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The usefulness of interdisciplinarity in cognitive science (CS) is demonstrated by an overview of
recent algorithms for recovering 3-D aspects from a 2-D input, The recovery processes are
considered to be modular in Fodor’s (1983) sense. This tenet, based on a thesis from philosophy of
mind (PhM), proves to have serious impact both on computer vision (CV) as such and on
computational theories of perception (CTP), which provide a compromise between classic indirect
and direct theories (ITP and DTP) in perceptual psychology (PP). Both existent and possible
mutual interchanges between CV, PP, and PhM are specified in current and future research on
modular recovery processes such as shape from shading, depth from stereo, and structure from
motion. Also, attention is paid to (meta) criticisms of PP and PhM on concrete hypotheses of CTP
and on the CTP approach as a whole. For example, the relative independence of modular
low-level vision processes is questioned, and the lack of an explanation of intentionality is
highlighted. A plea is made to attempt to solve these fundamental (meta)criticisms within the CTP
paradigm, since there are no logical arguments against this possibility, and because recent CTP
theories are tackling these problems seriously.

1. Introduction

Cognitive science (CS), as a research program, is interdisciplinary by
definition. The truism of this tenet is apparent from journals such as
Cognitive Science, being the official organ of the Cognitive Science
Society and bearing ‘A Multidisciplinary Journal’ as a subtitle, and
from discussions on the foundations of the research program (e.g.,
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Chomsky 1980; Fodor 1980; Norman 1981; Pylyshyn 1980; 1984).
Three cornerstones of CS, often acknowledged as such, are Artificial
Intelligence (Al), psychology, and philosophy. It will be demonstrated
here that these members of the CS triumvirate are not only supposed to
be cooperating according to the articles of faith of the CS community,
but that they are effectively doing so in the practice of daily scientific
research. As an example of this actual interdisciplinarity, the contribu-
tions of computer vision (CV), perceptual psychology (PP), and phi-
losophy of mind (PhM) to the current study of modules in vision are
highlighted and commented. !

One could, in principle, unravel the interrelations among the three
disciplines by first distinguishing among, on the one hand, influences
from one discipline on another (see fig. 1A), and, on the other hand,
common influences from two disciplines on the third and vice versa
(see fig. 1B). Then, all the interchanges under these headings could be
summed up and discussed. Although such a scheme could be justified
for didactical purposes, I think the unraveling would cause a loss of the
extra value of the interlace of the different branches. It would be as if
one teased an Oriental carpet (handmade, 100% wool, a century old, at
least) into separate fibres, to discover the way in which the fibres
together constitute the carpet.

In order not to neglect the Gestalt adage that the whole is more than
the sum of the parts, an introduction to the current research on
modules in vision will be provided, without all the interactions men-
tioned in fig. 1 being disentangled.

Nevertheless, I do point at existent as well as desirable mutual
interchanges between CV, PP, and PhM, when overviewing both the
recent history and the near future of the studies on modular processes
in visual perception. Also, in the end of the paper, the twelve possible
interactions will be summed up in a more or less schematic way, only,
however, after one was given the opportunity to see the three disci-

! The fact that the contribution of the neurosciences is not considered here, does not mean that
there is none. It does reflect the opinion of Marr (1982) and his tradition of research on modules
in vision that something important is missing in the neurophysiology of vision. Often, the behavior
of cells is merely described, not explained. However, it must be admitted that, recently, some
important steps have been taken to bridge the gap between the computational and neurophysio-
logical approach (e.g., Arbib 1987; McCleiland and Rumelhart 1985; Rumelhart and McClelland
1985; Wagemans 1987). One is even inclined to talk about the route from neuroscience to artificial
intelligence (Koenderink 1987). An extensive account of this recent trend could be the topic of
another full-fledged paper.
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(A)

(B)

Fig. 1. Schematic summary of all possible interactions between the disciplines in CS studying
vision. (A) The influences of one discipline on another. (B) The influences of one discipline on two
others, and vice versa,

plines working together in solving a difficult scientific puzzle, viz. the
recovery problem.

2. The recovery problem
2.1. Definition
In principle, a two-dimensional (2-D) pattern can result from any of

an infinite number of three-dimensional (3-D) scenes (see fig. 2). Both
human and machine vision are, therefore, confronted with the funda-
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Fig. 2. The problem of underdetermination, central to the process of recovering 3-D structure
from 2-D patterns: A 2-D image can result of a principally unlimited number of 3-D structures
(adapted from Barrow and Tenenbaum 1981).

mental problem of reducing this number, ideally to one, in trying to
recover the 3-D structure of a scene from the 2-D input images.

Despite the fact that PP and CV research have fundamentally
different goals, viz. explaining vs. building a perceiving system, and, as
a consequence, have different evaluation criteria, viz. corroborating of
predictions vs. working of practical tools, it can be expected, on logical
grounds already, that PP and CV studies can mutually benefit from
each other’s efforts, because they both have to face the recovery
problem. Historically, PP and CV have been developed relatively
independent from one another, but more recently, the link between the
two disciplines has become very tight indeed.

2.2. PP solving the recovery problem

In traditional PP, two broad classes of theories have attempted to
explain the human perceiver’s ability to recover the 3-D structure of a
scene from principally ambiguous 2-D patterns on the retina. In the
first, often called ‘indirect’ or ‘constructivist’, the percept is regarded as
the conclusion from an unconscious inference, not unlike deductive
reasoning, the premises of which are both the impoverished visual input
and the supplementary information provided by more cognitive means
such as memory (e.g., Gregory 1970; Helmholtz 1910,/1962; Hochberg
1981; Rock 1977, 1983).
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Gibson (e.g., 1979) has firmly reacted against this view, and he has
pled for another approach, the ‘direct’ or ‘ecological’ one. He and his
followers emphasize the richness of the visual information, whose
so-called ambiguity they regard as a consequence of contrived labora-
tory situations and as non-existent in the real world. Whereas the
indirect theories of perception (ITP, used as a plural noun, since there
is more than one variant of it) have tried to solve the recovery puzzle
by invoking additional information from elsewhere in the information
processing system, the direct theory of perception (DTP, used as a
single noun, since there is a considerable amount of agreement on
Gibson’s proposals) has argued for the study of the information being
available to a (moving) perceiving organism in a real, non-reduced
environment. It would then, so they claim, soon become evident that
there is a wealth of information waiting to be picked up directly,
without any need of further (indirect) processing.

2.3. CV solving the recovery problem

Early CV studies provided the additional constraints, required for
solving the difficult problem of underdetermination, by restricting the
world itself. They made use of the so-called blocks world, in which
there are well-established relations between lines, junctions, and re-
gions in the 2-D image and edges, vertices, and surfaces in the 3-D
scene. Different classification systems were suggested to list these
relations and programs were written that made use of them to derive a
plausible interpretation of the 3-D world on the basis of the 2-D image
(e.g., Clowes 1971; Guzman 1968; Huffman 1971).

