
Contents lists available at ScienceDirect
Signal Processing: Image Communication

Signal Processing: Image Communication 26 (2011) 370–377
0923-59

doi:10.1

� Cor

E-m

p.s.cesa

O.Friedr

simong

david.ge
journal homepage: www.elsevier.com/locate/image
From IPTV to synchronous shared experiences challenges in
design: Distributed media synchronization
Ishan Vaishnavi a,�, Pablo Cesar a, Dick Bulterman a, Oliver Friedrich b, Simon Gunkel b,
David Geerts c

a Science Park 123, Amsterdam 1098XG, Netherlands
b Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
c Parkstraat 45 Bus 3605, 3000 Leuven, Belgium
a r t i c l e i n f o

Available online 29 March 2011

Keywords:

Synchronization

Local Lag

QoS

Mobility

Shared experiences
65/$ - see front matter & 2011 Elsevier B.V. A

016/j.image.2011.01.006

responding author.

ail addresses: i.vaishnavi@cwi.nl (I. Vaishnavi

r@cwi.nl (P. Cesar), dick.bulterman@cwi.nl (D

ich@t-systems.com (O. Friedrich),

unkel@googlemail.com (S. Gunkel),

erts@soc.kuleuven.be (D. Geerts).
a b s t r a c t

Recent developments on Social TV point to an evolution from traditional IPTV services

towards more social experiences. Newer applications and services have appeared

wherein groups of people in different locations can watch multimedia content while

synchronously communicating with each other. We name such applications as

synchronous shared experiences. Realization of these shared experiences requires that

users feel that they are coherently communicating with each other. This paper identifies

and analyzes challenges that need to be tackled to achieve coherence: quality of service,

mobility and distributed media synchronization. Furthermore, universal session hand-

ling is required to setup these sessions. We then present our solution to one of these

challenges: distributed media synchronization. Our design uses the local lag mechan-

ism over a distributed control or master–slave signaling architecture. We validate our

implementation via experiments performed with one client located in Amsterdam and

the other in Seoul. The experiments demonstrate a bound in play-out skew of 500 ms

across these locations. Our results from user tests, presented elsewhere, show that this

value is well within tolerance limits.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In the coming future media consumption services will
integrate synchronous communication creating synchronous

shared experiences. These experiences will exist independent
of physical location and network of the users, across service
provider and network technology domains. In this paper we
explore technical challenges in the synchronization of such
experiences. Compared to traditional media synchronization
research, synchronization of shared experiences imposes
ll rights reserved.

),

. Bulterman),
additional requirements. For example, the users should be
able to communicate unhindered with each other. This may
require quality of service mechanisms over the Internet.
This work adopts the term coherence when referring to
synchronization in these shared experiences. Based on our
work within the iNEM4u project1 and previous work [1], we
highlight four requirements for coherence: quality of service
(QoS), universal session description, distributed media
synchronization and user mobility. This article briefly high-
lights the challenges and examines potential solutions. We
then present our solution for the distributed media syn-
chronization problem in detail.

Fig. 1 shows how synchronous shared experiences are
emerging. The figure presents three applications: an IPTV
1 www.inem4u.eu

www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2011.01.006
mailto:i.vaishnavi@cwi.nl
mailto:p.s.cesar@cwi.nl
mailto:dick.bulterman@cwi.nl
mailto:O.Friedrich@t-systems.com
mailto:simongunkel@googlemail.com
mailto:david.geerts@soc.kuleuven.be
www.inem4u.eu
www.inem4u.eu
www.inem4u.eu
www.inem4u.eu
dx.doi.org/10.1016/j.image.2011.01.006


Fig. 1. Streaming media and synchronous communication yield synchronous shared experiences. (a) Imagenio IPTV, (b) Skype and (c) Yahoo! Zync.

I. Vaishnavi et al. / Signal Processing: Image Communication 26 (2011) 370–377 371
service, Skype, and Yahoo! Zync. The first one follows a
traditional broadcast model providing the user with a
high-level of interactivity. The user can use new services
such as Video on Demand and, at some extent, interact
with the content. The second one is a popular instant
messaging and conferencing system, in which the user
can communicate synchronously with others; soon, to be
integrated in your television set.2 The third one, Yahoo!
Zync, integrates instant messaging (communication) with
video sharing. Two users at different locations can watch
together a YouTube video, while chatting. The videos at
both ends can be synchronized if the users so desire [2]. In
this work we explore the software enablers needed for
integrating not only chatting, but any kind of synchronous
communication over the Internet, while watching IPTV,
Internet TV or any other kind of streaming media.

