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Abstract

English abstract

In this thesis eigenvalues, structured matrices and orthogonal functions are
studied from a practical point of view. In general, we try to exploit relations
between any of these three concepts to design algorithms in the context of five
problems. Each problem is closely related to one of the basic linear algebra
problems: solving a system of linear equations or an eigenvalue problem.

Firstly, we study a problem arising from graph theory. There are different ways
to map graphs to structured matrices, and depending on the matrix different
graph-theoretic properties can be derived from their eigenvalues. An open
question whether the regularity of a graph could or could not be derived from
the spectrum of a certain class of structured matrices is solved.

The second aspect of the present thesis relates to a common method for
eigenvalue computation, namely, a rational Lanczos method. Close relation
between this algorithm and a certain minimization problem for orthogonal
rational functions gives a possibility for numerical exploration of convergence
properties of the algorithm without running it. Such exploration is reduced
to solving a constrained weighted energy problem from logarithmic potential
theory, which, in its turn, is converted to a linear system. The focus lies on
this convergence exploration method.

Then a method to compute recurrence relation coefficients for bivariate
polynomials, orthonormal with respect to a discrete inner product, is studied.
To compute these polynomials, the inverse eigenvalue problem is posed and
solved efficiently and in a stable way. This is achieved by applying Givens
rotations to certain structured matrices and yields the generalized Hessenberg
matrices, containing the recurrence relation coefficients.

Finally, several linear-algebraic problems with structured matrices are studied
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ii ABSTRACT

with a continuation method. Such a method defines an easy problem with a
known solution and a path between this problem and the one we are wishing
to solve. Instead of solving the target problem directly, the solution to the
easy one is gradually transformed to the desired one. With this approach we
first solve a linear system of equations with Toeplitz coefficient matrix, and
later we find all the eigenvalues and eigenvectors of a symmetric diagonal-plus-
semiseparable matrix. Both types of structured matrices exhibit close relation
with certain classes of orthogonal functions.

Numerical experiments are included for all the proposed methods and illustrate
the stability and accuracy of the methods.

Nederlandse samenvatting

In dit werk worden eigenwaarden, gestructureerde matrices en orthogonale
functies onderzocht vanuit een praktisch oogpunt. Wij gebruiken de relaties
tussen deze drie concepten om nieuwe algoritmen te ontwerpen voor vijf
wetenschappelijke problemen. Elk van die problemen is verbonden met
klassieke problemen van lineaire algebra: het oplossen van stelsels lineaire
vergelijkingen of het berekenen van eigenwaarden en eigenvectoren van een
matrix.

Ten eerste wordt het probleem van grafentheorie bestudeerd. Er zijn diverse
manieren om grafen naar matrices af te beelden, en afhankelijk van de matrix
kunnen verschillende structurele eigenschappen van de onderliggende graf al
dan niet gereconstrueerd worden op basis van de eigenwaarden van de matrix.
Wij geven een antwoord op de vraag of men de regelmatigheid van een graf op
basis van zijn spectrum ten opzichte van een bepaalde gestructureerde matrix
kan afleiden.

Het volgende deel van dit werk gaat over een bekende methode voor het
berekenen van eigenwaarden, namelijk, de rationale Lanczos methode. Het
verband tussen dit algoritme en een bepaald optimalisatie probleem voor
rationale orthogonale functies laat toe de convergentie-eigenschappen van zo’n
algoritme te bestuderen zonder het algoritme expliciet uit te voeren. Dergelijke
studie wordt gereduceerd tot het oplossen van een gewogen energie-probleem
met beperkingen binnen logaritmische potentiaaltheorie, dat, op zijn beurt,
wordt omgezet in een lineair stelsel. De focus ligt op de methode voor het
bestuderen van de convergentie.

Verder wordt een methode ontworpen om de recursie-coëfficiënten te berekenen
voor veeltermen in meerdere veranderlijken, die orthonormaal zijn ten opzichte



ABSTRACT iii

van een discreet inproduct. Om deze veeltermen te berekenen, wordt een invers
eigenwaardeprobleem opgelost op een stabiele en efficiënte manier. Dit wordt
bereikt door het toepassen van Givens rotaties op bepaalde gestructureerde
matrices en levert de veralgemeende Hessenberg-matrices op. Deze matrices
bevatten de recursie-coëfficiënten.

Ten slotte worden verschillende lineair-algebraïsche problemen met gestruc-
tureerde matrices bestudeerd met behulp van een voortzettingsmethode.
Een dergelijke methode definieert een eenvoudig probleem met een bekende
oplossing en een traject tussen dit probleem en datgene wat we willen oplossen.
In plaats van het rechtstreeks oplossen van het oorspronkelijke probleem,
wordt de oplossing voor het gemakkelijke probleem continu omgevormd naar
die voor het moeilijke probleem. Met deze aanpak verwerken we eerst het
oplossen van een lineair stelsel met Toeplitz coëfficiëntenmatrix, en later vinden
we alle eigenwaarden en eigenvectoren van een symmetrische diagonaal-plus-
semiseparabele matrix. Beide soorten van gestructureerde matrices staan in
nauw verband met bepaalde categorieën van orthogonale functies.

Numerieke experimenten worden voor alle voorgestelde methoden gegeven en
illustreren de stabiliteit en de efficiëntie daarvan.
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Chapter 1

Introduction

1.1 Historical context and motivation

1.1.1 Eigenvalues

Eigenvalues are often introduced in the context of linear algebra or operator
theory. Historically, however, they arose during the study of applications,
mostly coming from physics.

Euler studied the rotational motion of a rigid body and discovered the
importance of the principal axes. Lagrange realized that the principal axes
are the eigenvectors of the inertia matrix [77, Sec. 2]. In the early 19th century,
Cauchy saw how their work could be used to classify the quadric surfaces, and
generalized it to arbitrary dimensions [77, Sec. 3]. Cauchy also coined the term
racine caractéristique (characteristic root) for what is now called eigenvalue;
his term survives in the “characteristic equation” [96, pp. 807-808].

Fourier used the work of Laplace and Lagrange to solve the heat equation
by separation of variables in his famous 1822 book Théorie analytique de la
chaleur [96, p. 673]. Sturm developed Fourier’s ideas further and brought
them to the attention of Cauchy, who combined them with his own ideas
and arrived at the fact that real symmetric matrices have real eigenvalues [77,
Sec. 3]. This was extended by Hermite in 1855 to what are now called Hermitian
matrices [96]. These were the first results where the structure of the matrix
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2 INTRODUCTION

played an important role. Around the same time, Brioschi proved that the
eigenvalues of orthogonal matrices lie on the unit circle [77, Sec. 3], and Clebsch
found the corresponding result for skew-symmetric matrices[96, pp. 807-808].

1.1.2 Algebraic graph theory

Since the early years it has been discovered that study of the eigenvalues
is useful in seemingly unrelated areas of mathematics, such as graph theory.
A possible way to see these applications is to associate matrices, such as an
adjacency matrix or a Laplacian matrix, with graphs. This makes it possible
to study properties of the underlying graph in relationship to the characteristic
polynomial, eigenvalues, and eigenvectors of the matrices. The eigenvalues of
these matrices are often called a spectrum of the graph, so the spectrum is
dependent on the associated matrix.

After mapping graphs to eigenvalues a natural property to explore is whether
any graph-specific information is preserved during the mapping. The question
“which graphs are determined by their spectrum?” (futher denoted as “DS”)
goes back for about half a century, and originates from chemistry. In 1956
Günthard and Primas [74] raised the question in a paper that relates the theory
of graph spectra to Hückel’s theory from chemistry (see also [44, Chapter 6]).
At that time it was believed that every graph is DS until one year later Collatz
and Sinogowitz [41] presented a pair of cospectral trees. One more well-known
example of cospectral graphs, called the Saltire pair, is presented on Figure 1.1.
Both graphs have spectrum {[2]1, [0]3, [−2]1}, powers denote multiplicities.

Figure 1.1: Pair of graphs, cospectral wrt adjacency matrix

Another application comes from Fisher [59] in 1966, who considered a question
of Kac [91]: “Can one hear the shape of a drum?” He modeled the shape of
the drum by a graph. Then the sound of that drum is characterised by the
eigenvalues of the graph.

After 1967 many examples of cospectral graphs were found. The most striking
result of this kind is that of Schwenk [140] stating that almost all trees are
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non-DS. After this result there was no consensus for what would be true for
general graphs (see, for example [67, p. 73]). Are almost all graphs DS, are
almost no graphs DS, or is neither true? Van Dam and Haemers shed some
light on this question in a survey [167]. They leave some open questions that
were addressed in [33] and later in [169], namely, they were interested whether
a regularity of the graph can be deduced from its spectrum with respect to a
certain generalized adjacency matrix, depending on a parameter y.

One part of the solution is given in our work [33], where a cospectral pair of
regular and non-regular graphs is firstly found by computer enumeration, and
then a general procedure is presented, that allows to construct such a pair for
any rational value of y. One of discovered pairs is presented on Figure 1.2.
Later in [169] all such pairs on at most eleven vertices are generated and it is
shown that such a pair cannot exist for irrational y.

Figure 1.2: Discovered pair of graphs, cospectral wrt generalized adjacency
matrix

In 2009 van Dam and Haemers published one more review [168], where they
summarized known results about DS and non-DS graphs. They show that the
spectrum with respect to different matrices preserves different properties, and
present several families of graphs that are DS with respect to the adjacency
matrix, the Laplacian matrix, or both. An important development is the new
method of Wang and Xu [178] for finding graphs that are DS with respect to
the generalized adjacency matrix. Their approach often works for randomly
generated graphs, and this strengthens our believe that the statement ‘almost
all graphs are not DS’ (which is true for trees) is false.

1.1.3 Lanczos algorithm

The complexity of the problem for finding eigenvalues of a matrix increases
rapidly with increasing size of the matrix. There are exact solutions for
dimensions below 5, but for dimensions greater than or equal to 5 there
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are generally no exact solutions and one has to resort to numerical methods
to find them approximately. Worse, this computational procedure can
be very inaccurate in the presence of round-off error. Efficient, accurate
methods to compute eigenvalues and eigenvectors of arbitrary matrices were
not known until the development of the QR algorithm by Francis [61, 62]
and Kublanovskaya [99]. For large Hermitian sparse matrices, the Lanczos
algorithm is one example of an efficient iterative method to compute part of
the eigenvalues and eigenvectors, among several other possibilities [153].

The Lanczos algorithm is an iterative Krylov subspace algorithm invented by
Lanczos [103] that is an adaptation of the power method to find eigenvalues and
eigenvectors of a symmetric square matrix or the singular value decomposition
of a rectangular matrix. It is particularly useful for very large sparse matrices,
especially if a fast procedure for computing a matrix-vector product can
be constructed. For the Lanczos algorithm, it can be proved that with
exact arithmetic, it constructs an orthogonal basis of a corresponding Krylov
subspace. This basis transforms the original matrix to a tridiagonal one
of a smaller size, and some of its eigenvalues/vectors (they are called Ritz
values/vectors) are then good approximations to the corresponding ones of the
original matrix [71, Chapter 9]. Formula (1.1) schematically shows an example
of such transformation for a 5 × 5-matrix, the columns of a narrow matrix
are the basis vectors. However, in practice (as the calculations are performed
in floating point arithmetic where inaccuracy is inevitable), the orthogonality
is quickly lost and in some cases the new Ritz vector could even be linearly
dependent on the set that is already constructed [122, Chapter 13]. This
troublesome feature complicates the relationship between the eigenvalues of
the original matrix and those of the tridiagonal one. Because of this reason the
Lanczos algorithm was disregarded by numerical analysts during almost twenty
years since its discovery.
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(1.1)

The search for a practical, easy-to-use Lanczos procedure is rooted in the
fundamental error analysis of the method by Paige [117, 118]. An examination
of his results motivates several modified Lanczos methods, as described in the
well-known book of Golub and Van Loan [71].
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1.1.4 Convergence of the Lanczos algorithm: potential theory

and zeros of orthogonal functions

It is of basic importance for an appreciation of the Lanczos method to
understand which eigenvalues of the original matrix are approximated by the
Ritz values. Originally, Trefethen and Bau [153] observed a relationship with
electric charge distributions, and they state the following rule of thumb: The
Lanczos iteration tends to converge to eigenvalues in regions of ”too little
charge” for an equilibrium distribution. This may be understood as follows.
Assume that the eigenvalues of the original matrix are located on the interval
[−1, 1], except perhaps for a few outliers. Then one has to compare the
distribution of eigenvalues with the equilibrium distribution of [−1, 1]. The
density of the equilibrium distribution is infinite at the endpoints ±1. Thus
if the eigenvalues of the original matrix are spread out more evenly over the
interval [−1, 1], then the Lanczos method tends to find the extreme eigenvalues.
On the other hand, if these eigenvalues are distributed like the equilibrium
distribution, then the Lanczos iteration is very much useless if the amount of
iterations is smaller than the size of the original matrix, and does not find any
eigenvalue until these two numbers become equal.

More exact estimates for the classical Lanczos method are presented by
Kuijlaars [100, 101], where he utilized the connection between the Lanczos
method, a polynomial minimization problem and logarithmic potential theory.
The first relationship is known since the very discovery of the method and
is due to Stiefel [147]. It could be briefly summarized as follows: the
characteristic polynomial of the resultant tridiagonal matrix is a monic
polynomial of corresponding degree that minimizes a certain norm among
all monic polynomials of the same degree. The zeros of this polynomial
are equal to the Ritz values. Rakhmanov [125] characterized the zero
distribution of polynomials satisfying a discrete orthogonality by relating it to
an extremal problem in potential theory. Using this result, Kuijlaars described,
in an asymptotic sense, the region containing those eigenvalues that are well
approximated by the Ritz values. The region depends on the distribution of
eigenvalues and on the ratio between the size of the matrix and the number of
iterations. We refer to [51] for more details on the connection between potential
theory and matrix iteration methods.

For the classical Lanczos method and equally distributed eigenvalues this is
in accordance with the well-known fact that eigenvalues on the outskirts of
the spectrum converge first. However, in some applications this convergence
behavior is not appreciated and one may be interested, say, only in several
internal eigenvalues. As a remedy, a more general Krylov subspace method
is presented by Ruhe [129] and further analyzed by him [131, 130] and other
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authors [46, 47, 55, 112]. It is suggested to consider rational Krylov spaces
instead of classical Krylov spaces, thus replacing monic polynomials by rational
functions. It was known since the discovery of the method that in this way it is
possible to get good approximations to all the eigenvalues in a union of regions
around the poles of the rational functions; see [132]. A typical application that
makes use of these algorithms is model reduction of a linear dynamical system,
where one wants to get the response over a prescribed range of frequencies; see,
e.g., [133] or [64].

Recently, Beckermann, Güttel and Vandebril [10] extended the above-stated
results of Kuijlaars [101] and characterized the region of good convergence for
the rational Lanczos process. Their description relates the convergence regions
to a solution of a more complex constrained weighted energy problem from
potential theory. They also presented estimates on the rate of approximation
of a given eigenvalue by a rational Ritz value. An explicit solution to the
constrained weighted energy problem is known only for some cases, and for
other cases some properties can be derived without being able to obtain an
explicit solution. Hence it is interesting to obtain an approximate numerical
solution. A fast and stable method of solving this problem is suggested in
our work [32], where the extremal energy problem is discretized and solved
numerically. This method gives the possibility to predict the regions of
convergence without actually running the rational Lanczos algorithm.

Such a tool may be useful in large-scale computations to estimate the amount
of iterations required to reach a given precision for certain eigenvalues, thus
determining computation time and memory requirements before the actual
execution of a Lanczos method. On Figures 1.3 and 1.4 we show a convergence
behavior of a rational Lanczos algorithm for a certain matrix with eigenvalues
equally distributed between −1 and 1, for two different choices of poles. There
by a red ‘+’ we denote almost converged Ritz values and the black curve
is computed by our new algorithm and represents a border of a region with
converged Ritz values.

So, the use of complex poles allows to find first some internal eigenvalues, while
real poles just speed up the convergence to outer eigenvalues on one or another
side of a segment [−1, 1].

We would like to mention that the use of potential theory is by no means the
only tool for studying the convergence behavior of Krylov subspace methods.
Important contributions have been made for example in [135, 145, 170, 171],
where a priori error bounds are obtained from a refined analysis of the extreme
eigenvalues. In contrast to these methods, methods based on potential theory
emphasize the global eigenvalue distribution but ignore the local fine structure
of eigenvalues.
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Figure 1.3: Predicted and actual
convergence of rational Ritz values
with −5 and 1.2 as poles
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Figure 1.4: Predicted and actual
convergence of rational Ritz values
with 0.2 + 0.1i and 0.5 + 0.1i as poles

1.1.5 Orthogonal polynomials

Orthogonal polynomials have deep relations not only to the Lanczos iteration
method. Originally, the field of orthogonal polynomials developed in the late
19th century from a study of continued fractions by Chebyshev [31] and was
pursued by Markov [108] and Stieltjes [148]. In the 20th century the theory of
orthogonal polynomials was used in the study of both theoretical and practical
problems. Two standard references on this topic are the classic textbook of
Szegő [151], and Chihara’s work [36] which puts more emphasis on the discrete
case. Plenty of applications where different orthonormal polynomials are a
valuable and fruitful tool are discussed in the book of Golub and Meurant [70].

As one of the examples, different sequences of orthogonal polynomials have
important applications in algebraic graph theory, as described by Godsil [67].
Let us define a matching in a graph as a set of edges without common vertices.
Then a matching polynomial (sometimes called an acyclic polynomial) is a
generating function of the numbers of matchings of various sizes in a graph. As
shown in [67], for the complete bipartite graph one type of matching polynomial
is closely related to the generalized Laguerre polynomials, and for a complete
graph it is just the Hermite polynomial. We find the Chebyshev polynomials
(of the second kind) when studying the characteristic polynomials of the paths,
as shown by Schwenk [141]. One more recent application in this area has been
given by Chung, Faber and Manteuffel [39], and van Dam and Haemers [166],
who gave upper bounds on the diameter of a graph in terms of its spectrum
by using Chebyshev polynomials shifted to a proper interval. Some other
applications of orthogonal polynomials in graph theory are presented in a recent
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work [28].

One more application that brings together orthogonal polynomials, structured
matrices and eigenvalue problems, is a discrete least squares approximation
problem (see cf. [128, 127, 157]), which is often related to data fitting, as it
was shown by Forsythe in his pioneering work [60]. One type of algorithms for
the least squares problem will compute implicitly or explicitly an orthonormal
basis and the Fourier coefficients of the solution in this basis. The polynomials
appearing there are orthogonal on a discrete set, and are usually described by
recurrence relations. Special properties of the discrete set (like when all the
points are on the real line or all of the points lie on the complex unit circle)
lead to a “short recurrence” for the orthogonal polynomials and thus reduce the
complexity of such an algorithm. Detailed study of recurrence relations between
univariate polynomials orthogonal on the real line are presented in the book of
Gautschi [65]. In particular, the already mentioned Hermitian Lanczos method
could be adapted to generate polynomials orthogonal on a discrete subset of
a real line. This result represents a part of classical numerical analysis; see,
e.g. [60, 65, 72].

Bivariate polynomials on a planar region have been studied quite extensively;
see [149, 97, 180] and references therein. As shown by Dunkl and Xu [52],
bivariate orthogonal polynomials, provided that one uses a graded monomial
order, also satisfy a matrix form of recurrence relations, which is a general-
ization of the three-term relation in one variable. For discrete orthogonal
polynomials, depending on the data points, recurrence relation matrices are
block-tridiagonal, see [181]. However, the corresponding problem of numerical
computation of a discrete bivariate orthogonal basis has not been considered
for a long time before the work of Huhtanen and Larsen [88].

In data fitting applications it is especially useful to be able to add points to
a discrete set online. As shown by Elhay, Golub and Kautsky [54] and Van
Barel and Bultheel [160], effective procedures for updating and downdating the
recurrence information for polynomial sequences could be developed. However,
the algorithm of Huhtanen and Larsen lacks the useful online updating feature.

Unlike in the univariate case, in the multivariate case the number of nonzero
terms in the recurrence relation is growing as the degree of the polynomial
grows. This growth is of order

√
8d, where d is the number of polynomials

generated so far, see [88] for details. This growth makes the multivariate
analogues of univariate algorithms much slower.

In our research [161] we address a multivariate discrete least squares approxi-
mation problem. The core of the algorithm constitutes an updating procedure
for a polynomial basis, which is a generalization of a univariate procedure by
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Van Barel and Bultheel [24, 158].

Similarly to the univariate case, to solve the least squares problem we compute
recurrence relation coefficients of discrete orthogonal basis polynomials and
in parallel the Fourier coefficients of a target approximant in this basis. The
basis polynomials are represented by their recurrence relation coefficients. For
bivariate problems, these coefficients are coming from two coupled inverse
eigenvalue problems for generalized Hessenberg matrices. The latter are solved
by means of a sequence of Givens rotations.

The points where the discrete inner products are prescribed may constitute
any pairs of complex points. However, when we take pairs of real points, the
generalized Hessenberg matrices representing the recurrence relations become
symmetric. The lower bandwidth of these matrices is equal to the depth of
recursion, so, as explained above, it is slowly growing together with the size
of a matrix. Thus symmetricity does not have that significant effect on the
complexity like it had in the univariate case. Compared to the algorithm of
Huhtanen and Larsen [88], our algorithm has an updating feature, which is
useful in applications. In terms of speed and accuracy the two algorithms are
similar.

An inverse unitary Hessenberg eigenvalue problem was studied by Ammar and
He [4], and for a survey of methods on different inverse eigenvalue problems,
we refer to Chu and Golub [38]. The relation between inverse eigenvalue
problems and univariate discrete least squares approximation is well known,
see e.g. Reichel [127] and Elhay, Golub and Kautsky [54]. Different orthogonal
polynomials are appearing here in a natural way, and one example follows.
Based on the inverse unitary QR algorithm for computing unitary Hessenberg
matrices [3], Reichel, Ammar and Gragg [128] solve the approximation problem
when the given function values are taken in points on the unit circle. Their
algorithm is based on computational aspects associated with the family of
polynomials orthogonal with respect to an inner product on the unit circle.
Such polynomials are known as Szegő polynomials. Fassbender [57] presents
an approximation algorithm based on an inverse unitary Hessenberg eigenvalue
problem and shows that it is equivalent to computing Szegő polynomials.

For our numerical experiments we use Padua points (Figure 1.5) as the set of
nodes for the discrete inner product. These points were introduced for the first
time by Caliari, De Marchi and Vianello in [27]. Such points are an example of
optimal points with real coordinates for total degree polynomial interpolation
in two variables, with a Lebesgue constant increasing like log squared of the
degree, see [18, 19].
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Figure 1.5: Padua points for different n

1.1.6 Structured matrices

Different classes of structured matrices, like, for example, tridiagonal, band-,
Toeplitz, Toeplitz-like, Cauchy, Cauchy-like, semiseparable and other matrices,
received a close attention of many numerical analysts. As we mentioned in
the beginning, the first works on structured matrices go back to the time of
Cauchy and Hermite. This attention is due to the fact that while a general,
unstructured dense matrix requires the storage space proportional to its size
squared, many structured matrices could be stored in space linear in their size.

Even more important, the computational complexity of some algorithms can
be reduced enormously when they are applied on structured matrices. This
is illustrated by comparing the computational complexity of some frequently
used algorithms. So, while a direct solver for a general matrix, such as
LU -decomposition, requires the amount of operations cubic in matrix order,
tridiagonal and semiseparable matrices allow linear solvers [174], and for
Cauchy matrices there exist fast (complexity proportional to the size squared)
and superfast (linear up to some logarithmic term) algorithms [119]. The
complexity also reduces dramatically for other algorithms, like matrix-vector
multiplication (which could be applied within Lanczos methods) or the QR-
method for solving the eigenproblem.

Within this research we became interested in two specific classes of matrix
structure, namely, in Toeplitz matrices and diagonal-plus-semiseparable matri-
ces.



HISTORICAL CONTEXT AND MOTIVATION 11

A matrix is called Toeplitz if the elements along each of the diagonals coincide,
so such matrix is fully determined by its first row and column. An example
of a 4 × 4 Toeplitz matrix is presented as (1.2). Toeplitz matrices arise in
different problems of applied mathematics, such as approximation of differential
equations [107, 124], Padé approximations [156, 20, 23] and polynomial root
localisation [176, 79, 94].









4 1 2 10
77 4 1 2
1 77 4 1
0 1 77 4









(1.2)

The fact that a Toeplitz matrix is determined only by an amount of parameters
linear in its order has led to several fast and superfast algorithms for the
solution of linear systems with Toeplitz coefficient matrices, utilizing the matrix
structure. The two types of direct fast solvers that require O(n2) operations
are Levinson-type and Schur-type solvers. For more references and information
about these algorithms, one may refer to [93].

Algorithms with complexity less than O(n2) are called superfast. The idea of
a superfast Toeplitz solver was first announced in the PhD thesis of Morf [113].
Superfast algorithms were designed by Sugiyama et al. [150], Brent, Gustavson,
and Yun [20], Ammar and Gragg [2], Van Barel, Heinig and Kravanja [163].
Many recent algorithms can be found in [45, 66, 78, 116].

However, the above-mentioned methods usually require numerical nonsingular-
ity of the leading principal submatrices in a given Toeplitz matrix. Moreover, if
these submatrices are nonsingular, but ill-conditioned, this can cause numerical
instability in finite-precision implementations. So, a construction of a general
superfast method, that would not be so critical to the properties of a given
matrix, is desirable.

To achieve the goal, a suitable tool is needed to define, identify and exploit
the matrix structure. Such tool was introduced by Kailath, Kung and Morf
in the paper [92] and received the name of displacement rank approach. A
matrix M is said to be of low displacement rank, if for some matrices A and B
the rank of the matrix X = M − AMB is low. With an appropriate choice
of A and B a Toeplitz matrix T can be converted to a rank two matrix X,
and a skeleton decomposition of X gives another representation of T , that also
requires storage space linear in the order of T .

Under suitable conditions on the matrices A and B this representation makes
it possible by using the Fast Fourier Transform (FFT) to multiply a given
Toeplitz matrix, as well as its inverse, by a vector using O(n log n) arithmetic
operations.
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The effective representation of the inverses of Toeplitz matrices, allowing
fast matrix-by-vector multiplication, was first discovered by Gohberg and
Semencul [69], while using a slightly different approach. A tremendous impact
of their formula on the field of structured matrices and numerical algorithms
is systematically presented in the book of Heinig and Rost [79].

In mathematical modelling, Toeplitz matrices, together with their block
versions, arise whenever properties of shift invariance are satisfied by some
function in the model. They are encountered, in particular, in fields like image
processing and in the numerical solution of differential equations where the shift
invariance takes different forms. Very often these matrices are block banded
block Toeplitz matrices (further referred as BBBT matrices) accompanied with
a Toeplitz structure of the blocks. Such a matrix in a general form is represented
as shown in (1.3). A very extensive study of the problems where block banded
block Toeplitz matrices arise, is given in [15].
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(1.3)

Due to the large block size of the matrices (for example, for image processing the
product of the two sizes is the number of pixels in the image) it is mandatory
to exploit both the outer banded Toeplitz structure and the inner Toeplitz
structure to devise efficient algorithms for the solution of these systems. Several
iterative techniques for the solution of BBBT systems have been introduced in
the literature, in particular we recall PCG methods [29, 143, 144], the multigrid
techniques [58] and the algorithms based on the cyclic reduction [13, 15]. There
are also some direct methods, such as generalizations of the methods based on
the Schur algorithm [14], the generalization of displacement ranks [126] and
the deconvolution approach [182].

However the best of these algorithms give O(kn4) complexity for nonsymmetric
n2 × n2 BBBT systems with nonbanded Toeplitz blocks, k denotes the (block)
bandwidth, and are not easy to program. So, we presented in [34] a new
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algorithm that reduces the complexity for banded case to O(n4) + O(k3n3),
and is quite easy to program. Such a direct method may be of particular
interest when constructing preconditioners for existing iterative methods like
GMRes and BiCGStab.

The proposed algorithm constructs the low-rank circulant transformation of a
given BBBT system and then by means of the Sherman-Morrison-Woodbury
formula transforms the inverse of such a transformation to the inverse of the
original matrix. The block circulant matrix with Toeplitz blocks is converted
to a block diagonal matrix with Toeplitz blocks, and the resulting Toeplitz
systems are solved by means of a fast Toeplitz solver.

A matrix is called a symmetric semiseparable matrix if all submatrices taken
out of the lower and upper triangular part of the matrix are of rank 1 and
the matrix is symmetric. A matrix is called a symmetric diagonal-plus-
semiseparable matrix if it can be written as the sum of a diagonal and a
symmetric semiseparable matrix, and if such a matrix has a form

A =

























d1 u1v2 u1v3 · · · u1vN−1 u1vN

v2u1 d2 u2v3 u2v4 · · · u2vN

v3u1 v3u2
. . . · · · · · · · · ·

... v4u2

...
. . . · · · · · ·

vN−1u1

...
...

... dN−1 uN−1vN

vNu1 vNu2

...
... vNuN−1 dN

























,

where u and v are vectors, then it is called a symmetric generator-representable
diagonal-plus-semiseparable matrix. These types of matrix structure appear
in two different contexts. First, during a specific discretization of Green’s
function for the two point boundary value problem, symmetric diagonal-
plus-semiseparable matrices arise (see [123]). If the kernel of an integral
operator can be written as the sum of a semiseparable part and a degenerate
one, discretization of the eigenvalue problem of those operators also involves
diagonal-plus-semiseparable matrices (see [146]). The inverse of an irreducible
tridiagonal matrix has this form too. Second, there exist stable procedures to
reduce a dense symmetric matrix into a similar semiseparable (plus diagonal)
one by means of orthogonal transformations, as shown in [175, Ch. 2]. Hence,
by combining the latter algorithm with an eigenvalue solver for diagonal-plus-
semiseparable matrices, a spectral decomposition of any symmetric matrix can
be computed.

Several effective algorithms have been proposed to find all the eigenvalues and
eigenvectors of a symmetric diagonal-plus-semiseparable matrix, like the QR-
algorithm [175, Ch. 5 and Ch. 7] and divide-and-conquer algorithms [110].
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Those divide-and-conquer algorithms involve computations with the secular
equation, and lots of care and precautions have to be taken to perform these
computations in a stable way, as shown in [152]. The method presented in
this research has similar complexity, but allows to avoid computations with the
secular equation and makes use of a continuation method instead.

Both Toeplitz and semiseparable matrices have close connection with orthogo-
nal functions. In [162] Van Barel, Fasino, Gemignani and Mastronardi describe
how to construct an orthonormal basis in the space of proper orthogonal ratio-
nal functions with prescribed poles by solving an inverse eigenvalue problem,
involving generator-representable diagonal-plus-semiseparable matrices. The
direct and the inverse eigenvalue problem of generator-representable symmetric
diagonal-plus-semiseparable matrices are studied in detail by Fasino and
Gemignani in [56]. For a thorough analysis of relations between semiseparable
matrices and orthogonal functions we refer to [175, Ch. 12 and Ch. 13].

