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The capacity to categorize stimuli is fundamental to all living
organisms1,2. Theories of categorization agree upon the impor-
tance of the similarity between stimuli to account for many
aspects of categorization performance3–5. However, it is not
straightforward to compute the degree of similarity between stim-
uli that can vary across a high number of dimensions, like com-
plex shapes. Fortunately, the similarities among a set of complex
stimuli can often be described in a more compact way6–8. Indeed,
stimuli from many behaviorally relevant sets can be represented
in a low-dimensional representation space in which the proxim-
ity between stimuli is related to their similarity. For example, by
presenting the randomly ordered shapes of Fig. 1d in a particular
order (Fig. 1a–c), the similarities can be easily described by a two-
dimensional square-like configuration. Several behavioral stud-
ies that have varied complex shape differences parametrically
revealed that primates are able to represent the similarities
between shapes in a low-dimensional representation space with-
out ever seeing these stimuli in their parametric configuration9–12.

Here we aim to study directly the neural basis of these low-
dimensional representation spaces. Object recognition and cate-
gorization in macaques is thought to depend on the inferotemporal
cortex (IT)13,14. Single IT neurons are selective for moderately
complex object features15, but several studies have found little rela-
tionship between the similarities between complex objects and the
responses of single IT neurons16,17. However, one needs to manip-
ulate shape similarity parametrically to investigate how the respons-
es of IT neurons to complex stimuli are related to the proximity
of these stimuli in a low-dimensional space. Thus, we investigat-
ed whether the response pattern across a population of IT neurons
can reveal a low-dimensional and faithful representation of shape
similarity using parameterized shapes.
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Behavioral studies with parameterized shapes have shown that the similarities among these complex
stimuli can be represented using a low number of dimensions. Using psychophysical measurements
and single-cell recordings in macaque inferotemporal (IT) cortex, we found an agreement between
low-dimensional parametric configurations of shapes and the representation of shape similarity at the
behavioral and neuronal level. The shape configurations, computed from both the perceived and neu-
ron-based similarities, revealed a low number of dimensions and contained the same stimulus order
as the parametric configurations. However, at a metric level, the behavioral and neural
representations deviated consistently from the parametric configurations. These findings suggest an
ordinally faithful but metrically biased representation of shape similarity in IT.

As the analysis of the visual input in the visual system is high-
ly nonlinear, the neuronal representation space could deviate
from the configurations in parameter space in several ways. Pre-
vious psychophysical studies found an ordinal agreement between
parametric configurations and their perceptual representation
(the same number of dimensions and the same stimulus
order)9–12, so we also expected this result at the neuronal level.
However, configurations that fit perfectly on an ordinal level can
differ on a metric level. Thus, apart from investigating ordinal
relationships, we looked for consistent metric anomalies in per-
ceptual and neuronal representation spaces with respect to the
parametric similarities.

In this study, we varied complex shape dimensions, that is,
radial frequency components (RFCs), that have been used pre-
viously with human subjects10. These parametric variations
affect a high number of perceptually salient dimensions10,18, but
are not coded directly in the macaque visual system19. Never-
theless, in agreement with computational work11, we found that
human and monkey subjects were able to represent the similar-
ities between such shapes in low-dimensional representation
spaces that agree well with pixel-based configurations (Fig. 2a–e).
Moreover, the perceived similarities of the monkeys cor-
responded better with the stimulus similarities when these were
computed using IT neuron responses (Fig. 2f) than with the
pixel-based similarities. Further behavioral experiments in mon-
keys showed that the low-dimensional stimulus configuration
predicts categorization performance.

RESULTS
We investigated the underlying representation space of 24 shapes
that were divided into 3 groups (Fig. 1). The within-group con-
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points is 90° at corner points, and 180° at points
along the sides. Other configurations with the
same stimulus order, such as eight equidistant
points on a circle, do not possess this property.
A chi-square test was used to assess the depen-
dence of angle size (smaller or larger than 135°)
and type of point (corner or side point in the
parametric configuration) for each subject.
Angles were greater at side points compared to

corner points for each subject (χ2 = 10.74, p < 0.01 for subject 1;
χ2 = 20.17, p < 0.01 for subject 2). Thus, the configurations of
each subject differentiate between configurations of the same
stimulus order, such as a square or a circle.

To determine whether remaining metric deviations from the
expected configurations were systematic rather than due to mea-
surement noise, we determined the inter-subject consistency of
deviations of the perceived similarities with respect to the pixel-
based similarities. For group A and B stimuli, C was lower when
the perceived similarity ratings were compared between the two
subjects (Table 1, C(human 1, human 2)) than when each sub-
ject’s data were compared with the pixel-based similarities
(C(pixel, human 1) and C(pixel, human 2)). This suggests that
the deviations of the perceived similarities were likely due to mea-
surement noise. However, there was a striking consistency in the
way the perceived similarities of the two subjects deviated from
the pixel-based similarities for group C stimuli (compare length
and direction of red lines in Fig. 2b and c).