This paper is organized as follows. The next section
presents related work on IPTV and Social TV. Section 3
presents an overall architecture for synchronous shared
experiences. Section 4 describes the challenges and
elaborates on feasible solutions in each of these areas.
Then, Section 5 reports on our work on cross-domain
media synchronization. In particular, we show how exist-
ing synchronization solutions in distributed games, can be
extended to achieve distributed media synchronization.
We describe in detail our implementations and the
validation results, including user studies in Section 6.
2. Related work

According to the European Commission’s Networked
Media cluster’s vision, Future Media Internet [3] will carry
high quality multimedia content and communications. Actual
developments on operator’s IPTV networks reflects this vision
using a bottom-up approach, starting with the edge net-
works. Current research on IPTV concentrates mainly on
three aspects:
�
 Creation of standardized service signaling, to drive the
convergence of content and communications, such as
Next Generation Networks [4].

�
 Technologies such as Widgets,3 CE-HTML for the

unified deployment of interactive applications over
‘‘three screens’’: PC, TV and mobile devices.
2 http://www.skype.com/allfeatures/tv/
3 http://www.w3.org/TR/widgets/
�
 Efficient distribution of content through Content Deliv-
ery Networks.

From a human factors perspective, the related research
field of interactive digital television is being transformed
into a study of human-centred television [5], in which
viewers become active users with communication and
(re-)distribution capabilities. As an active user, the viewer
might want to communicate with others, for example: by
sharing enriched fragments of multimedia content [5].
Boxee,4 iPlayer, and Watchitoo5 provide content sharing
functionality, acknowledging that direct recommenda-
tions are more effective and personal than computed
recommendations. Similarly, the first commercial social
webTV applications Joost6 and Lycos Cinema enabled
users to text chat with each other while watching online
TV or movies. More recently, the web based application
Watchitoo7 not only enables chatting, but also audio and
video conferencing while watching the same content. All
these services are however bound to one service provider/
web-site. We do not impose any such restrictions on our
algorithm.

This convergence of IPTV and Internet Video with
social aspects has been predicted elsewhere [1]. The
authors focused on the requirements of the future shared
experiences: standards, mobility of content and people.
While the authors there focused on social experiences in
general, this article compliments their work by addressing
synchronous shared experiences in particular.

3. Architecture

This section presents a high-level architecture for
synchronous shared experiences. Fig 2 represents appli-
cation and network level views for a typical shared
experience. The figure provides a new perspective to the
integration of the Home Network to the public Internet
presented in [1]. In our vision different clients may have
different service providers. The clients, however, should
have the ability to be part of the same session, identify
identical content even from different sources and
render it in a synchronized manner. Furthermore, the
clients should be able to differentiate between the QoS
4 http://www.boxee.tv
5 http://www.watchittoo.com
6 www.joost.com
7 http://www.watchittoo.com

http://www.skype.com/allfeatures/tv/
http://www.w3.org/TR/widgets/
http://www.boxee.tv
http://www.watchittoo.com
www.joost.com
www.joost.com
www.joost.com
www.joost.com
http://www.watchittoo.com


I. Vaishnavi et al. / Signal Processing: Image Communication 26 (2011) 370–377372
requirements for the media and communication streams.
Lastly, users should be able to move the entire shared
experience from one client to another while preserving
its state.
3G
Provider
Network

3G
Network

Media
Servers

CABLE
Provider
Network

User 1 User 2

User 5User 4

User 3

Gateways

 Primary Media 
Stream (Optional)

Communication
Stream

Actual Physical 
Connections

High Level View

Internet

Physical View

Fig. 2. Network and application level views.

Fig. 3. A generic a
The term communication streams, Fig 2, refers to the
stream of synchronous communication between the
distributed users. These can be chat messages and audio
or video conferencing streams. The network path used by
the communication stream is the common communication

channel.
Primary Media Streams refer to the multimedia content

that users are watching together. This can, for example, be
an IPTV stream. This content needs to be rendered at the
different locations in a synchronized manner, so that all
users can watch coherently.