For basic relations between Toeplitz matrices and polynomials, we refer to the
book [84]. Kailath, Vieira and Morf show in [94], that certain formulas for
inverting of Toeplitz operators in both discrete and continuous time can be
interpreted as versions of the Christoffel-Darboux formula for the biorthogonal
Szegő and Krein polynomials on the circle and on the line, respectively. In
case of discrete time a Toeplitz operator is represented just by a Toeplitz
matrix. The Levinson method, mentioned above, represents the recursions
for the so-called discrete Szegő orthogonal polynomials [151]. Van Barel and
Bultheel [159] explore the connection between look-ahead schemes for block
Toeplitz systems and formal orthogonal matrix polynomials.

1.1.7 Continuation methods

Large scale scientific computing is an active research field. Traditional methods
which work well for small problems are not always suitable for large ones, or
not suitable for modern computer architectures. For example, the very efficient
method for eigenproblems with small matrices – the QR iteration method is
highly serial in nature and it is difficult to benefit from many of the advanced
architectures, as shown, for example, in [82]. However, recently the QR-
algorithm has been implemented on distributed memory architectures [83]. The
above-discussed Lanczos method can take advantage of the sparseness structure
of a given matrix or exploit a fast matrix-vector multiplication, but is hard to
parallelize. A nice achievement in this direction was presented in [89], see also
references therein.

The continuation or homotopy method is well-known and has beed used in
the past for solving systems of algebraic equations [73, 1] and multi-objective
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Figure 1.6: Eigenvalue curves before
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optimization problems [139]. To develop such a method, one starts with a
simple problem whose solution is available and a trajectory that joins this
simple problem and the complex problem that has actually to be solved. In
the process of moving along the chosen trajectory, the solution to the simple
problem continuously transforms into the solution to the complex problem. The
trajectory is often defined by indtroducing an additional scalar parameter into
the problem and the path tracing could be done by following the solution curve
of a certain differential equation, as shown in [1].

In recent years different homotopy methods have also been applied to solving
the eigenvalue problem with tridiagonal matrices [37, 105, 87, 115]. These
methods came into consideration for the matrix eigenvalue problem because of
their natural parallelism. Parallelization is done over eigenpairs; each processor
has a copy of the problem and once set up the processor may run independently
of the others. Therefore homotopy algorithms are good candidates for modern
parallel computers. A new homotopy algorithm for diagonal-plus-semiseparable
matrices that is presented in our report [35] has good accuracy and is capable of
treating the matrices with clustered eigenvalues effectively. This is achieved by
aggressive deflation techniques, similar to the ones described by Oettli in [115]
and the use of a divide-an-conquer principle, inspired by Mastronardi, Van
Camp and Van Barel [110]. In addition, partial reorthogonalization is used to
guarantee orthogonality of the eigenvectors. For a certain model matrix the
traced eigenvalues are shown on Figures 1.6 and 1.7, without use of deflation
techniques and involving deflation, correspondingly. On the y-axis the actual
eigenvalues are plotted. For t = 0 they come from some matrix with known
eigenvalue decomposition, and for t = 1 they are the eigenvalues of the model
matrix.
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The homotopy approach can also be applied to the inversion of symmetric
Toeplitz matrices, when combined with a displacement rank representation.
The resulting method starts with a displacement representation of the identity
matrix and transforms it to the displacement representation of a target
inverse by dividing the trajectory in small chunks and applying an iterative
improvement process on each of them. The complexity analysis reveals that
the resulting method is superfast. This algorithm is presented and analyzed in
our journal paper [164].

1.2 Overview

In the previous section the historical pathway, leading to this research, was
described. This pathway also shows many interconnections between the more
specific fields that gave rise to the addressed problems. These interconnections
are schematically shown on Figure 1.8.

Each of the columns on this Figure corresponds to one of the specific fields
that form the title of the research – eigenvalues, orthogonal functions and
structured matrices. Each of these fields is considered from applicational and
computational points of view. So, in Chapter 2 the eigenvalues serve as a
tool to explore several graph-theoretic properties. In Chapter 3 we study
the convergence behavior of one algorithm for computing the eigenvalues,
namely, the rational Lanczos algorithm. To investigate this behavior, a
certain minimization problem for orthogonal functions plays an important
role. In Chapter 4 we present an algorithm to compute an orthogonal
basis of multivariate polynomials, where, in its turn, structured matrices
machinery appears as a key instrument. And finally, in Chapters 5 and 6
we present algorithms that solve several fundamental linear-algebraic problems
with structured matrices.

So, every oval on Figure 1.8 contains a concept, a viewpoint, and a number of
a chapter where this concept is studied from this viewpoint. Arrows represent
the links described in a previous paragraph.

Chapters 2, 3 and 4 may be read independently of each other. Chapter 5
contains preparatory results for Chapter 6, and these two chapters together
may be also read independently of the previous ones.

This research is focused on designing, implementing and analyzing efficient and
accurate methods, that would involve the three concepts declared in the title
– eigenvalues, orthogonal polynomials and structured matrices – and would
deliver new results in one of the fields by utilizing concepts from the other one.
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The problems we address are application-driven.

The first application comes from graph theory, and allows to find a pair of
cospectral graphs such that one is regular and another one is not. Graphs are
mapped to structured matrices, namely, their generalized adjacency matrices,
and by exploring some properties of these matrices and their characteristic
polynomials, it becomes possible to see their cospectrality, thus solving the
problem.

The second application is model reduction for dynamical systems, where a
rational Lanczos method is widely used. Here the fundamental results from the
theory of discrete orthogonal rational functions allow to numerically describe
the distribution of the Ritz values, thus specifying regions of convergence for
the rational Lanczos method.
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The third application is the discrete least squares approximation problem. It
is solved by reducing it to the problem of computing bivariate orthogonal
polynomials. These polynomials, in turn, are found by solving a certain
structured inverse eigenvalue problem.

Structured matrices under consideration within this work are also coming from
practice. So, for example, Toeplitz and diagonal-plus-semiseparable matrices
appear while discretizing differential equations, and linear systems with two-
level Toeplitz matrices arise in image deblurring.

The following is a chapter-by-chapter overview.

• Chapter 2 gives an introduction to spectral graph theory. First, several
basic concepts from graph theory are defined, including different types
of adjacency matrices, spectrum of the graph, and regularity. After this,
by means of several known theorems it is shown which graph-theoretic
properties could be deduced from the spectrum of the graph. Later, the
new result considering whether a regularity of the graph can be deduced
from its spectrum with respect to a certain generalized adjacency matrix
is derived. The answer is ‘no’, and several small counterexamples are
found by computer enumeration. Finally, a general procedure, allowing
to construct more counterexamples, is described. The results of this
chapter have been reported in the journal paper [33].

• Chapter 3 is devoted to the convergence behavior of the rational Lanczos
method. We begin with necessary concepts from logarithmic potential
theory and prove some properties of a weighted logarithmic potential.
Then we formulate the classical Lanczos method and briefly describe
how to predict its regions of convergence, applying potential theory tools.
Later we generalize these ideas to the rational Lanczos case. Finally, we
present a novel method to numerically solve the constrained weighted
energy problem, describing a distribution of converged rational Ritz
values. Several numerical experiments show the validity of the approach.
The results of this chapter have been reported in the journal paper [32].

• Chapter 4 develops an algorithm to compute recurrence relation coeffi-
cients for bivariate polynomials, orthonormal with respect to a discrete
inner product. We start with an application, namely, with the discrete
least squares approximation problem. Firstly, we briefly review the
existing theory for the univariate case. This includes a relation to an
inverse eigenvalue problem. Secondly, we generalize these ideas to the
multivariate case and pose a pair of coupled inverse eigenvalue problems,
describing the recurrence relation coefficients of the target polynomials.
These coupled problems are later solved by means of a novel updating
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algorithm. Finally, the algorithm is applied in several numerical examples.
The results of this chapter have been reported in the journal paper [161].

• Chapter 5 is technical. First, we define several classes of matrix structure,
like Toeplitz and semiseparable. Then we formulate a general concept
of a homotopy approach and briefly specify it for matrix inversion and
eigenvalue problems. The facts presented in this section are used later in
Chapter 6.

• Chapter 6 presents three algorithms for three classes of structured
matrices. First, a homotopy approach is applied to solve a linear system
with a Toeplitz coefficient matrix. The compact representation of the
inverse of the coefficient matrix comes for free while executing the method.
Then all the eigenvalues and eigenvectors of a symmetric diagonal-plus-
semiseparable matrix are computed by another version of a homotopy
algorithm. Finally, we derive a direct method to solve a two-level Toeplitz
linear system with banded outer structure. The results of this chapter
have been reported in the journal papers [164, 34] and in the report [35].

• Chapter 7 summarizes and discusses the presented work and gives
suggestions for future work.





Chapter 2

Spectra of graphs and

regularity

In this chapter we study different properties of graph spectra
and show which properties of a graph may be deduced from its
spectrum. First, we give some basic definitions in Section 2.1.
Later in Section 2.2 we present several general results, coupling
certain characteristics of matrices, associated with a graph, with
graph-theoretic properties of the underlying graph. Section 2.3
discusses several known methods to construct cospectral graphs,
such as Seidel switching, Godsil-McKay switching and computer
enumeration. Finally, in Section 2.4 we give an answer to an
open question whether a regular and non-regular graph could be
cospectral with respect to a certain class of generalized adjacency
matrices. This section is based on our paper [33].

2.1 Definitions

In this section we will give the necessary definitions from graph theory and
present some simple known results on graph spectra.

21
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2.1.1 Graph-theoretic notions

By a graph Γ = (VΓ, EΓ) we mean a finite set VΓ together with a set EΓ of two-
element subsets of VΓ. The elements of VΓ are called vertices and the elements
of EΓ are called edges. If those two-element subsets are considered as ordered
pairs, Γ is called a directed graph, otherwise an undirected graph.

In what follows we will mostly consider only simple graphs, namely, finite
undirected graphs without loops or multiple edges (a loop is an edge with
both of its vertices identical).

Two vertices u and v are called adjacent if they are connected by an edge
e = (u, v). In this case the edge e is said to be incident with the vertices u
and v.

The number of edges incident with a vertex in a graph is called the degree of
the vertex. If all the vertices have the same degree r, the graph is called regular
of degree r.

The complement Γ of a graph Γ is the graph with the same vertex set as Γ,
where any two distinct vertices are adjacent if and only if they are non-adjacent
in Γ.

Any sequence of consecutive edges in a graph is called a walk. A walk can pass
through the same edge more than once.

A graph is called connected, if any two of its vertices are joined by a walk. A
graph is disconnected if it is not connected, and it then consists of two or more
parts called connected components, two vertices being in different components
if they cannot be joined by a walk.

An isomorphism of graphs Γ1 and Γ2 is a bijection between the vertex sets VΓ1

of Γ1 and VΓ2
of Γ2: f : VΓ1

→ VΓ2
such that any two vertices u and v of Γ1 are

adjacent in Γ1 if and only if f(u) and f(v) are adjacent in Γ2. If an isomorphism
exists between two graphs, then the graphs are called isomorphic, and otherwise
nonisomorphic. The graph isomorphism is an equivalence relation on graphs.

2.1.2 Matrices associated to a graph

Let Γ be a simple graph whose vertex set is {x1, . . . , xn}. The adjacency
matrix A of Γ is a square matrix of order n, whose entry (A)ij = 1 when
vertices xi and xj are adjacent in Γ and (A)ij = 0 otherwise. We may explicitly
specify the graph by appending the index, as AΓ.
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The Laplace matrix of Γ is a square matrix of order n with zero row sums,
where (L)ij = −(A)ij for i 6= j. If D is the diagonal matrix such that Dii is
the degree of xi, then L = D−A. The matrix Q = D+A is called the signless
Laplace matrix of Γ. An important property of the Laplace matrix L and the
signless Laplace matrix Q is that they are symmetric positive semidefinite.

Let J denote the square all-ones matrix and I the identity matrix. Consider a
matrix M = αA + βJ + γI, where α, β, γ are parameters. Any such matrix,
with α 6= 0, is called a generalized adjacency matrix of Γ.

The Seidel adjacency matrix of a graph Γ with adjacency matrix A is the
matrix S defined by S = J − I − 2A.

2.1.3 The spectrum of a graph

The spectrum of a simple graph Γ with respect to some associated matrix M

is by definition the spectrum of this matrix M, that is, its set of eigenvalues
together with their multiplicities. One may use more specific terms like Laplace
spectrum when it’s clear which matrix is kept in mind. If the matrix is not
specified, the spectrum of the graph means the ordinary spectrum, e.g. that of
its adjacency matrix A.

Similarly, the characteristic polynomial of Γ with respect to some associated
matrix M is that of M, that is, the polynomial pM defined by pM(x) = det(xI−
M).

Two nonisomorphic graphs Γ and ∆ are called cospectral with respect to some
associated matrix M, when their spectra with respect to this matrix coincide.
Again, if the type of associated matrix is not specified, the adjacency matrix A

is meant.

It is easy to show that the spectrum of any generalized adjacency matrix is
obtained by scaling and shifting from that of a matrix of the form G = A−yJ ,
so for matters of graph cospectrality we will further restrict ourselves to this
special case. For example, the spectrum of the Seidel matrix maps to the
spectrum of S = A − 1

2J .

We will call two graphs Γ and ∆ y-cospectral (for some real y) when AΓ −
yJ and A∆ − yJ have the same spectrum. Then 0-cospectral is what we
called cospectral, and 1

2 -cospectral is Seidel-cospectral, and 1-cospectrality is
cospectrality for the complementary graphs.
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2.2 Structural properties and graph spectra

One may become interested whether some structural properties of a graph
correspond to certain properties of the spectrum and vice versa. We will briefly
summarize some basic results for classical associated matrices, following the
lecture notes book [21].

Suppose Γ is simple with n vertices. Since AΓ is real and symmetric, all
its eigenvalues are real. Also, for each eigenvalue λ, its algebraic multiplicity
coincides with its geometric multiplicity, so that we may just speak about
“multiplicity”. Since A has zero diagonal, its trace tr A, and hence the sum of
the eigenvalues is zero.

Similarly, L is real and symmetric, thus the Laplace spectrum is real.
Moreover, L is positive semidefinite and singular, so we may denote the eigen-
values by µ1, . . . , µn, where 0 = µ1 6 µ2 6 · · · 6 µn. The sum of these
eigenvalues is tr L, which is twice the number of edges of Γ.

Finally, also Q has real spectrum and nonnegative eigenvalues (but is not
necessarily singular). We have tr Q = tr L.

2.2.1 Regular graphs

We can translate the definition of regularity into the matrix language. By
definition, every vertex in a regular graph has precisely k neighbors. So, Γ is
regular of degree k precisely when its adjacency matrix A has row sums k, i.e.,
when A1 = k1 (or AJ = kJ), here 1 denotes the all-ones vector. From this
definition follows that k is an ordinary eigenvalue of a regular graph.

If Γ is regular of degree k, then for every eigenvalue λ of A we have |λ| 6 k.
(One way to see this, is by observing that if |t| > k then the matrix tI − A

is strictly diagonally dominant, and hence nonsingular, so that t is not an
eigenvalue of A.)

If Γ is regular of degree k, then L = kI − A. It follows that if Γ has ordinary
eigenvalues k = λ1 > · · · > λn and Laplace eigenvalues 0 = µ1 6 µ2 · · · 6 µn,
then λi = k−µi for i = 1, . . . , n. The eigenvalues of Q = kI+A are 2k, k+λ2,
. . . , k + λn.
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2.2.2 Complements

Suppose that a simple graph Γ has adjacency matrix A, then Γ has adjacency
matrix A = J−I−A and Laplace matrix L = nI−J−L. Because eigenvectors
of L are also eigenvectors of J , the eigenvalues of L are 0, n−µn, . . . , n−µ2. In
particular, µn 6 n. We keep here the notation µi from the previous subsection
for Laplace eigenvalues.

If Γ is regular a similar result holds for the ordinary eigenvalues: if Γ is k-regular
with eigenvalues λ1 > · · · > λn, then the eigenvalues of the complement are
n− k − 1,−1 − λn, . . . ,−1 − λ2.

2.2.3 Walks

From the spectrum one can read off the number of closed walks of a given
length.

Proposition 1. Let h be a nonnegative integer. Then (Ah)ij is the number of
walks of length h from i to j. In particular, (A2)ii is the degree of the vertex i,
tr A2 equals twice the number of edges of Γ; similarly, tr A3 is six times the
number of triangles in Γ.

2.2.4 Connectedness

The spectrum of a disconnected graph is easily found from the spectra of its
connected components:

Proposition 2. Let Γ be a graph with connected components Γi (1 6 i 6 s).
Then the spectrum of Γ is the union of the spectra of Γi (and multiplicities are
added). The same holds for the Laplace and the signless Laplace spectrum.

The number of connected components itself may be deduced from the Laplace
spectrum:

Proposition 3. The multiplicity of 0 as a Laplace eigenvalue of an undirected
graph Γ equals the number of connected components of Γ.

There is some connection between the ordinary spectrum and regularity:

Proposition 4. Let the undirected graph Γ be k-regular. Then k is the largest
eigenvalue of Γ, and its multiplicity equals the number of connected components
of Γ.
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2.3 Finding cospectral graphs

In Section 2.1 we gave a definition of cospectral graphs. One may wonder,
whether cospectral graphs do exist at all. The first example of cospectral
graphs was found by Collatz and Sinogowitz [41]. They presented a pair of
cospectral trees. Another famous example is found by Cvetković [43] and is
often called the Saltire pair (since the two pictures superposed give the Scottish
flag: Saltire), see Figure 2.1. It is easy to verify that both graphs have a
spectrum {[2]1, [0]3, [−2]1}, where powers denote multiplicities. For graphs on
less than five vertices, no pair with cospectral adjacency matrices exists, so
each of these graphs is determined by its spectrum. We will further shorten this
notation to DS.

Figure 2.1: Pair of graphs, cospectral wrt A

Since we know that cospectral graphs exist, one may pose the question “how
to find those cospectral pairs?” In the next subsections we will present some
early answers, following the review [167]. First, we describe several constructive
techniques, and later we show the results coming from a computer enumeration.

2.3.1 Constructive answers

There are several ways to construct cospectral pairs. One way is to use simple
transformations of graphs themselves. Schwenk [140] went this way while
constructing cospectral trees. Another way to discover cospectral mates is
to start with some (associated) matrix, and transform it by some similarity
transformation to another matrix. If this second matrix happens to be an
associated matrix of the same type for another graph, a desired cospectral pair
is constructed. Because of the nature of the underlying transformation, this
procedure is often called switching. Below we present two switching ideas that
are due to van Lint and Seidel [173] and Godsil and McKay [68].
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Constructing cospectral trees

Consider the adjacency spectrum. Suppose we have two cospectral pairs of
graphs. Then the disjoint unions one gets by uniting graphs from different
pairs, are clearly also cospectral. Schwenk [140] examined the case of uniting
disjoint graphs by identifying a fixed vertex from one graph with a fixed vertex
from the other graph. Such a union is called a coalescence of the graphs with
respect to the fixed vertices. He proved the following lemma.

Lemma 1. Let Γ and Γ′ be cospectral graphs and let u and u′ be vertices of Γ
and Γ′ respectively. Suppose that Γ − u (that is the subgraph of Γ obtained by
deleting u) and Γ′ − u′ are cospectral too. Let ∆ be an arbitrary graph with
a fixed vertex v. Then the coalescence of Γ and ∆ with respect to u and v is
cospectral with the coalescence of Γ′ and ∆ with respect to u′ and v.

For example, let Γ = Γ′ be as given below, then Γ−u and Γ′ −u′ are cospectral
because they are isomorphic. Suppose that ∆ and v are as shown on Fig. 2.2.
Then it follows from Lemma 1 that the graphs on Fig. 2.3 and Fig. 2.4 are
cospectral.

u u
′

Γ = Γ′

v

∆

Figure 2.2: Graphs Γ = Γ′ and ∆

Schwenk’s method is very suitable for constructing cospectral trees. In fact,
the lemma above enabled him to prove his famous theorem:

Theorem 1. With respect to the adjacency matrix, almost all trees are non-DS.

Seidel switching

Different associated matrices have different sensitivity when it comes to the
DS question. The worst example here is the Seidel matrix S. Van Lint and
Seidel [173] introduced a special transformation of the Seidel matrix of a given
graph Γ, that creates a cospectral mate for Γ. This transformation was further
explored by Seidel in [142].

For a given partition of the vertex set of Γ, consider the following operation on
the Seidel matrix S of Γ:
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u ≡ v

Figure 2.3: Coalescence of Γ and ∆ wrt u and v

u
′
≡ v

Figure 2.4: Coalescence of Γ′ and ∆ wrt u′ and v

S =

(

S1 S12

ST
12 S2

)

∼
(

S1 −S12

−ST
12 S2

)

= S.

Observe that S = ISI
−1

, where I = I
−1

= diag(1, . . . , 1,−1, . . . ,−1), which
means that S and S are similar, and therefore S and S are cospectral. Let Γ
be the graph with Seidel matrix S. The operation that changes Γ into Γ is
called Seidel switching. Note that only in the case that S12 has equally many
times a −1 as a +1, Γ has the same number of edges as Γ. So Γ is hardly ever
isomorphic to Γ. And it is easy to check that S12 cannot have the mentioned
property for all possible partitions. Thus we have:

Proposition 5. With respect to the Seidel matrix, no graph with more than
one vertex is DS.

It is also clear that if Γ is regular, Γ is in general not regular.

Godsil-McKay switching

In some cases Seidel switching also leads to cospectral graphs for the adjacency
spectrum (for example if the graphs Γ and Γ are regular of the same degree).
Godsil and McKay [68] consider a more general version of Seidel switching
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and give conditions under which the adjacency spectrum is unchanged by this
operation. We will refer to their method as GM switching.

Theorem 2. Let N be a (0, 1)-matrix of size b × c (say) whose column sums
are 0, b or b/2. Define N to be the matrix obtained from N by replacing each
column v with b/2 ones by its complement 1 − v. Let B be a symmetric b× b
matrix with constant row (and column) sums, and let C be a symmetric c × c
matrix. Put

M =

(

B N
NT C

)

and M =

(

B N

N
T

C

)

. (2.1)

Then M and M are cospectral.

More recent constructive procedures for cospectral pairs are presented in the
review [168].

2.3.2 Computer enumeration

The growing power of computer systems leads to one more procedure for
finding cospectral pairs, besides the theoretical exploration, namely – computer
enumeration.

The above-mentioned paper [68] by Godsil and McKay already gave interesting
computer results for cospectral graphs. In [68] all graphs up to 9 vertices are
generated and checked on cospectrality. This enumeration has been extended
to 11 vertices by Haemers and Spence [76], and cospectrality was tested with
respect to the adjacency matrix A, the Laplacian matrix L, and the signless
Laplacian matrix Q.

Table 2.1 represents a part of a similar table by Haemers and Spence [76]
with updates from [22]. The columns A, L and Q contain the fractions of
graphs, having a cospectral mate with respect to a corresponding matrix, The
last column gives a fraction of graphs with a cospectral mate which can be
constructed by GM switching.

From these results follows, that for the enumerated cases a large part of all
cospectral graphs comes from GM switching, and that the fraction of graphs
on n vertices with a cospectral mate starts to decrease at some value of n < 11
(depending on the matrix). Since the fraction of cospectral graphs on n vertices
constructible by GM switching tends to 0 if n → ∞, Haemers and Spence see
this as an indication that possibly almost no graph has a cospectral mate.
However, at the present time only lower asymptotic bounds for the number of
graphs with a cospectral mate are present, see [21].
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Table 2.1: Fractions of graphs with cospectral mates, [76]

n # graphs A L Q GM
2 2 0 0 0 0
3 4 0 0 0 0
4 11 0 0 0.182 0
5 34 0.059 0 0.118 0
6 156 0.064 0.026 0.103 0
7 1044 0.105 0.125 0.098 0.038
8 12346 0.139 0.143 0.097 0.085
9 274668 0.186 0.155 0.069 0.139
10 12005168 0.213 0.118 0.053 0.171
11 1018997864 0.211 0.090 0.038 0.174
12 165091172592 0.188 NA NA NA

Enumeration of cospectral graphs on 12 vertices is studied in the recent
paper [22].

2.4 Regularity and generalized adjacency matrix

In this section we will investigate for which matrices one can see from the
spectrum whether the graph is regular.

The basic result here comes from the reference book [44], see also [21].

Theorem 3. For the adjacency matrix, the Laplacian matrix and the signless
Laplacian matrix of a graph Γ, the following can be deduced from the spectrum.

1. The number of vertices.

2. The number of edges.

3. Whether Γ is regular.

For the adjacency matrix the following follows from the spectrum.

1. The number of closed walks of any fixed length.

2. Whether Γ is bipartite.
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For the Laplacian matrix the following follows from the spectrum.

1. The number of connected components.

2. The number of spanning trees.

For generalized adjacency matrices the following result was proved in [167].

Proposition 6. With respect to the generalized adjacency matrix M(α, β, γ) =
αA+βJ+γI, a regular graph cannot be cospectral with a non-regular one, except
possibly when −1 < β/α < 0.

The statement ‘a regular graph cannot be cospectral to a non-regular one’ (we
further call it an R-statement) is clearly not true if β/α = −1/2, as follows from
the Seidel switching procedure and Proposition 5. For example the triangle
(which is regular) and the graph on three vertices with one edge (which is
non-regular) have the spectrum {−1,−1, 1

2 } with respect to A− 1
2J . So, they

are cospectral with respect to this matrix and thus with respect to S, see the
remark in Subsection 2.1.2. When [167] was written, it was unknown if the
above statement is true or false for −1 < β/α < 0, β/α 6= −1/2.

To explore this question, the following result is useful:

Proposition 7. 1. (Johnson and Newman [90]) If two graphs are y-
cospectral for two distinct values of y, then they are cospectral for all y.

2. (Van Dam, Haemers and Koolen [169]) If two graphs are y-cospectral for
an irrational value of y, then they are cospectral for all y.

For irrational values of β/α ∈ (−1, 0) the R-statement is correct, as follows
from Proposition 7, see [169] for details. We will show now that, provided β/α
is rational and −1 < β/α < 0, β/α 6= −1/2, the R-statement is false.

The part by Johnson and Newman of Proposition 7 says if two graphs are
cospectral with respect to two generalized adjacency matrices with different
values of β/α, then they are cospectral with respect to all generalized adjacency
matrices, and therefore they are both regular or both non-regular. In other
words, if one graph is regular and the other one not, the graphs can only be
cospectral for one value of β/α. These remarks show some difficulties that
should be dealt with in finding counterexamples to the above statement. Both
graphs must have the same number of edges (see, for example, [169]), and may
not be cospectral for any other value of β/α. This excludes most of the known
tricks for constructions of cospectral generalized adjacency matrices.
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The first counterexamples to the statement were found by computer enumera-
tion. We will present them in subsection 2.4.1. Then in Subsection 2.4.2 we
present a theoretic construction for counterexamples, which may be seen as a
generalization of switching techniques.

2.4.1 Computer results

If two graphs are cospectral with respect to M(1, β/α, 0), then their comple-
ments are cospectral with respect to M(1,−1 − β/α, 0). So one may use to
following algorithm to construct counterexamples.

1. Choose any integer value of β and α such that −1/2 < β/α < 0 and
gcd(α, β) = 1.

2. Choose the number of vertices n > 3.

3. Generate all graphs on n vertixes.

4. Compute the characteristic polynomial for each graph with respect to
M(α, β, 0).

5. Look through the generated polynomials and find identical ones. See if
one of the graphs corresponding to one of such polynomials is regular and
the other graph is not.

Graphs were generated using the package nauty by McKay [111]. Then graphs
were stored on a disc in a compressed form.

The graphs generated were then fed to GAP [134] in such a way that strings
were produced comprising the coefficients of the characteristic polynomials, and
these were stored in a file, one to each line. To the end of each line a suffix true

or false was added, true stands for regular graphs and false for nonregular.
This file was then sorted using the Linux utility sort, after which it was easy
to look through this file and take identical polynomials such that one has suffix
true and another has suffix false. Some of the enumeration ideas are taken
from [76].

We arbitrarily tried some values of α and β. For β/α = −1/4 we found exactly
two regular-nonregular pairs of cospectral graphs on less than 10 vertices. This
pair is given in Fig. 2.5. It is clear that one graph is regular, whilst the other
one is not. For both graphs the characteristic polynomial with respect to 4A−J
(α = 4, β = −1, β/α = −1/4) is

x9 + 9x8 − 72x7 − 848x6 + 19200x4 + 38912x3 − 110592x2 − 393216x− 262144.
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Figure 2.5: First pair of cospectral graphs wrt 4A− J

Fig. 2.6 presents the second pair of such graphs (Libra and a hexagon with a
triangle). Both graphs are disconnected. Their characteristic polynomial with
respect to 4A− J is

x9 + 9x8 − 144x7 − 1312x6 + 5376x5 + 54016x4 − 40960x3

− 581632x2 + 262144x + 1376256.

Figure 2.6: Second pair of cospectral graphs wrt 4A− J

We also tried for α = 7, β = −3 and we found a regular graph cospectral
with two nonisomorphic nonregular graphs. Fig. 2.7 presents them. Their
characteristic polynomial with respect to 7A− 3J is

x9 + 27x8 − 126x7 − 6762x6 − 343x5 + 545027x4 − 67228x3

− 13647284x2 + 13176688x.
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Figure 2.7: Triplet of cospectral graphs wrt 7A− 3J

There is only one cospectral regular-nonregular pair on nine vertices with
respect to 7A − 3J (and none on fewer vertices). For more small examples
of such cospectral pairs see [169].

2.4.2 Construction of a cospectral pair

Graph partitions

To prove Theorem 4 of this subsection, we will make use of partitions of VΓ, and
therefore several general definitions and basic results are necessary. A detailed
study of different graph partitions is presented by Godsil in [67, Ch. 5].

A partition of VΓ is by definition a set π = (C1, . . . , Ck), whose elements Ck are
themselves disjoint non-empty subsets of VΓ, and ∪iCi = VΓ. The elements of
partition π are called cells. A partition π is called equitable if, for all i and j
the number of neighbors which a vertex in Ci has in the cell Cj is independent
of the choice of the vertex in Ci.

Example 1. Consider a graph on Figure 2.8. Then the partition π = (C1, C2)
with two cells C1 = {1, 2, 4, 5, 7, 8} and C2 = {3, 6} is equitable.

1

2

7

8

3 4 5 6

Figure 2.8: McKay’s graph

Given an equitable partition π = (C1, . . . , Ck) of a graph Γ, we now define the
square k× k quotient matrix C = AΓ/π of Γ with respect to π by letting (C)ij
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to denote the number of edges which join a fixed vertex in Ci to vertices in Cj .
Thus, in Example 1 we have

AΓ/π =

(

1 1
3 0

)

.

The characteristic vector vi = vi(π) of a partition π = (C1, . . . , Ck) of a set
of n elements is a vector of length n such that (vi)j = 1 if the j-th vertex of Γ
is contained in Ci, and 0 otherwise. The characteristic matrix P = P (π) of
partition π is a n × k matrix with columns formed by all the characteristic
vectors of the cells of π.

