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1 Introduction

The goal of the current paper is to introduce an existing, but as far as we know not
yet linguistically applied Multidimensional Scaling (MDS) method called Individual
Differences Scaling (henceforth, INDSCAL) to the field of variationist aggregation
studies. In such aggregation studies, e.g. Seguy (1971), Goebl (1982), Geeraerts et al.
(1999) or Nerbonne (2006), many linguistic variables are considered simultaneously
to reveal a structure among the language varieties that are being described by the
input variables. Although the focus of aggregation studies is specifically on the
structure of language varieties, their explanatory power is reduced by the fact that
the behavior of the underlying linguistic variables is completely obscured (Horan,
1969).! Technically speaking, the loss of the behavior of the variables is due to the
fact that all the variables are averaged out by means of an aggregating distance metric
to form a single varieties x varieties distance matrix. This step is tangibly explained
by Szmrecsanyi (2011, Fig. 1). Therefore, we propose to use INDSCAL as a different
aggregation technique that can take a distance matrix for every (group of) variable(s)
as its input, and which is able to reveal both the structure of the varieties and the
structure of the (groups of) variables. Intuitively, one could say that the aggregation
of the variables is postponed and moved into the MDS phase of the analysis.

To account for individual differences is an emerging trend in aggregation studies.
Heeringa (2004, p. 268-270 ) already used complex calculations to retrieve which
individual variables are strongly represented in the clusters that emerge from the
aggregation. More in line with INDSCAL, the recent work of e.g. Spruit et al. (2009)
shows how dialectometrists are already producing separate distance matrices for
different types of variables, but without an overarching method (except for basic
correlation measures) to bring the separate results together. A similar approach can
be found in Cysouw et al. (2008), where the distance matrices for individual features
are compared to the aggregated solution. The benefit of INDSCAL over these more
post-hoc approaches is that INDSCAL is an integrated branch of the well-established
Multidimensional Scaling method, that is already commonly used in aggregation
studies. This link to the existing framework of aggregation studies is also its main
benefit over the use of bipartite spectral graph partitioning (Wieling and Nerbonne,
2011) or Generalized Additive Models with mixed-effects (Wieling et al., 2011)



This paper is structured as follows. We explain INDSCAL in Section 2 by intro-
ducing the specific terminology of the method, interpreting an example analysis and
giving some mathematical properties. To show the value of INDSCAL for variationist
aggregation studies, we apply the method to a dataset that was gathered by Geeraerts
et al. (1999) to show lexical convergence between two national varieties of Dutch. We
revisit the data and findings from Geeraerts et al. (1999) in Section 3. In Section 4 we
apply INDSCAL to that dataset and we show how the INDSCAL analysis confirms and
extends the previous findings. Finally, we conclude the paper by summing up further
possible applications of INDSCAL in Section 5.

2 Individual Differences Scaling

Individual Differences Scaling, abbreviated as INDSCAL, is a fairly standard Multidi-
mensional Scaling (MDS) technique that is described in most MDS textbooks, e.g.
Cox and Cox (2001) or Borg and Groenen (2005). These textbooks usually begin by
introducing two-way MDS, where two-way refers to the fact that the dissimilarity
input matrix has two dimensions (rows and columns), representing the proximities
between pairs of objects. Because the rows and the columns carry the same objects,
this is called one-mode input. Usually, these proximities are averages of proximities
from multiple sources, e.g. test subjects or object characteristics. However, one of the
objections against two-way one-mode MDS, made already by Horan (1969) and many
people since, is that the averaging and aggregation of many sources into a single dis-
tance matrix is sometimes not acceptable, because it does no justice to the individual
differences between the sources?. Therefore, Carroll and Chang (1970) proposed the
Individual Differences Scaling method, abbreviated as INDSCAL. INDSCAL is a type
of three-way MDS, and can take several objects x objects matrices as its input, thus
objects x objects x sources. Because there are two types of input, i.e. objects and
sources, this is called a two-mode input. Typically, it is used to show the individual
differences between a number of judges (sources) who have rated the objects under
investigation. Well-known examples are The Whisky Tasting experiment and The Body
Part study, both of which will be discussed further on.

Let it be clear, however, that this method still assumes considerable similarity be-
tween the sources, just as is required for a two-way MDS. Indeed, if there is not at least
some consensus among all the sources, aggregation makes no sense. INDSCAL does
allow for somewhat more variation between the sources than a two-way one-mode
MDS, but not to the extent that the sources do not share some underlying character-
istics, sensitivities or judgmental processes, which can become the dimensions of the
MDS solution (Arabie et al., 1987, p. 21). In other words, individual differences scaling
as a method can be applied to datasets that are somewhere between two extremes.
The negative extreme is that aggregation is not possible because the sources that
we want to aggregate are too different from each other. The positive extreme is that
aggregation is the obvious thing to do, because the sources behave all very similar
and there is no need to account for the behavior of the individual sources.