3.1. Client architecture

From the client’s perspective, the architecture for
enabling synchronous shared experiences is shown in
Fig 3. It includes a number of servers (session, presence,
and media servers) with two cross-domain clients. We
have deliberately skipped a number of needed blocks
(e.g., conditional access) in order to better scope our
contribution. Each client includes five major components:
the synch agent, the session manager, the parent ren-
derer, the media content renderer, and the communica-
tion stream renderer.

The parent renderer, Fig 3, is the overall composite
renderer that is responsible for the final layout of all the
media elements and communication streams that compose
the shared experience. The communication stream renderer is
a plug-able component responsible for rendering the shared
session stream, such as a Skype client for video/audio
conferencing. The media content renderer is a plug-able
component responsible for handling the primary media
stream in accordance with the synchronization agent’s con-
trol, such as an IPTV service client.

Our main concern in this paper is the synchronization

agent, whose responsibility is providing coherence to the
rchitecture.



I. Vaishnavi et al. / Signal Processing: Image Communication 26 (2011) 370–377 373
shared experience. This may involve maintaining causal-
ity, providing time synchronization, quality of service
semantics and the synchronized play-out of the media
content across the network. The synchronization agent is
supported by the underlying session manager. The session
manager’s role is to maintain media content and the
shared session details, including user presence. It should
also be accessible throughout a generic API providing
interfaces for multiple protocols such as SIP, Webservices
or JSON-RPC. It also acts as a mediator between users in
different network domains (e.g. managed Telco IPTV and
Over-The-Top Portals) and allows them to share con-
tent independent of their access network or used IPTV
standards.

Lastly, there are challenges in the infrastructure
design. In particular towards providing efficient QoS
guarantees to both the primary stream and the commu-
nication stream. Each one of these challenges is presented
in the following section.

4. Challenges in shared experiences

In this section we discuss the challenges for providing
coherence in synchronous shared experiences, beginning
with quality of service.

4.1. QoS

The QoS guarantees required by our architecture can
be split into three categories. The QoS guarantees
required by the (i) shared experience, (ii) media content
and the (iii) control messages (including play-out position
updates).

Communication streams require time bounded deliv-
ery, so that every word a user may say at one end can be
heard immediately by the other users. However, how fast
is immediate? Research in telecommunications puts
this value at 150 ms [6]. The current standard for provid-
ing such QoS guarantees is the Differentiated Service
networks architecture. Differentiated networks work by
classifying packets into behavior classes, known as per

hop behaviors (phb). The real time group (or Expedited

Forwarding Class) must be used for communication
streams. All packets in a class (phb) require a similar type
of service.

The primary stream requires reliable as well as time
bounded delivery. The bounds in time here are larger than
those of a communication streams and depend on other
factors, such as, buffering. Diffserv architectures provide a
reliable delivery group (Assured Forwarding Class) with
subclasses with various parameters, including low delay.
This class is suitable for the primary stream.

To ensure end to end predictability the Diffserv-EF and
the AF-low delay class are recommended short queue
lengths. This is done under the assumption of correct
provisioning. There are two problems with this assump-
tion: (i) it is difficult to correctly provision networks and
(ii) users, especially using in multimedia, do not always
transmit at a constant bandwidth. In our work [7] we
showed that this (i) leads to an under-utilization of
available bandwidth and (ii) requires that the networks
are over-provisioned. We proposed Estimated Service
networks which try to ensure time bounded delivery by
making the network (IP layer) utilize the time bounds on
the data it delivers. In other words we are referring in
essence to (adapted) deadline based scheduling mechan-
ism. Real time community has been using this for decades
starting primarily by the work in [8]. Our results,
presented in [7], show much better bandwidth utilization.

Finally, control flow semantics are required to assure
prioritized delivery of control packets such as the
play-out position updates. By giving control flow priority
over all other classes in the Diffserv architecture these
semantics can be achieved. The real-time class expedited
forwarding comes second and is used for the communica-
tion stream. Lastly, the primary stream can be sent via the
assured forwarding low-delay class.

4.2. Universal sessions

Cross-domain session management is one of the main
challenges for creating shared experiences between
users in different network domains. Sessions for shared
experiences extend the basic multimedia session con-
cepts towards a multi-user, multi-content approach. Our
solution is called iSession [9]. iSession provides a logical
representation of interactive multimedia sessions that can
span across multiple domains. It contains all the informa-
tion that is required by a client to connect to an existing
session. This includes information on the services and the
content that are consumed and on the users who are
participating in the session. It can also contain metadata
information that may be required for synchronization of
media streams across domains and layout information to
create a common experience across devices. The actual
delivery of the content is achieved within each domain by
clients using domain-specific technology.

