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INTRODUCTION, BACKGROUND AND OVERVIEW OF THE DISSERTATION




1 Introduction and background.

If I have seen a little further [than you and Descartes]

it is by standing on the shoulders of Giants.
Isaac Newton, letter to Robert Hooke (originated from John of Salisbury)

1.1 Science-technology interactions, entrepreneurial universities and
academic patenting

Starting from the land grant colleges (Morrill Acts of 1862 and 1890), university-industry
links evolved from a pragmatic tool for knowledge transfer in an evolving society to a
key concept in innovation dynamics in an evolving world. Land grant colleges were
established to focus on the teaching of agriculture, science and engineering as a
response to the industrial revolution and changing social class rather than higher
education’s historic core of the Liberal Arts', and are an example of the nature of early
science-technology interactions with the separation between both spheres as we knew
them for a long time: universities conduct research that is freely shared (‘open science’),
supply qualified scientist and engineers to industry and are largely public funded -
industry funding is rather low and mostly related to open gifts rather than project
contracts with clear directions and goals - while industry creates new products and

processes, building on scientific evolutions whenever relevant.

From the eighties of the previous century onwards, a combination of factors changes
the nature of university-industry links: change in legislation (Bayh-Dole act in the US and
abolition of Professor’s Privilege in other countries); institutionalized university-industry
relationships (establishment of Technology Transfer Offices); development of the
Industry/University Cooperative Research Centers Program by the US National Science
Foundation; and large partnership deals between pharmaceutical companies and

universities (Monsanto; Hoechst). Nowadays, more and more demand-inspired basic

1 US Code Title 7, Chapter 13, Subchapter |, § 304



research is being conducted at universities, tearing down the traditional boundaries
between science and industry - see e.g. Pasteur’s Quadrant (Stokes, 1997). This
phenomenon goes hand in hand with increasing industry funding for public R&D (see

e.g. OECD 2009).

The traditional view of industrial research as an engine of economic growth (see e.g.
Grossman & Helpman, 1991, for an overview) — derived from the notion of Creative
Destruction of Shumpeter (1942) — is more and more combined with the view that the
public stock of knowledge that accumulates from the spillovers of previous inventions is
a fundamental input. The public-good aspects of knowledge create economy-wide
increasing returns and success is partly achieved by ‘standing upon the shoulders of
giants’: “If | have seen a little further [than you and Descartes] it is by standing upon the

shoulders of Giants”? (Caballero & Jaffe, 1996).

Meanwhile, many scholars stress the role of science-technology interactions for the
development of technological performance and international competitiveness and
hence economic development and growth and welfare creation (see e.g. Freeman, 1987
and 1994; Lundvall, 1992; Nelson, 1993; Nelson & Rosenberg, 1993; Mansfield, 1995;
Mansfield & Lee, 1996; Mowery & Nelson, 1999; Dosi, 2000), and the importance of the
institutional framework (see e.g. the Triple Helix model: Leydesdorff & Etzkowitz, 1996
and 1998; Etzkowitz & Leydesdorff, 1997). They stress the role of science and the
importance of interaction between a variety of institutional actors underlying the
innovative capacity and consequent economic performance of an economical system.
This more encompassing view on innovation dynamics has resulted in a growing
popularity of the ‘innovation system’ concept which gained acceptance by scholars and
policy makers alike as a guiding framework to understand innovation dynamics on an

aggregated level (European Innovation Scoreboard, 2002).

In these models, knowledge generating institutions such as universities, research
laboratories, industrial research centres and, more recently, government institutions

are acknowledged - besides firms and entrepreneurs - as important and complementary

% Sir Isaac Newton, letter to Robert Hook, February 5, 1675. Newton’s aphorism was popularized by
Robert Merton, On the Shoulders of Giants (1965), but originated from John of Salisbury, 1159.



players in developing and stimulating the innovative capacity of a particular region or

country.

