
A Correspondence between Type

Checking via Reduction and Type

Checking via Evaluation
Accompanying code overview

Ilya Sergey
Dave Clarke

Report CW617, January 2012

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

A Correspondence between Type

Checking via Reduction and Type

Checking via Evaluation
Accompanying code overview

Ilya Sergey
Dave Clarke

Report CW617, January 2012

Department of Computer Science, K.U.Leuven

Abstract

This is an accompanying technical report for the paper with
the corresponding title, published in Information Processing Let-
ters, volume 112, issues 1–2, pages 13–20. This document contains
detailed listings of different semantic artifacts for type checking with
explanations on the performed transformations.

Keywords : compositional evaluators, type checkers, continuation-passing style,
defunctionalization, refunctionalization

A Correspondence between Type Checking via

Reduction and Type Checking via Evaluation

Accompanying code overview

Ilya Sergey Dave Clarke

Dept. Computer Science,
Katholieke Universiteit Leuven

{firstname.lastname}@cs.kuleuven.be

This is an accompanying technical report for the paper with the corresponding title [1].
This document contains detailed listings of different semantic artifacts for type checking with
explanations on the performed transformations.

1 Introduction

This technical report provides a detailed implementation of the original reduction semantics for
type checking and the corresponding semantics-preserving transformations. The report itself
and the accompanying code is available from http://people.cs.kuleuven.be/ilya.sergey/
type-reduction/.

2 A Reduction-Based Type Checker

In this section we provide the implementation of a hybrid language for the simply typed lambda
calculus, a notion of closures in it and a corresponding reduction semantics via contraction as a
starting point for further transformations.

The reduction-based normalization of hybrid terms is implemented by providing an abstract
syntax, a notion of contraction and a reduction strategy. Then we provide a one-step reduction
function that decomposes a non-value closure into a potential redex and a reduction context,
contracts the potential redex, if it is actually one, and then recomposes the context with the
contractum. Finally we define a reduction-based normalization function that repeatedly applies
the one-step reduction function until a value (i.e., an actual type of an expression) is reached.

2.1 Plain syntax

This section describes elements of the syntax of the traditional λ-calculus. The abstract syntax
for λHincludes integer literals, identifiers, lambda-abstractions, applications as well as “hybrid”
elements such as numeric types and arrows τ → e. Types are either numeric types or arrow types.
The special value T_ERROR s is used for typing errors; it cannot be a constituent of any other type.
Typing environments TEnv represent bindings of identifiers to types, which are values in the hybrid
language. In order to keep to the uniform approach for different semantics for type inference, we
leave environments parametrized by the type parameter ’a, which is instantiated with typ in this
case.

1

syntax.sml

structure Syn =

struct

datatype typ = T_NUM

| T_ARR of typ * typ

| T_ERROR of string

datatype term = LIT of int

| IDE of string

| LAM of string * typ * term

| APP of term * term

end

structure TEnv =

struct

type ’a gamma = (string * ’a) list

val empty = []

fun extend (x, t, gamma) = (x, t) :: gamma

fun lookup (x, gamma)

= let fun search []

= NONE

| search ((x’, t) :: gamma)

= if x = x’ then SOME t else search gamma

in search gamma

end

end

(* Example terms for testing *)

local open Syn

in

(* T_ARR (T_ARR (T_NUM ,T_NUM),T_NUM) *)

val term1 = LAM ("z", T_ARR(T_NUM , T_NUM), APP (IDE "z", LIT 42))

(* T_ARR (T_ARR (T_NUM ,T_NUM),T_ARR (T_NUM ,T_NUM)) *)

val term2 = LAM ("y", T_ARR (T_NUM , T_NUM), IDE "y")

(* T_ARR (T_NUM ,T_NUM) *)

val term3 = LAM("x", T_NUM , IDE "x")

(* T_NUM *)

val term4 = APP(term1 , APP (term2 , term3))

end

2.2 Hybrid syntax

We introduce closures into the hybrid language in order to represent the environment-based re-
duction system. A closure can either be a number, a ground closure pairing a term and an
environment, a combination of closures, a closure for a hybrid arrow expression, or a closure for
a value arrow element, namely an arrow type. A value in the hybrid language is either an integer
or a function type. Environments bind identifiers to values. A context is a closure with a hole,
represented inside-out in a zipper-like fashion.

hsyntax.sml

(* Hybrid syntax *)

structure HSyn =

struct

open Syn TEnv

datatype hterm = H_LIT of int

2

| H_IDE of string

| H_LAM of string * typ * hterm

| H_APP of hterm * hterm

| H_TARR of typ * hterm

| H_TNUM

datatype closure = CLO_NUM

| CLO_GND of hterm * bindings

| CLO_APP of closure * closure

| CLO_ARR of typ * closure

| CLO_ARR_TYPE of typ

withtype bindings = typ TEnv.gamma

datatype hctx = CTX_MT

| CTX_FUN of hctx * closure

| CTX_ARG of typ * hctx

| CTX_ARR of typ * hctx

end

2.3 Reduction semantics for type checking

A potential redex is either a numeric literal, a ground closure pairing an identifier and an envi-
ronment, an application of a value to another value, a lambda-abstraction to be type-reduced, an
arrow type, or a ground closure pairing a term application and an environment. A potential redex
may trigger a contraction or it may get stuck.

