interface Required
by an Aspect

<<aspect>>

Figuur 3: Module-decompositie view van het simulatieplatform

4.3 Module-Decompositie View van het Simulatieplatform 17

configureren. Een gedistribueerde controle applicatie bestaat uit verschillende
controllers die parallel uitvoeren en die samenwerken om een probleem op te
lossen. Een controller heeft welbepaalde mogelijkheden om de omgeving waar
te nemen en er acties in uit te voeren.

• Simulation Platform is het medium waarin de controllers van een gedistri-
bueerde controle applicatie ingebed worden. De belangrijkste verantwoorde-
lijkheden van het simulatieplatform zijn:

– Het simuleren van de echte omgeving van de controle applicatie.

– Het regelen van de uitvoering van alle controllers van de controle appli-
catie volgens het gespecificeerde model van de uitvoeringstijd.

– Het uitvoeren van een simulatie, mogelijk sneller dan real-time.

Het simulatieplatform is verder opgesplitst in drie verschillende modules: Si-
mulated Environment, Simulation Engine en Execution Tracker.

– Simulated Environment is verantwoordelijk voor het simulatiemodel
van de echte omgeving van de controle applicatie. De Simulated Envi-
ronment module omvat alle functionaliteit om de modelleringsconcepten
van het omgevingsdeel(Sectie 2) te ondersteunen.

– Simulation Engine is verantwoordelijk om de evolutie van alle delen
van de simulatie te regelen in overeenstemming met de specificatie van
het simulatiemodel. De Simulation Engine module omvat alle functio-
naliteit om de uitvoering de Simulated Environment en de verschillende
Execution Trackers te synchroniseren met elkaar. Dit is nodig om cor-
recte causale relaties te garanderen die in overeenstemming zijn met het
gedefinieerde simulatiemodel.

– Execution Tracker is verantwoordelijk om de uitvoering van een be-
paalde controller van de gedistribueerde controle applicatie op te volgen.
Deze module omvat alle functionaliteit om de modelleringsconcepten van
het controle applicatiedeel (Sectie 3) te ondersteunen. Het opvolgen van
de uitvoering van een controller omvat (1) het bepalen van de uitvoe-
ringstijd die gebruikt is door die controller volgens de specificatie van
het tijdsduurmodel, en (2) het synchroniseren van de uitvoering van die
controller met de Simulation Engine.

4.3.2 Motivatie voor het Ontwerp

Elke module omvat een bepaald deel van de functionaliteit van het simulatieplat-
form. We lichten de voornaamste ontwerpbeslissingen toe.

18

Lage koppeling tussen de Controller en het Simulation Platform. Voor
software-in-de-lus simulatie is het belangrijk om een lage koppeling te hebben tussen
de controle software enerzijds, en het simulatieplatform waarin de controle software
ingebed wordt, anderzijds. De Controller is met het Simulation Platform verbonden
via twee interfaces: Control API en Trace. De Control API interface laat toe om
alle communicatie, actie en perceptie van de Controller op een transparante manier
om te leiden naar het Simulation Platform. De Trace interface verbindt de controller
met een specifieke Execution Tracker in het Simulation Platform.

Twee voordelen van een lage koppeling tussen de Controller en het Simulation
Platform zijn (1) hergebruik, namelijk het hergebruik van het Simulation Platform
voor verschillende Controllers, en (2) aanpasbaarheid, namelijk dat het mogelijk
wordt de Controllers te wijzigen zonder impact op het Simulation Platform.

Lage koppeling tussen de Simulated Environment en de Simulation En-
gine. In het Simulation Platform maken we een expliciet onderscheid tussen de
Simulated Environment enerzijds, en de Simulation Engine anderzijds. De Simu-
lated Environment en de Simulation Engine zijn verbonden met twee welbepaalde
interfaces, namelijk de Notify en de Sync interfaces. Dit laat toe om (1) abstractie
te maken van synchronisatie bij het ontwikkelen van de Simulated Environment, en
om (2) abstractie te maken van de interne werking van de verschillende te synchro-
niseren partijen bij de ontwikkeling van de Simulation Engine.

