
CHEBINT: Operations on multivariate
Chebyshev approximations

Koen Poppe Ronald Cools

Report TW603, November 2011

Katholieke Universiteit Leuven

Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



CHEBINT: Operations on multivariate
Chebyshev approximations

Koen Poppe Ronald Cools

Report TW603, November 2011

Department of Computer Science, K.U.Leuven

Abstract

We detail the implementation of basic operations on multivari-

ate Chebyshev approximations. In most cases, they can be derived

directly from well known properties of univariate Chebyshev polyno-

mials. Besides addition, subtraction and multiplication, we discuss

integration, indefinite di↵erentiation, indefinite integration and in-

terpolation. The latter three, can be written as matrix-vector prod-

ucts of a structured sparse matrix and the respectively the compo-

nent vector and function values which might be used in the context

of di↵erential equations.

Keywords : Multivariate Chebyshev polynomials, addition, subtraction, multi-

plication, indefinite di↵erential, indefinite integration, interpolation, structured

sparse matrix-vector formulation

MSC : Primary : 65D25, 65D30, 65D32



CHEBINT: Operations on multivariate Chebyshev approximations∗
KOEN POPPE and RONALD COOLS

November, 2011

Abstract

We detail the implementation of basic operations on multivariate Chebyshev approximations. In most

cases, they can be derived directly from well known properties of univariate Chebyshev polynomials. Be-

sides addition, subtraction and multiplication, we discuss integration, indefinite di↵erentiation, indefinite

integration and interpolation. The latter three, can be written as matrix-vector products of a structured

sparse matrix and the respectively the component vector and function values which might be used in the

context of di↵erential equations.

1 Introduction

In the following, we consider s-dimensional Chebyshev approximations on hyper-rectangular domain C

s

=[−1,1]s. Although it is better to work with normalised Chebyshev polynomials, in order to avoid notational
clutter, we will resort to the unnormalised ones. These multivariate Chebyshev polynomials are defined as

T�
h

(�x) ∶= s�
r=1Thr(xr

) where T0(x) ∶= 1 and T

h

(x) ∶= cos (harccos (x)) , (1)

and are orthogonal with respect to the continuous scalar product with Chebyshev weight function !(�x) ∶=
⇡

−s∏s

r=1(1 − x

2
r

)− 1
2 . All polynomials up to a degree n, defined as ��h� ∶= ∑s

r=1 �hr

�, form a basis for the
polynomial function space Ps

n

. The dimension of this polynomial space with degree n is dim(Ps

n

) ∶= �s+n
s

�.
The approximations we consider are linear combinations of the Chebyshev polynomials:

A(�x) ∶= ��
h,��h�≤nA

a�
h

T�
h

(�x), (2)

where the components a�
h

can be determined using hyperinterpolation as presented in [3] and calculated
e�ciently for certain types of Chebyshev lattices using the fast Fourier transform as derived in [6].

It is clear that the tuples (�h, a�
h

) contain all information to describe the approximation. Evidently, that
is how we will store these approximations.

In the following, several basic operations on Chebyshev approximations will be described in terms of
this representation. This allows us to work e�ciently with the multivariate representation of a function, as
explored for the univariate case in CHEBFUN [7] and described as symbolics with the speed of numerics.

Moreover, describing di↵erentiation as matrix operation on a component vector allows us to approximate
the solution of specific types of di↵erential equations.

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimisation),
funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy O�ce. The scientific
responsibility rests with its author(s).
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2 Basic operations

2.1 Addition/subtraction: C(�x) = A(�x) ±B(�x)
Adding or subtracting Chebyshev approximations is rather straightforward from a logical point of view:
the components of the resulting approximation are simply the sum or the di↵erence of the corresponding
components in both terms. Taking care of the possible di↵erence in degree, the operation can be defined
naturally as

C(�x) = A(�x) ±B(�x) ⇐⇒ c�
h

= ���������
a�
h

± b�
h

if ��h� ≤min(n
A

, n

B

),
a�
h

if n
B

< ��h� ≤ n
A

,± b�
h

if n
A

< ��h� ≤ n
B

.

(3)

Matching the components for s-dimensional approximations when the degrees of both terms di↵er is not
that easy from an implementation point of view. One possible strategy is similar to merge sorting: order
the components of the approximations based on the lexicographic order of the coe�cients �h, then run over
both arrays at the same time and recombine/collect the right components. However, discriminating the
components based on their degree proved more e�cient, mainly due to the absence of explicit for-loops,
and is therefore used in our MATLAB/Octave implementation:

Addition/subtraction

1. Select the common components of A and B, e.g., where ��h� ≤min(n
A

, n

B

)
2. Sort the common components based on �h and add/subtract them

3. If n
A

> n
B

, add the remaining components from A

4. If n
B

> n
A

, add the remaining components from B, with a sign change in case of subtraction

A third option could be to put the components of A and B in a s-dimensional sparse array based on their
coe�cients. Then, using the addition/subtracting for that data type, the components of C can be found.
However, retrieving the resulting coe�cients would be less straightforward, not to mention the overhead of
mapping s dimensions onto the sparse matrices that are limited to two dimensions in Matlab/Octave.

