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Abstract

This paper addresses the problem that in studies which aggregate many linguistic vari-
ables with the goal of revealing the structure of language varieties, the explanatory power
is reduced by the fact that the behavior of the underlzying linguistic variables is com-
pletely obscured. An existing, but not yet linguisticall applied Multidimensional Scaling
technique, called Individual Differences Scaling is presented and applied to a dataset that
captures lexical convergence between Belgian and Netherlandic Dutch during a period of
40 years. The application of Individual Differences Scaling does not only give an insight in
the aggregated behavior of the lexical variables, but also shows how the individual lexical
variables differ from each other.

1 Introduction
The goal of the current paper is to introduce an existing, but, as far as we know, not yet linguis-
tically applied Multidimensional Scaling method called individual differences scaling (IND-
SCAL) to the field of variationist aggregation studies. In such aggregation studies, e.g. Seguy
(1971), Goebl (1982), Geeraerts et al. (1999) or Nerbonne (2006), many linguistic variables
are considered simultaneously to reveal a structure among the language varieties that are being
described by the linguistic variables. Although the focus of aggregation studies is specifically
on the structure of language varieties, their explanatory power is reduced by the fact that the
behavior of the underlying linguistic variables is completely obscured (Horan, 1969).1 Techni-
cally speaking, the loss of the behavior of the variables is due to the fact that all the variables are
averaged out by means of an aggregating distance metric to form a single varieties × varieties
distance matrix. Therefore, we propose to use INDSCAL as a different aggregation technique
that can take a distance matrix for every variable as its input, and which is able to reveal both
the structure of the varieties and the structure of the variables. Intuitively, one could say that
the aggregation of the variables is postponed and moved into the MDS phase of the analysis.

To account for individual differences is an emerging trend in aggregation studies. The
recent work of e.g. Spruit et al. (2009) shows how dialectometricists are already producing
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separate distance matrices for different types of variables, but without an overarching method
(except for basic correlation measures) to bring the separate results together. A similar approach
can be found in Cysouw et al. (2008), where the distance matrices for individual features
are compared to the aggregated solution. The benefit of INDSCAL over these more post-hoc
approaches is that INDSCAL is an integrated branch of the well-established Multidimensional
Scaling method, that is already commonly used in aggregation studies. This link to the existing
framework of aggregation studies is also its main benefit over using bipartite spectral graph
partitioning (Wieling & Nerbonne, 2011) or Generalized Additive Models with mixed-effects
(Wieling et al. , 2011).

This paper is structured as follows. We explain INDSCAL in Section 2 by introducing
the specific terminology of the method and interpreting an example analysis. To show the
value of INDSCAL for variationist aggregation studies, we apply the method to a dataset that
was gathered by Geeraerts et al. (1999) to show lexical convergence between two national
varieties of Dutch. We revisit the data and findings from Geeraerts et al. (1999) in Section 3.
In Section 4 we apply INDSCAL to this dataset and we show how the INDSCAL analysis
confirms and extends the previous findings. Finally, we conclude the paper by summing up
further possible applications of INDSCAL in Section 5.

2 Individual differences scaling
Individual differences scaling, abbreviated as INDSCAL, is a fairly standard Multidimensional
Scaling (MDS) technique that is described in most MDS textbooks, e.g. Cox & Cox (2001)
or Borg & Groenen (2005). These textbooks usually begin by introducing two-way MDS,
where two-way refers to the fact that the dissimilarity input matrix has two dimensions (rows
and columns), representing the proximities between pairs of objects. Because the rows and
the columns carry the same objects, this is called one-mode input. Usually, these proximities
are averages of proximities from multiple sources, e.g. test subjects or object characteristics.
However, one of the objections against two-way one-mode MDS, made by Horan (1969), is
that the averaging and aggregation of many sources into a single distance matrix is sometimes
not acceptable, because it does no justice to the individual differences between the sources2.
Therefore, Carroll & Chang (1970) proposed the individual differences scaling method, abbre-
viated as INDSCAL. INDSCAL is a type of three-way MDS, and can take several objects ×
objects matrices as its input, thus objects × objects × sources. Because there are two types of
input, i.e. objects and sources, this is called a two-mode input. Typically, it is used to show the
individual differences between a number of judges (sources) who have rated the objects under
investigation.