Recall that AΓ denotes the adjacency matrix of the graph Γ. The following
lemma provides then a neccessary and sufficient condition for an equitable
partition.

Lemma 2. Let π be a partition of the vertex set of the graph Γ with a
characteristic matrix P . If π is equitable, then AΓP = PAΓ/π. Conversely, π
is equitable only if there is a matrix B such that AΓP = PB.

The quotient matrix AΓ/π provides some information about the eigenvalues
and eigenvectors of AΓ, as shown by the following lemma.

Lemma 3 ([67]). Let π be an equitable partition of the graph Γ with c cells.
Assume P = P (π), A = AΓ and B = AΓ/π. We have:

1. If Bx = θx then APx = θPx.

2. If Ay = θy then yTPB = θyTP .

3. The characteristic polynomial of B divides the characteristic polynomial
of A.

For the proof of both lemmas we refer to the book [67].

Generalized switching

We will introduce now a new theorem regarding cospectrality with respect
to generalized adjacency matrices of the form A − yJ . This result extends
the numerical findings of Subsection 2.4.1. While proving the theorem we
will describe a generalization of a switching technique, that is, a procedure to
explicitly construct cospectral mates with given properties. As remarked before,
two graphs are cospectral with respect to a generalized adjacency matrix of the
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form A − yJ , if and only if they are also cospectral with respect to M(α, β, γ),
with β/α = −y, so the restriction to a simpler class A − yJ is justified.

Theorem 4. For every rational value of y ∈ (0, 1), there exists a pair of graphs,
one regular and one not, that are cospectral with respect to A − yJ .

Proof. Write y = p/q ∈ (0, 1), such that p and q are integers and q is even.
We will construct two cospectral generalized adjacency matrices M and M of
size 4q + q2 with entries −p and r = q − p. Define

M =

[

K B
BT C

]

and M =

[

K B

B
T

C

]

.

The matrices K,B,B and C are built with q× q blocks with constant row and
column sums. The contruction is as follows:

K =









−pJ rJ rJ −pJ
rJ −pJ −pJ −pJ
rJ −pJ −pJ −pJ

−pJ −pJ −pJ −pJ









,

B =









B1,1 B1,2 B1,3 B1,4 · · · B1,q−1 B1,q

B2,1 B2,2 B2,3 B2,4 · · · B2,q−1 B2,q

B3,1 B3,2 B3,3 B3,4 · · · B3,q−1 B3,q

B4,1 B4,2 B4,3 B4,4 · · · B4,q−1 B4,q









,

B =









B4,1 B4,2 B4,3 B4,4 · · · B4,q−1 B4,q

B3,1 B3,2 B3,3 B3,4 · · · B3,q−1 B3,q

B2,1 B2,2 B2,3 B2,4 · · · B2,q−1 B2,q

B1,1 B1,2 B1,3 B1,4 · · · B1,q−1 B1,q









,

where Bi,j is any q × q matrix with p − 1 times r and r + 1 times −p in each
row and column, and Bi,j is any q × q matrix with p + 1 times r and r − 1
times −p in each row and column. So Bi,j has row sums −q and Bi,j has row
sums q. Notice that the first 4q rows of M all have row sum q(q − 4p), whilst
the first 4q row sums of M take three different values: q(3q − 4p), q(q − 4p)
and q(−q− 4p). Also observe that B can be obtained from B by reversing the
order of the block rows. The matrix

C =







C1,1 · · · C1,q

...
...

Cq,1 · · · Cq,q







should be taken such that C is symmetric with diagonal entries −p and all row
and column sums equal to q(q−4p) (which makes all row sums of M equal). All
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blocks Ci,j must have constant row and column sums. There are many ways to
establish this. For instance, take C1,1 = C1,2 = C1,q = −pJ , C1,q/2+1 = rJ and
for the remaining values of i take for C1,i any q × q matrix with p times r and
r times −p in each row and column. Then put C = circulant(C1,1, . . . , C1,q).

Since all row (and also column) sums of M are equal and those of M are not,
it is clear that M represents a regular graph and M represents a non-regular
graph. What remains to be proved is that M and M are cospectral. First
observe that the given partition of M (and M) into (q + 4)2 blocks of size
q×q is an equitable partition, that is, all blocks have constant row and column
sum. The quotient matrix of such a partitioned matrix is the (q + 4) × (q + 4)
matrix whose entries are the row sums of the blocks. For an equitable partition
Lemma 3 tells that the eigenvalues of the quotient matrix are also eigenvalues
of the original matrix and that the corresponding eigenvectors are constant
over each partition class, that is, the eigenvectors span the column space V of
I ⊗ J . Note that the quotient matrix of M can be obtained from the quotient
matrix of M by multiplying the first four rows and columns by −1. Hence these
quotient matrices are cospectral. The remaining eigenvalues of M and M have
eigenvectors in V ⊥. This implies that these eigenvalues are not changed if any
block Mi,j of M is replaced by Mi,j + cJ for some constant c. Define

M′ =

[

O B
BT C

]

and M ′ =

[

O B

B
T

C

]

.

Then for the eigenvectors in V ⊥, M′ and M have the same eigenvalues, and
so do M ′ and M. But since B can be obtained from B by a row permutation,
M′ and M ′ are cospectral. The conclusion is that M and M have the same
eigenvalues for the eigenvectors in V and for the eigenvectors in V ⊥. Therefore
M and M have the same spectrum. ⊔⊓

Further results on this topic are presented in [169].

2.5 Conclusion

After defining some basic concepts and stating some of their properties, we have
given an answer to an open question in algebraic graph theory, namely, whether
a regular and non-regular graph could be cospectral with respect to a certain
class of generalized adjacency matrices, depending on some parameter. The
answer is positive, and first examples were found by computer enumeration.
Later, we proposed a generalization of a switching procedure that allows to
construct such cospectral pairs for any rational value of the parameter.





Chapter 3

Potential theory and rational

Ritz values

This chapter consists of two basic parts. In Section 3.1
we will briefly recall the necessary concepts from logarithmic
potential theory and pose the constrained weighted energy problem.
Next, we will present a novel algorithm to solve this problem
numerically. In Section 3.2 we will formulate the rational Lanczos
algorithm, establish its connection with a certain constrained
weighted energy problem, and finally apply the numerical algorithm
from Section 3.1 to predict regions of convergence for the rational
Lanczos algorithm. We also give several numerical results that
show good correspondence between predicted results and actual
convergence of the algorithm.

3.1 Constrained weighted energy problem: a nu-

merical approach

In this section we begin with definitions of logarithmic potential and logarithmic
energy and pose certain minimization problems for both potential and energy.
One of them – constrained weighted energy problem – is later discretized and
solved by linear algebra methods. Comparison with the exact solution shows

39
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good quality of the computed solution. Herein we follow our paper [32] (joint
work with Deckers and Van Barel).

3.1.1 Preliminaries

The field of complex numbers will be denoted by C and the Riemann sphere
by C = C∪ {∞}. For the real line we use the symbol R. Let a ∈ C, then ℜ{a}
refers to the real part of a. Further, we denote the imaginary unit by i.

Let M(E) be the space of all Borel probability measures on C which are
supported on a compact set E; i.e. for any µ ∈ M(E) we have µ(C) = 1 and
supp(µ) ⊆ E. The logarithmic potential of a compactly supported measure µ
is then defined (cf. [154, p. 53]) by

Uµ(z) =

∫

log
1

|z − z′|dµ(z′), (3.1)

and its logarithmic energy is given by

I(µ) =

∫ ∫

log
1

|z − z′|dµ(z′)dµ(z). (3.2)

Given a positive Borel measure ν on C, with compact support supp(ν) ⊂
C \ E bounded away from E and ν(C) = s ∈ [0, 1], an important problem
in logarithmic potential theory is to minimize the weighted logarithmic energy
I(µ − ν) among all µ ∈ M(E). If there exists a probability measure on E
with finite energy, the solution to this problem is unique and is called the
balayage-measure of the probability measure η = ν+(1−s)δ∞ (where δz is the
unit measure whose support is the point z), from C \ E onto E, which will be
denoted by µν . In this paper we will only consider the case in which E is an
interval or a union of disjoint intervals. The minimization problem can also be
characterized then in terms of its potential as follows (see e.g. [137]).

Property 5. Let µν ∈ M(E) be a solution to the problem of minimizing
I(µ − ν) among all µ ∈ M(E). Then the potential Uµν −ν(z) is equal to a
constant Cν on E and smaller than Cν everywhere else. Moreover, it is the
only probability measure with that property.

We call the potential Uµ−ν(z) a weighted potential. In the special case in which
E = [a, b], the density of the balayage-measure µν is explicitly known, and
given by (see also [48, Thm. 4.3])

dµν(z)

dz
=

1

π
√

(b− z)(z − a)

∫

ℜ
{

√

(u− b)(u− a)

u− z

}

dη(u), z ∈ [a, b], (3.3)
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where the square root is positive for u > b and the branch cut is [a, b].

Next, suppose σ ∈ M(E) has finite logarithmic energy I(σ), and let t ∈ (0, 1).
A related problem is then to minimize I(µ − ν) among all µ ∈ M(E) that
satisfy tµ 6 σ (in the sense of densities). We call this problem a constrained
weighted energy problem (CWEP). Again, there is a characterizing property in
terms of its potential (see e.g. [137]).

Property 6. Assume Uσ(z) is continuous and real-valued and let µν
t be a

solution to the CWEP. Then Uµν
t −ν(z) is equal to a constant Cν

t on supp(σ −
tµν

t ) and smaller than or equal to Cν
t everywhere else. Moreover, the only

measure µ ∈ M(E), with tµ 6 σ, for which the weighted potential Uµ−ν(z) is
constant on supp(σ− tµ) and smaller or equal to this constant everywhere else,
is µν

t .

The special case of CWEP, in which ν = 0, was historically studied first and is
called the (un-weighted) constrained energy problem (CEP). Furthermore, the
exact solution to the un-constrained problem is called the equilibrium measure.

Since tµν
t 6 σ, the set supp(σ − tµν

t ) is just the set where tµν
t < σ. We now

have the following lemma, where we use the notation ρ+ to denote the positive
part of a signed measure ρ.

Lemma 4. Suppose for µ ∈ M(E) (not necessarily with tµ 6 σ) it holds that
the weighted potential Uµ−ν(z) is constant on supp(σ−tµ). Then supp(σ−tµν

t )
is a subset of supp((σ − tµ)+), and µν

t > µ on supp(σ − tµν
t ).

PROOF. Define the Borel probability measures ρ = σ−tµ
1−t and ρt = σ−tµν

t

1−t ,

and the external field Q(z) = 1
1−t (tUν(z) − Uσ(z)). Then it holds that

Uρ(z) +Q(z) = − t

1 − t
Uµ−ν(z) = C for z ∈ supp(ρ),

and

Uρt(z) +Q(z) = − t
1−tU

µν
t −ν(z) = − t

1−tC
ν
t for z ∈ supp(ρt),

Uρt(z) +Q(z) = − t
1−tU

µν
t −ν(z) > − t

1−tC
ν
t for z ∈ supp(ρ).

From [102, Lemma 3] it then follows that ρt 6 ρ+ and supp(ρt) ⊂ supp(ρ+),
which ends the proof. �

From the previous lemma it follows that, if there is a µ ∈ M(E) for which the
weighted potential Uµ−ν(z) is constant on supp(σ − tµ), then on the region
where tµ > σ it holds that tµν

t = σ.
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3.1.2 Numerical algorithm

An algorithm to solve the constrained energy problem numerically was
presented by Helsen and Van Barel [81]. In this section we will update this
algorithm to work with weighted potentials. More specifically, we replace the
potentials in the algorithm by the weighted potentials. This becomes possible
using the lemmas proved in the previous subsection. First, we introduce the
main idea of the algorithm, and then we treat the necessary discretization.

Main loop

We devise an algorithmic approach to solve the CWEP on the basis of Lemma 4.
Given a positive Borel measure ν with compact support bounded away from E,
we first look for a Borel probability measure µ(1), with supp(µ(1)) = E,

whose weighted potential Uµ(1)−ν is constant on E. Then, on the region
where tµ(1) > σ we know that tµt = σ, so that we can put µ(2) = σ/t over

there and require Uµ(2)−ν to be constant on the other region. This process will
be repeated until at a certain point µ(k) 6 σ/t. The solution µν

t will then be
equal to µ(k).

In a high level language this may look like:

Algorithm 1: Continuous version of the CWEP algorithm

begin
I = supp(σ)
J = ∅
µ = ∞
while µ 66 σ/t do

µ|J = 1
tσ|J

solve

{

Uµ|I (z) = C − Uµ|J (z) + Uν(z), ∀z ∈ I

µ|I(C) = 1 − µ|J (C)
I = {tµ < σ}
J = {tµ > σ}

end

return µν
t = µ

end

The set I is the region where µ is not known yet, while J is the region where µ
is already known to be equal to σ/t. The weighted potential of µ needs to be
constant on I, so we solve Uµ−ν(z) = Uµ|I (z) +Uµ|J (z) −Uν(z) = C for every
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z ∈ I, where C is an unknown constant depending on ν, keeping in mind that
µ has to be a probability measure: µ(C) = µ|I(C) + µ|J (C) = 1.

The output of this algorithm is a probability measure µν
t that satisfies tµν

t 6 σ,
and whose weighted potential Uµν

t −ν is constant on supp(σ − tµν
t ). If, at the

same time, the potential is smaller than or equal to this constant outside of
supp(σ − tµν

t ), then it follows from Property 6 that µν
t is the solution of the

CWEP. In the next lemma we will prove that the potential is indeed smaller
than or equal to this constant outside of supp(σ − tµν

t ). In what follows,
we represent the intermediate solution after step k in the algorithm by µ(k),
whereas the constant value of its weighted potential is denoted by C(k), and
Sk = supp(σ − tµ(k)).

Lemma 5. For every k, the weighted potential Uµ(k)−ν is smaller than or equal
to the constant C(k) outside Sk.

PROOF. The proof will use induction on k.

The first intermediate solution µ(1) is the balayage-measure µν . Its weighted
potential is equal to C(1) := Cν on S1 := E, and is smaller than C(1) outside
S1.

Now suppose that the weighted potential of µ(k−1) is smaller than or equal to
C(k−1) outside Sk−1 for k > 1. By construction it holds that Sk ⊂ Sk−1. Thus,
it is sufficient to prove that

Uµ(k) − C(k)
6 Uµ(k−1) − C(k−1). (3.4)

On Sk, the relation

Uµ(k)−µ(k−1)

= C(k) − C(k−1) (3.5)

clearly holds true. Outside Sk it holds that µ(k) = σ/t and µ(k−1) > σ/t, and
hence, that µ(k) − µ(k−1) is a negative measure. So, from

Uµ(k)−µ(k−1)

= U
(µ(k)−µ(k−1))|

Sk + U
(µ(k)−µ(k−1))|

Sc
k

we learn that Uµ(k)−µ(k−1)

is subharmonic outside Sk, because the first term is
harmonic outside Sk and the second term is subharmonic being the potential
of a negative measure. The inequality in (3.4) now follows from (3.5) and the
fact that a subharmonic function reaches its maximum on the boundary. �



44 POTENTIAL THEORY AND RATIONAL RITZ VALUES

Discretization

For notational simplicity, we will assume in this subsection that E is connected,
but the results that follow are easily extended to the case in which E is
a union of disjoint intervals. Furthermore, we will assume that an explicit
representation κ(x) exists for Uν(x) on E in terms of basic operations on
elementary functions.

Lemma 5 tells us that, whenever the theoretical algorithm of the previous
subsection converges, the output solves the CWEP. Suppose we have a
discretization {y1, y2, . . . , yN } of supp(σ), so that the measure µ can be
represented by a vector v containing the values µj of the density dµ/dy in the
discretization points yj . Algorithm 1 is then translated to the discretization
by requiring the (in-)equalities of the CWEP to hold only in the discretization
points.

In order to be able to compute the mass of a measure µ represented in this way,
we will consider it to be piecewise linear with respect to the Lebesgue measure;
i.e.,

dµ(y) = (ajy + bj)dy for y ∈ [yj−1, yj ]. (3.6)

The mass of the piecewise linear measure is then given by

1

2

N
∑

j=2

(µj−1 + µj)(yj − yj−1).

This expression is linear in the µj ’s, so that we can create a vector m, only
depending on the discretization points yj , in such a way that the equality
mT v = µ(C) holds for every piecewise linear measure µ with discretization
v = [µ1 µ2 . . . µN ]T .

To compute the potential of a piecewise linear measure, we use the following
primitive function for y 7→ log 1/|x− y|:

f(y, x) =

{

(x− y)(log |x− y| − 1), if y 6= x,

0, if y = x,

and for y 7→ y log 1/|x− y|:

g(y, x) =

{

1
2 log |x− y|(x2 − y2) + 1

4 (x+ y)2, if y 6= x,

y2, if y = x.
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This gives us the following expression for the potential of µ:

Uµ(x) =

∫

E

log
1

|y − x|dµ(y) =
N
∑

j=2

yj
∫

yj−1

log
1

|y − x| (ajy + bj)dy

=
N
∑

j=2

aj(g(yj , x) − g(yj−1, x)) + bj(f(yj , x) − f(yj−1, x)).

(3.7)

Further, the aj ’s and bj ’s can be expressed in terms of the µj ’s by means of (3.6):

{

µj−1 = ajyj−1 + bj

µj = ajyj + bj

⇒











aj =
µj − µj−1

yj − yj−1

bj = µj − ajyj =
yjµj−1 − yj−1µj

yj − yj−1
.

(3.8)

Plugging this into (3.7), we obtain an expression for Uµ(x) that is linear in
the µj ’s, and hence, there is a matrix P, only depending on the discretization
points yj , so that for every piecewise linear measure µ with discretization v it
holds that

Uµ(yj) = (Pv)j .

Consequently, with Uν(yj) = κ(yj) we get that

Uµ−ν(yj) = (Pv)j − κ(yj).

With this we can write down the discretized version of the CWEP. Suppose we
have a set of discretization points {y1, y2, . . . , yN } with corresponding vector m

and matrix P. Let s and k be the discretization of the constraint σ and
the function κ respectively. Then the problem is: find a vector v satisfying
mT · v = 1 and tv 6 s (elementwise), so that Pv − k is constant on the
components where tv < s and smaller or equal to it everywhere else.
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In a high level language this may look like:

Algorithm 2: Discretized version of the CWEP algorithm

begin
I = {1, 2, . . . , N}
J = ∅
v = ∞e(I)
while v 66 s/t do

v(J) = 1
t s(J)

solve

{

P(I, I) · v(I) = Ce(I) − P(I, J) · v(J) + k(I)

m(I)T · v(I) = 1 − m(J)T · v(J)
I = {i | tµi < si}
J = {j | tµj > sj}

end

return vν
t = v

end

Here, I is the set of indices where v is not known yet and J = {1, 2, . . . , N} \ I
is the set of indices where v is already known to be equal to s/t. Further, e is
the vector defined by e = [1 1 . . . 1]T . The vector v(J) is the vector consisting
of the components of v with indices in J and the matrix P(I, J) is the matrix
consisting of the rows and columns of P with row indices in I and column
indices in J . Since in every step at least one discretization point is added to J ,
it is clear that Algorithm 2 will eventually terminate. (When no discretization
point is added, the stopping criterion is fulfilled.)

Practically, we solve the following augmented system:
(

P(I, I) e(I)
m(I)T 0

)(

v(I)
−C

)

=

(

−P(I, J) · v(J) + k(I)
1 − m(J)T · v(J)

)

.

It is easy to check that this system is equivalent to the inner loop system of
Algorithm 2.

Convergence analysis

In the previous subsection we have developed a discrete algorithm by
considering the measure being piecewise linear and requiring the (in-)equalities
of CWEP to hold only in the discretization points. The following theorem
shows that the solution of a discrete problem converges to the solution of a
continuos problem, provided that the discretization set is dense in E.
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Theorem 1. Consider a CWEP and related weighted potentials, as defined
in Property 6. Consider also a discretization E′ = {y1, y2, . . . , yN } of E, and
let us denote by µN the corresponding output of Algorithm 2 for the selected
CWEP and discretization. Suppose that E′ is dense in E as N → ∞. Then, as
N → ∞, measures µN converge to a measure µ∞, such that it is the solution
to CWEP.

PROOF. The measure µN by construction satisfies the following conditions:
∫

E

dµN (y) = 1, (3.9)

∀y ∈ E : µN (y) 6
1

t
σ(y), where t ∈ (0, 1). (3.10)

Conditions (3.9)–(3.10) mean that there exists a subsequence of measures
{µNk

}∞
k=1 that converges to a certain µ∞, such that
∫

E

dµ∞(y) = 1,

∀y ∈ E : µ∞(y) 6
1

t
σ(y), where t ∈ (0, 1),

and for any function f(y), that is continous and bounded on E holds that

lim
Nk→∞

∫

E

f(y)dµNk
(y) =

∫

E

f(y)dµ∞(y).

The function f(y) = log |1/(x− y)| is not bounded when x ∈ E. However, for
any fixed x it can be approximated by a sequence of functions {fm(y)}∞

m=1

such that

• ∀m > 0 the function fm(y) is continuos and bounded on E;

• fm(y) > 0 ∀y ∈ E;

• ∀k and ∀m such that k > m, fk(y) > fm(y) ∀y ∈ E;

• lim
m→∞

fm(y) = log |1/(x− y)| + C, ∀y ∈ E.

It follows then that a sequence
∫

E
fm(y)dµ∞(y) is nondecreasing when m → ∞

and it is bounded from above by
1

t
Uσ(x). So, there exists a limit

lim
m→∞

∫

E

fm(y)dµ∞(y) = Uµ∞(x) + C

∫

E

dµ∞(y) = Uµ∞(x) + C.
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Since for every m holds that

lim
Nk→∞

∫

E

fm(y)dµNk
(y) =

∫

E

fm(y)dµ∞(y),

we conclude that ∀x ∈ E

lim
Nk→∞

UµNk (x) = Uµ∞(x). (3.11)

The functions UµNk (x), as well as Uµ∞(x), are continuos and bounded on E.
This means that the convergence in (3.11) is uniform ∀x ∈ E. Since we have
supposed that the set E′ = lim

N→∞
yN,k

N
k=1 is dense in E, it follows that µ∞ is

a solution of the same CWEP that was fed to Algorithm 2, but in a continuos
form. Property 6 states that there exists only one such solution, so it is equal
to µ∞.

Numerical examples

Let Pn denote the space of polynomials of degree less than or equal to n. For
a fixed value of n we then say that a polynomial pm ∈ Pn of degree m 6 n has
a zero at infinity of multiplicity n−m. So, consider now the polynomial

pm(x) =
m
∏

j=1

(x− αj) ∈ Pn,

where the αj ’s are finite and bounded away from E. Further, let ηm,n denote
the normalized zero counting measure defined by

ηm,n = νm,n +
(

1 − m

n

)

δ∞, νm,n =
1

n

m
∑

j=1

δαj
, (3.12)

so that νm,n(C) = s = m
n ∈ [0, 1]. The normalized zero counting measure

assigns mass 1/n to each zero of pm (including those zeros that are at infinity)
and the zeros are counted according to their multiplicity. From the definition
of pm and νm,n it is easy to see that

Uνm,n(x) = − 1

n
log |pm(x)| =: κm,n(x). (3.13)

In the special case in which E = [a, b], it follows from (3.3) that the density of
the exact solution to the weighted energy problem is given by

dµνm,n(x)

dx
=

[

∑m
j=1 ℜ

{√
(αj−b)(αj−a)

αj−x

}

+ (n−m)

]

nπ
√

(b− x)(x− a)
, x ∈ [a, b]. (3.14)



CONSTRAINED WEIGHTED ENERGY PROBLEM: A NUMERICAL APPROACH 49

Suppose E is of the form

E =
J
⋃

j=1

[aj , bj ], J > 1,

where aj < bj for every j and [aj , bj ] ∩ [ai, bi] = ∅ for j 6= i. To discretize E,
we use for every segment [aj , bj ] rational Chebyshev points with respect to the
first Chebyshev weight function 1/

√
1 − x2 on [−1, 1] (as described in [172]),

based on a given sequence of Nj poles BNj
= {β1, . . . , βNj

} ⊂ C \ [−1, 1], and
map them on [aj , bj ] by means of the transformation

y = τ [aj ,bj ](x) =
1

2
{(bj − aj)x+ (bj + aj)}.

In what follows, the inverse transformation will be denoted by x = τ−[aj ,bj ](y).
Note that the classical Chebyshev points are a special case of rational
Chebyshev points when βk = ∞ for k = 1, . . . , Nj .

Example 2. First, consider the case in which E = [−1, 1] and ν := νm,n =
m
n δα, with n = m + 1 = 22 and α = 0.5 + 0.1i. We then compare the
solution given after the first iteration of the inner loop in Algorithm 2 (i.e.,
when the constraint is not active yet) with the exact solution computed by
means of (3.14). For the discretization of E we use the sequence of poles
B800 = {βk}800

k=1, with

βk =

{

α, k 6 200
∞, k > 200.

The computed solution to the weighted energy problem (WEP) is plotted on
Figure 3.1, whereas the relative error of this solution (compared to (3.14)) is
plotted in semi-logarithmic scale on Figure 3.2.

From (3.8) it follows that differences between the discretization points appear in
the denominators during the construction of matrix P. This causes an increase
of the condition number of P when a finer mesh is used. The condition number
of P in this example is equal to 1 × 105.

Example 3. Secondly, consider the case in which the constraint is given by

dσ(x) =
dx

πx
√

(x− α)(β − x)
, α =

1

2
, β = 2 (3.15)

on E = [α, β] = [1/2, 2]. This is the asymptotic eigenvalue distribution of a
family of Toeplitz matrices with a specific structure. We take ν := δξ, where
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Figure 3.1: Computed solution of the
WEP from Example 2.
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Figure 3.2: Relative error of the
computed solution.

β < ξ = 10. For the discretization of E we use the sequence of poles B500 =
{βk}500

k=1, with

βk =

{

τ−[α,β](ξ), k 6 200
∞, k > 200.

Let t0 and b(t) ∈ [α, β] be given by:

t0 =
1

β

√

ξ − β

ξ − α
, b(t) =

{

β, if t < t0,
ξ

t2β(ξ−α)+1 , if t > t0.

Then in [10, Lemma A.3] it has been proved that the exact solution to this
CWEP is given by

tdµν
t (x)

dx
=







dσ(x)
dx +

t
√

(β−α)(β−b(x))

π(ξ−x)
√

(x−α)(b(t)−x)
−

√
αb(t)

πx
√

(x−α)(b(t)−x)
, x ∈ [α, b(t)]

dσ(x)
dx , x ∈ (b(t), β]

Figure 3.3 shows the relative error of the computed solution to the CWEP
for t = 0.5 > t0 = 2/

√
19. The error is equal to zero on the segment F =

[b(t), β] = [40/23, 2], where it’s not depicted. Segment F is the set where the
solution coincides with the constraint (3.15).

Example 4. Further, consider the case in which the constraint is given by
dσ(x) = 2

π

√
1 − x2dx on E = [−1, 1], and νt := ν100t−1,100t, where νm,n is

given by (3.12), t ∈ (0, 1) is such that 100t is a natural number, and

αj =

{

−0.9 + 0.1i, j 6 50
0.5 − 0.1i, j > 50.
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Figure 3.3: Relative error of the
computed CWEP solution, Ex. 3.
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Figure 3.4: Property 6 of weighted
potentials, Example 4

For the discretization of E we use the sequence of poles B1000 = {βk}1000
k=1 , with

βk =







−0.9 + 0.1i, k 6 200
0.5 − 0.1i, 200 < k 6 400
∞, k > 400.

Figure 3.5 then shows the computed solution to the CWEP for t = 0.05+0.15r,
with r = 0, . . . , 5. The density of σ is plotted by a thick black dashed line.

Figure 3.4 illustrates Property 6 for this example. Namely, the green line is the
computed weighted potential Uµt−νt for t = 0.65 and the red line is the constant
Cν

t . On some subset of E these two coincide, on its complement the potential
is smaller than the constant. We would like to mention that the potential is
also smaller than the constant on the segment (approximately) [0.475, 0.535],
but the difference is of order 10−3, and hence, not visible on the figure.

Example 5. Next, consider the case in which the constraint is given by
dσ(x) = 1

2dx on E = [0, 1] ∪ [2, 3], and ν := δα, where α = 0.7 + 0.1i. For
the discretization of [0, 1] we use the sequence of poles B400 = {βk}400

k=1, with

βk =

{

τ−[0,1](α), k 6 100
∞, 200 < k 6 400,

whereas for segment [2, 3] we use the sequence of poles B
′
400 = {βk}800

k=401, with

βk =

{

τ−[2,3](α), 400 < k 6 500
∞, k > 500,

The computed solution to the CWEP is then plotted on Figure 3.6 for t =
0.05 + 0.15r, with r = 0, . . . , 5. The density of σ is plotted by a thick black
dashed line.
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Figure 3.5: Computed solution of the
CWEP from Example 4.
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Figure 3.6: Computed solution of the
CWEP from Example 5.

Example 6. Finally, consider the case in which ν := δα, and the constraint σ is
the balayage-measure of the measure δβ onto E = [−1, 1], where β = −0.6+0.1i;
i.e.,

dσ(x) =
1

π
√

1 − x2
ℜ
{

√

1 − 1/β2

1 − x/β

}

dx.

For the discretization of E we use the sequence of poles B800 = {βk}800
k=1, with

βk =

{

α, k 6 200
∞, k > 200.

The computed solution to the CWEP is then plotted in semi-logarithmic scale
on the Figures 3.7, 3.8 and 3.9 for different values of α, and with t = 0.05+0.15r,
where r = 0, . . . , 5. The density of σ is plotted by a thick black dashed line.

3.1.3 Time complexity

Let N denote the number of discretization points. Creating the potential
matrix P then takes O(N2) operations, while solving a system with it
takes O(N3) operations when using a direct method. Further, for the special
case in which the measure ν is given by (3.12), it takes O(N) operations to
compute the discretization points based on this measure ν and to compute the
potential of ν by means of (3.13), assuming that the number of different zeros
of pm(x) is negligibly small compared to N . Since on each step of Algorithm 2
at least one point is moved from the set I to the set J , the upper bound for the
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Figure 3.7: Computed solution of the
CWEP from Example 6 with α =
0.1i − 0.6 = β.
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Figure 3.8: Computed solution of the
CWEP from Example 6 with α =
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CWEP from Example 6 with α =
−0.6 + 0.01i 6= β.



54 POTENTIAL THEORY AND RATIONAL RITZ VALUES

number of iterations is N . In practice, however, this upper bound seems to be
a serious overestimation; e.g., for each value of t in Example 4, the algorithm
converged after about 10 iteration steps. Thus, the total computational cost is
of order O(N3).