Perceptual representation space: monkey data
Two monkeys (Y and E) were trained in a same-different task. Fol-
lowing previous studies in macaques12,20, the proportion of cor-
rect ‘different’ responses for a particular stimulus pair was taken
as measure of the dissimilarity of that pair. This measure can be
subjected to the same analyses as performed on the human data.

First, hierarchical cluster analysis showed that the most sim-
ilar stimuli belong to the same stimulus group. All stimuli from
a given stimulus group were assigned to the same cluster, before
they were clustered with stimuli from the other two groups. How-
ever, the clustering in monkeys was less than in human subjects.
The proportion of variance accounted for by reducing the 24
stimuli to 3 clusters was smaller for the monkey data (averaged
across monkeys, 47% of variance explained; humans, 85%).

Second, analysis of the similarity data for each stimulus group
separately showed that the congruence with the pixel-based sim-
ilarities was always highly significant (Table 1). Two-dimension-
al MDS-derived configurations (Fig. 2d and e) explained most
of the variance in the similarity ratings (averaged across mon-
keys, 96%, 88% and 97% for group A, B and C, respectively).
Overall, the within-group similarities were represented in low-
dimensional configurations that captured most aspects of the
expected configurations. First, the stimulus order matched the
expected order (rs = 1, p < 0.01) for all stimulus groups in each
monkey, except for group B in monkey Y (reversal of stimuli 6

Fig. 1. Visual stimuli. (a–c) Three groups of eight
shapes were used. Within each stimulus group, the
parameter–space configuration of the stimuli is rep-
resented by the square arrangement of the stimuli.
The top-left stimulus in each square has a low ampli-
tude value for both manipulated radial frequency
components. (d) Same 24 stimuli, but the 8 shapes
from each stimulus group are presented in a random
order in a row.

figurations formed two-dimensional squares in the parametric
space, and similar but not identical configurations are present
when using pixel-based similarities (Fig. 2a).

Perceptual representation space: human data
We verified the perceptual representation of the similarities
between shapes in two human subjects performing similarity
ratings. First, we applied hierarchical cluster analysis to deter-
mine whether these similarity ratings reflected the expected clus-
tering of stimuli into the three groups. As expected, all stimuli
from a given stimulus group were assigned to the same cluster
before they were clustered with stimuli from the other two
groups. A substantial proportion of variance (85%) in the sim-
ilarity judgments was accounted for when reducing the 24 stim-
uli to these 3 clusters.

Next, we analyzed the similarities among the eight shapes
from each group. To determine whether the perceived similari-
ties converge with the pixel-based similarities, we computed the
congruence C between these two sets of similarities. For all groups
of stimuli and for both subjects, significantly high congruences
were found (Table 1).

We used multidimensional scaling (MDS) to determine
whether the shape similarities could be captured by the distance
between the stimuli in a low-dimensional space. Two-dimen-
sional MDS-derived configurations were computed for each sub-
ject and each group of stimuli separately (Fig. 2b and c). The
more similar the two stimuli, the smaller the distance between
the points representing each stimulus. Even with as few as two
dimensions, these configurations accounted for most of the vari-
ance in the similarity ratings. All within-group similarities were
represented in low-dimensional configurations that strongly
resembled the expected configurations. First, no qualitative devi-
ations, such as the reversal of a pair of shapes, were seen. We
quantified this ordinal agreement between perceived and expect-
ed configurations by computing the Spearman rank order cor-
relation (rs) of the polar angles of the stimulus points with
respect to the center of each configuration. If one takes stimu-
lus 1 as the reference with polar angle zero and proceeds clock-
wise, then one would expect stimulus 2 to have the next-smallest
polar angle, followed by stimulus 3. The expected order of the
stimuli was preserved perfectly in all stimulus groups (rs = 1.0,
p < 0.01). Second, details of the expected configurations, such
as their ‘squareness,’ were maintained. In a square, the angle
between two lines connecting a point with its two neighboring
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and 8 (rs = 0.93, p < 0.01)). The latter deviation was
not a consequence of a poor reliability, as it was repli-
cated. Second, there was a clear difference in the
MDS-derived configurations between corner and side
points as defined in the expected configurations, with
larger angles at side points compared to corner points
(χ2 = 8.17, p < 0.01 for monkey Y; χ2 = 10.74, 
p < 0.01 for monkey E).

We determined whether the remaining deviations
of the perceived from the pixel-based similarities were
consistent between the two monkeys. There was a
significantly high congruence between the data of
monkeys Y and E for stimulus groups A and C,
although no such inter-subject consistency was pre-
sent for group B (Table 1, C(monkey Y, monkey E)).
Each monkey tended to represent stimulus 3 of 
group A more toward the center of the configuration
than expected from the pixel-based configurations 
(Fig. 2d and e). For group C, the perceived shape
configurations showed a bias towards the vertical
parametric dimension (Fig. 1c), a trend also present
in human subjects (Fig. 2b and c). This consistency
between humans and monkeys for group C was
assessed using the averaged human and monkey data,
and was significant (Table 1, C(humans, monkeys);
Supplementary Fig. 1, see supplementary informa-
tion page of Nature Neuroscience on line for the appli-
cation of MDS on these averaged data).

