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1 Introduction
Business Intelligence (BI) methods are built on high-

dimensional data, and management decisions are often based
upon data warehouses. Such a system represents internal
and external data from heterogeneous sources in a global
schema. Sources can be operational data bases, files, or in-
formation from the Web. An essential success factor for
Business Data Warehousing is therefore the integration of
heterogeneous data into the Data Warehouse. The process
of transferring the data into the Data Warehouse is called
Extract-Transform-Load (ETL).

Although the ETL process can be performed in any in-
dividually programmed application, commercial ETL tools
are often used [1]. Such tools are popular because interfaces
are available for most popular databases, and because
visualizations, integrated tools, and documentation of ETL
process steps are provided. However, a tool does not guar-
antee successful data integration. In fact, the ETL expert
has to cope with several issues. Many of the challenges are
recurrent. Therefore, we believe that a support for ETL proc-
esses is possible and can reduce design effort. We propose
the use of the pattern approach from software engineering
because similarities exist between the ETL process and the
software design process.

Software patterns are used in object-oriented design as
best practices for recurring challenges in software engineer-
ing. They are general, re-usable solutions: not finished de-
signs that can be transformed directly into code, but descrip-
tions of how to solve a problem. These patterns are described
in templates and often included in a catalogue. Consequently,
a software developer can access these templates and imple-
ment best practices easily. The idea of design patterns has
been adapted to different domains including ontology de-
sign [2], usage-interface design [3], and information visu-
alization [4].

In the domain of enterprise system integration, the pat-
tern approach is adapted by [5]. [6] develops patterns for
the design of service-oriented architectures. In this paper,
we present patterns for the design and implementation of
ETL processes.

The paper is organized as follows: in Section 2, the ETL
process is described, and in Section 3 we present the ETL

Designing Data Integration: The ETL Pattern Approach
Veit Köppen, Björn Brüggemann, and Bettina Berendt

The process of ETL (Extract-Transform-Load) is important for data warehousing. Besides data gathering from heteroge-
neous sources, quality aspects play an important role. However, tool and methodology support are often insufficient. Due
to the similarities between ETL processes and software design, a pattern approach is suitable to reduce effort and increase
understanding of these processes. We propose a general design-pattern structure for ETL, and describe three example
patterns.
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pattern approach with three example patterns. A brief evalu-
ation of these patterns is presented in Section 4, and in Sec-
tion 5 we summarize our work.

2 The ETL Process
Data Warehouses (DW) are often described as an archi-

tecture where heterogeneous data sources, providing data
for business analysis, are integrated into a global data
schema. Besides the basis database, where data is stored at
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a fine-grained level, data marts for domain-specific analy-
ses are stored, containing more coarse-grained information.
Furthermore, management tools such as data-warehouse
managers and metadata managers are included in the archi-
tecture. A DW reference architecture is given in [7].

The process of data integration is performed in the stag-
ing area in the architecture. Here, heterogeneous data are
extracted from their origins. Adapters and interfaces can be
used to extract data from different sources such as opera-
tional (OLTP) databases, XML files, plain files, or the Web.
This extraction is followed by transformation into the DW
schema. This schema depends on the DW architecture and
the domain or application scenarios. In practice, relational
data warehouse are used and star or snowflake schema are
applied as relational On-Line Analytical Processing
(ROLAP) technologies, see for instance [8]. In addition,
transformations according to data formats and aggregations
as well as tasks related to data quality such as the identifi-
cation of duplicates are performed during this step. Finally,
the data is loaded from the staging area into the basis data-
base within the DW. Based on this, a cube or different data
marts can be built, data mining algorithms applied, reports
generated, and analyses performed. In Figure 1, we present
the ETL process in its generic steps.

A monitor observes a data source for changes. This is
necessary to load updated data into the DW. The monitor-
ing strategy is defined depending on the data source. Two
main strategies exist: either all changes are processed to the
monitor and the delta of all changes can be computed, or
the monitor can only identify that changes occurred. We
distinguish the following mechanisms:

Reactions are selected according to the event-condi-
tion-action rules for defined situations.

Relevant data or changes are stored in an additional
data store, therefore the data is replicated.

Logs can be parsed and used, which are otherwise
used for recovery.

Applications that update data can be monitored via
time stamp methods or snapshots.