Before we can look into an example output of INDSCAL, we need to introduce
some terminology. The input of an INDSCAL analysis is an array of proximity matri-
ces®. Every proximity matrix gives the (dis)similarities between all pairs of objects,
according to a source that quantifies and estimates these proximities. In the Whisky
Tasting experiment, n whisky experts are asked to compare all possible pairs of
whiskies. At the end of the experiment, there are n proximity matrices, and every ma-



trix represents the judgements of a single whisky expert. The output of an INDSCAL
analysis then consists of two parts: the Group Stimulus Space and the Configuration
Weights. The Group Stimulus Space (also called Stimulus Space, Group Space, Object
Space or Common Space) shows the low-dimensional solution for the objects (e.g.
whiskies) that is characteristic of the entire group of sources (e.g. all whisky experts
together). This solution can be interpreted in the same way as the solution of a
two-way MDS. The Configuration Weights (also called Source Weights) indicate the
importance attributed to each dimension of the Group Stimulus Space by each source
(e.g. the whisky experts). Although there is quite some mathematical complexity
behind these Configuration Weights (Arabie et al. (1987, p. 17-25), Borg and Groenen
(2005, Chapter 22)), the gist of the approach is the following. A Configuration Weight
of 1 means that the source (e.g. whisky expert) agrees with the distinction made on
the respective dimension of the Group Stimulus Space. If the Configuration Weight
is smaller than 1, the respective dimension is shrunken in the source’s perception,
effectively giving less importance or weight to the distinction that is made by the
dimension. If the Configuration Weight is larger than 1, the respective dimension
is stretched in the source’s perception, and thus the respective distinction should
be given more importance. However, it is not allowed to interpret the Configuration
Weights as percentages relative to some baseline or as probabilities, e.g. source A
gives twice as much importance to this dimension as source B (Arabie et al., 1987,
p. 23). Obviously, in order to benefit from the explanatory power of the Configura-
tion Weights, the interpretation of the Group Stimulus Space should be based on
meaningful dimensions. A non-dimensional interpretation (Borg and Groenen, 2005,
Chapter 4), i.e. an interpretation of the results that is not directly linked to the di-
mensions in the algorithm’s output, is not suited for INDSCAL. By matrix multiplying
the Group Stimulus Space with the Configuration Weights of a specific source (see
Equation 2), the Private Object Space for the source is generated, which can be re-
garded as the view of the source, if he were forced to accomodate his judgements
along the consensus dimensions of the Group Stimulus Space (e.g. the judgement of
a single whisky expert squeezed into the dimensions of the Group Stimulus Space).
Note that the Private Object Space of a certain source is not necessarily equivalent to
the two-way MDS of that source’s distance matrix.

Let us introduce the interpretation of the output of the method with the frequently
cited Body Parts example of Jacobowitz (1973). The goal of Jacobowitz (1973) is to dis-
cover how people conceptualize the human body, and whether this conceptualization
is different for children and adults. To find this out, he asked 15 children and 15 adults
to give similarity ratings for a number of body parts. The results of the INDSCAL
analysis, performed by Takane et al. (1977), of his 30 dissimilarity matrices are visually
presented in Fig. 1. The three dimensional Group Stimulus Space in Fig. 1a can be
dimensionally interpreted just as one would do with the solution of a two-way MDS.
The Group Stimulus Space represents the conceptual dimensions with which all indi-
viduals can agree to a certain degree; the degree with which they agree is captured
in the Configuration Weights. On the first dimension of the Group Stimulus Space
(vertical), a distinction between the head and the limbs is made. Dimension two
(horizontal) distinguishes the legs from the arms. And the third dimension (depth)
expresses a whole-part relationship with a cline from the full body at the front over
head, leg and arm in the middle, to ear, toe and finger at the back. The cubes of the
Configuration Weights plot in Fig. 1b answer the question how much importance do
children and adults give to the distinctions made by the consencus dimension of the
Group Stimulus Space? In Fig. 1b, the zero-value of all the Configuration Weights,



which indicates a spot where none of the distinctions from the Group Stimulus Space
are deemed important, is plotted in the left bottom corner at the back; the Configura-
tion Weights of the adults are indicated with a black cube, whereas the Configuration
Weights of the children are indicated with a white cube. It now becomes immediately
clear that the adults and children value the distinction of Dimension 2 (left to right)
differently. The adults are generally closer to the origin of Dimension 2, indicating
that they give little importance to this dimension, which distinguished the arms from
the legs. Children, however, have higher Configuration Weights for Dimension 2, and
this means that they make a more pronounced distinction between arms and legs.

