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— In memory of James Lyness (1932–2010) —

Abstract We propose an alternative to the algorithm from Cools, Kuo, Nuyens
(Computing, 2010) [5], for constructing lattice rules with good trigonometric de-
gree. The original algorithm has construction cost O(|Ad(m)|+ dN logN) for an
N-point lattice rule in d dimensions having trigonometric degree m, where the set
Ad(m) has exponential size in both d and m (in the “unweighted degree” case, which
is what we consider here). We reduce the cost to O(dN(logN)2) with an implicit
constant governing the needed precision (which is dependent on N and d).

1 Introduction

Consider d-dimensional integrand functions f having absolutely convergent Fourier
series representation

f (xxx) = ∑
hhh∈Zd

f̂ (hhh)e2πi hhh·xxx,

then the error of integration by means of a rank-1 lattice rule [19, 24] is given by

Q( f ;zzz,N)− I( f ) =
1
N

N−1

∑
k=0

f
(

kzzz mod N
N

)
−
∫
[0,1)d

f (xxx)dxxx = ∑
hhh∈Zd\{000}

hhh·zzz≡0 (mod N)

f̂ (hhh) ,

(1)
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where I( f ) is the integral of f and Q( f ;zzz,N) its approximation by an N-point
(rank-1) lattice rule with integer generating vector zzz. The set Λ⊥ := {hhh ∈ Zd :
hhh · zzz ≡ 0 (mod N)}, appearing in (1), is called the dual lattice (for the lattice Λ

with generator zzz/N+Zd). We want to construct lattice rules which integrate exactly
all Fourier coefficients which are at most a distance m from the origin measured by
the 1-norm. The largest such m, for a fixed rule Q, then denotes the trigonometric
degree of the lattice rule. Figure 1 shows the Fourier space for the trigonometric de-
gree, as well as for the product trigonometric degree, which measures the distance
in the ∞-norm, to be used in the next section. The trigonometric degree and similar
quantities, originating in the Russian literature, have been studied in many Western
publications, some of them by James Lyness [6, 16, 17, 18]; other references are
[1, 11, 10, 7, 3, 2, 8, 9, 5, 23].

One is able to easily write down the reproducing kernel of such a (finite) dimen-
sional reproducing kernel Hilbert space (RKHS) in terms of an orthonormal basis.
For a space of functions of trigonometric degree at most m we get

Km(xxx,yyy) = ∑
hhh∈Zd

‖hhh‖1≤m

exp(2πi hhh · xxx) exp(2πi hhh · yyy) = ∑
hhh∈Zd

‖hhh‖1≤m

exp(2πi hhh · (xxx− yyy)). (2)

The squared worst-case error using a rank-1 lattice rule in this RKHS is then given
by

e2(zzz,N;Km) =−1+
1
N

N−1

∑
k=0

∑
hhh∈Zd

‖hhh‖1≤m

exp(2πi hhh · (kzzz)/N), (3)

see, e.g., [15] for expressing worst-case errors in a RKHS. The worst-case error for
a quadrature/cubature rule Q in a Banach space H is defined as

e(Q;H ) := sup
f∈H
‖ f‖H ≤1

|I( f )−Q( f )|.

If the rank-1 rule specified by zzz and N has trigonometric degree m, then its worst-
case error in the RKHS with kernel Km will be zero. The latter form for the squared
worst-case error (3) is, for d � 1, far from convenient for construction purposes
as the sum over the Fourier indices hhh cannot be written in a “product form”. A
kernel which can be written in a product form (or a small sum of product forms) is a
necessary condition for the current fast component-by-component algorithms, see,
e.g., [21] and [4] for some example kernels.

For comparison, the classical infinite dimensional function space which takes
all Fourier coefficients into account, the so-called Korobov space, has reproducing
kernel, for α > 1,

Kα(xxx,yyy) = ∑
hhh∈Zd

exp(2πi hhh · (xxx− yyy))

∏
d
j=1 max(1, |h j|α)

=
d

∏
j=1

(
1+ ∑

06=h∈Z

exp(2πi h(x j− y j))

|h|α

)
,
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where the infinite sum reduces to a Bernoulli polynomial Bα in case α is even. The
squared worst-case error using a rank-1 lattice rule is then

e2(zzz,N;Kα) =−1+
1
N

N−1

∑
k=0

d

∏
j=1

(
1+ cα Bα

(
kzzz mod N

N

))
, (4)

for some easily determined constant cα .
The kernels we consider here are all in terms of Fourier series, therefore they are

what is called shift-invariant or periodic, i.e., K(xxx,yyy) = K(xxx− yyy,000). In general the
squared worst-case error for a shift-invariant space with kernel K using a lattice rule
is given by

e2(zzz,N;K) =−
∫
[0,1)d

K(xxx,000)dxxx+
1
N

N−1

∑
k=0

K(zzzk/N,000). (5)

