EPIA'2011 ISBN: 978-989-95618-4-7

Data acquisition and modeling for learning and
reasoning in probabilistic logic environment

Dimitar Sht. Shterionov, Gerda Janssens

Dep. of Computer Science, Katholieke Universiteit Leuven, Belgiu
Dimitar.Shterionov@cs.kuleuven.be
Gerda.Janssens@cs.kuleuven.be

Abstract. Deriving knowledge from real-world systems is a complex
task, targeted by many scientific fields. Such systems can be viewed as
collections of highly detailed data elements and interactions between
them. The more details the data include the more accurate the system
representation is but the higher the computational requirements become.
Using abstractions to summarize details is a well-known technique. Ab-
straction often leads to an accurate model of a system but, in other
cases, introduces inaccuracies that we want to quantify. In this paper
we propose an approach based on different levels of abstraction to de-
fine different representational models for a system. We use probabilities
to quantify the inaccuracies that are introduced during the abstraction
process. Such models then are used for reasoning and learning in a prob-
abilistic environment. We use three example datasets (a small and simple
social network, a probabilistic dictionary of approximately 300 words and
a real biological neural network) to support our abstraction approach in
probabilistic context. The environment we use is ProbLog - a small but
powerful probabilistic extension of Prolog.

Keywords: probabilistic logic programming, datasets, probabilistic graphs,
detail abstraction, applications, social network, probabilistic dictionary,
c. elegans neural network.

1 Introduction

Modeling systems is a very complex task. In this paper we use a probabilistic
extension of logic programming, ProbLog, to represent and reason about (un-
certain) models of real-world systems. Logic programs use predicates to express
relations between objects and logical inference is used to derive implicit informa-
tion from explicit data. Representing all aspects in full detail is often impossible
— either data are not available or they are too complex to comprehend and to
model. Although a more detailed model does allow to derive more precise knowl-
edge, the computational cost might become too high. To balance computational
complexity and representational completeness, we need to come up with a right
abstraction level [1]. Using abstraction in modeling concrete information often
introduces inaccuracies. In this paper we show how probabilities can be used to

298

EPIA'2011 ISBN: 978-989-95618-4-7

quantify these inaccuracies. The results obtained by reasoning with this proba-
bilistic information, can be interpreted as abstractions of some concrete aspects.
Thus, probabilistic inference can be used to reason at a higher level of abstrac-
tion. Also, the learning methods available in the ProbLog system benefit from a
higher level of abstraction.

In this paper we propose to consider explicitly different levels of abstrac-
tion when modeling a system. We also show how probabilities can be used to
compensate for a loss of information. In particular, the probabilities can be com-
puted in a bottom-up fashion (i.e., from low levels of abstraction to high levels
of abstraction) such that they only rely on information from the previous level of
abstraction (containing more detailed information). We illustrate this approach
by means of three examples.

Our paper is organized as follows: In Section 2 we introduce modeling in
the context of probabilistic logic programming. Section 3, then, introduces our
approach for data abstraction. Data acquisition and experiments are described
in Section 4, where for every examined dataset all levels of abstraction are thor-
oughly explained. We conclude in Section 5 where we state related work and our
future tasks.

2 Context and Motivation

2.1 Modeling and Logic Programming

Logic programming provides an easy, natural way to represent knowledge by the
use of predicates which express relations between objects. In a logic program,
a predicate is defined by its set of clauses. Facts (clauses with an empty body)
are used to represent explicit data. Rules define when a relation (the head of the
clause) holds by expressing conditions in the body of the clause. For example,
a particular graph can be defined by an edge/2 predicate, which models the
connection between nodes of the graph. A path/2 predicate which propagates the
edge relation between distinct nodes can be defined by 2 rules. Logical inference
derives implicit data, e.g. the pairs of nodes for which the path relation holds.

In general, facts can model n-ary relations. But for binary relations, such
as edge/2 or parent/2, the data represented by the facts can be thought of
as a graph, with as nodes the arguments of the fact and edges expressing that
the relation holds for the nodes connected by the edge. For nodes that are not
connected by any edge, we know that the relation does not hold.