We implemented the algorithm in MATLAB. For t = 0.05 in Example 4, it takes
about 1.2 s to compute the solution of the CWEP on a PC with 2.93 GHz Intel
Core 2 processor and 2 Gb of memory, running Debian Lenny with 2.6.26 kernel.
The larger t, the faster the algorithm becomes; e.g., for t = 0.8 it only takes
about 0.2 s to complete the computations.

3.2 Convergence of rational Ritz values

In this section we will formulate first the classical Lanczos algorithm for
eigenvalue problems. Then we will describe in an asymptotic sense the
regions of converged eigenvalues. This is a well-known result, and the goal is
achieved by exploiting connections between the Lanczos method, a polynomial
minimization problem and logarithmic potential theory. We follow the pathway
presented in the work [100] by Kuijlaars.

Later in Subsection 3.2.2 we will study a more complex case – a rational Lanczos
algorithm. Like in the classical case, we show that it is again possible to predict
regions with converged eigenvalues by solving a certain constrained weighted
energy problem. Finally, we will solve that energy problem by means of the
numerical algorithm from Subsection 3.1.2, and the results exhibit a very good
correlation between the prediction and actual convergence. This part is based
on our paper [32] (joint work with Deckers and Van Barel). For a complete
theoretical investigation we refer to the paper [10] by Beckermann, Güttel and
Vandebril. In what follows we assume exact arithmetic and do not take into
account the effects of rounding errors on Lanczos iterations.

3.2.1 Classical Lanczos algorithm and potential theory

Formulation of the algorithm: matrix language

The Lanczos iteration is a popular method to approximate part of the
eigenvalues of large Hermitian matrices. So, for a given Hermitian matrix A

of size N ×N , the Lanczos method starts from a nonzero vector b ∈ C
N and

generates two sequences of numbers (αk) and (βk) as follows. Put β0 = 0,
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v0 = 0, v1 = b/‖b‖2, and for k = 1, 2, . . . ,

αk = 〈vk,Avk〉, βkvk+1 = Avk − αkvk − βk−1vk−1,

where βk is taken such that ‖vk+1‖2 = 1. The vectors v1, v2, . . . , vn form
an orthonormal basis of the so-called n-th Krylov subspace Kn(A, b) =
span{b,Ab, . . . ,An−1b}. The coefficients αk and βk are collected in the
tridiagonal matrices

Tn =

















α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βn−1

βn−1 αn

















for n 6 N . The eigenvalues of Tn are called Ritz values, and, compared to
the eigenvalues of A, they are easier to compute because of the tridiagonal
nature of Tn and because n is smaller than N . The key to the popularity of
the method lies in the fact that some of the Ritz values turn out to be accurate
approximations of some of the eigenvalues of A even when n is much smaller
than N . The Lanczos method is discussed in many books, e.g., [71, 49, 122, 136].
In what follows we assume that no early breakdown (see [71, Theorem 9.1-1])
happens during the Lanczos iterations.

From matrix language to polynomials

Here we will show how the Lanczos iteration could be reformulated in
polynomial language. Basically, it is equivalent to the following polynomial
minimization problem. Let pn(λ) = det(λI − Tn) be the characteristic
polynomial of Tn. Then pn is a monic polynomial of degree n that
minimizes ‖pn(A)b‖2 among all monic polynomials of degree n. The zeros
of pn are equal to the Ritz values. The norm is equal to

‖pn(A)b‖2 =

(

N
∑

k=1

〈b, vk〉2pn(λk)2

)1/2

, (3.16)

where λ1, . . . , λN are the eigenvalues of A and v1, . . . , vN are their correspond-
ing orthonormal eigenvectors. Thus pn is orthogonal with respect to a discrete
measure

N
∑

k=1

〈b, vk〉2δλk
,
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which has the mass 〈b, vk〉2 at the eigenvalue λk. Here we denote by δλk
the

unit measure whose support is the point λk.

Further, consider the situation where both N and n tend to infinity. We assume
that we have a sequence of matrices (AN ) with AN being a Hermitian matrix
of size N ×N . The distinct eigenvalues of AN are denoted by

λ1,N < λ2,N < · · · < λN,N ,

and for ease of notation here we assume that they are all distinct. This is
not an essential restriction, and the results below will remain valid, as shown
in [100].

We also assume that the eigenvalues λk,N are all contained in a fixed bounded
interval E and that

lim
N→∞

1

N

N
∑

k=1

δλk,N
= σ, (3.17)

with σ being a Borel probability measure on R with compact support, suppσ ⊆
E. The convergence is in the sense of weak convergence of measure. If the
relation (3.17) holds, we say that σ is the asymptotic distribution of eigenvalues
of a matrix sequence (AN ).

In many practical situations, matrices AN appear as discretizations of a
continuous operator. The size N is related to the mesh size of the discretization.
A relation like (3.17) may then hold very well, and the measure σ would be
determined by the spectral properties of the continuous operator; see, e.g., [11].

In the definition of Lanczos iterations we had also a starting vector b. Here
for each N we denote a starting vector by bN ∈ R

N . Let us take this vector
normalized so that ‖bN ‖2 = 1. Thus

N
∑

k=1

〈bN , vk,N 〉2 = 1,

where (vk,N )N
k=1 is an orthonormal basis of eigenvectors of AN .

It is known for the Lanczos method (see e.g. [122]) that in exact arithmetics it is
essential that the starting vector has a component in the direction of each of the
eigenvectors of AN , and usually a random vector fulfills this condition. We can
reformulate this in an asymptotic sense as “vectors bN are chosen sufficiently
random”, meaning that none of their Fourier coefficients in the basis (vk,N ) is
exponentially small as N → ∞. That is,

lim
N→∞

(

min
16k6N

|〈bN , vk,N 〉|
)1/N

= 1. (3.18)
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Further, a technical condition is needed on the spacings of the eigenvalues,
which prevents them from being too close. The extensive discussion leading
to this condition is presented in [101, Section 4]. Following this discussion, we
assume that whenever, for each N , an index k = kN ∈ {1, . . . , N} is chosen
such that

lim
N→∞

λk,N = λ ∈ R,

then

lim
N→∞

1

N

N
∑

j=1,j 6=k

log |λk,N − λj,N | =

∫

log |λ− λ′|dσ(λ′). (3.19)

In particular, as shown by Dragnev and Saff [50], (3.19) forbids AN from having
two exponentially close eigenvalues, i.e., |λk+1,N −λk,N | 6 e−cN for some c > 0.

From polynomials to potential theory

Let us recall the definition (3.1) of a logarithmic potential. It is clear that the
right-hand side of (3.19) is equal to −Uσ(λ). It can be also shown that Uσ(λ)
is a continuous function of λ ∈ C.

Expression (3.17) gave a definition of an asymptotic distribution of the
eigenvalues. Now we formulate the result that describes the asymptotic
distribution of zeros of a Lanczos polynomial in terms of a logarithmic potential.

For 0 6 n 6 N , we denote by pn,N the n-th degree monic Lanczos polynomial
associated with AN . The zeros of pn,N are real and simple and we denote them
by

θ1,n,N < θ2,n,N < · · · < θn,n,N .

The following result was first proven by Rakhmanov[125] and later generalized
by Dragnev and Saff [50, Theorem 3.3].

Theorem 7. Assume (3.17), (3.18) and (3.19). Let n,N → ∞ in such a way
that n/N → t ∈ (0, 1). Then there is a Borel probability measure µt , depending
only on t and σ, such that

lim
N→∞

1

n

n
∑

j=1

δθj,n,N
= µt, (3.20)

and a real constant Ft such that

lim
N→∞

‖pn,N (AN )bN ‖1/n
2 = exp(−Ft). (3.21)
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The measure µt satisfies

0 6 tµt 6 σ,

∫

dµt = 1 (3.22)

and minimizes the logarithmic energy (3.2) I(µ) among all measures µ
satisfying 0 6 tµ 6 σ,

∫

dµ = 1. The logarithmic potential Uµt of µt is
a continuous function on C, and the constant Ft is such that

Uµt(λ) = Ft for λ ∈ supp(σ − tµt), (3.23)

Uµt(λ) 6 Ft for λ ∈ C. (3.24)

The relations (3.20)–(3.24) characterize the pair (µt, Ft).

This result enabled Kuijlaars [100] to prove his famous theorem:

Theorem 8. Assume (3.17), (3.18) and (3.19). Let n,N → ∞ in such a
way that n/N → t ∈ (0, 1). Then the Ritz values generated by the Lanczos
iteration with starting vector bN are asymptotically distributed according to the
measure µt, which is the solution of the extremal energy problem in Theorem 7.

Kuijlaars [100] and later Beckermann [9] also presented estimates for the
convergence rates of Ritz values in terms of the potential Uµt . For exact
formulas we refer here to their works.

Practical characterization of regions of convergence

We will show now how to characterize the regions with converged Ritz values
in terms of the solution of the extremal energy problem of Theorem 7.

Kuijlaars [101] has proven the following lemma:

Lemma 6. Assume (3.17), (3.20) and (3.23). Then for any interval (a, b) one
has

lim
N→∞

#{j : θj,n,N ∈ (a, b)} − #{j : λj,N ∈ (a, b)}
N

= 0

if and only if

(a, b) ∩ supp(t− µt) = ∅.

From this lemma follows that one can expect convergence of Ritz values only
outside the support of σ − tµt. However, it is possible to restrict this set even
more. Consider Λ(t;σ) defined in terms of µt and Ft as

Λ(t;σ) = {λ ∈ R : Uµt(λ) < Ft}. (3.25)
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It is clear from (3.23) that Λ(t;σ) ⊂ R\ supp(σ − tµt), but equality need not
hold in general. The sets (3.25) form the saturated region. It is the region
where the n-th Ritz values converged to an eigenvalue of AN .

3.2.2 Convergence analysis of the rational Lanczos iterations

In [129], Ruhe presented a rational Krylov method as an extension of the shift-
and-invert Arnoldi process allowing for varying shifts. We will consider here a
variant of this method for Hermitian matrices and we will formulate it using
the orthogonal functions approach.

Let us consider a compact set E ⊂ C. Then consider a given sequence of
fixed complex poles AN = {α1, . . . , αN−1, αN } ⊂ C bounded away from the
convex hull of E, which we will denote in the remainder by c(E), and suppose
α∅ ∈ c(E). We then define the factors

Zk(x) =
x− α∅

(

1 − x−α∅

αk−α∅

) , k = 1, . . . , N,

and products

b0(x) ≡ 1, bk(x) = Zk(x)bk−1(x), k = 1, . . . , N.

Or, equivalently, with πk(x) given by

π0(x) ≡ 1, πk(x) =

(

1 − x− α∅

αk − α∅

)

πk−1(x), k = 1, . . . , N,

we have that

bk(x) =
(x− α∅)k

πk(x)
, k = 1, . . . , N.

Next, suppose AN is a Hermitian N × N matrix with eigenvalues {λ1,N , . . . ,
λN,N } ⊂ E and eigenvectors u1,N , . . . ,uN,N , and let there be given a nonzero
column vector qN ∈ C

N . We then consider the nested sequence of rational
Krylov subspaces

Kn+1(AN ,qN ,AN ) = span {qN , b1(AN )qN , . . . , bn(AN )qN } , n = 0, . . . , N.

For n < N the rational Lanczos iterations produce a sequence of orthonormal
vectors vk, k = 1, . . . , n+1, for Kn+1(AN ,qN ,AN ) in the following way. (Here
we suppose that no early breakdown happens.) Put v1 = qN/‖qN ‖, then for
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k = 1, . . . , n, the vk+1 are defined by orthogonalization of Zk(AN )vk against
v1, . . . ,vk, followed by normalization1:

Zk(AN )vk =
k+1
∑

j=1

hj,kvj , k = 1, . . . , n. (3.26)

Let Vn = (vk) ∈ C
N×n, H

[αn]
n = (hj,k) ∈ C

n×n upper Hessenberg, D
[αn]
n =

diag((α1 − α∅)−1, . . . , (αn − α∅)−1), and define An and B
[αn]
n by

An := VH
n AN Vn

B
[αn]
n := H

[αn]
n

(

In + H
[αn]
n D

[αn]
n

)−1

+ α∅In,

where the superscript H denotes the Hermitian transpose, and the superscript
[αn] means that we consider the last pole αn variable, whereas the other poles
are assumed to be fixed. In matrix notation, (3.26) then becomes:

An = B[αn]
n − hn+1,n

αn − α∅
VH

n AN vn+1[0 . . . 0 1]
(

In + H[αn]
n D[αn]

n

)−1

. (3.27)

Note that the left-hand side of (3.27) is independent of αn. So, taking αn = ∞
in the right-hand side of (3.27), we find that An = B

[∞]
n .

By definition, vk = ϕk−1(AN )v1, with ϕ0(x) = 1 and ϕk(x) = pk(x)
πk(x) . Since

vH
j vk = δj,k = 〈ϕk , ϕj〉 ,

where the inner product 〈· , ·〉 is defined by

〈f , g〉 = (g(AN )v1)H
f(AN )v1,

it follows that the ϕk are orthonormal rational functions (ORFs) with poles
in Ak. In [47] it was proved for the special case of all real poles that the

eigenvalues of B
[αn]
n are the zeros of the ORF ϕn, and hence, are all real and

in c(E). The restriction to all real poles is in fact not necessary, but then the

eigenvalues of B
[αn]
n are all real and in c(E) iff αn is real or infinite. So, the

Ritz values (i.e., the eigenvalues of An) are zeros of an ORF too. More specific,
they are zeros of the ORF ϕ̃n with poles in α1, . . . , αn−1,∞, and they are all
real and in c(E). Further, the orthonormality for ϕ̃n(x) = p̃n(x)

πn−1(x) reads:

〈

ϕ̃n ,
p

πn−1

〉

=
N
∑

j=1

p̃n(λj,N )p(λj,N )

∣

∣

∣

∣

qH
N uj,N

πn−1(λj,N )

∣

∣

∣

∣

2

=

{

0 if deg(p) < n
1 if p = p̃n .

1When including the value n = N , vN+1 theoretically should be the zero-vector in CN .
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Thus, the rational Lanczos minimization problem is to minimize
∥

∥

∥

p(AN )
πn−1(AN ) qN

∥

∥

∥

among all monic polynomials p(x) of degree n. Similarly as has been done
in [100, 101, 80], we can now characterize the region of the Ritz values that
converged to an eigenvalue of AN (depending on the number of iterations) by
means of a CWEP from potential theory. For this, we consider the situation
where both N and n tend to infinity in such a way that n/N → t ∈ (0, 1). So,
let us now make the following assumptions (more details and proofs are given
in [10]):

1. We have a sequence of Hermitian matrices (AN ) ∈ C
N×N , with N

distinct eigenvalues {λi,N }N
i=1 ⊂ E. The asymptotic distribution of the

eigenvalues is given by

lim
N→∞

1

N

N
∑

k=1

δλk,N
= σ ∈ M(E),

where convergence is in the weak sense; i.e., for any continuous function f
with compact support, limN→∞

1
N

∑N
k=1 f(λk,N ) =

∫

fdσ. Further, the
eigenvalues are sufficiently separated; i.e., whenever an index k = kN ∈
{1, . . . , N} is chosen for every N so that

lim
N→∞

λk,N = λ ∈ R,

then

lim
N→∞

1

N

N
∑

j=1,j 6=k

log |λk,N − λj,N | =

∫

log |λ− λ′|dσ(λ′).

2. The asymptotic distribution of the poles is given by

lim
N→∞

1

tN

tN
∑

k=1

δαk
= νt + (1 − s)δ∞ = ηt, ηt(C) = 1,

where convergence again is in the weak sense, and the support of ηt is
bounded away from c(E).

3. For every N we have a starting vector qN ∈ C
N , which is normalized

(‖qN ‖ = 1) and chosen sufficiently random so that

lim
N→∞

(

min16k6N |qH
N uk,N |

)1/N
= 1.
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Under the previous assumptions we have for the n-th Ritz values

θ1,n < θ2,n < . . . < θn,n

that there is a Borel probability measure µt so that

lim
N→∞

1

n

n
∑

k=1

δθk,n
= µt ∈ M(E).

The measure µt satisfies tµt 6 σ and minimizes the weighted logarithmic energy
I(µ− νt) among all probability measures µ ∈ M(E) satisfying tµ 6 σ.

Finally, let us denote the free region by St (i.e., the set where the upper
constraint is not active), given by

St = supp(σ − tµt). (3.28)

Then the complement of St, which is called the saturated region (where the two
measures σ and tµt agree), is the region where the n-th Ritz values converged
to an eigenvalue of AN with a rate of convergence described by the weighted
potential Uµt−νt .

3.2.3 Numerical examples

In the numerical experiments that follow, the rational Lanczos method with
full re-orthogonalization and α∅ = 0 ∈ E is applied to different diagonal
matrices A ∈ R

200×200 with starting vector q = [1 1 . . . 1]T . Note that this
starting vector has the same component in each of the eigenvalue directions.
For a given sequence of poles we then computed the n-th Ritz values for
n = 1, 2, . . . , 200, and indicated in the figures that follow the converged Ritz
values. For this, we consider a Ritz value to be converged if in the next iteration
there is a Ritz value within some prescribed distance. Although this is not a
truly safe convergence check, it works well in our examples. In the figures, the
markers from Table 1 are used to display the smallest distance between Ritz
values from successive iterations. To make the pictures more readable, we only
plot the odd iterations.

Marker Color Distance to nearest Ritz value from the next iteration
+ Red less than 0.5 × 10−14

∗ Yellow between 0.5 × 10−14 and 0.5 × 10−8

· Blue between 0.5 × 10−8 and 0.5 × 10−4

× Green more than 0.5 × 10−4

Table 1: Markers and colors for the figures
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Like in the polynomial Lanczos case, the convergence plot basically remains
the same if we increase the size N of the matrix. Only the horizontal axis has
to be re-scaled. This means that the good region of converged eigenvalues only
depends on the ratio t = n/N , where n is the number of Lanczos iterations.

For fixed values of t ∈ (0, 1) for which 200t is a natural number, we assume the
asymptotic distribution of the poles is given by

ηt =
1

200t

200t−1
∑

j=1

δαj
+

1

200t
δ∞ = νt + (1 − st)δ∞,

such that the logarithmic potential for νt is given by

Uνt(x) = − 1

200t

200t−1
∑

j=1

log |αj − x| =: κ200t−1,200t(x). (3.29)

Note that this is corresponding to a sequence of n − 1 finite poles and
one pole at infinity. From the previous subsection it then follows that the
boundary between the set where the eigenvalues are found and the set where
the eigenvalues are not found yet is the boundary between the free region, given
by (3.28), and the saturated region. In the figures that follow, this boundary
is computed by means of Algorithm 2 for several values of t, and plotted in
function of n = 200t by means of a black line.

In some of the examples that follow we have used complex poles alongside with
real ones. While complex poles do not complicate matters significantly (the
only price to pay is a conversion from real-valued arithmetics to complex-valued,
which is a constant factor), they illustrate our software better. Moreover, the
use of complex poles allows to find some internal eigenvalues first, which is
not feasible with only real poles, as we will show now. On one hand, one
prefers to use zeros of ORF’s as discretization points for an interval, and on
the other hand, the discretization set has to be asymptotically dense in this
interval, as required by the convergence conditions (see Theorem 1). These two
requirements start to contradict when we choose one of the poles of ORF’s to
be inside the interval; adding some imaginary offset is a good solution in this
case.

Equally spaced eigenvalues

Suppose the eigenvalues of A are equally distributed on E = [−1, 1], e.g.,

λk,200 = −1 +
2(k − 1)

199
, k = 1, . . . , 200.
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Figure 3.10: Convergence of the Ritz
values for Ex. 7 with α = 2.
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Figure 3.11: Convergence of the Ritz
values for Ex. 7 with α = 0.2 + 0.1i.

The constraint for the CWEP is then given by the Lebesgue measure dσ(x) =
1
2dx on [−1, 1].

Example 7. First, consider the case of one multiple pole at α. The predicted
as well as the actual zones of convergence are then plotted on Figures 3.10
and 3.11 for α = 2 and α = 0.2 + 0.1i respectively. These figures clearly show
that the pole attracts Ritz values (those closer to the pole, tend to converge
first), and that choosing a complex pole close to the interval makes it possible
to find inner eigenvalues first.

Example 8. Next, consider the case of two different poles α1 and α2, each
with multiplicity 100. We then distinguish two cases:

(a) the case in which the poles are ordered as {α1, . . . , α1, α2, . . . , α2},

(b) the case in which the poles are ordered as {α1, α2, α1, α2, . . .}.

Figures 3.12 and 3.14 show the results for case (a) with α1 = −5 and α2 = 1.2,
and α1 = 0.2 + 0.1i and α2 = −0.5 + 0.1i respectively. The results for case (b)
are plotted on Figures 3.13 and 3.15 respectively.

On the basis of (3.29) it is easy to explain the differences between the figures
for case (b) and those for case (a). On the latter there is no effect of the pole α2

during the first 100 iterations, while for case (b) the figures are more balanced.
Further, it clearly follows from Figure 3.13 that the pole closer to the interval
has more effect on the convergence behavior of the Ritz values.
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Figure 3.12: Convergence of the Ritz
values for Example 8 (a) with α1 = −5
and α2 = 1.2.
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Figure 3.13: Convergence of the Ritz
values for Example 8 (b) with α1 =
−5 and α2 = 1.2.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of iterations

R
it

z
v
a
lu

e
s

Figure 3.14: Convergence of the Ritz
values for Example 8 (a) with α1 =
0.2 + 0.1i and α2 = −0.5 + 0.1i.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of iterations

R
it

z
v
a
lu

e
s

Figure 3.15: Convergence of the Ritz
values for Example 8 (b) with α1 =
0.2 + 0.1i and α2 = −0.5 + 0.1i.

Example 9. Finally, consider the case in which the eigenvalues of A are equally
distributed on E = [0, 1]∪[2, 3]. Figure 3.16 then shows the predicted as well as
the actual zones of convergence for the case of one multiple pole α = 0.7 + 0.1i.

Eigenvalues distributed according to the balayage-measure

As has been proved in [101], an eigenvalue distribution according to the
equilibrium measure is the worst case for the convergence of the Lanczos
iteration. No eigenvalues are well-approximated whenever n < N . However,
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Figure 3.16: Convergence of the Ritz
values for Example 9.
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Figure 3.17: Convergence of the Ritz
values for Example 10.

keeping the same eigenvalue distribution but using a rational Lanczos method
instead, it is possible to find eigenvalues for n < N .

In the rational case, the same occurs whenever the eigenvalues are distributed
according to the balayage-measure of a probability measure η from C\E onto E,
while the asymptotic distribution of the poles is given by a probability measure
ηt so that

η − tηt > 0 on supp(η − tηt) 6= ∅, for every t ∈ (0, 1).

Example 10. Consider the case in which the diagonal matrix A ∈ R
200×200

has eigenvalues equal to the rational Chebyshev points on E = [−1, 1] (cf.
Subsection 3.1.2), based on the sequence of poles

B200 = {β1 = . . . = β199 = 1.1, β200 = ∞}.

The asymptotic distribution of the eigenvalues is then given by:

dσ(x) =
1

π
√

1 − x2

1

200

(

199

√

1 − 1/1.12

1 − x/1.1
+ 1

)

dx.

Applying n steps of the rational Lanczos algorithm with one multiple pole
at α = 1.1 yields no converged Ritz values for any n < 200, as one can clearly see
on Figure 3.17. This corresponds to the solution of the CWEP: no saturation
is present for any t = n/200 < 1. Indeed, for µt given by:

dµt(x) =
1

π
√

1 − x2

1

200t

(

(200t− 1)

√

1 − 1/1.12

1 − x/1.1
+ 1

)

dx,
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we have that

d(σ − tµt)(x)

dx
=

(1 − t)

π
√

1 − x2

√

1 − 1/1.12

1 − x/1.1
> 0,

for every x ∈ [−1, 1] and every t ∈ (0, 1). Applying a rational Lanczos method
with poles different from 1.1 does make it possible to find eigenvalues for n <
200 (see also Figures 3.7–3.9).

3.3 Conclusion

Together with some auxiliary lemmas, we presented an algorithm to numerically
solve the constrained weighted energy problem (CWEP), which appears in
logarithmic potential theory. Our algorithm is based on an equivalent
formulation of the CWEP in terms of a weighted logarithmic potential. First,
we formulated the continuous version of the algorithm, and then we discretized
it. Compared with the continuous version, the discretized version has the
advantage that the algorithm always stops, producing a solution which is
accurate in comparison to the exact solution when known. Finally, we used
the algorithm to predict the region of convergence of Ritz values obtained by
applying the rational Lanczos method for symmetric eigenvalue problems. In
all cases our algorithm estimated the region of convergence of Ritz values in an
accurate way.





Chapter 4

Multivariate orthogonal

polynomials

This chapter is organized as follows. In Section 4.1 we state the
problem of polynomial least squares approximation and show how
multivariate orthogonal polynomials appear naturally in its context.
In Section 4.2 we show how generalized Hessenberg matrices arise in
recurrence relations between these orthogonal polynomials and how
the original problem of constructing these polynomials is reduced
to an inverse eigenvalue problem. In Section 4.3 we present an
algorithm to solve this inverse eigenvalue problem and in Section 4.4
we give several numerical examples. Within this chapter we follow
our paper [161].

4.1 Polynomial least squares approximation

Consider some discrete inner product 〈·, ·〉, and let us measure distances
by its associated norm. In this section we reduce a discrete least squares
approximation problem to computing the corresponding orthogonal basis
polynomials. The starting problem is: given some function f , find a polynomial
p ∈ P that minimizes ‖f − p‖〈·,·〉. Such a polynomial can be found as follows.
Construct a basis {φ1, . . . , φn} for P which is orthonormal with respect to the
inner product 〈·, ·〉. The solution p is then the Fourier expansion of f with
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respect to this basis, truncated after some term. An algorithm that solves this
problem will explicitly compute the recurrence coefficients for an orthonormal
basis and the Fourier coefficients.

4.1.1 Definitions

Let {ζk}m
k=1 be a set of nodes – pairs of complex numbers and {w2

k}m
k=0 a set of

positive weights (let us assume that wk > 0). Expression (4.1) represents then
a positive semidefinite inner product in some bivariate polynomial space P:

〈p, q〉 =
m
∑

i=0

w2
i p(ζi)q(ζi). (4.1)

This is a positive definite inner product for the space of vectors (p(ζ0), . . . , p(ζm))
representing the function values at the given nodes.

Let us further specify the polynomial spaces we are working in. Let R[x] with
x = (x1, x2) be the ring of all polynomials in two variables. Fix a monomial
order ≺, say the graded lexicographical order, and let lt(f) denote the leading
term of the polynomial f ∈ R[x] according to the monomial order. This
monomial order induces the order ≺ on the polynomials, namely, we say that
p(x, y) ≺ q(x, y) iff lt(p) ≺ lt(q). Consider any ordered sequence of terms
t0 ≺ · · · ≺ tn and define by Pn its linear span. We say that the polynomial
p ∈ Pn has length k iff all the coefficients at the terms ti, k < i 6 n, are zero
and tk 6= 0. It is assumed that together with each term xiyj all the terms xpyq,
p 6 i, q 6 j are also in Pn and are preceding xiyj wrt chosen monomial order.

Although the technique presented below works for any monomial order as
defined above, in the applications it is usually more practical to use some
total degree monomial order (like graded lexicographical order).

Given an inner product 〈·, ·〉 defined on Pm ×Pm and some bivariate function f ,
the polynomial p ∈ Pn of length at most n 6 m, which minimizes the error

‖f − p‖〈·,·〉, p ∈ Pn (4.2)

is called a least squares approximant. This polynomial could be represented as

p =
n
∑

k=0

akφk, ak = 〈f, φk〉, (4.3)

where the {φk}n
0 form an orthonormal set of polynomials:

φk ∈ Pk − Pk−1, P−1 = ∅, 〈φk, φl〉 = δkl.
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The inner product we consider here is of discrete form (4.1) where ζi are distinct
pairs of complex numbers. When m = n, the least squares solution is the
interpolating polynomial. Because of the discrete form of the inner product,
the only information needed about the function f is the set of its values in the
points ζi. This also means that (the continuos) f does not necessarily have to
belong to Pm.

4.1.2 Reduction to the construction of an orthonormal basis

Let us illustrate now how the orthogonal polynomials do appear in this context.
We start with some multivariate polynomial basis {ψk}, ψk ∈ Pk − Pk−1. Let
us set

p =
n
∑

k=0

ckψk, ck ∈ C.

Then the least squares problem can be reformulated as finding the weighted
least squares solution of a system of linear equations. More precisely, such
solution is given by

min
ck

n
∑

k=0

w2
i (ckψk(ζi) − f(ζi))

2, i = 0, . . . ,m,

which is the least squares solution of the system WΨncn = W f :

min
cn

‖W (Ψncn − f)‖2,

where W = diag(w0, . . . , wm) and

Ψn =







ψ0(ζ0) . . . ψn(ζ0)
...

...
ψ0(ζm) . . . ψn(ζm)






, cn =







c0

...
cn






, f =







f(ζ0)
...

f(ζm)






. (4.4)

The normal equations for this system are

(ΨH
n W

HWΨn)cn = ΨH
n W

HW f . (4.5)

When the ψk are chosen to be the orthonormal polynomials φk, then
ΨH

n W
HWΨn = In+1 and the previous system has the solution cn =

ΨH
n W

HW f .

For more details on the relation between the least squares problem and
polynomial bases one can address [16, Chapter 8].
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4.2 Generalized Hessenberg matrices and recur-

rence relations

From the previous discussion it follows that the central problem is to construct
the orthonormal basis {φk}. This polynomial basis is described by means of
recurrence relations between the orthonormal basis polynomials. Further in
this section we show how these recurrence coefficients come from a certain
inverse eigenvalue problem, at first, for the univariate case. Later this result is
generalized to the multivariate case.

4.2.1 Univariate case

Let us recall the one-variable case. In general, the polynomial zφk−1(z) can be
expressed as a linear combination of the polynomials φ0, . . . , φk, leading to a
relation of the form

zφk−1(z) = ηkkφk(z) + · · · + η0kφ0(z), k = 1, . . . ,m+ 1.

We can express the previous relations as

z[φ0(z), . . . , φm(z)] = [φ0(z), . . . , φm(z)]H + eT
m+1φm+1(z)ηm+1,m+1, (4.6)

where H is an upper Hessenberg matrix and eT
m+1 = [0, 0, . . . , 0, 1].

Since we identify the function with the (m + 1)-vector of its function values
in ζk, k = 0, . . . ,m (being just complex numbers in the one-dimensional
case), our “functional space” is a space of (m + 1)-vectors, which is (m + 1)-
dimensional. This means that the (m + 2)-nd orthogonal polynomial will be
orthogonal to the whole space, hence it must be zero. Thus, if φk are these
orthogonal polynomials, then [φm+1(ζ0), . . . , φm+1(ζm)]T is the zero vector.
Hence, φm+1(z) = Πi(z − ζi).

Let us define the matrix Φm similarly to Ψm (4.4), replacing polynomials ψ
with φ. Let us set Φ = Φm and rewrite relation (4.6) as

ZΦ = ΦH,

with Z = diag(ζ0, . . . , ζm).