The contraction function contract reflects the type-checking reduction rules for λH. For in-
stance, any integer literal contracts to a number type T_NUM, a lambda expression contracts to an
arrow expression of the hybrid language, and the contraction of a potential redex PR_APP checks
whether its first parameter is a function type and its parameter type matches the argument of the
application. A non-value closure is stuck when an identifier does not occur in the current environ-
ment or non-function type is used in a function position or a function parameter’s type does not
correspond to the actual argument’s type. Following the description of λH’s reduction semantics
we seek the left-most inner-most potential redex in a closure. In order to reduce a closure, it is
first decomposed. The closure might be a value and not contain any potential redex or it can be
decomposed into a potential redex and a reduction context.

A decomposition function recursively searches for the left-most inner-most redex in a closure.
In our implementation we define decomposition (decompose) as a big-step abstract machine with two
state-transition functions, decompose_closure and decompose_context. The former traverses a given
closure and accumulates the reduction context until it finds a value and the latter dispatches
over the accumulated context to determine whether the given closure is a value or a potential
redex. The function decompose starts by decomposing a closure within an empty context. For the
full definition of the decomposition functions, see the accompanying code. The recomposition
function recompose takes a context and a value to embed, peels off context layers and iteratively
constructs the resulting closure.

Reduction-based normalization is based on a function that iterates a one-step reduction func-
tion until it yields a value (i.e., it reaches a fixed point). At each iteration the normalization
function inspects its argument. If it is a potential redex within some context it will be contracted
using the function contract and then be recomposed. If during contraction an error occurs, it must
be reported. The terms we want to type-check via reduction-based normalization are from the
host language (and described by the data type term) whereas intermediate values of reductions
are within the larger hybrid language (i.e., they are of type hterm). So we should first embed
“plain” terms into “hybrid” ones using the function term_to_hterm. The function type_check runs
the reduction-based normalization function normalize and processes an obtained result.

reductions.sml

use "syntax.sml";

use "hsyntax.sml";

3

structure TypeCheck_Reduct =

struct

open HSyn TEnv

fun type_to_closure T_NUM

= CLO_NUM

| type_to_closure (v as T_ARR (t1 , t2))

= CLO_ARR_TYPE v

fun term_to_hterm (IDE s)

= H_IDE s

| term_to_hterm (LAM (x, t, e))

= H_LAM (x, t, term_to_hterm(e))

| term_to_hterm (LIT i)

= H_LIT i

| term_to_hterm (APP (e1, e2))

= H_APP (term_to_hterm e1, term_to_hterm e2)

datatype potential_redex = PR_NUM

| PR_LAM of string * typ * hterm * bindings

| PR_APP of typ * typ

| PR_ARR of typ * typ

| PR_IDE of string * bindings

| PR_PROP of hterm * hterm * bindings

datatype contractum_or_error = CONTRACTUM of closure

| ERROR of string

(* contract : potential_redex -> contractum_or_error *)

fun contract PR_NUM

= CONTRACTUM CLO_NUM

| contract (PR_ARR (t1 , t2))

= CONTRACTUM (type_to_closure (T_ARR (t1 , t2)))

| contract (PR_IDE (x, bs))

= (case TEnv.lookup (x, bs)

of NONE => ERROR "undeclared identifier"

| (SOME v) => CONTRACTUM (type_to_closure v))

| contract (PR_LAM (x, t, e, bs))

= CONTRACTUM (CLO_GND (H_TARR (t, e), TEnv.extend (x, t, bs)))

| contract (PR_APP (T_ARR (t1, t2), v))

= if t1 = v

then CONTRACTUM (type_to_closure t2)

else ERROR "parameter type mismatch"

| contract (PR_PROP (t0 , t1, bs))

= CONTRACTUM (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)))

| contract (PR_APP (t1 , t2))

= ERROR "non -function application"

datatype type_or_decomposition = VAL of typ

| DEC of potential_redex * hctx

(* decompose_closure : closure * hctx -> type_or_decomposition *)

fun decompose_closure (CLO_NUM , C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_ARR_TYPE v, C)

= decompose_context (C, v)

| decompose_closure (CLO_GND (H_LIT n, bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_IDE x, bs), C)

= DEC (PR_IDE (x, bs), C)

| decompose_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= DEC (PR_LAM (x, t, e, bs), C)

| decompose_closure (CLO_GND (H_APP (t0 , t1), bs), C)

= DEC (PR_PROP (t0 , t1, bs), C)

| decompose_closure (CLO_GND (H_TNUM , bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_TARR (t, e), bs), C)

4

= decompose_closure (CLO_GND (e, bs),

CTX_ARR (t, C))

| decompose_closure (CLO_APP (c0 , c1), C)

