
2 Presentation. Business Intelligence: Improving Decision-Making in
Organizations — Jorge Fernández-González and Mouhib Alnoukari

4 Business Information Visualization — Josep-Lluís Cano-Giner

14 BI Usability: Evolution and Tendencies — R. Dario Bernabeu
and Mariano A. García-Mattío

20 Towards Business Intelligence Maturity — Paul Hawking

29 Business Intelligence Solutions: Choosing the Best solution
for your Organization — Mahmoud Alnahlawi

38 Strategic Business Intelligence for NGOs — Diego Arenas-
Contreras

43 Data Governance, what? how? why? — Óscar Alonso-Llombart

49 Designing Data Integration: The ETL Pattern Approach — Veit
Köppen, Björn Brüggemann, and Bettina Berendt

56 Business Intelligence and Agile Methodologies for Knowledge-
Based Organizations: Cross-Disciplinary Applications — Mouhib
Alnoukari

60 Social Networks for Business Intelligence — Marie-Aude Aufaure
and Etienne Cuvelier

67 From Novática (ATI, Spain)
Free Software
AVBOT: Detecting and fixing Vandalism in Wikipedia — Emilio-
José Rodríguez-Posada — Winner of the 5th Edition of the Novática
Award

71 From Pliroforiki (CCS, Cyprus)
Enterprise Information Systems
Critical Success Factors for the Implementation of an Enterprise
Resource Planning System — Kyriaki Georgiou and Kyriakos E.
Georgiou

77 Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

 Vol. XII, issue No. 3, July 2011

CEPIS NEWS

UPENET (UPGRADE European NETwork)

CEPIS UPGRADE is the European Journal
for the Informatics Professional, published bi-
monthly at <http://cepis.org/upgrade>

Publisher
CEPIS UPGRADE is published by CEPIS (Council of Euro-
pean Professional Informatics Societies, <http://www.
cepis.org/>), in cooperation with the Spanish CEPIS society
ATI (Asociación de Técnicos de Informática, <http://
www.ati.es/>) and its journal Novática

CEPIS UPGRADE monographs are published jointly with
Novática, that publishes them in Spanish (full version printed;
summary, abstracts and some articles online)

CEPIS UPGRADE was created in October 2000 by CEPIS and was
first published by Novática and INFORMATIK/INFORMATIQUE,
bimonthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies)

CEPIS UPGRADE is the anchor point for UPENET (UPGRADE Euro-
pean NETwork), the network of CEPIS member societies’ publications,
that currently includes the following ones:
• inforewiew, magazine from the Serbian CEPIS society JISA
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Rafael Fernández Calvo
Associate Editor: Fiona Fanning

Editorial Board
Prof. Vasile Baltac, CEPIS President
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS President Elect
Luis Fernández-Sanz, ATI (Spain)
Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Dubravka Dukic (inforeview, Serbia)
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody.

Cover page designed by Concha Arias-Pérez
"Upcoming Resolution" / © ATI 2011
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <info@cepis.org>
Subscriptions
If you wish to subscribe to CEPIS UPGRADE please send an
email to info@cepis.org with ‘Subscribe to UPGRADE’ as the
subject of the email or follow the link ‘Subscribe to UPGRADE’
at <http://www.cepis.org/upgrade>

Copyright
© Novática 2011 (for the monograph)
© CEPIS 2011 (for the sections Editorial, UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (October 2011)
"Green ICT"

(The full schedule of CEPIS UPGRADE is available at our website)

Monograph
Business Intelligence
(published jointly with Novática*)
Guest Editors: Jorge Fernández-González and Mouhib Alnoukari

CEPIS UPGRADE Vol. XII, No. 3, July 2011 49© Novática

Business Intelligence

Keywords: Business Intelligence, Data Integration, Data
Warehousing, Design Patterns, ETL, Process.

1 Introduction
Business Intelligence (BI) methods are built on high-

dimensional data, and management decisions are often based
upon data warehouses. Such a system represents internal
and external data from heterogeneous sources in a global
schema. Sources can be operational data bases, files, or in-
formation from the Web. An essential success factor for
Business Data Warehousing is therefore the integration of
heterogeneous data into the Data Warehouse. The process
of transferring the data into the Data Warehouse is called
Extract-Transform-Load (ETL).