Twee voordelen van een lage koppeling tussen de Simulated Environment en de
Simulation Engine zijn (1) hergebruik, namelijk het vergemakkelijkt de integratie
van een andere Simulation Engine in het Simulation Platform, en (2) beheersbaar-
heid, namelijk het ontwerp van de Simulated Environment wordt vergemakkelijkt
omdat abstractie kan gemaakt worden van synchronisatie.

5 Simulatie van AGV Controle Applicaties in Dy-
namische Fabrieksomgevingen

In deze sectie passen we het modelleringsraamwerk en het simulatieplatform toe op
een echte wereld probleem.

5.1 Inleiding

We ontwikkelden een simulator die toelaat om nieuwe of veranderde functionaliteit
te evalueren van een gedistribueerde controle applicatie voor het aansturen van
AGV’s in een fabrieksomgeving.

Een AGV is een onbemand elektrisch voertuig dat dient om ladingen te trans-
porteren van de ene naar de andere plaats in een fabriek. Een echte AGV controle
applicatie omvat verschillende, complexe functionaliteiten, zoals:

5.2 Simulatiemodel van de AGV Simulator 19

• Transporttoewijzing: transporten worden gegenereerd door klantsystemen
(typisch een warehouse management systeem) en dienen te worden toegewezen
aan AGV’s.

• Routering: AGV’s dienen een efficiënte route te vinden op de layout van
de fabrieksvloer, AGV’s mogen enkel langs voorgedefinieerde paden bewegen.
Om efficiënt naar een bestemming te rijden dienen de AGV’s rekening te
houden met de wijzigende verkeerstoestand in het systeem.

• Vermijden van botsingen: vanzelfsprekend mogen AGV’s niet op hetzelfde
ogenblik een kruispunt oversteken; doch botsingen moeten ook vermeden wor-
den wanneer twee AGV’s mekaar passeren in dicht bij elkaar gelegen parallelle
wegen.

• Herladen van de batterij: om te vermijden dat AGV’s zonder energie vallen,
moeten ze op geregelde tijdstippen naar een laadstation bewegen om hun
batterij ter herladen.

De AGV simulator laat toe om (1) verschillende functionaliteiten van AGV con-
trollers te evalueren, (2) verschillende aanpakken voor een bepaalde functionaliteit
te vergelijken, en (3) de functionaliteiten op een systematische manier te integreren.

Het doel van deze sectie is om aan te tonen hoe het modelleringsraamwerk
ondersteuning biedt voor de modelleringsfase van de ontwikkeling van de AGV
simulator, en om te evalueren hoe flexibel en performant de AGV simulator is.

5.2 Simulatiemodel van de AGV Simulator

We formuleren een simulatiemodel voor de AGV simulator. Het simulatiemodel
is beschreven aan de hand van de modelleringsconcepten van het omgevingsdeel
(Sectie 2) en het controle applicatiedeel (Sectie 3). In deze samenvatting beperken
we ons tot een overzicht van het model van de fabrieksomgeving.

Figuur 4 geeft een overzicht van het omgevingsdeel van het simulatiemodel van
de AGV simulator. Deze figuur toont specifieke instanties van de modelleringscon-
cepten uit Figuur 1. Het simulatiemodel is gestructureerd in vier delen, analoog
aan Figuur 1. We bespreken enkele instanties van elk deel van het simulatiemodel.

5.2.1 Structuur van de Fabrieksomgeving.

De structuur van de gesimuleerde fabrieksomgeving is gemodelleerd met behulp van
omgevingsentiteiten (Environmental Entity) en omgevingslayout (Environment
Layout). We bespreken enkele omgevingsentiteiten:

• Fabrieksvloer (Warehouse Floor). De fabrieksvloer is een vlak oppervlak van
een bepaalde grootte. AGVs rijden over de fabrieksvloer en ladingen worden
geplaatst op de fabrieksvloer.