= decompose_closure (c0, CTX_FUN (C, c1))

| decompose_closure (CLO_ARR (v, c), C)

= decompose_closure (c, CTX_ARR (v, C))

(* decompose_context : hctx * typ -> type_or_decomposition *)

and decompose_context (CTX_MT , v)

= VAL v

| decompose_context (CTX_FUN (C, c1), v0)

= decompose_closure (c1, CTX_ARG (v0, C))

| decompose_context (CTX_ARG (v0 , C), v1)

= DEC (PR_APP (v0, v1), C)

| decompose_context (CTX_ARR (v0 , C), v1)

= DEC (PR_ARR (v0, v1), C)

(* decompose : closure -> type_or_decomposition *)

fun decompose c

= decompose_closure (c, CTX_MT)

(* recompose : hctx * closure -> closure *)

fun recompose (CTX_MT , c)

= c

| recompose (CTX_FUN (C, c1), c0)

= recompose (C, CLO_APP (c0, c1))

| recompose (CTX_ARG (v0, C), c1)

= recompose (C, CLO_APP (type_to_closure v0 , c1))

| recompose (CTX_ARR (v0, C), c1)

= recompose (C, CLO_ARR (v0, c1))

datatype result = RESULT of typ

| WRONG of string

(* iterate : type_or_decomposition -> result *)

fun iterate (VAL v)

= RESULT v

| iterate (DEC (pr , C))

= (case contract pr

of (CONTRACTUM c’)

=> iterate (decompose (recompose (C, c’)))

| (ERROR s)

=> WRONG s)

(* normalize : term -> result *)

fun normalize t

= iterate (decompose (CLO_GND (term_to_hterm t, TEnv.empty)))

(* type_check : term -> typ *)

fun type_check t

= case normalize t

of (RESULT v)

=> v

| WRONG s

=> T_ERROR s

end

3 From Reduction-Based to Compositional Type Checker

This section provides the code of each stage of the transformation of the initial reduction-based
evaluator for type checking to the traditional recursive descent. Each stage is described in the
accompanying code by the file reductionN.sml, where N is the number of one of the following
subsections.

The overview of the program metamorphoses is shown in Figure 1. The reduction-based
normalization function is transformed to a family of reduction-free normalization functions, i.e.,

5

.
Reduction-Based

Type Checker

Refocusing (§ 3.1)
+

Contraction inlining (§ 3.2)

��

Recursive
Descent

Reduction-Free
Type Checker

Lightweight Fusion (§ 3.3)

Transition Compression (§ 3.4)
// Big-Step

CEK machine

Direct-Style Transform (§ 3.8)
+

Refunctionalization (§ 3.7)
+

Switching domains (§ 3.6)

OO

Figure 1: Inter-derivation

ones where no intermediate closure is ever constructed. In order to do so, we first refocus the
reduction-based normalization function to obtain a small-step abstract machine implementing the
iteration of the refocus function (Section 3.1). After inlining the contraction function (Section 3.2),
we transform this small-step abstract machine into a big-step one applying a technique known as
“lightweight fusion by fixed-point promotion” (Section 3.3). This machine exhibits a number of
corridor transitions, which we compress (Section 3.4). We then flatten its configurations and
rename its transition functions to something more intuitive (Section 3.5). We also switch domains
of evaluator functions to factor out artifacts of the hybrid language (Section 3.6). The resulting
abstract machine is in defunctionalized form, so we refunctionalize it (Section 3.7). The result is
in continuation-passing style, so we transform it into direct style (Section 3.8). The final result is
a traditional compositional type-checker.

3.1 Refocusing

The operation of decomposing and recomposing a term is usually referred as refocusing. By a
simple observation, a refocusing function may be expressed via the decompose_closure function,
mentioned in Section 2.

The new version of the type checker differs from the original one by the definition of the
function iterate1 using the function refocus instead the composition of decompose and recompose.
The type checker is now reduction-free since no step-based reduction function is involved.

reductions1.sml

use "syntax.sml";

use "hsyntax.sml";

structure TypeCheck_Refocus =

struct

open HSyn TEnv

fun type_to_closure T_NUM

= CLO_NUM

| type_to_closure (v as T_ARR (t1 , t2))

= CLO_ARR_TYPE v

fun term_to_hterm (IDE s)

= H_IDE s

| term_to_hterm (LAM (x, t, e))

= H_LAM (x, t, term_to_hterm(e))

| term_to_hterm (LIT i)

= H_LIT i

| term_to_hterm (APP (e1, e2))

= H_APP (term_to_hterm e1, term_to_hterm e2)

datatype potential_redex = PR_NUM

| PR_LAM of string * typ * hterm * bindings

6

| PR_APP of typ * typ

| PR_ARR of typ * typ

| PR_IDE of string * bindings

| PR_PROP of hterm * hterm * bindings

datatype contractum_or_error = CONTRACTUM of closure

| ERROR of string

fun contract PR_NUM

= CONTRACTUM CLO_NUM

| contract (PR_ARR (t1 , t2))