Using the Fourier expansion of K(xxx,000) = K000(xxx), i.e., the kernel with one leg fixed,
we arrive at

e2(zzz,N;K) =−K̂000(000)+ ∑
hhh∈Zd

K̂000(hhh)
1
N

N−1

∑
k=0

exp(2πi hhh · zzzk/N) = ∑
000 6=hhh∈Zd

hhh·zzz≡0 (mod N)

K̂000(hhh),

where the latter sum is over the dual lattice. If one compares with (1) then it is clear
that (5) is the integration error of the function K000(xxx) using the lattice rule Q(·;zzz,N).
In other words: the squared worst-case error of a lattice rule (in a shift-invariant
space) is given as the sum of the Fourier coefficients of the kernel (with one leg
fixed to 000) over the dual lattice. Therefore, the Fourier coefficients attach a weight
to the dual lattice points in the squared worst-case error; this will be the point of
view we will use in the following.

2 Embedding by a tensor product function space

In [5] a new algorithm was introduced to construct rank-1 lattice rules using a
component-by-component procedure that obtains a prescribed weighted degree of
exactness and, at the same time, achieve the near optimal worst-case error in a Ko-
robov space. (The algorithm in [5] is presented for N prime, but can be modified for
composite N as well. Also, the algorithm there is presented for different kinds of de-
grees of exactness, here we are only concerned with the trigonometric degree.) This
algorithm explicitly constructs a set of Fourier indices Ad(m) associated with the de-
gree of exactness, i.e., all integer points at a distance smaller than or equal to m to the
origin. The construction cost of that algorithm is O(|Ad(m)|+dN logN). To make
this algorithm feasible the degree of exactness is weighted by weights β j w.r.t. the
different coordinate axes j = 1, . . . ,d. If all these weights are put equal to 1 then one
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obtains the classical trigonometric degree and the size of the set Ad(m) increases
exponentially in d and m, making the construction intractable. More precisely, it can
be shown, see, e.g., [11], that

|Ad(m)|= |Am(d)|= ∑
s≥0

2s
(

d
s

)(
m
s

)
≤

{
(1+2m)d = O((2m)d), if d ≤ m,

(1+2d)m = O((2d)m), if m≤ d,
(6)

where we used the Binomial theorem and the easy estimate
(n

k

)
≤ nk/k!≤ nk. (Note

that the sum in (6) always has a finite summation range as both d and m are finite
positive integers and

(n
k

)
= 0 for k 6∈ {0, . . . ,n}, k,n ∈ Z, n≥ 0.)

In [5] the theoretical basis starts off by modifying the classical Korobov space to
incorporate the kernel of the finite dimensional space, which is (2) for the trigono-
metric degree. The unfortunate form of this kernel plays no part there as one con-
structs the set Ad(m) explicitly and thus no calculations have to be done using this
kernel. Here we propose to walk the other way: we will not build the (exponentially
growing) set Ad(m), but will try to calculate the worst-case error for a modified
trigonometric space.

Incorporating an idea from [13] we build a function space with exponentially
decaying Fourier coefficients, and, extending what is studied in [13], make it finite
dimensional. Our first attempt at an efficient kernel is

Km,p(xxx,yyy) = ∑
hhh∈Zd

‖hhh‖1≤m

p‖hhh‖1 exp(2πi hhh · (xxx− yyy)), (7)

for 0 < p < 1. Note that the part inside the sum is now of “product form”, however
the multiple sums are a dependent chain. If one strives for exactness, i.e., integrate
all these Fourier coefficients exactly, then there is no difference in using kernel (2)
or (7). A rule which is exact for all trigonometric polynomials up to degree m will
have a squared worst-case error equal to zero for both of these choices. Moreover, as
the sum still involves the 1-norm, we still fail to have an efficient computable form.

