
Machine Learning and Data Mining:
Challenges and Opportunities for CP

Luc De Raedt and Siegfried Nijssen

Dagstuhl Workshop
CP meets DM/ML

M A C H I N E L E A R N I N G &
D ATA M I N I N G
P E R S P E C T I V E

ADVISORY
S C I E N T I F I C

WARNING!

TUTORIAL IS
INCOMPLETE WRT

STATE OF ART

WE PRESENT A FLAVOR
OF TECHNIQUES THAT
WE FEEL ARE USEFUL

LOGIC-BASED

M A C H I N E L E A R N I N G &
D ATA M I N I N G
P E R S P E C T I V E

ADVISORY
S C I E N T I F I C

Questions

1. Can CP problems and CP solvers help to
formulate and solve ML / DM problems ?

2. Can ML and DM help to formulate and
solve constraint satisfaction problems ?

We shall argue that the answer to both questions is YES
At the same time, we shall introduce some ML/DM techniques

as well as some challenges and opportunities

The CP perspective

Formulating the model is a knowledge acquisition task

Improving the performance of solvers is speed-up learning

Machine learning may help as shown by several initial works

The ML/DM Perspective

Machine Learning is a (constrained) optimization
problem

• learning functions

Data mining is often constraint satisfaction

• “Constraint based mining”

Still ML/DM do not really use CP ...

Constraint-Based
Mining

Numerous constraints have been used

Numerous systems have been developed

And yet,

• new constraints often require new
implementations

• very hard to combine different constraints

Constraint Programming

Exists since about 20 ? years

A general and generic methodology for dealing with
constraints across different domains

Efficient, extendable general-purpose systems exist, and key
principles have been identified

Surprisingly CP has not been used for data mining ?

CP systems often more elegant, more flexible and more
efficient than special purpose systems

Also true for Data Mining ?

Overview

How CP can be used in ML / DM (Siegfried)

• introduction to constraint-based mining

• introduction to constraint-clustering

• challenges

How ML might help CP (Luc)

• learning the model from data

• introduction to some ML techniques

How CP can help DM

Constraints in Data Mining

● Pattern Mining

● Decision Trees

● Clustering

Pattern Mining

● Basic setting: frequent itemset mining
– Data miner's solution
– Constraint programming solution

● Extensions
● Constraint-based mining

– Common constraints
– Constraint programming solution

● Other types of data
● Pattern set mining

Frequent Itemset Mining

● Market basket data
support()=3

Frequent Itemset Mining

● Given
● A database with sets of items
● A support threshold

● Find
● ALL subsets of items I for which support(I)>threshold

[Agrawal 1996]

Frequent Itemset Mining

Genes

C
on

di
tio

ns

(Set of Conditions, Set of Genes)
|Set of conditions| > threshold

● Gene expression data

Frequent Itemset Mining

4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor

if if Petal length >= 2.0 andPetal length >= 2.0 and
Petal width <= 0.5Petal width <= 0.5

then then Iris-SetosaIris-Setosa
else else Iris-VersicolorIris-Versicolor

Item

Frequent Itemset Mining

● Algorithms
● Pruning based on “anti-monotonicity”
● Many different search orders

– Breadth-first
– Depth-first

● Many different data structures
– How to store lots of data in memory during the search?

Anti-monotono
ity
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

Anti-monotono
ity
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}

Anti-monotono
ity
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}
{A} {B} {C}

{A,B} {A,C} {B ,C}
• Anti-monotoni
ity: subsets of frequent itemsets arefrequent

Anti-monotoni
ity
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

Anti-monotoni
ity
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{B ,C}

Anti-monotoni
ity
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{B ,C}
{B ,C ,D}{A,B ,C}

{A,B ,C ,D}

Pruning: supersets of infrequent itemsets are not frequent

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset
{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset
{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset
{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset
{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}{A,C ,D} {B ,C ,D}

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset
{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}{A,C ,D} {B ,C ,D}{A,B ,C} {A,B ,D}

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset
{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}{A,C ,D} {B ,C ,D}{A,B ,C} {A,B ,D}

{A,B ,C ,D}

Sear
h: Apriori
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Candidate Itemset
{A} {B} {C} {D}

Counted Frequent Itemset
{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}{A,C ,D} {B ,C ,D}{A,B ,C} {A,B ,D}

{A,B ,C ,D}{A,B ,C ,D}

Sear
h: Apriori
• Benefits:

• Limited number of passes when the database is on disk
• Maximal pruning before
ounting

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}{A} {B} {C} {D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}{A} {B} {C} {D}

{A,B} {A,C} {A,D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}{A} {B} {C} {D}

{A,B} {A,C} {A,D}{A,B} {A,C} {A,D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}{A} {B} {C} {D}

{A,B} {A,C} {A,D}{A,B} {A,C} {A,D}

{A,B ,C} {A,B ,D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}{A} {B} {C} {D}

{A,B} {A,C} {A,D}{A,B} {A,C} {A,D}

{A,B ,C} {A,B ,D}{A,B ,C} {A,B ,D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}{A} {B} {C} {D}