Intuitively, the rationale behind INDSCAL is easy: every source is represented
in its own distance matrix; INDSCAL aggregates these distance matrices for the ag-
gregate perspective (yielding the Group Stimulus Space); and finally, the aggregate
perspective is compared to the individual input matrices (yielding the Configuration
Weights). Mathematically speaking, however, three-way Multidimensional Scaling
is fairly complex and its development knows many branches and competing ap-
proaches. Instead of giving a detailed account of its developmental history, the
mathematical properties of the different approaches and a review of the available
implementations, we refer the reader to the literature in Arabie et al. (1987), Cox and
Cox (2001, Chapter 10) and Borg and Groenen (2005, Chapter 22). For our analyses,
we stick to the INDSCAL approach of Carroll and Chang (1970) and we use an imple-
mentation of INDSCAL in the SMACOF package for R by de Leeuw and Mair (2009).
The package actually offers a specific way of finding the optimal lower-dimensional
MDS solution, called Scaling by MAjorizing a COmplicated Function, abbreviated
as SMACOE first proposed by de Leeuw (1977) and described in Cox and Cox (2001,
Section 11.2) and Borg and Groenen (2005, Chapter 8). The SMACOF approach in the
R package is applied to all sorts of metric and non-metric branches of multidimen-
sional scaling, including the INDSCAL approach to three-way MDS. We will make
use of the out-of-the-box implementation for our example analysis of a variationist
dataset, taken from Geeraerts et al. (1999).

Before we deal with the example analysis, we give the high level mathematical
properties of INDSCAL. In general, the problem for (metric) INDSCAL three-way MDS
consists of representing the given dissimilarity ; jx between objects i and j as seen
by individual k by a Euclidian distance d; jx. Given a solution G and Configuration
Weights Wy, that distance can be calculated as follows:
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wherei,j=1,...,n; k=1,...,K; a=1,...,m; Wy is an m x m diagonal matrix of
nonnegative weights w,,; for every dimension a for individual k; and G is the matrix
of coordinates of the Group Stimulus Space G. For an individual k, its individual
configuration X should be:

Xy = GWy )

To find the optimal solution for X; and G, the difference between the given in-
dividual dissimilarities and the distances, summed over the calculated individual
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(a) Group Stimulus Space: similarity of body parts according to 30 raters

(b) Configuration Weights: individual differences between 30 body
parts similarity raters

Fig. 1: Example of INDSCAL output, based on Jacobowitz (1973) and taken from
Takane et al. (1977) (Permission pending)

configurations needs to be as small as possible. This difference is called stress, repre-
sented by o. The stress that needs to minimized can be written as follows:

K
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The approach to minimize this total stress is called majorization (de Leeuw, 1977).
We refer the reader to Borg and Groenen (2005, Chapter 8) for a detailed elaboration
of majorization, its application in MDS, and the non-metric flavour of INDSCAL.

3 The dataset of Geeraerts et al. (1999)

The goal of the current paper is to show how INDSCAL can be applied to linguistic
aggregation studies. Therefore, we will perform INDSCAL on a dataset that has been
compiled and analysed in Geeraerts et al. (1999). One of the goals of the mono-
graph was to empirically investigate whether there is diachronic convergence or
divergence between 1950 and 1990 in the lexicon of Dutch as spoken in Belgium
and The Netherlands. With this goal in mind, a list of 32 concepts from two lexical
fields, i.e. Football and Clothes, was manually collected. For every concept, words
that name this concept were listed and counted in the corpus-materials introduced
below. As an example, the concept OFF-SIDE can be named in Dutch with the words
buitenspel or offside, or the concept DRESS can be named with jurk, japon or kleed.
The distance between two varieties is measured by means of observed preferences for
choosing a certain word to name a concept. The actual distance metric is introduced
below, but intuitively one could say that if both varieties prefer buitenspel over offside
to name the concept OFF-SIDE, they are closer together then if one of the varieties
prefers buitenspel and the other variety prefers offside.