Waltz (1975) demonstrated that the inclusion of more detailed
information, namely shadows, does not complicate the interpretative
process, but, rather, facilitates it. This finding, which seemed contra-in-
tuitive in those days, as well as the fact that humans are able to solve
the recovery problem in an even much more complex and realistic
world, made CV researchers think that there should be some, until then
unknown, factors in the real world constraining the number of possible
solutions to the puzzle of recovery. This idea was in remarkable
accordance with Gibson’s basic conjecture, a fact that did not go
unnoticed by the CV community (e.g., Braddick 1980; Hinton 1980;
Marr 1982; Zucker 1980).

From that moment on, almost all CV research efforts went into the
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problem of finding the general mathematical (foremost, geometrical)
and physical (foremost, optical) regularities in the world that might be
used during the recovery. It is, therefore, now, contrary to the time
before Waltz and both within and outside the CV community, not such
a surprise anymore that more information facilitates rather than com-
plicates the perceptual processing of it. For example, to Kanade (1981),
it is not surprising that a solution to the recovery problem is facilitated,
when more complexities are involved, taking into consideration that
more constraints are also available then. In the DTP also, one adheres
to ‘Johansson’s conjecture’, that mathematically complex displays tend
to yield simple and stable perception, suggesting that what is more
complex for mathematicians may not be so for the casual perceiver
(see, e.g., Warren and Shaw 1985).

Furthermore, CV researchers soon noticed that their algorithms and
programs, incorporating the constraining factors in a mathematically
rigid manner, could be conceived as specific and detailed models of the
human recovery process. As a consequence, CV has, since then, an-
nounced itself as a part of both practically oriented Al and theoreti-
cally based PP. This latter part of the CV research program, henceforth
called ‘the computational theory of perception’ (CTP), can be consid-
ered a third class of perception theories.

3. CTP as a third theory in PP

According to the CTP, perception is a process of computations on
representations: The information that is only implicit in the retinal
image is, through computations, transformed into subsequent represen-
tations that make certain aspects of the information more explicit and
accessible for further computation. For example, Marr (1982) — whose
work will further on be discussed in more detail — distinguishes the
primal sketch, making information about intensity changes explicit
(including length, position, orientation, and contrast of line fragments),
the 2,5-D sketch, and the 3-D model representation, successively mak-
ing information explicit about surface orientation and object shape.

The CTP can be viewed as a compromise between the two previous
approaches (ITP and DTP), since it bears both resemblances and
differences to them. It can, therefore, be called ‘Gibholtzian’, as Haber
(1983) did.
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3.1. CTP and ITP

On the one hand, CTP resembles ITP in arguing that knowledge
about the regularities of the natural world is indispensable for comput-
ing representations. On the other hand, however, it differs from them in
the kind of knowledge it considers necessary: CV incorporates general
constraints provided by geometric and physical laws in the world,
whereas ITP stresses top—down influences depending on high-level
knowledge of specific objects. Also, there is a difference in what can be
called ‘the level of knowing’. I believe that CTP would hold that the
visual system does not really know or apply the laws of optics and
geometry, but simply functions according to the principles on the basis
of which it is programmed (see Kanizsa 1985). Therefore, it is more
appropriate to speak of ‘knowledge’ (between quotes), to contrast it
with knowledge (without quotes) in the more traditional sense of ITP,
A third divergence between CTP and ITP lies in their view on the use
that is made of knowledge: According to CTP, knowledge helps to
make use of what is given in the visual input, whereas in ITP knowl-
edge is considered to be used to go beyond the information given.

3.2. CTP and DTP

CTP resembles DTP in emphasizing the richness of the visual input,
but it differs from it in unraveling the different computations and
representations needed to process the rich visual information. The DTP
explicitly ignores the role of computations and representations in
perception, which they consider as information detection instead of
information processing (for the difference between the two, see, e.g.,
Wagemans 1986).

3.3. CTP and the ITP—DTP debate

The uprise of CTP can be seen as a factor causing a loss of intensity
and furiousness in the controverse between ITP and DTP. Indeed, the
CTP view on the importance of natural constraints has provided
perceptual psychologists with an excellent opportunity to bridge the
seemingly unbridgeable gulf between ITP and DTP. It is no surprise,
therefore, that even ‘classic’ indirect theorists have taken pains, re-
cently, to analyze the available stimulus properties rigorously and to
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take physical and geometric constraints of the natural world into
account (e.g., Haber 1983; Hochberg 1986; Palmer 1983; Shepard
1984). The other way around, direct theorists are paying considerable
attention to the CTP research and they have designed some experi-
ments in close interaction with it (e.g., Todd 1981; 1982; 1985).

A lot of technical results attained within the CTP and much of the
general framework behind it, is due to the late David Marr of the
Massachusetts Institute of Technology. It is not a great luxury, there-
fore, to consider his approach in the next paragraph. This can be done
briefly because good introductory articles on CV and CTP exist and are
easily accessible to workers in PP and PhM (e.g., Brown 1984; Cohen
and Feigenbaum 1982; McArthur 1982; Rosenfeld 1984). Even more
elaborate and sophisticated collections of research in CV and CTP are
also available in abundance (e.g., Ballard and Brown 1982; Beck et al.
1983; Brady 1982; Hanson and Riseman 1978; Marr 1982; Pentland
1986a; Ullman and Richards 1984; Winston 1975; Winston and Brown
1979).

3.4. CTP and Marr’s approach

The work of Marr (1982) deserves somewhat more attention, for it
can be considered as the prototypical work in CV research of the
‘second generation’ (i.e., more relevant to PP), and since it is acknowl-
edged as such by the scientific CV community (e.g., Brady 1982; Cohen
and Feigenbaum 1982; Pentland 1986a; Winston and Brown 1979).

Marr clearly distinguished three levels of explanation, that should be
separated when investigating information processing systems such as
vision and that should be tackled in successive order, because a logical
hierarchy exists between them. (These levels of explanation should not
be confused with the levels of representation shortly mentioned above.)

First, one has to consider what is the general goal of the computa-
tion, why it is appropriate, and what is the general rationale of the
strategy by which it can be carried out. A central theme of the inquiries
of the computational theory is ‘the business of isolating constraints
that are both powerful enough to allow a process to be defined and
generally true in the world’ (Marr 1982: 23). The second level of
analyzing vision involves choosing the representations for the input and
the output, and the algorithms for transforming the one into the other.




J.P. Wagemans / Modules in vision 67

The third and last level of explanation concerns the manner in which
the representations and algorithms can be realized physically.

According to this view, the interactions between CV and PP are not
primarily situated on the third level: the hardware implementation of
the representations and algorithms will surely differ in humans and
machines. It should be noted, however, that there is, recently, a serious
attempt to bridge this gap by considering (neural or computer) net-
works that perform the computations largely in parallel (e.g., Ballard
1986; Ballard et al. 1983; Feldman 1985; Grossberg 1983; Sabbah
1985).

Nevertheless, psychophysical studies on human subjects prove to be
indispensable in specifying the exact representations and algorithms
used to solve the computational problem (i.e., the second level), and in
clarifying which constraints are taken into account by a human per-
ceiver (i.e., the first level). This will be demonstrated by a summary of
the work on the algorithms which help to transform the primal sketch
into the 2,5-D sketch (the so-called shape-from methods).

