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Questions 

1. Can CP problems and CP solvers help to 
formulate and solve ML / DM problems ? 

2. Can ML and DM help to formulate and 
solve constraint satisfaction problems ? 

We shall argue that the answer to both questions is YES
At the same time, we shall introduce some ML/DM techniques

as well as some challenges and opportunities



The CP perspective

Formulating the model is a knowledge acquisition task 

Improving the performance of solvers is speed-up learning

Machine learning may help as shown by several initial works



The ML/DM Perspective

Machine Learning is a (constrained) optimization 
problem

• learning functions 

Data mining is often constraint satisfaction

• “Constraint based mining”

Still ML/DM do not really use CP ... 



Constraint-Based 
Mining

Numerous constraints have been used

Numerous systems have been developed

And yet, 

• new constraints often require new 
implementations

• very hard to combine different constraints 



Constraint Programming

Exists since about 20 ? years

A general and generic methodology for dealing with 
constraints across different domains

Efficient, extendable general-purpose systems exist, and key 
principles have been identified

Surprisingly CP has not been used for data mining ?

CP systems often more elegant, more flexible and more 
efficient than special purpose systems

Also true for Data Mining ?



Overview

How CP can be used in ML / DM  (Siegfried)

• introduction to constraint-based mining

• introduction to constraint-clustering

• challenges

How ML might help CP (Luc)

• learning the model from data

• introduction to some ML techniques



How CP can help DM 



  

Constraints in Data Mining

● Pattern Mining

● Decision Trees

● Clustering



  

Pattern Mining

● Basic setting: frequent itemset mining
– Data miner's solution
– Constraint programming solution

● Extensions
● Constraint-based mining

– Common constraints
– Constraint programming solution

● Other types of data
● Pattern set mining



Frequent Itemset Mining

● Market basket data
support(          )=3 



Frequent Itemset Mining

● Given
● A database with sets of items
● A support threshold 

● Find 
● ALL subsets of items I for which support(I)>threshold

[Agrawal 1996]



Frequent Itemset Mining

Genes

C
on

di
tio

ns

(Set of Conditions, Set of Genes)
|Set of conditions| > threshold

● Gene expression data



Frequent Itemset Mining

4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor

if if Petal length >= 2.0 andPetal length >= 2.0 and
Petal width <= 0.5Petal width <= 0.5

then then Iris-SetosaIris-Setosa
else else Iris-VersicolorIris-Versicolor

Item



Frequent Itemset Mining

● Algorithms
● Pruning based on “anti-monotonicity”
● Many different search orders 

– Breadth-first
– Depth-first 

● Many different data structures
– How to store lots of data in memory during the search?



Anti-monotono
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Anti-monotono
ity
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{A,B ,C}
{A} {B} {C}
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• Anti-monotoni
ity: subsets of frequent itemsets arefrequent
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Anti-monotoni
ity
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Pruning: supersets of infrequent itemsets are not frequent



Sear
h: Apriori
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Sear
h: Apriori
• Benefits:

• Limited number of passes when the database is on disk
• Maximal pruning before 
ounting
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Depth-First Sear
h
• Benefits:

• Less 
andidates at the same time in main memory ⇒memory 
an be used for other purposes
• More effi
ient in pra
ti
e



  

Frequent Itemset Mining in CP

● variables
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[De Raedt et al. 2008]
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Frequent Itemset Mining in CP

● variables

 [I
1
 ... I

n
], [T

1
 ... T

m
]

● domains

 I
x
, T

y
 = {0, 1}

● constraints
  -  support

or reified:

  -  coverage
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I i(1−Dti)=0



Frequent Itemset Mining in CP
• A transa
tion is 
overed iff I ⊆ Dt
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tion is 
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Frequent Itemset Mining in CP
• A transa
tion is 
overed iff I ⊆ DtTt = 1 ⇔ I ⊆ DtTt = 1 ⇔ ∀i ∈ I : Ii = 1 → Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ 1− Dti = 0