As Geeraerts et al. (1999) want to study the diachronic movement of two national
varieties of Dutch empirically, these words have to be attested in actual language
material, representative for the two variational dimensions (temporal dimension
and national dimension). Therefore, they collected magazines and newspapers from
Belgium and The Netherlands (national dimension) which were written around 1950,
1970 and 1990 (temporal dimension). In this corpus, the occurrences of all the words
that name the football and dress concepts were recorded and brought together in
a table, of which a sample can be found in Table 1. The complete table can be
found in Geeraerts et al. (1999, Appendix 1). In this table, the concept is identified
with a descriptive English name at the beginning of the line in small caps, the actual
word that names the concept follows at the second position in italics. After that, the
frequencies with which this word occurs in the national-temporal specific subsets
of the data: N50 refers to Netherlandic material from 1950, B90 refers to Belgian
material from 1990, etc.

CONCEPT _ variant | N50 B50 | N70 B70 [ N90  B90
KICK-OFF  aftrap 2 8 8 22 14 66
kick-off 0 3 1 6 0 2
OFF-SIDE  buitenspel 17 9 21 28 18 5
off-side 7 13 3 2 2 1
FouL foul 0 17 0 2 0 0
fout 9 18 1 47 | o© 9
overtreding | 12 0 16 26 49 20

Table 1: Some examples from the frequency table in Geeraerts et al. (1999)

The findings of Geeraerts et al. (1999) concerning the evolution of two national
varieties of Dutch point in the direction of convergence during a period of forty years.



For both lexical fields, there seems to be an increasing convergence between Belgian
Dutch and Netherlandic Dutch along the three measure points 1950, 1970 and 1990.
In the analysis of Geeraerts et al. (1999), a systematic analysis of the behaviour of
the individual concepts and of how this relates to the overall patterns is missing.
Therefore, we propose the INDSCAL analysis.

4 INDSCAL analysis of Geeraerts et al. (1999) data

The INDSCAL method can be applied to the lexical convergence and divergence
study of Geeraerts et al. (1999) if we substitute the individuals (e.g. that rated the
similarities between body parts) by the lexical fields or the individual concepts, and if
we substitute the objects (e.g. the body parts) by the national varieties at the three
measuring points®. The Group Stimulus Space will then show the lectal dimensions
along which the national varieties are distributed, and the Configuration Weights will
inform us about the importance that the lexical fields or concepts give to these lectal
dimensions. Given the input data, we expect to find a structure of the varieties along
a diachronic dimension and a national dimension, present in the variation of the
concepts or lexical fields.

To show the application possibilities of INDSCAL, we will perform two analyses.
In a first analysis, we consider the distances between the varieties per lexical field —
thus a dissimilarity matrix for Clothes and a dissimilarity matrix for Football — so
that the three-way input is variety x variety x lexical field. As there are only two
lexical fields, the Configuration Weights of this analysis will be easy to interpret. This
first example will actually be overly simplistic because there are only two sources.
Technically, it is advised to have at least five sources in an INDSCAL analysis, as will
be the case in the more realistic example with many individual concepts, introduced
in Section 4.3. However, we chose to first illustrate the procedure with a case that
is as simple as possible. The second analysis looks at the distances between the
varieties for every concept in the Football lexical field. For every concept, a distance
matrix is constructed, so that the three-way input is variety x variety x concept. As
there are 15 concepts in the Footballlexical field, we will have a more complicated
Configuration Weights scatterplot which will give us the opportunity of showing the
more advanced interpretations one could make. Although we could show the analysis
for the Clothes field and the analysis that considers all concepts from both fields, we
restrict ourselves to the above cases to keep this paper from becoming too repetitive,
as our goal is primarily to introduce a new method.

4.1. Distance metric

To construct a distance matrix of the varieties — or rather an array of distance ma-
trices —, the lexical distances per lexical field or concept need to be measured on
the basis of the attested frequencies in Geeraerts et al. (1999). In the original 1999
study, the lexical similarity between two varieties V; and V, for a certain concept
L is captured by the Uniformity metric Uy (V3, V2) in Equation 4. In a later study
(Speelman et al., 2003), the City-Block distance D¢p,1.(V1, V») of Equation 7 was used.

n
UL(Vy,V2) = ) min(Ry,, (i), Ry, 1.(x7)) 4)
i=1

This Uniformity metric is a similarity metric and related to the City-Block distance



metric Dcp as follows: Ur(V,V2) = 1 - Dcp,(V1,V2). As an MDS method relies
on distances as its input, we will use the City-Block distance metric presented in
Speelman et al. (2003, Section 2.2 and 2.3). For completeness, we repeat the details of
this distance metric below. The main advantage of the proposed Uniformity similarity
metric and City-Block distance metric is that it takes the level of the concept into
account. Instead of aggregating over the frequencies of all individual words, the
overlap in relative preferences for choosing a specific word to name a concept are
aggregated. The advantages of this onomasiological semantic control have been
shown in Speelman et al. (2003).