An iSession is described by a Session Description
Protocol document (SDPD). This document contains infor-
mation on the content associated with the session, the
participants, and the layout and timing information
needed to render or replay the session. The SDPD is used
by clients to establish connections to content sources.
However, it does not contain media specific information
like media format or media delivery type. This informa-
tion is directly exchanged between the client and the
content sources providing the session content.

Either users or service providers can create an iSession
. In the first case, a service provider gives users the
possibility to create a session document and to share it
with others. In the second case, the session is created by
the service provider and users are able to join in. Users
can discover a session through invitation from other
users, by subscribing to sessions of specific types or by
selecting a session from an EPG containing session
information.

4.3. User mobility

User mobility is an important requirement for Social
IPTV services [1]. As illustrated in Fig 2, users are
surrounded by a multitude of devices all with varying



Communication Stream
via

Network connection

User to user communication stream: 1) text chat 2) audio call
User 1 User 2

Fig. 4. Scenario and user test setup.

I. Vaishnavi et al. / Signal Processing: Image Communication 26 (2011) 370–377374
rendering capabilities. Users are bound to move their
focus between these devices for various reasons identified
in [10]. In such situations session mobility is required to
move relevant sessions from one domain/device to
another. The cross-domain sessions described in Section
4.2 can, however, be composed of multiple individual
media sessions. Current methods [11] of achieving user
mobility in such cases, is as a composition of multiple
media session mobility requests. This process is repetitive
and therefore inefficient in the control plane and may not
provide the best available user experience [12].

To address this inefficiency our solution notices that
each user is associated with one universal session com-
posed of one presentation, which in turn maybe com-
posed of multiple media sessions. Thus for efficient user
mobility a presentation-layer mobility mechanism is
required. The presentation-layer mobility mechanism
describes the entire shared experience in structural
description languages, such as SMIL.8 At the time of
executing a mobility request, the current state of the
experience can be saved in a structured file, using solu-
tions, such as SMIL-state [13]. This file can be transferred
using the any appropriate network-dependent means to
the target location. The shared experience can be re-
started at the new location and the saved state re-applied,
yielding coherent user mobility. Since the file is only
moved once there is no repetitive signaling in the control
plane. Re-starting the experience at the target location
ensures the best possible user experience. Further details
are presented in [12].

4.4. Distribute media synchronization

The existence of a common synchronized content is
another requirement of coherence. The main challenge in
this area is to achieve cross-domain synchronization in
play-out of primary streams across multiple destinations
streaming from respective servers. We assume that the
primary streams rendered at different clients have a
common or related play-out times. For VoD content this
is just the current play time. For broadcast, the ETSI-DVB
standard [14] provides such a time line. For more complex
presentation structures, such as, those which are written
in descriptive languages, such as, SMIL or NCL solutions
such as SMIL state [13] can be used. Section 5 presents
our implementation of the distributed synchronization
algorithm which addresses these challenges. The imple-
mentation builds on the universal cross-domain sessions,
used for identifying users and content across domains.

5. Distributed media synchronization

This section describes how synchronization algorithms,
typically used in distributed gaming, can be adapted for
generic synchronous shared experiences. In particular, we
look at the scenario, in Fig 4, in which users, watching the
same (or related) video at two separate locations, can
communicate with each other synchronously. The videos
8 http://www.w3.org/AudioVideo/
need not originate at the same source. A number of
simplifying assumptions are made as enlisted below:
�
 Play-out position updates can be sent over the com-
munication stream.

�
 The rendering devices are capable of running the

synchronisation algorithm and are powerful enough
to process events within time bounds.

�
 Cross-domain sessions can be setup. We utilized iSes-

sions [9].

�
 The clients are time synchronized within certain

bounds.
Given these assumptions, the ‘‘Local Lag with Time Warp’’
[15] algorithm can be adapted to achieve event synchro-

nization. Event synchronisation is the coherent execution
of a user’s actions at all the clients, so that a consistent
version of the experience is seen by all the users. This is
important in a distributed gaming infrastructure. In our
use case if the main media stream is paused at one end,
then, the pause should be executed at other clients within
a bounded tolerance limit. The algorithm consists of two
parts: (i) local lag to compensate for short term incon-
sistencies and (ii) time warp to undo inconsistencies that
may still occur due to various network delay and jitter
factors.