Neuronal representation space in IT cortex 
We recorded from 124 single neurons in area TE of monkeys F
(n = 51) and M (n = 73) while they were learning to categorize
the 24 stimuli in 2 classes. Recordings were performed in the
lower bank of the superior temporal sulcus and lateral to the ante-
rior middle temporal sulcus. Most neurons (82%) responded
twice as strongly to their preferred shape than to the least pre-
ferred shape. Many of these neurons combined high within-group
selectivity with lower between-group selectivity. For example, the

Fig. 2. MDS-derived two-dimensional configurations of
stimuli. (a) Configurations based on the pixel-based simi-
larity between stimuli. The numbers refer to the stimuli as
labeled in Fig. 1. The other panels show a comparison
between the configurations (blue squares) of stimuli in (a)
and the configurations (green diamonds) found for the
perceived similarities of the first (b) and second (c) human
subject, the perceived similarities of monkey Y (d) and
monkey E (e), and the neuron-based similarities (f). The
amount of variance (r2) of the similarity values that was
explained by the two-dimensional configuration is denoted
below each panel, as is the range ([minimum; maximum])
of similarity values. These ranges are expressed in different
scales for each dataset and can only be compared among
stimulus groups within each dataset (pixels, Euclidean dis-
tance; human, mean similarity rankings; monkey, propor-
tion different responses; neuronal data, distance in
124-dimensional neuronal space). To aid a visual compari-
son of the pixel-based with the other configurations, the
latter were Procrustes transformed (combination of trans-
lation, scaling, rotation and reflection)11. Red lines connect
corresponding points in both configurations. As the con-
figurations have arbitrary origin, scale and orientation, the
labeling and scale on both axes in each graph are omitted.

neuron in Fig. 3a responded differently to similar shapes within
each stimulus group (for example, shapes C1 and C3), whereas it
responded with similar strength to shapes that look dissimilar to
human and monkey observers (for example, shapes C1 and A6).
Many neurons were very selective within stimulus groups, but
stimuli from different groups often elicited similar responses 
(Fig. 3b). Indeed, the median of the distribution of the selectiv-
ity index (SE, see Methods; Fig. 4a) was 2.4, indicating that most
neurons do not respond more strongly to all stimuli of one group
compared to the responses to stimuli of the other groups (as can
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be illustrated by sorting the stimuli according to response
strength, Supplementary Figs. 1 and 2).

The within-category selectivity of these neurons was regular,
meaning that their responses decreased monotonically with
increasing parametric distance from the preferred shape of a stim-
ulus group. For example, the neuron in Fig. 3a responded well to

Fig. 3. Responses of single IT neurons. (a) Peristimulus time histograms of a single IT neuron from monkey M. The ordering and numbering of the pan-
els is the same as in Fig. 1. Stimulus presentation (300 ms) is indicated by the bar underneath each histogram. The histograms have a bin width of 25 ms
and the height of each bin is normalized to the maximum bin across all histograms (94 spikes/s). (b) Polar plots of the within-group response pattern,
making use of the radial position of each stimulus with respect to the center of the parametric square configuration (numbering of shapes is the same
as in a). The black tuning curves represent the responses of the neuron of (a), whereas the responses of two other single neurons (monkey F) are
shown in red and blue. Responses across all three panels are normalized to the maximum response for each neuron separately (maximum responses
were 27, 59 and 34 spikes/s for the black, blue and red curves, respectively). The standard error of the mean for the maximum of each tuning curve is
indicated. The RR indices for stimulus groups A, B and C were 1.8, 3.6 and 2.8, respectively, for the neuron indicated by black lines (SE = 27); 5.2, 3.0
and 4.8 for the neuron indicated by blue lines (SE = 2.3); and 1.6, 0.68 and 0.33 for the neuron indicated by red lines (SE = 3.8).

shape C1 and was still responsive
for the neighboring shapes C2
and C8, but no comparable
responses were elicited at any
point further in stimulus space.
As a consequence, polar plots for
each stimulus group revealed reg-
ular and unimodal tuning curves
(Fig. 3b). The ratio index (RR)
captures the deviation of this tun-
ing curve with respect to an uni-
modal sinusoidal modulation
(see Methods). The three neurons
in Fig. 3b illustrate tuning curves
across the whole distribution of
RR values (Fig. 4b). For all cases
with a good within-category
selectivity (that is, a response dif-
ference between preferred and
least preferred shape above 50%,
n = 121), the median RR index
was 1.9. Thus, the responses of
most IT neurons were closely

related to the parametric variation of shape similarity.
We used the responses of the 124 neurons to compute the neu-

ron-based similarity between each pair of stimuli. Notwithstand-
ing the low between-group selectivity of many neurons, hierarchical
cluster analysis of the neuron-based similarities revealed the expect-
ed clustering at the population level: all stimuli from a group were

Table 1. Congruence between configurations for each group of stimuli.