{A,B} {A,C} {A,D}{A,B} {A,C} {A,D}

{A,B ,C} {A,B ,D}{A,B ,C} {A,B ,D}

{A,B ,C ,D}

Depth-First Sear
h
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A} {B} {C} {D}{A} {B} {C} {D}

{A,B} {A,C} {A,D}{A,B} {A,C} {A,D}

{A,B ,C} {A,B ,D}{A,B ,C} {A,B ,D}

{A,B ,C ,D}{A,B ,C ,D}

Depth-First Sear
h
• Benefits:

• Less
andidates at the same time in main memory ⇒memory
an be used for other purposes
• More effi
ient in pra
ti
e

Frequent Itemset Mining in CP

● variables

 [I
1
 ... I

n
], [T

1
 ... T

m
]

● domains

 I
x
, T

y
 = {0, 1}

● constraints
 - support

[I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8
]

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

∑t
T t≥minsup

[De Raedt et al. 2008]

Frequent Itemset Mining in CP

● variables

 [I
1
 ... I

n
], [T

1
 ... T

m
]

● domains

 I
x
, T

y
 = {0, 1}

● constraints
 - support

or reified:

[I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8
]

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

∑t
T t≥minsup I i=1⇒∑t

DtiT t≥minsup

Frequent Itemset Mining in CP

● variables

 [I
1
 ... I

n
], [T

1
 ... T

m
]

● domains

 I
x
, T

y
 = {0, 1}

● constraints
 - support

or reified:

 - coverage

[I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8
]

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

∑t
T t≥minsup I i=1⇒∑t

DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Frequent Itemset Mining in CP
• A transa
tion is
overed iff I ⊆ Dt

Frequent Itemset Mining in CP
• A transa
tion is
overed iff I ⊆ DtTt = 1 ⇔ I ⊆ Dt

Frequent Itemset Mining in CP
• A transa
tion is
overed iff I ⊆ DtTt = 1 ⇔ I ⊆ DtTt = 1 ⇔ ∀i ∈ I : Ii = 1 → Dti = 1

Frequent Itemset Mining in CP
• A transa
tion is
overed iff I ⊆ DtTt = 1 ⇔ I ⊆ DtTt = 1 ⇔ ∀i ∈ I : Ii = 1 → Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ Dti = 1

Frequent Itemset Mining in CP
• A transa
tion is
overed iff I ⊆ DtTt = 1 ⇔ I ⊆ DtTt = 1 ⇔ ∀i ∈ I : Ii = 1 → Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ 1− Dti = 0

Frequent Itemset Mining in CP
• A transa
tion is
overed iff I ⊆ DtTt = 1 ⇔ I ⊆ DtTt = 1 ⇔ ∀i ∈ I : Ii = 1 → Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ Dti = 1Tt = 1 ⇔ ∀i ∈ I : Ii = 0 ∨ 1− Dti = 0Tt = 1 ⇔

∑i∈I Ii(1− Dti) = 0

Frequent Itemset Mining in CP

● Model in Minizinc
int: NrI; int: NrT;
array [1..NrT,1..NrI] of bool: TDB;
int: Freq;

array [1..NrI] of var bool: Items;
array [1..NrT] of var bool: Trans;

constraint % coverage
 forall(t in 1..NrT) (
 Trans[t] <-> sum(i in 1..NrI) (bool2int(TDB[t,i] → Items[i])) <= 0);
constraint % frequency
 forall(i in 1..NrI) (
 Items[i] -> sum(t in 1..NrT) (bool2int(TDB[t,i] /\ Trans[t])) >= Freq);

solve satisfy;

Search
freq >= 2:

coverage:

● propagate i2 (freq)
 Intuition: infrequent
 i2 can never be part of
 freq. superset

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Search
freq >= 2:

coverage:

● propagate i2 (freq)
● propagate t1 (coverage)

Intuition: unavoidable t1
will always be covered

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Search
freq >= 2:

coverage:

● propagate i2 (freq)
● propagate t1 (coverage)

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Search
freq >= 2:

coverage:

● propagate i2 (freq)
● propagate t1 (coverage)
● branch i1=1
● propagate t3 (coverage)

Intuition: t4 is missing an item
of the itemset

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Search
freq >= 2:

coverage:

● propagate i2 (freq)
● propagate t1 (coverage)
● branch i1=1
● propagate t3 (coverage)
● propagate i3 (freq)

Intuition: infrequent

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Search
freq >= 2:

coverage:

● propagate i2 (freq)
● propagate t1 (coverage)
● branch i1=1
● propagate t3 (coverage)
● propagate i3 (freq)
● propagate t2 (coverage)

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Search is similar to depth-first itemset mining algorithms!