4. Shape-from methods

These methods are proposed as solutions to the critical problem of
getting ‘from images to surfaces’ (Binford 1981; Grimson 1981), or
‘from pixels to predicates’ (Pentland 1986a). In this way, they are, in
fact, the central part of the computational solution to the recovery
problem. They are called ‘shape-from methods’, after the pioneering
work on shape from shading by Horn (e.g., 1977).

4.1. Shape from shading

The problem of using shading (i.e., smooth intensity variations
across the image) to recover shape (viz. gradual changes in surface
orientations) is that one needs to know how the image intensity at a
pixel (ie., a picture element) is determined. In general, this image
intensity depends on the positions of the surface, the illumination, and
the viewer, as well as on the surface’s material and orientation. In order
to derive the surface orientation from the image intensity, some as-
sumptions must be made on the other possible causal factors, or, in
other words, restrictions or constraints must be imposed on the other
potential determinants.
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Horn (e.g., 1977) has shown that one can arrive at a unique solution
to the recovery problem, when one assumes that (i) the relative posi-
tions of surface, illumination, and viewer, and the surface’s material are
known, that (ii) each image point is assigned to maximally one surface
orientation, and that (iii) orientations vary smoothly almost everywhere
except at boundaries. These constraints can be incorporated into a
model of the geometry of image projection and the photometry of
intensity formation. When this model is implemented as a data base,
artificial vision systems are able to recover shape from shading. In
industrial settings, the former assumption (i) is justified, since the
positions of the three constituents involved can be determined and
since the surface reflectance properties can be measured. The latter
constraints (ii) and (iii) are mathematically rather robust, so that they
can be supposed to hold even in a more natural environment.

From the moment, however, that CV workers want to consider the
shape-from-shading algorithm as a plausible model of (part of) the
human perceiver’s process of recovering the 3-D structure from the 2-D
patterns (hence, CTP instead of practical CV), one has to face the fact
that, under natural viewing conditions, the illumination and reflectance
properties are unknown, so that at least assumption (i) is unjustified.
To remedy against this shortcoming, Pentland (1982; 1986b) has re-
cently proposed an alternative to Horn’s method that is more ap-
propriate as a model for human perception, because it requires no prior
knowledge about the direction of illumination. Furthermore, it can be
implemented in a physiologically more plausible way. However, it still
assumes illumination being constant in the regio under examination
and surfaces being Lambertian (i.e., reflecting light equally in different
directions).

This means that even Pentland’s improved method cannot account
for surface interactions such as specular highlights, indirect illumina-
tion, transparency, and cast shadows, that are all real factors in a
natural environment and that have proven to play an important role in
human visual perception (Beck 1972; 1975). Also, Todd and Mingolla
(1983) have found out experimentally that human perceivers tend to do
worse with displays simulating the pattern of reflection for an idealized
Lambertian surface, a fact that is diametrically opposed to what could
be expected from the CV studies. It will be clear, therefore, from this
single example already, that PP has correctly pointed out some of the
failures of the shape-from-shading algorithms, when they are con-
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sidered as possible models for the human recovery process. In the
following paragraph, it will be demonstrated that PhM has an equally
important role on the CS scene.

4.2. Modularity of the shape-from methods

As stated above, the ‘knowledge’ concerning the geometrical and the
optical constraints of the image formation must be incorporated in a
model to be usable during the recovery process. In man-made vision
systems this model is implemented as a data base. The basic conjecture
of the CTP is that the ‘knowledge’ of the constraints needed for solving
the puzzle of recovery by nature’s own perceiving machine is present
within a module, * a notion that is defined and elaborated by Fodor
(1983, 1985), one of the most prominent current representatives of the
PhM.

Low-level vision processes, among which the shape-from algorithms,
being considered as modular is a crucial part of Fodor’s ‘Modularity-
of-Mind’ thesis. The basic tenet is that an information processing
system such as the human mind consists of two clearly distinguishable
parts, a low-level, modular part of input analyzers (vertical faculties),
and a high-level, central cognitive system (horizontal faculties). The
details of this thesis can be founded in the original essay (Fodor 1983).
Here, the discussion will be centered around Fodor’s view on input
systems, which is also the major focus of his BBS Précis (Fodor 1985).

What exactly is a modular system? Instead of giving a clearcut,
simple definition, Fodor proposes a number of constituting characteris-
tics, which are here specified for shape-from algorithms. A module is
domain specific (i.e., restricted to visual aspects of the input), manda-
tory (e.g., one cannot help seeing a 2-D pattern as a particular kind of
3-D structure), fast (i.e., considerably faster than prototypical central

2 Although Marr (1982) did not invent the notion of ‘module’, he was one of the first to use it in
this context, He uses the term in a functional sense, in contrast with the older notion of ‘channel’
that is more often used in a structural sense, especially when it occurs in the context of a
neuroscientific approach. In Marr’s sense, a modular process is one that is independent from
another ongoing process. It became necessary to coine a term for this independency, when Julesz
(1971) found that a 3-D form could be perceived from two 2-D random dot stereograms. This
finding was interpreted as indicating that at least some processes (i.e., stereopsis) are possible
without object knowledge (cf. random dots), that is, independent from higher-order perceptual
and cognitive processes.




70 J.P. Wagemans / Modules in vision

processes like problem-solving, though hard to quantify exactly), and
informationally encapsulated (i.e., impenetrable by higher level cogni-
tive influence, such as specific object knowledge). Furthermore, mod-
ules have only limited central accessibility (i.e., as a consequence their
processes cannot be reported verbally by introspection), ‘shallow’ out-
puts (i.e., the categorization of visual stimuli is not very specific), fixed
neural architecture (i.e., hard-wired), specific breakdown patterns (i.e.,
agnosias cannot be explained by mere quantitative decrements in
global capacities), and characteristic pace and sequencing during
ontogeny.

The notion of modular input systems is a crucial one in CTP being a
compromise between ITP and DTP. Whereas ‘classic’ ITP view percep-
tion as totally dependent upon cognitive processes, so that the distinc-
tion between perception and cognition even vanishes, DTP claims that
everything is detected or picked up directly, without any help of
computations on representations. CTP states that some properties are
indeed picked up directly, viz. via transducers, but, also, that other
properties are apprehended only indirectly, viz. via processes that
involve inferences (see, e.g., Fodor and Pylyshyn 1981; Pylyshyn 1980,
1984).

Whereas DTP claims that features of the 3-D scene are directly
perceived on the basis of picked up features of the light, CTP offers an
explanation of how a perceiver (man or machine) gets from detected
properties of the light to perceived properties of the scene: One inferes
the latter from the former on the basis of ‘knowledge’ of the correla-
tions that connect them, ‘knowledge’ that is present within the recovery
module itself and which, therefore, need not be provided by the higher
level cognitive system.