Frequent Itemset Mining in CP
• A transa
tion is 
overed iff I ⊆ DtTt = 1 ⇔ I ⊆ DtTt = 1 ⇔ ∀i ∈ I : Ii = 1 → Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ 1− Dti = 0Tt = 1 ⇔

∑i∈I Ii(1− Dti ) = 0



  

Frequent Itemset Mining in CP

● Model in Minizinc
int: NrI; int: NrT;
array [1..NrT,1..NrI] of bool: TDB;
int: Freq;
 
array [1..NrI] of var bool: Items;
array [1..NrT] of var bool: Trans;
 
constraint % coverage
   forall(t in 1..NrT) (
     Trans[t] <-> sum(i in 1..NrI) (bool2int(TDB[t,i]  → Items[i])) <= 0 );
constraint % frequency
   forall(i in 1..NrI) (
       Items[i] -> sum(t in 1..NrT) (bool2int(TDB[t,i] /\ Trans[t])) >= Freq);
 
solve satisfy;



  

Search
freq >= 2:

coverage:
 

● propagate i2 (freq)
    Intuition: infrequent
    i2 can never be part of 
    freq. superset

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0



  

Search
freq >= 2:

coverage:
 

● propagate i2 (freq)
● propagate t1 (coverage)

Intuition: unavoidable t1
will always be covered

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0



  

Search
freq >= 2:

coverage:
 

● propagate i2 (freq)
● propagate t1 (coverage)
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T t=1⇔∑i
I i(1−Dti)=0



  

Search
freq >= 2:

coverage:
 

● propagate i2 (freq)
● propagate t1 (coverage)
● branch i1=1
● propagate t3 (coverage)

Intuition: t4 is missing an item
of the itemset

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0



  

Search
freq >= 2:

coverage:
 

● propagate i2 (freq)
● propagate t1 (coverage)
● branch i1=1
● propagate t3 (coverage)
● propagate i3 (freq)

Intuition: infrequent

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0



  

Search
freq >= 2:

coverage:
 

● propagate i2 (freq)
● propagate t1 (coverage)
● branch i1=1
● propagate t3 (coverage)
● propagate i3 (freq)
● propagate t2 (coverage)

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Search is similar to depth-first itemset mining algorithms!



  

Experimental Comparison
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Pattern Explosion



Constraint-based Pattern Mining

● Given
● A database D with sets of items
● A constraint φ(I,D)

● Find 
● ALL subsets of items I for which φ(I,D) is true



Inductive Databases

● Inspired by database technology 

● Use special purpose logics and solvers to find 
patterns under constraints

[Imielinski & Mannila, 1996]



Constraint-based Pattern Mining

● Types of constraints
● Condensed representations
● Supervised 
● Syntactical constraints
● ...



Constraints: 
Condensed Representations

The full set of patterns can be 
determined from a subset derivesderivesderivesderives



Constraints: Closed Itemsets
(Formal Concepts)

closure  (         )  = {              }

closed(I,D) ⇔ closure(I,D)=I
(Maximal rectangles)[Pasquier et al., 1999]



Constraints: Maximal Itemsets
(Borders in Version Spaces)

[Bayardo, 1998]



Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}



Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C}



Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C}
{A,B ,C} {A,D}



Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C}
{A,B ,C} {A,D}

maximal frequent itemset I : there is no I I and Ifrequent



Constraints: CondensedRepresentations
• Maximal frequent itemset I :there is no I ′ ⊃ I and I ′ frequent
• Closed itemset I :there is no I ′ ⊃ I and support(I ′)=support(I )
• Free itemset I :there is no I ′ ⊂ I and support(I ′)=support(I )



Sear
h
• Many spe
ialized algorithms developed in data mining(breadth-first, depth-first, ...)
• Can CP be a general framework?