Experimental Comparison

35% 30% 25% 20% 15% 10% 5% 1%
0.05

0.5

5

50

500

Mushroom (Frequent)

Minimum support
50% 10% 5% 1% 0.5% 0.1% 0.05% 0.01%

0.05

0.5

5

50

500
T10I4D100K (Frequent)

Minimum support

Runtime (s)

Pattern Explosion

Constraint-based Pattern Mining

● Given
● A database D with sets of items
● A constraint φ(I,D)

● Find
● ALL subsets of items I for which φ(I,D) is true

Inductive Databases

● Inspired by database technology

● Use special purpose logics and solvers to find
patterns under constraints

[Imielinski & Mannila, 1996]

Constraint-based Pattern Mining

● Types of constraints
● Condensed representations
● Supervised
● Syntactical constraints
● ...

Constraints:
Condensed Representations

The full set of patterns can be
determined from a subset derivesderivesderivesderives

Constraints: Closed Itemsets
(Formal Concepts)

closure () = { }

closed(I,D) ⇔ closure(I,D)=I
(Maximal rectangles)[Pasquier et al., 1999]

Constraints: Maximal Itemsets
(Borders in Version Spaces)

[Bayardo, 1998]

Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C}

Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C}
{A,B ,C} {A,D}

Constraints: Maximal Itemsets(Borders in Version Spa
es)
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C} {B ,D} {C ,D}

{A,B ,C} {A,B ,D} {A,C ,D} {B ,C ,D}

{A,B ,C ,D}

{A,B ,C}
{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B ,C}
{A,B ,C} {A,D}

maximal frequent itemset I : there is no I I and Ifrequent

Constraints: CondensedRepresentations
• Maximal frequent itemset I :there is no I ′ ⊃ I and I ′ frequent
• Closed itemset I :there is no I ′ ⊃ I and support(I ′)=support(I)
• Free itemset I :there is no I ′ ⊂ I and support(I ′)=support(I)

Sear
h
• Many spe
ialized algorithms developed in data mining(breadth-first, depth-first, ...)
• Can CP be a general framework?

Condensed Representations in CP
● Frequent Itemset Mining

● Maximal Frequent Itemset Mining

● Closed Itemset Mining

● (-)Closed Itemset Mining

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

Emulates...
● Eclat

● Mafia

● LCM

I i=1⇔∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i(1−Dti)=0

I i=1⇔∑t
T t 1−Dti=0

I i=1⇒∑t
DtiT t≥minsup

T t=1⇔∑i
I i1−Dti=0

I i=1⇔∑t
T t 1−−Dti≤0

Itemsets in Supervised Data

TP: 3 (=p) FP: 0 (=n) 3

FN: 1 TN: 3 4

P: 4 N: 3

Contingency Table

Owns_real_estat
e

Has_savings Has_loans Good_customer

[Nijssen et al., 2009]

Itemsets in Supervised Data

Infrequent in positives

Frequent in positives

Frequent in negatives

Infrequent in negatives

Itemsets in Supervised Data

TP: 3 (=p) FP: 0 (=n) 3

FN: 1 TN: 3 4

P: 4 N: 3

Contingency Table

0 1 2 3 4

3

2

1

Best itemsetn

p

Itemsets in Supervised Data

Many correlation functions (chi2, fisher, inf. gain)

 are convex and zero on the diagonal

p
n

chi2

Best itemset

Itemsets in Supervised Data

● Again, many different algorithms
● In CP:

I i=1⇒ f (∑t∈T + DtiT t ,∑t∈T− DtiT t)≥mincorr

T t=1⇔∑i
I i(1−Dti)=0

Itemsets in Supervised Data
General to specific search
● Adding an item will give equal or lower p and n

p

n

Itemsets in Supervised Data
Key observation: unavoidable transactions

p

n

Itemsets in Supervised Data
Key observation: unavoidable transactions

p

n

Itemsets in Supervised Data
iterative propagation:

Experimental Comparison

CP for Pattern Mining

● Promising results
– More general framework:

combining constraints,
formalizing new constraints

– Sometimes more efficient

Challenges

● Other pattern languages

● Pattern set mining

Other Pattern Languages

Graphs

MutagenMutagen
icic

MutagenMutagen
icic

[Inokuchi & Washio, 2003]

Other Pattern Languages

● Graphs [Inokuchi & Washio, 2003]
● Trees [Zaki, 2002]
● Strings [Fischer & Kramer, 2006]
● Sequences [Agrawal & Srikant, 1995]
● Clausal formulas [Dehaspe & De Raedt, 1997]
● ...

See also http://usefulpatterns.org/msop/

Pattern Set Mining

● Constraints on individual patterns do not solve the
pattern explosion

Aim: to find a small set of patterns that together are representative / useful

Pattern Set Mining

● Given
● A database D with sets of items
● A constraint φ(I,D) on patterns I
● A constraint (I,D) on a set of patterns I
● An optimization criterion f(I,D) on a set of patterns I

● Find the set of patterns I such that
● f(I,D) is maximized
● Each I in I satisfies φ(I,D)
● I satisfies (I,D)

[De Raedt & Zimmermann, 2007]

Pattern Set Mining

● Co-clustering (aka tiling): “covering the black parts
of a matrix with rectangles”

 Many different formalizations →
(overlap/size/tolerance for errors/...)