Let it be clear, however, that this method still assumes considerable similarity between the
sources, just as is required for a two-way MDS. Indeed, if there is not at least some consensus
among all the sources, aggregation makes no sense. The individual differences scaling does al-
low for somewhat more variation between the sources than a two-way one-mode MDS, but not
to the extent that the sources do not share some underlying perceptual or judgmental processes,
which can become the dimensions of the MDS solution (Arabie et al. , 1987, p. 21). In other
words, individual differences scaling as a method can be applied to datasets that are some-
where between two extremes. The negative extreme is that aggregation is not possible because
the sources that should be aggregated are too different from each other. The positive extreme
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is that aggregation is the obvious thing to do, because the sources behave all very similar and
there is no need to account for the behavior of the individual sources.

Before we can look into example output of INDSCAL, we need to introduce some terminol-
ogy. The input of an INDSCAL analysis is an array of proximity matrices3. Every proximity
matrix gives the (dis)similarity between all pairs of objects, according to a source that estimates
these proximities. Assume a whisky tasting experiment where n whisky experts are asked to
compare all possible pairs of whiskies. At the end of the experiment, there are n proximity
matrices, and every matrix represents the judgements of a single whisky expert. The output of
an INDSCAL analysis consists of two parts: the Group Stimulus Space and the Configuration
Weights. The Group Stimulus Space (also called Stimulus Space, Group Space, Object Space or
Common Space shows the low-dimensional solution for the objects (e.g. whiskies) that is char-
acteristic of the entire group of sources (e.g. all whisky experts together). This solution can be
dimensionally interpreted in the same way as the solution of a two-way MDS. The Configura-
tion Weights (also called Source Weights) indicate the importance attributed to each dimension
of the Group Stimulus Space by each source of data (e.g. the whisky experts). Although there is
quite some mathematical complexity behind these Configuration Weights (Arabie et al. (1987,
p. 17–25), Borg & Groenen (2005, Chapter 22)), it is safe to say that a Configuration Weight
of 1 means that the source (e.g. whisky expert) agrees identically with the distinction made on
the respective concensus dimension of the Group Stimulus Space. If the Configuration Weight
is smaller than 1, the source’s perception shrinks the respective dimension, effectively giving
less importance or weight to the distinction that is made by the dimension. If the Configuration
Weight is larger than 1, the source’s perception stretches the respective dimension, and thus the
respective distinction is given more importance. It is not allowed to interpret the Configuration
Weights as percentages relative to some baseline or as probabilities, e.g. source A gives twice
as much importance to this dimension as source B (Arabie et al. , 1987, p. 23). Obviously, in
order to benefit from the explanatory power of the Configuration Weights, the interpretation
of the Group Stimulus Space should be based on meaningful dimensions. A non-dimensional
interpretation (Borg & Groenen, 2005, Chapter 4) is not suited for INDSCAL.

Let us introduce the interpretation of the output of the method with the frequently cited
example of Jacobowitz (1973)4. The goal of Jacobowitz (1973) is to discover how people
conceptualize the human body, and whether this conceptualization is different for children and
adults. To find this out, he asked 15 children and 15 adults to give similarity rates for a number
of body parts. The results of the INDSCAL analysis, performed by Takane et al. (1977), of
his 30 dissimilarity matrices are visually presented in Figure 1. The three dimensional Group
Stimulus Space in Figure 1a can be dimensionally interpreted just as one would do with the
solution of a two-way MDS. The Group Stimulus Space represents the conceptual dimensions
on which all individuals can agree to a certain degree; the degree with which they agree is
captured in the Configuration Weights. On the first dimension of the Group Stimulus Space
(vertically), a distinction between the head and the limbs is made. Dimension two (horizontally)
distinguishes the legs from the arms. And the third dimension (depth) expresses a whole-part
relationship with a cline from the full body at the front over head, leg and arm in the middle,
to ear, toe and finger at the back. The cubes of the Configuration Weights plot in Figure 1b
answer the question “how much importance do children and adults give to the distinctions
made by the concensus dimension of the Group Stimulus Space?” In Figure 1b, the zero-
value of all the Configuration Weights, which indicates a spot where none of the distinctions
from the Group Stimulus Space are deemed important, is plotted in the left bottom corner at
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the back; the Configuration Weights of the adults are indicated with a black cube, whereas
the Configuration Weights of the children are indicated with a white cube. It now becomes
immediately clear that the adults and children value the distinction of dimension 2 (left to
right) differently. The adults are generally closer to the origin of dimension 2, so they give little
importance to dimension 2, which distinguished the arms from the legs. Children, however,
have higher Configuration Weights for Dimension 2, and this means that they make a more
pronounced distinction between arms and legs.