= CONTRACTUM (type_to_closure (T_ARR (t1 , t2)))

| contract (PR_IDE (x, bs))

= (case TEnv.lookup (x, bs)

of NONE

=> ERROR "undeclared identifier"

| (SOME v) =>

CONTRACTUM (type_to_closure v))

| contract (PR_LAM (x, t, e, bs))

= CONTRACTUM (CLO_GND (H_TARR (t, e),

TEnv.extend (x, t, bs)))

| contract (PR_APP (T_ARR (t1, t2), v))

= if t1 = v

then CONTRACTUM (type_to_closure t2)

else ERROR "parameter type mismatch"

| contract (PR_PROP (t0 , t1, bs))

= CONTRACTUM (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)))

| contract (PR_APP (t1 , t2))

= ERROR "non -function application"

datatype type_or_decomposition = VAL of typ

| DEC of potential_redex * hctx

fun decompose_closure (CLO_NUM , C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_ARR_TYPE v, C)

= decompose_context (C, v)

| decompose_closure (CLO_GND (H_LIT n, bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_IDE x, bs), C)

= DEC (PR_IDE (x, bs), C)

| decompose_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= DEC (PR_LAM (x, t, e, bs), C)

| decompose_closure (CLO_GND (H_APP (t0 , t1), bs), C)

= DEC (PR_PROP (t0 , t1, bs), C)

| decompose_closure (CLO_GND (H_TNUM , bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_TARR (t, e), bs), C)

= decompose_closure (CLO_GND (e, bs), CTX_ARR (t, C))

| decompose_closure (CLO_APP (c0 , c1), C)

= decompose_closure (c0, CTX_FUN (C, c1))

| decompose_closure (CLO_ARR (v, c), C)

= decompose_closure (c, CTX_ARR (v, C))

and decompose_context (CTX_MT , v)

= VAL v

| decompose_context (CTX_FUN (C, c1), v0)

= decompose_closure (c1, CTX_ARG (v0, C))

| decompose_context (CTX_ARG (v0 , C), v1)

= DEC (PR_APP (v0, v1), C)

| decompose_context (CTX_ARR (v0 , C), v1)

= DEC (PR_ARR (v0, v1), C)

fun decompose c

= decompose_closure (c, CTX_MT)

fun recompose (CTX_MT , c)

7

= c

| recompose (CTX_FUN (C, c1), c0)

= recompose (C, CLO_APP (c0, c1))

| recompose (CTX_ARG (v0, C), c1)

= recompose (C, CLO_APP (type_to_closure v0 , c1))

| recompose (CTX_ARR (v0, C), c1)

= recompose (C, CLO_ARR (v0, c1))

datatype result = RESULT of typ

| WRONG of string

(* refocus : closure * hctx -> type_or_decomposition *)

fun refocus (c, C)

= decompose_closure (c, C)

(* iterate1 : type_or_decomposition -> result *)

fun iterate1 (VAL v)

= RESULT v

| iterate1 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM c’)

=> iterate1 (refocus (c’, C))

| (ERROR s)

=> WRONG s)

(* normalize1 : term -> result *)

fun normalize1 t

= iterate1 (refocus (CLO_GND (term_to_hterm t,

TEnv.empty), CTX_MT))

fun type_check t

= case normalize1 t

of (RESULT v)

=> v

| WRONG s

=> T_ERROR s

end

3.2 Inlining the contraction function

We inline the function contract in the definition of iterate1. There are six cases in the definition of
contract, so the DEC clause in the definition of iterate1 is replaced by six DEC clauses. The resulting
function is called iterate2.

reductions2.sml

use "syntax.sml";

use "hsyntax.sml";

(* Inline contraction function *)

structure TypeCheck_InlineContract =

struct

open HSyn TEnv

fun type_to_closure T_NUM

= CLO_NUM

| type_to_closure (v as T_ARR (t1 , t2))

= CLO_ARR_TYPE v

fun term_to_hterm (IDE s)

= H_IDE s

| term_to_hterm (LAM (x, t, e))

= H_LAM (x, t, term_to_hterm(e))

| term_to_hterm (LIT i)

= H_LIT i

8

| term_to_hterm (APP (e1, e2))

= H_APP (term_to_hterm e1, term_to_hterm e2)

datatype potential_redex = PR_NUM

| PR_LAM of string * typ * hterm * bindings

| PR_APP of typ * typ

| PR_ARR of typ * typ

| PR_IDE of string * bindings

| PR_PROP of hterm * hterm * bindings

datatype contractum_or_error = CONTRACTUM of closure

| ERROR of string

datatype type_or_decomposition = VAL of typ

| DEC of potential_redex * hctx

fun decompose_closure (CLO_NUM , C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_ARR_TYPE v, C)

= decompose_context (C, v)

| decompose_closure (CLO_GND (H_LIT n, bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_IDE x, bs), C)