Multiplying with the diagonal matrix W and using ZW = WZ, we are led to

H = (WΦ)HZ(WΦ) = QHZQ, (4.7)
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which means that the diagonal matrix Z and the Hessenberg matrix H are
unitarily similar. The constant polynomial φ0 is normalized when it is equal
to η−1

00 with η00 given by

QHw = [η00, 0, . . . , 0]T ,

where w = [w0, . . . , wm]T . Since Q = WΦ and ‖φ0‖ = 1, we see that all the
entries in QHw are zero by orthogonality, except for the first one, which is
1/φ0.

Thus the problem of constructing a one-variable orthonormal polynomial basis
is reduced to the following inverse eigenvalue problem: given the complex points
Z = diag(ζi) and the weights w = (wi), find unitary Q and upper Hessenberg
H such that

QHw = ‖w‖e1, QHZQ = H. (4.8)

4.2.2 Multivariate case

In what follows we use the abbreviation OP for orthonormal polynomials. To
generalize the results of the previous subsection to the bivariate case we must
recall that we have a choice between multiplication by x and y to proceed
from a current OP φk−1(x, y) to one of the following OPs. This choice is
predetermined by the ordering of terms chosen in the definition of Pn.

Recurrence relations for the two-variable OPs could be written in a manner
similar to (4.6):

x[φ0(x, y), φ1(x, y), φ2(x, y), . . . ] = [φ0(x, y), φ1(x, y), φ2(x, y), . . . ]Hx,
y[φ0(x, y), φ1(x, y), φ2(x, y), . . . ] = [φ0(x, y), φ1(x, y), φ2(x, y), . . . ]Hy.

(4.9)

However, the matrices Hx and Hy are not anymore Hessenberg. They are
what we call generalized Hessenberg and their structure becomes clear from
the following example.

Consider the graded lexicographic ordering of terms (the numbers in the second
table are the order numbers of terms in the same place in the first table):
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y

y4

y3 xy3

y2 xy2 x2y2

y xy x2y x3y
1 x x2 x3 x4

x

y

15
10 14
6 9 13
3 5 8 12
1 2 4 7 11

x

.

Let us write the recurrence relations for the first six polynomials, denoting by
boldface the polynomial that is being determined from each equation:

φ1φ1φ1 = const
xφ1 = [φ1,φ2φ2φ2] ·Hx(1 : 2, 1)

yφ1 = [φ1, φ2,φ3φ3φ3] ·Hy(1 : 3, 1)
xφ2 = [φ1, φ2, φ3,φ4φ4φ4] ·Hx(1 : 4, 2)

yφ2 = [φ1, φ2, φ3, φ4,φ5φ5φ5] ·Hy(1 : 5, 2)
xφ3 = [φ1, φ2, φ3, φ4,φ5φ5φ5] ·Hx(1 : 5, 3)

yφ3 = [φ1, φ2, φ3, φ4, φ5,φ6φ6φ6] ·Hy(1 : 6, 3)

(4.10)

For the case of real ζi the matrices Hx and Hy are symmetric and have the
following structure (×, ⋊⋉ and ⊠ all denote (possibly) nonzero elements, ⊠ is
the pivot essential for the previous system of equations):

Hx =

















× ⋊⋉

⊠ × ⋊⋉ ⋊⋉

⋊⋉ × ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ × ⋊⋉ ⋊⋉

⊠ ⋊⋉ × ⋊⋉

⋊⋉ ⋊⋉ ×

















, Hy =

















× ⋊⋉ ⋊⋉

⋊⋉ × ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ × ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ × ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ × ⋊⋉

⊠ ⋊⋉ ⋊⋉ ×

















. (4.11)

Polynomial φ5(ζ) is the first polynomial that could be reached by multiplication
both by x and y. This gives two equations to determine it. The
following scheme illustrates one of the possibilities (we call it downside-up
scheme). Vertical arrows denote multiplication by y, horizontal arrows denote
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multiplication by x.

y

10
↑
6 9
↑ ↑
3 5 8
↑ ↑ ↑
1 → 2 → 4 → 7

x

(4.12)

Given the monomial ordering the structure of the matrices Hx and Hy is fixed.
If one of the pivot elements ⊠ becomes zero on some step, this means that on
this step an interpolating polynomial is constructed. This polynomial is zero
in all points ζi used up till this step.

To determine the basis polynomial φk we introduce the following inductive
scheme. Basis: fix φ0 to be constant. Inductive step: suppose that all φi,
0 6 i < k, are computed. For φk look at the scheme (4.12) and decide whether
to take coefficients from Hx or Hy matrix. Take the first unused column in
this matrix and build on its basis the recurrence equation like in (4.10). Mark
the column as used. If there is a recurrence relation for the same polynomial
in the second matrix, then mark the first unused column there as used also.

This scheme is easily generalized to polynomials of more than two variables.
The only thing that needs to be updated is the monomial order and the
scheme (4.12), determining the recurrence relations.

Let us now derive the inverse eigenvalue problem, similar to (4.8) in the
univariate case.

We may recall again that our inner product is discrete and thus we work with
functions as with the (m+ 1)-vector of its values in ζk = (xk, yk), k = 0, . . . ,m.
It means that the (m + 1)-st orthogonal polynomial will be orthogonal to
the whole space, hence it must be zero. This makes possible to rewrite the
relations (4.9) as

XΦ = ΦHx,

Y Φ = ΦHy,

with

Φ = Φm =







φ0(ζ0) . . . φn(ζ0)
...

...
φ0(ζm) . . . φn(ζm)






.
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Using a similar technique as in the beginning of this section, the problem
of constructing the bivariate orthonormal polynomial basis is reduced to the
following inverse eigenvalue problem: given the complex points ζζζi = (xi, yi),
X = diag(xi), Y = diag(yi), the weights w = (wi) and the ordering scheme,
find unitary Q and upper generalized Hessenberg matrices Hx and Hy such
that

QHw = ‖w‖e1, QHXQ = Hx, QHY Q = Hy. (4.13)

4.3 Inverse eigenvalue problem and updating algo-

rithm

In this section we present first a general formulation of an algorithm to solve
the inverse eigenvalue problem (4.13), and then study it in detail for a 6 × 6-
example.

4.3.1 General formulation of the algorithm

We will now describe an algorithm which, given the initial data (the points
ζζζi, the weights wi and the ordering scheme π(i)), computes the matrices Hx

Algorithm 3: Transformation of D = [w|X|Y ] into [QHw|QHXQ|QHY Q]
having zeros below the pivots, function π(j) is a w/x/y switch

begin

for i = 2 : n do

for j = 1 : i− 1 do

• make element di,π(j) zero

by Givens rotation GH with the pivot element (j, π(j)):

D = GHD

• D = D





1
G

G



 (similarity transformation)

end

end

end



INVERSE EIGENVALUE PROBLEM AND UPDATING ALGORITHM 77

and Hy – the building blocks of the recurrence relation generating the desired
orthonormal polynomials. The pseudocode formulation is presented below as
Algorithm 3.

The algorithm starts with the following matrix:











w1 x1 y1

w2 x2 y2

...
. . .

. . .
wm xm ym











= [w|X|Y ] ∈ C
m×(2m+1)

(4.14)

and transforms it using unitary similarity transformations into

[‖w‖e1|Hx|Hy] = [QHw|QHXQ|QHY Q] = QH [w|X|Y ]





In

Q
Q



 .

(4.15)

The matrix Q is unitary, such that [QHw|QHXQ|QHY Q] has zeros below the
pivot positions (i, π(i)), i = 1, 2, . . . ,m. Algorithm 3 will add, for each i, the
point ζζζi with corresponding weight wi. Each iteration changes the underlying
inner product, adding a new point ζi to it.

4.3.2 6 × 6 example

Let us restrict ourselves to the problem of finding the first 6 OPs using the
downside-up ordering scheme (4.12). Here × denotes the original elements
of the matrix D = [w|X|Y ], ⋊⋉ stands for some possible nonzero elements,
⊠ marks the positions of pivots essential for the recurrence relations, and at
each step ⊙ is the element to be annihilated by the Givens rotation built on
the element ⊗. By we mark the part of the matrix D that is actually
changing at the corresponding inner iteration of Algorithm 3. Elements marked
by together with elements marked by represent the part of
the matrix D that is being processed during the current outer iteration of
Algorithm 3.

We also specify the transformation matrix at each step. Gw(i, j) means the
Givens rotation constructed using the i-th and j-th element of the (transformed)
weight vector; GX(i, j) means the Givens rotation constructed using an element
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in theX part of the matrixD, placed in i-th row to annihilate the corresponding
element placed in j-th row; the column is then π(j), and similarly to it we define
GY (i, j).

We restrict ourselves to pairs of real points ζζζi, resulting in matrices Hx and Hy

being symmetric.

We start with the inner product based on 2 points, so 2 × 2-submatrices of D
are being processed. The ordering scheme tells that the second polynomial
comes from the X part, and we mark there its corresponding pivot with ⊠.

⊗ × ×
⊙ × ×
× × ×
× × ×
× × ×
× × ×

↓ Gw(1, 2) ↓

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

0 ⊠ ⋊⋉ ⋊⋉ ⋊⋉

× × ×
× × ×
× × ×
× × ×

Then we add one more point and start again with the weight vector.

⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉

⊙ × ×
× × ×
× × ×
× × ×

↓ Gw(1, 3) ↓
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↓ Gw(1, 3) ↓

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

0 ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

× × ×
× × ×
× × ×

At this moment we have to restore the (generalized) Hessenberg structure in
the first column of the X part, using the pivot. Because of symmetry two
zeros will appear in the X part. Then we mark the pivot position for the third
polynomial, it is in the Y part according to (4.12).

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊙ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

× × ×
× × ×
× × ×

↓ GX(2, 3) ↓

⊠ ⋊⋉ ⋊⋉ 0 ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

0 ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉

× × ×
× × ×
× × ×

Let us skip the stages of working with 4 and 5 points and proceed directly to
the procedure of adding the 6th point. Again we start with the weight vector.
Note that there are two pivot positions in the 5th row. This corresponds to
the fact that the 5th OP can be derived either by multiplying by x or by y.
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At first, we make a zero element in w-vector:

⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉

⊙ × ×

↓ Gw(1, 6) ↓

↓ Gw(1, 6) ↓

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉

0 ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

Now the generalized Hessenberg structure is destroyed, so we start chasing the
nonzeros in the last row from left to right. The first pivot comes from the X
part, second row.

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉

⊙ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

↓ GX(2, 6) ↓

⊠ ⋊⋉ ⋊⋉ 0 ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

0 ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉
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The next pivot comes from the Y part, third row.

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊙ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

↓ GY (3, 6) ↓

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ 0
⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ 0 ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

The next pivot comes from the X part, fourth row.

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊙ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

↓ GX(4, 6) ↓

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ 0 ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

0 ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

The next pivot comes from the fifth row, but we have a choice between the X
part and the Y part. Our ordering scheme (4.12) tells us to take the pivot
from the Y part. However, we could also choose the pivot from the X-part, e.g.
if two pivots differ in some orders of magnitude, then choosing the larger one
may enhance the numerical stability. Note that the element below the pivot
position in the 5th row in X part also becomes zero. At this step we mark by
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⊠ the pivot for the 6th polynomial in the Y -part, its position is in the 6th row.

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⊗ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⊙ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

↓ GY (5, 6) ↓

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ 0
⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ 0 ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⊠ ⋊⋉ ⋊⋉ ⋊⋉ ⋊⋉

0 ⋊⋉ ⋊⋉ ⋊⋉ 0 ⊠ ⋊⋉ ⋊⋉ ⋊⋉

The elements of the last matrix are exactly the values appearing in the
recurrence system of equations (4.10).

4.4 Numerical experiments

We have implemented Algorithm 3 in Matlab and applied it to several problems.

In the implementation we use the ordering scheme (4.12). As the points for
the discrete inner product we use Padua points. The software for working with
Padua points is described in [26].

The m+ 1 = (δ + 1)(δ + 2)/2 Padua points corresponding to degree δ > 0 are
the set of points

Padδ = {ζζζ = (ζ1, ζ2)} =

{

γ

(

kπ

δ(δ + 1)

)

, k = 0, . . . , n(n+ 1)

}

where γ(t) is their “generating curve”

γ(t) = (− cos((δ + 1)t),− cos(δt)) t ∈ [0, π].

Notice that two of these points are consecutive vertices of the square, 2δ − 1
other points are on the edges of the square and the remaining (interior) points
are corresponding to self-intersections of the generating curve, see Figure 4.1.
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Figure 4.1: Padua points for different n

Example 1: orthogonality test

Let us recall the inverse eigenvalue problem: find a unitary matrix Q
(transformation matrix) and generalized upper Hessenberg matrices Hx and Hy

such thatQHw = ‖w‖e1, QHXQ = Hx andQHY Q = Hy. Denote by φi(ζ) the
computed orthonormal polynomials and let Φ = [φ0(ζζζi)φ1(ζζζi) . . . φm(ζζζi)]

m+1
i=0 ,

W = diag(wi). Then, as it is proven before, WΦ = Q. Computing the values of
the OPs at the nodes ζζζi by means of the recurrence relations based on Hx, Hy

gives us a possibility to check numerically the orthogonality of the matrix WΦ.

As the nodes ζζζi we take N = 5151 Padua points of degree n = 100, and the
identity matrix as the weight matrix. The values of the OPs are stored in
the matrix V = WΦ and we denote by R = |V HV − I| (modulus is taken
elementwise). In Figure 4.2 we plot maxR(1 : k, 1 : k) for k = 10 : 100 : N .

Example 2: least squares solution

Recall that the solution p(z) to the least squares (LS) problem (4.2) is p(ζ) =
∑n

j=0 cjφj(ζ). Then c = (cj) is given by c = ΦHWHW f = [〈φi, f〉], where the
matrices Φ and W are defined in the previous example, so we perform the same
row operations on W f as on w in Algorithm 3.
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Figure 4.2: Max orthogonality error
for the first k OPs, N = 5151 points
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Figure 4.3: LS solution coefficients for
the Franke function, N = 5151 points

As the first test function we consider the Franke function

F (x, y) =
3

4
e−

(9x−2)2

4 −
(9y−2)2

4 +
3

4
e−

(9x+1)2

49 − 9y+1
10

+
1

2
e−

(9x−7)2

4 −
(9y−3)2

4 − 1

5
e−(9x−4)2−(9y−7)2

on [0, 1] × [0, 1] and transform the N = 5151 Padua points from [−1,+1]2 to
[0, 1]2. These transformed points are denoted by ζζζi. Then we compute the right-
hand side f = F (ζζζi) and the least squares solution coefficients ΦHWHW f = c.
In Figure 4.3 the absolute values of the solution coefficients ck are plotted for
all k. It is easy to see that from k ≈ 3000 they are of machine-precision size.

On Figures 4.4 and 4.5 we present surface plots of the relative LS solution
error, approximating with the polynomial of length 1000 and of length 3000,
correspondingly. (The concept of length is defined in Section 4.1.) When we
approximate with the polynomial of length more than 3000, such a surface
plot remains basically the same as for 3000. This corresponds to the data of
Figure 4.3: all the basis polynomials of length more than approximately 3000
are taken into the solution with the coefficients of machine-precision size and
thus basically do not change the solution.

The polynomial of length 5151 is a polynomial of degree 100, one of length 3000
is of degree 76 and one of length 1000 is of degree 44.

Using the same polynomial basis as for the Franke function, we solved the LS
problem with the function

G(x, y) = exp{(
√

x2 + y2)3}.
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Figure 4.4: Max LS error when
approximating with the polynomial of
length 1000, N = 5151 points
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Figure 4.5: Max LS error when
approximating with the polynomial of
length 3000, N = 5151 points
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Figure 4.6: LS solution coefficients for
G(x, y), N = 5151 points
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Figure 4.7: Max LS error when
approximating with the polynomial of
length 4000, N = 5151 points

On Figure 4.6 we plot the LS solution coefficients for G(x, y). It is clear that
they decay slower than the ones for the Franke function, so we can expect
a less accurate approximation. On Figure 4.7 we plot the relative error for
the approximant of length 4000 (degree 88). Again, the size of the error is in
correspondence with the size of the LS coefficients.
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Figure 4.8: Surface plot of an interpolating polynomial

Example 3: Polynomial that goes through some points

Consider the square [0, 1] × [0, 1]. As points, we take 20 equidistant points on
the circle with center (0.25; 0.25) and radius 0.15. The next 20 points are taken
similarly on a circle with center (0.75; 0.75) and radius 0.15. The last 4 points
are the 4 edges of the square. We look for the polynomial having “least degree”
that has zero value in the given points. This situation corresponds to the
first zero pivot appearing in the recurrence relation. It happens for the 28th
orthogonal polynomial. It is the polynomial of degree 6, which corresponds
with the theoretical estimate (degree 2+2+1+1, two circles and two lines).
Figure 4.8 shows the surface plot of this polynomial.

Example 4: Comparison with 2D Lanczos method

This example compares the accuracy of our new method and the two
dimensional Hermitian Lanczos method, by Huhtanen and Larsen, [88] (further
referred as the HL-method). Both methods were implemented in Matlab and
executed with standard Matlab precision (32 digits) and in variable precision
arithmetic (vpa) with 128 digits. Because vpa computations are very slow, we
used it only for small examples.

Consider the square [−1, 1] × [−1, 1] and three data sets in it: (a) 15 Padua
points, (b) 10 points such that x and y coordinates are independently random
and equally distributed, and (c) 10 points lying on a circle, perturbed with
noise of different magnitudes (amp in the following table) to make the problem
more ill-conditioned or less ill-conditioned.
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(a) Padua (b) random (c) ill-cond, (c) ill-cond,
amp = 10−4 amp = 10−10

Q− U 1e-15 2e-15 2e-12 3e-6
Us − U 4e-16 6e-16 3e-12 1e-6
Us −Q 1e-15 1e-15 2e-12 3e-6
Hx −A 7e-16 6e-16 1e-12 8e-7
As −A 2e-16 2e-16 4e-13 8e-8
As −Hx 6e-16 6e-16 7e-13 5e-7
Q∗Q− I 1e-15 9e-16 1e-15 7e-16
U∗U − I 5e-16 3e-16 3e-16 5e-16

Table 4.1: Comparison of methods: some relative errors

For different points and methods we compared the transformation matrices Q
and the recurrence relation matrices Hx and Hy. We use the following notation:
matrices given by our method we denote by Q, Hx and Hy as earlier, matrices
coming from the HL-method we denote as U , A, B correspondingly. Since both
methods have shown exactly the same behavior in vpa arithmetic, we use one
set of vpa results to compare with and denote them by Us, As and Bs. It was
seen that the matrices Hx and Hy, as well as A and B for the selected ordering
scheme do not differ from the accuracy point of view, so we also give the results
only for one of them. The numerical results are presented in Table 4.1. For
each table cell with random input data we performed 10 runs and averaged the
results.

As the last test, we sampled different polynomials represented as linear
combinations of the basis polynomials in the data points and recovered them
as LS solutions of problem (4.2). We denote as vector c the linear combination
coefficients in Table 4.2 and the following possibilities were investigated: all-
ones vector, random vector uniformly distributed on [0, 1] and random vector
uniformly distributed on [0, 100]. Since we did not mention any significant
difference between all these, results only for all-ones vector are given. We
computed relative errors ‖ccomp − c‖/‖c‖, where ccomp is the recovered LS
solution, coming from our method (norm1) and from the HL-method (norm2).
The numerical results are presented in Table 4.2.

We can conclude from these examples that the Q, Hx and Hy matrices
themselves have on average a half-digit better precision in the HL-method than
in the new method, which leads to the whole digit difference in the recovery
problem. However, both methods seem to treat equally well-conditioned and
ill-conditioned problems, giving good accuracy. Slightly lower accuracy of the
new method is compensated by the fact that it is able to treat data points one
after another and store the intermediate results. Such updating procedure is
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data set norm1 norm2
496 Padua pts 6e-13 1e-14
861 Padua pts 7e-13 2e-14
1326 Padua pts 8e-13 4e-14
105 random pts 1e-10 3e-11
496 random pts 5e-13 5e-14

36 pts on circle, noise amp 1e-2 6e-6 5e-7

Table 4.2: Comparison of methods: polynomial recovery

useful in many applications.

4.5 Conclusion

We presented an algorithm computing the recurrence relation coefficients for
bivariate polynomials, orthonormal with respect to a discrete inner product. To
do so, we transformed the original problem to an inverse eigenvalue problem
and solved it by applying a sequence of specially built Givens rotations. The
algorithm is a basis tool in solving different problems of numerical mathematics,
such as the polynomial interpolation problem or the discrete least squares
problem. Numerical examples show that the algorithm could indeed be
efficiently applied to such problems and also illustrate its good numerical
stability.



Chapter 5

Structured matrices: facts

In this chapter we bring into a common framework some known
facts and concepts involving structured matrices. Though not new
themselves, they are necessary for the understanding of algorithms
that will be presented later in Chapter 6. We begin with defining
different structure types matrices and give several technical results
in Section 5.1. Later in Section 5.2 we discuss a homotopy approach,
which becomes an important tool to work out two of the problems
in the next chapter.

5.1 Basic concepts

In this section we will define different types of structured matrices, including
Toeplitz matrices, semiseparable matrices and general low displacement rank
matrices. Later we will discuss several auxiliary theorems and techniques, that
will be used in the next chapter.

89
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5.1.1 Types of matrix structure

Toeplitz structure

A matrix T ∈ R
n×n is called Toeplitz, if T = (tij) = (aj−i):

T =



















a0 a1 a2 · · · an−1

a−1 a0 a1
. . .

...

a−2 a−1 a0
. . . a2

...
. . .

. . .
. . . a1

a−(n−1) · · · a−2 a−1 a0



















. (5.1)

A Toeplitz matrix is determined only by 2n − 1 parameters. This has led
to several fast and superfast algorithms for the solution of linear Toeplitz
systems Tx = b, utilizing the matrix structure. The two types of direct fast
solvers that require O(n2) operations are Levinson-type and Schur-type solvers.
For more references and information about these algorithms, we refer the reader
to [93].

One of the good ways to define, identify and exploit the matrix structure such
as the Toeplitz one is the concept of displacement ranks. This idea was first
defined in the paper [92]. We say that a matrix M has low displacement rank,
if for some matrices A and B the rank of the matrix X = M − AMB is low.
For an appropriate choice of A and B a Toeplitz matrix T can be converted
to a rank two matrix X. Then X can be decomposed as X = GH∗ with
G,H ∈ R

n×2 (or G,H ∈ C
n×2), ∗ denotes Hermitian conjugate. Matrices G

and H are called displacement generators of T . Based on G and H it is possible
to construct generators for T−1. These generators are also of size n× 2.

We study the theory of displacement ranks in more detail in Subsection 5.1.2.
This theory, together with a homotopy approach, serves as an important tool
while developing a superfast solver for linear systems with Toeplitz matrices
in Section 6.1. Moreover, our algorithm also allows to construct a compact
representation of the inverse of a given symmetric Toeplitz matrix.

In some applications, like numerical solution of multidimensional integral
equations and image deblurring, the so-called two-level Toeplitz matrices occur,
which are block Toeplitz matrices with blocks of Toeplitz structure. Despite
their seeming similarity to dense Toeplitz matrices, all the attempts to build a
superfast direct solver for such matrices to our knowledge did not succeed up
till now.
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In Section 6.3 we construct a direct solver for a class of two-level Toeplitz
matrices, where the outer Toeplitz structure is banded.

Diagonal-plus-semiseparable structure

A matrix A is called a symmetric semiseparable matrix if all submatrices taken
out of the lower and upper triangular part of the matrix are of rank 1 and the
matrix is symmetric. Here the lower (upper) parts include the diagonal of the
matrix.

A matrix A is called a symmetric generator representable semiseparable matrix
if the lower triangular part of the matrix is coming from a rank 1 matrix and
the matrix A is symmetric.

A matrix A is called a symmetric diagonal-plus-semiseparable matrix if it can
be written as the sum of a diagonal and a symmetric semiseparable matrix. We
will further often shorten the “diagonal-plus-semiseparable” to D+SS.

A matrix A is called a symmetric generator-representable diagonal-plus-
semiseparable matrix if it can be written as the sum of a diagonal and a
symmetric generator-representable semiseparable matrix.

Within this research we will work with symmetric generator-representable
D+SS matrices of the form

A =

























d1 u1v2 u1v3 · · · u1vN−1 u1vN

v2u1 d2 u2v3 u2v4 · · · u2vN

v3u1 v3u2
. . . · · · · · · · · ·

... v4u2

...
. . . · · · · · ·

vN−1u1

...
...

... dN−1 uN−1vN

vNu1 vNu2

...
... vNuN−1 dN

























. (5.2)

LetD = diag(d1, . . . , dN ), u = (u1, u2, . . . , uN−1, uN )T , v = (v1, v2, v3, . . . , vN )T .
A can be written as the sum of three matrices

A = D + triu(uvT ) + triu(uvT )T ,

where triu(M) denotes the strictly upper triangular part of the matrix M .

In what follows we will assume that u1 6= 0. This is not a restriction for an
eigensolver, because if u1 = 0, then d1 is an eigenvalue and the matrix can be
reduced to a matrix with the first component of u different from 0.
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Such symmetric diagonal-plus-semiseparable matrices are determined by an
amount of parameters linear in their size, namely, by 3N − 2 parameters. This
type of structure allows even more effective algorithms, compared to Toeplitz
structure. More specific, a QR-type, as well as Levinson and Schur-type solvers
have been developed for D+SS matrices. Their complexity is linear in N , as
shown in [174, Ch. 5 and Ch. 6]. For more references and information about
these algorithms, we refer the reader to this book, which gives a very complete
survey of recent achievements in the theory of semiseparable matrices.

It is also shown in [174], that in some applications the generator representa-
tion (5.2) does not allow to construct stable algorithms (for example, it causes
problems for a QR-solver, see [165]). As an alternative, the so-called Givens-
weight representation [174, Ch. 2] of semiseparable matrices should be preferred.
Other definitions of semiseparability are also discussed within this reference.

In Section 6.2 we derive a divide-and-conquer algorithm to compute the
eigenvalues and eigenvectors of a symmetric generator-representable diagonal-
plus-semiseparable matrix. As shown by Van Camp [165], the generator
representation does not cause much trouble for divide-and-conquer algorithms,
but allows much simpler formulas for getting the insight of the algorithm. So
the restriction to the representation (5.2) is well-founded.

The importance of a semiseparable class of structure is based on the
fact that arbitrary symmetric matrices could be efficiently transformed
to a semiseparable form with a finite number of orthogonal similarity
tranformations, see [175, Ch. 2]. These reduction processes often have better
stability and finely tunable convergence behavior, as described in detail in [175,
Ch. 3], compared to a reduction to a tridiagonal form. Existence and uniqueness
of the reduction to generator-representable semiseparable form are investigated
in detail in [12]. Thus, D+SS matrices are excellent candidates for an
intermediate step while trying to solve linear algebra problems with general
matrices.

5.1.2 Low displacement rank matrices

Toeplitz matrices represent an important class of low displacement rank
matrices. Computations with low displacement rank matrices, if performed
properly, require much less computer time and memory space, compared to
general matrices. In this subsection we will give definitions for different types
of displacement ranks and also provide some technical results, required in the
next subsections.
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General definitions

Formally, we associate real m× n matrices with linear operators L : Rm×n →
R

m×n of Sylvester type, L = ∇A,B :

L(M) = ∇A,B(M) = AM −MB, (5.3)

and Stein type, L = ∆A,B :

L(M) = ∆A,B(M) = M −AMB, (5.4)

for fixed pairs {A,B} of operator matrices.

According to the following proposition, these two types of displacement
operators are closely related:

Proposition 8 (see [119]). Let ∇A,B and ∆A,B be the displacement operators,
defined by (5.3) and (5.4) respectively. Then there exists the following
connection between them: ∇A,B = A∆A−1,B if the operator matrix A is non-
singular, and ∇A,B = −∆A,B−1B if the operator matrix B is non-singular.

Frequently used operator matrices are the matrices Zf , Z∗
f and D(v). Here Zf

is the unit f -circulant matrix, where f is an arbitrary scalar:

Zf =













0 f

1
. . .
. . .

. . .
1 0













, (5.5)

D(v) = diag(vi)n
i=1 and v is a vector of length n.

Let us fix matrices A and B. Let L = ∇A,B or L = ∆A,B . The rank r of the
displacement L(M) is called the displacement rank of the matrix M . If A and B
are chosen properly, the displacement rank of a structured matrix M ∈ R

m×n

can be very small (for instance, r = O(1) or r = o(min(m,n))). Table 5.1
shows some specific choices of operator matrices for several well known classes
of matrix structure.

Assume that the operator matrices A and B are chosen such that the
displacement rank r of the matrix M is small. Then we can write a skeleton
decomposition of L(M):

L(M) = ∆A,B = GH∗, (5.6)
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operator matrices class of structured rank of
A B matrices M ∇A,B(M)
Z1 Z0 Toeplitz and its inverse 6 2
Z1 Z∗

0 Hankel and its inverse 6 2
D(t) Z0 Vandermonde 6 1
Z0 D(t) inverse of Vandermonde 6 1

Table 5.1: Displacement ranks for some structured matrices

where G and H are n × r matrices. These matrices are called {A,B}-
displacement generators. The symbol {A,B} can be omitted if the correspond-
ing matrices are clear from the context. Such pair of matrices G and H is often
called a generator representation of a given matrix M .

Since any Toeplitz matrix has displacement rank 6 2 (see e.g. [119]), its
generators are of size n× 2. Thus to store the generators of an n× n Toeplitz
matrix T we need only O(n) storage space, compared to O(n2) for a whole
dense matrix. Furthermore, under certain general conditions on A and B the
matrix T can be fully reconstructed from its generators.

There exists a connection between the displacements of a nonsingular matrix
and its inverse, as shown by the following proposition.

Proposition 9 ([156, 119]). Let M be a nonsingular matrix. Then the
displacements of M and its inverse M−1 are connected:

∇B,A(M−1) = −M−1∇A,B(M)M−1. (5.7)

A similar proposition holds for the operator ∆A,B .

It is well known that the rank of a matrix is invariant under its multiplication
by nonsingular matrices. Hence from Proposition 9 it immediately follows that
the inverse T−1 of a nonsingular Toeplitz matrix T has displacement rank 2
and thus can be represented by generators of size O(n), similarly to T .

For the theory of displacement ranks and Toeplitz matrices, we refer the reader
to [119, 93, 79].

Useful facts

In Section 6.1 we develop an algorithm that solves linear systems of equations
with Toeplitz matrices. Within this algorithm we use a displacement generator



BASIC CONCEPTS 95

representation of Toeplitz matrices. We give now several technical details on
this representation, that are needed by the algorithm.