Now we enlarge the index set of Fourier coefficients to take a tensor product
form. Again for 0 < p < 1, now consider the kernel

K′m,p(xxx,yyy) = ∑
hhh∈Zd

‖hhh‖∞≤m

p‖hhh‖1 exp(2πi hhh · (xxx− yyy))

=
d

∏
j=1

m

∑
h=−m

p|h| exp(2πi h(x j− y j))

=
d

∏
j=1

(
1+2

m

∑
h=1

ph cos(2π h(x j− y j))

)
. (8)

The last form is suitable to be directly used in the fast component-by-component
algorithm [20, 22, 21].
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The problem with (8) however is that we are now in fact looking at a prod-
uct trigonometric degree (i.e., a tensor product form degree) instead of the plain
trigonometric degree: that is, if the squared worst-case error for this kernel is zero,
then the rule has product trigonometric degree at least m (and by extension also
trigonometric degree at least m), if it is non-zero however, then we could still have
trigonometric degree at least m. This simple embedding can be seen in Figure 1. We
want to obtain bounds on the value for the squared worst-case error such that we can
determine, when it is non-zero, if the Fourier coefficients for ‖hhh‖∞ ≤ m, which we
don’t integrate exactly (i.e., the dual lattice points), actually have ‖hhh‖1 > m, i.e., all
in the shaded area in Figure 1 (but not on the border of the inner diamond). If so, then
the rule has trigonometric degree at least m (right image; with actual trigonometric
degree m), if not, then the rule has smaller degree (left image).

h1

h2

m h1

h2

m

Fig. 1 The trigonometric degree iso-lines (1-norm: diamond shaped iso-lines) versus the product
trigonometric degree iso-lines (∞-norm: iso-lines parallel to the axes). Note that, in contrast to what
this 2-dimensional figures suggest, the difference in volume for the enclosing product degree shape
increases exponentially with the dimension. Left view: dual lattice points hhh 6= 000 on the 1-norm iso-
line of distance m, i.e., ‖hhh‖1 = m; the picture shows an enhanced trigonometric degree of m, i.e., a
trigonometric degree of m−1. Right view: no dual lattice points hhh 6= 000 with ‖hhh‖1 ≤m, i.e., having
trigonometric degree at least m; in the picture the enhanced trigonometric degree is m+1 and thus
the trigonometric degree is m.

For ease of presentation one often uses the concept of the enhanced trigonometric
degree [6] which is defined as the trigonometric degree plus one. In other words, the
enhanced trigonometric degree is the distance of the closest non-zero point to the
origin of the dual lattice measured in the 1-norm.

We can rewrite kernel (8), getting rid of the sum, using

1+2
m

∑
h=1

ph cos(2πht) =
1− p2−2pm+1 cos(2π(m+1)t)+2pm+2 cos(2πmt)

1+ p2−2pcos(2πt)
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which can be obtained by tedious calculations starting from the exponential form or
using easy manipulations starting from [14, 1.353/3]. However, care must be taken
to evaluate this function (in whatever form), especially as p will be chosen small. In
Figure 2 one can see what the one-dimensional kernel looks like. (A similar remark
is also in place for the kernel used in [13] which has m = ∞.)

0.2 0.4 0.6 0.8 1.0

1

2

3

4

0.2 0.4 0.6 0.8 1.0

0.99985

0.9999

0.99995

1.

1.00005

1.0001

1.00015

1.0002

Fig. 2 The one-dimensional kernel K′m,p(x,0), see (8), of the finite dimensional product space
which weights Fourier coefficients by the 1-norm. Left: the kernel for p = 2/3 and m = 5. Right:
the kernel for p = 10−4 and m = 5.

3 Distinguishing dual lattice points

Kernel (8) can be analyzed for the trigonometric degree by looking at the different
cases where the squared worst-case error for kernel K′m,p is non-zero. We analyze
the cases under the premise that the rule has trigonometric degree m.

First assume the rule really has trigonometric degree at least m, i.e., ‖hhh‖1 > m for
all dual lattice points hhh 6= 000, and also has dual lattice points for which ‖hhh‖∞≤m, i.e.,
dual lattice points in the shaded area of Figure 1. The first 1-norm iso-line on which
these points could fall is the one where the 1-norm equals m+1 (right image). All
points on this iso-line account for a weight of pm+1 in the squared worst-case error.
Naturally, if there are 1/p dual lattice points on this line, then the squared worst-case
error will be at least 1/p× pm+1 = pm, which is the weight of the iso-line ‖hhh‖1 = m.

Conversely, assume the rule actually has degree less than m. If there are no dual
lattice points on the mth iso-line then the worst-case error is at least pm−1. On the
other hand, if there would be any dual lattice points on the mth iso-line then the
squared worst-case error would as well have a value of order pm. Further, note that
if there is one dual lattice point at distance m, then there is a second one as well as
trivially ‖hhh‖1 = ‖−hhh‖1, thus the squared worst-case error would at least be 2 pm. So,
in the case above, where we have trigonometric degree at least m, we would need
at least 2/p dual lattice points on the iso-line of weight m+ 1 to have a squared
worst-case error of at least 2 pm.