When we model a concrete problem we aim to represent it as complete as
possible, in order to derive precise results. But a highly detailed model can
impose a very high computational cost. That is why we have to decide about the
level of abstraction, while keeping in mind the trade-off between level of details
and computational cost. Abstracting away some details can give rise to relations
that are no longer definitely true or false. For example, a fact can relate two
authors for each paper they have written together. We can unify all these single
relations in only one, which simply defines that two authors are co-authors. By

299

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

this abstraction, information for a specific paper is lost. Also, it does not specify
the number of papers the two authors have in common. With the addition of
probabilities, though, such information can be implied. This can be expressed
by a probabilistic logic program which involves probabilistic relations.

2.2 ProbLog

In this paper we use ProbLog as our probabilistic framework. ProbLog [2] is a
simple but powerful probabilistic logic language.

As in Prolog, a ProbLog program consists of predicate facts and rules. Facts,
though, are annotated with a probability p; and have the form p; :: f;. For facts
known to be true, we can omit the probability annotation and write them as
Prolog facts. A probability annotation represents the validity of a fact, or the
degree of certainty in its truth value. ProbLog facts are interpreted as mutually
independent random variables. The set of ProbLog facts can be viewed as a
graph but, as its edges are no longer deterministic, they are annotated with a
probability p;. Such graphs are call probabilistic graphs.

We denote a ProbLog program as T, the set of its facts without their prob-
abilistic labels as Ly, and the rules (or background knowledge) as BK. Then T
defines a probability distribution over all subprograms L of Ly as follows:

P =11, pidl e, 070 M)

where p; is the probabilistic annotation of the i*” fact. Consider the following
set of probabilistic facts:

0.7 :: from_to(s,a).|0.4 :: from_to(a,b).|0.5 :: from_to(b,c).
0.8 :: from_to(b, g).|0.6 :: from_to(a,c).[0.9 :: from_to(c,g).
0.7 :: from_to(b, g).

and the background knowledge:

path(X,Y) : —from_to(X,Y).
path(X,Y) : —from_to(X, X1), path(X1,Y).

The set of facts includes the nodes {s,a,b, ¢, g}, which could be interpreted
as some states, objects, or situations. The predicate from_to/2 defines a unidi-
rectional relation between some of the nodes. Thus, our program represents a
probabilistic graph of five nodes and seven edges with probabilistic annota-
tions. The predicate path/2 computes the transitive closure of the from_to/2
relation.

ProbLog supports several forms of probabilistic inference, such as computing
the success probability of a query (the overall probability of a query being true)
and finding the most likely explanation of a query (the proof of the query with
the highest probability).

! Denotations are similar to ones used in [3].

300

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

Computing the success probability can be computationally expensive, how-
ever, even for small problems. ProbLog relies on the inclusion-exclusion principle
and uses BDDs (Reduced Ordered Binary Decision Diagrams) [4] to deal with
overlaps between different explanations (or proofs), which is a #P — complete
problem, referred to in the literature as the “disjoint-sum problem” [5]. The im-
plementation of the ProbLog system includes exact and approximate algorithms
for computing the success probability.

2.3 Implications for the data model

We express our knowledge in terms of objects and relations. When the data are
characterized by probabilities, we can model them as a ProbLog program where
facts express explicit knowledge. By inference on this program we can derive
implicit information.

Facts that relate data objects can have arbitrary arity. As we use the proba-
bilistic graph as our data model we focus on binary relations (directly mapped
into probabilistic graphs). Our research, though, is valid for n-ary relations since
such can always be transformed into sets of binary relations without any loss of
generality.

3 Data Abstraction and Probabilities

We often need a highly complex data representation to model a system in a
precise way. The more details are taken into consideration, the harder it becomes
to process the data. Using abstraction, we can lower the level of details, gaining
computational power but also loosing precision. Quantifying these imprecisions
(inaccuracies) with probabilities can provide knowledge about the abstracted
details. The results obtained by probabilistic reasoning can be interpreted as
the abstraction of implicit information. Hence, probabilities enable reasoning
at a higher level of abstraction about information details from a lower level of
abstraction.

Detail abstraction (or detail restriction) is used in fields like computer graph-
ics and object oriented programming, relying on diverse techniques, e.g., clas-
sification and regression. Here, we present a general-to-specific model of data
abstraction which aims to distinguish levels of details and to quantify the loss
of precision due to the transition between levels by a probability measurement.
Figure 1 depicts the five levels of our model, enumerated from the top level
L1 (most general representation) to the bottom level L5 (most specific, most
detailed representation).