  

Condensed Representations in CP
● Frequent Itemset Mining 

● Maximal Frequent Itemset Mining

● Closed Itemset Mining

● (-)Closed Itemset Mining

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Emulates...
● Eclat

● Mafia

● LCM

I i=1⇔∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

I i=1⇔∑t
T t 1−Dti=0

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i1−Dti=0

I i=1⇔∑t
T t 1−−Dti≤0



  

Itemsets in Supervised Data

TP: 3 (=p) FP: 0 (=n) 3

FN: 1 TN: 3 4

P: 4 N: 3

Contingency Table

Owns_real_estat
e

Has_savings Has_loans Good_customer

[Nijssen et al., 2009]



  

Itemsets in Supervised Data

Infrequent in positives

Frequent in positives

Frequent in negatives

Infrequent in negatives



  

Itemsets in Supervised Data

TP: 3 (=p) FP: 0 (=n) 3

FN: 1 TN: 3 4

P: 4 N: 3

Contingency Table

0 1 2 3 4

3

2

1

Best itemsetn

p



  

Itemsets in Supervised Data

Many correlation functions (chi2, fisher, inf. gain)

 are convex and zero on the diagonal

p
n

chi2

Best itemset



  

Itemsets in Supervised Data

● Again, many different algorithms
● In CP:

I i=1⇒ f (∑t∈T + DtiT t ,∑t∈T− DtiT t)≥mincorr

T t=1⇔∑i
I i(1−Dti)=0



  

Itemsets in Supervised Data
General to specific search
● Adding an item will give equal or lower p and n

p

n



  

Itemsets in Supervised Data
Key observation: unavoidable transactions

p

n



  

Itemsets in Supervised Data
Key observation: unavoidable transactions

p

n



  

Itemsets in Supervised Data
iterative propagation:



  

Experimental Comparison



  

CP for Pattern Mining

● Promising results
– More general framework:

combining constraints, 
formalizing new constraints

– Sometimes more efficient



  

Challenges

● Other pattern languages

● Pattern set mining



Other Pattern Languages

Graphs

MutagenMutagen
icic

MutagenMutagen
icic

[Inokuchi & Washio, 2003]



Other Pattern Languages

● Graphs [Inokuchi & Washio, 2003]
● Trees [Zaki, 2002]
● Strings [Fischer & Kramer, 2006]
● Sequences [Agrawal & Srikant, 1995]
● Clausal formulas [Dehaspe & De Raedt, 1997]
● ...

See also http://usefulpatterns.org/msop/



Pattern Set Mining

● Constraints on individual patterns do not solve the 
pattern explosion

Aim: to find a small set of patterns that together are representative / useful



Pattern Set Mining

● Given
● A database D with sets of items
● A constraint φ(I,D) on patterns I
● A constraint (I,D) on a set of patterns I
● An optimization criterion f(I,D) on a set of patterns I 

● Find the set of patterns I such that 
● f(I,D) is maximized
● Each I in I satisfies φ(I,D) 
● I satisfies (I,D)

[De Raedt & Zimmermann, 2007]



Pattern Set Mining

● Co-clustering (aka tiling): “covering the black parts 
of a matrix with rectangles”

 Many different formalizations →
(overlap/size/tolerance for errors/...)



Pattern Set Mining

● Rule-based classification:  “predict examples”
 Many different formalizations (error/ordering of →

patterns/label in rules/...)

Owns_real_estate Has_savings Has_loans Good_customer

30x

20x

8 x

12x

12x

18x

2 x



Pattern Set Mining

● A general declarative approach?
– CP systems (Gecode) on declarative formalization of problems 

with fixed pattern set size [Guns et al.]
(does not scale) 

– SAT solvers (Minisat) on declarative formalization of problems 
with fixed pattern set size [Cremilleux et al.]
(does not scale)

– Local search systems (Comet)
(scales better, but still cumbersome when pattern set size is
not fixed in advance) [Guns et al.]



  

Decision Trees

● Special type of classifier for which more general 
solvers have been developed

● Most common approach:
use heuristics to build a tree

 no constraints→
 no global optimization criterion→

● In some cases unsatisfactory



  

What is a Decision Tree?

Tree learner

 Interpretability
 Find trees that are small, generalizing, 

prefer certain tests, ...