Unsurprisingly, this shows that the contribution of the dual lattice points with
‖hhh‖1 > m and ‖hhh‖∞ ≤ m could raise above the level of the dual lattice points with
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000 6= ‖hhh‖1 ≤m. This problem can be avoided by choosing p small enough since there
is a maximum of integer points which can fall inside the shaded region in Figure 1.
A naive but straightforward way is by weighting all points in {hhh ∈ Zd : ‖hhh‖1 >
m and ‖hhh‖∞ ≤ m} by the same factor pm+1 which then have a combined weight
smaller than two points on the edge of the cross-polytope.

Lemma 1. Given integer m,d > 1, if one chooses p such that

1
p
> 2d−1

(
(m+1)d− (d +1) · · ·(d +m)

m!

)
then

∑
hhh∈Zd

‖hhh‖1>m
‖hhh‖∞≤m

pm+1 < 2 pm.

Proof. We will count the integer points by subtracting the points with ‖hhh‖1 ≤ m
from the points with ‖hhh‖∞≤m. As we are counting all integer points (instead of only
the dual lattice points) we can simplify the count to hhh with non-negative coordinates
and then multiply by a factor of 2d . Doing so we count all points on the interface
between adjacent hypercubes twice, so this is just an approximation.

The number of integer points in [0,m]d is trivially (m+1)d . To find the number
of integer points in the simplex with vertices (0,0, . . . ,0), (m,0, . . . ,0), (0,m, . . . ,0),
. . . , (0,0, . . . ,m) we can use the theory of Ehrhart polynomials, see, e.g., [12], from
which we find the generating function

∑
m≥0

am xm =
1

(1− x)d+1 .

The mth Maclaurin coefficient is given by

(d +1) · · ·(d +m)

m!
,

which is the number of integer points inside the simplex. It follows that

#{hhh ∈ Zd : ‖hhh‖1 > m and ‖hhh‖∞ ≤ m} ≤ 2d
(
(m+1)d− (d +1) · · ·(d +m)

m!

)
,

which is sharp for d = 2. We now want

2d
(
(m+1)d− (d +1) · · ·(d +m)

m!

)
pm+1 < 2 pm,

from which the stated result follows. ut
Given such a choice of p we show that the squared worst-case error in the RKHS

with kernel K′m,p gives us information on the trigonometric degree.
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Lemma 2. Given an N-point rank-1 lattice rule Q( f ;zzz,N) with generating vector zzz
then for integer m > 1 and 0 < p < 1 chosen as in Lemma 1 we have

0. e2(zzz,N;K′m,p) = 0 if Q has (product) trigonometric degree at least m;

and if e2(zzz,N;K′m,p) 6= 0

1.
⌊

logp
e2(zzz,N;K′m,p)

2

⌋
≤ m if Q has trigonometric degree less than m;

2.
⌊

logp
e2(zzz,N;K′m,p)

2

⌋
> m if Q has trigonometric degree at least m.

Proof. The case of e2(zzz,N;K′m,p) = 0 is trivial.
Now assume there are no non-zero dual lattice points for which ‖hhh‖1 ≤ m then

e2(zzz,N;K′m,p) = ∑
hhh·zzz≡0 (mod N)
‖hhh‖1>m
‖hhh‖∞≤m

p‖hhh‖1 ≤ ∑
hhh∈Zd

‖hhh‖1>m
‖hhh‖∞≤m

pm+1 < 2 pm

due to Lemma 1.
On the other hand if there are non-zero dual lattice points with ‖hhh‖1 ≤ m then

e2(zzz,N;K′m,p) = ∑
hhh·zzz≡0 (mod N)

0<‖hhh‖1≤m

p‖hhh‖1 + ∑
hhh·zzz≡0 (mod N)
‖hhh‖1>m
‖hhh‖∞≤m

p‖hhh‖1

≥ ∑
hhh·zzz≡0 (mod N)

0<‖hhh‖1≤m

p‖hhh‖1

≥ 2 pm.

From these the result follows. ut

Note that generally it will not be possible to check what the trigonometric degree
is when it is larger than m. There is always the possibility of a hhh ∈ Λ⊥ such that
‖hhh‖1 = m+ ` but ‖hhh‖∞ > m for some 0 < ` < m: a dual lattice point outside of
[−m,m]d but on a 1-norm iso-line through this hypercube. However, by modifying
the choice of p we can determine what the trigonometric degree is when it is smaller
than m, as stated in the following corollary.

Corollary 1. Given an N-point rank-1 lattice rule Q with generating vector zzz then
for integer m > 1 and 0 < p < 1 chosen as

1
p
> 2d−1

(
(m+1)d− (d +1)

)
,

we have the additional property that
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logp

e2(zzz,N;K′m,p)

2

⌋
= m− `+1

if Q has trigonometric degree m− ` where 0 < ` < m.