Now, we revisit the details of the distance metric. Given two subcorpora V; and
V, that represent two of the varieties under scrutiny, a concept L (e.g. FOUL) and x;
to x, the list of words (e.g. {foul, fout, overtreding}) that can refer to the concept L,
then we define the absolute frequency F of the usage of x; for L in V; with:

Fy;,1(x) (5)

Subsequently, we introduce the relative frequency R:

Ry 1 (6) Fy;,1(xi) ©)
(X)) = ————————
T (B, ()
Now we can define the lexical City-Block distance D¢p between V; and V, on the
basis of concept L as follows (the division by two is for normalization, mapping the
results to the interval [0,1]):

1 n
Dcp,1(V1,V5) = > Z |Rvy,L(xi) — Ry, 1.(X;)] (7
i=1

The City-Block distance is a straightforward descriptive dissimilarity measure
that assumes the absolute frequencies in the sample-based profile to be large enough
to be good estimates for the relative frequencies. If however the samples are rather
small, the relative frequencies become unreliable, and a supplementary control is
needed. For this we measure the confidence of there being an actual difference
between two profiles with the Log Likelihood Ratio test described in Dunning (1993).
This time, unlike with D¢, we look at the absolute frequencies in the profiles we
compare. When we compare a profile in one language variety to the profile for the
same concept in a second language variety, we use a Log Likelihood Ratio test to test
the hypothesis that both samples are drawn from the same population. We use the
p-value from the Log Likelihood Ratio test as a filter for D¢p. We set the dissimilarity
between subcorpora at zero if p > 0.05, and we use Dcj if p < 0.05.% The argument for
setting Dcp to zero if the two samples appear to be drawn from the same population
(a single language variety), i.e. if the p > 0.05, is that there is no statistical evidence
that the two samples come from a different population, and thus their lexical distance
should be zero.

To calculate the dissimilarity between subcorpora on the basis of many concepts,
e.g. all concepts from the lexical field Football, we just sum the dissimilarities for the
individual concepts. In other words, given a set of concepts L to L,,, then the global
dissimilarity D between two subcorpora V; and V, on the basis of L; up to L, can be
calculated as:



m
Dcp(V1, Vo) =) Dy, (Wi, Vo)W (L;) 6))
i=1

The W in the formula is a weighting factor. We use weights to ensure that concepts
which have a relatively higher frequency (summed over the size of the two subcorpora
that are being compared”) also have a greater impact on the distance measurement.
The sum of all weights is one. In other words, in the case of a weighted calculation,
concepts that are more common in everyday life and language are treated as more

important.
However, the W only applies when multiple concepts are being aggregated into
a single distance matrix. In the case of the Football and Clothes example below,
the W weighs the football concepts in the construction of the Football distance
matrix, and similarly for the Clothes distance matrix, but the Football lexical field
is considered to be equally important as the Clothes lexical field. In the case of the
Football example further down, where every concept of the Football lexical field is the
basis for a separate distance matrix, Equation 8 does not even come into play, and all
concepts are considered equally important. The conceptual weighting is in that case
completely absent. Although we would like to include the conceptual weighting in
the INDSCAL approach in future research, the situation as presented in this paper
is equivalent to the U metric of Geeraerts et al. (1999, p. 41). An approach that
incorporates the conceptual weighting would be equivalent to the (unweighted) U’
metric (Geeraerts et al., 1999, p. 42). Although there are out-of-the-box possibilities
to incorporate the conceptual weighting, we stick to the unweighted approach for
now, in order to keep the introduction of INDSCAL as straightforward as possible in

this article.

4.2. Football and Clothes

As a first example, we will look at the structure of the language varieties according
to the two lexical fields Football and Clothes. The focus lies on the behavior of the
lexical fields, and not on the individual concepts. Therefore, we aggregate the lexical
distances of all concepts per lexical field using the City-Block distance metric, intro-
duced above. This gives us an array of two distance matrices — one for Football and
one for Clothes — that we can use as input for the (non-metric) INDSCAL analysiss.
The analysis produced the Group Stimulus Space in Fig. 2 and the scatterplot of
Configuration Weights in Fig. 3. The low stress value of 1% indicates that there is
not much difference between the input distances and the two-dimensional repre-
sentation. To aid the interpretation, we manually added lines to the Group Stimulus
Space that indicate the diachronic connection between the subcorpora. Note, that
INDSCAL allows us to create higher dimensional representations, too.