= DEC (PR_IDE (x, bs), C)

| decompose_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= DEC (PR_LAM (x, t, e, bs), C)

| decompose_closure (CLO_GND (H_APP (t0 , t1), bs), C)

= DEC (PR_PROP (t0 , t1, bs), C)

| decompose_closure (CLO_GND (H_TNUM , bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_TARR (t, e), bs), C)

= decompose_closure (CLO_GND (e, bs), CTX_ARR (t, C))

| decompose_closure (CLO_APP (c0 , c1), C)

= decompose_closure (c0, CTX_FUN (C, c1))

| decompose_closure (CLO_ARR (v, c), C)

= decompose_closure (c, CTX_ARR (v, C))

and decompose_context (CTX_MT , v)

= VAL v

| decompose_context (CTX_FUN (C, c1), v0)

= decompose_closure (c1, CTX_ARG (v0, C))

| decompose_context (CTX_ARG (v0 , C), v1)

= DEC (PR_APP (v0, v1), C)

| decompose_context (CTX_ARR (v0 , C), v1)

= DEC (PR_ARR (v0, v1), C)

datatype result = RESULT of typ

| WRONG of string

fun refocus (c, C)

= decompose_closure (c, C)

fun iterate2 (VAL v)

= RESULT v

| iterate2 (DEC (PR_NUM , C))

= iterate2 (refocus (CLO_NUM , C))

| iterate2 (DEC (PR_ARR (t1, t2), C))

= iterate2 (refocus (type_to_closure

(T_ARR (t1, t2)), C))

| iterate2 (DEC (PR_IDE (x, bs), C))

= (case TEnv.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>

iterate2 (refocus (type_to_closure v, C)))

| iterate2 (DEC (PR_LAM (x, t, e, bs), C))

9

= iterate2 (refocus

(CLO_GND (H_TARR (t, e),

TEnv.extend (x, t, bs)), C))

| iterate2 (DEC (PR_APP (T_ARR (t1 , t2), v), C))

= if t1 = v

then iterate2 (refocus (type_to_closure t2, C))

else WRONG "parameter type mismatch"

| iterate2 (DEC (PR_PROP (t0, t1, bs), C))

= iterate2 (refocus (CLO_APP (CLO_GND (t0, bs),

CLO_GND (t1 , bs)), C))

| iterate2 (DEC (PR_APP (t1, t2), C))

= WRONG "non -function application"

fun normalize2 t

= iterate2 (refocus (CLO_GND (term_to_hterm t, TEnv.empty), CTX_MT))

fun type_check t

= case normalize2 t

of (RESULT v)

=> v

| WRONG s

=> T_ERROR s

end

3.3 Lightweight fusion: from small-step to big-step abstract machine

The next step is to fuse the definitions of iterate2 and refocus from the previous section. The
result of the fusion, called iterate3, is directly applied to the result of decompose_closure and
decompose_context. The result is a big-step abstract machine consisting of three mutually tail-
recursive state-transition functions:

• refocus3_closure, the composition of iterate2 and decompose_closure and a clone of decompose_closure,

• refocus3_context, the composition of iterate2 and decompose_context, which directly calls iterate3

over the value of decomposition,

• iterate3, a clone of iterate2 that calls the fused function refocus3_closure.

reductions3.sml

use "syntax.sml";

use "hsyntax.sml";

(* Lightweight Fusion *)

(* From small -step to big -step abstract machine *)

structure TypeCheck_Fusion =

struct

open HSyn TEnv

fun type_to_closure T_NUM

= CLO_NUM

| type_to_closure (v as T_ARR (t1 , t2))

= CLO_ARR_TYPE v

fun term_to_hterm (IDE s)

= H_IDE s

| term_to_hterm (LAM (x, t, e))

= H_LAM (x, t, term_to_hterm(e))

| term_to_hterm (LIT i)

= H_LIT i

| term_to_hterm (APP (e1, e2))

= H_APP (term_to_hterm e1, term_to_hterm e2)

10

datatype potential_redex = PR_NUM

| PR_LAM of string * typ * hterm * bindings

| PR_APP of typ * typ

| PR_ARR of typ * typ

| PR_IDE of string * bindings

| PR_PROP of hterm * hterm * bindings

datatype contractum_or_error = CONTRACTUM of closure

| ERROR of string

datatype type_or_decomposition = VAL of typ

| DEC of potential_redex * hctx

datatype result = RESULT of typ

| WRONG of string

(* refocus3_closure : closure * hctx -> resul t *)

fun refocus3_closure (CLO_NUM , C)

= refocus3_context (C, T_NUM)

| refocus3_closure (CLO_ARR_TYPE v, C)

= refocus3_context (C, v)

| refocus3_closure (CLO_GND (H_LIT n, bs), C)

= refocus3_context (C, T_NUM)

| refocus3_closure (CLO_GND (H_IDE x, bs), C)

= iterate3 (DEC (PR_IDE (x, bs), C))

| refocus3_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= iterate3 (DEC (PR_LAM (x, t, e, bs), C))

| refocus3_closure (CLO_GND (H_APP (t0, t1), bs), C)