5.2 Simulatiemodel van de AGV Simulator 20

Simulated Environment

Sources of Dynamism

Manipulation of Dynamism

Representation
of Dynamism

Structure
Environmental

Entity

Environment
Source Influence

Key:

Controller

Modeling
Construct

Group of
Constructs

Environment
Layout

AGV
Controller

Transport
Generator

Drive
Influence

Pick
Influence

Drop
Influence

Send
Influence

Charge
Influence

Interaction
Law

Collision
Law

Battery
Law

WiFi QoS
Law

Reaction
Law

Start
Driving

Law

Start
Picking

Law

Start
Dropping

Law

Start
Sending

Law

Start
Charging

Law

Activity

Driving
Activity

Picking
Activity

Dropping
Activity

Sending
Activity

Charging
Activity

AGV

Load

Warehouse
Floor

Segment Station
2D Geometric
Arrangement

Generalization

WiFi Access
Point

Transport
Base

Interrupt
Charging

Law

Drop
Influence

Figuur 4: Overzicht van het simulatiemodel van de gesimuleerde fabrieksomgeving.
De grijze delen zijn specifieke instanties van de modelleringsconcepten voor de AGV
simulator.

5.2 Simulatiemodel van de AGV Simulator 21

• Segmenten (Segments). AGV’s rijden over voorgedefinieerde magneetpaden,
Een segment kan unidirectioneel of bidirectioneel zijn en heeft een bepaalde
lengte. Elk segment verbindt twee stations.

• Stations (Stations). Stations zijn locaties die naburige segmenten verbinden.
Een station kan gebruikt worden voor een of meerdere doeleinden, namelijk
voor routering, als locatie om ladingen te plaatsen, als parkeerplaats en/of als
herlaadstation voor batterijen.

• Transportbasis (Transport Base). Een transportbasis is een computer die ge-
bruikt kan worden om nieuwe transporttaken te verspreiden onder de AGV’s.
Een transportgenerator is het ingebed in elke transportbasis.

De omgevingsentiteiten in de gesimuleerde fabrieksomgeving worden geordend
op een tweedimensionale geometrische layout. Deze layout drukt de ruimtelijke
positionering van alle entiteiten met betrekking tot elkaar uit.

5.2.2 Dynamiek in de Fabrieksomgeving

We bespreken enkele activiteiten die kunnen voorkomen in de fabrieksomgeving:

• Rijd-activiteiten (Driving activities). Een rijd-activiteit stelt voor dat een
AGV over een segment van de fabrieksvloer rijdt tot hij het station op het
einde van dat segment bereikt.

• Oppik-activiteiten (Picking activities). Een oppik-activiteit stelt voor dat
een AGV zijn vorklift gebruikt om een bepaalde lading op een station op te
pikken.

• Herlaad-activiteiten (Charging activities). Een herlaad-activiteit stelt
voor dat een AGV zijn batterij herlaadt op een herlaadstation.

5.2.3 Bronnen van Dynamiek in de Fabrieksomgeving

In de fabrieksomgeving bevinden zich verschillende bronnen van dynamiek:

• AGV controllers. AGV controllers stellen de controle software voor die inge-
bed wordt in een AGV. Alle AGV controllers samen vormen de gedistribueerde
AGV controle applicatie. Elke AGV controller is verantwoordelijk voor de stu-
ring van een AGV, en om de werking van die AGV te coördineren met andere
AGVs.

• Transport generator. Een transport generator zendt transporttaken naar de
AGV’s. Een transport generator genereert transporttaken volgens een be-
paald transportprofiel. Dit transportprofiel bepaalt de karakteristieken van de
stroom transporttaken die door de AGV’s afgehandeld moet worden. Trans-
port generators zijn omgevingsbronnen die extern zijn aan de AGV controle
applicatie. Een transport generator in ingebed in een transportbasis.