The interpretation of the dimensions of the Group Stimulus Space is straight-
forward: Dimension 1 distinguishes the subcorpora of measuring point 1950 from
the subcorpora of 1970 and 1990. Dimension 2 represents the distinction between
Belgian and Netherlandic subcorpora. In general, one can observe the convergence of
Belgian and Netherlandic Dutch terminology for Football and Clothes very clearly, as
the national subcorpora are farther apart for 1950 than for 1990. A reader familiar to
two-way MDS or Factor Analysis might suggest to slightly rotate the Group Stimulus
Space counterclockwise, so that the dimensions become clearer. However, in the case
of three-way MDS, this kind of arbitrary rotations is prohibited, as these rotations
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Fig. 2: Group Stimulus Space for the combination of the Clothes and Football field

would have an influence on the Configuration Weights. Given that the solution which
comes out of the INDSCAL analysis is already the best possible representation of the
data, any change in the Group Stimulus Space and consequently in the Configuration
Weights would reduce the goodness-of-fit.

The interpretation of the scatterplot of the Configuration Weights needs some
more guidance. Remember that in a two-dimensional solution a Configuration
Weight coordinate of (1, 1) means that the source completely agrees with the proposed
Group Stimulus Space. A Configuration Weight of less than 1 means that the source
would shrink the dimension and thus de-emphasize the distinction made along
that dimension. A Configuration Weight of more than 1 means that the source
would stretch the dimension and thus give more importance to the distinction made
along that dimension. The scatterplot of Configuration Weights in Fig. 3 shows
immediately that the two lexical fields behave differently. The Football terminology
has a Configuration Weight smaller than 1 for Dimension 1 and this indicates that
Football terminology gives less weight to the temporal dimension. The dissimilarities
between the 1950s and the 1990s are considered to be smaller, which means that
Football terminology has not changed much over the decades. The Configuration
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Weight of the Football field for Dimension 2 is larger than 1. This means that the
national dissimilarities are increased. In other words, Football terminology is more
different in Belgium and The Netherlands than the consensus of the Group Stimulus
Space suggests. The interpretation for the Clothes field are exactly opposite: the
first dimension is emphasized and the second dimension is de-emphasized. It is
important to point out that, although these differences are clearly present in the
visualizations, INDSCAL is merely an exploratory technique, designed to assist the
researcher in formulating hypothesis. Any strong conclusions should be based on
further confirmatory statistics.

4.3. Football

As a second example, we will now perform a more detailed analysis of the Football
lexical field. This time, we will consider every concept as a single source. As Geeraerts
et al. (1999) came up with 15 concepts in the Football field, an array of 15 distance
matrices, generated with Equation 7 will be the input of the INDSCAL analysis. A two
dimensional solution yielded an outcome with an unacceptably high stress value.
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Therefore, we calculated a three dimensional solution to obtain the stress value of
15%, which is just acceptable. In order not to overcomplicate the introduction of
INDSCAL, we will only discuss the first two dimensions. This is in fact common
practice in the MDS framework.

The analysis produced the Group Stimulus Space in Fig. 4 and the scatterplot of
Configuration Weights in Fig. 7. Note now that we are only using the first part of the
City-Block distance metric that was introduced above: only Equation 7 is needed to
construct the distance matrix for a single concept, and Equation 8 is not applied here,
effectively removing the conceptual weighting W.
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Fig. 4: Group Stimulus Space for the Football field

The Group Stimulus Space in Fig. 4 splits the Belgian and Netherlandic subcorpora
on the first dimension. The second dimension sorts the subcorpora diachronically.
The promotion of the national dimension to the first dimension, in comparison to the
lexical field example above, is not suprising. In Fig. 3 we already saw that the Football
domain values the national distinction much stronger than the temporal distinction.
Although the diachronic order is perfect for the Netherlandic subcorpora, the position
of the Belgian subcorpus from the 1950s is off. This strange position may be due to
the high stress value of the analysis. However, introducing the residuals plot in Fig. 5
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— a plot that is somewhat comparable to a Shepard plot in two-way MDS —, we see
no extreme deviations between the input dissimilarities (x-axis) and the calculated
distances in the Group Stimulus Space (y-axis) for the concepts, which indicates a
very accurate lower dimensional representation. Moreover, introducing the stress
decomposition plot in Fig. 6 — a plot that shows which objects are responsable for
most of the stress —, we find that the 1950s Belgian subcorpus was actually one of
the subcorpora with the lowest amount of stress.
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Fig. 5: Residuals for the Football field