Owns_real_estate Has_savings Has_loans Good_customer

30 x

20 x

8   x

12 x

12 x

18 x

2   x



  

What is a Decision Tree?
Tree learner

Owns_real_estate Has_savings Has_loans Good_customer

30 x

20 x

8   x

12 x

12 x

18 x

2   x

 Privacy preservation
 (k-anonymity)

Public Private

 Cost-based constraints
misclassifications



  

Finding Decision Trees: DL8
● Support constraints on leafs  exploit →

relationship to itemset mining

Itemset Tids

{ C, A }

{ C, ¬A }

{ ¬C, B }

{ ¬C, ¬B }

C

A B

[Nijssen & Fromont, 2007, 2010]



  

Finding Decision Trees: DL8

B ¬B
¬CC

A ¬A B ¬B ¬CC

¬C A ¬A ¬C A ¬A ¬C A ¬A B ¬BCC
B ¬B C A ¬A B ¬B

¬CC ¬CC B ¬B B ¬B B ¬B B ¬BC ¬C ¬CC A ¬A A ¬A A ¬A A ¬AA ¬A

● Decision Trees are hidden in the lattice; if lattices 
is stored, one can do dynamic programming



  

Finding Decision Trees: 
Any Time Algorithm

● Discover the smallest 100% accurate decision tree
● First proposed solution:

● Greedy algorithm
● Sample from space of trees to determine expected size 

after a split (increased sample size  better estimate)→
– Sampling biased by traditional heuristics

● Second proposed solution:
● Use the first proposed solution to iterative improve 

subtrees of a tree by using more resources (sample size)

[Esmeir & Markovitch, 2007]



  

Finding Decision Trees: 
SAT solvers, CP systems, LP

● Discover the smallest 100% accurate decision tree by means of 
encoding 

● SAT encoding: O(kn2m2 + nk2 + kn3 ) space.
(n = maximum number of nodes in complete tree, k = number of 
features, m = number of examples)

● CP encoding:
● Variables for tree nodes
● Variables for examples in tree nodes
● Constraints enforcing tree structure (global constraint), binary splits, 

examples in tree nodes, leafs are pure (logical constraints)
● Search heuristics, random restarts

● Improvement by means of LP with m2 variables (on small sets)

[Bessiere, Hebrard, O'Sullivan, 2009]



  

Clustering

● What is clustering?

● What are constraints in clustering?

● Using solvers for clustering



  

Clustering

● Fixed number of clusters

[Basu & Davidson 2006, 2011]



  

Clustering

● Hierarchical clustering



  

Constraints in Clustering

Express preferences directly
Help clustering algorithm finding the “right” solution
Find alternative clusterings (subspace clustering)
Semi-supervised learning

must-link

cannot-link



  

Constraints in Clustering

● In hierarchical clustering:
– Must-link-before constraint

a and b must both be in the same cluster before being merged with 
c

– Level specific constraints
a and b can only be merged in the top n layers



  

Algorithms

● Traditional algorithm + modified distance function
either learned, or hand-tuned

● Traditional algorithm + tweaks to enforce hard 
constraints (i.e. must-link constraints)

● New algorithms 
few



  

Hierarchical Clustering

● Traditional algorithm without constraints: 
iteratively merge the two clusters that are most near

● Modified algorithm:
1. Encode constraints in Horn clauses
2. Calculate valid merges, i.e. merges that can lead to 
   a valid solution
3. Select most promising merge
4. Go to 2.