Group A Group B Group C
Congruence between pixel-based similarities 
and empirical similarities
C (pixels, human 1) 0.973+ 0.987+ 0.960+

C (pixels, human 2) 0.989+ 0.987+ 0.976+

C (pixels, humans) 0.991+ 0.995+ 0.974+

C (pixels, monkey Y) 0.979+ 0.984+ 0.979+

C (pixels, monkey E) 0.988+ 0.983+ 0.976+

C (pixels, monkeys) 0.989+ 0.990+ 0.979+

C (pixels, neurons) 0.996+ 0.993+ 0.991+

Congruence between two sets 
of empirical data
C (human 1, human 2) 0.967 0.976 0.981*
C (monkey Y, monkey E) 0.985* 0.972 0.990*
C (humans, monkeys) 0.987 0.988 0.992*
C (monkeys, neurons) 0.990* 0.991* 0.984*

+Probability of random configuration, p < 0.001. *Probability that deviations from pixel-based similarities are
random, p < 0.05.
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assigned to the same cluster, before they were clustered with stim-
uli from other groups. Because 45% of the variance was explained
by assigning the stimuli to 3 groups, the degree of clustering at the
neuronal level is comparable to that found in the monkey behav-
ioral data, but less so than in human subjects.

For each stimulus group, the congruence between the neu-
ron-based similarities and the pixel-based similarities was high-
ly significant (Table 1). The proportion of variance explained by
2-dimensional MDS-derived configurations (Fig. 2f) exceeded
99% for each group. As found for the perceived similarities, the
positions of the eight shapes in these configurations captured
most aspects of the expected configurations. First, we found the
same stimulus order in the neuron-based configurations com-
pared to the expected configurations for stimulus groups A and
C (rs = 1, p < 0.01), and only a small deviation for group B 
(rs = 0.98, p < 0.01). Second, the MDS-derived configurations
were square-like, with larger angles at side points compared to
corner points (χ2 = 8.17, p < 0.01).

Reasonable fits could already be obtained with smaller samples
of neurons. The mean congruence between neuron- and pixel-
based similarities was significant with as few as eight neurons
(Fig. 5a). The congruence depends also on
the tuning properties of the neurons in
addition to the effect of sample size (Fig.
5b). First, congruence was lower for a sam-
ple of neurons with an irregular tuning (RR
< median RR) compared to neurons with a
regular tuning (RR > median RR). Second,
restricting the range of preferred shapes
(tuning optima) reduced congruence when
combining at least four neurons. Thus, both
the regularity of the tuning of single neu-
rons and the range of their preferred shapes
contribute to the efficiency of the coding of
shape similarity at the population level.

The neuron-based similarities seem to
faithfully represent many metric aspects of
the perceived similarities of the monkey.
Indeed, the congruence between the behav-
ioral and neuronal data was greater than
would be expected based on their respective
congruences with the pixel-based similari-

ties for all stimulus groups (Table 1;
C(monkeys, neurons)). The neuron-based
similarities were a better predictor of the
averaged perceived similarities than were
the pixel-based similarities (the same result
was obtained with the behavioral data con-
sidered for each monkey separately). The
neural as well as the perceptual represen-
tation of stimulus A3 tended more toward
the center of the configuration than
expected from the pixel-based configura-
tions. For group B, both the averaged per-
ceived similarities and the neuron-based
configurations tend to differentiate the
stimuli on the right of the parametric con-
figuration more strongly than those on the
left (Fig. 1b; although the behavior-based
representation of the stimuli on the left is
not consistent between monkeys, each ani-
mal was more sensitive for differences
between stimuli on the right compared to

stimuli on the left, as was the population of neurons). The results
for group C indicate that the neurons tend to be more sensitive
for differences along the vertical parametric dimension, as were
the animals and human subjects at the behavioral level.

Effects of categorization on neuronal representation 
During the recordings, the monkeys learned to categorize the
shapes from each stimulus group into two classes (Fig. 6). In
some stimulus groups, the division of the stimulus space into
specific regions followed a simple linear decision rule (group C
and A in monkeys F and M, respectively). In other groups, how-
ever, the categorization rule required the stimulus space to be
parceled into specific quadrants (group B in monkey M) or into
arbitrary decision regions (groups A and B in monkey F and
group C in monkey M). In this last category rule, highly similar
shapes require a different response.