Proof. Following the same reasoning as in the proof of Lemma 1, we find that for
` > 0

#{hhh ∈ Zd : ‖hhh‖1 > m− ` and ‖hhh‖∞ ≤ m} ≤ 2d
(
(m+1)d− (d +1) · · ·(d +m− `)

(m− `)!

)
.

We now want for all possible 0 < ` < m

2d
(
(m+1)d− (d +1) · · ·(d +m− `)

(m− `)!

)
pm+1−` < 2 pm−`,

from which the stated condition on p follows.
Using this condition, suppose the trigonometric degree is m−` for some 0 < `<

m. Then we find

e2(zzz,N;K′m,p) = ∑
hhh·zzz≡0 (mod N)
‖hhh‖1>m−`
‖hhh‖∞≤m

p‖hhh‖1 ≤ ∑
hhh∈Zd

‖hhh‖1>m−`
‖hhh‖∞≤m

pm−`+1 < 2 pm−`

and

e2(zzz,N;K′m,p)≥ ∑
hhh·zzz≡0 (mod N)
‖hhh‖1=m−`+1
‖hhh‖∞≤m

p‖hhh‖1 ≥ 2 pm−`+1.

ut

Above we have always lumped together the points to get weighted all by the same
weight of pm+1. A more careful analysis is possible if we weight each hhh exactly. This
is possible, but we were unable to get such a nice expression as in Lemma 1. The
following result could however be used in an algorithmic way to find a p greater
than or equal to the one obtained by Lemma 1.

Lemma 3. Given integer m,d > 1, if one chooses p such that

d

∑
s=1

2s
(

d
s

)((
pm+1− p

p−1

)s

−
m

∑
k=1

pk
(

k−1
s−1

))
< 2 pm

then

∑
hhh∈Zd

‖hhh‖1>m
‖hhh‖∞≤m

p‖hhh‖1 < 2 pm.
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Proof. In similar spirit as the previous results we need

∑
hhh∈Zd

‖hhh‖∞≤m

p‖hhh‖1 − ∑
hhh∈Zd

‖hhh‖1≤m

p‖hhh‖1 < 2 pm.

The weighted integer points inside the hypercube are easy to express as all sums are
independent:

∑
hhh∈Zd

‖hhh‖∞≤m

p‖hhh‖1 =

(
m

∑
h=−m

p|h|
)d

=

(
1+2

m

∑
h=1

ph

)d

=

(
1+2

pm+1− p
p−1

)d

.

This can also be written as(
1+2

pm+1− p
p−1

)d

=
d

∑
s=0

(
d
s

)(
2

pm+1− p
p−1

)s

= 1+
d

∑
s=1

2s
(

d
s

)(
pm+1− p

p−1

)s

.

For the weighted points inside the cross-polytope we have the number of points at
distance k to be

∑
hhh∈Zd

‖hhh‖1=k

1 = ∑
hhh∈Zd

‖hhh‖1≤k

1− ∑
hhh∈Zd

‖hhh‖1≤k−1

1 = ∑
s≥0

2s
(

d
s

)((
k
s

)
−
(

k−1
s

))
= ∑

s≥1
2s
(

d
s

)(
k−1
s−1

)

for k ≥ 1, cf. (6). As such, the weighted integer points inside the cross-polytope are
given by

1+
m

∑
k=1

pk
∑
s≥1

2s
(

d
s

)(
k−1
s−1

)
= 1+

d

∑
s=1

2s
(

d
s

)( m

∑
k=1

pk
(

k−1
s−1

))
.

(Depending on the choice of d and m the sum over k might vanish partly or even
completely because of the properties of the binomial coefficient, cf. (6).) From here
the result follows. ut

4 A modification of the CKN weighted-degree algorithm

The algorithm in [5] is a component-by-component algorithm, see, e.g., [25]. This
means that one constructs the generating vector zzz one component at a time, first
generating a one dimensional vector, then a two dimensional, etc, always keeping
the previous choices fixed.

Using the results from the previous section, we can modify the algorithm from
[5] as follows. Starting from a d-dimensional generating vector with trigonometric
degree md , we “guess” (as explained below) the trigonometric degree m̃d+1 that can
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be achieved in d +1 dimensions. We then use kernel K′m̃d+1,p, given in (8), with an
appropriate choice for p, e.g., given by Lemma 1, to calculate the squared worst-case
error for each possible choice of zd+1. For this we consider all z∈Z×N (where Z×N are
all positive integers relatively prime to N and smaller than N, i.e., the multiplicative
group modulo N). This step might possibly be repeated for different choices of m̃d+1
if our initial guess turned out to be incorrect, making use of Lemma 2. As we have
chosen a tensor product form kernel, the calculation of the worst-case error for all
possible choices z ∈ Z×N can be done using Fast Fourier Transformations (FFTs)
using the techniques from [20, 22, 21] in time O(N logN) for each guess of m̃d+1.
The final trigonometric degree that we settle on will be denoted by md+1.