The model aims to introduce a general classification framework for data
abstraction. This way, transforming deterministic data into probabilistic and
encoding them as a probabilistic logic program can be reduced to a systematical
process.

301

Rui Prada
Rectangle

EPIA'2011

ISBN: 978-989-95618-4-7

L1 — data and problem solution
observed as a monolithic object

L2 - data is represented by single-type elements.
Problem defined as interaction between elements.

‘ L3 — data elements hold additional subelements, probably not of
the same type. Problem definition may or may not include them.

‘ L4 — the subelements of the data elements depend on additional factors and ‘
possibly have their own subelements. Problem solution is related to them.

‘ L5 — other lower-level subelements, factors and conditions of very high complexity which ‘
reach beyond comprehension. Problem definition or solution doesn't depend on them.

Fig. 1. A five-level pyramid, representing the levels abstraction.

Next, we define each level and the related processes for data modeling. We use
a dataset representing the biological neural network of a worm as an example. A
neural network is a grid of biological cells, called neurons. Each neuron receives
signals from and sends signals to other neurons. The way signals are conducted
relies on neurotransmitters and neuroreceptors. Neurotransmitters emit chemi-
cals towards the receiving neuronal cell. Neuroreceptors catch specific chemicals
and carry them towards the body of the neuron. The combination of different
signals in the body result in diverse neuronal activity.

We start from L5 and show how abstraction is involved in data modeling.

1. Level L5 corresponds to no abstraction - the data are left in full complex-
ity. Elements of different types interact in complicated ways under dynamic
conditions. It is impossible to construct a model including all these details.
Because the data completely represents the system under investigation, there
is no uncertainty 2. Consider a dataset representing a living organism, e.g. a
worm. It includes information about cells, genes, chemodynamics, molecular
structures, behavior, environment, etc. This dataset is too complex, hence it
is impossible to reason about.

2. Level L4 is the first abstraction level. Focusing on solving a specific prob-
lem, L4 abstraction describes data cleared from incomprehensible or unre-
lated details. An L4 representation includes elements of different importance,
conditions that influence the activity of the elements and factors that may
influence either the whole system or a part of it. Because L4 abstracts away
incomprehensible and unrelated details, they cannot be quantified by means
of probabilities. Thus, L4 data are a set of complex and deterministic ele-
ments. For the worm, we want to model its neural network. A corresponding
dataset includes neurons, connections, electrical and chemical characteris-
tics (neuroreceptors, neurotransmitters) for each single neuron, temporal
and spacial conditions, etc.

3. Level L3 abstraction produces datasets of main and secondary elements.
All the main elements have the same type. A main element is related to 0

2 The “no uncertainty” statement is valid under the assumption that there do not
exist any other data or data details that can be added to create more complete
representation of the system under investigation.

302

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

or more secondary ones, referred to as sub-elements. Relations that charac-
terize the data, appear between a main element and its sub elements, but
also between two (or more) elements of the same hierarchy level. Abstracting
from L4 to L3 excludes plenty of details introducing inaccuracies that can
be quantified with probabilities. A probabilistic L3 model usually covers the
realistic, although simplified dimensions of the system under investigation.
We can reason on the L3 model by querying its main or secondary elements.
Also, we use the L3 model while making further abstractions for level L2.
From an L4 representation of the neural network, we can summarize a set of
neuroreceptors and neurotransmitter which characterizes a neuron. Also L4
details describe the type of signal corresponding to a tuple neurotransmitter-
neuroreceptor. Therefore, we can construct an L3 model that relates neurons,
neurotransmitters and neuroreceptors, and also contains a binary probabilis-
tic relation expressing connectivity between neurons. In order to construct
an L3 representation, it is only necessary to use the data from L4.

4. Level L2 datasets contain only elements of one type involved in a relation-
ship. In a graphical model these entities represent nodes and their relations
- the edges of the graph. Edges can be weighed (labeled) to express some
specifics of the relationship. Interaction between elements can be either de-
terministic or probabilistic, the latter leading to a probabilistic graph. On
data of this level of abstraction we can post queries, define problems and
experiments, which mainly investigate the relational dependencies between
entities of the data. Data obtained by abstracting from L3, can be anno-
tated with probabilities derived from the interaction of the main and the
sub elements. The neural network of the worm becomes a graph of neurons,
where edges are connections between two neurons. Since an L3 model of
the neural network provides us with the knowledge about neurotransmitters
and neuroreceptors we can evaluate the probability of positive or negative
signaling between two neurons.