Mathematically speaking, three-way Multidimensional Scaling is fairly complex and its
development knows many branches and competing approaches. Instead of giving a detailed
account of its developmental history, the mathematical properties of the different approaches
and a review of the available implementations, we refer the reader to the literature in Arabie
et al. (1987), Cox & Cox (2001, Chapter 10) and Borg & Groenen (2005, Chapter 22). For
our analyses, we stick to the INDSCAL approach of Carroll & Chang (1970) and we use an
implementation of INDSCAL in the SMACOF package for R by de Leeuw & Mair (2009). The
package actually offers a specific way of finding the optimal lower-dimensional MDS solution,
called Scaling by MAjorizing a COmplicated Function, abbreviated as SMACOF, first proposed
by de Leeuw (1977) and described in Cox & Cox (2001, Section 11.2) and Borg & Groenen
(2005, Chapter 8). The SMACOF approach in the R package is applied to all sorts of metric and
non-metric branches of multidimensional scaling, including the INDSCAL approach to three-
way MDS. We will make use of the out-of-the-box implementation for our example analysis of
a variationist dataset, taken from Geeraerts et al. (1999).

3 The dataset of Geeraerts et al. (1999)
The goal of the current paper is to show how INDSCAL can be applied to linguistic aggregation
studies. Therefore, we will perform INDSCAL on a dataset that has been compiled and anal-
ysed in Geeraerts et al. (1999). One of the goals of the monograph was to empirically show
whether there is diachronic convergence or divergence in the lexicon of Dutch as spoken in Bel-
gium and The Netherlands. With this goal in mind, a list of 32 concepts from two lexical fields,
i.e. “Football” and “Clothes”, was manually collected. For every concept, words that name
this concept are listed and counted in the corpus-material introduced below. As an example,
the concept BUITENSPEL (Eng. “off-side”) can be named in Dutch with the words buitenspel
or offside, or the concept JURK (Eng. “dress”) can be named with jurk, japon or kleed. The
distance between two varieties is measured by means of observed preferences for choosing a
certain word to name a concept. The actual distance metric is introduced below, but intuitively
one could say that if both varieties prefer buitenspel over offside to name BUITENSPEL, they
are closer together then if one of the varieties prefers buitenspel and the other variety prefers
offside.

As Geeraerts et al. (1999) want to study the diachronic movement of two national varieties
of Dutch empirically, these words have to be attested in actual language material, representative
for the two variational dimensions (temporal dimension and national dimension). Therefore,
they collected magazines and newspapers from Belgium and The Netherlands (national dimen-
sion) which were written around 1950, 1970 and 1990 (temporal dimension). In this material,
the occurrences of all the words that name the football and dress concepts were recorded and
brought together in a table, of which a sample can be found in Table 15. The complete table
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(a) Group Stimulus Space: similarity of body parts according to 30 raters

(b) Configuration Weights: individual differences between 30 body parts
similarity raters

Figure 1: Example of INDSCAL output, based on Jacobowitz (1973) and taken from Takane
et al. (1977).
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can be found in Geeraerts et al. (1999, Appendix 1). In this table, the concept is identified with
a descriptive Dutch name at the beginning of the line in small caps, the actual word that names
the concept follows at the second position in italics. After that, the frequencies with which this
word occurs in the national-temporal specific subsets of the data: N50 refers to Netherlandic
material from 1950, B90 refers to Belgian material from 1990, etc.

CONCEPT VARIANT N50 B50 N70 B70 N90 B90
AFTRAP aftrap 2 8 8 22 14 66

kick-off 0 3 1 6 0 2
BUITENSPEL buitenspel 17 9 21 28 18 5

off-side 7 13 3 2 2 1
OVERTREDING foul 0 17 0 2 0 0

fout 9 18 1 47 0 9
overtreding 12 0 16 26 49 20

Table 1: Sample of observation table in Geeraerts et al. (1999)

The findings of Geeraerts et al. (1999) concerning the evolution of two national varieties
of Dutch point in the direction of convergence during a period of forty years. For both lexical
fields, there seems to be an increasing convergence between Belgian Dutch and Netherlandic
Dutch along the three measure points 1950, 1970 and 1990. Moreover, the two lexical fields
behave in a similar way. In the analysis of Geeraerts et al. (1999), a perspective on the behavior
of the individual concepts is missing. Therefore, we propose the INDSCAL analysis.