Pattern Set Mining

● Rule-based classification: “predict examples”
 Many different formalizations (error/ordering of →

patterns/label in rules/...)

Owns_real_estate Has_savings Has_loans Good_customer

30x

20x

8 x

12x

12x

18x

2 x

Pattern Set Mining

● A general declarative approach?
– CP systems (Gecode) on declarative formalization of problems

with fixed pattern set size [Guns et al.]
(does not scale)

– SAT solvers (Minisat) on declarative formalization of problems
with fixed pattern set size [Cremilleux et al.]
(does not scale)

– Local search systems (Comet)
(scales better, but still cumbersome when pattern set size is
not fixed in advance) [Guns et al.]

Decision Trees

● Special type of classifier for which more general
solvers have been developed

● Most common approach:
use heuristics to build a tree

 no constraints→
 no global optimization criterion→

● In some cases unsatisfactory

What is a Decision Tree?

Tree learner

 Interpretability
 Find trees that are small, generalizing,

prefer certain tests, ...

Owns_real_estate Has_savings Has_loans Good_customer

30 x

20 x

8 x

12 x

12 x

18 x

2 x

What is a Decision Tree?
Tree learner

Owns_real_estate Has_savings Has_loans Good_customer

30 x

20 x

8 x

12 x

12 x

18 x

2 x

 Privacy preservation
 (k-anonymity)

Public Private

 Cost-based constraints
misclassifications

Finding Decision Trees: DL8
● Support constraints on leafs exploit →

relationship to itemset mining

Itemset Tids

{ C, A }

{ C, ¬A }

{ ¬C, B }

{ ¬C, ¬B }

C

A B

[Nijssen & Fromont, 2007, 2010]

Finding Decision Trees: DL8

B ¬B
¬CC

A ¬A B ¬B ¬CC

¬C A ¬A ¬C A ¬A ¬C A ¬A B ¬BCC
B ¬B C A ¬A B ¬B

¬CC ¬CC B ¬B B ¬B B ¬B B ¬BC ¬C ¬CC A ¬A A ¬A A ¬A A ¬AA ¬A

● Decision Trees are hidden in the lattice; if lattices
is stored, one can do dynamic programming

Finding Decision Trees:
Any Time Algorithm

● Discover the smallest 100% accurate decision tree
● First proposed solution:

● Greedy algorithm
● Sample from space of trees to determine expected size

after a split (increased sample size better estimate)→
– Sampling biased by traditional heuristics

● Second proposed solution:
● Use the first proposed solution to iterative improve

subtrees of a tree by using more resources (sample size)

[Esmeir & Markovitch, 2007]

Finding Decision Trees:
SAT solvers, CP systems, LP

● Discover the smallest 100% accurate decision tree by means of
encoding

● SAT encoding: O(kn2m2 + nk2 + kn3) space.
(n = maximum number of nodes in complete tree, k = number of
features, m = number of examples)

● CP encoding:
● Variables for tree nodes
● Variables for examples in tree nodes
● Constraints enforcing tree structure (global constraint), binary splits,

examples in tree nodes, leafs are pure (logical constraints)
● Search heuristics, random restarts

● Improvement by means of LP with m2 variables (on small sets)

[Bessiere, Hebrard, O'Sullivan, 2009]

Clustering

● What is clustering?

● What are constraints in clustering?

● Using solvers for clustering

Clustering

● Fixed number of clusters

[Basu & Davidson 2006, 2011]

Clustering

● Hierarchical clustering

Constraints in Clustering

Express preferences directly
Help clustering algorithm finding the “right” solution
Find alternative clusterings (subspace clustering)
Semi-supervised learning

must-link

cannot-link

Constraints in Clustering

● In hierarchical clustering:
– Must-link-before constraint

a and b must both be in the same cluster before being merged with
c

– Level specific constraints
a and b can only be merged in the top n layers

Algorithms

● Traditional algorithm + modified distance function
either learned, or hand-tuned

● Traditional algorithm + tweaks to enforce hard
constraints (i.e. must-link constraints)

● New algorithms
few

Hierarchical Clustering

● Traditional algorithm without constraints:
iteratively merge the two clusters that are most near

● Modified algorithm:
1. Encode constraints in Horn clauses
2. Calculate valid merges, i.e. merges that can lead to
 a valid solution
3. Select most promising merge
4. Go to 2.