As in [5] we try to achieve a good trigonometric degree and at the same time
obtain an almost optimal worst-case error in a Korobov space. For this we also
calculate the worst-case error using kernel Kα , see (4), and find the z ∈ Z×N which
minimizes this worst-case error and at the same time achieves the trigonometric
degree md+1 (found by the calculations based on K′md+1,p). The final choice of z is
then fixed as zd+1. The calculation of the worst-case error in the Korobov space
might also be done using FFTs in time O(N logN).

When the number of points is sufficiently large, then [5, Theorem 3] shows that
such lattice rules exist and can be found in a component by component way. For
completeness we repeat that result here (which is stated for a prime number of points
due to technicalities), slightly adjusted to the context of the (unweighted) trigono-
metric degree here. (The subsequent theorem also uses “product weights” γ j to build
a weighted function space. Such weighted spaces are a standard tool in tractability
analysis but are of no real concern in this paper and can be safely ignored. Further
information can be found in, e.g., [26].)

Theorem 1 (From [5, Theorem 3]). Let c > 1 be fixed, m be given, and let N be a
prime number satisfying

N > max
(

m,1+
c

c−1
|Ad+1(m)|− |Ad(m)|−2m

2

)
.

Suppose we already have a zzz ∈ (Z×N )d for which

e2(zzz,N;Km) = 0,

i.e., the rule has trigonometric degree at least m, and

e2(zzz,N;Kα)≤

(
c

N−1

d

∏
j=1

(
1+2γ

λ
j ζ (αλ )

))1/λ

for all λ ∈ (1/α,1],

i.e., the rule has near optimal worst-case error in the Korobov space with smooth-
ness α . Then there is “at least one” zd+1 ∈ Z×N such that we achieve trigonometric
degree m

e2((zzz,zd+1),N;Km) = 0,
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and near optimal worst-case error

e2((zzz,zd+1),N;Kα)≤

(
c

N−1

d+1

∏
j=1

(
1+2γ

λ
j ζ (αλ )

))1/λ

for all λ ∈ (1/α,1].

This choice of N however was argued to be much higher than necessary, so in
the practical implementation the condition was omitted. Here we will follow the
same argument: we omit the condition on N and try to achieve the highest possible
trigonometric degree possible. From [11] we note the known minimum number of
points needed to achieve a prescribed trigonometric degree m in d dimensions:

Nmin(m,d)≥
∣∣∣Ad

(⌊m
2

⌋)∣∣∣={O(md), if d ≤ m,

O((2d)m/2), if m≤ d.
(9)

More specifically, the attainable lower bound in 2 dimensions, again, see [11], is
given by

Nmin(m,2) =

{
2k2 +2k+1, for m = 2k,
2k2 +4k+2, for m = 2k+1.

This brings us back to the “guessing” of the trigonometric degree. First note that
the range of possible trigonometric degrees is quite limited. As an estimate in two
dimensions we could use m<

√
2N. It follows that for a fixed N and increasing d (as

in a component-by-component algorithm) the achievable trigonometric degree will
decrease exponentially, see (9). This enables us to guess the trigonometric degree
rather easily. To start off the process we use that the trigonometric degree in the
first dimension always equals N−1 (under the condition that z1 is relatively prime
to N), for the second dimension we can start from the explicit lower bound, i.e.,
guess m <

√
2N, and from then on we can assume exponential decrease. Moreover,

if we never underestimate m, then by choosing p as in Corollary 1 we can determine
the trigonometric degree from the squared worst-case error. Summarizing, we have
the following algorithm:

Algorithm 1 For given dmax, wanted degree m̂dmax ≥ 1 in dmax dimensions, α > 1
and choosing N ≥ |Admax (bm̂dmax/2c)|, then:

1. Set z1 = 1.
2. For each d = 1, . . . ,dmax−1 with zzz = (z1, . . . ,zd) already fixed do the following:

a. Guess the trigonometric degree md+1 (preferably do not underestimate), and
choose a p small enough, e.g., as in Lemma 1 or Corollary 1.

b. For each possible component z ∈ Z×N , calculate e2((zzz,zd+1),N;K′md+1,p).
If there is no choice with trigonometric degree md+1 then guess again and
repeat this step, otherwise set the trigonometric degree md+1.

c. Set zd+1 to be the z ∈ Z×N that minimizes e2((zzz,zd+1),N;Kα) and has de-
gree md+1.
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Corollary 2. Given Algorithm 1, we have that the complexity of construction up to
d dimensions is O(dN(logN)2).