Although the ETL process can be performed in any in-
dividually programmed application, commercial ETL tools
are often used [1]. Such tools are popular because interfaces
are available for most popular databases, and because
visualizations, integrated tools, and documentation of ETL
process steps are provided. However, a tool does not guar-
antee successful data integration. In fact, the ETL expert
has to cope with several issues. Many of the challenges are
recurrent. Therefore, we believe that a support for ETL proc-
esses is possible and can reduce design effort. We propose
the use of the pattern approach from software engineering
because similarities exist between the ETL process and the
software design process.

Software patterns are used in object-oriented design as
best practices for recurring challenges in software engineer-
ing. They are general, re-usable solutions: not finished de-
signs that can be transformed directly into code, but descrip-
tions of how to solve a problem. These patterns are described
in templates and often included in a catalogue. Consequently,
a software developer can access these templates and imple-
ment best practices easily. The idea of design patterns has
been adapted to different domains including ontology de-
sign [2], usage-interface design [3], and information visu-
alization [4].

In the domain of enterprise system integration, the pat-
tern approach is adapted by [5]. [6] develops patterns for
the design of service-oriented architectures. In this paper,
we present patterns for the design and implementation of
ETL processes.

The paper is organized as follows: in Section 2, the ETL
process is described, and in Section 3 we present the ETL

Designing Data Integration: The ETL Pattern Approach
Veit Köppen, Björn Brüggemann, and Bettina Berendt

The process of ETL (Extract-Transform-Load) is important for data warehousing. Besides data gathering from heteroge-
neous sources, quality aspects play an important role. However, tool and methodology support are often insufficient. Due
to the similarities between ETL processes and software design, a pattern approach is suitable to reduce effort and increase
understanding of these processes. We propose a general design-pattern structure for ETL, and describe three example
patterns.

Authors

Veit Köppen received his MSc degree in Economics from
Humboldt-Universität zu Berlin, Germany, in 2003. From 2003
until 2008, he worked as a Research Assistant in the Institute of
Production, Information Systems and Operation Research, Freie
Universität Berlin, Germany. He received a PhD (Dr. rer. pol.)
in 2008 from Freie Universität Berlin. He is now a member of
the Database Group at the Otto-von-Guericke University
Magdeburg, Germany. Currently, he is the project coordinator
in the project funded by the German Ministry of Education and
Research. His research interests include Business Intelligence,
data quality, interoperability aspects of embedded devices, and
process management. More information at <http://wwwiti.cs.
uni-magdeburg.de/~vkoeppen>. <veit.koeppen@iti.cs.uni-
magdeburg.de>

Björn Brüggemann studied Computer Science at Otto-von-
Guericke-University Magdeburg, Germany, and received his
Masters Degree in 2010. In his Masters Thesis, he focused on
Data Warehousing and the ETL process in the context of Data
Quality. Since 2010, he has been working at Capgemini, Berlin,
Germany, in Business Intelligence and Data Warehouse projects.
More information at <http://www.xing.com/profile/Bjoern_
Brueggemann3>. <Brueggemann.Bjoern@gmx.de>

Bettina Berendt is a Professor in the Artificial Intelligence and
Declarative Languages Group at the Department of Computer
Science of K.U. Leuven, Belgium. She obtained her PhD in
Computer Science/Cognitive Science from the University of
Hamburg, Germany, and her Habilitation postdoctoral degree
in Information Systems from Humboldt University Berlin,
Germany. Her research interests include Web and text mining,
semantic technologies and information visualization and their
applications, especially for information literacy and privacy.
More information at <http://people.cs.kuleuven.be/~bettina.
berendt>. <Bettina.Berendt@cs.kuleuven.be>

pattern approach with three example patterns. A brief evalu-
ation of these patterns is presented in Section 4, and in Sec-
tion 5 we summarize our work.

2 The ETL Process
Data Warehouses (DW) are often described as an archi-

tecture where heterogeneous data sources, providing data
for business analysis, are integrated into a global data
schema. Besides the basis database, where data is stored at

50 CEPIS UPGRADE Vol. XII, No. 3, July 2011 © Novática

Business Intelligence

a fine-grained level, data marts for domain-specific analy-
ses are stored, containing more coarse-grained information.
Furthermore, management tools such as data-warehouse
managers and metadata managers are included in the archi-
tecture. A DW reference architecture is given in [7].