● Valid merges are calculated in polynomial time
O(n2)

[Gilpin & Davidson, 2011]

Intermediate Conclusions

● Many problems in data mining can be seen as
constraint optimisation problems

● Scalability with respect to data size (both rows and
columns) is important

● Most algorithms are not generic algorithms
● There are opportunities to exploit constraint

solving technology in data mining

How ML might help CP

Machine Learning for CP

CSP (V,D,C,f) (f: Optimisation function)

At least three interpretations

• Learning CSP(V,D,C,f) from examples

• Learning to solve for better performance

• “clause” learning etc. (speed-up learning,
explanation based learning)

• learning portfolio’s of solvers (meta-learning,
preference learning)

Structure Activity
Relationship Prediction

O CH=N-NH-C-NH 2O=N

O - O

nitrofurazone

N O

O

+

-

4-nitropenta[cd]pyrene

N

O O-

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

NH

N
O O
-

+

4-nitroindole

Y=Z

Active

Inactive

Structural alert:

[Srinivasan et al. AIJ 96]

Data = Set of Small Graphs

Machine Learning

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E) supervised

Classification
Given - Molecular Data Sets

• a space of possible instances X -- Molecular Graphs

• an unknown target function f: X → Y -- {Active,Inactive}

• a hypothesis space L containing functions X → Y -- L=
{Active iff structural alert s covers instance x ∈ X|s ∈ X }

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ |{ x ∈ E | f(x) ≠ h(x)}|

Find h ∈ L that minimizes loss(h,E)

If classes = {positive, negative} then this is concept-learning

Regression
Given - Molecular Data Sets

• a space of possible instances X -- Molecular Graphs

• an unknown target function f: X → Y -- ℝ

• a hypothesis space L containing functions X → Y -- a
linear function of some features

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

• Find h ∈ L that minimizes loss(h,E)

��

x∈E

f(x)2 − h(x)2

Learning Probabilistic
Models

Given

• a space of possible instances X

• an unknown target function P: X → Y Y=[0,1]

• a hypothesis space L containing functions X → Y
(graphical models)

• a set of examples E = { (x, _) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

generative

maximize likelihood

�

e∈E

P (e|h)

generative

Boolean Concept-
Learning

X = {(X1, ..., Xn) | Xi =0 / 1}

Y = {+,-}

L = boolean formulae

loss(h,E) = training set error

 = | {e | e ∈ E, h(e) ≠ f(e)} | / |E|

sometimes required to be 0

Simplest setting for learning, compatible with DM
part and with CP

Boolean concept-
learning

1 2 3 4 5

ex 1 0 1 0 1 0 .. +

ex 2 1 1 1 1 1 +

ex 3 0 1 1 0 0 -

ex 4 1 0 0 1 0 -

...

X2 and X4

Dimensions

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos and neg ?
or pos only

k-CNF ?
DNF ? etc

loss/error=0 required ?

ability to ask questions ?

Why boolean concept-learning ?
constraint networks

(V1,V2 ,V3) V1 <V2 V1 > V2 V1 = V2 V1 <V3 5

(1,2,3) 1 0 0 1 0 .. +

(2,3,1) 1 0 0 0 1 +

(3,2,1) 0 1 0 0 0 -

(1,3,2) 1 0 0 1 0 -

...

Propositionalization

CONACQ example [Bessiere et al.]

Monomials

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos only

monomials
conjunctions

error = 0

Learning monomials

Represent each example by its set of literals

• {¬X1 , X2 ,¬X3 ,X4 ,¬X5 }

Compute the intersection of all positive examples

• intersection = least general generalization

A cautious algorithm

Makes prudent generalizations

[Mitchell, ML textbook 97]

k-CNF

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos only

k-CNF

Learning k-CNF

Naive Algorithm [Valliant CACM 84]

• Let S be the set of all clauses with k literals

• for each positive example e

• for all clauses s in S

• if e does not satisfy s then remove s from S

polynomial (for fixed k) -- PAC-learnable

Where do the
examples come from ?

Unkown probability distribution P is assumed on X

The examples in E are drawn at random according to P

The i.i.d. assumption:

identically and independently distributed

(often does not hold for network / relational data)

Interpretation

X

h f

Probability Distribution P

+

-

-

-

-
+

+
+

Classification Revisited

Make predictions about unseen data

lossl(h,E) = | {e | e ∈ E, h(e) ≠ f(e)} | / |E|

 = training set error

losst(h,X)= P ({e | e ∈ X, h(e) ≠ f(e)})

 = true error

Formal Frameworks
Exist

Probably Approximately Correct learning (PAC)

requires that learner finds with high probability
approximately correct hypotheses

So, P(losst(h,X) < ε) > 1-δ

Typically combined with complexity requirements

sample complexity: number of examples

computational complexity

Valliant proved polynomial PAC-learnability (fixed k)

Learning (k)-CNF
Alternative algorithm using Item-Set Mining principles

• minimum frequency = 100%

• clauses are disjunctions; itemsets conjunctions

• monotonicity property :

• if e satisfies clause C then e also satisfies C U { lit }

• interest in smallest clauses that satisfy 100% freq.

• frequency({ }) = 0, so refinement needed as for item-sets

• find upper border ...

DNF / rule learning

Given

• a space of possible instances X

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a set of examples E = { (x, f(x)) | x ∈ X } pos

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

pos and neg

DNF

error need not be 0

Rule learning
Learning from Positives and Negatives

Learn a formula in Disjunctive Normal Form

Rule learning algorithms (machine learning)

Similar issues to pattern set mining (data mining perspective)

Rule learning is often heuristic

Set-covering algorithm

• repeatedly search for one rule (conjunction) that covers
many positives and no negative

• discard covered positive examples and repeat

[Fuernkranz, AI Review 99, book 2010/11]

Asking Queries
Active Learning

Provide the learner with the opportunity to ask questions

Let T be the (unknown) target theory

• Does x satisfy T ? (membership)

• Does T |= X ? (subset)

• Does X |= T ? (superset)

• Are T and X logically equivalent ? (equivalence)

• ...