The concept of local lag is illustrated in Fig 5. Instead of
executing the user action as soon as possible, a time in the
future is chosen. This delay in event execution, known as
local lag, ensures that the event has time to travel to all
destinations before being executed. The errors in execu-
tion are now dependent only on the skew in time
synchronization. The value of the local lag needs to be
small enough so that the user does not notice the delayed
execution, but large enough that the event has enough
time to travel to other clients. A minimum value of
150 ms is recommended [15] for applications that span
the globe. These events need to reach their destinations
before this specified delay. Since these events are sporadic
in nature and require very little bandwidth, they can be
sent as network control messages, which have strict
priority.

The local lag technique however only attempts at
resolving small term inconsistencies, it does not provide
guarantees. Time warp is the process of rolling back
changes to the last known consistent state in case,
inconsistencies are detected. Time warping is therefore
application-dependent and thus not directly addressed

http://www.w3.org/AudioVideo/


User Event
Transmission

Display

Event
Execution

Node 1 Node 2 Node 3

Execution without local lag Execution with local lag

enqueue
event

to execute 
at (t + t') enqueue event 

to execute at 
(t + t')

enqueue event 
to execute at 

(t + t')t + t'

t

Node 1 Node 2 Node 3

Fig. 5. Local inconsistencies can be avoided by using local lag.

I. Vaishnavi et al. / Signal Processing: Image Communication 26 (2011) 370–377 375
here. For our specific scenario of distributed video watch-
ing, time warp resolves to jumping back or forward in the
play-out time. This however implies that the renderer
needs to cache frames which have already been played
out for a short period of time to facilitate the jumping
back operation.

5.1. Signaling architectures

Previous research in distributed synchronization
mechanisms recommends three different signaling archi-
tectures: (i) master–slave [16] (ii) sync-maestro [17] and
(iii) distributed control [18]. In the chosen scenario there
are significant argumentative reasons not to choose sync-
maestro. Sync-maestro requires the maintenance of a
central sync-server which receives play-out position
updates from all the nodes, re-calculates their individual
adjustments and signals them to re-adjust their play-out
position. This technique requires the maintenance of a
dedicated sync server, which is not scalable [19]. Further-
more it assumes that all clients can contact the server
directly, which may not be the case in cross-domain
applications. This architecture is typically used in distrib-
uted games to maintain a world wide view of the game, as
a single server simplifies problems relating to causality
and replication consistency.

The other two approaches are quite similar and more
feasible. In the master–slave approach one of the nodes is
considered a master and multicasts play-out update
messages to all other nodes in the system, whereas in a
distributed control system all nodes can send play-out
position updates. Each receiving node chooses to follow
one of these update packets as the reference timeline. As
long as all the nodes choose the same reference timeline
the system will remain synchronized. The choice between
these two architectures is largely application dependent.
For example: in an e-classroom environment the teacher
should be the master node which directs the student
nodes as to what part of the presentation to play-out. In a
friends watching football scenario the distributed control
scheme is more appropriate, since there is no need for
master re-election if the current master drops out. Lastly a
fourth network architecture, which is a hybrid between
the sync-maestro and the distributed control approach
can also be used. In this approach a sync-maestro in the
local domain collects the status updates from all the
end-nodes in that domain and controls their play-out. In
a cross-domain session, each of the domain sync-maes-
tros further run a distributed control signaling based
algorithm amongst themselves. This approach is suitable
if a very large number of nodes belong to the same
session, such as massively multiplayer online games.

In our prototypes we implemented the local lag and
time warp algorithm [15] over both the master–slave and
the distributed control signaling architectures to achieve
event synchronization.

5.2. Execution

Given event synchronization, media synchronization
can be achieved by replacing the event message by play-
out position updates. These play-out position updates are
generated periodically. The value of this periodicity
depends on the particular application. Since these events
are not user generated, the local lag is determined by the
period of updates and the particular application seman-
tics, rather than user tolerance to local event execution.

When two or more users join a session to watch media
content together, a distributed session needs to be set up.
A number of steps are required to achieve media syn-
chronization during the session setup. In particular, a
multicast channel needs to be setup and the users need
to negotiate on a time synchronization sources. The
multicast channel can be set up re-utilising the commu-
nication stream infrastructure. The control messages of
the communication stream can be extended to create a
multicast channel. In our implementation XMPP was used
to signal user presence and XMPP IQ extended to include
position updates.