A possible effect of categorizing the images during the
recordings on the neural responses was examined by comparing
the neuronal data between monkeys for each stimulus group
separately. Indeed, each monkey learned a different rule for a
particular group, allowing a comparison between the neural
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Fig. 5. Congruence (C) between pixel-based and neuron-based similarities as a function of number
and type of neurons. Each data point represents the mean congruence of 150 random samples
(whiskers indicate the standard error of the mean). (a) Congruence as a function of sample size.
The ordinate scale starts from the expected value when the pixel-based similarities are compared
with the similarities in random configurations (C = 0.86). The congruence of an individual sample is
significantly different from this expected value for all values above the dashed line (C = 0.96). (b)
Difference between the congruence from (a) and the congruence obtained when neurons are
selected from subsets of the population. A positive difference corresponds to a higher congruence
relative to that shown in (a). RR, ratio index.

Fig 4. Distribution of SE and RR indices. (a) The SE index is calculated for all neurons responding
with at least twice as many spikes to their preferred shape than to the least preferred shape 
(n = 102). (b) The RR index is computed for all cases with a good within-category selectivity (that
is, a response difference between preferred and least preferred shape above 50%, n = 121). All val-
ues above five are collapsed in one column (maximum was 38 and 14 for SE and RR, respectively).
The median of each distribution is indicated by an arrow.
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similarity spaces for different category rules. We observed no
systematic effects of categorization. First, the within-category
selectivity of single neurons was regular with respect to the para-
metric similarity between stimuli and it did not follow the cat-
egory rule. For example, when a monkey had learned an
arbitrary category rule, no neurons responded stronger to all
stimuli from one category compared to the responses to the
other category. Second, arbitrary rules did not change the
dimensionality or the order of shapes within the MDS-derived
configurations. Third, even more subtle metric changes, like
expansions/contractions of dimensions or parts of the stimu-
lus space, were not induced by the categorization task.

The effect of similarity on categorization performance 
If stimulus similarity determines categorization performance,
then several predictions can be made regarding the difficulty of
learning the different category rules. First, the more tightly stim-
uli from a given category are clustered (that is, the larger the
inter-category distance relative to the intra-category distance),

the easier it will be to categorize any given stimulus. Second, the
more closely a stimulus is located to a boundary between two
categories, the more difficult it will be to assign it to one or the
other of those categories.

The errors the monkeys made while learning these catego-
rization problems confirmed both predictions. First, the more
tightly that shapes having to be categorized into the same class
are clustered, the more easily a particular categorization was
learned (Fig. 7a). Linear rules were learned more easily than a
quadrant rule, but even the latter was more easily learned than
the arbitrary rules. Second, in the case of a linear rule, the cate-
gory assignments of shapes that were close to a category bound-
ary were learned more slowly compared to more distantly located
shapes (Fig. 7b). Nevertheless, performance on the stimuli close
to a linear category border was above 90% after one week of train-
ing. This shows that the monkeys were able to discriminate neigh-
boring stimuli in the parametric space. So, the difficulties with
the arbitrary rules (performance after several weeks of training
lower than 85%, Fig. 7a) were not merely due to stimulus dis-
criminability, but indeed reflect the clustering of the stimuli with-
in the representation space.

DISCUSSION
Our data reveal a rather faithful representation of the physi-
cal similarities among high-dimensional stimuli in monkeys
at the neuronal level. The neuronal representation of a con-
figuration of shapes preserves the dimensionality and stimu-
lus order of the configuration, and even some metric
properties like the difference between a square and circle con-
figuration. The response patterns of single neurons were 
related to the distance between shapes within these low-
dimensional representation spaces, a property that contributes
to the efficient coding of similarity at the population level.
Notwithstanding the close agreement between physical and
neuron-based similarities, our results revealed that the neu-
ron-based similarities were a better predictor of perceived sim-
ilarities than were the physical similarities. Finally, the
low-dimensional representation of shape similarity determined
the difficulty of learning specific categorization rules, but the
reverse was not the case: applying a categorization rule did
not change the representation of similarity in IT.

Fig. 6. The division of each stimulus group into two response cate-
gories for each monkey. Filled and open squares refer to stimuli that
were associated with a leftward or a rightward eye movement, respec-
tively. The stimulus order is the same as in Fig. 1.