The oracle has to provide a counter-example in case the answer
is negative [Angluin, MLJournal 88]

How can we use this?
Reconsider learning monomials (cf. [Mitchell], Conacq [Bessiere et al])

Current hypothesis / conjunction

• {¬X1 , X2 ,¬X3 ,X4 ,¬X5 }

• generate example {X1 , X2 ,¬X3 ,X4 ,¬X5 }

• if positive, delete X1 , if negative, keep

• only n+1 questions needed to converge on unique solution (mistake
bound)

Very interesting polynomial time algorithms for learning horn sentences [Angluin
et al. MLJ 92; Frazier and Pitt, ICML 93] by asking queries

Generalizations
From propositional logic to first order logic

• Inductive Logic Programming

From ILP to Equation Discovery

From hard to soft constraints

• weighted MAX-SAT

• probabilistic models

Learning preferences

Inductive Logic
Programming

Instead of learning propositional formulae, learn first order
formulae

Usually (definite) clausal logic

Generalizations of many algorithms exist

Rule learning, decision tree learning

Clausal discovery [De Raedt MLJ 97, De Raedt AIJ 94]

• generalizes k-CNF of Valliant to first order case

• enumeration process as for k-CNF with border ...

Clausal Discovery in ILP
train(utrecht, 8, 8, denbosch) ←

train(maastricht, 8, 10, weert) ←
train(utrecht, 9, 8, denbosch) ←
train(maastricht, 9, 10, weert) ←
train(utrecht, 8, 13, eindhoven) ←
train(utrecht, 8, 43, eindhoven) ←
train(utrecht, 9, 13, eindhoven) ←
train(utrecht, 9, 43, eindhoven) ←

train(tilburg, 8, 10, tilburg) ←
train(utrecht, 8, 25, denbosch) ←
train(tilburg, 9, 10, tilburg) ←
train(utrecht, 9, 25, denbosch) ←
train(tilburg, 8, 17, eindhoven) ←
train(tilburg, 8, 47, eindhoven) ←
train(tilburg, 9, 17, eindhoven) ←
train(tilburg, 9, 47, eindhoven) ←

From1 = From2 ← train(From1, Hour1, Min, To), train(From2, Hour2, Min, To)

Inducing constraints that hold in data points
here functional dependencies

[De Raedt 97 MLJ, Flach AIComm 99,
Abdennaher CP 00, Lopez et al ICTAI 10, ...]

Equation Discovery

Instead of learning clauses, learn equations [Dzeroski and
Todorovski, Langley and Bridewell].

As Valiant’s algorithm

• generate and test candidate equations, e.g., ax + byz = c

• fit parameters using regression

• possibly compute values for additional variables (partial
derivatives w.r.t. time, etc.)

• include a grammar to specify “legal equations” (bias)

Ecological Modeling

Learning Soft Constraints
Let us look at weighted MAX-SAT problems

Quite popular today in Statistical Relational Learning

• combining first order logic, machine learning and
uncertainty

• One example is Markov Logic, many others exist

Factors and Logic

Slide James Cussens

Generalizing
Propositional Logic

Slide James Cussens

Weighted Clauses

Slide James Cussens

e-w where w=weight of clause if clause not satisfied;
weight = 0 otherwise

weighted MAX-SAT
Markov Logic uses weighted (first order logic) clauses to
represent a Markov Network

Interesting inference and learning problems

• Compute P(X|Y) ... (CP-techniques can help, weighted
model counting)

• Compute most likely state (MAX-SAT)

• Learn parameters (weights of clauses)

• e.g., using gradient descent on likelihood

• Learn structure and parameters

[Domingos et al], related to [Rossi, Sperduti KR, JETAI etc]

Learning Probabilistic
Models

Given

• a space of possible instances X

• an unknown target function P: X → Y Y=[0,1]

• a hypothesis space L containing functions X → Y
(graphical models)

• a set of examples E = { (x, _) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

generative

maximize likelihood

�

e∈E

P (e|h)

generative

Parameter Estimation

A1 A2 A3 A4 A5 A6

true true ? true false false

? true ? ? false false

...

true false ? false true ?

incomplete data set

states of some random
variables are missing
E.g. medical diagnosis

missing value

hi
dd

en
/

la
te

nt

Parameter Estimation

A1 A2 A3 A4 A5 A6

true true ? true false false

? true ? ? false false

...

true false ? false true ?

incomplete data set

states of some random
variables are missing
E.g. medical diagnosis

Preference learning

Problem with previous approach

• hard to sample examples from probability distribution in
CP context; or to give examples with target probability

A hot topic today in ML, many variations exist, cf. [Furnkranz and
Eykemuller, 10, book & tutorial -- videolectures]