Proof. Assuming we need to repeat the guess T times, the cost per iteration is
O(T N logN). As the relation between the number of points N and the achiev-
able trigonometric degree is exponential for increasing d, see (9), we can assume
T = O(logN) worst case. Consequently the cost is O(N(logN)2) and the complex-
ity of construction up to d dimensions is O(dN(logN)2). ut

We remark that the construction cost given assumes unit cost for all basic arith-
metic operations on the computing device. Based on the smallness of p this will al-
most always mean arbitrary precision calculations for which this assumption is not
quite correct (depending on the needed precision the deviation will become larger).
An analysis of the practical implications for an actual implementation of this algo-
rithm is therefore left for future research; but we make some developments in this
area in the remainder of the paper. (We note that the full study of this would imply
a numerical analysis of the computation of the worst-case error. As far as we know,
this has not been studied yet.) To give an example of the technical complications: if
the needed precision is very high, then it will become necessary to use FFTs which
minimize the number of multiplications; or to use other algorithms to execute the
underlying circular convolution.

We remark as well that in each iteration of the algorithm, we are in fact more
or less computing the shortest vector in circa N ≈ |Z×N | dual lattices. So somewhere
we expect to get bitten by the exponential complexity in d of the general problem
of shortest vector computations. In that respect, the proposed algorithm looks quite
good and it seems we can reduce the complexity by exploiting the specifics of our
problem.

5 An improvement on p

It is clear that our choice of p is far too conservative; it was a very crude under-
estimate based on a worst case argument. We simulated 103 random numbers N
between 100 and 4001, together with 5-dimensional integer vectors zzz with elements
between 1 and N. Then, for each dimension between 2 and 5 we calculated the en-
hanced trigonometric degree explicitly (which we denote in this section by m for
ease of notation), after which we checked for all hhh in {hhh : ‖hhh‖∞ ≤m and ‖hhh‖1 > m}
whether they satisfy hhh · zzz ≡ 0 (mod N). This gave us 103 trigonometric degrees
and the corresponding number of dual lattice points in Λ⊥m := {hhh : hhh ∈Λ⊥,‖hhh‖∞ ≤
m and ‖hhh‖1 >m} for each dimension. In Table 1, the maximum |Λ⊥m | that was found
for each trigonometric degree encountered is reported. We also calculated the theo-
retical bound

Ωm = 2d
(
(m+1)d− (d +1) · · ·(d +m)

m!

)
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d = 2 d = 3 d = 4 d = 5
m |Λ⊥m | Ωm |Λ⊥m | Ωm |Λ⊥m | Ωm |Λ⊥m | Ωm
2 2 12 10 136 14 1056 62 7104
3 0 24 8 352 88 3536 312 30976
4 4 40 20 720 122 8880 630 95968
5 4 60 22 1280 136 18720 1416 240768
6 4 84 20 2072 174 35056 1350 523040
7 4 112 32 3136 202 60256 1298 1023232
8 4 144 36 4512 250 97056 1346 1848384
9 4 180 28 6240 222 148560 1560 3135936
10 4 220 32 8360 210 218240 1508 5057536
11 4 264 36 10912 222 309936 1660 7822848
12 4 312 34 13936 222 427856
13 4 364 32 17472 220 576576
14 6 420 30 21560 210 761040
15 4 480 32 26240
16 6 544 32 31552
17 4 612 36 37536
18 6 684 38 44232
19 4 760 34 51680
20 4 840 32 59920
21 4 924 34 68992
22 4 1012 34 78936
23 4 1104 36 89792
24 4 1200 36 101600
25 4 1300 34 114400
26 4 1404
27 4 1512
28 4 1624
29 4 1740
30 4 1860
31 4 1984
32 4 2112
33 4 2244
34 6 2380
35 4 2520
36 6 2664
37 4 2812
38 6 2964
39 4 3120
40 4 3280

Table 1 The enhanced trigonometric degrees found in a sample of random generating vectors up
to 5 dimensions, together with the corresponding maximum number of dual lattice points |Λ⊥m |
found and the theoretical bound Ωm, used for constructing p in Lemma 1.

used in Lemma 1 for constructing p to compare against the numerical experiment.
It seems that Ωm greatly overestimates the possible number of dual lattice points.
More specifically, we have the following lemma for the two-dimensional case.