a

b

Fig. 7. The performance of the two monkeys in the categorization task for each stimulus group. The stimulus–response associations for each group
and monkey are shown in Fig. 4. (a) Performance averaged across all stimuli from each stimulus group for different sessions: day 1 and 2 (performance
at the end of the first and second session, respectively), and rec 1 and 2 (behavioral performance during the first and second half of the recording ses-
sions, respectively). Point style represents the type of category rule, whereas the line style refers to the different stimulus groups (group A, dotted
line; B, dashed line; C, solid line). Vertical bars indicate 95% confidence intervals of one line plot (the number of observations is equal for the other
stimulus groups). (b) Performance for the linear categorization problems in the first two sessions as a function of the distance between each stimulus
and the optimal decision boundary in parametric space. Pairwise close stimuli are C1, C2, and C5, C6 for monkey F, and A1, A2, and A5, A6 for mon-
key M. Vertical bars indicate 95% confidence intervals for performance with close stimuli in each monkey.
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However, by examining consistent metric deviations from the
expected representation spaces we found that the representation
of similarity at the behavioral and neuronal level is not com-
pletely faithful at the metric level. Indeed, the neuron-based sim-
ilarities were always a better predictor of the monkey-perceived
similarities than were the pixel-based similarities. With the idea
of a network using radial basis functions, one can account for
most aspects of our data, but cannot predict these metric biases
(although they could be explained ad hoc). We applied measures
of physical similarity that make no assumptions about how the
image is analyzed in the visual system (in contrast to, for exam-
ple, a wavelet analysis with oriented filters). Of course, physical
similarity can be quantified by an almost infinite number of mea-
sures beyond the limited set we have used, and some of these
alternative measures could do better. But, even in the latter case,
we need a model that can explain why some measures are better
than others although they all agree in an ordinal sense. Many the-
oretical models have tried to characterize the nonlinear process-
ing steps in the hierarchically organized visual system (for
example, see refs. 25–28). They make different predictions about
the occurrence of systematic biases toward a higher sensitivity
for some stimulus differences than for others, but our study was
not designed to differentiate between these models.

In agreement with categorization models using the concept
of similarity3–5, we showed that the representation of similarity
has a profound influence on categorization performance. How-
ever, computing similarity is only a first step. Learning a partic-
ular categorization rule implies that the low-dimensional
representation space is parceled into regions that require the same
response. Neuropsychological theories of categorization localize
the representation of stimulus similarity within extrastriate cor-
tex, but the stimulus–response mapping is presumed to be done
in other areas such as prefrontal cortex, hippocampus and basal
ganglia29–33. In line with this strict segregation of
stimulus–response associations from the representation of stim-
ulus similarity, the representation spaces we found at the neu-
ronal level in visual cortex were not altered by learning a specific
categorization rule. Further research is needed to compare the
visual responses in different brain regions using parameterized
stimuli to see how these visual representation spaces are trans-
formed into category or ‘response spaces.’

METHODS
Subjects. Four monkeys (Macaca mulatta) and two naive humans were
subjects. All procedures34,35 were approved by the K.U. Leuven Ethical
Committee for animal experiments and followed NIH guidelines.

Stimuli. The stimuli were 24 closed contours defined by 7 RFCs36, and
were divided into 3 groups with distinct RFCs. Within each group, dif-
ferences between shapes were induced by independently varying the
amplitude of two RFCs, creating eight shapes arranged in a square-like
manner in the two-dimensional amplitude space (Fig. 1). The shapes
(maximum size, 6°) were presented on a gray background (luminance,

Previous behavioral studies have already shown that
humans and monkeys represent parameterized two- and three-
dimensional shapes in a manner that preserves relative simi-
larities among the stimuli in parameter space (refs. 9–12 and
Sigala et al., Soc. Neurosci. Abstr. 26, 448.10, 2000). Computa-
tional work21 has revealed that such representation of similar-
ity can be simulated by a network composed of units that
encode shapes by computing their similarity to reference shapes
(‘radial basis functions’22,23). Our data indicate that shape sim-
ilarity is implemented at the neuronal level in a similar way.
First, we noted responses of single neurons within a single stim-
ulus group that follow the pattern expected of radial basis func-
tions: the responses to other shapes than the most optimal
shape of a group (the ‘reference shape’) decreased gradually
with increasing distance from the position of the reference
shape in parameter space. The responses of single neurons
across different stimulus groups seemed to contradict this con-
clusion, insofar as many neurons responded with similar
strength to dissimilar shapes from different stimulus groups
(Fig. 3). The same observation has been made in previous stud-
ies that revealed that images capable of activating an IT neu-
ron need not be similar to one another17,18,24. It is tempting to
relate this observation to the fact that the concept of radial
basis function networks has been introduced to explain the
representation of similar but not distant objects, and that
objects that are highly dissimilar need not be embedded into
the same low-dimensional space6. However, the previous dif-
ficulties with finding a correlation between shape similarity
and the responses of IT neurons could also be related to the
lack of proper stimulus parameterization. Indeed, the high-
dimensional nature of these complex stimuli makes it difficult
to ascertain what relationship the shapes may have with regard
to one another as long as similarity is not controlled for in a
parametric way. For instance, consider a realistic pattern of
responses to three dissimilar stimuli whose physical similari-
ties can be described within a two-dimensional space (data
points 1–3 in Fig. 8a). Within this stimulus set, a neuron
responding strongly to stimuli 1 and 3 but not to stimulus 2
would exemplify a response pattern bearing no relationship to
the similarity between the stimuli. However, including addi-
tional stimuli in the stimulus set (Fig. 8b) might reveal a more
regular response pattern with a systematic unimodal tuning
for a third stimulus dimension. Thus, we need a parametric
control of similarity to arrive at a more principled under-
standing of the tuning characteristics of these neurons. Indeed,
using parameterized stimuli, we found regular tuning curves
of IT neurons for combinations of complex shape dimensions.