Two main settings

• learning object preferences (model acquisition)

• learning label preferences (portfolio’s)

Object Preferences
Given

• a space of possible instances X

• an unknown ranking function r(.), given O⊆X, rank
instances in O

• a hypothesis space L containing ranking functions

• a set of examples E = { (x > y) | x,y ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

Possible approaches
Explicit relation learning

• Learn a relation Q(x,y) from examples x < y

• Determine r(O) as the ordering that is maximally
consistent with Q

Learn latent utility function

• an unknown utility function f: X → ℝ

• examples only impose constraints on f

• values of f not known

Label Preferences

Given

• a space of possible instances X

• a set of labels Y = {Y1, ... ,Yn}

• an unknown target function f(x) = permutation of Y

• a set of examples E = { (x , { Yi > Yj })}

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

Possible approaches

Learn set of relations for each Yi > Yj

Learn latent utility function for each label Yi

An unknown utility function fi : X → ℝ

• examples only impose constraints on fi :

• values of f not known

Summary
The learning of CSPs is possible, so let’s do it

Many settings exist

• data, hypothesis language, active, soft constraints, preference
learning, etc

Still we did not touch upon

• bayesian and statistical learning methods

One interesting approach that learns MAX-SAT and MAX-SMT by
asking preference questions and using statistical learning techniques

. Campigotto, A. Passerini and R. Battiti, Lion 10 workshop

Further reading -- Encyclopedia of Machine Learning

References [Part II]

•Tom Mitchell, Machine Learning, Mc GrawHill,1997.
•Encyclopedia of Machine Learning, Springer, 2010.
•Johannes Fürnkranz and Eyke Hüllermeier, Preference Learning, in: Encyclopedia of Machine
Learning, Springer-Verlag, 2010. Also, edited book and videolectures !
•C. Bessiere, R. Coletta, F. Koriche, B. O'Sullivan, Acquiring Constraint Networks using a SAT-
based Version Space Algorithm, Proceedings of AAAI'06, Nectar paper, Boston Massachusetts,
July 2006.
•. Campigotto, A. Passerini and R. Battiti, Lion 10 workshop
•Alessandro Biso, Francesca Rossi, Alessandro Sperduti: Experimental Results on Learning Soft
Constraints. KR 2000: 435-444 and later papers
•Pedro Domingos, Daniel Lowd: Markov Logic: An Interface Layer for Artificial Intelligence
Morgan & Claypool Publishers 2009
•Dzeroski, S. and Todorovski, L. (1995) Discovering dynamics: From inductive logic
programming to machine discovery. Journal of Intelligent Information Systems, 4: 89-108. and
later papers
•Luc De Raedt, Luc Dehaspe: Clausal Discovery. Machine Learning 26(2-3): 99-146 (1997)
•Luc De Raedt, Logical and Relational Learning, Springer, 2008.

http://www.ke.tu-darmstadt.de/bibtex/authors/show/1625
http://www.ke.tu-darmstadt.de/bibtex/authors/show/1625
http://www.ke.tu-darmstadt.de/bibtex/authors/show/875
http://www.ke.tu-darmstadt.de/bibtex/authors/show/875
http://www.ke.tu-darmstadt.de/bibtex/publications/show/431
http://www.ke.tu-darmstadt.de/bibtex/publications/show/431
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Biso:Alessandro.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Biso:Alessandro.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rossi:Francesca.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rossi:Francesca.html
http://www.informatik.uni-trier.de/~ley/db/conf/kr/kr2000.html#BisoRS00
http://www.informatik.uni-trier.de/~ley/db/conf/kr/kr2000.html#BisoRS00
http://www.dblp.org/db/indices/a-tree/d/Domingos:Pedro.html
http://www.dblp.org/db/indices/a-tree/d/Domingos:Pedro.html
http://www.dblp.org/db/indices/a-tree/l/Lowd:Daniel.html
http://www.dblp.org/db/indices/a-tree/l/Lowd:Daniel.html
http://www.dblp.org/http://dx.doi.org/10.2200/S00206ED1V01Y200907AIM007
http://www.dblp.org/http://dx.doi.org/10.2200/S00206ED1V01Y200907AIM007
http://www-ai.ijs.si/SasoDzeroski/
http://www-ai.ijs.si/SasoDzeroski/
http://www-ai.ijs.si/~ljupco/
http://www-ai.ijs.si/~ljupco/
http://kt.ijs.si/~ljupco/papers/jiis-95.ps
http://kt.ijs.si/~ljupco/papers/jiis-95.ps
http://kt.ijs.si/~ljupco/papers/jiis-95.ps
http://kt.ijs.si/~ljupco/papers/jiis-95.ps
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dehaspe:Luc.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dehaspe:Luc.html
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml26.html#RaedtD97
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml26.html#RaedtD97

References [Part II]