● Valid merges are calculated in polynomial time
O(n2) 

[Gilpin & Davidson, 2011]



  

Intermediate Conclusions

● Many problems in data mining can be seen as 
constraint optimisation problems

● Scalability with respect to data size (both rows and 
columns) is important

● Most algorithms are not generic algorithms
● There are opportunities to exploit constraint 

solving technology in data mining



How ML might help CP 



Machine Learning for  CP

CSP (V,D,C,f)  (f: Optimisation  function)

At least three interpretations

• Learning CSP(V,D,C,f) from examples

• Learning to solve for better performance

• “clause” learning etc.  (speed-up learning, 
explanation based learning)

• learning portfolio’s of solvers (meta-learning, 
preference learning) 



Structure Activity 
Relationship Prediction

O CH=N-NH-C-NH 2O=N

O - O

nitrofurazone

N   O

O

+

-

4-nitropenta[cd]pyrene

N

O O-

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

NH

N
O      O
-

+

4-nitroindole

Y=Z

Active

Inactive

Structural alert:

[Srinivasan et al. AIJ 96]

Data = Set of Small Graphs



Machine Learning

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E) supervised



Classification
Given  -  Molecular Data Sets

• a space of possible instances X --  Molecular Graphs

• an unknown target function f: X → Y  -- {Active,Inactive}

• a hypothesis space L containing functions X → Y  --  L= 
{Active iff structural alert s covers instance x ∈ X|s ∈ X } 

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ   |{ x ∈ E | f(x) ≠ h(x)}|

Find h ∈ L that minimizes loss(h,E)

If classes = {positive, negative} then this is concept-learning



Regression
Given  -  Molecular Data Sets

• a space of possible instances X --  Molecular Graphs

• an unknown target function f: X → Y  -- ℝ

• a hypothesis space L containing functions X → Y  -- a 
linear function of some features 

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

• Find h ∈ L that minimizes loss(h,E)

��

x∈E

f(x)2 − h(x)2



Learning Probabilistic 
Models

Given

• a space of possible instances X

• an unknown target function P: X → Y   Y=[0,1]

• a hypothesis space L containing functions X → Y 
(graphical models)

• a set of examples E = { (x, _) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

generative

maximize likelihood

�

e∈E

P (e|h)

generative 



Boolean Concept-
Learning

X = {(X1, ..., Xn) | Xi =0 / 1}

Y =  {+,-}

L =  boolean formulae 

loss(h,E) = training set error

  = | {e | e ∈ E, h(e) ≠ f(e)} |    /  |E|

sometimes required to be 0

Simplest setting for learning, compatible with DM 
part and with CP



Boolean concept-
learning

1 2 3 4 5

ex 1 0 1 0 1 0 .. +

ex 2 1 1 1 1 1 +

ex 3 0 1 1 0 0 -

ex 4 1 0 0 1 0 -

...

X2 and X4



Dimensions

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }  

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos and neg ?
or pos only

k-CNF ? 
DNF ? etc

loss/error=0 required ?

ability to ask questions ?



Why boolean concept-learning ? 
constraint networks

(V1,V2 ,V3) V1 <V2 V1 > V2 V1 = V2 V1 <V3 5

(1,2,3) 1 0 0 1 0 .. +

(2,3,1) 1 0 0 0 1 +

(3,2,1) 0 1 0 0 0 -

(1,3,2) 1 0 0 1 0 -

...

Propositionalization 

CONACQ example [Bessiere et al.]



Monomials

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }  

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos only

monomials
conjunctions

error = 0



Learning monomials

Represent each example by its set of literals

• {¬X1 , X2 ,¬X3 ,X4 ,¬X5 }

Compute the intersection of all positive examples

• intersection = least general generalization 

A cautious algorithm

Makes prudent generalizations

[Mitchell, ML textbook 97]



k-CNF

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }  

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos only

k-CNF



Learning k-CNF

Naive Algorithm [Valliant CACM 84]

• Let S be the set of all clauses with k literals

• for each positive example e

• for all clauses s in S

• if e does not satisfy s then remove s from S

polynomial (for fixed k) -- PAC-learnable



Where do the 
examples come from ? 