If the strange position of the 1950s Belgian subcorpus is thus not an artifact of
INDSCAL, one could propose a not too far-fetched interpretation. The clear align-
ment of Belgian football terminology between 1950 and 1970 with the Netherlandic
terms of the 1950 seems plausible in the light of the Belgian language policy that was
followed during the 60s, stating that Belgian speakers should embrace the Nether-
landic norm. Previous researchers have hypothesized that this language policy could
cause a certain retardation effect on Belgian Dutch: before the Netherlandic (N50)
norm is accepted in Belgium (from B50 to B70), the Netherlandic situation changed
already (N70). Although the hypothesis seems to have some visual support in our
analysis, Geeraerts et al. (1999, p. 69) do not find statistically significant proof for this.
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Fig. 6: Stress decomposition for the Football field

The interpretation of the scatterplot of Configuration Weights in Fig. 7 for individ-
ual concepts is now more challenging than in the lexical field example. The concepts
form a fan around the (1,1) point, which indicates that the concepts do not all agree
with the proposed Group Stimulus Space. In itself, this shows the importance of
performing INDSCAL: whereas a typical aggregation (and two-way MDS analysis)
would have assumed that all concepts behave similarly, the three-way MDS analysis
makes the diverging behavior of the individual concepts explicit. Figure 7 can be
interpreted on the basis of the four quadrants that are formed by the horizontal and
vertical grey line at x = 1 and y = 1. The first quadrant (left upper corner) contains
the concepts with a Configuration Weight smaller than 1 for the first dimension and
a Configuration Weight larger than 1 for the second dimension. These concepts thus
alter the Group Stimulus Space so that the diachronic evolution is emphasized and
the national distinction is made smaller. The second quadrant (right upper corner)
contains concepts that have a Configuration weight larger than 1 for boh Dimension
1 and 2. These concepts thus merely stretch up the Group Stimulus Space. In the third
quadrant (right bottom corner), the concepts have a Configuration Weight larger than
1 for the first dimension and smaller than 1 for the second dimension. The behavior
of these concepts is thus the opposite of the concepts in the first quadrant: they
promote the national distinction and they de-emphasize the diachronic evoluation.
The fourth quadrant contains only one concept, which has Configuration Weights
smaller than 1 for both dimensions. Mirroring the second quadrant, this concept
merely shrinks the Group Stimulus Space.

The two most interesting quadrants are the first and the third. To get a visual
grip on what is happening in these quadrants, we produce the Private Object Spaces
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Fig. 7: Configuration Weights for the Football field

for the most extreme concepts (KiCK-OFF and OFE-SIDE) in Fig. 8 and Fig. 9 to see
how they differ from the Group Stimulus Space. As mentioned above, the Private
Object Space shows the view of a single source if he were forced to accomodate
his judgements along the consensus dimensions of the Group Stimulus Space. In
the case of individual concepts, this shows how sensitive a single concept is to the
national and temporal dimension from Fig. 4. The Private Object Space for a single
concept is constructed by (matrix) multiplying the Group Stimulus Space with the
Configuration Weights of the source. The Private Object Space does not give any more
information than the numerical information of the Group Stimulus Space and the
Configuration Weights. However, as INDSCAL is an exploratory method, any visual
representation that makes the data more accessible than pure numbers adds to the
appeal of the method. Note also, that the Private Object Space of a specific concept is
not (necessarily) equivalent to the two-way MDS solution of the distance matrix of
that concept.

The result of this multiplication for the KICK-OFF concept can be found in Fig. 8.
As expected, Dimension 1 (national distinction) is practically completely removed,
putting all the subcorpora on top of each other. For clarity, the subcorpora are from
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bottom to top: B70, N50, B50, N70, N90, B90. Only Dimension 2 (temporal evolution)
is present, putting the subcorpora of the 1950s and 1970s at the bottom and the
1990s at the top. The Private Object Space visualizes that KICK-OFF is a concept that
changed over time (especially after 1970), but the change was parallel in Belgium and
the Netherlands.

The Private Object Space for the OFF-SIDE concept is presented in Fig. 9. As
expected, Dimension 2 (temporal evoluation) is completely flattened and only the
first dimension (national distinction) remains. For clarity, the subcorpora from left
to right: B50, B70, B90, N50, N90, N70. Here, the Private Object Space very clearly
shows that OFF-SIDE has not changed over time, but that there is a clear difference in
naming the concept between Belgium and the Netherlands.