For Toeplitz matrices we operate with the displacement operator ∆X,Y ,
where X = Z1 and Y = Z∗

−1, defined by (5.5). Let us denote the {X,Y }-
generators of T as G and H:

T − Z1TZ
∗
−1 = GH∗. (5.8)

Theorem 2 ([156, 119]). Let {Z1, Z
∗
−1}-generators be known for a Toeplitz

matrix T . Then, T can be reconstructed by the formula

T =
1

2

(

GH∗ + Z1GH
∗Z∗

−1 + · · · + Zn−1
1 GH∗(Z∗

−1)n−1
)

. (5.9)

Proof. Let us rewrite (5.8) as

T = GH∗ + Z1TZ
∗
−1. (5.10)

Then let us substitute T on the right-hand side of (5.10) by its expression
via (5.10) itself:

T = GH∗ + Z1GH
∗Z∗

−1 + Z2
1T (Z∗

−1)2.

Repeat this substitution again (n−2) times. Then take into account that Zn
1 =

In and (Z∗
−1)n = −In, where In is the identity matrix. Thus Zn

1 T (Z∗
−1)n = −T .

Let us move it to the left-hand side and divide the resulting equation by two.
All these transformations result in (5.9). ⊔⊓

Let us show how to use formula (5.9) for computations of matrix-by-vector
products. Let us slightly transform this formula and multiply it by a given
vector v:

2Tv = [G|Z1G| . . . |Zn−1
1 G][H|Z−1H| . . . |Zn−1

−1 H]∗v = XY ∗v.

Let us recall that G and H are n × 2 matrices, consequently, matrices X
and Y , formed of the block columns, are of size n × (2n). We distinguish the
submatrices X1, X2 and Y1, Y2 in X and Y , respectively, by incorporating
into X1 (respectively, Y1) all the columns of X (respectively, Y ) having even
indices. The remaining columns constitute the submatrix X2 (respectively Y2).
It is easy to see that X1 and X2 are circulant matrices while Y1 and Y2 are
Toeplitz matrices. It is possible to multiply the n × n circulant matrix by a
vector using only O(n log n) operations by means of FFT (see [93]). It is also
possible to multiply the n×n Toeplitz matrix by a vector also using O(n log n)
operations by embedding it into a bigger circulant matrix (the details can be
found in [93]).
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For a Toeplitz matrix T the matrices G and H are (n×2)-matrices. There is no
need to store matrices Zf explicitly, which reduces the memory requirements
to O(n).

Reconstruction formulas of type (5.9) can be easily derived for T ∗, T−1

and (T ∗)−1.

Suppose that the generators G and H from (5.8) are known for some matrix T .
Let us now derive equations for the generators of the inverse T−1.

Multiplying (5.8) by Z−1 on the right gives

TZ−1 − Z1T = GH∗Z−1. (5.11)

Multiplying (5.11) by T−1 on the left and on the right leads to

Z−1T
−1 − T−1Z1 = (T−1G)(H∗Z−1T

−1). (5.12)

Multiplying (5.12) by Z∗
−1on the left results in

T−1 − Z∗
−1T

−1Z1 = (Z∗
−1T

−1G)(H∗Z−1T
−1) = G̃H̃∗.

Here G̃ and H̃ are {Z∗
−1, Z1}-generators for the inverse matrix T−1 and these

generators are the (unique) solutions of two linear systems:

T (Z−1G̃) = G, (5.13)

T ∗H̃ = Z∗
−1H. (5.14)

Later in Section 6.1 we describe how to incorporate these equations into a
specific version of an iterative improvement process.

5.1.3 Iterative improvement processes

Iterative improvement processes (further referred as IIP) are a suitable tool for
improving a close initial approximation X0 to the inverse M−1 of a nonsingular
matrix M .

Such processes include Newton iteration [138]

Xi+1 = 2Xi −XiMXi, i = 0, 1, . . . , (5.15)

scaled Newton iteration [121]

Xi+1 = ai+1(2Xi −XiMXi), i = 0, 1, . . . , (5.16)
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an improvement formula based on a cubic polynomial [40]

Xi+1 = aXi(MXi)
2 + bXi(MXi) + cXi + dI, i = 0, 1, . . . , (5.17)

iterative refinement [71] for the equation XM = I

Ri = I −XiM, Di = RiX0, Xi+1 = Xi +Di, i = 0, 1, . . . . (5.18)

For all processes mentioned above let Ri denote I − XiM . Then their
convergence is determined [119, 40, 71, 120] by the 2-norm ‖R0‖ = ‖I−X0M‖:

‖Ri‖ 6 ‖R0‖pi

, p depends on the process. (5.19)

This norm ‖R0‖2 is called a convergence factor for a given iterative improve-
ment process.

Suppose we know a matrix M0, its inverse M−1
0 , and a matrix M . We call M−1

0

an initial approximation to the inverse M−1. Then we try to improve this
approximation using one of the processes (5.15)–(5.18). However, they can
diverge if ‖R0‖ > 1 or, in other words, when the initial approximation is
too crude (the matrix M0 is too far from the matrix M). One of possible
workarounds is to split the path between M0 and M into several segments and
apply an IIP on each of them. This idea leads to continuation methods, that
are discussed in Section 5.2.

IIP’s (5.15)–(5.17) can be modified for structured matrices in such a way
that they operate only with displacement generators but not with full
matrices. However, this modification usually requires complicated compression
techniques, details are presented in [119, 40]. We will use a modification of
the improvement process (5.18) to compute approximations to the inverses of
Toeplitz matrices, as described in Section 6.1. Algorithm 5 represents such a
modification.

5.2 Continuation methods

Continuation methods define an easy problem for which we know the solution,
and a path between this easy problem and the hard problem that we actually
wish to solve. The solution to the easy problem is gradually transformed to the
solution of the hard problem by tracing this path. The path may be defined
by introducing an additional scalar parameter into the problem.

In this section we give a general formulation of a continuation method and
briefly specify it to a Toeplitz matrix inversion problem and a complete
eigenvalue problem for symmetric matrices.
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5.2.1 General formulation

Suppose we want to solve a problem F(x) = 0, x ∈ L, where L is some linear
space and F is a mapping that we assume to be smooth. Certainly, if a good
approximation x0 of a zero x∗ of F is available, it is advisable to calculate x∗

via a Newton-type algorithm defined by an iteration formula such as

xk+1 = xk −A−1
k F(xk), (5.20)

where Ak is some reasonable approximation of the Jacobian of F(xk). However,
if such a priori knowledge is not available, the Newton-type iteration (5.20) will
often fail because of poor starting values.

As a possible remedy, one defines a homotopy or continuation function H :
L × [0, 1] → L such that

H(x, 0) = G(x), H(x, 1) = F(x), (5.21)

where G : L → L is such that its zeros are readily available and H is smooth.
Typically, one chooses a homotopy such as

H(x, t) = (1 − t)G(x) + tF(x) (5.22)

and attempts to trace an implicitly defined curve c(t) = (x(t), t) in the zero set
of this function from a starting point (x0, 0) to a solution point (x∗, 1). If this
succeeds, then a zero point x∗ of F is obtained.

As soon as one effectively desires to trace such curves, a few questions should
be answered first:

1. When does such a curve in the zero set exist and when is it smooth?

2. How can we numerically trace such a curve at reasonable cost?

The first question is answered by the implicit function theorem. If (x0, 0) is a
regular zero point of H, that is, the Jacobian JH(x0, 0) has maximal column
rank n, then a smooth curve exists at least locally.

The second question must be investigated in the context of a particular problem.
The general idea is to select a (possibly nonregular) mesh on the curve c(t)
and update the intermediate solutions at each of the mesh points, using the
solution from the previous mesh point as an initial guess. As an updating
procedure a Newton-like scheme (5.20) may be used, or a problem-specific
updating algorithm.
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Another general updating procedure may be constructed, following Allgower
and Georg [1], by regarding the curve c(t) as the solution of an initial value
problem, which is obtained by differentiating the equation

H(c(t)) = 0 (5.23)

with respect to t:

H′(c(t))c′(t) = 0, ‖c(t)‖ = 1, c(0) = (x0, 0). (5.24)

It is now clear that methods for numerically solving initial value problems may
be applied to (5.24). However, when integrating the differential equation (5.24)
numerically, one makes some error which will become significant if one does not
wish to use a small stepsize. In consideration of the special form of the problem
it is possible to stabilize the integration procedure. This may be done by
solving (5.23) with an iterative method. Thus one can consider the integration
procedure as a predictor step and the Newton-type method as a corrector step.
This is the basic idea of predictor-corrector continuation methods. A thorough
discussion of such methods is given in [1].

Within this research we applied homotopy methods to two different problems.
The first one is the inversion of symmetric indefinite Toeplitz matrices. It is
briefly sketched in the next subsection and it is discussed in detail in Section 6.1.
The second one is an adaptation of divide-and-conquer techniques to solve
the complete eigenvalue problem for diagonal-plus-semiseparable matrices. We
show how continuation techniques can be applied to a general symmetric
eigenvalue problem in Subsection 5.2.3 and further specify it to diagonal-plus-
semiseparable matrices in Section 6.2.

Continuation methods now have several applications, like generalized eigen-
value problems [53], solving systems of polynomial equations [1, 73], multi-
objective optimization problems [139].

5.2.2 Inversion of a matrix

We will now portray briefly a continuation method for the matrix inversion. Let
us denote by A0 some matrix, which is readily invertible, by A1 the original
matrix to invert, and let us construct a continuation matrix function

M(t) = (1 − t)A0 + tA1. (5.25)



100 STRUCTURED MATRICES: FACTS

Suppose we have selected one of the IIP’s (5.15)–(5.18). The algorithm can be
sketched in the following way:

Algorithm 4: First version of the continuation algorithm

input : A0 – starting matrix, A1 – original matrix
output : A−1

1

notation: M(t) = (1 − t)A0 + tA1

begin

t = 0; compute the inverse A−1
0 = M(0)−1

while t < 1 do
increase t so that t 6 1 and the selected IIP still converges
improve the approximation for M(t)−1 using the inverse

from the previous step as an initial approximation for the IIP
end

return M(1)−1 = A−1
1

end

This formulation is very general and could be applied to any matrix. In
Section 6.1 we describe how to specify Algorithm 4 to Toeplitz matrices.

5.2.3 Symmetric eigenvalue problem

In this subsection we will first describe a homotopy method for the symmetric
eigenvalue problem. Later, the required properties of the starting matrices
will be investigated. Finally, we sketch a predictor-corrector method for path
tracing.

General theory

Solving a symmetric eigenvalue problem

Ax = λx, A = AT , (5.26)

can be thought of as solving a system of n nonlinear equations in n+1 unknowns.
By augmenting the system with normalization condition (xT x − 1)/2 = 0 we
can write it as

F(x, λ) =

(

Ax − λx

(xT x − 1)/2

)

= 0. (5.27)

The homotopy approach may be applied to this problem in a natural way.
The idea is to start with a problem Dx = λx which is easier to solve and to



CONTINUATION METHODS 101

continuously transform its solutions to those of the original problem (5.26).
These solutions are the continuous eigenpairs of a matrix family A(t) (cf.
(5.25)):

A(t) = (1 − t)D + tA = D + t(A−D), t ∈ [0, 1], (5.28)

with the symmetric starting matrix D. Following Chu [37], we can easily derive
the homotopy equation on the basis of (5.27):

H(x, λ, t) =

(

A(t)x − λx

(xT x − 1)/2

)

= 0. (5.29)

The question remains whether this equation really defines smooth curves, which
connect the eigenpairs of D with those of A. The question is answered by the
following theorem from perturbation theory.

Theorem 9 (Kato [95]). The eigenvalues λi(t), i = 1, . . . , n of a real symmetric
matrix family A(t) are analytic functions of t and there also exist corresponding
eigenvectors xi(t), which are analytic functions of t.

These continous eigenpairs of A(t) are called eigenpaths and the λi(t) eigenvalue
curves or just eigenvalues.

In case that two eigenvalue curves λ1(t) and λ2(t) cross each other, the
corresponding eigenvectors are not uniquely defined in the crossing point at
say t = t̂. But it is always possible to give two orthogonal eigenvectors x1(t̂)
and x2(t̂) satisfying Ax1(t̂) = λ1(t̂)x1(t̂) and Ax2(t̂) = λ2(t̂)x2(t̂) respectively,
such that x1(t) and x2(t) are analytic at t = t̂.

Starting matrix

The starting matrix D should meet two requirements. First, its spectral
decomposition should be easy to compute. This is obviously best met by a
matrix whose spectral decomposition is already known. Apart from diagonal
matrices in general there exist various matrices of other structure with known
analytic eigenvalues and eigenvectors, see e.g. [85]. Second, the eigenpaths
(x(t);λ(t)) should be as straight as possible to ease numerical tracing.

Criteria to characterize the smoothness of the paths are given by Li and
Rhee [105]. They use bounds on the derivatives λ′

k(t), x′
k(t) to characterize the

variation of the eigenpairs. In detail, the derivatives λ′
k(t), x′

k(t) are obtained
by differentiating A(t)xk(t) = λk(t)xk(t) with respect to t. Then, they have
shown that

λ′
k(t) = xl(t)

TA′(t)xk(t) (5.30)
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and

x′
k(t) =

∑

i6=k

xi(t)TA′(t)xk(t)

(λk(t) − λi(t))
xi(t), (5.31)

if λk(t) is simple at t. Note that the eigenvectors xk(t) satisfy xk(t)T xk(t) = 1
due to the homotopy equation (5.29). Since A′(t) = A − D, one obtains with
a little more manipulation the bounds

|λ′
k(t)| 6 ‖A−D‖, (5.32)

‖x′
k(t)‖ 6 ‖A−D‖/dk(t), (5.33)

where dk(t) = min{|λk(t) − µ|, µ ∈ σ(A(t)), µ 6= λk(t)} denotes the distance
from λk(t) to the nearest eigenvalue of A(t).

Inequalities (5.32) and (5.33) imply that the variation of the eigenvalues is
determined by ‖A − D‖ while the variation of the eigenvectors additionally
depends on the separation of the eigenvalues of A(t). This corresponds to
a well-known fact that an eigenvector may vary arbitrarily strongly with
its corresponding eigenvalue, unless this eigenvalue is simple and sufficiently
separated from the other eigenvalues.

A simple starting matrix that worked well in our previous application, namely,
the identity matrix for the inversion of a Toeplitz matrix, does not work for
the problem under consideration. Consider D = αI, then the eigenvalues λ(t)
are all straight lines emerging from the point α at t = 0. Their slope is
determined by its corresponding constant eigenvector x(t). However, it’s not
possible to find these eigenvectors at t = 0 since any orthogonal matrix is a
valid eigenvector matrix of D.

Oettli [114] has shown that for simultaneously diagonalizable D and A most of
the eigenvectors x(t) are constant. He also showed that these simultaneously
diagonalizable pairs of D and A include all matrices D which are determined
by a matrix function of A, i.e.

D = f(A) = S · diag(f(λ1), . . . , f(λn))ST , (5.34)

where S is a nonsingular matrix and f(·) is an arbitrary function like a
polynomial, sine, square root, etc. Unfortunately, these matrices are useless in
practice because they either require the spectral decomposition of A to evaluate
the function or, in the case of structured A, the matrix f(A) does not have the
same structure.

So, it is good to keep some information specific to A in the starting matrix D.
One of the possibilities is to create D as a direct sum of two smaller
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submatrices D1 and D2, based on the matrix A, solve the corresponding
eigenproblems of smaller size and then use the eigendecomposition of D to
compute the eigendecomposition of A. This technique is known as a divide-
and-conquer approach. Up till now many divide-and-conquer algorithms for
certain classes of symmetric matrices have been developed, see, for example,
[5, 6, 104, 110].

The procedure of constructing the matricesD1 andD2 depends on the structure
of A, and one of the possible choices is a low-rank modification of A. On the
one hand, ‖A−D‖ is small, which has a strong effect on the smoothness of the
eigenvalue curves, as follows from (5.32)-(5.33). On the other hand, the spectral
decomposition of D can be found with fewer arithmetic operations than that
of A, provided that matrices D1 and D2 keep the same type of structure as A
itself.

Assume that the operation count for diagonalizing a matrix of order n is w(n) =
cnk. Assume that D1 and D2 are of order n/2, then exploiting this fact

reduces the cost of diagonalization by a factor w(n)
2w(n/2) = cnk

2cnk/2k = 2k−1. This
procedure may be repeated recursively with the matrices D1 and D2, leading
thus to even more speed-up.

The operation count for updating the eigendecomposition of D to construct an
eigendecomposition of A will also depend on the structure of A. Fortunately,
for certain classes of structured matrices like tridiagonal ones and diagonal-
plus-semiseparable ones it is possible to keep the operation count linear in n,
which makes the approach viable.

The tridiagonal case is covered by works of Li and Li [104] and of Oet-
tli [115]. The non-homotopy divide-and-conquer approach to diagonal-
plus-semiseparable matrices is studied by Mastronardi, Van Barel and Van
Camp [110] and the corresponding homotopy algorithm is discussed in
Section 6.2. We will now present a general formulation of such an algorithm,
following Oettli [114].

Eigenpath tracing

In Subsection 5.2.1 we introduced a general predictor-corrector method for
homotopy problems. We will now adapt it to our specific problem of tracing
an eigenpair (x(t), λ(t)) of a symmetric matrix family A(t). Differentiating
H(x(t), λ(t), t) = 0 with respect to t gives

(

A(t) − λ(t)I
x(t)T

)

x′(t) +

(

−x(t)
0

)

λ′(t) +

(

A′(t)x(t)
0

)

= 0. (5.35)
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Provided that A(t) has only simple eigenvalues, the above linear system is
nonsingular and can be solved explicitly for the derivatives x′(t) and λ(t). As
A(t) = D + t(A − D), it follows that A′(t) = (A − D). Plugging this into the
solutions given by formulas (5.30)-(5.31), we get

λ′
k(t) = xl(t)

T (A−D)xk(t) (5.36)

and

x′
k(t) =

∑

i6=k

xi(t)T (A−D)xk(t)

(λk(t) − λi(t))
xi(t). (5.37)

Given an eigenpair (xk(ti), λk(ti)), one may obtain a prediction of some λk(ti+1)
by interpolation or integration. An easy way is to use Euler’s method:

λ̂k(ti+1) = λk(ti) + hλ′
k(ti), h = ti+1 − ti. (5.38)

To obtain a corresponding approximate eigenvector x̂k(ti+1) one may use
inverse iteration with shift λ̂k(ti+1):

(

A(ti+1) − λ̂k(ti+1)I
)

y(ti+1) = xk(ti), (5.39)

x̂k(ti+1) = y(ti+1)/‖y(ti+1)‖. (5.40)

On this way no knowledge of all eigenvectors of A(ti) is required.

It was already mentioned that the eigenvalue curves can come very close.
However, we wish to stay on a correct eigenpath while integrating only coarsely.
This can be achieved by stabilizing the integration locally at ti+1. A possible
solution here is to apply Newton’s method to the nonlinear system of equations

Ft(x, λ) =

(

(A(ti+1) − λI)x
(xT x − 1)/2

)

= 0, (5.41)

using (x̂k(ti+1), λ̂k(ti+1)) as starting value. If the stepsize h = ti+1−ti has been
chosen in a good way, the initial approximation should be good and convergence
fast and to the correct eigenpair (xk(ti+1), λk(ti+1)).

As inspired by Huang and Li [87] and further investigated by Oettli [114], the
Newton’s method applied to (5.41) is essentially an inverse iteration with a
variable shift:

(

A(ti+1) − λ(j)I
)

y = x(j) (5.42)
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with

λ(j+1) = λ(j) +
1 + x(j)T x(j)

2x(j)T y
, x(j+1) = (λ(j+1) − λ(j))y. (5.43)

The only remaining problem is to ensure that the method does not jump to
another eigenpath nearby. Therefore some extra tests are necessary. This could
be achieved, for example, by computing Sturm sequences of the matrix A(t)
and checking the number of the eigenpath.

In Section 6.2 we will give more details on a specific implementation of these
general algorithms for diagonal-plus-semiseparable matrices.





Chapter 6

Structured matrices:

algorithms

In this chapter we present three algorithms that solve problems
for certain classes of structured matrices. An important tool to
work out two of the problems is a homotopy approach, that we
described in a previous chapter. We apply this approach to the
inversion of an indefinite symmetric Toeplitz matrix in Section 6.1
and to computing the eigenvalues and eigenvectors of a symmetric
diagonal-plus-semiseparable matrix in Section 6.2. In Section 6.3
we give a direct method for the solution of a banded block Toeplitz
linear system with Toeplitz structure of the inner blocks. This
chapter synthesizes the results of our papers [164, 34] and the
report [35].

6.1 Continuation algorithm for Toeplitz systems

In this section we will combine different concepts and techniques like a
continuation method, displacement ranks and iterative refinement, to devise
a continuation algorithm for the inversion of Toeplitz matrices. This algorithm
is later applied to solve systems of linear equations with Toeplitz matrices.
We begin with necessary adaptations of Algorithm 4 to make it working
with generator-represented Toeplitz matrices. Then we study its convergence
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properties and give theoretical bounds on its complexity. Finally, we illustrate
the algorithm with numerical experiments. Within this section we follow our
work [164].

Basically, the algorithm can be applied to any low displacement rank matrices,
allowing the fast reconstruction formulas of type (5.9) and having equations of
type (5.13)-(5.14) for the generators of the inverse. The most obvious of more
general cases are Toeplitz-like matrices, i.e., matrices that can be represented
as (5.8) with G and H of size n × 2. Required adaptations are not very
complicated, so we speak further only about Toeplitz matrices, for the sake
of simpler notation.

Within this section we use α as a continuation parameter instead of t to avoid
possible collisions with Toeplitz matrix notation.

6.1.1 Constructing generators for a continuation matrix

Let A0 and A1 be Toeplitz matrices and consider again the continuation matrix
function, defined by (5.25). Since a linear combination of Toeplitz matrices is
again a Toeplitz matrix, it is generator representable. Thus, the matrix M(α)
is a Toeplitz matrix and we can derive formulas for its generators.

Each n×n Toeplitz matrix T is determined by its first column p and first row q.
These two vectors are easily combined into one 2n− 1 vector b:

bi = pn−i+1, i = 1, . . . , n,

bi = q−n+i+1, i = n+ 1, . . . , 2n− 1.

Let us call this vector b a base vector of the Toeplitz matrix T and denote it
by b(T ). It is obvious that

b(T1 + T2) = b(T1) + b(T2). (6.1)

There is a straightforward connection between the base vector b of any Toeplitz
matrix T and {Z1, Z

∗
−1} generators of T (let us call them G and H; G,H ∈

C
n×2 or G,H ∈ R

n×2):

Gj,1 = bn−j+1 + bn+n−j+1, j = 2, . . . , n, (6.2)

Hj,2 = bn+j−1 − bj−1 j = 2, . . . , n, (6.3)

G1,2 = 1, H1,1 = 1, (6.4)

all other entries in G and H are zero. (6.5)
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On the basis of (6.1) and (6.2)-(6.5) the generators for M(α), defined by (5.25),
are constructed easily for any α in two steps. Firstly, compute the new base
vector b̂ = b(M(α)). Secondly, compute the generators on the basis of the
computed b̂.

6.1.2 Formulation

We will adapt Algorithm 4 to work with Toeplitz matrices, represented by their
displacement generators. To achieve this goal, we need to specify the following:
a starting matrix, a method for enlarging a continuation parameter α and an
iterative improvement process. We will now present such a specification.

Suppose that A1 is the Toeplitz matrix to be inverted, A0 is a readily-invertible
starting Toeplitz matrix. Let us denote by Mk = (1 − αk)A0 + αkA1 the
continuation matrix, then denote by Gk and Hk its {Z1, Z

∗
−1}-generators and

by G̃k, H̃k the {Z∗
−1, Z1}-generators of the inverse M−1

k .

Matrix A0 should be chosen to simplify the first step of computing generators
for M0 and M−1

0 . In our particular implementation we choose the identity
matrix as A0.

For enlarging the continuation parameter αk we use an adaptive algorithm:
choose some initial increase, then test the convergence of the IIP. If it converges,
we can enlarge the parameter αk and go further, otherwise we should go back,
decrease the parameter αk and try again with smaller step αk − αk−1.

The use of a generator representation for Toeplitz matrices leads to the fact
that the inverse is also represented by its generators. Equations (5.13)–(5.14)
describe such generators. This makes it possible to avoid working with dense
inverses by splitting the IIP method (5.18) into two IIP’s, one per generator.
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Algorithm 5 states the specific IIP for a general equation Ax = b:

Algorithm 5: Adapted version of an iterative refinement (used as IIP)

input : A – coefficient matrix, b – right-hand side, x0 — initial
approximation to the solution, Y0 — approximation to A−1

output: “good” approximation to A−1b

begin
i = 0
while approximation xi is still not good enough do

i = i+ 1
compute Ri = b−Axi

compute zi = Y0Ri

xi+1 = xi + zi

end

return xi+1

end

Here x0 is the initial approximation to the exact solution x, Y0 is some
approximation to A−1. Further in Algorithm 6 we will use as Y0 an
approximation, created by a reconstruction formula of type (5.9) on the basis
of the displacement generators, coming from the previous successful iteration
of the continuation method. The order of IIP parameters in Algorithm 6 will
correspond to the input of Algorithm 5.

The convergence of the iterative refinement depends only on the properties of
this approximation Y0 because

x− xi = (I − Y0A)(x− xi−1) = (I − Y0A)i(x− x0). (6.6)

Algorithm 5 in the present form does not contain a stopping criterion.
From formula (5.19) follows that the ratio ‖Ri+1‖/‖Ri‖ would be always of
order 1/‖R0‖. However, we cannot get more than machine precision, so after
several iterations the ratio would be closer to one than to 1/‖R0‖. Thus as a
stopping criterion we use a combination of two tests: an upper limit on the
number of iterations and a closeness of a ratio ‖Ri+1‖/‖Ri‖ to one. As soon
as one of these tests is positive, the iterations stop.

Taking into account all these specifications and plugging them into Algorithm 4
yields the final version of a continuation algorithm for the inversion of Toeplitz
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matrices.

Algorithm 6: Continuation algorithm for Toeplitz matrix inversion

input : A0 – starting matrix, A1 – original Toeplitz matrix
output : A−1

1

notation: Mk = (1 − αk)A0 + αkA1 – the continuation matrix,
Gk, Hk – displacement generators for Mk,
G̃k, H̃k – displacement generators for M−1

k

begin

compute generators G0, H0, G̃0, H̃0

k = 0; αk = 0
while αk < 1 do

k = k + 1; enlarge αk such that αk 6 1
compute Gk and Hk using (6.2)–(6.5)
G̃k = IIP(∆−1(Gk,Hk), Gk, G̃k−1, ∆−1(G̃k−1, H̃k−1))
H̃k = IIP((∆−1(Gk,Hk))∗, Z∗

−1Hk, H̃k−1, ∆−1(G̃k−1, H̃k−1))
if some of IIP’s diverged then

decrease αk and repeat the iteration with new Gk and Hk

end

end

return G̃k, H̃k

end

6.1.3 Convergence and complexity estimation

It is clear that the method being presented converges to the inverse of the
original Toeplitz matrix T when the selected IIP converges on each continuation
step. As it follows from (6.6) the convergence of the IIP is controlled by the
convergence factor ‖R0‖2 = ‖I − Y0A‖2. For the convergence of the IIP this
positive factor should be less than one.

For the convergence of the IIP we should have nonsingular matrices Mk at every
continuation step. Let us consider the eigenvalues of matrices Mk. Recall that
we have chosen the identity matrix as A0 and let us denote the eigenvalues of A1

as λ̂1, . . . , λ̂n. Then the eigenvalues µ1, µ2, . . . , µn of Mk can be computed as

µi = (1 − αk) + αk · λ̂i. (6.7)

It can be easily seen that when αk would be near the value 1
1−λ̂i

, corresponding

to some negative λ̂i, then IIP would be trying to work with an almost singular
matrix.
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There are several approaches to the solution of this problem. First, we can
use standard symmetrization techniques [119] to reduce the inversion of a non-
singular matrix W to the Hermitian (real symmetric) case. We have

W−1 = (WW ∗)−1W = W ∗(WW ∗)−1,

W ∗W and WW ∗ are Hermitian positive definite matrices. The condition
number κ(W ) is squared in the transition to the matrices W ∗W and WW ∗,
and this can lead to operations with more ill-conditioned matrices.

The displacement rank of a Toeplitz matrix W is roughly doubled by this
symmetrization.

In the case of a symmetric but indefinite Toeplitz matrix T we can switch from
the equation Tx = b to the equation (iT )x = ib, where i =

√
−1. The new

matrix T ′ = iT would not have negative eigenvalues and thus the problems
with nonsingularity would not appear. Since operations with complex numbers
take approximately six times more flops than with real numbers, one should
multiply the complexity estimate from the positive definite case approximately
by six.

Thus in the further analysis we restrict ourselves to positive definite matrices.

Let us now derive a lower bound on the total number of continuation steps
taking into account the convergence requirement from the beginning of this
section.

Since the segment [0, 1] is splitted into small pieces and on each of those we
apply our IIP, we should estimate the sizes of these small steps. On one hand
we should take the intermediate step ∆α = αk − αk−1 as large as possible
to reduce the total number of continuation steps. On the other hand two
neighbouring matrices M(αk) and M(αk−1) should not differ too much to have
an appropriate convergence factor.

Now we will switch back to the continous notation. Let us denote by R the
residual matrix R = I − M(α + ∆α)M−1(α). Here ∆α is the step size and
M−1(α) is the inverse coming from the previous continuation step. Let us
denote the eigenvalues of the original Toeplitz matrix T by λT,i. Recalling
that M(α) = I + α(T − I) (see (5.25)), we get that the eigenvalues of M(α)
are given by the formula

λM,i = 1 + α(λT,i − 1). (6.8)

Thus the eigenvalues λR,i of the residual matrix R are represented by the
formula

λR,i = 1 − 1 + (α+ ∆α)(λT,i − 1)

1 + α(λT,i − 1)
=

∆α(1 − λT,i)

1 − α(1 − λT,i)
. (6.9)
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If |λR,i| < 1 then we have the convergence of our IIP (as well as of the other
IIP’s (5.15)–(5.17) – they are controlled by the same convergence factor, see
(5.19)).
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Figure 6.1: Surface plot of f(λT , α), λT ∈ [0, 1010], α ∈ [0, 1]

Figures 6.1 and 6.2 show the surface plot of the function

f(λT , α) =
1 − λT

1 − α(1 − λT )
(6.10)

for α ∈ [0, 1] and λT ∈ [0, 1010], λT ∈ [0, 15], respectively. This function
represents exactly all the possibilities for values of λR,i without taking into
account ∆α.

From the plots it is clear that maxi |λR,i| is controlled by the eigenvalue of T
with maximum modulus when α is close to 0, and by the eigenvalue of T with
minumum modulus when α is close to 1. In the further analysis we split the
segment [0, 1] into three parts: [0, 0.1], [0.1, 0.9] and [0.9, 1] and perform the
complexity analysis on each of these segments separately. In the case when the
matrix does not have very large or very small eigenvalues one should extend
the central segment to the left or to the right, respectively.

Suppose that α = 0 and try to estimate ∆α for the first step. Thus

λR,i = ∆α(1 − λT,i)
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Figure 6.2: Surface plot of f(λT , α), λT ∈ [0, 15], α ∈ [0; 1]

It is obvious that λT,i = arg maxi |λR,i| determines the step size. Suppose
that maxi |λT,i| = 10k ≫ 1. Then we should have

|λR,i| < ∆α|(1 − 10k)| ≈ ∆α · 10k.