The process of data integration is performed in the stag-
ing area in the architecture. Here, heterogeneous data are
extracted from their origins. Adapters and interfaces can be
used to extract data from different sources such as opera-
tional (OLTP) databases, XML files, plain files, or the Web.
This extraction is followed by transformation into the DW
schema. This schema depends on the DW architecture and
the domain or application scenarios. In practice, relational
data warehouse are used and star or snowflake schema are
applied as relational On-Line Analytical Processing
(ROLAP) technologies, see for instance [8]. In addition,
transformations according to data formats and aggregations
as well as tasks related to data quality such as the identifi-
cation of duplicates are performed during this step. Finally,
the data is loaded from the staging area into the basis data-
base within the DW. Based on this, a cube or different data
marts can be built, data mining algorithms applied, reports
generated, and analyses performed. In Figure 1, we present
the ETL process in its generic steps.

A monitor observes a data source for changes. This is
necessary to load updated data into the DW. The monitor-
ing strategy is defined depending on the data source. Two
main strategies exist: either all changes are processed to the
monitor and the delta of all changes can be computed, or
the monitor can only identify that changes occurred. We
distinguish the following mechanisms:

Reactions are selected according to the event-condi-
tion-action rules for defined situations.

Relevant data or changes are stored in an additional
data store, therefore the data is replicated.

Logs can be parsed and used, which are otherwise
used for recovery.

Applications that update data can be monitored via
time stamp methods or snapshots.

The extraction operation is responsible for loading data
from the source into the staging area. This operation de-
pends upon monitoring the method and the data source. For
example, it is possible that the monitor identifies a change,
but the extraction process happens later, at a time predefined
by the extraction operation. There exist different strategies
for the extraction operation:

Periodically, where data is extracted continuously
and recurrently at a given time interval.Tthis interval de-
pends on requirements on timeliness as well as dynamics in
the source.

Query-based, where the extraction is started when
an explicit query is performed instantly. Where all changes
are directly propagated into the dw.

Event-based, where a time-, external- or system-rel-
evant event starts the extraction operation.

The transformation within the staging area fulfils the
tasks of data integration and data fusion. All data are inte-
grated and transformed into the DW schema, and at the same
time, data quality aspects are addressed, such as duplicate
identification and data cleaning. Different transformations
exist and can be categorized as follows:

Key handling: since not all database keys can be
included into the dw schema, surrogates are used.

Data-type harmonization, where data are loaded
from heterogeneous data sources.

Conversion of encodings of the same domain at-

Figure 1: The ETL Process.

Business Intelligence methods are built on high-dimensional
data, and management decisions are often

based upon data warehouses

“
”

CEPIS UPGRADE Vol. XII, No. 3, July 2011 51© Novática

Business Intelligence

Figure 2: ETL Process with Patterns from Different Categories.

Table 1: ETL Pattern Structure.

Element

META-DESCRIPTION

Mandatory?

Name This name identifies the pattern in the catalogue.

Yes

Intention A concise description at which use the pattern aims. Yes

Classification A reference to elementary or composite task with an optional
refinement on the ETL steps.

Yes

Context This describes the situation where the problem occurs.

Yes

Problem A detailed description of the problem.

Yes

Solution A concise description of the solution.

Yes

Resulting
Context

This describes the outcome and the advantages and
disadvantages of using this pattern.

No

Data Quality Which data quality issues are addressed and which data
quality dimension/s is/are improved.

No

Variants A reference to similar and adapted patterns.

No

Alternative
Naming

Other commonly used names of the pattern. No

Composite
Property

Only composite patterns use this description and state the
composition property of the pattern.

No

Used in This element describes briefly where the pattern is applied.
this helps in the understanding and decision whether a pattern
should be used.

No

Implementation For various ETL tools, the solution is put into practice
differently, therefore different implementations are referenced
here.

No

Demonstration A reference to an exemplary implementation of this pattern. No

52 CEPIS UPGRADE Vol. XII, No. 3, July 2011 © Novática

Business Intelligence

tribute value to a common encoding (e.g., 0/1 and m/f for
gender are mapped to m/f).

Unification of strings, because the same objects can
be represented differently (e.g., conversion to lower case).

Unification of date format: although databases han-
dle different data formats, some other sources such as files
can only provide a fixed data format.

Conversion of scales and scale units, such as cur-
rency conversions.

Combination or separation of attributes, depend-
ing on the attribute level of the heterogeneous sources and
the DW.

Computation and imputation, in the case that val-
ues can be derived but are not given in the source systems.