Unkown  probability distribution P is assumed on X

The examples in E are drawn at random according to P

The i.i.d. assumption:

identically and independently distributed

(often does not hold for network / relational data)



Interpretation

X

h f

Probability Distribution P

+

-

-

-

-
+

+
+



Classification Revisited

Make predictions about unseen data

lossl(h,E) = | {e | e ∈ E, h(e) ≠ f(e)} |  / |E| 

  = training set error

losst(h,X)= P ({e | e ∈ X, h(e) ≠ f(e)})

  = true error



Formal Frameworks 
Exist

Probably Approximately Correct learning (PAC)

requires that learner finds with high probability 
approximately correct hypotheses 

So, P( losst(h,X) < ε) > 1-δ

Typically combined with complexity requirements 

sample complexity: number of examples

computational complexity 

Valliant proved polynomial PAC-learnability (fixed k)



Learning (k)-CNF
Alternative algorithm using Item-Set Mining principles

• minimum frequency = 100%

• clauses are disjunctions; itemsets conjunctions

• monotonicity property : 

• if e satisfies clause C then e also satisfies C U { lit }

• interest in smallest clauses that satisfy 100% freq.

• frequency( { } ) = 0, so refinement needed as for item-sets

• find upper border ... 



DNF / rule learning

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }  pos

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos and neg

DNF

error need not be 0



Rule learning
Learning from Positives and Negatives

Learn a formula in Disjunctive Normal Form

Rule learning algorithms (machine learning)

Similar issues to pattern set mining (data mining perspective)

Rule learning is often heuristic 

Set-covering algorithm 

• repeatedly search for one rule (conjunction) that covers 
many positives and no negative 

• discard covered positive examples and repeat

[Fuernkranz, AI Review 99, book 2010/11]



Asking Queries
Active Learning

Provide the learner with the opportunity to ask questions

Let T be the (unknown) target theory

• Does x satisfy T ? (membership)

• Does T |= X  ? (subset) 

• Does X |= T ? (superset)

• Are T and X logically equivalent ? (equivalence)

• ...

The oracle has to provide a counter-example in case the answer 
is negative [Angluin, MLJournal 88]



How can we use this?
Reconsider learning monomials  (cf. [Mitchell],  Conacq [Bessiere et al])

Current hypothesis / conjunction

• {¬X1 , X2 ,¬X3 ,X4 ,¬X5 }

• generate example {X1 , X2 ,¬X3 ,X4 ,¬X5 }

• if positive, delete X1 , if negative, keep

• only n+1 questions needed to converge on unique solution (mistake 
bound)

Very interesting polynomial time algorithms for learning horn sentences [Angluin 
et al. MLJ 92; Frazier and Pitt, ICML 93] by asking queries 



Generalizations
From propositional logic to first order logic

• Inductive Logic Programming

From ILP to Equation Discovery

From hard to soft constraints 

• weighted MAX-SAT

• probabilistic models

Learning preferences  



Inductive Logic 
Programming

Instead of learning propositional formulae, learn first order 
formulae

Usually (definite) clausal logic 

Generalizations of many algorithms exist 

Rule learning, decision tree learning

Clausal discovery  [De Raedt MLJ 97, De Raedt AIJ 94]

• generalizes k-CNF of Valliant to first order case

• enumeration process as for k-CNF with border ... 



Clausal Discovery in ILP
train(utrecht, 8, 8, denbosch) ←

train(maastricht, 8, 10, weert) ← 
train(utrecht, 9, 8, denbosch) ← 
train(maastricht, 9, 10, weert) ← 
train(utrecht, 8, 13, eindhoven) ← 
train(utrecht, 8, 43, eindhoven) ← 
train(utrecht, 9, 13, eindhoven) ← 
train(utrecht, 9, 43, eindhoven) ←

train(tilburg, 8, 10, tilburg) ← 
train(utrecht, 8, 25, denbosch) ← 
train(tilburg, 9, 10, tilburg) ← 
train(utrecht, 9, 25, denbosch) ← 
train(tilburg, 8, 17, eindhoven) ← 
train(tilburg, 8, 47, eindhoven) ← 
train(tilburg, 9, 17, eindhoven) ← 
train(tilburg, 9, 47, eindhoven) ←

From1 = From2 ← train(From1, Hour1, Min, To), train(From2, Hour2, Min, To)

Inducing constraints that hold in data points
here functional dependencies

[De Raedt 97 MLJ, Flach AIComm 99, 
Abdennaher CP 00, Lopez et al ICTAI 10, ...]