There are multiple reasons why universities are relevant actors within innovation
systems and can contribute to the national innovative capacity. First, research
institutions produce information and ideas upon which the development of new
products, processes and services can build. Secondly, research institutions can work on
certain research agendas for a longer period of time, which can lead to the creation of
new scientific insights. The latter can over time lead to economic applications. Notice in
this respect that universities are well placed to address market failures that occur in the
field of innovation (Arrow, 1962; Freeman, 1994; Baumol, 2002). Such market failures
arise especially in relation to basic research, characterized not only by high levels of
uncertainty both in terms of technical and commercial success, but also spanning long
time frames to bear fruit (often decades). In addition, the nature of the outcomes of
innovative activity - i.e. knowledge or information - complicates investment decisions
even further (Foray, 2004). All these phenomena pose specific challenges for private
investors, who tend to refrain from becoming involved in basic research activities. In
order to avoid a loss of social welfare — due to non-investment behaviour of private
firms — most national innovation systems nowadays invest considerably in basic

research performed at universities and public research institutes.

As such, knowledge institutions like universities can play a specific role related directly
to the potential these institutions possess to avoid technological lock-in phenomena. In
order to continuously stimulate economic growth within a particular region or nation,
based on knowledge intensive entrepreneurship, its technology portfolio should strike a
balance between routine technological activities on the one hand (these are focused on
process and incremental development in the more mature phases of the technology life
cycle) and non-routine technological activities on the other hand (these are more
focused on new technology platforms and fundamental developments). Local / regional
knowledge centres, especially universities and research centres, can play a significant
part in this respect. As they participate in high level scientific research, they contribute

to the generation of new knowledge. Such research takes place in international



research communities. The exploration of new fields of knowledge — that can often not
yet be categorized as routine activities — and the continued diffusion of this knowledge
among regional actors can be considered an essential task of knowledge centres and
especially universities. This double dynamic allows knowledge centres to play a
fundamental role in regional innovation networks. These institutions are best placed to
offer support in regard to the dual challenge of local and global knowledge
development (Debackere, 2000; Van Looy, Debackere & Andries, 2003; Lester & Piore,
2004; Debackere & Veugelers, 2005). If a particular region fails to include this dual task
as a priority in their regional innovation policy, there is a long-term risk of regression
and growth stagnation due to the life cycle phenomenon. It is in this context that the
significance of knowledge centres should be seen: they also develop non-routine
activities in research communities which participate in knowledge exchange on an
international scale. As such, universities offer regions exploration possibilities that are
essential for mid to long-term innovation potential. Lester points in this respect to the
importance for innovation of ‘interpretative’, problem defining activities, besides
analytical, problem solving ones. When enterprises focus on the latter, it is essential
that sufficient attention is paid to creating an environment for exploration. In this sense,

universities, as fora where new ideas can be explored and studied, are indispensable.

These reflections also imply that universities are more effective in this respect as they
are more active in scientific research. Recent research in the US as well as in Europe
confirms this relation: an explicit research focus coincides with a larger number of
enterprising activities (patents, spin-offs, contract research) (Di Gregorio & Shane, 2003;
Van Looy, Ranga et al., 2004; O’Shea, Allen et al., 2005; Van Looy, Callaert & Debackere,
2006).

At the same time, contributing effectively to the innovative capacity of an innovation
system requires a willingness of universities to become more ‘entrepreneurial’. The
notion of ‘entrepreneurial universities’ (Etzkowitz, Webster & Healy, 1998; Branscomb,
Kodama & Florida, 1999) refers to the development of the following spectrum of
activities: more intense commercialization of research results, patent and license

activities, spin-off activities, collaboration projects with the industry, and greater



involvement in economic and social development. As such, one observes a ‘second
academic revolution’ whereby education and research become complemented with
service and valorisation activities aimed at transferring new scientific knowledge to

economic activity realms.

Indeed, nowadays an increasing activity of academic researchers in exploiting their
discoveries can be observed (Henderson, Jaffe & Trajtenberg, 1998; Thursby & Thursby,
2002; Meyer, Sinilainen & Utecht, 2003; Lissoni, Llerena et al., 2008) and university
patents become an important — and visible - method of technology transfer (Basberg,

1987; Boitani & Ciciotti, 1990; Trajtenberg, 1990; Archibugi, 1992).