4 INDSCAL analysis of Geeraerts et al. (1999) data
The INDSCAL method can be applied to the lexical convergence and divergence study of
Geeraerts et al. (1999) if we substitute the individuals that rated the similarities between body
parts by the individual concepts, and if we substitute the body parts by the national varieties at
the three measuring points6. The Group Stimulus Space will then show the lectal dimensions
along which the national varieties are distributed, and the Configuration Weights will inform
us about the importance that the concepts give to these lectal dimensions. Given the input
data, we expect to find a structure of the varieties along a diachronic dimension and a national
dimension, present in the variation of the concepts or lexical fields.

To show the application possibilities of INDSCAL, we will look at the distances between
the varieties for every concept in the “Football” lexical field. For every concept, a distance
matrix is constructed, so that the three-way input is variety × variety × concept. As there are
15 concepts in the “Football” lexical field we will have the opportunity to show the advanced
interpretations one could make from the Configuration Weights scatterplot.

4.1 Distance metric
To construct a distance matrix of the varieties — or rather an array of distance matrices —, the
lexical distances per lexical field or concept need to be measured on the basis of the attested
frequencies in Geeraerts et al. (1999). In the original 1999 study, the lexical similarity between
two varieties V1 and V2 for a certain concept L is captured by the Uniformity metric UL(V1,V2)
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in Equation 1. In a later study (Speelman et al. , 2003), the City-Block distance DCB,L(V1,V2)
of Equation 4 was used.

UL(V1,V2) =
n

∑
i=1

min(RV1,L(xi),RV2,L(xi)) (1)

The Uniformity metric is a similarity metric and related to the City-Block distance metric
DCB as follows: UL(V1,V2) = 1−DCB,L(V1,V2). As an MDS method relies on distances as its
input, we will use the City-Block distance metric presented in Speelman et al. (2003, Section
2.2 and 2.3). For completeness, we repeat the details of this distance metric below. The main
advantage of the proposed Uniformity similarity metric and City-Block distance metric is that
it takes the level of the concept into account. Instead of aggregating over the frequencies of
all individual words, the overlap in relative preferences for choosing a specific word to name
a concept are aggregated. The advantages of this onomasiological semantic control have been
shown in Speelman et al. (2003).

Now, we revisit the details of the distance metric. Given two subcorpora V1 and V2 that
represent two of the varieties under scrutiny, a concept L (e.g. OVERTREDING) and x1 to xn the
list of words (e.g. {foul, fout, overtreding} that can refer to the concept L, then we define
the absolute frequency F of the usage of xi for L in Vj with:

FV j,L(xi) (2)

Subsequently, we introduce the relative frequency R:

RV j,L(xi) =
FV j,L(xi)

∑
n
k=1(FV j,L(xk))

(3)

Now we can define the lexical City-Block distance DCB between V1 and V2 on the basis
of concept L as follows (the division by two is for normalization, mapping the results to the
interval [0,1]):

DCB,L(V1,V2) =
1
2

n

∑
i=1
|RV1,L(xi)−RV2,L(xi)| (4)

The City-Block distance is a straightforward descriptive dissimilarity measure that assumes
the absolute frequencies in the sample-based profile to be large enough to be good estimates
for the relative frequencies. If however the samples are rather small, the relative frequencies
become unreliable, and a supplementary control is needed. For this we measure the confidence
of there being an actual difference between two profiles with the Log Likelihood Ratio test
(Dunning, 1993). This time, unlike with DCB, we look at the absolute frequencies in the profiles
we compare. When we compare a profile in one language variety to the profile for the same
concept in a second language variety, we use a Log Likelihood Ratio test to test the hypothesis
that both samples are drawn from the same population. We use the p-value from the Log
Likelihood Ratio test as a filter for DCB. We set the dissimilarity between subcorpora at zero
if p > 0.05, and we use DCB if p < 0.05.7 The argument for setting DCB to zero if the two
samples appear to be drawn from the same population (a language variety), i.e. if the p > 0.05,
is that there is no statistical evidence that the two samples come from a different population,
and thus their lexical distance should be zero.
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To calculate the dissimilarity between subcorpora on the basis of many concepts, e.g. all
concepts from the lexical field “Football”, we just sum the dissimilarities for the individual
concepts. In other words, given a set of concepts L1 to Lm, then the global dissimilarity D
between two subcorpora V1 and V2 on the basis of L1 up to Lm can be calculated as:

DCB(V1,V2) =
m

∑
i=1

DLi(V1,V2)W (Li) (5)

The W in the formula is a weighting factor. We use weights to ensure that concepts which
have a relatively higher frequency (summed over the size of the two subcorpora that are being
compared8) also have a greater impact on the distance measurement. In other words, in the case
of a weighted calculation, concepts that are more common in everyday life and language are
treated as more important. The use of this weighted metric is motivated on conceptual grounds,
and because Geeraerts et al. (1999) found that the weighting made the diachronic and national
variation in the dataset more outspoken (Geeraerts et al. , 1999, p. 71).