5.3 Evaluatie van de AGV Simulator 22

We bepreken enkele invloeden (Influences):

• Rijd-invloed (Drive influence). Een rijd-invloed stelt de poging voor van
een AGV controller om te beginnen rijden over een gegeven segment.

• Oppik-invloed (Pick influence). Een oppik-invloed stelt de poging van een
AGV controller voor om te beginnen rijden over een gegeven segment en om
de lading op te pikken op het station aan het einde van dit segment.

5.2.4 Manipulatie van Dynamiek in de Fabrieksomgeving

We bepreken de volgende reactiewet (Reaction Laws) in de gesimuleerde fabrieks-
omgeving:

• Start rijden wet (Start driving law). Deze wet bepaalt de reactie van de
omgeving op een rijd-invloed (drive influence) of een parkeer-invloed (park
influence). Een echte AGV begint niet altijd te rijden wanneer hij hier-
toe wordt aangestuurd. Om dit te modelleren controleert de wet een aantal
voorwaarden vooraleer een nieuwe rijd-activiteit (driving activity) wordt
toegevoegd. Deze voorwaarden controleren of de AGV al niet bezig is met een
rijd-, oppik- of neerzet-activiteit op het moment van de invloed; of het seg-
ment grenst aan het huidige station van de AGV en of de AGV in de gegeven
richting over dat segment mag rijden (segmenten kunnen unidirectioneel zijn).
De wet bepaalt geen nieuwe activiteit in geval aan een van deze voorwaarden
niet geldig is, aangezien een echte AGV dan ook niet start met rijden.

We bespreken de volgende interactiewet (Interaction Law) in de gesimuleerde
fabrieksomgeving.

• Botsingswet (Collision law). Een botsingswet controleert of AGV’s in de
gesimuleerde fabrieksomgeving botsen. In het geval de botsingswet een bot-
sing detecteert, verandert het de activiteit(en) van de AGV’s die betrokken
zijn in de botsing, zodanig dat de AGV’s stoppen met rijden op het moment
van de botsing.

5.3 Evaluatie van de AGV Simulator

Ter evaluatie illustreren we de flexibiliteit van de AGV simulator en meten we de
performantie.

Flexibiliteit van de AGV simulator is belangrijk om te kunnen experimente-
ren met AGV controle software in verschillende situaties. Door de verschillende
wetten in te stellen kunnen de karakteristieken van bewegingen, energieverbruik,
communicatie, botsingen, transporttaken, etc. in de gesimuleerde fabrieksomgeving
afgestemd worden aan de noden van de simulatie. Bijvoorbeeld:

5.3 Evaluatie van de AGV Simulator 23

• Activiteiten kunnen aangepast worden naargelang de fysische karakteristieken
van de echte AGV’s. Bijvoorbeeld rijd-activiteiten kunnen ingesteld worden
met de snelheids- en acceleratiekarakteristieken van de AGV’s.

• Botsingsdetectie kan ingesteld worden aan de hand van de botsingswet
(Collision Law). De botsingswet kan ingesteld worden om botsingen te de-
tecteren met een vereiste nauwkeurigheid. Of in geval de AGV controllers
nog geen botsingsvermijding ondersteunen, kan de botsingswet gedeactiveerd
worden zodat AGV’s elkaar niet hinderen.

 0

 5

 10

 15

 20

 25

 30

2 3 4 5 6 7 8 9 10 11 12

W
al

lcl
oc

k
Ti

m
e

(s
)

Number of AGVs

No collision law
10 cm
25 cm

100 cm

Figuur 5: Performantie (in seconden) om 100 seconden simulatietijd te simuleren
met de AGV simulator. De vier lijnen komen overeen met vier verschillende instel-
lingen van de botsingswet: de botsingswet gedeactiveerd en de botsingswet ingesteld
om botsingen te detecteren met een nauwkeurigheid van 10 centimeter, 25 centime-
ter en 100 centimeter. Elk punt in de figuur is het gemiddelde van 40 simulaties,
waarvan tevens het 99% betrouwbaarheidsinterval is afgebeeld.