A second point of agreement between our data and the com-
putational efforts is the demonstration that a population of neu-
rons tuned to a set of reference shapes can underlie a
low-dimensional and ordinally faithful representation of shape
configurations. In addition, our results confirm that both
assumptions of the model, a regular tuning on one hand, and
different optimal shapes for different neurons on the other hand,
contribute to the efficiency of the coding of shape similarity.

Fig. 8. Possible responses of a hypothetical neuron. The stimuli to
which the neuron responds are indicated with open squares; black cir-
cles indicate no response. (a) A representation of three stimuli within
two dimensions. (b) Including a parametric variation of the similarity
between stimuli 1 and 3 requires the addition of a third dimension for all
similarities between stimuli to be captured.
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17 candelas/m2 (cd/m2)) and filled with noise (pixel luminances, either
0.05 or 34 cd/m2). The mean luminance of the shapes and background
was equal. Shape position was randomized within a square region rang-
ing from 2° to 4° centered on the fixation spot, except during the single-
cell recordings where all shapes were presented foveally.

As a first physical dissimilarity measure, we computed the distance
between two stimuli in a two-dimensional configuration equal to the para-
metric space. Second, the Euclidean and the city-block distance between
two shapes, i and j, within the space of 256 × 256 pixels11,37, was computed:

(Σx=1:256Σy=1:256 |pixi(x, y) – pixj(x, y)|r)1/r (1)

For shape and background pixels, pix(x, y) is 1 and 0, respectively; for
city-block and Euclidean metrics, r is 1 and 2, respectively. Finally, we
calculated the average information that a pixel of one image provides
about the corresponding pixel in another image38. The congruence
between these pixel-based dissimilarity measures was high. The Euclid-
ean distances provided the best fit with the behavioral and neuron-based
similarity measures and are used in the Results.

Behavioral tasks. Monkeys Y and E were trained in a same-different task
with fixation control39. After 700-ms fixation (window, 2°), two shapes
were shown successively for 300 ms (interstimulus interval, 
500 ms). A leftward and rightward saccade was the correct response in
trials with identical (50% of the trials) or different shapes, respectively.
Aborted trials (for example, responses before the end of the second stim-
ulus) were not included in the analyses. Correct responses were rewarded
by juice. Each monkey was trained for several months in this task using
a wide variety of images. Their performance level for highly dissimilar
novel stimuli was 95% correct. During the experiment, all pairs of shapes
were presented for 16 trials each, whereas additional testing (72 trials/pair)
was done for pairs of shapes within a stimulus group. One additional ses-
sion was run for monkey Y with group B stimuli (34 trials/pair). The per-
formance level was 79% (Y) and 88% (E) correct when all shapes were
paired and 69% (Y) and 80% (E) correct when only within-group com-
parisons were shown, which is as good as in other studies12,20.

The 2 other monkeys learned to categorize the 24 shapes into 2
response categories (Fig. 6). The procedure was the same as for monkey
Y, except that only one shape was shown, after which the monkeys had
to make either a leftward or a rightward eye movement. Each monkey
had several months of experience in this task with other stimuli.

Similarity judgments from the human subjects were obtained with a
rating method. The rating and the same-different technique produce
equivalent results11,40. The subjects were asked to fixate a spot while two
stimuli were shown for 300 ms (interstimulus interval, 500 ms). They had
to rate the similarity between the two stimuli on a scale from one (very
similar) to nine (very dissimilar). All possible pairs of shapes were pre-
sented four times for each subject, and additional testing (10 trials/pair)
was done for pairs of shapes within a stimulus group.

Recordings. IT recordings34,35 were performed in monkeys F and M dur-
ing the categorization task. Recording sites were verified using CT images
with the guiding tube in situ in monkey M and post mortem in monkey F.
We searched for responsive neurons by presenting all 24 shapes. Respon-
sive neurons were investigated further by presenting all shapes for at least
6 trials (median 12 trials). All further analyses were done using the mean
number of spikes in the 50–350-ms interval after stimulus onset after
normalization to the maximum response. All neurons were shape-
selective (one-way ANOVA41). The selectivity index (SE) compared the
selectivity within the group to which the optimal stimulus belonged
(maxR and minR(within) being the responses to the best and the worst
stimulus within that group), with the maximum response elicited by a
stimulus from the other groups (maxR(between)):

SE = (maxR – minR(within))/(maxR – maxR(between)) (2)

SE ranges between 0 (no within-group selectivity) and infinity (no
between-group selectivity).