Lemma 4. For d = 2, the maximum number of points in Λ⊥m is bounded by 6 for
any m.

Proof. This lemma can be proven by noticing that for rank-1 lattice rules all dual
lattice points lie equidistantly on equidistant parallel hyperplanes. ut

This lemma illustrates, at least for d = 2, that the number of possible dual lattice
points is fixed regardless of the trigonometric degree, whereas Ωm, used for calcu-
lating p in our algorithm, increases with m. From Table 1 there seems to be some



A component-by-component construction for the trigonometric degree 15

evidence that the maximum number of points in Λ⊥m is much smaller than Ωm also
in higher dimensions.

Lemma 1 has been written in a general sense, without using any information on
the actual underlying point set. If we specialize to rank-1 rules we can get a better
estimate. We start from the following easy result.

Lemma 5. Given an N-point rank-1 lattice rule with generating vector zzz ∈ (Z×N )d

modulo N, with N prime, then there are Nd−1 dual lattice points modulo N (i.e., in
[0,N)d).

Proof. An integer point hhh ∈ Zd is part of the dual lattice if

h1z1 +h2z2 + · · ·+hdzd ≡ 0 (mod N).

Now fix any choice of h j ∈ ZN except one, say h1, then for a = (h2z2 + · · ·+hdzd)
there is a unique solution, since z1 ∈ Z×N , for h1 in

h1z1 +a≡ 0 (mod N).

The same conclusion could be drawn if fixing any other d−1 components. As there
were Nd−1 choices for the other h j the dual lattice has Nd−1 points in [0,N)d . ut

Similarly to the previous lemma we obtain an estimate for the dual lattice points
inside [−m,m]d .

Corollary 3. Under the same conditions as for Lemma 5, there are at most (2m+
1)d−1 dual lattice points in [−m,m]d .

Note that this seems always smaller than Ωm. However, this result is only valid for
rank-1 lattice rules, whereas Lemma 1 remains valid for higher rank lattice rules.
Therefore, we opted to keep Lemma 1 as a guideline although this estimate will get
us a smaller p. A practical implementation for rank-1 rules could however make use
of Corollary 3.

In closing this section we want to remark that, apart from making p larger by
using a more careful analysis, we can also make p larger by sorting out bad cases as
we go. E.g., the following lemma shows that as soon as we have fixed a component
of zzz, then several multiples modulo N must not be considered again as valid choices
in the next dimensions; as such we should not care about the actual p value we
would need for these very bad rules.

Lemma 6. Given an N-point rank-1 lattice rule with generating vector zzz ∈ Zd
N in

d ≥ 2 dimensions, then as soon as there is a repeated component (modulo N) in zzz,
the trigonometric degree is just 1. Moreover, if one component, say z j, is −t times a
multiple of another (modulo N/(zi,N)), say zi, and t 6≡ 0 (mod N/(zi,N)), then the
trigonometric degree is at most t.

Proof. We just prove the most general case. Consider the vector hhh which is zero
everywhere except for the two components where zi ≡ a (mod N) and z j ≡ −t a
(mod N/(a,N)). We get the equation
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hizi +h jz j ≡ 0 (mod N)

which, with (a,N) the greatest common divisor of a and N, is equivalent to

a
(a,N)

hi−
t a

(a,N)
h j ≡ 0 (mod N/(a,n)),

where we have to assert that t 6≡ 0 (mod N/(a,n)) such that the problem still in-
volves hi and h j. Multiplying by the multiplicative inverse of a/(a,N) we obtain

hi− t h j ≡ 0 (mod N/(a,n))

which clearly has a non-trivial solution hi = t and h j = 1. It follows that the en-
hanced trigonometric degree is at most ‖hhh‖1 = t + 1 and thus the trigonometric
degree can be at most t. ut

As a consequence of this last lemma we note that in Algorithm 1 as the algo-
rithm progresses from dimension to dimension and as we have fixed N from the
beginning—thus limiting the achievable trigonometric degree—the possible choices
for the next zd+1 are much less than the elements of Z×N . We would hope that ex-
ploiting this knowledge would enable us to take much larger choices of p, as the bad
choices will be the ones with the most points close to 000.

6 Conclusion and future work

We proposed a component-by-component algorithm to construct rules of good
trigonometric degree by making use of a finite dimensional, exponentially decay-
ing, reproducing kernel Hilbert space. The analysis of the algorithm has been tack-
led from an “existence” point of view, that is, we have proven that such an algorithm
exist, and even explicitly given the algorithm outline, but we did not consider prac-
tical implementation aspects. Working out the technical details of the algorithm is
of considerable complexity and left for future work. Some initial results in that di-
rection have been included.
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