The loading of the extracted and transformed data into
the DW (either into the basis database or into data marts)
can occur in online or offline mode. If the DW is or should
be accessed while the loading takes place, an online strat-
egy is necessary. This should be used for incremental up-
dates, where the amount of loading is small. In the first (ini-
tial) loading of a DW, the loading is high and the DW is run
in an offline mode for the users. At this time, the loading
operation has exclusive access to all DW tables. Another
task for the load operation is the historicization of data; old
data is not deleted in a DW but should be marked as depre-
cated.

The ETL process can be refined into several ETL steps,
where each step consists of an initialization, a task execu-
tion, and a completion. These steps enable ETL designers
to structure their work. The following steps can be neces-
sary in an ETL process: extraction, harmonization and plau-
sibility checks, transformations, loading into DW dimen-
sions, loading into DW fact tables, and updating. We use
this categorization for our template approach in the next
section.

3 ETL Patterns
The term "pattern" was first described in the meaning

used here in the domain of architecture [9]. A pattern is
described as a three-part rule consisting of the relations be-
tween context, problem, and solution. A pattern is used for
recurrent problems and describes the core solution of this
problem. For pattern users, it is necessary to identify prob-
lem, context, and solution in an easy way. Therefore, tem-
plates should be used to structure all patterns uniformly.

We derive our pattern structure from software engineer-
ing patterns because of the similarities between Software
Design and ETL processes. A template consists of different
elements such as name and description. For examples of
templates in object-oriented software design see [10], for
software architecture design patterns see [11], and for the

domain of data movement see [12]. They all have in com-
mon that some elements are mandatory and others are op-
tional. Mandatory elements are the name of the pattern, con-
text, problem description, and core solution.

We see two levels of tasks in an ETL process: elemen-
tary and composite tasks. An elementary task inside an ETL
process is often represented by an operator in the tools. A
decomposition is not useful, although there might exist an
application that allows a decomposition. We present the
Aggregator Pattern as an example pattern for solving an
elementary ETL task in Section 3.1.

Elementary tasks can be used in a composite task. A
composite task is the sequence of several tasks or operators
and therefore more complex. We can classify the compos-
ite tasks according to the ETL steps described in Section 2.
Apart from the loading into the DW dimensions, all cat-
egories and consequently all ETL patterns are independent
of the DW schema. We support the design of composite
tasks in the ETL process by including composition proper-
ties. These composition properties describe categories of
tasks that are executed before or after the composite task.
Figure 3 depicts this composition property for the History
Pattern described in Section 3.2. Before the History Task is
performed, loading into the DW dimensions and transfor-
mations may be performed. After the completion of the His-
tory Task, a loading into DW fact tables or into DW dimen-
sions is possible. Note that all elements are optional in this
example.

Providing this information, a sequence structure can be
defined and visualized as we present in Figure 2. In this
way, the complete design of the ETL process can be given
at an abstract level and customization of the ETL process
can easily implemented.

We structure our ETL patterns according to the tem-
plate shown in Table 1.

In the following, we present three ETL patterns as ex-
amples. In our first example, an elementary ETL task is
presented, the aggregator pattern. In the other two exam-
ples, we present composite ETL tasks: the history pattern,
where data is stored in the DW according to changes in
DW dimensions, and the duplicates pattern for the detec-
tion of duplicates.

The process of transferring the data into the Data
Warehouse is called Extract-Transform-Load (ETL)

Although the ETL process
can be performed in any
individually programmed
application, commercial
ETL tools are often used

“

”

“ ”

CEPIS UPGRADE Vol. XII, No. 3, July 2011 53© Novática

Business Intelligence

3.1 The Aggregator Pattern
Name: Aggregator Pattern
Intention: Data sets should be aggregated via this pat-

tern within ETL processes.
Classification: Elementary task
Context: From a database or file data on a fine-grained

level are loaded into the DW.
Problem: The DW data model does not require data at

a fine-grained level. If data from the operational system is
not needed at a fine-grained level, two problems may oc-
cur: more storage is required in the DW, and performance
decreases due to more data having to be processed.

Solution: An ETL operator is used that collects data
from the sources and transforms them into the desired granu-
larity.

Resulting Context: A performance increase can be ob-
tained, in the DW system as well as in the ETL process,
through the reduction of data. Furthermore, the required stor-
age space is reduced. However, one disadvantage is that
there exists no inverse operation, so the inference to origi-
nal data is not possible. If data granularity changes, infor-
mation loss may result.