Relating Fodor’s PhM thesis with Marr’s CTP theory, one could say
that transducers convert the physical energy of the light into the
symbolic elements of the primal sketch, whereas the 2,5-D sketch is
computed by means of modular shape-from algorithms (the shape from
shading discussed above and the other ones to be discussed further on).
This modularity of the shape-from algorithms has, in the view of CTP,
as a consequence that different methods for inferring 3-D shape from
2-D images can be studied in relative isolation. The success of Horn’s
method has, therefore, sparked off a boom of investigations on other
shape-from methods.
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4.3. Shape from stereo

For example, one has studied an algorithm to infer depth from
stereo images. Stereopsis requires a solution to three different prob-
lems: the definition of the primitives used in the matching process, the
finding of the right matches of the corresponding primitives, and the
computation of depth by making use of the disparity (i.e., difference in
relative position) of the primitives. The fundamental problem here is
also one of undetermination (see fig. 3): Without further constraints,
different matches are equally possible.

Marr and Poggio (1976) tackled this puzzle by looking for constrain-
ing properties in the real world, and they found that (i) black dots can
only match black dots, (ii) almost always, a black dot from one image
can match only one black dot of the other image, and (iii) the disparity
of the matches varies only smoothly over the image. Together, these
constraints of resp. compatibility, unicity, and continuity make it
possible to arrive at a single solution for the recovery of depth from
stereo images.

Fig. 3. The problem of underdetermination, applied to the process of recovering depth from
stereo: there is a number of different possible matches even with only four elements specified in
each image (adapted from Marr 1982).
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Representing these constraints in a geometrical and physical model,
Marr and Poggio (1976) embodied them in a cooperative algorithm
(i.e., a specific way of propagating local constraints to attain a global
solution, see, e.g., Davis and Rosenfeld 1981; Rosenfeld et al. 1976).
However, a number of findings casted doubts on the relevance of the
proposed algorithm as a model of human stereo vision: For example,
the role of eye movements (Richards 1977), the ability to tolerate
defocussed images (Julesz 1971), the ability to perceive depth in
rivalrous stereograms (Mayhew and Frisby 1976), etc.

The main problems with the first algorithm (better performance than
humans in some situations, worse in others) were resolved in a second
algorithm, explicitly related to the notion of 2,5-D sketch and specifi-
cally designed as an account of how human stereo vision works (Marr
and Poggio 1979). Other CV studies on shape from stereo have, since
then, tried to base their models on PP findings on human subjects (e.g.,
Mayhew and Frisby 1981).

4.4. Shape from motion

Other examples of shape-from methods include shape from texture
(Grimson 1981; Kanade and Kender 1983; Stevens 1980; 1984; Todd
and Akerstrom 1987; Witkin 1981), shape from contour (Barrow and
Tenenbaum 1981; Binford 1981; Ivry and Cohen 1987; Stevens 1981;
1986; Witkin 1981), shape from photometric stereo (Ikeuchi and Horn
1981; Woodham 1981), and shape from motion (Longuet-Higgins and
Prazdny 1981; Prazdny 1980; Ullman 1979, 1983), the last example of
which is now discussed into more detail. To recover the 3-D structure
from the 2-D moving images, a perceiving organism (human or artifact)
is confronted with the same critical problem of underdetermination as
in the other cases: The same 2-D patterns can be caused by different
3-D structures.

Ullman (1979), analogously to previous solutions to similar prob-
lems, looked for a minimal set of constraining assumptions. He found
that a unique 3-D form can be computed, if one assumes (i) a sufficient
sample of the dynamic retinal pattern (i.e., three distinct views of four
non-coplanar points), (ii) the possibility to determine which elements
on the 2-D image arise from the same point on a moving 3-D stimulus
across time (i.e., correspondence assumption), and (iii) the stimulus
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elements being located on a rigid body, so that they maintain their
relative 3-D distances (i.e., rigidity assumption).

This structure-from-motion theorem holds for both parallel or ortho-
graphic projection (i.e., perpendicular to the image plane) and the
natural perspective projection of 3-D objects on the 2-D retina, because
these are nearly identical under local analysis. Nevertheless, none of
these simplifying assumptions seems justified, when the algorithm is
proposed as a model for the human perceiver’s ability to recover shape
from motion. It is, for example, a well-established fact that human
observers, contrary to what could be expected from the rigidity as-
sumption (iii), sometimes see non-rigid motions, even when rigid mo-
tion can be derived from the input images, and that humans are able to
detect non-rigid motions as accurate as rigid ones. Todd (1982) has,
therefore, presented a geometric analysis that can account for both
rigid and non-rigid motions and he designed some elegant experiments
demonstrating the validity of his model.

Furthermore, Todd’s model, contrary to Ullman’s (i), does not
regard the number of distinct frames as a critical variable for the
recovery of 3-D shape from 2-D motion, an assumption that was
clearly demonstrated to be invalid for human observers (e.g., Doner et
al. 1984; Lappin et al. 1980). Another PP study casting doubts on the
psychological relevance of Ullman’s CV analysis of the perception of
structure from motion, is the one of Todd (1985). He clearly demon-
strated that projective correspondence of moving elements on the 2-D
retina to identifiable moving points in 3-D space is not a necessary
condition for the perception of structure from motion, which was
assumed by Ullman (ii).

Although Ullman’s (1979, 1983) adoption of the rigidity assumption
was primarily motivated by an attempt to reduce the mathematical
complexities involved in the structure-from-motion problem, it was also
suggested by the human perceiver’s tendency to prefer a rigid interpre-
tation of moving elements (Gibson and Gibson 1957; Wallach and
O’Connell 1953). Nevertheless, it is clear from the PP experiments
mentioned above that the human visual system does not use the rigidity
assumption in the same strict way as Ullman’s (1979, 1983) previous
CV studies have suggested.

Realizing this, Ullman (1984a) proposed a new method for deriving
structure from motion, still based on a rigidity assumption, but in a
more flexible way. According to the ‘incremental recovery scheme’, as
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he has called it, an internal model of the 3-D structure is modified as
the object moves with respect to the viewer. The transformations in the
internal model, reflecting the changes in the environment, try to
maximize the rigidity of the object by resisting changes in its shape as
much as possible. Apart from the advantages that this scheme (note
that Ullman (1984a), avoids the use of the notion ‘algorithm’ for his
modified proposal) allows both rigid and non-rigid motion to be
perceived, and that it provides a reliable recovery of structure in the
presence of considerable amounts of visual noise in the images, it has
other attributes that are consistent with human perceptual behavior,
some of which are currently being tested (see, e.g., Hildreth and
Hollerbach 1985; Ullman 1984a).

Ullman is not the only one having tried to solve the difficulties with
his earlier method. Some researchers working in the same CV tradition
look for other regularities of nature, different from the rigidity assump-
tion, to base their model of interpretation of visual motion on, and they
attempt to do this in better accordance with human perceptual abilities.
Reuman and Hoffman (1986), for example, have started their study
with the casual observation that even non-rigid motions are not com-
pletely arbitrary. For example, limbs in motion move in highly regular
paths. The further part of their work consists of a mathematical
specification of this regularity constraint (i.e., a planarity regularity),
and a computer implementation of the algorithm embodying the con-
straint. Reuman and Hoffman (1986) have also shown that their
recovery strategy works even in the face of noisy data, which is an
important advantage when they would consider it as a model for the
human recovery of shape from motion.