We hebben experimenten uitgevoerd om de flexibiliteit en de performantie van
de AGV simulator te illustreren, zie Figuur 5. De experimenten gebruiken vier
verschillende instellingen van de botsingswet: (1) de botsingswet gedeactiveerd;

24

de botsingswet ingesteld om botsingen te detecteren met een nauwkeurigheid van
respectievelijk (2) 10 centimeter, (3) 25 centimeter en tenslotte (4) 100 centimeter.

We bespreken twee bevindingen die duidelijk uit de experimenten naar voren
komen. Ten eerste tonen de experimenten aan dat de botsingswet een dominante
factor is met betrekking tot de performantie van de AGV simulator. De complexiteit
van de botsingswet is O(n2), met n het aantal AGV’s. Ten tweede zien we dat de
AGV simulator in staat is om simulaties uit te voeren sneller dan real-time. Immers,
zelfs voor 12 AGV’s met een nauwkeurigheid van 10 centimeter worden 100 seconden
gesimuleerd met 20 seconden rekentijd.

6 Besluit

We geven een overzicht van de bijdragen van het onderzoek beschreven in dit proef-
schrift.

De belangrijkste bijdrage is de introductie van een expliciet modelleringsraam-
werk voor software-in-de-lus simulaties van gedistribueerde controle applicaties in
dynamische omgevingen. Het modelleringsraamwerk biedt modelleringsconcepten
aan die specifiek gericht zijn op het beschrijven van een simulatiemodel voor deze
familie van simulaties. Deze modelleringsconcepten bieden expliciete ondersteuning
voor de kernkarakteristieken van deze familie van simulaties. Bovendien zijn de mo-
delleringsconcepten formeel gespecificeerd. Dit is cruciaal om het simulatiemodel
te ontkoppelen van het simulatieplatform om het model uit te voeren.

Specifieke bijdragen van het onderzoek beschreven in dit proefschrift zijn (1) de
introductie van een modelleringsraamwerk met specifieke modelleringsconcepten die
de ontwikkeling van software-in-de-lus simulaties van gedistribueerde controle appli-
caties in dynamische omgevingen ondersteunen, (2) de beschrijving van een formele
specificatie van het modelleringsraamwerk, (3) de ontwikkeling van een simulatie-
platform dat de modelleringsconcepten ondersteunt in een uitvoerbare simulatie,
(4) de evaluatie van de bruikbaarheid van alle modelleringsconcepten van het mo-
delleringsraamwerk in een industriële toepassing. We lichten deze bijdragen kort
toe.

De introductie van een modelleringsraamwerk voor software-in-de-lus
simulaties van gedistribueerde controle applicaties in dynamische omge-
vingen [7, 13, 9, 10]. Het modelleringsraamwerk laat toe om belangrijke karak-
teristieken van deze familie van simulaties op een expliciete manier te beschrijven.
Het modelleringsraamwerk omvat twee delen:

• Het omgevingsdeel van het modelleringsraamwerk omvat modelleringsconcep-
ten die op een expliciete manier ondersteuning bieden voor het modelleren
van karakteristieken die typisch zijn voor dynamische omgevingen:

– Modelleringsconcepten om de structuur van een dynamische omge-
ving te beschrijven in een simulatiemodel: Environmental Entity,

25

Environmental Property en Environment Layout.

– Modelleringsconcepten om de dynamiek in een dynamische omgeving te
beschrijven in een simulatiemodel: Activity.

– Modelleringsconcepten om de bronnen van dynamiek in een dynami-
sche omgeving te beschrijven in een simulatiemodel: Controller en
Environment Source.

– Modelleringsconcepten om de wetmatigheden van dynamiek in dynami-
sche omgeving te beschrijven in een simulatiemodel: Reaction Law en
Interaction Law.