Let us choose ε = 10c < 1 as a convergence factor recalled in the beginning of
this subsection. Finally we get from

∆α · 10k = 10c

that the initial step size should be of order 10c−k.

Firstly, we would like to estimate the number of steps in the neighbourhood
of α = 0, say, in the segment [0, 0.1]. Suppose we have successfully performed
all iterations till α = L, L < 0.1, and the current step size is equal to ∆α. Let
us determine when this ∆α could be increased by factor F . Since convergence
is controlled by the eigenvalues (6.9), such an increase is possible when the
denominator in (6.9) would also increase by a factor F . Suppose we have to
perform p continuation steps before this moment. Let us try to find p from the
following equation:

F (1 − L(1 − 10k)) = 1 − (L+ p · ∆α)(1 − 10k). (6.11)
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Here the left side represents an old denominator multiplied by F and the right
side represents the denominator in (6.9) after making p iterations with the
step ∆α.

Let us simplify this equation:

F − FL+ FL · 10k = 1 − L− p · ∆α+ L · 10k + p · ∆α · 10k

We can throw away −FL from the left side (it is small compared to F ) as well
as −L and −p · ∆α from the right side (they are small compared to themselves
multiplied by 10k). This leads us to

(F − 1)(1 + L · 10k)

∆α · 10k
≈ p.

Let us choose F = 2. This gives us

p ≈ 1 + L · 10k

∆α · 10k
. (6.12)

Now we have to pass the segment [0,D] with the bound D = 0.1, making
small steps, increasing with the factor F . Let us find when α will leave this
segment [0,D].

Let us denote by pi the number of iterations performed with the step 2i−1δ,
where δ = 10c−k is the initial step. Now we want to determine the number of
terms, i.e. j + 1 that should be taken in the sum

S = p110c−k + p22 · 10c−k + · · · + pj+12j · 10c−k (6.13)

to exceed the bound D = 0.1.

We expand the expressions for pi:

p1 ≈ 1

10c−k · 10k
=

1

10c
; (6.14)

p2 ≈ 1 + p1 · 10c−k · 10k

2 · 10c−k · 10k
=

1 + p1 · 10c

2 · 10c
=

1 + 1

2 · 10c
=

1

10c
; (6.15)

p3 ≈ 1 + p1 · 10c + 2p2 · 10c

4 · 10c
=

1 + 1 + 2

4 · 10c
=

1

10c
(6.16)

pi ≈ 1 + p1 · 10c + · · · + 2i−2 · pi−1 · 10c

2i−1 · 10c
=

1 + 1 + 2 + 4 + · · · + 2i−2

2i−1 · 10c
=

1

10c
.

(6.17)
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Taking into account (6.14)–(6.17) we have that S in (6.13) is approximated by

S ≈ 10−k · (1 + 2 + · · · + 2j) = 10−k · (2j+1 − 1).

Thus

S > 10−k · 2j > 0.1 = D.

The latter equation gives j = log2 10 · (k − 1).

Finally, we need to estimate the sum

S′ = p1 + p2 + · · · + pj+1

to get the total number of continuation steps. Since pi ≈ 1
10c are almost

constant, we easily get the following total upper bound on the number of
continuation steps required to reach α = D = 0.1:

S′ ≈ 10−c · (j + 1) ≈ 10−c · log2 10 · (k − 1). (6.18)
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Figure 6.3: Surface plot of f(λT , α), λT ∈ [0, 3], α ∈ [0.6, 1]

A similar analysis could be performed when α is in the neighbourhood of 1 (say,
α ∈ [0.9, 1], see Figure 6.3) taking into account the eigenvalues with minimal
modulus. The analysis yields the estimate S′′ ≈ 10−c · log2 10 · (m − 1) on
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the number of continuation steps. Here we assume that mini |λT,i| = 10−m.
As follows from figures 6.1–6.2, the interval [0.1, 0.9] could be passed with a
small constant number (say, s) of relatively big steps. From Figure 3 we can
estimate s easily:

f(λT , α) · ∆α ≈ 10c,

taking into account that f(λT , α) is limited from above by 10 yields the
following upper bound on ∆α:

∆α ≈ 10c−1.

Thus

s ≈ 0.8 · 101−c.

This finally gives the estimate

Ncont < 4 · 10−c(k − 1 +m− 1) + s = 4 · 10−c log10 κ(T ) + s, (6.19)

where κ(T ) denotes the condition number of T , on the total number Ncont of
continuation steps.

Since we keep the convergence factor less than or equal to 10c, our selected IIP
will converge with a fixed number Niter−per−step of iterations (in our specific
implementation we use six iterations on the intermediate steps and fifteen
iterations on the last steps to get full convergence). Each iteration of our
new IIP (Algorithm 5) consists of two O(n) additions and two matrix-by-
vector multiplications. Since we use (5.9) for these multiplications, it takes
only Nstep = O(n log n) operations (this follows from the complexity of FFT
and its relation to our M × v multiplication, as shown in Theorem 2 and the
discussion thereafter). So the total number of operations in our method is

Nop = Ncont ·Niter−per−step ·Nstep =

O(log10 κ(T )) · O(1) · O(n log n) = O(log10 κ(T ) · n log n). (6.20)

6.1.4 Numerical Experiments

The method was implemented in Matlab ver. 7.2.0.294 on a workstation (2Gb
RAM, Intel Core 2 Duo E6400 processor) running Debian Linux (kernel 2.6.18-
SMP).
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In formula (6.20) we have to optimize the product of the first two factors P =
Ncont · Niter−per−step = O(log10 κ(T )) · O(1). The last one Nstep = O(n log n)
is strictly defined by the choice of the IIP. Since the IIP consists only of two
matrix-by-vector multiplications and several vector additions, where matrices
are Toeplitz, we use existing and well-developed methods like FFTW for a good
implementation of the IIP (see [93, 63]).

The size of P is controlled by the following equilibrium. We can decrease
the number of iterations in each continuation step thus having more crude
approximations to the intermediate inverses. This leads to the increase of
the total number of continuation steps. Doing more iterations within one
continuation step we get better approximation for the inverses, thus getting
less continuation steps.

The choice between these variants at the present time is empirical and we base
it on the extensive computer testing of the algorithm. (We should mention
here that authors of other continuation algorithms (see e.g. [120]) also solve
this problem empirically.) Good theoretical estimation may become a subject
of future research.

We have chosen 6 iterations for the IIP in the middle part of the segment [0, 1]
and 15 iterations in the critical zones near the ends of the segment (see the
theoretical investigation leading to (6.18)). Another empirical parameter is the
modified convergence factor ĉ: we say that the IIP in Algorithm 3 diverges if
the size of the last correction zi (see Algorithm 5) exceeds ĉ. This parameter ĉ
is closely related to the convergence factor (5.19) by means of Theorem 4.1
in [40]. This theorem gives an estimate on the norm of a full matrix T when
its generators are given. However in the present implementation we do not use
this theorem explicitly.

Finally, it was dicovered that factor F defined near (6.11) has some influence
on the number of continuation steps. Setting F = 2, we observe a very
slow acceleration and slowdown near the critical points α = 0 and α = 1.
Setting F = 8 leads to numerous unjustified increases in the step size (which
means that an increase of a current step size results in the divergence of the
IIP). The best choice turned out to be F = 4. The difference in complexity for
different F is less than 7%.

Another parameter that influences the speed is a good prescaling of the matrix.
The main idea of the prescaling should be to make a balance between very small
and very large eigenvalues of T , say, spread values of continuation parameter α
corresponding to them in almost equal portions between the segments [0, 0.1]
and [0.9, 1]. This makes possible to get rid of very small steps ∆α.

Speaking about the results of numerical experiments we would like to mention
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order/κ(T ) 102 104 108

103 47 59 90
104 50 55 81
105 53 61 84

Table 6.1: Average number of continuation steps depending on size and
condition number

Number of continuation steps
κ(T ) ĉ = 1 · 10−4 ĉ = 1 · 10−2 ĉ = 1 · 100

102 66 55 47
104 90 68 59
108 115 105 90

Table 6.2: Influence of a modified convergence factor on Ncont

that the number of continuation steps Ncont depends only on the condition
number but not on the order of the matrix. In Table 6.1 we present the rounded
average number of Ncont among the ten runs of the program for each cell.

The average value of small parameter s (6.19) among all these runs is 7.

In the second table we show the influence of ĉ to the value Ncont for matrices
of order 103. Increasing this value reduces Ncont but may give divergent
procedures for large κ(T ).

To obtain Toeplitz matrices with various condition numbers, we take a random
base vector (6.1) and scale its central components, reducing them and thus
increasing the condition number. The components corresponding to the first
row of a Toeplitz matrix T are modified according to the formulas

vi =
vi

(n− i+ 1)l
, i = 1, . . . , n,

where n is the order of T and the parameter l varies from 0 to 8. Since we only
deal with symmetric matrices, our Toeplitz matrix is completely determined
by the set vi, i = 1, . . . , n. The Toeplitz matrix obtained in this way is almost
always not positive definite.

To test the accuracy of the computed inverse we applied it to solve a linear
system with T as a coefficient matrix and a random right-hand side. In all the
cases described above we were able to achieve a relative error of the solution of
order εmach · κ(T ), εmach denoting the machine precision. So, the amount of
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continuation steps presented in Tables 6.1 and 6.2 was sufficient to reach this
precision.

Since most of the test matrices were not positive definite, to solve the linear
system with T as the coefficient matrix, we used the transformation T → iT ,
as it was discussed at the beginning of Subsection 6.1.3.

6.2 Homotopy method applied to diagonal-plus-

semiseparable eigenvalue problems

In this section we derive a divide-and-conquer algorithm to compute the
eigenvalues and eigenvectors of a symmetric generator-representable diagonal-
plus-semiseparable matrix. Computing the eigendecomposition of such a
matrix is reduced first to computing the spectral decomposition of two smaller
submatrices of the same structure (divide step). These decompositions are
then joined (conquer step). The conquer step is performed by solving a certain
diagonal plus rank-one eigenvalue problem with a homotopy method.

Subsection 6.2.2 covers the reduction to similar problems of smaller size, and
also illustrates how a diagonal plus rank-one eigenproblem appears in the
context. The idea comes from the work [110]. Subsection 6.2.3 describes
the homotopy part of the method and follows our work [35]. The last
Subsection 6.2.5 presents the results of several numerical experiments.

6.2.1 Preliminaries

In Subsection 5.2.3 we presented the general idea of a predictor-corrector path
tracing method for equation (5.35). An eigenpath (xk(t), λk(t)) was considered
as a solution curve of this ordinary differential equation, and the initial point
was given by a known eigenpair of the starting matrix at t = 0.

Such a predictor-corrector method goes back to Li and Rhee [105]. It allows to
track an eigenpair (x(t), λ(t)) of a matrix family A(t) (5.28) from t = 0 to t = 1
and may be sketched as follows (ti is the value of the continuation parameter t
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at iteration number i):

Algorithm 7: Basic predictor-corrector method

input : known eigendecomposition of some starting matrix D
output: eigendecomposition of the target matrix A

begin

while ti < 1 do
predict eigenpair at ti
correct prediction
check for path jumping
select next stepsize

end

end

Li and Rhee applied their algorithm to tridiagonal matrices. Their numerical
results in [105] show that the method works well for matrices with well-
separated eigenvalues, but it is very inefficient for close eigenvalues and may
even fail. The orthogonality of the eigenvectors is also badly affected, cf. (5.31).

As a remedy, Li, Zhang and Sun [106] suggested tracing an invariant subspace,
corresponding to a cluster of very close eigenvalues. This invariant subspace
is well conditioned if the cluster is well separated from the rest of the
spectrum [122]. This leads to substantial improvements, but the Rayleigh-
Ritz procedure used to follow the subspace is very expensive if the size of the
cluster is comparable with the size of the matrix.

Oettli [115] proposed an extensive use of deflation techniques instead of
subspace iterations. These techniques are well-known from the theory of divide-
and-conquer methods, see Cuppen [42]. Deflation dramatically reduces the size
of clusters of close eigenvalues and speeds up the convergence for the remaining
eigenvalues.

Starting with the method of Li and Rhee, we will construct a divide-and-
conquer homotopy method for generator-representable diagonal-plus-semiseparable
matrices. This restriction to the class of symmetric generator-representable
D+SS matrices does not worsen the stability of the algorithm, as proved by
Van Camp [165]. It has been shown by numerical experiments that when the
matrix elements have small relative errors, the generator representation gives
very accurate results for divide and conquer algorithms.

The algorithm presented can also be applied to a more general class of
symmetric D+SS matrices, defined in Subsection 5.1.1. As proven in [174,
Ch. 2], a symmetric D+SS matrix can always be written as a block-diagonal
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matrix whose blocks are symmetric generator-representable D+SS matrices.
Hence, two cases can occur: either the original D+SS matrix has zero-blocks
and then its eigenproblem can be split up into smaller eigenproblems of
generator-representable D+SS matrices, either the whole original symmetric
D+SS matrix is generator-representable. In this sense, symmetric generator-
representable D+SS matrices are an analogue of irreducible tridiagonal
matrices.

In the next subsections we will gradually build up the required components
for the method, presented in its final appearance as Algorithm 10. Following
the general theory of homotopy methods from Subsection 5.2.3, we have to
choose starting matrices and describe the path tracing method. To construct
starting matrices that will lead to smooth eigenvalue curves, we introduce
in Subsection 6.2.2 a divide-and-conquer approach. Subsection 6.2.3 shows
how this approach could be plugged in a homotopy and also discusses some
difficulties arising during path tracing and workarounds for them. Finally, the
algorithm is illustrated with numerical experiments in Subsection 6.2.5.

6.2.2 Divide-and-conquer for D+SS matrices

We design here an algorithm and give a theorem in order to split the original
matrix in two submatrices, keeping the diagonal-plus-semiseparable structure.
Provided that eigendecompositions of these smaller matrices are given, a certain
rank-one modification should be processed to get the eigendecomposition of the
original matrix.

The divide step is based on Givens rotations. These rotations are simultane-
ously applied to the top-left and the bottom-right corners of the matrix in order
to annihilate elements in the first rows and columns, respectively in the last
rows and columns.

The conquer step constitutes of computing the spectral decomposition of a
diagonal matrix plus a rank-one modification. Its connection to the original
problem is straightforward.

Divide step

Let A be the diagonal-plus-semiseparable matrix given by (5.2). We will define
first two sequences of Givens rotations Gk and Hl of a special form, the first
sequence is to be applied to the top-left corner of the starting matrix and the
second sequence to the bottom-right corner.
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Recall that N is the order of the matrix A, then let K = ⌈ N
2 ⌉ − 1, L = K + 3,

ũ1 = u1, ṽN = vN . For every k = 1, . . . ,K we define a number ũk+1 and a
Givens rotation Gk as

Gk =

(

ck −sk

sk ck

)

, where ck =
uk+1

√

ũ2
k + u2

k+1

, sk =
ũk

√

ũ2
k + u2

k+1

, (6.21)

such that
(

0
ũk+1

)

=

(

0
√

ũ2
k + u2

k+1

)

=

(

ck −sk

sk ck

)(

ũk

uk+1

)

. (6.22)

Similarly, for every l = N, . . . , L we define a number ṽl−1 and a Givens
rotation Hl as

Hl =

(

cl sl

−sl cl

)

, where cl =
vl−1

√

ṽ2
l + v2

l−1

, sl =
ṽl

√

ṽ2
l + v2

l−1

(6.23)

such that
(

ṽl−1

0

)

=

(√

ṽ2
l + v2

l−1

0

)

=

(

cl sl

−sl cl

)(

vl−1

ṽl

)

. (6.24)

These rotations allow us to formulate Algorithm 8, which divides a symmetric
diagonal-plus-semiseparable matrix into two submatrices of the same D+SS
structure and of about half the dimension, and some additional structure.

Algorithm 8: Divide step for D+SS matrices

input : A – starting matrix
output: A(K+1) – reduced matrix

begin

A(1) = A
for k = 1 : ⌈ N+1

2 ⌉ − 2 do

G̃k = diag(Ik−1, Gk, IN−2k−2,HN−k+1, Ik−1)
A(k+1) = G̃kA

(k)G̃T
k

end

if N is odd then

k = ⌈ N+1
2 ⌉ − 1

G̃k = diag(Ik−1, Gk, IN−k−1)
A(k+1) = G̃kA

(k)G̃T
k

end

end
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Mastronardi et al. [110] have proven the following theorem.

Theorem 10. Let A be the diagonal-plus-semiseparable matrix defined in (5.2).
Algorithm 8 transforms the matrix A into A(K+1) having the following structure:

K + 1 N − L+ 2

K + 1
N − L+ 2

(

C
(K+1)
1 α(K+1) eK+1eT

1

α(K+1) e1eT
K+1 C

(K+1)
2

)

(6.25)

where C
(K+1)
1 and C

(K+1)
2 are diagonal-plus-semiseparable matrices, eK+1 the

(K + 1)-th vector of the canonical basis of R
K+1, e1 the first vector of the

canonical basis of RN−L+2 and α(K+1) = A
(K+1)
K+1,K+2.

We would like to represent the matrix A(K+1) as a sum of a block-diagonal
matrix D1 ⊕ D2, where D1 and D2 are diagonal-plus-semiseparable, and a
rank-one matrix. To create this rank-one modification one extra operation
needs to be performed on (6.25).

Define G(K) = G̃K . . . G̃2G̃1, where G̃i are coming from Algorithm 8. Then

A = G(K)TA(K+1)G(K)

= G(K)T

(

C
(K+1)
1 α(K+1)eK+1eT

1

α(K+1)e1eT
K+1 C

(K+1)
2

)

G(K)

= G(K)T

((

C
(K+1)
1 − α(K+1)eK+1eT

K+1 0

0 C
(K+1)
2 − α(K+1)e1eT

1

)

+α(K+1)

(

eK+1eT
K+1 eK+1eT

1

e1eT
K+1 e1eT

1

))

G(K).

The subtraction of the element α(K+1) from the last diagonal element of
C

(K+1)
1 and from the first diagonal element of C(K+1)

2 creates the desired
rank-one modification and does not affect the diagonal-plus-semiseparable
structure. Thus we may define diagonal-plus-semiseparable matrices D1 =
C

(K+1)
1 − α(K+1)eK+1eT

K+1 and D2 = C
(K+1)
2 − α(K+1)e1eT

1 . The original
problem of computing the eigendecomposition of A is now split into similar
problems for the matrices D1 and D2. To unite the solutions of these smaller
subproblems, we need now to work out this rank-one modification.
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Conquer step

In what follows we omit the superscript (K + 1) at α. Suppose that
eigendecompositions of D1 and D2 are computed:

D1 = Q1∆1Q
T
1 , (6.26)

D2 = Q2∆2Q
T
2 . (6.27)

In order to know the eigendecomposition of the original matrix A it is enough
to calculate the spectral decomposition of a diagonal matrix plus a rank-one
modification and perform some orthogonal transformations, as we will show
now.

The matrix A can be transformed into:

A = G(K)T
(

Q1

Q2

)

×
[(

∆1

∆2

)

+ α

(

QT
1 eK+1

QT
2 e1

)

(

eT
K+1Q1 eT

1 Q2

)

]

×
(

Q1

Q2

)T

G(K)

= G(K)T
(

Q1

Q2

)[(

∆1

∆2

)

+ αyyT

](

Q1

Q2

)T

G(K)

(6.28)

with

y =

(

QT
1 eK+1

QT
2 e1

)

. (6.29)

Hence, the eigenproblem of A is reduced to computing the eigendecomposition
of a rank-one modification of a diagonal matrix

(

∆1

∆2

)

+ αyyT . (6.30)

This latter problem can be solved by a continuation method, as described in
the next subsection.

One may also apply the continuation method to step directly from the
eigendecomposition of the matrix D = D1 ⊕ D2 to the one of A(K+1).
However, in this way it becomes impossible to deflate certain eigenpairs without
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disrupting the D+SS structure of the matrices or blowing up the computational
cost. As our numerical experiments have shown, the deflation is essential for
stability and accuracy of the method. Compared to such a straightforward
continuation, the main drawback of the diagonal plus rank-one approach is an
additional transformation of the eigenvectors of the matrix (6.30).

6.2.3 Homotopy within divide and-conquer

Rank-one modification as a starting matrix

As shown in the previous subsection, a symmetric diagonal-plus-semiseparable
matrix A is split into two independent submatrices by a rank-one modification
and some orthogonal transformation:

A = G(K)T
A(K+1)G(K) = G(K)T

Q(∆ + αyyT )QTG(K),

where ∆ = ∆1 ⊕ ∆2, Q = Q1 ⊕ Q2, y = Qv, where vT = (eT
K+1, e

T
1 ). Let us

define the matrix family

A(t) = ∆ + tαyyT (6.31)

and analyse how its eigenvalue curves λi(t) are bounded depending on α and t.
Analogously to [115], we can formulate and prove the following theorem:

Theorem 11. Let ∆ be a diagonal matrix and consider the continuation
function (6.31). Then all the eigenvalue curves λi(t) of A(t) are monotonically
increasing or decreasing with t, depending on the sign of α.

Proof. Suppose α > 0. Matrices A(t) for different t’s differ by a rank-one
matrix: ⊔⊓

A(t2) = A(t1) + (t2 − t1)αyyT , (0 6 t1 6 t2 6 1).

Because α > 0, the difference is a positive semidefinite matrix of rank 1. If we
number the eigenvalues λi(t) in increasing order, then the following relations
hold [179, p. 97]:

λi(t2) − λi(t1) = mi(t2 − t1) · 2α, where 0 6 mi 6 1,
n
∑

i=1

mi = 1.

Summation over i yields

n
∑

i=1

(λi(t2) − λi(t1)) = 2(t2 − t1)α.
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Hence when (t2 −t1)αyyT is added to A(t1), all eigenvalues of A(t1) are shifted
by an amount not larger than (t2 − t1) · 2α. This means that all eigenvalues
increase monotonically with t:

0 6 λi(t2) − λi(t1) 6 2 · (t2 − t1)α, i = 1, . . . , n.

The case of α < 0 could be reduced to the already considered one by
premultiplying matrix family (6.31) with −1. So in what follows we always
assume that α > 0. ⊔⊓

As shown above, the difference matrix A(t2)−A(t1) (0 6 t1 6 t2 6 1) is positive
semidefinite, so by the interlacing theorem ([86, Ch. 4.3]) the eigenvalues
of A(t1) and A(t2) interlace:

λ1(t1) 6 λ1(t2) 6 λ2(t1) 6 λ2(t2) 6 · · · 6 λn(t1) 6 λn(t2), t1 6 t2. (6.32)

If the matrix A(1) = ∆ + αyyT has (almost) equal eigenvalues, they will
be deflated, as shown in the next part of the theory. So, we may assume
that the eigenvalues of A(1) are mutually distinct. Oettli [114] extended the
result of Parlett [122, Ch. 7] and has proven that if the eigenvalues of A(1) are
distinct, then the continuation matrices A(t) defined by (6.31) have no multiple
eigenvalues except possibly for t = 0. However, their eigenvalues may coincide
up to the working precision.

Summarizing the facts given above, we conclude that if λk(0) is the k-th
smallest eigenvalue of D, then λk(t) is also the k-th smallest eigenvalue of A(t)
for t = (0, 1]. Li and Rhee [105] call it the order preserving property. It is
useful if only selected eigenvalues of a matrix are required. This property also
allows parallel computation of the eigenpairs.

Deflation

Numerical experiments show that some eigenpairs (qi, δi) of D are often good
approximations of eigenpairs of A(1), if D is chosen as described above. The
corresponding eigenpaths λi(t) are almost straight lines. Such eigenpairs ofA(1)
may be determined with little effort. The process of identifying such eigenpairs
and eliminating them from the remaining problem is called deflation. It reduces
the cost of solving the remaining problem and improves the stability as well as
the accuracy of the algorithm, especially in the presence of close eigenvalues.

Our splitting method is close to the Cuppen-type divide-and-conquer algo-
rithms [42, 25], so the deflation techniques are similar. It remains to answer
when an approximate eigenpair (qi, δi) can be accepted as an eigenpair of A(1)
in finite precision machine arithmetic.
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Since the spectral decomposition D = Q∆QT is known, it was shown in the
previous Subsection that matrices A(t) represent a rank-one modification of a
diagonal matrix (6.28):

A(t) = ∆ + tαyyT .

Cuppen [42] used this representation in his divide-and-conquer algorithm
with t = 1 and Oettli [115] applied it with varying t for tridiagonal
eigenproblems.

Cuppen has shown that zero components of y reveal the eigenvalues to be
deflated. Zero components of y may correspond to two different situations.
First, they may correspond to good approximations δi to the eigenvalues
of A(K+1). Second, they may correspond to clusters of m almost equal
eigenvalues, of which m − 1 could be deflated. We refer here to his work [42]
for details.

As a measure for being “close to zero enough to be deflated” for the components
of y we choose some tolerance η depending on the machine epsilon ε and some
norm ‖A‖.

To perform deflation, the zero components of the vector y are permuted to the
end of the matrix

A(t) = P

(

∆a + tαyayT
a 0

0 ∆b

)

PT . (6.33)

Such a permutation results in an irreducible problem of smaller size,

B(t) = ∆a + tαyayT
a , (6.34)

for which the remaining eigenpairs can be computed by path tracing.

Say that ZHZT is the spectral decomposition of B(1). Then, the desired
eigenvalues of A(1) are the diagonal elements of Λ = H⊕∆b and the eigenvector
matrix is X = PT [Z, Ib]P .

Path tracing

We will describe now the path tracing algorithm for the matrix family B(t),
defined according to (6.34). Starting with the j-th eigenpair (ej , δj) =



HOMOTOPY METHOD APPLIED TO D+SS EIGENVALUE PROBLEMS 129

(xj(0), λj(0)) of ∆a, Algorithm 9 traces the continuous eigenpath using the
predictor-corrector method, applied to (5.35), see also the discussion thereafter.

Algorithm 9: Eigenpath tracing

input : B(t) – continuation matrix, (x, λ) – k-th eigenpair of B(0)
output: (x, λ) – k-th eigenpair of B(1)

begin
t = 0, h = 1
while t < 1 do

(x, λ) = predict (x, λ, t+ h)
(x, λ, success) = correct (x, λ, t+ h)
if success then

t = t+ h, h = min(2h, 1 − t)
else

h = h/2
if h < ε then

failure

end

end

end

end

The (i + 1)-th step consists of a prediction and a correction. For prediction
at t = 0 we use Euler’s method, as described in Subsection 5.2.3: some λj(ti+1)
is first approximated by interpolation through λj(0) and its derivative λ′

j(0):

λ̂j(h) = λj(0) + hλ′
j(0). (6.35)

Otherwise, the eigenvalue and the derivative are known for two different t,
allowing cubic interpolation. Using a Hermite interpolation scheme and the
following substitutions

h = ti − ti−1, tn = (ti+1 − ti−1)/h,

y1 = λj(ti−1), y′
1 = λ′

1(ti−1), y2 = λj(ti), y′
2 = λ′

j(ti)

the approximation is

λ̂j(ti+1) = y1 +(hy′
1 +(y2 −hy′

1 −y1 +(2y1 −2y2 +hy′
1 +hy′

2)(tn −1))tn)tn.

Because of the special structure of the matrix family B(t) the derivative λj(t)
is computed as

λ′
j(t) = xj(t)T (B(1) −B(0)) xj(t)T = α

(

xj(t)T ya

)2
.
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One step of inverse iteration with shift λ̂j(ti+1) is used to obtain a prediction for
the corresponding approximate eigenvector x̂k(ti+1). Such step of the iteration
process consists of solving for z of

(

H + αyayT
a

)

z = x, (6.36)

where H = ∆a − σI, σ is the spectral shift. Because of the special structure of
the matrix, we can give an explicit expression for the solution z.

First, solve (6.36) for z and subsitute β = yT
a z:

z = H−1(x − αβya). (6.37)

Now determine β by substituting z in (6.36):

β =
(

yT
aH

−1x
)

/
(

1 + αyT
aH

−1ya

)

. (6.38)

Finally plug the expression (6.38) for β into (6.37), obtaining

z = H−1

(

x − α

(

yT
aH

−1x

1 + αyT
aH

−1ya

)

ya

)

.

The correction step makes an extensive use of the interlacing property (6.32).
Thanks to it an interval

Ij =

{

[λj(0), λj+1(0)], j < m

[λj(0), λj(0) + 2α], j = m
(6.39)

is known, which contains the eigenvalue curve λj(t) for t ∈ [0, 1]. Since α > 0,
all the eigenvalue curves monotonically nondecrease. This information allows
to detect path jumping or to use bisection followed by inverse iteration to
compute the corresponding eigenpair of B(1) directly in case that path tracing
fails.

The correction step is done by Rayleigh quotient iteration (further denoted as
RQI). To be more precise, at

(

x(k−1)(ti), λ(k−1)(ti)
)

, k > 1 we let

λ(k)(ti) = x(k−1)(ti)
TB(ti)x

(k−1)(ti),

and then solve
(

B(ti) − λ(k)(ti)I
)

y(k)(ti) = x(k−1)(ti)

and let

x(k)(ti) = y(k)(ti)/‖y(k)(ti)‖.
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The starting vector x(0)(ti) comes from the prediction step and an upper
index (k) denotes k-th iteration within RQI.

These iterations are performed until either the eigenpair is converged, λ(k) left
the interval I, or the number of iterations k has reached a limit. Although
RQI is globally convergent, there is no guarantee that the sequence of
Rayleigh quotient iterates will be restricted a priori to a given interval of the
spectrum [122, Ch. 4]. So it is not possible to guarantee that the correction
step succeeds and the stepsize may have to be reduced.

Close eigenvalue curves

As mentioned in the beginning of this section, the basic homotopy algorithm
by Li and Rhee [105] only works satisfactorily for well-isolated eigenvalue
curves. The problem arises as eigenvectors belonging to close eigenvalues tend
to contaminate each other during inverse iteration. The fact that A(t) has only
simple eigenvalues (see the discussion following (6.32)) is of little help, because
eigenvalue curves of A(t) may coincide to working precision. A good example
here is the Wilkinson matrix W+

n+1 ([179, p. 308]), as it also allows reduction
to the similar diagonal plus rank-one eigenproblem as the one for (6.31).

The worst cases are however eliminated by deflation, but some extra work still
needs to be done. Two different situations of close eigenvalue curves can be
distinguished, deflection and clustering.

Deflection. In this situation the eigenvalue curves are close in just a small
interval for t ∈ [0, 1]. As an example, Figure 6.4 shows the eigenvalue curves of
matrix family (6.31) for a certain D+SS matrix. This a 16×16 matrix with the
eigenvalues

(

(10−2)1/16
)n

, n = 1, . . . , 16. The eigenvalue curves look as some
of them cross others, but in fact, the eigenvalue curves just come very close at
some point, that we call a pseudocrossing point. Nevertheless, the two involved
eigenpairs deflect each other, in other words, their values are exchanged.