The extraction operation is responsible for loading data
from the source into the staging area. This operation de-
pends upon monitoring the method and the data source. For
example, it is possible that the monitor identifies a change,
but the extraction process happens later, at a time predefined
by the extraction operation. There exist different strategies
for the extraction operation:

Periodically, where data is extracted continuously
and recurrently at a given time interval.Tthis interval de-
pends on requirements on timeliness as well as dynamics in
the source.

Query-based, where the extraction is started when
an explicit query is performed instantly. Where all changes
are directly propagated into the dw.

Event-based, where a time-, external- or system-rel-
evant event starts the extraction operation.

The transformation within the staging area fulfils the
tasks of data integration and data fusion. All data are inte-
grated and transformed into the DW schema, and at the same
time, data quality aspects are addressed, such as duplicate
identification and data cleaning. Different transformations
exist and can be categorized as follows:

Key handling: since not all database keys can be
included into the dw schema, surrogates are used.

Data-type harmonization, where data are loaded
from heterogeneous data sources.

Conversion of encodings of the same domain at-

Figure 1: The ETL Process.

Business Intelligence methods are built on high-dimensional
data, and management decisions are often

based upon data warehouses

“
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Figure 2: ETL Process with Patterns from Different Categories.

Table 1: ETL Pattern Structure.

 
Element 

 

 
META-DESCRIPTION 

 
Mandatory? 

Name This name identifies the pattern in the catalogue. 
 

Yes 

Intention A concise description at which use the pattern aims. Yes 
 

Classification A reference to elementary or composite task with an optional 
refinement on the ETL steps. 
 

Yes 

Context This describes the situation where the problem occurs. 
 

Yes 

Problem A detailed description of the problem. 
 

Yes 

Solution A concise description of the solution.  
 

Yes 

Resulting 
Context 

This describes the outcome and the advantages and 
disadvantages of using this pattern. 
 

No 

Data Quality Which data quality issues are addressed and which data 
quality dimension/s is/are improved. 
 

No 

Variants A reference to similar and adapted patterns. 
 

No 

Alternative 
Naming 

Other commonly used names of the pattern. No 

Composite 
Property 

Only composite patterns use this description and state the 
composition property of the pattern. 
 

No 

Used in This element describes briefly where the pattern is applied. 
this helps in the understanding and decision whether a pattern 
should be used. 
 

No 

Implementation For various ETL tools, the solution is put into practice 
differently, therefore different implementations are referenced 
here. 
 

No 

Demonstration A reference to an exemplary implementation of this pattern. No 
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tribute value to a common encoding (e.g., 0/1 and m/f for
gender are mapped to m/f).

Unification of strings, because the same objects can
be represented differently (e.g., conversion to lower case).

Unification of date format: although databases han-
dle different data formats, some other sources such as files
can only provide a fixed data format.

Conversion of scales and scale units, such as cur-
rency conversions.

Combination or separation of attributes, depend-
ing on the attribute level of the heterogeneous sources and
the DW.

Computation and imputation, in the case that val-
ues can be derived but are not given in the source systems.

The loading of the extracted and transformed data into
the DW (either into the basis database or into data marts)
can occur in online or offline mode. If the DW is or should
be accessed while the loading takes place, an online strat-
egy is necessary. This should be used for incremental up-
dates, where the amount of loading is small. In the first (ini-
tial) loading of a DW, the loading is high and the DW is run
in an offline mode for the users. At this time, the loading
operation has exclusive access to all DW tables. Another
task for the load operation is the historicization of data; old
data is not deleted in a DW but should be marked as depre-
cated.

The ETL process can be refined into several ETL steps,
where each step consists of an initialization, a task execu-
tion, and a completion. These steps enable ETL designers
to structure their work. The following steps can be neces-
sary in an ETL process: extraction, harmonization and plau-
sibility checks, transformations, loading into DW dimen-
sions, loading into DW fact tables, and updating. We use
this categorization for our template approach in the next
section.

3 ETL Patterns
The term "pattern" was first described in the meaning

used here in the domain of architecture [9]. A pattern is
described as a three-part rule consisting of the relations be-
tween context, problem, and solution. A pattern is used for
recurrent problems and describes the core solution of this
problem. For pattern users, it is necessary to identify prob-
lem, context, and solution in an easy way. Therefore, tem-
plates should be used to structure all patterns uniformly.