5. Level L1 is the highest data abstraction level. An L1 representation of a
system includes one single element. This element is static, not related to
other objects neither influenced by external factors. For example, consider
the dataset D = {worm}, representing the monolithic notion of the biologi-
cal organism.

It is obvious that L2, L3 and L4 are the abstraction levels of interest. In the
modeling process you can typically go from one level to another. Whether you
are adding or removing details, depends on the problem we aim to solve.

3 Neurotransmitters are chemicals that are emitted by the signaling nervous cell. Neu-
roreceptors are parts of the neuron (at the receiving site) which accept specific neu-
rotransmitters and transform the chemical signal into electrical.

303

Rui Prada
Rectangle

EPIA'2011

4 Modeling Examples

ISBN: 978-989-95618-4-7

This section presents three datasets from different domains - linguistics, social
networking and biology. Their investigation aims to illustrate how the abstrac-
tion model can be used. An overview is shown in Table 1 and Table 2.

Table 1. An overview of examined datasets in their initial form.

“Les Miserables”

Probabilistic dictionary

Neural Network

Main element:

e character

e word

® neuron

Relation specifics:

e co-appearance
in chapters

e synonymy

e connectivity

Relation from to:

e character-character|e word-word

® neuron-neuron

Relation type:

e non-directional

e non-directional

e unidirectional

Abstraction level:

L2

L3

L2

Table 2. An overview of examined datasets per abstraction level after processing.

Levels

“Les Miserables”

Probabilistic dictionary|Neural Network

L2

Relation specifics:|e

Main element:|e

character
co-appearance
in chapters

e word

e synonymy/similarity

e neuron
e signal transmission

Relation from to:|e character-character|e word-word e neuron-neuron
Relation type:|e non-directional e bidirectional e unidirectional
e number of chapters|e meanings/definitions |e neurotransmitters
I3 Subelements: for single character |® usage frequencies (chemicals)
e number of chapters|e number of synonyms |e neuroreceptors
of all novel per single word (genes)
Conditions:|e story e context e previous states of
L4 neuronal membrane

Factors:

e additional chemicals

4.1 Les Miserables

First, we investigate a dataset consisting of the characters from Victor Hugo’s
novel “Les Miserables” [6] and their co-appearance in chapters. The data, as

derived from the source

4

is a deterministic weighed graph which we want to

enhance with probabilities for more thorough analysis. The simplicity of this
dataset allows us to outline some specifics in computing probabilities without
complexity being an obstacle.

4 “Les

Miserables”

netdata/lesmis.zip

dataset

source:

304

The starting point is a deterministic dataset (we denote it as LM) which
represents a graph of characters (identified by an ID or a Name) as nodes and

http://www-personal.umich.edu/~mejn/

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

co-appearances as edges. Weights on the edges are already computed and give
the number of chapters in which two characters appear together. Because the
dataset contains one type of elements and one type of links between them, it is
a model of L2 abstraction level.

Transforming the original dataset into a probabilistic model can be realized
in several ways. On the one hand, we can rely only on the available data and
stick to the current level of abstraction. Consider two connected characters Ch;
and Ch; with N; ; denoting the weight of their connection. Also, the number of
all chapters in which Ch; appears, denoted with N;, is the sum of the weights
of all outgoing connections from Ch;. Thus, we can compu]:uze a probability that

K2

characterizes the connection between Ch; and Ch; PZ»'J- = —*- This probability

measure, though, doesn’t improve the quality of our data®.

On the other hand, probabilities calculated with respect to additional infor-
mation can improve the quality of the model and make it possible to derive more
information. We create the dataset LM’ = Nyyqr + LM, with Nyoiq = 356 the
total number of chapters of the novel. Then we can compute the probability that

in a randomly selected chapter Ch; and Ch; are present as Pl/fj = Nfi’tj o

LM’, containing the set of characters, the number of common chapters per
tuple of characters and the total amount of chapters for the novel is an L3
data abstraction. We used LM’ to compute the probabilities that characterize
the relations and create an L2 model, containing characters and relations be-
tween them, labeled by independent probabilities. Such a model provides broader
knowledge about the overall novel, while keeping the complexity of the repre-
sentation at the same level as the initial dataset.