However, from the interlacing property and monotonicity of the eigencurves
follows that an eigenpair (xi(0), λi(0)) is usually a good approximation
to (xi−1(1), λi−1(1)). As follows from our numerical experiments, such an
approximation is often so good that the corresponding eigenpairs become
subject to deflation. Figure 6.5 shows the eigenvalue curves for the same matrix
as on Figure 6.4, but after deflation. So, only the last eigenpair in such a group
of deflecting eigenpairs lacks a good approximation.
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Figure 6.4: Eigenvalue curves before
deflation
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Figure 6.5: Eigenvalue curves after
deflation

In case of deflecting eigenpairs we do not use homotopy path following. Instead,
eigenpair (xi−1(1), λi−1(1)) is computed with RQI starting with the good
approximation (xi(0), λi(0)). For the last eigenpair path tracing would be
too slow until the pseudocrossing point would be passed. So, it is computed by
bisection based on the interval I defined in (6.39), followed by inverse iteration.

We use the following criterion to detect the deflecting eigenvalues. Let sturm(µ)
denote the amount of eigenvalues of A(1) that are smaller than µ. Then the
next inequality serves as a criterion for eigenvalues δi and δi+1 to deflect each
other:

sturm(δi+1 − η) < i, η = 10−4|δi+1 − δi|.

This empiric formula could be easily derived from geometric considerations.

Clustered eigenvalues. If the eigenvalue curves are clustered in the whole
interval or at least for t = 1, the situation was much worse for the basic
homotopy algorithm of Li and Rhee. Luckily, clustering of eigenvalues at t = 1
together with the interlacing property (6.32) means that some clustering will
be present also at t = 0. This means that the worst cases will be filtered
out by deflation. In our numerical experiments the eigenvectors have shown
reasonable orthogonality, but one may apply a partial reorthogonalization, if
required by an application.

On the Figures 6.4-6.5 one may see that a cluster of close eigenvalues around 0
was mostly deflated. These figures represent a typical impact of deflation, as
we have discovered while performing numerical experiments.
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Final algorithm

We will incorporate now various concepts introduced above into a divide-and-
conquer algorithm. Such algorithm solves the complete eigenvalue problem for
symmetric irreducible diagonal-plus-semiseparable matrices.

Algorithm 10: HomDSS

input : A – D+SS matrix
output: (X,Λ) – eigenvectors and eigenvalues of A

begin

if n < n0 then

solve A = XΛXT by a conventional eigensolver
else

construct with Algorithm 8 smaller D+SS matrices D1 and D2

[Q1,∆1] = HomDSS(D1)
[Q2,∆2] = HomDSS(D2)
construct matrix family B(t) according to (6.34)
deflate some eigenpairs according to (6.33)
trace remaining paths of B(t) with Algorithm 9
transform the eigenvectors of B(1) back to the ones of A with (6.28)

end

end

6.2.4 Arithmetic complexity

Our complexity analysis is based on the number of floating-point operations
(flop) performed. With the homotopy method, it is difficult to get an expression
for the arithmetic complexity which is meaningful for a general matrix. The
complexity not only depends on the matrix order n, but also on the spectrum
that we would like to compute.

The divide step performed by Algorithm 8 requires C0 = O(n) operations.

Consider now the complexity for one conquer step. Deflation of eigenpairs
takes O(n) operations. The most expensive part in path tracing is a Rayleigh
quotient iteration. Recall that matrices B(t) (6.34), involved in RQI, are
diagonal-plus-semiseparable. So, one step of RQI costs O(n) operations for
matrices B(t) as one may use the existing linear solver, see [174]. So, to trace
nontrivial eigenpaths, one needs to perform

C1 = φωtωRQIO(n)
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operations, where φ denotes the number of nontrivial eigenpaths, ωt is an
average number of time steps and ωRQI denotes the average number of Rayleigh
quotient iterations.

To obtain an upper bound on C1 we assume that no deflation occurs (so φ = n).
The average numbers of iterations are coming from our numerical experiments
and representative numbers are ωt = 4/3 and ωRQI = 3. This gives in total
C1 = O(n2). Transformation of the eigenvectors of A(1) back to the ones of A
with (6.28) can be done effectively with an algorithm by Borges and Gragg [17],
and costs C2 = O(n ·n log n) = O(n2 log n) operations. The sum C0 +C1 +C2

gives O(n2 log n) operations for one iteration of Algorithm 10.

The overall divide-an-conquer algorithm has the form of a binary tree of
height s = logn, and each node represents one iteration of Algorithm 10. So,
the total complexity is O(n2 log2 n) for the worst-case scenario (no deflation).
However, deflation occurs for almost every matrix in general. Thus, the above
asymptotics do not necessarily reflect what may be observed in an actual
computation.

6.2.5 Numerical experiments

The numerical tests were performed on a PC with 2.93 GHz Intel Core 2
processor and 2 Gb of memory, running Debian Squeeze with 2.6.32 kernel
and Matlab 7.9.0.529.

We built diagonal-plus-semiseparable matrices of dimension N = 2j , j =
7, . . . , 10 and for each dimension matrices which have condition number (defined
as the product of the spectral norm of the matrix and that one of its inverse)
equal to 103, 106, 109 and 1012. For each of these 16 classes of test matrices we
took 10 samples.

The test matrices were built as follows: starting from a diagonal matrix D =
[α, α2, . . . , αN ] with α the (N−1)th root of the requested condition number, we
applied (N − 1) random Givens rotations Gi to the left, such that Gi works on
the ith and (i+ 1)th row, and GT

i to the right of D. Hence D was transformed
into a matrix A = GDGT . This matrix A is a diagonal-plus-semiseparable
matrix because the ith Givens rotation Gi makes the elements of row i and
i+ 1 proportional. The transpose GT

i does the same with column i and i+ 1,
so we created a semiseparable structure except on the diagonal.



HOMOTOPY METHOD APPLIED TO D+SS EIGENVALUE PROBLEMS 135

Deflation

It is interesting to see that the deflation generally plays an important role in
the algorithm. Table 6.3 shows the percentage of deflated, trivial eigenpaths
on the last (highest) reassembly step observed in the homotopy algorithm for
the test matrices. The given numbers show that, for example, for the matrix
of order 210 less than 6% curves have to be traced. The frequency of deflation
will vary with the type of the matrix and with its order. For our series of test
matrices one may see that the impact of the condition number is negligible,
compared to that of the matrix size.

condA i = 7 i = 8 i = 9 i = 10
103 65 82 93 94
106 66 84 93 95
109 69 85 95 96
1012 72 87 95 96

Table 6.3: Percentage of deflation, matrices of order 2i

Cuppen showed for his divide-and-conquer algorithm, which has the similar
deflation technique, that matrices with much deflation in general have an
eigenvector matrix close to a band matrix [42].

Diagonal plus rank-one problem

The accuracy of an eigensolver is determined by the residual error R of the
computed solution as well as the orthogonality U of the computed eigenvectors.
The core part of the proposed algorithm consists of a homotopy algorithm for
a diagonal plus rank-one problem. Therefore, we give several numerical results
for this subproblem.

The computed eigenpairs of such a diagonal plus rank-one matrix A(1)
(6.33) divide into two classes. The first class includes those eigenpairs
coming from deflation. By construction, deflated eigenpairs represent accurate
approximations to eigenvalues and eigenvectors, and the eigenvectors are
perfectly orthogonal (they are columns of the identity matrix). The second
class represents those eigenpairs coming from Algorithm 9. Suppose that H
is a diagonal matrix with the computed eigenvalues on the diagonal, and Z is
the (orthogonal) matrix of the computed eigenvectors. On the last (highest)
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reassembly step we look at the relative residual norm

R =
‖B(1)Z − ZH‖2

ε‖B(1)‖2

and at the orthogonality condition

U =
‖ZTZ − I‖2

ε‖Z‖2
.

Relative residuals for our test matrices are presented in Table 6.4 and the
orthogonality is given in Table 6.5.

condA i = 7 i = 8 i = 9 i = 10
103 6.2 4.8 5.7 4.1
106 4.3 4.2 2.8 1.8
109 1.9 2.1 1.3 3.7
1012 4.1 2.2 2.2 3.3

Table 6.4: residuals R, matrices of order 2i reduced to B(1)

condA i = 7 i = 8 i = 9 i = 10
103 26 41 150 45
106 102 200 90 84
109 410 700 590 420
1012 1020 1100 10200 7820

Table 6.5: Orthogonality U , matrices of order 2i reduced to B(1)

As follows from these tables, the residuals are accurate up to machine precision,
but the orthogonality of the eigenvectors is slightly worse. One may apply a
partial reorthogonalization, if desired.

In Table 6.6 we represent an average number of bisection+inverse iteration calls.
This method serves as a fallback solution if RQI does not converge to the right
eigenpair, and also it is applied to find the largest eigenvalue in the group of
deflecting eigenvalues. One may see that this rather slow method is called on
average for just one or two eigenpairs even for large matrices.
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condA i = 7 i = 8 i = 9 i = 10
103 1.1 1.3 1.0 1.33
106 1.7 1.1 1.0 1.3
109 0.7 1.0 1.1 1.9
1012 2.0 2.0 1.9 1.4

Table 6.6: Average number of BiSect calls, matrices of order 2i reduced to B(1)

Original D+SS problem

Compared to the method presented by Mastronardi et al. [110], our algorithm
differs only in the method used to solve the diagonal plus rank-one eigenprob-
lem. We have computed the same residuals R and orthogonality measures U
for their method, and the data does not differ significantly from Tables 6.4
and 6.5. This means that both methods have the same precison. However,
our new method could be parallelized more effectively. Our easy technique for
deflation allows to exclude from the active processing most of the eigenvalues
and thus leads to better performance.

We refer to [110] for residual plots for the original D+SS problem.

6.3 A direct method for BBBT matrices

In this section we present a new direct algorithm to solve linear systems,
where the coefficient matrices are block banded block Toeplitz matrices with
dense Toeplitz blocks (hereinafter referred as BBBT matrices). The method
transforms the doubly Toeplitz structure of the original coefficient matrix to
a block circulant structure with Toeplitz blocks (hereinafter referred as BCTB
matrix). The corresponding linear system is solved in a fast and stable way, and
its solution is finally transformed back to the solution of the original system.

In Subsection 6.3.1 the main algorithm is given. The details of its theoretical
and practical complexity are studied in Subsection 6.3.2. Finally, we present
several numerical results, also for certain ill-conditioned cases. Within this
section we follow our paper [34].
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6.3.1 Main formulation

The algorithm first transforms a given BBBT matrix to a block circulant one by
adding the required Toeplitz blocks into the lower left and upper right corners
of the matrix, replacing zero blocks. Later, the outer (circulant) and inner
(Toeplitz) block structures are interchanged and the system is converted to a
block Toeplitz system with circulant blocks. The circulant blocks are easily
diagonalized by the Fourier transform, and the large block Toeplitz system
decomposes into several systems of simple Toeplitz structure. They are, in
turn, solved by a conventional Toeplitz solver, and the resulting vectors are
transformed back to the solution of the block circulant system. Finally, the
target solution of the BBBT system is recovered via the Sherman-Morrison
formula.

Reduction to the block circulant case

Consider a block banded block Toeplitz system with dense Toeplitz blocksBx =
b. We suppose that inner blocks are n × n-matrices and there are m block
columns and m block rows. The bandwidth is equal to 2k + 1.

A block banded block Toeplitz matrix could be easily transformed to a block
circulant matrix with Toeplitz blocks (further referred as BCTB matrix) by
adding corresponding blocks in its lower-left and upper-right corners. The
matrix B in (6.40) is block Toeplitz and C in (6.41) is its corresponding block
circulant.

B =
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(6.40)



A DIRECT METHOD FOR BBBT MATRICES 139

C =
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(6.41)

We can write that B = C − UV T , where

U =





Ikn 0
0 0
0 P



 , V T =

(

0 0 Q
Ikn 0 0

)

. (6.42)

Matrices P and Q are kn×kn block triangular matrices that reside in the lower
left and upper right corners of C, respectively,

P =













Ak 0 . . . 0
...

. . .
. . .

...

A2
. . .

. . . 0
A1 A2 · · · Ak













, Q =
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0
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. . . A−2

...
. . .

. . .
...

0 · · · 0 A−k













. (6.43)

The idea of interchanging the outer and inner structures is thoroughly studied
in a general case in the book [177].

The inverses of B and C are then connected by means of the Sherman-Morrison-
Woodbury formula [71]:

B−1 = (C − UV T )−1 = C−1 + C−1U(I − V TC−1U)−1V TC−1. (6.44)

Remember that we have to compute x = B−1b. By means of the above formula
this computation is partitioned into several steps.

At first, solve the BCTB system Cw = b as described in the next section. Let
us denote w = C−1b. Then by means of a simple matrix-vector multiplication
we compute the product v = V Tw = V TC−1b.
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In the third step, compute the inner matrix S = I − V TC−1U and solve the
linear system Sy = v. To compute S directly we need to solve 2kn linear
systems with C as the coefficient matrix and the columns of U as right-hand
side vectors. The computation of the S matrix could be slightly optimized as
follows.

V TC−1U =

(

0 0 Q
Ikn 0 0

)





CUL . . . CUR

. . . . . . . . .
CDL . . . CDR









Ikn 0
0 0
0 P



 =

(

QCDL QCDRP
CUL CURP

)

. (6.45)

Here CDL, CDR, CUL and CUR are the corresponding kn × kn corner blocks
of C−1.

Since C is block-circulant, C−1 is also block circulant and thus determined
by its first block column. This means that it’s enough to solve only n linear
systems with the first n columns of a mn × mn identity matrix as right-hand
side vectors. The rest of C−1 is then constructed just by a block reordering of
its first block column.

In the fourth and the last step, we perform the matrix-vector multiplication
z = Uy and finally solve the remaining BCTB system Cf = z. Addition
of C−1b to C−1z yields B−1b.

Block circulant Toeplitz block case

Let us consider a block circulant matrix with Toeplitz blocks. We suppose that
the inner blocks are n×n-matrices and there are m block columns and m block
rows. Let P1 denote a permutation matrix of size mn×mn such that it brings
rows with numbers 1, n+1, 2n+1, etc, together to the first rows, then all rows
with numbers 2, n+ 2, 2n+ 2, etc, together, and so on. The same should hold
for the columns after the multiplication by PT

1 . An example of the P1 matrix
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for n = m = 3 is given in (6.46).

P1 =





























1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1





























(6.46)

In other words, if C was a BCTB matrix, then K = P1CP
T
1 would be a BTCB

matrix: the inner structure becomes the outer and vice versa. Because the
outer structure of K is Toeplitz, there are only 2n+1 different circulant blocks
of size m × m. These blocks are easily diagonalized by means of a Fourier
transform.

Let F =
⊕

Fm be a direct sum of n Fourier matrices of order m. Then
L = FKF ∗ = FP1CP

T
1 F

∗ is a block Toeplitz matrix with diagonal blocks.
Let us denote by P2 a permutation matrix which is like P1, but brings first all
rows with numbers 1, m + 1, 2m + 1 together, then all rows with numbers 2,
m + 2, 2m + 2 together and so on. Then M = P2FP1CP

T
1 F

∗PT
2 is a block

diagonal matrix with Toeplitz blocks.

Remember that we have to solve a linear system Cx = b, where the inner
blocks are n × n-matrices and there are m block rows and m block columns.
By means of the transforms described above we have converted the original
BCTB problem to a solution of a block diagonal Toeplitz block system:

Cx = b ⇔ P2FP1Cx = P2FP1b ⇔

(P2FP1CP
T
1 F

∗PT
2 )(P2FP1x) = P2FP1b ⇔ Mx̂ = b̂, (6.47)

where

M = P2FP1CP
T
1 F

∗PT
2 , x̂ = P2FP1x, b̂ = P2FP1b. (6.48)

This block Toeplitz system splits up into m (n × n)-Toeplitz systems. These
systems could be solved by means of any conventional Toeplitz solver, like fast
and superfast solvers [30, 75, 98, 109, 155].

Transition from x̂ to x is obvious and consists of two reorderings and n inverse
FFT’s.
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6.3.2 Complexity

Theoretical estimation

Let us look at the formula (6.44) and consequently calculate its computational
cost. Denote the total computational cost by ξ(m,n, k).

1. Computing w = C−1b is exactly solving a corresponding linear system.
Let us denote the complexity of the solution of a BCTB linear system
with m block rows and m block columns, each block is of size n × n,
by ν(m,n). Thus we have ν(m,n).

2. Computing v = V Tw is in fact one kn × kn matrix-vector product due
to a special structure of V T . Thus we have O(k2n2).

3. Computing V TC−1U by means of a technique (6.45) involves n operations
of complexity ν(m,n) and then four matrix-matrix products of order kn×
kn. Thus we have n ·ν(m,n)+O(k3n3). Recalling that matrices P and Q
are block Toeplitz can slightly reduce this estimate.

4. Solution of a linear system with the matrix I − V TC−1U as a coefficient
matrix and vector v as a right-hand side takes O(k3n3) operations since
the matrix is unstructured.

5. Multiplication by matrix U on the left takes O(k2n2) operations and
yields an mn× 1 vector z.

6. And finally one has to solve the linear system with C matrix and vector z.
It takes another ν(m,n) operations.

In total after gobbling up all low-order terms we get ξ(m,n, k) = n · ν(m,n) +
O(k3n3).

Let us now estimate ν(m,n). On the basis of the formulas given in the last
part of the previous subsection, we have the following essential steps.

1. Multiplications with P1, P2, PT
1 and PT

2 are in fact just reorderings.

2. There are n Fourier transforms of size m, which gives nm logm
operations.

3. We have to solve m Toeplitz systems of order n. This could be done
by any conventional method, like Gaussian elimination (O(mn3) in total)
or existing fast methods ([75, 98, 155]) (O(mn2) in total), or even by
superfast methods, like the one described in the previous section, see
also [163].
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In the case one uses fast Toeplitz solvers the total complexity will be ξ(m,n, k) =
O(mn3)+O(k3n3) flops. For superfast solvers the total complexity will be equal
to ξ(m,n, k) = O(mn2 log2 n) +O(k3n3).

6.3.3 Numerical experiments

The experiments were performed on a machine with 2Gb memory and Xeon
2.3 GHz processor, running Kubuntu Linux, kernel 2.6.26, in Matlab 7.7.0.471.
We have chosen as Toeplitz solvers (further referred as T-solvers) 1) the fast
Hankel solver developed by Rodriguez and Arico [7], written in C and compiled
as mex-file for Matlab and 2) the simple backslash operator for comparison.
Another possibility for the fast solver with existing software is the one by Van
Barel and Kravanja [98].

Well-conditioned matrices

Toeplitz matrices and right-hand side vectors were random.

The results presented in Table 6.7 are times in seconds. For each table cell
there were three runs and the resulting time was averaged. The last column
represents the time required to solve the dense original system directly with
the backslash operator of Matlab. OoM stands for the Out Of Memory Matlab
message.

For the complexity we can look at the ratios of the neighbouring values in each
column. We can see that the results do agree with the estimate. The method is
linear in m and is quadratic in n when the fast T-solver is applied, and is cubic
in n when Gaussian elimination is applied to Toeplitz systems. For fixed m
and n > 256 the fast solver beats both its competitors. It’s also more efficient
for m = n = 128 and the bandwidth is not too large. The bandwidth increase
has impact on time only when k3 > m.

The residual size was of the same order for the fast solver and for the backslash
operator applied to full dense matrices. For large matrices where the OoM
message appeared, the residual was of the order 10−10 − 10−13.

Ill-conditioned matrices

Note that we replace the BBBT matrix B with the BCTB matrix C in the
solution process. This has positive and negative effects, as we will show.
Usually in the case of an ill-conditioned B or C it is useful to perform one
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k m n O(n3) T-solver O(n2) T-solver \ operator
2 32 32 0.44 0.95 0.27
2 32 64 2.04 2.77 1.33
2 32 128 15.56 10.72 8.10
2 32 256 172.3 55.19 66.21
2 32 512 1996 366.66 OoM
2 64 32 0.73 1.90 1.37
2 128 32 1.46 3.79 9.14
2 256 32 2.87 7.52 64.81
2 512 32 5.79 15.08 OoM
2 1024 32 11.40 30.06 OoM
2 64 64 4.08 5.43 9.19
4 64 64 4.14 5.57 9.32
8 64 64 4.53 6.62 9.20
16 64 64 6.87 13.19 9.22
32 64 64 23.13 61.62 9.23
2 128 128 63.09 41.09 OoM
4 128 128 63.34 42.12 OoM
8 128 128 65.93 49.49 OoM
16 128 128 82.62 97.76 OoM

Table 6.7: Execution times for different m, n, k

or more steps of an iterative refinement (IR) process:

Ri = b−Bxi, di = B−1Ri, xi+1 = xi + di, i = 0, 1, . . . , (6.49)

where x0 is some initial approximation. To perform one IR step after the
original system was solved is cheaper than to solve it again: the most expensive
step 3 (Subsection 6.3.2) of computing the inner matrix in the Sherman-
Morrison-Woodbury formula does not have to be repeated. The total cost
of an IR step is then ν(m,n) +O(k3n3).

Ill-conditioned B

In this case the change to the circulant transformation C has a certain
regularizing effect. We have constructed several ill-conditioned BBBT matrices
and compared their condition numbers with the numbers of their circulant
transformations. The results are given in Table 6.8. The residual b − Bx was
of the same order as the residual b−Bx̂, where x̂ was the result of the Matlab
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cond(B) cond(C)
108 17
1011 32
1014 20
1018 8

Table 6.8: Regularizing effect of circulant transformation

command B\b. For the matrices with the condition numbers greater than 1010

we applied one IR step.

However in the last case (cond(B) = 1018) we were not able to get any
reasonable result – the matrix was numerically singular.

Ill-conditioned BBBT matrices were constructed in the following way. We took
a well-conditioned matrix and then scaled its elements: the elements further
away from the main diagonal had bigger values.

Ill-conditioned C

It could happen that even for a well-conditioned B the matrix C would be
ill-conditioned or singular. This is illustrated by the following example:

B =





1 1 0
1 1 1
0 1 1



 , C =





1 1 1
1 1 1
1 1 1



 . (6.50)

We can handle this situation by adding a small block banded block Toeplitz
noise to the matrix B before it is transformed into the BCTB matrix. Our
experiments have shown that it’s enough to add just block-diagonal Toeplitz
noise and not to affect the strictly lower and upper block triangles of the BBBT
matrix.

In Table 6.9 we illustrate this by the following example: matrix B was fixed
in such a way that its circulant extension was singular, cond(B) = 15. We
were adding some block-diagonal noise, the 2-norm of this noise is given in the
second column. The condition number of (permuted) C matrix is given in the
first column. The relative residual (b−Bx)/‖b‖2 is given in the last column.

This example shows that small noise does not have enough regularizing effect
and large noise moves the perturbed matrix too far from the original. After
one IR step with the noise size O(10−8) we got the machine precision for the
residual.
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cond(C) noise size rel. error
105 10−4 10−4

109 10−6 10−6

109 10−8 10−8

1010 10−9 10−6

1013 10−10 10−4

1013 10−12 10−3

1015 10−14 10−1

1018 10−16 100

Table 6.9: Effect of small noise on relative erros for singular circulant extensions

We have also mentioned that an ill-conditioned C gives the very ill-conditioned
inner matrix in the Sherman-Morrison formula (step 3, Section 6.3.2), as well
as ill-conditioned small Toeplitz systems.

We may use all these facts to build a generic approach.

• Start the algorithm as described.

• If one of the small Toeplitz systems of order n or the inner matrix
in the Sherman-Morrison-Woodbury formula would appear to be ill-
conditioned (this is reported by a conventional solver used), then we
have ill-conditioned C. Return to the previous step and add some noise,
then repeat the procedure.

• Compute the relative residual (b−Bx)/‖b‖2. If it’s not sufficiently small,
then perform one or more steps of iterative refinement.

6.4 Conclusion

We presented three algorithms, solving linear-algebraic problems with struc-
tured matrices. Firstly, an iterative method for inverting Hermitian Toeplitz
matrices by a continuation algorithm is proposed. The method can be used
for solving systems of linear equations with matrices in this class as coefficient
matrices. The algorithm gradually transforms the identity matrix to a target
inverse, and has a complexity of O(n log n) flops, where n is the order of a
given matrix. Later, a similar continuation approach is applied to find all
the eigenvalues and eigenvectors of a given diagonal-plus-semiseparable matrix.
The goal is achieved by tracing a solution curve of a certain differential equation.



CONCLUSION 147

To construct good starting matrices, divide-and-conquer methods are used.
Deflation techniques are implemented and lead to better speed and accuracy
of the algorithm.

Finally, a fast algorithm to solve block banded block Toeplitz linear systems
with non-banded Toeplitz blocks is developed. A circulant extension of a given
Toeplitz system is constructed and then by means of the Sherman-Morrison-
Woodbury formula its inverse is transformed to the inverse of the original
matrix. In turn, the block circulant matrix with Toeplitz blocks is converted to
a block diagonal matrix with Toeplitz blocks, and then the resulting Toeplitz
systems are solved by means of a fast solver. The computational complexity in
the case one uses fast Toeplitz solvers is equal to ξ(m,n, k) = O(mn3)+O(k3n3)
flops, where m denotes the block order of the matrix, n denotes the order of
the blocks, and 2k + 1 is the bandwidth.

Several numerical experiments are presented for each of the methods and show
the effectiveness of the algorithms.





Chapter 7

General conclusions and

future perspectives

7.1 Conclusion

In this thesis eigenvalues, structured matrices and orthogonal functions were
studied from a practical point of view. We exploited relations between any of
these three objects to design algorithms in the context of five problems. Each
problem is closely related to one of the basic linear algebra problems: solving
a system of linear equations or an eigenvalue problem. The five corresponding
problems are divided between different chapters.

Within Chapter 2, after defining the necessary concepts, we have shown that
regularity of a graph cannot be deduced from its spectrum with respect to
a certain generalized adjacency matrix. First, several small counterexamples
were found by computer enumeration. Finally, a general procedure, allowing
to construct more counterexamples, is described.

Chapter 3 was devoted to the convergence behavior of the rational Lanczos
method. Again, we begun with necessary concepts from logarithmic potential
theory and established some properties of a weighted logarithmic potential.
Then we presented a novel method to numerically solve the constrained
weighted energy problem, describing a distribution of converged rational Ritz

149
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values. First, we formulated the continuous version of the algorithm, and then
we discretized it. Compared with the continuous version, the discretized version
has the advantage that the algorithm always stops, producing a solution which
is accurate in comparison to the exact solution when known. Finally, we used
the algorithm to predict the region of convergence of Ritz values obtained by
applying the rational Lanczos method for symmetric eigenvalue problems. In
all cases our algorithm estimated the region of convergence of Ritz values in an
accurate way.

In Chapter 4 we developed an algorithm to compute recurrence relation
coefficients for bivariate polynomials, orthonormal with respect to a discrete
inner product. We started with an application, namely, with the discrete
least squares approximation problem. We generalized several ideas from the
theory of univariate polynomials to the multivariate case and posed a pair
of coupled inverse eigenvalue problems. These inverse eigenvalue problems
describe the recurrence relation coefficients of the target polynomials. Later,
such coupled problems were solved by means of a novel updating algorithm.
The algorithm essentially represents a reduction to generalized Hessenberg
form with a sequence of Givens rotations. Finally, the algorithm was tested
for several numerical examples. Because of the orthogonal nature of rotations,
the algorithm has shown a stable behavior. Within this work we consider the
constructed algorithm as the most promising one from the applications point
of view. Several possibilities to improve the algorithm and some potential
applications thereof are described in the next section.

Three algorithms for three classes of structured matrices were studied in
Chapters 5 and 6. First, a homotopy approach was applied to solve a
linear system with a Toeplitz coefficient matrix. The compact representation
of the inverse of the coefficient matrix comes for free while executing the
method. A displacement rank representation of the matrices involved helped to
reduce memory requirements and allowed fast matrix-by-vector multiplication
techniques. Second, all the eigenvalues and eigenvectors of a symmetric
diagonal-plus-semiseparable matrix were computed by another version of a
homotopy algorithm. The goal was achieved by tracing a solution curve of
a certain differential equation. To construct good starting matrices, divide-
and-conquer methods were used. Deflation techniques were implemented and
led to good accuracy of the algorithm. Finally, we derived in this chapter a
direct method to solve a two-level Toeplitz linear system with banded outer
structure.

In general, it is possible to conclude that the main objective of this work is
achieved. In fact, five problems coming from the different fields were studied,
and the relations between eigenvalues, orthogonal functions and structured
matrices played an important role while designing the corresponding algorithms



FURTHER RESEARCH 151

to solve these problems. All developed methods performed well in numerical
experiments.

7.2 Further research

The following paragraphs list ideas for further investigation, which came up
during the development process of the algorithms and the comparison with
other algorithms.

Number of graphs with cospectral mates

As we have mentioned in Chapter 2, the percentage of graphs on n vertices,
determined by their spectrum, is still unknown. Only some asymptotic lower
bounds for this number are present. It may be interesting to extend the
computer enumeration results of [76, 22]. This problem by itself is challenging
because the total amount of graphs on 12 vertices already is more than 165
billion. So, clever optimization has to be done to reduce the amount of work.
Even more challenging is the theoretical investigation.

Best grid for computing multivariate discrete orthogonal

polynomials

The problem of selecting the proper points to prescribe the inner product
for computing discrete orthogonal polynomials is much more complex in the
multivariate case, compared to the univariate case. The key issue is that the
points have to be sufficiently independent, so that no algebraic curve of a
small degree goes through all the points, thus leading to proper interpolation
and preventing the method from finding further linearly independent basis
polynomials. Within this research we used Padua points, and the achieved
accuracy of the algorithm was sufficient for practical purposes. Further,
different generalizations of a Chebyshev grid to more dimensions may be also
studied. The complete answer to the question “which grid leads to the most
stable computations with the presented updating algorithm” is still unknown.



152 GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES

Downdating data for inner products

The proposed method for constructing 2D-orthogonal polynomials has the
feature that the points where the inner product is prescribed, could be added
one-by-one, thus updating the inner product in every step. As shown by
Bultheel and Van Barel in [160], a 1D-downdating scheme may also be designed,
allowing deletion of certain points. However, as in the 1D-case, special
precautions should be taken to obtain a stable algorithm to solve this (inverse)
problem. So, designing and implementing a 2D-downdating algorithm requires
further investigation.

Multivariate orthogonal polynomials as a tool

The proposed algorithm that constructs a multivariate polynomial basis may
serve as a tool in many applications, similarly as Chebyshev polynomials work
within the chebfun project [8] to speed up the computations with functions of
different nature. The applications include, for example, solving ODEs and
expressing the solutions in the constructed polynomial basis. We consider
designing and implementing such a tool as an interesting project.

Efficient parallel implementation of one of the continuation

methods

The present implementation of our continuation method for eigenvalue
problems with D+SS matrices is sequential. An accurate implementation for
some parallel computer is nontrivial since many aspects have to be taken into
account: memory management, processor communication, distribution of data
between different processors and so on.
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