= iterate3 (DEC (PR_PROP (t0, t1, bs), C))

| refocus3_closure (CLO_GND (H_TNUM , bs), C)

= refocus3_context (C, T_NUM)

| refocus3_closure (CLO_GND (H_TARR (t, e), bs), C)

= refocus3_closure (CLO_GND (e, bs),

CTX_ARR (t, C))

| refocus3_closure (CLO_APP (c0, c1), C)

= refocus3_closure (c0, CTX_FUN (C, c1))

| refocus3_closure (CLO_ARR (v, c), C)

= refocus3_closure (c, CTX_ARR (v, C))

(* refocus3_context : hctx * typ -> result *)

and refocus3_context (CTX_MT , v)

= iterate3 (VAL v)

| refocus3_context (CTX_FUN (C, c1), v0)

= refocus3_closure (c1, CTX_ARG (v0 , C))

| refocus3_context (CTX_ARG (v0, C), v1)

= iterate3 (DEC (PR_APP (v0, v1), C))

| refocus3_context (CTX_ARR (v0, C), v1)

= iterate3 (DEC (PR_ARR (v0, v1), C))

(* iterate3 : type_or_decomposition -> result *)

and iterate3 (VAL v)

= RESULT v

| iterate3 (DEC (PR_NUM , C))

= refocus3_closure (CLO_NUM , C)

| iterate3 (DEC (PR_ARR (t1, t3), C))

= refocus3_closure (type_to_closure

(T_ARR (t1, t3)), C)

| iterate3 (DEC (PR_IDE (x, bs), C))

= (case TEnv.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>

refocus3_closure (type_to_closure v, C))

| iterate3 (DEC (PR_LAM (x, t, e, bs), C))

= refocus3_closure (CLO_GND (H_TARR (t, e),

11

TEnv.extend (x, t, bs)), C)

| iterate3 (DEC (PR_APP (T_ARR (t1 , t3), v), C))

= if t1 = v

then refocus3_closure ((type_to_closure t3), C)

else WRONG "parameter type mismatch"

| iterate3 (DEC (PR_PROP (t0, t1, bs), C))

= refocus3_closure (CLO_APP (CLO_GND (t0 , bs),

CLO_GND (t1 , bs)), C)

| iterate3 (DEC (PR_APP (t1, t2), C))

= WRONG "non -function application"

(* normalize3 : term -> result *)

fun normalize3 t

= refocus3_closure (CLO_GND (term_to_hterm t,

TEnv.empty), CTX_MT)

fun type_check t

= case normalize3 t

of (RESULT v)

=> v

| WRONG s

=> T_ERROR s

end

3.4 Compressing corridor transitions

In the abstract machine from the previous section many transitions are corridors, i.e., they yield
configurations for which there is a unique place for further consumption. In this section we
compress these configurations. We copy the functions from the previous sections, changing their
indices from 3 to 4. After this transformation all clauses of the function refocus4_closure for non-
ground closures are now dead as well as the fact that all transition of refocus4_closure are now
over ground closures, so we can flatten them by peeling off the “closure” part.

reductions4.sml

use "syntax.sml";

use "hsyntax.sml";

(* Compressing Corridor transitions *)

structure TypeCheck_Compress =

struct

open HSyn TEnv

fun term_to_hterm (IDE s)

= H_IDE s

| term_to_hterm (LAM (x, t, e))

= H_LAM (x, t, term_to_hterm(e))

| term_to_hterm (LIT i)

= H_LIT i

| term_to_hterm (APP (e1, e2))

= H_APP (term_to_hterm e1, term_to_hterm e2)

datatype result = RESULT of typ

| WRONG of string

fun refocus4_closure (CLO_GND (H_LIT n, bs), C)

= refocus4_context (C, T_NUM)

| refocus4_closure (CLO_GND (H_IDE x, bs), C)

= (case TEnv.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>

12

refocus4_context (C, v))

| refocus4_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= refocus4_closure (CLO_GND (H_TARR (t, e),

TEnv.extend (x, t, bs)), C)

| refocus4_closure (CLO_GND (H_APP (t0, t1), bs), C)

= refocus4_closure (CLO_GND (t0 , bs), CTX_FUN (C, CLO_GND (t1, bs)))

| refocus4_closure (CLO_GND (H_TNUM , bs), C)

= refocus4_context (C, T_NUM)

| refocus4_closure (CLO_GND (H_TARR (t, e), bs), C)

= refocus4_closure (CLO_GND (e, bs), CTX_ARR (t, C))

and refocus4_context (CTX_MT , v)

= RESULT v

| refocus4_context (CTX_FUN (C, c1), v0)

= refocus4_closure (c1, CTX_ARG (v0 , C))

| refocus4_context (CTX_ARG (v0, C), v1)

= iterate4 (v0 , v1 , C)

| refocus4_context (CTX_ARR (v0, C), v1)

= refocus4_context (C, (T_ARR (v0, v1)))

and iterate4 (T_ARR (t1, t4), v, C)