People, though, rarely pick up random chapters to read, but start from the
beginning towards the end. We may be interested in the distribution of char-
acters in the course of the novel. This knowledge cannot be derived from the
L2 probabilistic graph discussed previously. That is due to the generality of the
model, which omits information about chapter numbers®. By collecting chapter
numbers per character, we could create another L3 model. Such information,
though, is unavailable in our dataset, that is why further analysis of this model
is impossible.

Probabilistic transformation of LM leads to additional knowledge about co-
appearance of characters and the novel as whole. Queries like “What is the
probability of reading about Character 1 and Character 2 together within X
chapters randomly selected from the novel?” or “What is the minimum number
of chapters to be read in order to connect Character 1 with Character 27” can
then easily be answered with ProbLog. For example, the probability that Cosette
and Jean Valjean appear together in 1 chapter is 0.08707865. ProbLog can also
compute the minimum number of chapters to be read in order to “connect”
Napoleon and Mlle Vaubois - it is 4.

® We evaluate the quality of the data as the accuracy with which they represent the
whole system.
5§ “Les Miserables” is divided into five volumes including 48 books or 356 chapters.

305

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

Figure 2 gives a visual interpretation of the five levels that logically can
represent the novel “Les Miserables”.

Les Miserables

L1

L2

Total number of
chapt. in the novel

L3
Number of
characters characters L4 Fig. 2. “Les Miserables”
\\/ dataset, with detail repre-
[pages, words, time period, places of activities,] sentation for each of the
L5 five levels of abstraction.

4.2 The Dictionary

The dictionary dataset (denoted as D) includes around 250 words (adjectives,
verbs and nouns) from the English language and meanings for about 30 of them.
Each word is related to a subset of other words, usually interpreted as synonyms
— two words are synonyms if they have identical meanings. We can write a
logic program that uses these data to determine that two words are synonyms,
although the words are not directly connected by the synonymy relation.

Reasoning, based on such deterministic facts is, though, problematic and
may lead to incorrect conclusions. That is why by attaching probabilities to
synonymy relations we aim to quantify the actual resemblance between words.
Encoding the probabilistic data into a ProbLog program allows querying about
possible synonyms or meanings.

Our dictionary dataset D can be viewed as an L2 model where its elements
are not monolithic but tuples of two objects - a word and a meaning. Unfortu-
nately this simple view turns out to require complicated background knowledge
to reason about. On the other hand, the dataset itself suggests an L3 represen-
tation where words are main elements and their meanings — sub-elements. We
build a (probabilistic) logic program to model and reason about D as an L3 rep-
resentation. Thus, we view the set of words as a (probabilistic) graph, with edges
corresponding to their similarity relations. Meanings are not directly included
in the graph. They are derived after a query on the graph has be conducted.
Querying this model combines the simplicity of an L2 word-to-word similarity
relation and the inclusion of a single fact to relate words with meanings. This
model implies L3 knowledge.

Aiming to enhance our data with realistic similarities between words is a
challenging task. The most accurate measure would involve comparing complete
meanings of words and contexts where they are used. It is, though, impossible.

306

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

We observe, that the definition of synonymy implies comparison between word
meanings and contexts. This suggests that a word is completely characterized
by its synonyms. Our dataset (an L2 representation) provides this type of infor-
mation, hence we can use it in computing probabilities. Algorithm 1 computes
probabilities from the set of synonyms for a specific word.

Algorithm 1 Calculation of word similarity as a probability by sets of synonyms

INPUT: word A, list of synonyms SAs = {SA1, SA2 ... SAn}

OUTPUT: a list with tuples (SAi, A, P) defining the similarity
between SAi and A, for i =1 .. n

1. ScoreList = null

2. TempList = null

3. P=0

4. M=0

5. for each SAi

5.1. findall synonyms of SAi and store them in TempList

5. for all mutual words between SAs U A and TempList U SAi

increase M by one

5.3. set P = M/N

5.4. set TempList = null

5.5 append (SAi, A, P) to Scorelist
6. return ScoreList

Although intuitive, this approach returns faulty results due to the incomplete
data - all possible words and synonym relations is impossible to be included.