However, the W only applies when multiple concepts are being aggregated into a single
distance matrix. In the case of the “Football” example further down, where every concept of
the “Football” lexical field is the basis for a separate distance matrix, Equation 5 does not come
into play, and all concepts are considered equally important. The conceptual weighting is in
that case absent. Although we would like to include the conceptual weighting in the INDSCAL
approach in future research, the situation as presented in this paper is equivalent to the U metric
of Geeraerts et al. (1999, p. 41). An approach that incorporates the conceptual weighting would
be equivalent to the U ′ metric (Geeraerts et al. , 1999, p. 42).

4.2 Football
We will now perform a detailed analysis of the “Football” lexical field. We will consider every
concept as a single source. As Geeraerts et al. (1999) came up with 15 concepts in the “Foot-
ball” field, an array of 15 distance matrices will be the input of the INDSCAL analysis. This
analysis produced the Group Stimulus Space in Figure 2 and the scatterplot of Configuration
Weights in Figure 3. Note now that we are only using the first part of the City-Block distance
metric that was introduced above: only Equation 4 is needed to construct the distance matrix
for a single concept, and Equation 5 is not applied here, effectively removing the conceptual
weighting W .

The Group Stimulus Space in Figure 2 splits the Belgian and Netherlandic subcorpora on
the first dimension. The second dimension sorts the subcorpora diachronically. Admittedly, the
Belgian subcorpora do not obey these interpretations completely: subcorpus B90 leaps into the
Dutch side of dimension 1, and subcorpus B50 (or B70) jumps out of the expected diachronic
pattern. It also appears that both dimensions are not completely independent. The national dis-
tinction of dimension 1 is also (somewhat) present in dimension 2, and the diachronic evolution
of dimension 2 is also present in dimension 1. This will make the interpretation of the Configu-
ration Weights more complex. However, the very low stress value of less than 1% implies that
this two-dimensional INDSCAL solution is very trustworthy.

Returning to the somewhat surprising positioning of the Belgian subcorpora, one could
propose a not too far-fetched interpretation. The clear alignment of Belgian football termi-
nology between 1950 and 1970 with the Netherlandic terms of the 1950 seems plausible in
the light of the Belgian language policy that was followed during the 60s, stating that Belgian
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Figure 2: Group Stimulus Space for the “Football” field

Figure 3: Configuration Weights for the “Football” field
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speakers should embrace the Netherlandic norm. Previous researchers have hypothesized that
this language policy could cause a certain “retardation” effect on Belgian Dutch: before the
Netherlandic (N50) norm is accepted in Belgium (from B50 to B70), the Netherlandic situation
changed already (N70). Although the hypothesis seems to have some visual support in our
analysis, Geeraerts et al. (1999, p. 69) do not find statistically significant proof for this.

Next, we interpret the scatterplot of Configuration Weights in Figure 3. The concepts form
a fan around the (1,1) point, which indicates that the concepts do not all agree with the pro-
posed Group Stimulus Space. In itself, this shows the importance of performing individual
differences scaling: whereas a typical aggregation (and two-way MDS analysis) would have
assumed that all concepts behave similarly, the three-way MDS analysis makes the diverging
behavior of the individual concepts explicit. The concepts at the left upper part of the fan have
Configuration Weights ≈ 1 for dimension 1, but Configuration Weights > 1 for dimension 2.
This means that these concepts agree with the Belgian versus Netherlandic distinction of di-
mension 1, but that they would like to stretch dimension 2, so that the diachronic differences
become more outspoken. In other words, these concepts have changed most over time. The
concepts at the right bottom part of the fan have Configuration Weights > 1 for dimension 1,
and Configuration Weights < 1 for dimension 2. These concepts are markers of the difference
between Belgian and Netherlandic Dutch, because they would like to stretch up dimension 1
of the Group Stimulus Space. At the same time, however, they shrink dimension 2 and down-
play the diachronic evolution. However, as we noted above, dimension 1 and 2 are not entirely
independent, and the labels “national distinction” and “diachronic evolution” apply for both
dimensions at the same time.