•Dana Angluin: Queries and Concept Learning. Machine Learning 2(4): 319-342
(1987)
•Dana Angluin, Michael Frazier, Leonard Pitt: Learning Conjunctions of Horn
Clauses. Machine Learning 9: 147-164 (1992)
•Michael Frazier, Leonard Pitt: Learning From Entailment: An Application to
Propositional Horn Sentences. ICML 1993: 120-127
•Peter A. Flach, Iztok Savnik: Database Dependency Discovery: A Machine Learning
Approach. AI Commun. 12(3): 139-160 (1999)
•Slim Abdennadher, Christophe Rigotti: Automatic Generation of Propagation Rules
for Finite Domains. CP 2000: 18-34
•Arnaud Lallouet, Matthieu Lopez, Lionel Martin, Christel Vrain: On Learning
Constraint Problems. ICTAI (1) 2010: 45-52

http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml2.html#Angluin87
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml2.html#Angluin87
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Frazier:Michael.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Frazier:Michael.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pitt:Leonard.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pitt:Leonard.html
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml9.html#AngluinFP92
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml9.html#AngluinFP92
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pitt:Leonard.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pitt:Leonard.html
http://www.informatik.uni-trier.de/~ley/db/conf/icml/icml1993.html#FrazierP93
http://www.informatik.uni-trier.de/~ley/db/conf/icml/icml1993.html#FrazierP93
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Savnik:Iztok.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Savnik:Iztok.html
http://www.informatik.uni-trier.de/~ley/db/journals/aicom/aicom12.html#FlachS99
http://www.informatik.uni-trier.de/~ley/db/journals/aicom/aicom12.html#FlachS99
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Abdennadher:Slim.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Abdennadher:Slim.html
http://www.informatik.uni-trier.de/~ley/db/conf/cp/cp2000.html#AbdennadherR00
http://www.informatik.uni-trier.de/~ley/db/conf/cp/cp2000.html#AbdennadherR00
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lallouet:Arnaud.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lallouet:Arnaud.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lopez:Matthieu.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lopez:Matthieu.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Martin:Lionel.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Martin:Lionel.html
http://www.informatik.uni-trier.de/~ley/db/conf/ictai/ictai2010-1.html#LallouetLMV10
http://www.informatik.uni-trier.de/~ley/db/conf/ictai/ictai2010-1.html#LallouetLMV10

References [Part III]
● Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, A. Inkeri Verkamo: Fast Discovery of Association

Rules. Advances in Knowledge Discovery and Data Mining 1996: 307-328

● Rakesh Agrawal, Ramakrishnan Srikant: Mining Sequential Patterns. ICDE 1995: 3-14

● Roberto J. Bayardo Jr.: Efficiently Mining Long Patterns from Databases. SIGMOD Conference 1998: 85-93

● Sugato Basu, Ian Davidson. Tutorial on clustering with constraints at http://www.cs.ucdavis.edu/~davidson/

● Christian Bessiere, Emmanuel Hebrard, Barry O'Sullivan: Minimising Decision Tree Size as Combinatorial Optimisation.
CP 2009: 173-187

● Jean-Phillipe Métivier, Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, Samir Loudni. A constraint-based language
for declarative pattern discovery. Workshop on Declarative Pattern Mining, 2011.

● Luc Dehaspe, Luc De Raedt: Mining Association Rules in Multiple Relations. ILP 1997: 125-132

● Luc De Raedt, Albrecht Zimmermann: Constraint-Based Pattern Set Mining. SDM 2007

● Luc De Raedt, Tias Guns, Siegfried Nijssen: Constraint programming for itemset mining. KDD 2008: 204-212

References [Part IV]
● Saher Esmeir, Shaul Markovitch: Anytime Induction of Cost-sensitive Trees. NIPS 2007

● Johannes Fischer, Volker Heun, Stefan Kramer: Optimal String Mining Under Frequency Constraints. PKDD 2006:
139-150

● Sean Gilpin, Ian Davidson: Incorporating SAT solvers into hierarchical clustering algorithms: an efficient and flexible
approach. KDD 2011: 1136-1144

● Tias Guns, Siegfried Nijssen, Albrecht Zimmermann, Luc De Raedt. Declarative Heuristic Search for Pattern Set
Mining. Workshop on Declarative Pattern Mining, 2011.

● T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of the ACM, 3911:58
64, November 1996.

● Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda: Complete Mining of Frequent Patterns from Graphs: Mining Graph
Data. Machine Learning 50(3): 321-354 (2003)

● Siegfried Nijssen, Élisa Fromont: Optimal constraint-based decision tree induction from itemset lattices. Data Min.
Knowl. Discov. 21(1): 9-51 (2010)

● Siegfried Nijssen, Élisa Fromont: Mining optimal decision trees from itemset lattices. KDD 2007: 530-539

● Siegfried Nijssen, Tias Guns, Luc De Raedt: Correlated itemset mining in ROC space: a constraint programming
approach. KDD 2009: 647-656

● Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal: Discovering Frequent Closed Itemsets for Association Rules.
ICDT 1999: 398-416

● Mohammed Javeed Zaki: Efficiently mining frequent trees in a forest. KDD 2002: 71-80

Thank you