2.2 Multiplication: C(�x) = A(�x)B(�x)
Multiplying two approximations is feasible but possibly very expensive because the number of terms in the
approximation increases dramatically. The product of two approximations of degree n increases the number
of coe�cients from 2�s+n

s

� to �s+2n
s

�, an increase with a factor of about 2s−1. This operation should thus be
avoided if possible because multiplying evaluations is much cheaper than evaluating the explicit product C.

The product operation is based on the one-dimensional identity

T

h

(x)T
g

(x) = 1

2
T

h+g(x) + 1

2
T�h−g�(x), (4)

which follows readily from the trigonometric definition of the univariate Chebyshev polynomials. It is
straightforward to generalise this to s dimensions, what leads to

T�
h

(�x)T�g(�x) = 1

2s
��

t ∈{−1,1}s
T�
h+�t○�g(�x). (5)

Applying (5) for all combinations of terms, one from A(�x) and one from B(�x), creates the contributions for
the product approximation C(�x).

Note that division is nontrivial, also because it might lead to a rational function.
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2.3 Di↵erentiation: B(�x) = dA(�x)
dx

t

Due to the product form of the multivariate Chebyshev polynomials, partial di↵erentiation with respect to
x

t

(1 ≤ t ≤ s) is as simple as one-dimensional di↵erentiation. Using

dT
h

(x) =
�����������������
0 if h = 0
T0(x) if h = 1,
4T1(x) if h = 2,
2hT

h−1(x) + h

h−2 dTh−2(x) otherwise,

(6)

shows that the derivative of a Chebyshev base function has contributions from all lower degree base functions
with the same parity as h. This follows from the alternative form derived by expanding the recursion in (6):

dT
h

(x) = ���������
2h∑h

2
�=1 T2�−1(x) if h is even,

2h∑h−1
2

�=1 T2�(x) + hT0(x) if h is odd.
(7)

If we di↵erentiate a univariate Chebyshev approximation A(x) = ∑n

h=0 ahTh

(x), the result can be rewrit-
ten as ∑n−1

h=0 bhTh

(x). Graphically, the di↵erentiated approximation (first column) is expanded in several
contributions in terms of the base functions T

h

(columns). Summation per base function than leads to the
components b

h

as depicted in the bottom row:

dA T0 T1 T2 T3 T4 T5 . . . T

n−1
a0 dT0 0 0 0 0 0 0 0
a1 dT1 a1 0 0 0 0 0 0
a2 dT2 0 4a2 0 0 0 0 0
a3 dT3 3a3 0 6a3 0 0 0 0
a4 dT4 0 8a4 0 8a4 0 0 0
a5 dT5 5a5 0 10a5 0 10a5 0 0
a6 dT6 0 12a6 0 12a6 0 12a6 0⋮ � � � � 0
a

n

dT
n

(2n)a
n

b0 b1 b2 b3 b4 b5 . . . b

n−1
It is clear that the components b

g

, the sums per column, can be summarised as

b

g

=
�����������������
∑�n2 �

�=1 (2� − 1)a2�−1 if g = 0,∑�n2 �
�= g+1

2

2(2�)a2� if g is odd,

∑�n2 �
�= g+2

2

2(2� − 1)a2�−1 if g is even.

(8)

It should be noted that these sums share trailing terms. Therefore, b
g

can also be defined recursively and
computed starting from b

n−1 in order to avoid these duplicate summations

b

g

= ���������
0 if g ≥ n,
a1 + 1

2b2 if g = 0,
2 (g + 1)a

g+1 + bg+2 otherwise.
(9)

This is a common way of implementing the derivative of a Chebyshev polynomial (see i.e., [5]) and is also
how CHEBFUN [7] does it.

Di↵erentiating a multivariate Chebyshev polynomial is straightforward:

dT�
h

(�x)
dx

t

= dT
ht(xt

)
dx

t

s�
r=1, r≠tThr(xr

), (10)
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so to di↵erentiate a multivariate Chebyshev approximation with respect to x

t

, one can group the terms
with equal coe�cients h

r

with r = {1, . . . , s}�{t} and apply (9) to the remaining one-dimensional Chebyshev
approximation terms.