Other researchers working in a somewhat different tradition, namely
PP, propose heuristic perceptual processes to derive depth from mo-
tion. According to Braunstein (1983), for example, these heuristics have
important advantages over the use of more precise algorithms based on
the rigidity assumption: They can easily account for the 'perception of
non-rigid motion, they are easier to implement in a biological system,
and they allow more rapid solutions, although some doubt on the latter
proposals seems justified.

4.5. Conclusion

The cursory review of the current research on shape-from methods
has illustrated that doing computational modeling in CV is one thing,
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but accounting for human abilities in PP another. As Ramachandran
(1985) has stressed recently, a full understanding of any visual process
requires (at least) four questions being answered: (i) What is the
information available in the visual scene?; (ii) which of the many
possible sources of information does the visual system actually use?;
(ili) what are the mechanisms by which it is possible to recover the
information from the visual input?; and (iv) which of the many ways of
recovering information is actually used by the visual system?

The first question clearly is one destined to be answered by ecologi-
cal optics, a part of DTP (Gibson 1979). Regrettably, DTP has often
forgotten to answer the second question (there are, however, some
notable exceptions on this, e.g., Cutting 1986; Todd 1981, 1982). The
third question concerns CV, but equally pity is the neglect by some CV
workers of relevant PP findings concerning the human perceiving
machine (i.e., the fourth question). Happily, however, these shortcom-
ings have been adjusted in more recent years, when CV has done some
efforts to adjust their algorithms in order to account as a CTP (being
the theoretical part of CV and being part of PP, also).

It seems, thus, as if CTP must be considered a full-fledged theory,
which promises to be a real breakthrough in PP, if, and only if, they
take data on human subjects into account. In this way, CV would avoid
what Grossberg (1983: 683) has called ‘the unsettling confusion be-
tween means and ends, between wanting to understand human vision
but hating to study human processes’. Or, would it be possible that
other, fundamental criticisms on the CTP approach would cast some
doubts on this?

5. (Meta)criticism on current CTP research

Since the approach taken in CTP is relatively new (late seventies), it
can be expected to be largely inadequate and even wrong in detail. The
crucial consideration, however, is that CTP is viable and can be
progressively sharpened by recourse to experimental disconfirmation.
Therefore, it is of vital importance to consider potential (meta)criti-
cisms on the CTP approach as a whole, instead of particular details of
some derived hypotheses. A division between two categories is made,
relating to the relative weight of PP (criticism) and PhM (metacriti-
cism).
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5.1. Criticisms from PP

An essential property of a modular organization, according to Fodor
(1983) is that the order and kind of computations within one module
are not influenced by the ongoing or finished computations within
another information processing module. The basic conjecture is, thus,
that there is no information exchange between modules. Marr (1982)
and other CTP scientists have concluded from this hypothesis that
different recovery processes such as shape from shading, depth from
stereo, and structure from motion, which are supposed to be modular,
can be studied in relative isolation.

Others have some serious doubts about this possibility, ranging from
general disapprovals of the whole approach to rather specific remarks,
more or less based on PP research. Grossberg (1983: 683), as an
example of the former, thinks ‘the-independence-of-modules hypothe-
sis is just a philosophical slogan to be used as a weapon at scientifically
inconvenient moments’. Terzopoulos (1986), as an example of an
intermediate position, admits that thinking of the early visual processes
as a set of isolated modules ignores certain non-trivial interactions
between the different processes, not the least of which is the combina-
tion or integration from multiple early visual processes. He, therefore,
proposes an explicit account of this integration, namely a distributed
and highly parallel computational process that accomplishes the in-
tegration cooperatively.

Cavanagh (1987), as an example of the latter, more empirically based
criticism, demonstrated, in a series of experiments, that natural con-
straints do not always play a significant role in the recovery of depth
from images defined by shading, binocular disparity, or motion. His
findings imply the existence of a variety of mechanisms analyzing
depth according to some very loose rules instead of precise algorithms,
which is supported by others also (e.g., Braunstein 1983; Ramachandran
1985).

Furthermore, this variety of mechanisms challenges the plausibility
of one general-purpose processing system that analyzes all aspects of
depth in the image in the same manner (as is often supposed in classic
ITP). Equally implausible is the alternative of a multitude of
special-purpose modules (as part of CTP), because this would, accord-
ing to Cavanagh (1987), entail a great deal of redundancy , namely
duplicatingj similar processing mechanisms in many, if not all, of the
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modules. He, therefore, argues for the less extreme alternative that all
depth cues may be analyzed by a common set of processes which access
different types of image data, depending on the cue in question.

In fact, these criticisms can be summarized as doubts about the
relevance of the modular organization for human perceivers who do not
always take natural constraints into account, who use a variety of some
rather loose rules instead of rigid algorithms, and who have to integrate
the 3-D information recovered from the 2-D images, somewhere. PP
should, I think, direct its future research efforts to these presently
neglected aspects of the CTP. It is clear that further studies with
human perceivers are wanted to reveal which natural constraints are
taken into account and how, the extent in which the recovery processes
rely on algorithms or heuristics, and where exactly the integration of
the different recovery processes takes place and how.

It is also clear, however, that none of the criticisms mentioned above
seriously challenges the crucial assumption of independence of the
modules. For it could be the case that the different recovery processes
all work in parallel (whether they are heuristic rather than algorithmic
remains an open question to be answered by empirical PP research),
whereas their outputs are only integrated afterwards, so that informa-
tion exchange during the initial phase would not be required. Indeed,
this is the major tenet of Marr’s view on the 2,5-D sketch as the
representation where the information from the recovery modules is
integrated (e.g., Marr 1982; Nishihara 1981; Stevens 1983).

5.2. Metacriticisms from PhM

5.2.1. Defining the problem

A still more fundamental criticism on the CTP approach as a whole
is that it does not give an adequate explanation of the intentionality
(i.e., the being-about or the aboutness) of perception. Representatives
of PhM have argued that CTP has seriously neglected the intentional
aspects of perception (such as meaning and reference), that are, never-
theless, the most crucial ones from the point of view of PhM. Percep-
tion is, indeed, the mind’s window on the world, and, as such, it
provides the link between the objective aspects of the world as it is and
the subjective aspects of how it is experienced. A neglect of intentional-
ity would, therefore, be a very serious shortcoming of the CTP.
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This form of metacriticism (I call it “‘meta’ since it is not aimed at a
specific hypothesis of the CTP, but at CTP in general) is not new.
Indeed, for example, Searle (e.g., 1980) and Dreyfus (e.g., 1972) are
sceptics of the early hour. However, the metacriticism on the lack of an
account of intentionality in theories such as Marr’s, is becoming more
widespread (e.g., Calis 1984; Dodwell 1985; Russell 1984; Sayre 1986;
Winograd and Flores 1986), and, for that reason, deserves renewed
attention.