During execution, the synchronization agent at each
node acts as a smart event queuing and handling thread.
All events are placed in a queue, insertion sorted over



-2

-1.5

-1

-0.5

 0

0 5 10 15 20 25 30

E
st

im
at

ed
 D

if
fe

re
nc

e 
R

ep
or

te
d

Pl
ay

ou
t T

im
e 

(s
)

Time(s)

First Run
Second Run

Fig. 6. Validation results: (1st run) master–slave signaling, (2 run)

distributed control.

I. Vaishnavi et al. / Signal Processing: Image Communication 26 (2011) 370–377376
execution time. When the execution time of a particular
event is reached, the associated event is executed. For
periodic position updates in the distributed signaling
architecture, all nodes send position updates but only
one, the reference node’s update needs to be executed. In
our implementation the reference node is the node that
has the smallest media buffer size.

6. Implementation and validation

Two reference implementations were developed. The
first one was implemented in Java, using Java Media
Framework as the media renderer component. All nodes
played the identical video file located at different sources.
This implementation was used for testing between clients
in Amsterdam and Seoul for a 30 min video clip. Every 30 s
each client logged on the current play position, CPTi, along
with the NTP time, NTPi, at that moment. Fig. 6 plots the
results of CPTAmsterdam�CPTSeoulþfNTPseoul�NTPAmsterdamg for
two runs; 1st run: with the master–slave signaling archi-
tecture and 2nd run: with distributed control signaling
architecture. A total of five repetitions for each signaling
architecture were carried out with indistinguishable
results. The graph suggests a constant error in play-out of
around 300 ms7100 ms. A further uncertainty in these
measurements due to error in NTP measurements is
o7100 ms resulting in an overall worst case error of
300 ms7200 ms. This constant skew value is observed
due to constant differences between the renderers in the
time taken to execute the seek operation, at every position
update.9 The boundedness of this seek operation was
assumed at the start of Section 5. Nonetheless this worst
case error of 500 ms is acceptable as will be shown by user
tests presented in Section 7.

A second implementation for three different clients in
three different domains was developed. The three clients
were a PC, an unmanaged TV and a mobile phone. The PC
version was implemented using .NET and with VLCplayer
used as the media renderer. A Philips NET TV was used to
implement an unmanaged TV case and was coded in
javascript and the in built renderer used for media
rendering. The mobile phone was implemented using
HP’s reference implementation of the JSR 309 standard
http://jcp.org/. This work also lead to the enhancement of
the JSR 309 standard. Fig. 7 shows the screenshots of this
implementation.

7. User studies

A Social TV use case with either text or audio commu-
nication streams was tested with real users on two
occasions. The objective of the test was to identify the
user tolerance towards skew in video play-out. In a first
series of tests in March 2010, the implementation shown
in Fig 7 was used. Three users, friends or family of each
other, were asked to watch the same video on three
different locations and on three different devices: a PC,
9 This fact was verified when the computers were again co-located

in Amsterdam.
a television set and a mobile phone. At the same time,
they could voice chat with each other while watching the
video. At specific intervals, the synchronization of
the videos was automatically changed so that one of
the participants was not in sync with the others. In total,
seven groups of three users participated in this test. The
results showed that there exist too many independent
parameters that influence the users experience, such as
the user’s environment and communication channel. Thus
no statistically significant results on user tolerance to
synchronization skew could be derived from these
experiments.

A more controlled experimental setup was created in
August 2010, enabling two users to watch a video
together at two locations, communicating with each other
using text chat or voice chat as shown in Fig 4. The skew
in video play-out was changed, with five different skew
times: 0, 0.5, 1, 2 and 4 s with 36 participants. The results
showed that voice chat and active text chat users noticed
synchronization differences only beyond 1 s. Further
details of this user study and the results thereof can be
found in [20].
8. Conclusion and future work

In this paper we identify the architectural challenges
involved in the transition from IPTV services to synchro-
nous shared experiences. In particular we looked at:
quality of service, universal session handling, user mobi-
lity and synchronization. We elaborated on our solution
for the distributed media synchronization and presented
the validation results thereof. Our design uses the local
lag mechanism over a distributed control or master–slave
signaling architecture. Our implementation achieved
synchronization precision of around 300 ms7200 ms
between Amsterdam and Seoul. User studies conducted
as a part of this work demonstrate this is sufficient for
Social TV applications. In the future we plan to perform
more user tests to identify the exact user tolerance
towards differences in synchronization level and how

http://jcp.org/


Fig. 7. Example implementation in the iNEM4u project. (a) SIP Clint (Laptop), (b) TV Client and (c) 3G Mobile Clint.