• Het controle applicatiedeel van het modelleringsraamwerk omvat modellering-
concepten die op een expliciete manier ondersteuning bieden voor het model-
leren van belangrijke karakteristieken van de controle software die ingebed
wordt in de simulatie:

– Modelleringsconcepten om de uitvoeringstijd van de controllers van een
gedistribueerde controle applicatie te beschrijven in een simulatiemodel:
Duration Primitive en Duration Mapping.

– Modelleringsconcepten om de controle interface van een gedistribueer-
de controle applicatie te beschrijven in een simulatiemodel: Control
Primitive, Control Parameter Mapping en Control Name Mapping.

De beschrijving van een formele specificatie van het modelleringsraam-
werk [13, 11]. De formele specificatie ontkoppelt de modelleringsconcepten van
hun implementatie in een specifiek simulatieplatform. Het voordeel hiervan is twee-
ledig.

Enerzijds laat de formele specificatie toe om een simulatiemodel te beschrijven
aan de hand van de modelleringsconcepten zonder dat kennis vereist is van het
simulatieplatform dat gebruikt wordt om het simulatiemodel uit te voeren. Im-
mers, de formele specificatie beschrijft op ondubbelzinnige wijze de betekenis en de
onderlinge relatie van alle modelleringsconcepten.

Anderzijds laat de formele specificatie toe om verschillende alternatieve ontwerp-
beslissingen tegen elkaar af te wegen wanneer een uitvoerbare simulatie gebouwd
wordt. Immers, de formele beschrijving specificeert enkel de functionaliteit die no-
dig is om een simulatiemodel uit te voeren, zonder bepaalde ontwerpbeslissingen op
te leggen.

De ontwikkeling van een simulatieplatform dat de modelleringsconcepten
ondersteunt in een uitvoerbare simulatie [10, 21]. We hebben een simula-
tieplatform gebouwd dat aantoont dat het modelleringsraamwerk bruikbaar is om
uitvoerbare simulaties te ontwikkelen. Het simulatieplatform omvat de functionali-
teit om de modelleringsconcepten te ondersteunen in een uitvoerbare simulatie. Het

26

simulatieplatform biedt ondersteuning voor simulaties (1) waarin de software van
echte controllers kan ingebed worden, en (2) waarvan het simulatiemodel beschreven
is aan de hand van de voorgestelde modelleringsconcepten.

We hebben een architectuur voorgesteld voor zo een simulatieplatform, en we
hebben deze architectuur gedocumenteerd met verschillende architecturale views.
De architectuur gebruikt aspect technologie om de controle software op een ge-
bruiksklare manier te integreren in een simulatie, en om simulatieconcerns en ap-
plicatieconcerns te scheiden.

Een validatie in een industriële toepassing [8, 12]. We hebben het model-
leringsraamwerk en het simulatieplatform toegepast in een industriële toepassing.
We hebben een AGV simulator ontwikkeld die ondersteuning biedt voor software-
in-de-lus simulatie van gedistribueerde controle applicaties die AGV’s aansturen in
fabrieksomgevingen.

Het modelleringsraamwerk biedt ondersteuning voor het simulatiemodel van de
AGV simulator. De modelleringsconcepten van het modelleringsraamwerk bieden
ondersteuning om de karakteristieken die typisch zijn voor een AGV systeem op een
expliciete manier te beschrijven in een simulatiemodel. De ontwikkelaar kan het
simulatiemodel van de AGV simulator aanpassen aan de noden van een bepaalde
simulatie door first-class elementen van het simulatiemodel te activeren, deactiveren
of fijn te stemmen.

Het simulatieplatform ondersteunt de uitvoering van de AGV simulator. Het
simulatieplatform maakt het mogelijk om simulatiemodellen uit te voeren die spe-
cifiek aangepast zijn aan de noden van een bepaalde simulatie.