Interaction and exchange between academia and industry can result in positive aspects,
both for the business partner (e.g. Zucker & Darby, 2001; Hall, Link & Scott, 2001;
Faems, Van Looy & Debackere, 2005) and for the academic sector (e.g. realization of
complementarities between applied and basic research — Azoulay, Ding & Stuart, 2009;
generation of new research ideas — Rosenberg, 1998; attracting additional resources for
(basic) research - Agrawal & Henderson, 2002). Additional benefits — when introducing
intellectual property in scientific activities - can be found in the facilitation of the
creation of a market for ideas and the ability of society to realize the commercial and
social benefits of a given discovery (Kitch, 1977; Merges & Nelson, 1990; Gans & Stern,
2000; Arora, Fosfuri & Gambardella, 2004; Hellman, 2007; Murray & Stern, 2007).

At the same time some concerns arise due to the increasing commercialization of
scientific activities undertaken by universities. Too much emphasis on (market)
exploitation might negatively impact the quantity and quality of scientific research and
change research orientation because of changing incentives (skewing problem: research
topic decisions follow market demand and money). But also indirect effects get
attention: shift of career choices of promising young graduate students and post-
doctorals away from academia; increasing secrecy or delay of publication (demanded
by industrial partners); and presence of an anti-commons effect (to many owners
blocking the use of inventions). These concerns get particular attention because they
might slow down the rate of innovation and long-term scientific and technological

advancement might be traded in for short term benefits.



A crowding out-effect is suspected because of conflicts of interest: time-related
limitations in combinations with changes in incentives — remuneration based on
patenting activities as compared to remuneration schemas based on contributions to
the scientific community (disclosure and contribution to cumulative learning and
innovation) - might drift scientists away from traditional academic activities as teaching
and conducting basic research. But crowding out-effects can be relieved, e.g. by a well-
organized Technology Transfer Office to put off the burden of patent filing from the
shoulders of the academic inventor (Hellman, 2007), resolving time constraints — not to
mention potential positive effects of additional funding to attract additional post-

doctoral scientists to eventually increase the output

Qualitative evidence suggest that patenting activities are direct byproducts of scientific
efforts; patents and publications may pertain to a nearly identical set of research
findings and the decision of whether or not to patent is more an ex-post decision and
not part of the selection process to engage into a particular research trajectory (Agrawal
& Henderson, 2002; Murray, 2002; Thursby, Thursby & Gupta-Mukherjee, 2007),
although incentives of patenting activities could change the behavior of scientists away
from incidental patenting as byproduct of research programs towards pursuing projects
with commercial potential (skewing problem, Florida & Cohen, 1999) — which does not
necessarily imply a causal relationship between patenting incentives and a shift to more
applied research or research with commercial interest; maybe academic inventors get
more interested in practical issues because of their contacts with industry, and insights
encountered through interaction with industry might help them in their basic research
(the survey of Siegel, Waldman & Link, 1999, reveals that 65% of researchers reported

that interaction with industry influenced their research in a positive way).

While a complete crowding out of scientific activities by commercialization endeavours
is considered as highly unlikely (Merton, 1968; Scotchmer, 2004; Thursby, Thursby &
Gupta-Mukherjee, 2007), some scholars however do signal a (moderate) negative
impact on the quality of research (Henderson, Jaffe & Trajtenberg, 1996; Trajtenberg,
Henderson & Jaffe, 1997; Czarnitzki, Glanzel & Hussinger, 2009). At the same time, a

majority of reported empirical findings report a positive relationship between patenting



and publication outcomes of academic researchers (Agrawal & Henderson, 2002; Van
Looy, Ranga et al.,, 2004; Van Looy, Callaert & Debackere, 2006; Buenstorf, 2006;
Breschi, Lissoni & Montobbio, 2007; Czarnitzki, Glanzel & Hussinger, 2007; Stephan,
Gurmu et al., 2007; Fabrizio & Di Minin, 2008; Azoulay, Ding & Stuart, 2009).