The second observation that contributes to calculating more realistic simi-
larities is: the more frequent a word is, the broader its definition and the higher
its ambiguity becomes. Thus, we enhance the similarity calculation with a factor
fw inversely proportional to the usage frequency of a word: fw = @, where
w; is the usage frequency of word i and lg is the logarithm with base 10. Hence,
we modify the similarity function as shown in Algorithm 2.

This approach gives rather high importance to the usage frequency, which in
some cases may be incorrect. Results were compared with “Measures of Semantic
Relatedness (MSR)”7 and showed to be very close. Therefore we model our
probabilistic graph with the values derived by Algorithm 2.

For the above mentioned dataset, ProbLog infers that the word “cute” has
the meaning “having qualities that give great pleasure or satisfaction to see, hear,
think about” with probability 0.9735087. Also, the meaning that best suits the
word “sweet” is computed to be “having qualities that give great pleasure or
satisfaction to see, hear, think about” with probability 0.7817569.

Probabilistic reasoning about meanings and semantics applies in many fields,
including robotics. In robotics a perceived object is categorized probabilistically
into a class with which it has highest resemblance.

T “MSR” source: http://cwl-projects.cogsci.rpi.edu/msr/

307

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

Algorithm 2 Calculation of word similarity as probability by sets of synonyms
and usage frequencies

INPUT: word A, list of synonyms SAs = {SA1, SA2 ... SAn}

OUTPUT: a list with tuples (SAi, A, P) defining the similarity
between SAi and A, for i =1 .. n

1. Scorelist = null

2. TempList = null

3. P=0

4. M=0

5. FgAcc = 0

6. TempFq = 0

7. for each SAi

7.1. findall synonyms of SAi and store them in TempList

7. for each mutual word Bj between SAs U A and TempList U SAi set

TempFq = the usage frequency ratio between A and Bj

7.3. FqAcc = FgAcc + TempFq
7.4. increase M by one
7.5. P = FgAcc/M
set TempList = null
7.6. append (SAi, A, P) to Scorelist
8. return ScorelList

4.3 The Worm

The last experimental data represent a real biological system - the caenorhabditis
elegans (c. elegans) nematode. C. elegans is a worm, reaching 1 mm of size with
transparent body. The size and the transparency allow exhaustive researches
on many aspects, e.g. behavior - reproductivity, nervous and muscular systems,
responses to irritations, etc. Our research targets the neural network - a grid of
302 neurons sending and receiving signals from other neurons.

A bit of biology[7]: A neuron is a biological cell that can be viewed as a single
core processing unit with multiple inputs and outputs. The neuronal cell consists
of a body, dendrites, an axon, and axon terminals. The dendrites are many small
extensions of the body that conduct signal inside the body. The body represents
the processing core - it is where incoming signals are accumulated and a decision
on whether an outgoing signal to be fired or not is taken. An outgoing signal
travels along the axon - a very long extension of the body that conducts the
output signal towards other cells. The end of the axon is a tree-like structure
consisting of the so called axon terminals - end points that convert the electrical
signals into chemical ones and distribute them to other neurons. The connection
between the axon terminals and the other neurons is called a synapse. A synapse,
though, does not represent a physical connection between the two. Rather, the
signaling is conducted via chemicals, called neurotransmitters, into a medial
space - the synaptic cleft. The environment of the synaptic cleft allows chemicals

308

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

to travel from the axon terminals to the dendrites of the other neuron. The
dendrites are equipped with elements that are able to receive specific chemicals
and to translate them as electrical signals into the body. This ends the cycle of
neuro-signal transmission. Figure 3 depicts a biological neuron.

neurotransmitter

o ()

neuroreceptor

incoming

‘ axon
dendrites .

gynapse

Fig. 3. A simplified " / ;
synaptic cleft

representation of a

biological neuron. “soma

We want to reason about how the body determines whether a signal should
be triggered. The load of the incoming electrical signals is accumulated and if
it reaches a threshold then a spike is produced. This spike is called an action
potential, and the threshold at which it appears is usually around +30 mV.
Triggering an action potential results in depolarization and sets the neuron back
to a resting state at -70 mV.

Signals can carry two types of electrical load - polarizing and depolarizing,
thus characterizing the signal as excitatory or inhibitory. Mathematically, the
former is a positive value while the latter is a negative one. The type of incoming
signals determine the response of the cell. By propagating this knowledge we
can investigate which neurons are activated and what is the character of their
response. The accumulation L based on the positive or negative signals can be
expressed mathematically as L = vazo S;, where i denotes the i*" input to the
neuron and S; is the value of the signal.