We derive our pattern structure from software engineer-
ing patterns because of the similarities between Software
Design and ETL processes. A template consists of different
elements such as name and description. For examples of
templates in object-oriented software design see [10], for
software architecture design patterns see [11], and for the

domain of data movement see [12]. They all have in com-
mon that some elements are mandatory and others are op-
tional. Mandatory elements are the name of the pattern, con-
text, problem description, and core solution.

We see two levels of tasks in an ETL process: elemen-
tary and composite tasks. An elementary task inside an ETL
process is often represented by an operator in the tools. A
decomposition is not useful, although there might exist an
application that allows a decomposition. We present the
Aggregator Pattern as an example pattern for solving an
elementary ETL task in Section 3.1.

Elementary tasks can be used in a composite task. A
composite task is the sequence of several tasks or operators
and therefore more complex. We can classify the compos-
ite tasks according to the ETL steps described in Section 2.
Apart from the loading into the DW dimensions, all cat-
egories and consequently all ETL patterns are independent
of the DW schema. We support the design of composite
tasks in the ETL process by including composition proper-
ties. These composition properties describe categories of
tasks that are executed before or after the composite task.
Figure 3 depicts this composition property for the History
Pattern described in Section 3.2. Before the History Task is
performed, loading into the DW dimensions and transfor-
mations may be performed. After the completion of the His-
tory Task, a loading into DW fact tables or into DW dimen-
sions is possible. Note that all elements are optional in this
example.

Providing this information, a sequence structure can be
defined and visualized as we present in Figure 2. In this
way, the complete design of the ETL process can be given
at an abstract level and customization of the ETL process
can easily implemented.

We structure our ETL patterns according to the tem-
plate shown in Table 1.

In the following, we present three ETL patterns as ex-
amples. In our first example, an elementary ETL task is
presented, the aggregator pattern. In the other two exam-
ples, we present composite ETL tasks: the history pattern,
where data is stored in the DW according to changes in
DW dimensions, and the duplicates pattern for the detec-
tion of duplicates.

The process of transferring the data into the Data
Warehouse is called Extract-Transform-Load (ETL)

Although the ETL process
can be performed in any
individually programmed
application, commercial
ETL tools are often used

“
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3.1 The Aggregator Pattern
Name: Aggregator Pattern
Intention: Data sets should be aggregated via this pat-

tern within ETL processes.
Classification: Elementary task
Context: From a database or file data on a fine-grained

level are loaded into the DW.
Problem: The DW data model does not require data at

a fine-grained level. If data from the operational  system is
not needed at a fine-grained level, two problems may oc-
cur: more storage is required in the DW, and performance
decreases due to more data having to be processed.

Solution: An ETL operator is used that collects data
from the sources and transforms them into the desired granu-
larity.

Resulting Context: A performance increase can be ob-
tained, in the DW system as well as in the ETL process,
through the reduction of data. Furthermore, the required stor-
age space is reduced. However, one disadvantage is that
there exists no inverse operation, so the inference to origi-
nal data is not possible. If data granularity changes, infor-
mation loss may result.

3.2 The History Pattern
Name: History Pattern
Intention: Data sets in the dimension tables should be

marked and cataloged.
Classification: Composite task in the category of di-

mension loading for star schema.
Context: Product, Location, and Time are dimension

in the DW that can change over time. Analyses in the con-

text of master data can be done according to the dimen-
sions.

Problem: Master data changes only occasionally, but
they do sometimes change (such as the last name of a per-
son). These changes should be taken into account in the
dimension tables. However, challenges occur due to the use
of domain keys that change over time, thus they cannot be
use as primary keys. This is in contrast to the modeling of
dimension tables in the star schema. Another problem is
the use of domain keys if redundancy is required.

Solution: An important challenge is to store old and
new data in the DW system. Furthermore, a relation of fact
table and dimension data is necessary. For this purpose, the
dimensional table has to be extended by additional attributes.
In a first step, a virtual primary key is added, together with
one or more attribute/s storing current or up-to-date infor-
mation. The attributes valid_from and valid to are used to
store the information about when the data was valid. This
is described differently in the literature, for example as
changes of type II dimensions [10] or as snapshot history
[13]. For every data set, a decision has to be made: either it
is a new dataset, an updated one, or a data set that already
existed in the dimension tables of the DW. For this com-
parison, a key should be used that is persistent in time, such
as the domain key. Every source data set is mapped with
this key to dimensions. If this is not possible, a new entry is
identified. If all attributes are equal for the source data set
compared to a data set in the DW, an existing one is identi-
fied. Otherwise an updated data set is detected. A new data
set has to be stored in the dimension tables and the attributes
valid_from and valid_to as well as the virtual key have to
be generated and timeliness set to true. For an update, the
timeliness and valid_to information of the already existing
dataset have to set before the source dataset can be en-
tered into the DW.