1.2 The tragedy of the anti-commons

While most empirical evidence — at the level of individual scientists — reports a positive
relationship between patenting activities and publication outcomes (quantity as well as
quality), the shift from public funding to private funding is not only a mere replacement
of funding sources, but does impose additional restrictions. One such restrictions is the
delay or even expel of the publication of research results to safeguard commercial
opportunities from the side of the private sponsor. This threatens the system of open
science where scientists can build upon previously diffused knowledge resulting in a
cumulative knowledge stock (Mukherjee & Stern, 2009; Murray, Aghion et al., 2009;
Czarnitzki, Grimpe & Toole, 2011).

In relation to the issue of delay and secrecy, expansion of IPR might result in ‘privatizing’
the scientific commons and potentially limiting scientific progress (Argyres & Liebeskind,
1998; David, 2000; Krimsky, 2004). This fear is nicely expressed by the metaphor of the
‘Tragedy of the anti-commons’, introduced by Heller (Heller, 1998) as opposed to the
‘Tragedy of the commons’ of Hardin (Hardin, 1968). Heller states that the presence of
too many owners with blocking power can lead to the underutilization of scarce
resources, or, translated to the world of IPR, more intellectual property rights may lead
paradoxically to fewer useful products instead of being an incentive to invent and
disclose (too many owners hold rights in previous discoveries creating obstacles for
future research). Although this phenomenon is induced by high transaction costs and
can be transitional (market players have to learn to deal with each other or changing
market circumstances), it is clear that it is not favourable for long-term technological
and scientific development, although presence and impact will very amongst sectors
and fields. E.g. patent anti-commons could prove more intractable in biomedical

research than in other settings because of the importance of patents for the



biotechnology industry, the lack of substitutes for certain biomedical discoveries (rivals
may not be able to invent around) and the heterogeneity of interests and resources
among public and private patent owners (Heller & Eisenberg, 1998). Further
development of entrepreneurial universities in general and academic patenting in
particular risks to trade in long-term scientific development for short-term benefits of
science-technology interactions; the blocking power of patent holders on knowledge
from a scientific nature might prune promising new scientific development paths based
on existent knowledge, radically changing the way science developed over the last

centuries.

Although anecdotal evidence exists of problematic impact of IPR on scientific findings
(e.g. the ‘OncoMouse’ or ‘Havard mouse’ of Leder and Stewart; and patents on human
genes associated with breast and ovarian cancer owned by Myriad Genetics), large scale
evidence of the presence of an anti-commons effect in biotechnology patenting is rare
and the magnitude of the phenomenon and the real thread of patent thickets to block

access to knowledge and technology is unclear.

E.e. when it comes to the potential effect on research direction — researchers
abandoning lines of research because of limitations imposed by IPR - Walsh, Cohen &
Cho (2007) observe that access to knowledge inputs is largely unaffected by patents.
More problematic is access to materials and/or data possessed by other researchers.
Restrictions on access, however, do not appear to turn on whether the material is itself
patented. There is, hence, little evidence that patent policy is the direct cause of
restricted access to tangible research inputs. Jensen & Webster (2010) find that
transaction costs and the culture of the workplace have the largest influence over

whether or not patents affect the direction of research.

Besides these studies based on surveys, Murray & Stern (2007) conducted an empirical
study, using a dataset based on ‘patent-paper pairs’ in biotechnology to investigate the
use of scientific publications (measured by forward citations) that are part of a patent
application. They suggest a modest anti-commons effect based on a decline in citation
rate — after granting of the patent — by 10 to 20% for a set of 169 so called ‘patent-

paper pairs’ or ‘patent-publication pairs’ published in Nature Biotechnology between



1997 and 1999, although these authors also clearly point to the interpretation limits

inherent to their study.

Criticism raises that the patent system stemming from centuries ago is inappropriate to
deal with current day evolutions in innovation and knowledge development and a
reform is needed to balance private and public interests. The debate on a patent reform
is going on, both in the U.S. and in Europe. However, change in legislation, if at all, will
be slow. But e.g. Hopkins, Mahdi et al. (2007) show that — in the area of DNA patenting
— patent offices have responded to criticism by raising thresholds that make it much
less attractive for applicants to file speculative, broad claims in the hope of obtaining
what many would view as undue rewards. But legislation is evolving and many countries
defined research exemptions excluding research and tests from patent infringement,
although the scope of the exemption vary largely amongst countries and patent systems

and is not always well defined.