Een echte AGV controle applicatie omvat verschillende, complexe functionalitei-
ten, zoals routering, botsingsvermijding, transporttoekenning en batterij herlading.
Deze functionaliteiten worden typisch incrementeel ontwikkeld, waarbij de nadruk
ligt op bepaalde functionaliteiten en waarbij er van andere functionaliteiten ab-
stractie wordt gemaakt. De AGV simulator maakt het mogelijk om (1) verschillen-
de functionaliteiten afzonderlijk te evalueren, (2) verschillende aanpakken voor één
enkele functionaliteit te vergelijken, en (3) functionaliteiten op een systematische
manier met elkaar te integreren.

Slotbemerking

Bij het bouwen van een simulatiemodel dient men enkel die karakteristieken van
het echte systeem te beschrijven, die volstaan voor het doel van de simulatie. Een
simulatiemodel mag het echte systeem niet over-simplificeren, noch zo gedetailleerd
zijn dat het duur wordt om het model te bouwen en uit te voeren. Daarom wordt
modelleren vaak een kunst genoemd, in plaats van een wetenschap [19].

Echter, naarmate de vraag naar gedistribueerde controle applicaties toeneemt,
worden meer en meer simulaties gebouwd om hun ontwikkeling te ondersteunen.
De manier waarop simulatiemodellen voor degelijke systemen ontwikkeld worden,

REFERENTIES 27

wordt meer en meer gemeenschappelijke kennis. Dit soort van gemeenschappelijke
kennis kan expliciet beschreven worden in een modelleringsraamwerk.

Het werk van veel vooraanstaande onderzoekers vormt het fundament waarop
onze onderzoeksbijdragen steunen. In het voorgestelde modelleringsraamwerk zit
kennis en expertise vervat die we hebben opgedaan tijdens ons onderzoek, en die
op zijn beurt steunt op tientallen jaren ervaring die opgebouwd werd in de onder-
zoeksgemeenschap.

Het modelleringsraamwerk toont aan hoe kennis en ervaring omtrent simulatie
van gedistribueerde controle applicaties in dynamische omgevingen op systematische
wijze kan gedocumenteerd worden, en we hebben aangetoond dat dit kan bijdragen
tot het ontwikkelen van nieuwe simulaties. Daarom zijn we van mening dat model-
leren geen kunst is in plaats van een wetenschap, maar een kunst ondersteund door
wetenschap.

Referenties

[1] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley Professional, April 2003.

[2] Günter Bruns, Peter Mössinger, Daniel Polani, Ralf Schmitt, Rene Spalt, Tho-
mas Uthmann, and Stefan Weber. Xraptor - a simulation environment for
continuous virtual multi-agent systems - user manual.

[3] John S. Carson. Introduction to simulation: introduction to modeling and
simulation. In Winter Simulation Conference, pages 7–13, 2003.

[4] S. G. Choi and W. H. Kwon. Real-time distributed software-in-the-loop simu-
lation for distributed control systems. In Proc. of the 1999 IEEE International
Symposium on Computer Aided Control System Design, pages 115–119, 1999.

[5] J. Ferber and J.P. Müller. Influences and reaction: A model of situated mul-
tiagent systems. In Proceedings of the Second International Conference on
Multi-agent Systems, pages 72–79. AAAI Press, 1996.

[6] Ian J. Hayes, Michael Jackson, and Cliff B. Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefania
Gnesi, and Dino Mandrioli, editors, FME, volume 2805 of Lecture Notes in
Computer Science, pages 154–169. Springer, 2003.

[7] Alexander Helleboogh, Tom Holvoet, and Yolande Berbers. Simulating actions
in dynamic environments. In Conceptual Modeling and Simulation Conference,
CMS2005, Track on Agent Based Modeling and Simulation in Industry and
Environment, 2005.

REFERENTIES 28

[8] Alexander Helleboogh, Tom Holvoet, and Yolande Berbers. Testing AGVs in
Dynamic Warehouse Environments. In D. Weyns, V. Parunak, and F. Michel,
editors, Environments for Multiagent Systems II, volume 3830 of Lecture Notes
in Computer Science, pages 270–290. Springer-Verlag, 2006.