Aims, approach and the data: The data we model are a set of neurons
and mutual connections. Each connection is also labeled with a number, which
defines how many actual connections appear between two neurons. Our research
targets retrieving knowledge about single neuron activities, about signal activity
between tuples of distinct neurons, and about larger groups of neurons. In order
to achieve our goals, we need to determine the type of signal sent from one neuron
to another as precisely as possible. This information is not directly available but
is encoded in the relation between neurotransmitters and neuroreceptors.

Compiling the data was, by itself, a hard problem. The neural network of c. el-
egans has two almost separated parts - a pharyngeal and a somatic network which
are documented mostly separated. Thus, data from different sources [8], [9], [10]
had to be compared, cleared and transformed in order to become usable for our
needs. After initial preprocessing we derive a deterministic L2 representation
which we encoded in a logic program as:

309

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

Template Example
connection(N1, N2, T, C).|connection(’ADAL’, ’AIBR’, ’Send’, 2).

where N1 is the origin neuron, N2 - the target neuron, T = {Send, GapJunction}
- the type of connection® where ’Send’ means a synaptic connection, and C' de-
fines the count of connections between the two neurons.

Then additional information to allow defining the signaling is collected, namely
the neurotransmitter and neuroreceptors that characterize every single neu-
ron[11]. In the L2 representation neurons are the main elements. Adding neu-
rotransmitters and neuroreceptors to our data results in an L3 representation,
where to each neuron correspond a neurotransmitter and a set of neuroreceptors.

In our logic program we encode this information as the predicate fact:

Template Example
neuron(ID, N, Tr, R).| neuron(1, ’ADAL’, ’Glutamate’, ’DOP#1’).

with ID denoting the id number of a neuron, N - its (unique) name, Tr -
the neurotransmitter and R - the neuroreceptor.

To some elements, the corresponding sub-elements are unknown. Thus, we
look for a method to derive such information and we rely on probabilities to
quantify the possible inaccuracies. To reason about the relation between ele-
ments on a concrete level requires the use of more detailed data. Adding the
information about neurotransmitter-neuroreceptor connections sets our detail
level to L4. We focus on how data are processed to determine unknown values
for neurotransmitters and neuroreceptors.

We wrote a Prolog program to automate this process. It considers neuron
to neuron connections and receptor to transmitter relations. Initially, not all re-
ceptors and transmitters of the neurons are known. Our program derives the K
best neuroreceptors for N based on the knowledge about its incoming signals,
expressed by specific neurotransmitters, together with the neurotransmitter -
neuroreceptor relations. We also derive the most probable neurotransmitter for
N by combining the known neuroreceptors of the neurons to which N sends sig-
nals, with the neurotransmitters with which the receptors interact. The iterative
process ends when no new information is found.

Relying on such information we build a program to determine unknown neu-
rotransmitters and neuroreceptors based on connections between a neuron with
known elements and a neuron with unknown ones. For example: for the neuron
"ALA’ it was determined with probability 0.8 that it transmits Glutamate; for
'RIV R’ the neuroreceptors DOP -1, GGR—3, GAR—2 , AV R—14 were deter-
mined with probabilities 0.3, 0.3, 0.2, 0.1 correspondingly. The Prolog program
serves to retrieve probabilities that are to be used in an L3 model.

Creating and learning the probabilistic graph is an ongoing process which
we will not describe in detail but only outline its main idea. Our data collection
includes possible signals for a tuple [neurotransmitter-neuroreceptor]. We build

8 Connections can be synapses or gap junctions. Gap junctions are direct membrane-
to-membrane connections which allow direct signal flow from one cell to another.

310

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

a probabilistic graph of neurons and define edges as probabilistic signals. Two
approaches are considered - either using excitatory and inhibitory signals sepa-
rately or setting one probability value to determine the character of the signal:
the higher the value, the more excitatory the signal is.

Data so complex easily spread over all of the three main levels with plenty of
sub-elements and factors. Our stepwise approach and the strict discrimination
between different levels allow comprehensive models to be determined and to be
used as a basis for solving our main goals.