5 Conclusion
To conclude this methodological paper, we would like to address three questions of

the proposed method: (1) can we find more examples of this method, (2) what are
the formal requirements for INDSCAL, and (3) how can this method be applied to
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other linguistic problems?

First, the proposed method has been mainly applied in psychological research,
and even there it has only been applied by a handful of scholars since it was devel-
oped in the 70s. Despite its seeming unpopularity, one does find publications in
psychological and sociological domains that employ three-way MDS almost every
year and three-way MDS is covered in every statistics book that addresses Multidi-
mensional Scaling. It is however never covered in books that focus on the use of
(exploratory) statistics for linguistics. The shortage of studies employing three-way
MDS is probably due to the lack of a widespread implementations in popular sta-
tistical packages. Luckily, this problem is now overcome. In the now commonly
used statistical program R, the SMACOF package by de Leeuw and Mair (2009) is the
first Rimplementation of three-way MDS. Although the package is still undergoing
development, its distribution is stable.

Second, there is an important assumption that underlies the application of IND-
SCAL. As noted in Arabie et al. (1987, p. 21), ‘the benefit of fitting the INDSCAL model
is the inherently unique orientation that usually results for the object space [Group
Stimulus Space]’, but ‘this uniqueness suggests that the dimensions of an INDSCAL
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object space should correspond to “fundamental” perceptual or judgmental [...]
processes whose importance, strength, or salience may differ from source to source’.
For sources such as experts and judges, or humans in general, this assumption of
comparable sources is certainly defendable. But can we claim that linguistic phe-
nomena comply with the given assumption? As MDS is an exploratory technique, it
is acceptable to apply it to linguistic datasets, even if not all assumptions are undis-
putably met. However, one should keep this assumption in mind when interpreting
the visualizations and when devising datasets to be submitted to an MDS analysis.

Third, the application of INDSCAL in aggregation studies should not be restricted
to lexical variation. One of the examples in Arabie et al. (1987, p. 26) takes different
experimental setups as the sources, which indicates that INDSCAL might be valuable
in the perception and attitude field. Closer to the lexical analysis above, recent
publications in the domain of dialectometry (see Wieling and Nerbonne (2011) for an
overview of efforts), have shown an interest in identifying the behaviour of different
types of variables that were part of aggregate studies. And research on historical
developments of linguistic structures could take time periods as sources (e.g. Hilpert,
2011). INDSCAL would be a valuable exploratory tool for these problems.

With the above introduction and example application of INDSCAL, we have
shown the relevance and advantages of a psychometrical method in the field of
linguistics. Its wide application possibilities make INDSCAL a very rich method for
exploring complex three-way, two-mode datasets. The main advantage of the method
is that the aggregation over the sources shows the average pattern that is common to
all sources, while still allowing the researcher to investigate the differences among
the sources.

Notes

1. The linguistic studies that use Factor Analysis or Principal Components Analysis,
e.g. Biber (1988), do have access to the behavior of the underlying variables, but
they are fundamentally different from the type of aggregation studies that we
aim at here. The research we aim at is distance-based, with elaborate distance
metrics to measure the distances between measure points; in Factor Analysis
and Principal Components Analysis, the input is two-way, two-mode and the
processing to a two-way, one-mode matrix is based on correlation measures.

2. In fact, this is where the origin of Cronbach’s « lies: to check if there is enough
similarity between the sources so that taking their average is not a too drastic
reduction of the variance in the sources.

3. For INDSCAL, these proximity matrices should be square, symmetric, two-way,
one-mode distance matrices.

4. Tt is of course not so, that all the variables in Geeraerts et al. (1999) are necessarily
alternations between Dutch and English.

5. Itwould be impossible to apply Factor Analysis or Principal Components Analysis
to that dataset because (a) we would not be able to use the specific distance
metric of Section 4.1. and (b) the dataset does not comply with the strict statistical
requirements of Factor Analysis or Principal Components Analysis.

6. Because a proper functioning of the Log Likelihood Ratio test requires frequen-
cies not to be too small, we introduced a frequency threshold. If the frequency of
the concept was lower than 30 for the two varieties that are being compared, that
concept was excluded from the comparison.
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7. The size of the two subcorpora is not the actual amount of words in the two sub-
corpora, but the sum of the frequencies of all variables in these two subcorpora.

8. As the input dissimilarities are City-Block distances, we could have considered
using the City-Block model for three-way MDS (Heiser, 1989). However, in this
paper we chose to restrict the demonstration of INDSCAL to the out-of-the-box
settings of the method.
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