5 Conclusion
To conclude this methodological paper, we would like to address three questions of the pro-
posed method: (1) can we find more examples of this method, (2) what are the formal require-
ments for INDSCAL, and (3) how can this method be applied to other linguistic problems?

First, the proposed method has been mainly applied in psychological research, and even
there it has been only applied by a handful of scholars since it was developed in the 70s. De-
spite its seeming unpopularity, one does find publications that employ three-way MDS almost
every year and three-way MDS is covered in every statistics book that addresses Multidimen-
sional Scaling. It is however never covered in books that focus on the use of (exploratory)
statistics for linguistics. The shortage of studies employing three-way MDS is probably due to
the internal complexity of the method and the lack of widespread implementations in popular
statistical packages. In the now commonly-used statistical program R, the SMACOF package by
de Leeuw & Mair (2009) is the first implementation of three-way MDS, and the package is still
undergoing development.

Second, there is an important assumption that underlies the application of INDSCAL. As
noted in Arabie et al. (1987, p. 21), “the benefit of fitting the INDSCAL model is the in-
herently unique orientation that usually results for the object space [Group Stimulus Space]”,
but “this uniqueness suggests that the dimensions of an INDSCAL object space should corre-
spond to “fundamental” perceptual or judgmental [. . . ] processes whose importance, strength,
or salience may differ from source to source”. For sources such as experts and judges, or hu-
mans in general, this assumption of comparable sources is certainly defendable. But can we
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claim that linguistic phenomena comply with the given assumption? As MDS is an exploratory
technique, it is acceptable to apply it to linguistic datasets, even if not all assumptions are
undisputably met. However, one should keep this assumption in mind when interpreting the
visualizations and when devising datasets to be submitted to an MDS analysis.

Third, the application of INDSCAL in aggregation studies should not be restricted to lexi-
cal variation. One of the examples in Arabie et al. (1987, p. 26) takes different experimental
setups as the sources, which indicates that INDSCAL might be valuable in the perception and
attitude field. Closer to the lexical analysis above, recent publications in the domain of dialec-
tometry (see Wieling & Nerbonne (2011) for an overview of efforts), have shown an interest in
finding the behavior of the types of variables that were aggregated. And research on historical
developments of linguistic structures could take time periods as sources.

With the above introduction and example application of INDSCAL, we have shown the
relevance and advantages of this psychometrical method in the field of linguistics. Its wide
application possibilities make INDSCAL a very rich method for exploring complex three-way,
two-mode datasets. The main advantage of the method is that the aggregation over the sources
shows the average pattern, common to all sources, while still doing justice to the differences
among the sources.

Notes
1. The linguistic studies that use Factor Analysis or Principal Components Analysis, e.g. Biber (1988),

do have acces to the behavior of the underlying variables, but they are fundamentally different from
the type of aggregation studies that we aim at here. The research we aim at is distance-based, with
elaborate distance metrics to measure the distances between measure points; in Factor Analysis and
Principal Components Analysis, the input is two-way, two-mode and the processing to a two-way,
one-mode matrix is based on correlation measures.

2. In fact, this is where the origin of Cronbach’s α lies: to check if there is enough similarity between
the sources so that taking their average is not a too drastic reduction of the variance in the sources.

3. For INDSCAL, these proximity matrices should be square, symmetric, two-way, one-mode distance
matrices.

4. Although we have searched for Jacobowitz to get access to his PhD thesis, we were not able to
contact him. We have contacted scholars that cited him to obtain a copy of his PhD thesis, but none
of them had a copy of the thesis available. Even the librarian of the University of North Carolina
at Chapel Hill could not provide us with a copy of the thesis. Our discussion of Jacobowitz (1973)
therefore relies almost entirely on Takane et al. (1977).

5. The examples are picked so that there is an English variant for naming the concept, so that the
meaning of the concept is clear. It is of course not so, that all the variables in Geeraerts et al.
(1999) are necessarily alternations between Dutch and English.

6. It would be impossible to apply Factor Analysis or Principal Components Analysis to that dataset
because (a) we would not be able to use the specific distance metric of Section 4.1 and (b) the dataset
does not comply with the strict statistical requirements of Factor Analysis or Principal Components
Analysis.

7. To employ the Log Likelihood Ratio test, the subcorpora need to be more or less equal in size. Also,
if the frequency of the concept was lower than 30 for the two varieties that are being compared, that
concept was excluded from the comparison.

8. The size of the two subcorpora is not the actual amount of words in the two subcorpora, but the
sum of the frequencies of all variables in these two subcorpora.
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