3.2 The History Pattern
Name: History Pattern
Intention: Data sets in the dimension tables should be

marked and cataloged.
Classification: Composite task in the category of di-

mension loading for star schema.
Context: Product, Location, and Time are dimension

in the DW that can change over time. Analyses in the con-

text of master data can be done according to the dimen-
sions.

Problem: Master data changes only occasionally, but
they do sometimes change (such as the last name of a per-
son). These changes should be taken into account in the
dimension tables. However, challenges occur due to the use
of domain keys that change over time, thus they cannot be
use as primary keys. This is in contrast to the modeling of
dimension tables in the star schema. Another problem is
the use of domain keys if redundancy is required.

Solution: An important challenge is to store old and
new data in the DW system. Furthermore, a relation of fact
table and dimension data is necessary. For this purpose, the
dimensional table has to be extended by additional attributes.
In a first step, a virtual primary key is added, together with
one or more attribute/s storing current or up-to-date infor-
mation. The attributes valid_from and valid to are used to
store the information about when the data was valid. This
is described differently in the literature, for example as
changes of type II dimensions [10] or as snapshot history
[13]. For every data set, a decision has to be made: either it
is a new dataset, an updated one, or a data set that already
existed in the dimension tables of the DW. For this com-
parison, a key should be used that is persistent in time, such
as the domain key. Every source data set is mapped with
this key to dimensions. If this is not possible, a new entry is
identified. If all attributes are equal for the source data set
compared to a data set in the DW, an existing one is identi-
fied. Otherwise an updated data set is detected. A new data
set has to be stored in the dimension tables and the attributes
valid_from and valid_to as well as the virtual key have to
be generated and timeliness set to true. For an update, the
timeliness and valid_to information of the already existing
dataset have to set before the source dataset can be en-
tered into the DW.

Resulting Context: All data are historicized, however this
influences performance due to the increase of the data amount
in the dimension tables. The domain key has to be unique;
otherwise, duplicate detection has to be performed first.

Figure 3: Composite Properties for History Pattern.

A pattern is described as a
three-part rule consisting of

the relations between context,
problem, and solution

We derive our pattern structure from software engineering
patterns because of the similarities between Software Design

and ETL processes

“
”

“

”

54 CEPIS UPGRADE Vol. XII, No. 3, July 2011 © Novática

Business Intelligence

Data Quality: All available information (data complete-
ness for dimensions) is accessible for analysis with the help
of the history pattern. Data timeliness is another advantage
for data quality issues, as long as the loading is performed
at short, regular time intervals.

Composite: Before an ETL task from the History Pat-
tern is performed, patterns from the categories Loading Di-
mension and Transformation may be applied. The History
Pattern can be followed by patterns from the Loading Facts
and Loading Dimension categories.

3.3 The Duplicates Pattern
Duplicate detection is a common but complex task in

ETL processes. With our pattern template, we briefly de-
scribe the solution, although in practice this should be de-
scribed more comprehensively, see [14][15][16] for more
details.

Name: Duplicates Pattern
Intention: This pattern reduces redundancy in the DW

data; in the best case, it eliminates redundancy completely.
Classification: Composite task in the category transfor-

mation.
Context: Data from heterogeneous sources (e.g., appli-

cations, databases, files) have to be loaded into the DW.
Problem: A data hub for the integration of data is not

always available, therefore master data redundancy occurs
in different business applications. A duplicate are two or
more data sets that describe the same real-world object. Data
in the DW should give a consolidated view and must be free
of duplicates.

Solution: Duplicates have to be identified and deleted.
As a first step, data have to be homogenized. This includes
conversions, encodings, and separations of all comparative
attributes. Partitioning of data reduces comparison effort,
but must be chosen with caution in order not to miss dupli-
cates. The comparison is based on similarity measures that
help to identify duplicates. There exist different methods
and measures based on the data context.

A data fusion of identified duplicates has to be carried
out. Aspects of uncertainty and inconsistencies have to be
considered in this context. Inconsistency means that seman-
tically identical attributes have different values. Uncertainty
occurs if only null values are available. Data conflict avoid-
ance can be carried out via the survivor strategy [17], where
a predefined source entry is favored against all others, or
via set-based merge [9], where the disjunction of all val-
ues is stored. In contrast, data conflict resolution can be
carried out via a decision strategy, where an entry is deter-
mined from the sources, or a mediation strategy, where new
values can be computed.