One could say that the bottom-up information processing in modules
only results in form detection, that is, the establishing of a particular
shape (e.g., cylindrical, cubical, etc., or some combination of these).
Object and scene perception, that is, the recognition of a particular
thing or situation (e.g., bottle, box, etc., or a supermarket), however,
requires top—down influence of object-specific information. Somewhere
in the perceptual process, a turning point between bottom-up and
top—~down, a transition from modular input systems to central cognitive
systems must necessarily exist.

Marr (1982) and, in fact, the whole CTP approach is very silent
about this (some notable exceptions are discussed further on). One
usually does not go farther than stating the problem. It remains,
therefore, an interesting problem to determine where bottom-up
processing has come to an end and where top—down influences intrude,
and how object recognition then takes place exactly. It might seem very
odd to workers outside the PP field that object recognition remains an
unknown part of the perceptual process, for it must be considered the
crucial part of it. Nevertheless, we must be fair in admitting that very
little is known about object recognition indeed. All existent theories
(ITP, DTP, and CTP) prove to be unsatisfactory.

5.2.2. Refining the problem

PhM is extremely well-suited for helping to refine the problem of the
difference between form detection and object perception. As is often
the case with the refining of problems, some distinctions must be made,
viz. between ‘seeing’ and ‘seeing as’, projectable and non-projectable
properties, referential transparency and opacity, and extensional and
intensional contexts, a cluster of closely interrelated concepts, hard to
define exactly. The interdependence of the notions will be demon-
strated by means of some examples.

A first distinction that must be made, according to PhM (e.g., Fodor
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and Pylyshyn 1981), is the one between ‘seeing’ and ‘seeing as’. For
example, if you just see the murderer of your wife, you would not
necessarily kill or congratulate him (the choice between them depend-
ing, among other things, on your view on the quality of the relation
with your wife). The retaliation of the murderer or the expression of
fecilitations would, at least, require the seeing of a certain person as
your wife’s killer. To predict the cognitive and behavioral activity of a
human subject on the basis of his or hers perception (which is a crucial
task of scientific psychology in general), implies PP giving an adequate
account of how a perceiver gets from seeing to seeing as, an account
that is clearly missing in CTP, according to its critics.

Second, a distinction is made between projectable properties, i.e.,
properties involved in physical laws, and non-projectable properties,
ie., that cannot function in nomological propositions. Projectable
properties such as ‘gold’ can simply be detected, whereas non-projecta-
ble ones such as ‘my girlfriend’s favorite metal’ necessarily require to
be perceived with the help from higher level knowledge. There is, for
example, a difference in stating that ‘my girlfriend was looking at some
piece of gold, without realizing what she was looking at (because of
some dust on it, probably)’ and stating that ‘she saw her favorite metal
with a little twinkle in her eyes’. (I would prefer the first, I think,
because I know what time it is when the second event occurs: time to
get some hard cash from my bankaccount.)

Third, referential opacity and transparency are distinguished. When
information processing cannot be influenced by changing the non-pro-
jectable aspects of the input, the process involved is called referentially
opaque. For example, I always flicker my eyes, when you fastly move
your finger in my eye’s direction, although you may tell me hundreds
and thousands of times that you are a nice fellow and never even hurt a
fly. When, on the other hand, changing the non-projectable aspects of
the input has a demonstrable influence on a process, this process is
called referentially transparent. There will be, for example, a change in
the way I perceive my neighbour, when somebody, some day, would tell
me that he is, actually, ‘Jack the Ripper’. The truth value of the
sentence ‘I like my neighbour’ would, probably, change when I would
be given this information. Detection is supposed to be referentially
opaque, whereas perception is considered referentially transparent.

Fourth, referential opacity occurs in extensional contexts, trans-
parency in intensional ones. Examples of extensional properties are
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fluidity /solidity, occluding/occluded, 2-D /3-D, moving in relation to
a fixed point or not, supporting or not, etc. Intensional properties are,
for instance, being drinkable, edible, throwable, being bottles, boxes,
walls, etc. (see, e.g., Russell 1984). Extensional properties can be
detected bottom-up, whereas intensional ones require top—down in-
fluence to be recognized or perceived as such.

In summary, detection or ‘seeing’ of projectable or extensional
properties is referentially opaque and can be explained by mere bot-
tom—up processing of the input, relying on ‘knowledge’ of general
constraints in the world, present and used in a modular recovery
process. Perception or ‘seeing as’ of non-projectable or intensional
properties is referentially transparent and must entail top—down in-
fluence of object-specific knowledge. This cluster of concepts helps to
clarify some of the contrasts between ITP, DTP, and CTP.

On the one hand, classic ITP have always tried to explain perception
of intensional properties by stressing top—down influences from mem-
ory, expectation, motivation, emotion, etc. But, excessive forms of ITP,
such as New Look theories (e.g., Bruner 1957) and theories of percep-
tion as problem-solving (e.g., Gregory 1970), have too often forgotten
to give an account of the detection of the input on the basis of which
higher level processes can operate. In other words, ITP have, generally,
neglected the bottom—up processing of extensional properties.

According to DTP, on the other hand, intermediating processes are
never necessary. Properties such as sit-on-ability, climb-on-ability, fall-
of-ability, etc., ‘affordances’ as they are called (see, e.g., Gibson 1979),
are all directly perceived. Gibson and his ecological associates have, in
this manner, classed these clearly intensional properties under the
heading of extensional properties, that can be picked-up directly. As a
consequence, they need not have any theory of how to come from
detected extensional properties to perceived intensional properties.

Marr’s CTP theory has, in my opinion, given a fairly adequate
account of the first part of the perceptual process, viz. the bottom—up
detection of extensional properties. In its current state, however, CTP
has not (yet) paid sufficient attention to the necessary second part, the
recognition of intensional properties which requires top-down in-
fluence. The metacriticism of some representatives of PhM (e.g., Rus-
sell 1984; Sayre 1986) is that CTP is not only lacking that part of a
full-fledged perceptual theory now, but that CTP will, in principle,
never be able to explain the capturing of the meaning of a stimulus, or,
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in other words, the intensional properties of it (‘intensional’ with an
‘s”), or, in still other words, the crucial aspect of the intentionality of
perception (‘intentionality’ with a ‘t’).

It is my opinion, however, that we should, at least, give CTP a fair
change to try, since there is, I think, no logical necessity that a scientific
theory of recognition could not be possible in a CTP framework (when
they are prepared to admit that not all processing is bottom-up, of
course). ITP and DTP have had (and are, in fact, still having) a huge
amount of research time and money to puzzle about it, so, why should
not CTP receive the same opportunity? (Some) CTP workers realize the
shortcomings of their theories and, in the next section, it will be
demonstrated that they are seriously doing some efforts to improve
their models by trying to bridge the gap between detection and recogni-
tion.

5.3. CTP attempts to overcome the (metajcriticisms

The connection between the (PP) criticism on the relative indepen-
dence of the recovery modules and the (PhM) metacriticism on the
neglect of intentionality, is apparent from the stating of the problems
as well as from the attempts to find solutions to them. Concerning the
connection between the definition of the problems, for example, Calis
(1984: 212) clearly states that ‘the contemporary working programs
seem to be too specialized modules, which are moreover too linear
(...), to be intentional themselves. Perhaps, it only makes some sense
to talk of intentional aspects of these working modules if they are
viewed as a part of a larger process.” This solution is exactly the one
CTP has tried to attain with their recent proposals.