= if t1 = v

then refocus4_context (C, t4)

else WRONG "parameter type mismatch"

| iterate4 (t, v, C)

= WRONG "non -function application"

fun normalize1 t

= refocus4_closure (CLO_GND (term_to_hterm t, TEnv.empty), CTX_MT)

fun type_check t

= case normalize1 t

of (RESULT v)

=> v

| WRONG s

=> T_ERROR s

end

3.5 Renaming transition functions and flattening configurations

The resulting simplified machine is a familiar ‘eval/apply/continue’ abstract machine operating
over ground closures. For this section we rename refocus4_closure to eval5, refocus4_context to
continue5 and iterate4 to apply5. We flatten the configuration of refocus4_closure as well as defini-
tions of values and contexts.

reductions5.sml

use "syntax.sml";

use "hsyntax.sml";

(* Renaming transition functions and flattening configurations *)

structure TypeCheck_Renamed =

struct

open HSyn TEnv

fun term_to_hterm (IDE s)

= H_IDE s

| term_to_hterm (LAM (x, t, e))

= H_LAM (x, t, term_to_hterm(e))

| term_to_hterm (LIT i)

= H_LIT i

| term_to_hterm (APP (e1, e2))

= H_APP (term_to_hterm e1, term_to_hterm e2)

13

datatype context = CTX_MT

| CTX_FUN of context * hterm * bindings

| CTX_ARG of typ * context

| CTX_ARR of typ * context

datatype result = RESULT of typ

| WRONG of string

(* eval5 : hterm * (string * typ) list * context -> result *)

fun eval5 (H_LIT n, gamma , C)

= continue5 (C, T_NUM)

| eval5 (H_IDE x, gamma , C)

= (case TEnv.lookup (x, gamma)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>

continue5 (C, v))

| eval5 (H_LAM (x, t, e), gamma , C)

= eval5 (H_TARR (t, e), TEnv.extend (x, t, gamma), C)

| eval5 (H_APP (t0 , t1), gamma , C)

= eval5 (t0, gamma , CTX_FUN (C, t1, gamma))

| eval5 (H_TNUM , gamma , C)

= continue5 (C, T_NUM)

| eval5 (H_TARR (t, e), gamma , C)

= eval5 (e, gamma , CTX_ARR (t, C))

(* continue5 : context * typ -> result *)

and continue5 (CTX_MT , v)

= RESULT v

| continue5 (CTX_FUN (C, c1, gamma), v0)

= eval5 (c1, gamma , CTX_ARG (v0, C))

| continue5 (CTX_ARG (v0, C), v1)

= apply5 (v0, v1, C)

| continue5 (CTX_ARR (v0, C), v1)

= continue5 (C, (T_ARR (v0 , v1)))

(* apply5 : typ * typ * context -> result *)

and apply5 (T_ARR (t1, t4), v, C)

= if t1 = v

then continue5 (C, t4)

else WRONG "parameter type mismatch"

| apply5 (t, v, C)

= WRONG "non -function application"

(* normalize5 : term -> result *)

fun normalize5 t

= eval5 (term_to_hterm t, TEnv.empty , CTX_MT)

(* type_check : term -> typ *)

fun type_check t

= case normalize5 t

of (RESULT v)

=> v

| WRONG s

=> T_ERROR s

end

3.6 Removing hybrid artifacts and switching domains

The next simplification is to remove λH-related artifacts from machine configurations. We copy
functions from the previous section and perform some extra corridor transition compressions:

eval5 (H_LAM (x, t, e), gamma , C)

14

= (* by unfolding the definition of eval5 *)

eval5 (H_TARR (t, e), TEnv.extend (x, type_to_value t, gamma), C)

= (* by unfolding the definition of eval5 *)

eval5 (e, TEnv.extend (x, type_to_value t, gamma), CTX_ARR (type_to_value t, C))

As a result, there are no more clauses mentioning elements of the hybrid language such as
H_TNUM (removed as an unused clause of eval5) and H_TARR. So now we can switch the domain of the
eval5, continue5 and apply5 functions from hterm to term. The second observation is that algebraic
data type result is in fact isomorphic to the data type typ, so we can switch the domain of values
as well as follows:

RESULT (T NUM) 7→ T NUM
RESULT (T ARR (τ1, τ2)) 7→ T ARR (τ1, τ2)

WRONG (s) 7→ T ERROR (s)

reductions6.sml

use "syntax.sml";

use "hsyntax.sml";

(* Compressing hybrid syntax elements and switching domains *)

structure TypeCheck_HybridCompress =

struct

open HSyn TEnv

datatype result = RESULT of typ

| WRONG of string

datatype context = CTX_MT

| CTX_FUN of context * term * bindings

| CTX_ARG of typ * context

| CTX_ARR of typ * context

withtype bindings = typ gamma

(* term * (string * typ) list * context -> typ *)

fun eval6 (LIT n, gamma , C)

= continue6 (C, T_NUM)

| eval6 (IDE x, gamma , C)