The within-group response pattern was represented on a polar plot
using the radial position of each stimulus with respect to the center of

the parametric configuration, and the unimodality of the selectivity was
determined by a fast Fourier transform of these plots42. Unimodal selec-
tivities will be reflected in a Fourier spectrum dominated by the first-
order component. The ratio (RR) of the size of this first-order component
to the largest of all other components was taken as a measure of the dom-
inance of the first-order component. A high RR value reflects an uni-
modal tuning, but a low RR does not necessarily correspond to an
irregular tuning. (Many factors contribute to a low RR, such as an asym-
metrical but unimodal tuning.) So, the RR index underestimates the rela-
tionship between shape similarity and IT selectivity.

To analyze the representation of the shape similarities at the population
level, we computed the distance between a pair of stimuli i and j in the
multidimensional space spanned by the responses of all neurons35,43,44:

[(Σn = 1:124 |Respi(n) – Respj(n)|2)/124]1/2 (3)

Here, n is the cell number. The inverse of these distances measures the
similarity of the neural representations of two shapes.

The effect of tuning properties on the coding of similarity at the pop-
ulation level was assessed as follows. First, we drew a random sample of
neurons (with replacement) from the population. The sample size ranged
from 2 to 64, and 150 samples of each size were analyzed (50 for each
stimulus group). For each stimulus group, only neurons that responded
to at least one shape were included, giving a population size of 105, 109
and 117 for groups A, B and C, respectively. Because we found no con-
sistent differences among stimulus groups, the results were pooled. Sec-
ond, we selected neurons from four different subsets. For each subset,
we selected 150 samples for each of 3 sizes (2, 4 or 8). In the first and sec-
ond subset, we selected only neurons with RR lower and higher, respec-
tively, than the median RR of the population. In the third subset, the
neurons in a sample had similar preferred shapes. In each sample, the
first neuron was randomly drawn but the other neurons were required
to have tuning curves with an optimum at the same or a neighboring
stimulus. In the fourth subset, the optima of the neurons were distrib-
uted (optima were 180° apart for two neurons, 90° apart for four neu-
rons, and were at all positions for eight neurons).

Analysis of similarity data. The different sets of similarity data were ana-
lyzed using Statistica software (StatSoft, Tulsa, Oklahoma). First, we
checked whether the 24 shapes showed the expected clustering in three
groups by performing hierarchical cluster analysis45. This algorithm starts
from a configuration with as many clusters as stimuli, and groups simi-
lar stimuli in several steps (starting with the most similar stimuli) until all
stimuli form one cluster. We describe the results obtained by using a
weighted pair-group average, but other rules such as single and complete
linkage revealed the same pattern of results. We have summarized the
results by describing at which level stimuli are clustered with stimuli from
the same and different stimulus groups. The proportion of variance in
the original data that could be accounted for by three clusters of stimuli
measures the degree of clustering. The dissimilarity between stimuli with-
in a cluster was set to zero, whereas the ‘linkage distance’ at the level at
which two clusters were grouped was taken as the dissimilarity between
stimuli from different clusters. Second, we analyzed the similarity data
from each stimulus group separately with nonmetric MultiDimensional
Scaling (MDS)43,45.

As a statistical criterion to decide whether the perceived and neuron-
based similarities converged with the similarities from the parametric or
pixel-based configurations, we computed the congruence coefficient C
between different sets A and B of similarity data46:

C = (Σn = 1:28 dA(n) × dB(n))/(ΣndA
2(n) × Σn dB

2(n))1/2 (4)

The index n provides a summation across the 28 pairs of distances. The
closer C approximates 1, the better the fit. The significance of a C value
was evaluated using Monte Carlo simulations (n = 1000) to determine
the expected congruence when a square configuration is compared with
a random two-dimensional configuration of eight points. This distrib-
ution approximated a normal distribution with mean 0.865 and a stan-
dard deviation of 0.029, meaning that a value above 0.960 is highly
significant (p < 0.001), which is similar to the result found for a range
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of configurations11. As this index is skewed to unity, small differences in
C in the range of 0.95–1 are meaningful.

Measurement noise would introduce deviations of a measured con-
figuration with respect to the actual configuration that are unrelated
from one set of measurements to the other. However, if the deviations
are consistent across datasets, then one can conclude that the actual con-
figuration is distorted with respect to the expected configuration. This
is analogous to determining whether a correlation between two variables
(the two measured configurations) can be explained by their correlations
with a third variable (the expected configuration).To simulate the effect
of measurement noise, we added uniform noise to the similarities expect-
ed in a square configuration. We used several noise magnitudes to cover
the range of congruences found in our study. The fit between two noisy
datasets was almost never higher than the best of both fits found by com-
paring each noisy dataset with the perfect square similarities (p < 0.001).
Even a fit between two noisy sets that is larger than the worst but lower
than the best of these is significant (p < 0.05). If a configuration is mea-
sured twice, then the difference between the measurements will be larg-
er than the difference between one measurement and the configuration.
If the difference between the two measurements is smaller, then proba-
bility is high that a systematic factor determines the way in which the
measurements deviate from the expected configuration (Table 1).

Note: Supplementary information is available on the Nature Neuroscience web

site (http://neuroscience.nature.com/web_specials).
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