Implementing the above requires a significant amount of bookkeeping, but by sorting the coe�cients on
dimensions {1, . . . , s}�{t}, the one-dimensional approximations are restructered as blocks in the accordingly
sorted components vector (illustrated in Figure 1). This reduces the bookkeeping to one sort operation,
which is evidently much cheaper than iterating over the coe�cients to find the right terms.

Higher order derivatives are implemented as repeated di↵erentiation.

A(�x)
a[3,0,0]
a[2,0,0]
a[2,0,1]
a[2,1,0]
a[1,1,0]
a[1,1,1]
a[1,0,1]
a[1,0,0]
a[1,0,2]⋮

sort by h1, h3��������→

Di↵erentiate blocks

a[0,0,0] → b[0,0,0]
b[0,1,0]
b[0,2,0]

a[0,1,0]
a[0,2,0]
a[0,3,0]
a[0,0,1] → b[0,0,1]

b[0,1,1]a[0,1,1]
a[0,2,1]
a[0,0,2] → b[0,0,2]
a[0,1,2] ⋮

recombine������→

B(�x) = dA(�x)
dx2

b[0,0,0]
b[0,1,0]
b[0,2,0]
b[0,0,1]
b[0,1,1]
b[0,0,2]⋮

Figure 1: Overview of the di↵erentiation of a Chebyshev approximation A(�x) = ∑�
h,��h�≤n a�h T�h(�x) with respect

to x2. The proposed algorithm sorts the components on h1 and h3, thus decomposing the approximation
into one-dimensional blocks. Di↵erentiating f is then accomplished by applying the univariate di↵erentiation
from (9) to all blocks and a recombination phase to construct B(�x) ∶= dA(�x)

dx2
.

2.4 Indefinite integration: B(�x) = ∫ A(�x)dxt

Integration is similar to di↵erentiation because an analogous reasoning allows us to focus only on the inte-
gration of a one-dimensional Chebyshev approximation. Note that integrating a Chebyshev approximation
increases the degree by one and leaves us with an undetermined arbitrary constant. In the following, we will
define that constant so that the commonly used relation ∫ (h + 1)xh

t

dx
t

= xh+1
t

is satisfied.
Based on Chebyshev polynomial identities, the following relation can be derived:

� T

h

(x)dx =
���������������������

T1(x) if h = 0,
1
4 (T2(x) + T0(x)) if h = 1,
Th+1(x)
2(h+1) − Th−1(x)

2(h−1) if h ≥ 2 and h is even,

Th+1(x)
2(h+1) − Th−1(x)

2(h−1) + (−1)h−12
h(h+1)(h−1) T0(x) if h ≥ 3 and h is odd.

(11)

In contrast to the derivative (7), integrating a single Chebyshev polynomial (11) leads to three terms at most.
Writing this in the same tabular form as before, the integrand of an univariate Chebyshev approximation
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A(x) = ∑n

h

a

h

T

h

(x) (first column) expands in the base functions T
h

(columns):

∫ A(x)dx T0 T1 T2 T3 T4 T5 T6 . . .

a0 dT0 0 a0 0 0 0 0 0
a1 dT1

a1

4 0 a1

4 0 0 0 0
a2 dT2 0 −a2

2 0 a2

6 0 0 0
a3 dT3 −3a3

8 0 −a3

4 0 a3

8 0 0
a4 dT4 0 0 0 −a4

6 0 a4

10 0
a5 dT5

5a5

24 0 0 0 −a5

8 0 a5

12⋮ ⋮ � �
b0 b1 b2 b3 b4 b5 b6 . . .

Summing the contributions column by column provides an expression for the components of the approxima-
tion that is the indefinite integral. Assuming that n > 1,

b

g

=
���������������������

a1

4 +∑�n+12 �
�=2 (−1)�−1 (2�−1)(2�)(2�−2) a2�−1 if g = 0,

a0−a2

2 if g = 1,
ag−1
2g −ag+1

2g if 2 ≤ g ≤ n − 1,
ag−1
2g if n ≤ g ≤ n + 1.

(12)

Using the same sorting algorithm as with di↵erentiation, the integration of a multivariate Chebyshev
approximation can be decomposed in the integration of univariate blocks. Multiple integration is analogously
implemented as repeated integration.

2.5 Interpolation

Interpolation is just a matter of evaluating the Chebyshev approximation. Using the Clenshaw algorithm [2]
in one dimension, this can be done e�ciently by exploiting the three term recurrence relation for the (unnor-
malised) Chebyshev polynomials. Evaluating A(x) = ∑n

h=0 ah Th

(x) boils down to the following algorithm:

1. b

n+2 ∶= 0, bn+1 ∶= 0
2. for h = n ∶ −1 ∶ 1, b

h

∶= 2xb
h+1 − bh+2 + ah

3. A(x) ∶= xb1 − b2 + a0
Due to the product nature of the multivariate Chebyshev polynomials, the same algorithm can be used

s times to evaluate a s-dimensional approximation.
Our implementation uses a vectorised version of the algorithm where the N points are evaluated at once.