= (case TEnv.lookup (x, gamma)

of NONE

=> T_ERROR "undeclared identifier"

| (SOME v) =>

continue6 (C, v))

| eval6 (LAM (x, t, e), gamma , C)

= eval6 (e, TEnv.extend (x, t, gamma),

CTX_ARR (t, C))

| eval6 (APP (t0, t1), gamma , C)

= eval6 (t0, gamma , CTX_FUN (C, t1, gamma))

(* continue6 : context * typ -> typ *)

and continue6 (CTX_MT , v)

= v

| continue6 (CTX_FUN (C, c1, gamma), v0)

= eval6 (c1, gamma , CTX_ARG (v0, C))

| continue6 (CTX_ARG (v0, C), v1)

= apply6 (v0, v1, C)

| continue6 (CTX_ARR (v0, C), v1)

= continue6 (C, (T_ARR (v0 , v1)))

(* apply6 : typ * typ * context -> typ *)

and apply6 (T_ARR (t1, t4), v, C)

= if t1 = v

then continue6 (C, t4)

else T_ERROR "parameter type mismatch"

| apply6 (t, v, C)

15

= T_ERROR "non -function application"

(* term -> typ *)

fun normalize6 t

= eval6 (t, TEnv.empty , CTX_MT)

fun type_check t

= normalize6 t

end

3.7 Refunctionalization

The abstract machine obtained in the previous section is in fact in defunctionalized form: the
reduction contexts, together with continue6, are the first-order counterpart of continuations. To
obtain the higher-order counterpart we use a technique known as refunctionalization. The resulting
refunctionalized program is a compositional evaluation function in continuation-passing style.

reductions7.sml

use "syntax.sml";

use "hsyntax.sml";

(* Refunctionalization *)

structure TypeCheck_Refun =

struct

open Syn TEnv

(* eval7 : term * (string * typ) list * (typ -> typ) -> typ *)

fun eval7 (LIT n, gamma , k)

= k T_NUM

| eval7 (IDE x, gamma , k)

= (case TEnv.lookup (x, gamma)

of NONE

=> T_ERROR "undeclared identifier"

| (SOME v) =>

k v)

| eval7 (LAM (x, t, e), gamma , k)

= eval7 (e, TEnv.extend (x, t, gamma),

fn v => k (T_ARR (t, v)))

| eval7 (APP (e0, e1), gamma , k)

= eval7 (e0, gamma ,

fn t => case t

of T_ARR (t1, t2)

=> eval7 (e1, gamma ,

fn v1 =>

if t1 = v1

then k t2

else T_ERROR "parameter type mismatch")

| _ => T_ERROR "non -function application")

(* normalize7 : term -> typ *)

fun normalize7 t

= eval7 (t, TEnv.empty , fn x => x)

fun type_check t

= normalize7 t

end

16

3.8 Back to direct style

The refunctionalized definition from the previous section is in continuation-passing style: it has
a functional accumulator and all of its calls are tail calls. To implement it in direct style in
the presence of non-local returns in cases where typing error occurs, the library for undelimited
continuations SMLofNJ.Cont, provided by Standard ML of New Jersey, is used.

reductions8.sml

use "syntax.sml";

use "hsyntax.sml";

(* Back to direct style *)

structure TypeCheck_Direct =

struct

open Syn TEnv

val callcc = SMLofNJ.Cont.callcc

val throw = SMLofNJ.Cont.throw

(* normalize8 : term -> typ *)

fun normalize8 t

= callcc (fn top =>

let fun eval8 (LIT n, gamma)

= T_NUM

| eval8 (IDE x, gamma)

= (case TEnv.lookup (x, gamma)

of NONE

=> throw top (T_ERROR "undeclared identifier")

| (SOME v) =>

v)

| eval8 (LAM (x, t, e), gamma)

= T_ARR (t, eval8 (e, TEnv.extend (x, t, gamma)))

| eval8 (APP (e0, e1), gamma)

= let val t = eval8 (e0 , gamma)

val v1 = eval8 (e1, gamma)

in (case t

of T_ARR (t1 , t2)

=> if t1 = v1

then t2

else throw top (T_ERROR "parameter type mismatch")

| _ => throw top (T_ERROR "non -function application"))

end

in eval8 (t, TEnv.empty)

end)

(* type_check : term -> typ *)

fun type_check t

= normalize8 t

end

4 Conclusion

In this work we implemented a reduction semantics for type checking and a traditional recursive
descent type checker as programs in SML. Through a series of behaviour-preserving program
transformations we have shown that both these models are computationally equivalent and in fact
just represent different ways to compute the same result. To the best of our knowledge, this is the
first application of the study of the relation between reduction-free and reduction-based semantics
to type systems. The result is a step towards reusing different computational models for type
checking, whose equivalence is correct by construction.

17

References

[1] Ilya Sergey and Dave Clarke. A correspondence between type checking via reduction and type
checking via evaluation. Information Processing Letters, 112(1-2):13–20, January 2012.

18