Resulting Context: Duplicates are only partially de-
tected. Due to complexity of the duplicate detection, the
ETL designer has to carefully consider data context and
appropriate methods for measuring similarities or partition-
ing strategy.

Data Quality: The data quality issue non-redundancy
is supported with this pattern.

Composite: The Duplicates Pattern can be preceded by
patterns from the Transformation category as well as from
the category Harmonization & Plausibility Check. The cat-
egories Transformation, Updating, and Loading Dimension
include patterns that can be used for subsequent tasks, see
Figure 4.

4 Conclusion and Future Work
The creation of complex ETL processes is often a chal-

lenging task for ETL designers. This complexity is compa-
rable to software engineering, where patterns are used to
structure the required work and support software architects
and developers. We propose ETL patterns for the support
of ETL designers. This provides an adequate structure for

Figure 4: Composite Properties of the Duplicates Pattern.

 The creation of complex ETL
processes is often a challenging

task for ETL designers. This
complexity is comparable
to software engineering

“

”

CEPIS UPGRADE Vol. XII, No. 3, July 2011 55© Novática

Business Intelligence

We plan to create an ETL pattern catalogue with descriptions of
most common ETL tasks and the corresponding challenges

performing recurring tasks and allows developers to apply
solutions more easily. In this paper we have presented a
template for the general description of ETL patterns. Fur-
thermore, we have presented three examples.

As future work, we plan to create an ETL pattern cata-
logue with descriptions of most common ETL tasks and the
corresponding challenges. This includes an evaluation of
the pattern catalogue as well as the application to different
ETL tools.

References
[1] R. Schütte, Thomas Rotthowe, and Roland Holten, edi-

tors. Data Warehouse Managementhandbuch. Springer-
Verlag, Berlin et al., 2001.

[2] OntologyDesignPatterns.org. <http://ontology design
patterns.org>.

[3] S.A. Laakso. Collection of User Interface Design Pat-
terns. University of Helsinki, Dept. of Computer Sci-
ence. <http://www.cs.helsinki.fi/u/salaakso/patterns/
index.html. 2003> [accessed July 20, 2011].

[4] J. Heer and M. Agrawala. Software Design Patterns
for Information Visualization. IEEE Transactions on
Visualization and Computer Graphics, 12 (5): 853,
2006.

[5] G. Hohpe and B. Woolf. Enterprise integration patterns.
Designing, building, and deploying messaging solu-
tions. Addison-Wesley, Boston, 2004.

[6] T. Erl. SOA Design Patterns. Prentice Hall PTR, Bos-
ton, 2009.

[7] A. Bauer and H. Günzel. Data-Warehouse-Systeme.
Architektur, Entwicklung, Anwendung. dpunkt Verlag,
Heidelberg, 2009.

[8] E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP
to user-analysts: An IT mandate. Technical report, Codd
& Associates, 1993.

[9] D. Apel, W. Behme, R. Eberlein, and C. Merighi.
Datenqualität erfolgreich steuern. Praxislösungen für
Business-Intelligence-Projekte. Carl Hanser Verlag,
2009.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1995.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture.
A System of Patterns. Volume 1. Wiley, 1996.

[12] P. Teale. Data Patterns. Patterns and Practices. Microsoft
Corporation, 2003.

[13 H.-G. Kemper, W. Mehanna, and C. Unger. Business In-
telligence - Grundlagen und praktische Anwendungen.
Eine Einführung in die IT-basierte Management

unterstützung. Vieweg Verlag, Wiesbaden, 2006.
[14] I. P. Fellegi and A.B. Sunter. A Theory for Record Link-

age. Journal of the American Statistical Association,
64(328):1183–1210, 1969.

[15] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios.
Duplicate record detection: A survey. IEEE Transac-
tions on Knowledge and Data Engineering, 19:1–16,
2007.

[16] C. Batini and M. Scannapieco. Data Quality: Concepts,
Methodologies and Techniques. Springer, 2006.

[17] R. Hollmann and S. Helmis. Webbasierte
Datenintegration. Ansätze zur Messung und Sicherung
der Informationsqualität in heterogenen Datenbeständen
unter Verwendung eines vollständig webbasierten
Werkzeuges. Vieweg Verlag, 2009.

“ ”