Also, note that only the last two b

h

’s must be kept, which reduces the memory requirements from O��s+n
s

�
N

�
to O(3 sN).
3 Basic operations as matrix-vector product

The unary operations from the previous section can all be written as multiplication of a (sparse) matrix
and �a = �a�

h

��
h

, the column vector with the components a�
h

of the approximation A(�x). Note that the actual
matrices depend on the ordering of the components and that the number of rows in these matrices also
di↵ers.
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(a) Di↵erentiation matrix D
x2 for a three-dimensional

Chebyshev approximation with degree n = 4. (b) Indefinite integration matrix J
x1 for a

three-dimensional Chebyshev approxima-
tion with degree n = 3.

Figure 2: Sparse structure of the matrixes representing operations on Chebyshev approximations.

3.1 Di↵erentiation

Di↵erentiation of an approximation A(�x) of degree n with respect to the variable x
t

decreases the degree by
(at least) one and can be written as the matrix operation

B(�x) = dA(�x)
dx

t

⇔ �
b =D

xt �a with D

xt ∈ Rdim�Ps
n−1�×dim(Ps

n)
, (13)

where the entries of D
xt can be calculated using the relations from Section 2.3. An illustration of the sparse

structure of the matrix D

xt is given in Figure 2(a).

3.2 Indefinite integration

A similar reasoning applies for indefinite integration. The resulting matrix relation contains a non-square
matrix because the degree increases by one. It is given by

B(�x) = � A(�x)dx
t

⇔ �
b = J

xt �a with J

xt ∈ Rdim�Ps
n+1�×dim(Ps

n)
. (14)

The sparse structure of J
xt is shown in Figure 2(b) while the non-zero entries can be derived directly from

the relations in Section 2.4.

3.3 Interpolation

In general, interpolation of a function f(�x) with a linear combination of basis functions can be reduced to
solving the linear system P

T �a = �f in which �f = �f(�x �̀)� �̀ , the column vector with the values at f at the

interpolation points and P ∈ Rm×N is the matrix containing the evaluations of all m basis functions in the
N interpolation points. Exactness for all basis functions requires a certain N . The optimal case is N = m
where the system has as many equations as unknowns but in general N ≥m. The (overdetermined) system
is thus solved in an approximative sense, commonly by minimising the residue ��PT �a − �f ��

2
leading to the

least squares solution from (PP

T ) �a = P �f .
However, due to the discrete orthogonality of the Chebyshev polynomials for specific point sets, PWP

T =
I

m

with W the matrix with the weights for the points on its diagonal. Multiplying both sides of the original
interpolation system with PW leads to PWP

T �a = PW

�
f which evidently reduces to I �a = �a = PW

�
f .

Interpolation is thus a matrix-vector product. Also, by observing that W �
f ∶= �f

w

is a vector with weighted
function values, this proves to be equivalent with the cubature rules for interpolation as considered in [3].

6



In the specific case of the two-dimensional Padua point set and using the structure of P, the product
with P can be decomposed to improve the e�ciency even further as explored in [1]. This publication also
derived a fast Fourier transform (FFT) based method for the Padua point set. The latter is extendable to
other point sets and higher dimensions as presented in [6].

4 Extra: solving di↵erential equations

Using the above matrix formulations of di↵erentiation operations on Chebyshev approximations, solving
linear multivariate di↵erential equations reduces to solving a linear system and boundary conditions similarly
reduce to extra equations. This is a natural extension of what was explored for the univariate case with
CHEBOPS [4] (now incorporated in CHEBFUN [7]).

Note that some kind of adaptivity is required to attain good results for general problems. CHEBFUN,
however limited to the univariate case at the time of writing, provides this functionality: approximations may
consist of several Chebyshev approximations that are joined together. This allows for good approximations
of, for example, piecewise smooth functions and functions with large scale di↵erences.

A second remark can be made on the requirement for the di↵erential equation to be linear: in specific
cases, non-linearities can be allowed. For example a term xf(x, . . .), where f(x, . . .) is the unknown function,
can be formulated as matrix operation using the product operation and thus still results in a linear system.

5 Conclusion

We have presented several operations on multivariate Chebyshev approximations, provided some insight in
their implementation in the context of CHEBINT and showed how di↵erentiation, integration and interpola-
tion can be written as a (sparse) matrix-vector product. The last section provided some preliminary insights
in how to use these matrix formulations to solve certain types of di↵erential equations, possibly with mild
non-linearities.
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