Ullman (1984b), for example, makes a distinction between the
bottom—up creation of early representations of the visible environment,
such as the primal sketch and the 2,5-D sketch, and the subsequent
top—down application of, what he calls, ‘visual routines’ to the repre-
sentations constructed in the first stage. The early visual representa-
tions, on the one hand, are fixed and unchanging (i.e., always the same
properties are represented, e.g., surface orientation, depth, and direc-
tion of motion), unarticulated (i.e., essentially local representations of
these properties), spatially uniform (i.e., the same properties are ex-
tracted and represented across the visual field), viewer-centered (i.e.,
not with respect to the environmental coordinates), and bottom—up
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driven (i.e., representations depend on the visual input alone and on
the ‘knowledge’ within the module).

The further representations, needed to attain object and scene recog-
nition, on the other hand, are open-ended (i.e., the extraction of newly
defined properties and relations is permitted), articulated (i.e., more
globally attained), spatially non-uniform (i.e., the computations by the
visual routines are not applied uniformly over the visual field), object-
centered (i.e., with respect to the environmental coordinates), and
top—down driven (i.e., for the same visual input different aspects will
be made explicit at different times, depending, therefore, not only on
the input, but also on the goals of the computation and on object-
specific knowledge).

Visual routines, proposed as the computational processes to establish
these later representations, are composed of sequences of elemental
operations. Depending upon the task at hand, the visual system can
assemble different routines from a fixed set of basic operations to
extract an unbounded variety of shape properties and spatial relations,
needed to attain recognition. Although the details of Ullman’s (1984b)
theory remain to be worked out, the general framework of his proposal
is quite clear: The first stage of visual information processing is the
bottom-up creation of the early representations, on which, in the next
stage, visual routines are applied. In the absence of specific expecta-
tions or prior knowledge, universal routines are applied first, followed
by the selective application of specific routines. Intermediate results
obtained by these visual routines are summarized in a kind of incre-
mental representation which can be used by subsequent routines.

This theory is an explicit attempt to give, within the CTP approach,
an adequate explanation of what happens between detection and
recognition, and as such, it deserves attention. Patience will be needed
to see what kind of empirical research will be sparked off by this thesis.
Also, one has to look for similar attempts in the same direction, which
do, in fact, exist in the current CTP literature.

For example, Pentland (1986c) has proposed a new kind of represen-
tation format, because the currently available ones (e.g., Marr’s),
according to him, have been developed for purposes other than the
ones required for a theory of how the visual system produces meaning-
ful descriptions of 3-D objects and scenes on the basis of a 2-D array
of image intensities. The requirements for representations as part of an
adequate CTP theory are that the elements of the representation are
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lawfully related to important physical regularities, and that the repre-
sentation corresponds with the perceptual organization a human per-
ceptual system imposes on the stimulus, whereas the existent represen-
tational formats have been developed for other purposes (viz. physics
or engineering).

Pentland (1986c), therefore, argues for a representation of the scene
structure at a scale that is similar to the naive notion of a perceptual
part and he claims to have found that format in ‘fractals’, i.e., adequate
geometrical descriptions of an extensive variety of both regular and
irregular natural forms such as clouds, mountains, coasts, trees, etc.
Indeed, it is now being discovered that these divergent forms are also
constrained by physical laws to a limited number of basic patterns,
although not by the generally known laws of physics and material
science (see, e.g., Mandelbrot 1982; Stevens 1974; D’Arcy Thompson
1942).

Fractal-based descriptions are intermediate-level representations, ex-
plicitly suggested in order not to be forced to bridge the gap between
the initial low-level representations based on general models of image
formation and later high-level representations based on object-specific
models of boxes or bottles. The details of this theory, again, are not
very well articulated, but, as in Ullman’s case, the general idea is rather
straightforward: Fractal-based descriptions are, in fact, models of
parts, lawfully associated with image regularities as well as with parts
discovered by perceptual organization. The task of the perceptual
system is, then, to recognize the content of the image as a combination
of these fractals. Other CV workers equally stress the importance of
parts as an extremely relevant notion in a CTP theory of human
perceptual organization and recognition (e.g., Hoffman 1983; Hoffman
and Richards 1984). Also, from within PP, Biederman (1985, 1987) has
recently proposed a theory of object recognition on the basis of
component parts.

5.4. Conclusion

Although a considerable amount of derived hypotheses and general
suggestions of CTP theories are demonstrated either to be false (by PP
research) or to be inadequate (by PhM scrutiny), the hard core of the
research program (see Lakatos 1970) is not yet blown up. As is
apparent from the recent studies mentioned above, CTP scientists are
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still situated within the general approach instantiated by Marr. As long
as this is the case for the largest part of the CS community working on
vision, there is no need to leave this kind of approach, as has been
argued for recently. Some, for example, defend another source of
inspiration on which to base a perception theory, namely information
theory (e.g., Leyton 1986a and b; Sayre 1986). Others make a plea for a
general reconsideration of the human subject, who has a completely
different ‘Dasein’ and who can, therefore, not even be compared with a
computational system, let alone be considered to be one (e.g., Dreyfus
1972; Russell 1984; Winograd and Flores 1986). I, however, argue that
the research program of CTP, as a whole, is still alive and well, no
matter how affected some of its body parts might be from criticisms
and metacriticisms of PP and PhM.

6. Other possible interactions between CV, PP, and PhM

Apart from the mutual interchanges between the three constituent
branches of CV research on vision, that have, hopefully, become
evident from the discussion so far, a number of other interactions that
are currently insufficiently explored, might be possible and fruitful for
scientific progress. All members of the CS triumvirate have their own
task they need to take up.

6.1. Tasks of CV and PP

CV with theoretical aspirations (i.e., CTP wanting to account for
human perception) necessarily has to rely on PP studies on human
subjects. Not only, as has been the case in current research mostly, as
the possible refutation or corroboration of the predictions on al-
gorithms and representations used, but, also, to find some inspiration
for new suggestions of computational processes.

For example, concerning the finding of contours and their curvatures
(a problem that is related to Marr’s primal sketch), current CV work is
in trouble about the so-called locality problem (e.g., Asada and Brady
1986; Fischler and Bolles 1986). Mathematically, curvature is de-
termined on an infinitesimally small surrounding. Practically, however,
one has to rely on a finite piece of the contour. CV, I argue, should rely
their solutions of the locality problem (i.e., how local is local?) on the
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ones suggested by experimentally established findings on how human
perceivers solve it. Do people take pieces of a well-determined length
(probably depending on the sensitivity of the retinal receptors), or is
the length of the contour part maybe dependent on the size of the
whole or on the importance of the part in the whole?