Resulting Context: All data are historicized, however this
influences performance due to the increase of the data amount
in the dimension tables. The domain key has to be unique;
otherwise, duplicate detection has to be performed first.

Figure  3: Composite Properties for History Pattern.

A pattern is described as a
three-part rule consisting of

the relations between context,
problem, and solution

We derive our pattern structure from software engineering
patterns because of the similarities between Software Design

and ETL processes

“
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Data Quality: All available information (data complete-
ness for dimensions) is accessible for analysis with the help
of the history pattern. Data timeliness is another advantage
for data quality issues, as long as the loading is performed
at short, regular time intervals.

Composite: Before an ETL task from the History Pat-
tern is performed, patterns from the categories Loading Di-
mension and Transformation may be applied. The History
Pattern can be followed by patterns from the Loading Facts
and Loading Dimension categories.

3.3 The Duplicates Pattern
Duplicate detection is a common but complex task in

ETL processes. With our pattern template, we briefly de-
scribe the solution, although in practice this should be de-
scribed more comprehensively, see [14][15][16] for more
details.

Name: Duplicates Pattern
Intention: This pattern reduces redundancy in the DW

data; in the best case, it eliminates redundancy completely.
Classification: Composite task in the category transfor-

mation.
Context: Data from heterogeneous sources (e.g., appli-

cations, databases, files) have to be loaded into the DW.
Problem: A data hub for the integration of data is not

always available, therefore master data redundancy occurs
in different business applications. A duplicate are two or
more data sets that describe the same real-world object. Data
in the DW should give a consolidated view and must be free
of duplicates.

Solution: Duplicates have to be identified and deleted.
As a first step, data have to be homogenized. This includes
conversions, encodings, and separations of all comparative
attributes. Partitioning of data reduces comparison effort,
but must be chosen with caution in order not to miss dupli-
cates. The comparison is based on similarity measures that
help to identify duplicates. There exist different methods
and measures based on the data context.

A data fusion of identified duplicates has to be carried
out. Aspects of uncertainty and inconsistencies have to be
considered in this context. Inconsistency means that seman-
tically identical attributes have different values.  Uncertainty
occurs if only null values are available. Data conflict avoid-
ance can be carried out via the survivor strategy [17], where
a predefined  source entry is favored against all others, or
via  set-based merge [9], where the disjunction of all val-
ues is stored. In contrast, data conflict resolution can be
carried out via a decision strategy, where an entry is deter-
mined from the sources, or a mediation strategy, where new
values can be computed.

Resulting Context: Duplicates are only partially de-
tected. Due to complexity of the duplicate detection, the
ETL designer has to carefully consider data context and
appropriate methods for measuring similarities or partition-
ing strategy.

Data Quality: The data quality issue non-redundancy
is supported with this pattern.

Composite: The Duplicates Pattern can be preceded by
patterns from the Transformation category as well as from
the category Harmonization & Plausibility Check. The cat-
egories Transformation, Updating, and Loading Dimension
include patterns  that can be used for subsequent tasks, see
Figure 4.

4 Conclusion and Future Work
The creation of complex ETL processes is often a chal-

lenging task for ETL designers. This complexity is compa-
rable to software engineering, where patterns are used to
structure the required work and support software architects
and developers. We propose ETL patterns for the support
of ETL designers. This provides an adequate structure for

Figure  4: Composite Properties of the Duplicates Pattern.
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We plan to create an ETL pattern catalogue with descriptions of
most common ETL tasks and the corresponding challenges

performing recurring tasks and allows developers to apply
solutions more easily. In this paper we have presented  a
template for the general description of ETL patterns. Fur-
thermore, we have presented three examples.

As future work, we plan to create an ETL pattern cata-
logue with descriptions of most common ETL tasks and the
corresponding challenges. This includes an evaluation of
the pattern catalogue as well as the application to different
ETL tools.
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