5 Conclusions and Future Work

This paper investigates data abstraction for modeling complex systems in the
context of probabilistic logic programming. Abstraction is a process of removing
details in order to lower complexity. Whether this removal is good or bad depends
on the context. Typically a model is based on a particular application. Sometimes
we can find a good abstract representation for a set of concrete details: the
reasoning we do on the abstract level gives us the results we need for the intended
application. For real-world systems this is no longer the case: when we abstract
away details, we loose information and we no longer obtain the desired results.

In this paper we show how probabilities can become part of the abstraction
process. Probabilities allow us to express uncertainty about the relation between
objects. Moreover, probabilistic inference can be used for reasoning.

[1] investigates an approach for leveled data abstraction with respect to a
specific problem - causes of cancer. Also, [12] and [13] use detail abstraction to
reduce the complexity of their data and quantify the quality of their results. We
take a more general approach by presenting a framework for a broad range of
problems and we use probabilities to quantify data imprecisions.

In the paper we propose the explicit use of different levels of abstraction. We
also show that probabilities are typically computed based on details available in
a level that has the relevant information. Once the probabilities are computed,
we do no longer have to deal with the details. Implicit probabilistic information
can be computed at the higher level of abstraction, e.g., once we have computed
probabilistic relations between the main elements of an L2 representation from
an L3 representation, we reason only on L2, ignoring all the complexity of L3.

We illustrated our approach with 3 examples. As is clear from the “Les Mis-
erables” example, sometimes a dataset is available which contains very limited
information. For the “Les Miserables” dataset, it was clear that more informa-
tion was needed to compute correct probabilities. Here we started at L2 and we
looked for the relevant L3 information. The worm example is another extreme.
In order to solve our problem, we had to consider one big collection of all kinds
of information. Thinking in terms of our levels helped to come up with an ad-
equate model for the signal transmission between neurons. We believe that our
approach is beneficial for this kind of modeling.

We showed that making a distinction between main and sub-elements can
be helpful. If we do not make the split, we might end up with complex notions

311

Rui Prada
Rectangle

EPIA'2011 ISBN: 978-989-95618-4-7

that require complex logic. Consider the dictionary of Section 4.2. It clearly
illustrates that is better to reason at level L3 with words being the main elements
and meanings the sub-elements, then to use one single element for each word-
meaning pair.

In the future, we aim to extend and automate the proposed approach, to
complete the probabilistic model of the c. elegans and to use ProbLog as a
platform to learn from it.

References

1. Kramer, S., Pfahringer, B., Helms, C.: Mining for causes of cancer: Machine learn-
ing experiments at various levels of detail. In: In Proceedings of the Third Inter-
national Conference on Knowledge Discovery and Data Mining (KDD-97), Menlo
Park, CA, AAAT Press (1997) 223-226

2. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of ProbLog programs. In de la Banda, M.G., Pontelli, E., eds.:
ICLP. Volume 5366 of Lecture Notes in Computer Science., Springer (2008) 175—
189

3. Shterionov, D., Kimmig, A., Mantadelis, T., Janssens, G.: Dnf sampling for problog
inference. In: International Colloquium on Implementation of Constraint and
LOgic Programming Systems (CICLOPS), Edinburgh, Scotland, The UK, July
2010. (July 2010)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677-691

5. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM
Journal on Computing 8(3) (1979) 410421

6. Knuth, D.: The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison-Wesley, MA (1993)

7. Reichert, H.: Introduction to Neurobiology. Oxford Univ. Press (1992)

8. Albertson, D.G., Thomson, J.N.: The pharynx of caenorhabditis elegans. Phil.
Trans. R. Soc. London B 275 (1976) 299-325

9. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the ner-
vous system of the nematode caenorhabditis elegans. Phil. Trans. R. Soc. London
B 314 (1986) 1-340

10. Oshio, K., Morita, S., Osana, Y., Oka, K.: ”c. elegans synaptic connectivity data”.
Technical report, Keio University (1998)

11. www.wormatlas.org

12. Sadler, C.M., Martonosi, M.: Dali: a communication-centric data abstraction layer
for energy-constrained devices in mobile sensor networks. In: Proceedings of the
5th international conference on Mobile systems, applications and services. MobiSys
’07, New York, NY, USA, ACM (2007) 99-112

13. Cui, Q.: Measuring data abstraction quality in multiresolution visualization. IEEE
InfoVis 12 (2006) 183-190

312

Rui Prada
Rectangle