Another example of PP research possibly relevant to CV, concerns
the use of physical constraints of color mixing for the recovery of 3-D
shape from 2-D patterns (a problem related to Marr’s 2,5-D sketch). In
an experiment reported elsewhere (Wagemans and de Weert 1987), we
designed some colored variants of the ‘Necker cube’ (in fact, trans-
parent boxes) and we tried to disambiguate the 2-D patterns by
choosing the colors of the different parts such that there was only one
3-D interpretation physically possible. By forcing the subjects to choose
which orientation of the box they were seeing, we were able to
demonstrate that human perceivers incorporate some ‘knowledge’ on
physical constraints of color mixing, since they preferred, to a statisti-
cally significant extent, the physically possible variants of the boxes.
Nevertheless, CV researchers seldomly use color information as an
input and they have never, as far as I know, suggested algorithms that
can perform the recovery of 3-D shape of 2-D colored images on the
basis of models of color-mixing laws.

In conclusion, CV researchers should not only try to publish their
vision models in the PP literature, because they consider them relevant
to it (and I demonstrated they are indeed), but they should also consult
that literature to base their CTP models on, because, in my opinion, the
possible reversed transfer (from PP to CV) is as relevant and fruitful as
the currently dominant one (from CV to PP).

6.2. Tasks of PhM

There are three goals for philosophy in general and PhM in particu-
lar, being considered as a potentially valuable member of the CS
triumvirate studying vision: (i) to give an adequate characterisation of
the explicanda of (i.e., what needs to be explained by) CTP (as part of
both CV and PP); (ii) to provide fundamental criticisms on CTP for
not having reached a full-fledged account of these explicanda; and (iii)
to inspire the formation and canalizing of the interpretation of CV and
PP data that are all the same relevant to the theories of the explicanda.

Some of these tasks (foremost, ii and iii) have been tackled already,
others (foremost, i) might better deserve somewhat more attention. As
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was probably apparent from the discussion in 5.2.2., much remains to
be done in explaining pairs of terms such as intensional /extensional,
projectable /non-projectable, referentially opaque /transparent, etc. and
the relations between them. Also, PhM should give a clear account of
intentionality, usable by PP and CV. Furthermore, PhM should
elaborate on the modularity thesis (which is an excellent example of
doing iii) and all the problems that are related to it: for example,
differences between bottom—up and top—down processing, general and
specific knowledge, implicit and explicit information, ‘knowledge’ and
knowledge, etc. Although PhM, especially the one in the analytical
tradition has a rather extended experience on these topics, the CS
community in general, and research on vision in particular, would
clearly benefit from further work along these lines, that is accessible for
non-philosophers such as PP and CV scientists.

Related to objective (iii) of PhM, is the interesting task of integrating
data relevant to the general mind-body problem. Clearly, PP and CV
studies on vision could be of extreme relevance to this age-long
fundamental puzzle (or mystery). Recently, some steps in this direction
were set (e.g., Pribram 1986; Thagard 1986), but, surely, there is a lot
that remains to be done.

7. Summary of both existent and possible interactions in CS

In 1978, Pylyshyn could, in rather general terms, speak of the
courtship between Al and (experimental) psychology, ‘a loose but
symbiotic relation in which each supplies a source of heuristic inspira-
tion and ideas to the other’ (Pylyshyn 1978: 99). Now, in 1987, we are
confronted with the marriage between the two (CS) and, indeed, the
children (CTP). It was, therefore, necessary to consider how this
happened (without- going into intimate details, of course) and what
relations and interactions can be specified exactly. Influences that were
implicitly present in the forgoing exposition, are now summed up
explicitly. (Numbers refer to arrows in fig. 1, representing influences
from one discipline on another, or from one on two others or vice
versa.)

(1) The influence of CV on PP. CV has an extensive impact on
theorizing in PP, namely the rise of CTP as a third alternative, as well
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as on the experimental research with human perceivers, viz. studies by
Todd and others, explicitly designed as tests of CV predictions or
derived hypotheses.

(2) The influence of PP on CV. In historical perspective, Gibson (1979)
has had a serious role in the breakthrough of CV by pointing at the
richness of the information available in the natural world. In current
research, PP experimental results, established by Todd and others, are
given serious attention by CV workers, who try to improve their models
by taking these corroborating or refuting findings into account. In
future studies, CV should also search for PP findings as a source of
inspiration when there is a lack of knowledge on constraints to al-
gorithms and representations used by humans.

(3) The influence of PP on PhM. Important are the PP data, which
PhM needs to take into account. This has been done by, for instance,
Fodor, when theorizing about the modularity of mind, and by others,
when thinking about the mind-body problem.

(4) The influence of PhM on PP. This PhM theorizing (e.g., Fodor’s) is
influencing PP research at present and will continue to do so in the
future. Furthermore, PhM can help to distinguish terms as detection
and recognition, vitally important for PP theories.

(5) The influence of PhM on CV. Fodor’s modularity-thesis is very
influential in current CV work. Furthermore, the metacriticisms of
PhM on CV in general are not going unnoticed. Recent CV scientists
(e.g., Ullman, Pentland) are seriously taking them into consideration.

(6) The influence of CV on PhM. The other way around, Marr can be
regarded as one of the instigators of Fodor’s view on modularity. Also,
the notion of ‘module’ is one that is being frequently used in structured
programming languages in Al. Finally, representatives of PhM can be
supposed to know the CV literature quite well, since they write a lot
about it.

(7) The influence of CV on PP—PhM. CV has provided PP with a third
possible theory, the status of which is discussed in close interaction
with PhM.
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(8) The influence of PP—-PhM on CV. Both the criticisms of PP
research and the metacriticisms based on PhM scrutiny (which are
closely interrelated, of course) are clearly influencing CV as a disci-
pline. As a consequence, CV noticed their relevance to PP as well as
their current lack of a well-established theory of intentionality.

(9) The influence of PP on CV-PhM. PP research has, for example,
demonstrated that not all aspects of the computational modules are
applicable to the human recovery process. Both CV and PhM have to
work out which aspects of modularity in vision do and which do not
apply to human perception.

(10) The influence of CV-PhM on PP. The other way around, PP is
able to make a lot of concrete predictions about human recovery
processes, that are due to the fruitful interaction between CV and PhM
on the modularity of low-level vision.

(11) The influence of PhM on CV-PP. PhM (or, better: the philosophy
of science part of it) is very useful in making explicit the different
scientific status (e.g., goals and evaluation criteria) of CV and PP, and
can, therefore, be very helpful in determining the exact relation be-
tween the two. Furthermore, the PhM thesis about modularity is
clarifying a lot about CTP (part of CV and PP) as being a compromise
between ITP and DTP. Third, PhM should attempt to define the
explicanda of CV and PP, and it should try to refine the terms needed
in CV and PP, in such a way that they are understandable for
non-philosophers. Finally, the PhM metacriticisms will surely stimulate
further research along the CTP line, and it will, in this manner,
promote scientific progress in CS as a whole.

(12) The influence of CV~PP on PhM. The empirical findings of both
CV and PP are important data to integrate in PhM. These theoretical
constructions can range from rather particular theses (such as modular-
ity) to quite general speculations about the mind—body problem. Apart
from integrating, PhM is also very busy criticizing the work in CV and
PP, and, especially, the CTP as a result of their interaction.
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