Equation Discovery

Instead of learning clauses, learn equations [Dzeroski and 
Todorovski, Langley and Bridewell].

As Valiant’s algorithm 

• generate and test candidate equations, e.g., ax + byz = c

• fit parameters using regression 

• possibly compute values for additional variables (partial 
derivatives w.r.t. time, etc.)

• include a grammar to specify “legal equations” (bias)



Ecological Modeling



Learning Soft Constraints
Let us look at weighted MAX-SAT problems

Quite popular today in Statistical Relational Learning

• combining first order logic, machine learning and 
uncertainty

• One example is Markov Logic, many others exist



Factors and Logic

Slide James Cussens



Generalizing 
Propositional Logic

Slide James Cussens



Weighted Clauses

Slide James Cussens

e-w where w=weight of clause if clause not satisfied; 
weight = 0 otherwise 



weighted MAX-SAT
Markov Logic uses weighted (first order logic) clauses to 
represent a Markov Network

Interesting inference and learning problems

• Compute P(X|Y) ...   (CP-techniques can help, weighted 
model counting)

• Compute most likely state (MAX-SAT)

• Learn parameters (weights of clauses)

• e.g., using gradient descent on likelihood

• Learn structure and parameters

[Domingos et al], related to [Rossi, Sperduti KR, JETAI etc]



Learning Probabilistic 
Models

Given

• a space of possible instances X

• an unknown target function P: X → Y   Y=[0,1]

• a hypothesis space L containing functions X → Y 
(graphical models)

• a set of examples E = { (x, _) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

generative

maximize likelihood

�

e∈E

P (e|h)

generative 



Parameter Estimation

A1 A2 A3 A4 A5 A6

true true ? true false false

? true ? ? false false

... ... ... ... ... ...

true false ? false true ?

incomplete data set
 

states of some random 
variables are missing
E.g. medical diagnosis



missing value
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Parameter Estimation

A1 A2 A3 A4 A5 A6

true true ? true false false

? true ? ? false false

... ... ... ... ... ...

true false ? false true ?

incomplete data set
 

states of some random 
variables are missing
E.g. medical diagnosis



Preference learning

Problem with previous approach

• hard to sample examples from probability distribution in 
CP context; or to give examples with target probability

A hot topic today in ML, many variations exist, cf. [Furnkranz and 
Eykemuller, 10, book & tutorial -- videolectures]

Two main settings

• learning object preferences (model acquisition)

• learning label preferences (portfolio’s)



Object Preferences
Given

• a space of possible instances X

• an unknown ranking function r(.), given O⊆X, rank 
instances in O  

• a hypothesis space L containing ranking functions

• a set of examples E = { (x > y ) | x,y ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)



Possible approaches
Explicit relation learning

• Learn a relation Q(x,y) from examples x < y

• Determine r(O) as the ordering that is maximally 
consistent with Q

Learn latent utility function

• an unknown utility function f: X → ℝ

• examples only impose constraints on f

• values of f not known 



Label Preferences

Given

• a space of possible instances X

• a set of labels Y = {Y1, ... ,Yn}

• an unknown target function f(x) = permutation of Y 

• a set of examples E = { (x ,  { Yi > Yj  })}

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)



Possible approaches

Learn set of relations for each Yi > Yj 

Learn latent utility function for each label Yi

An unknown utility function fi :  X → ℝ

• examples only impose constraints on fi : 

• values of f not known



Summary
The learning of CSPs is possible, so let’s do it 

Many settings exist

• data, hypothesis language, active, soft constraints, preference 
learning, etc

Still we did not touch upon

• bayesian and statistical learning methods

One interesting approach that learns MAX-SAT and MAX-SMT by 
asking preference questions and using statistical learning techniques

. Campigotto, A. Passerini and R. Battiti, Lion 10 workshop

Further reading -- Encyclopedia of Machine Learning
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