I. Vaishnavi et al. / Signal Processing: Image Communication 26 (2011) 370–377 377
various parameters, such as, the communication channel
and media content may influence them.

References

[1] M. Montpetit, N. Klym, T. Mirlacher, The Future of IPTV: Adding
Social Networking and Mobility, ConTEL, 2009.

[2] D. Shamma, M. Bastea-Forte, N. Joubert, Y. Liu, Enhancing online
personal connections through the synchronized sharing of video,
2008.

[3] T. Zahariadis, P. Daras, I. Laso-Ballesteros, Towards future 3d media
internet, in: NEM Summit 2008, St. Malo, 13–15 October 2008.

[4] T. Kovacikova, P. Segec, NGN standards activities in ETSI, in: Sixth
International Conference on Networking, 2007. ICN’07, 2007, p. 76.

[5] P. Cesar, D.C.A. Bulterman, L.F.G. Soares, Introduction to special
issue: Human-centered television—directions in interactive digital
television research, 2008.

[6] R. ITU-T, I. Recommend, G. 114, One-way transmission time, 2003.
[7] I. Vaishnavi, D.C. Bulterman, Estimate and serve: scheduling soft

real-time packets for delay sensitive media applications on the
internet, in: ACM NOSSDAV, ACM, New York, NY, USA, 2009.

[8] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in a
hard-real-time environment, Journal of the ACM (JACM) 20 (1)
(1973) 61.

[9] D. Goergen, J. Zoric, J. O’Connell, O. Friedrich, B. Zachey, A session
model for cross-domain interactive multi-user IPTV, in: IEEE CCNC,
2010.

[10] S. Mate, U. Chandra, I.D.D. Curcio, Movable-multimedia: session
mobility in ubiquitous computing ecosystem, in: Proceedings of
MUM, 2006, p. 8.
[11] M.-X. Chen, C.-J. Peng, R.-H. Hwang, Ssip: Split a sip session over
multiple devices, Computer Standards & Interfaces 29 (5) (2007)
531–545.

[12] I. Vaishnavi, P. César, A.J. Jansen, B. Gao, D.C.A. Bulterman, A
presentation layer mechanism for multimedia playback mobility
in service oriented architectures, in: Proceedings of ACM MUM,
2008.

[13] J. Jansen, D.C. Bulterman, Enabling adaptive time-based web
applications with smil state, in: Proceeding of DocEng ’08, 2008.

[14] T. ETSI, 102 823 v1. 1.1, Digital Video Broadcasting (DVB); Specs
for the carriage of synchronized auxiliary data in DVB streams,
2005.

[15] M. Mauve, J. Vogel, V. Hilt, W. Effelsberg, Local-lag and timewarp:
Providing consistency for replicated continuous applications, IEEE
Transactions on Multimedia 6 (1) (2004) 47.

[16] Y. Ishibashi, A. Tsuji, S. Tasaka, A group synchronization mechanism
for stored media in multicast communications, in: Proceedings of
the INFOCOM’97, 1997.

[17] Y. Ishibashi, S. Tasaka, A media synchronization mechanism for live
media and its measured performance, IEICE Transactions on Com-
munications E81-B (10) (1998) 1840–1849.

[18] Y. Ishibashi, S. Tasaka, Y. Tachibana, Adaptive causality and media
synchronization control for networked multimedia applications,
IEEE International Conference on Communications, 2001, ICC 2001,
vol. 3, 2001.

[19] Y. Ishibashi, S. Tasaka, Causality and media synchronization control
for networked multimedia games: centralized versus distributed,
in: Proceedings of Netgames, 2003.

[20] D. Geerts, I. Vaishnavi, R. Merkuria, P. Cesar, O. Deventer, Are we in
sync? Synchronization requirements for watching video online
together, in: ACM CHI, 2011.


	From IPTV to synchronous shared experiences challenges in design: Distributed media synchronization
	Introduction
	Related work
	Architecture
	Client architecture

	Challenges in shared experiences
	QoS
	Universal sessions
	User mobility
	Distribute media synchronization

	Distributed media synchronization
	Signaling architectures
	Execution

	Implementation and validation
	User studies
	Conclusion and future work
	References