[9] Alexander Helleboogh, Tom Holvoet, and Danny Weyns. Time management
adaptability in multi-agent systems. In Proceedings of the AISB 2004 Fourth
Symposium on Adaptive Agents and Multi-Agent Systems, pages 20–30. Univer-
sity of Leeds, The Society for the Study of Artificial Intelligence and Simulation
of Behaviour, 2004.

[10] Alexander Helleboogh, Tom Holvoet, and Danny Weyns. Time management
support for simulating multi-agent systems. In Joint workshop on multi-agent
and multi-agent-based simulation, pages 31–40. Columbia University, 2004.

[11] Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande Berbers. Ex-
tending time management support for multi-agent systems. In Multi-Agent and
Multi-Agent-Based Simulation: Joint Workshop MABS 2004, New York, NY,
USA, July 19, 2004, Revised Selected Papers, volume 3415 / 2005 of Lecture
Notes in Computer Science, pages 37–48. Springer-Verlag, GmbH, 2005.

[12] Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande Berbers.
Towards time management adaptability in multi-agent systems. In Adaptive
Agents and Multi-Agent Systems III: Adaptation and Multi-Agent Learning,
volume 3394 / 2005 of Lecture Notes in Computer Science, pages 88–105.
Springer-Verlag, GmbH, 2005.

[13] Alexander Helleboogh, Giuseppe Vizzari, Adelinde Uhrmacher, and Fabien Mi-
chel. Modeling dynamic environments in multi-agent simulation. Autonomous
Agents and Multi-Agent Systems: Special issue on environments for multi-agent
systems, 14(1):87–116, February 2007.

[14] J. Himmelspach, M. Röhl, and A.M. Uhrmacher. Simulation for testing soft-
ware agents - an exploration based on JAMES. In Proc. of the 2003 Winter
Simulation Conference, New Orleans, USA, December 2003.

[15] Daniele Nardi, Martin Riedmiller, Claude Sammut, and José Santos-Victor,
editors. RoboCup 2004: Robot Soccer World Cup VIII, volume 3276 of Lecture
Notes in Computer Science. Springer, 2005.

[16] Patrick Riley and George Riley. SPADES — a distributed agent simulation
environment with software-in-the-loop execution. In S. Chick, P. J. Sánchez,
D. Ferrin, and D. J. Morrice, editors, Winter Simulation Conference Pro-
ceedings, volume 1, pages 817–825, 2003.

[17] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

REFERENTIES 29

[18] Thomas J. Schriber and Daniel T. Brunner. Inside discrete-event simulation
software: how it works and why it matters. In WSC ’99: Proceedings of the
31st conference on Winter simulation, pages 72–80. ACM Press, 1999.

[19] Robert E. Shannon. Introduction to the art and science of simulation. In
Winter Simulation Conference, pages 7–14, 1998.

[20] A.M. Uhrmacher and B.G. Kullick. ”plug and test- software agents in virtual
environments. In Proceedings of the 2000 Winter Simulation Conference, vo-
lume 2, pages 1722–1729. Wyndham Palace Resort & Spa, Orlando, Florida,
USA, December 2000.

[21] Danny Weyns, Alexander Helleboogh, and Tom Holvoet. The Packet-World: A
testbed for investigating situated multiagent systems. In Software Agent-Based
Applications, Platforms, and Development Kits, Whitestein Series in Software
Agent Technologies, pages 383–408. Birkhauser Verlag, Basel - Boston - Berlin,
September 2005.

[22] Michael J. Wooldridge. Introduction to Multiagent Systems. John Wiley &
Sons, Inc., New York, NY, USA, 2001.

[23] Bernard Zeigler and Herbert Praehofer. Theory of Modeling and Simulation.
Academic Press, January 2000.

	PhD_Alexander_Helleboogh_totaal.pdf
	PhDcover.pdf
	PhD.pdf

	summary.pdf