To the extent an anti-commons effect exists, one can wonder whether IPR and the
exploitation of scientific research in se is the problem, or the enforcement in specific
circumstances and the behaviour of licensors (Walsh, Arora & Cohen, 2003; Murray,
2006). In that respect Van Overwalle (2010) proposes rules of contract to turn patent
‘swords’ into commonly shared assets. Legal measures may assist in narrowing down
freedom of operation of patentees, like compulsory licenses and extending research
exemption to diagnostic-use exemption. As the pace of changing statutory patent law
might be slow, private, collaborative efforts like patent pools and clearinghouses might
help dealing with those issues to lower down transaction costs and help creating an

efficient market of technology.

It is clear that the importance of the consequences of the presence of an anti-commons
effect on national innovation systems and eventful policy implications makes this topic

particularly interesting for further research.
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1.3 The use of patent data and non-patent references as indicator to study
science-technology interactions

There is a long history of using patent data to understand and assess invention and
innovation dynamics in both economics and science and technology studies (e.g.
Schmookler, 1966; Jaffe, 1986; Griliches, 1990). While patent based indicators indeed
have limitations — not all inventions are being patented, while at the same time the
propensity to patent differs among industries — addressing issues of (sources of)
economic growth, the competitive position of countries or companies and the
dynamism of industrial structures, requires a profound insight into patterns of
(differential) inventiveness. In this respect patent databases, and the indicators derived
from it, are still one of the prime information sources given their coverage,
transparency and accessibility. Griliches’ observations — when surveying the state of the
art on patent statistics 20 years ago — still seem to hold: “in this desert of data, patent
statistics loom up as a mirage of wonderful plentitude and objectivity” (Griliches, 1990,

p. 1661).

Not only have patent indicators become more and more institutionalized (see for
instance OECD, 2001; NSF; EC Science and Technology Indicator Report), over the last
decade one has witnessed refinements in terms of the use of patent indicators to assess
technological activities and to examine relationships with (economical) performance.
Important evolutions relate to the use of (patent) citations to differentiate the value of
patents (Trajtenberg, 1987) as well analysing and mapping non-patent references —
most of which are references to the scientific literature — found within patent
documents (Narin & Noma, 1985; Collins & Wyatt, 1988; Van Vianen, Moed & Van Raan,
1990; Narin & Olivastro, 1992; Schmoch, 1993; Narin, Hamilton & Olivastro, 1997,
McMillan, Narin & Deeds, 2000). These latter approaches can be related directly to the
rising popularity of integrative notions like (1) scientific networks (Steinmueller, 1994;
David, Foray & Steinmueller, 1997; Pavitt, 1997), (2) strategy and its concomitant
structural analysis of industries and competitors (Porter, 1995), (3) evolutionary
economic thinking (Nelson, 1995) and (4) a new vision on industry, academia and

government interactions as encompassed by the ‘Triple Helix’ model (Etzkowitz &

11



Leydesdorff, 1997 and 1998; Leydesdorff & Etzkowitz, 1996 and 1998), as described in
the first section of this introduction. Innovation effectiveness is conceived to an ever
larger extent as stemming from (networks of) interactions unfolding amongst a variety
of actors. These include companies as well as knowledge generating institutes like
universities, while government agencies enact framework conditions in which such

interactions can evolve effectively.

These conceptions of innovation dynamics almost naturally led to efforts to delineate
and develop indicators that — at least partially — grasp the complex set of interactions
between both activity realms. Among the potential candidates, the nature of references
found in patent documents has received considerable attention. Whereas the
pioneering work of Jaffe, Tratjenberg and Henderson (for an overview, see Jaffe &
Tratjenberg, 2002) focused on the role of patent references and citations (e.g. as an
indication of the value of patents), Narin and his colleagues pioneered the role and
possible contribution of non-patent references. Studies in this field have been
investigating the nature of the science-technology interaction that is implied by a
citation link (e.g. Narin & Noma, 1985), the role of public science for developing
technology (Narin, Hamilton & Olivastro, 1997), or still the frequency and nature of
occurrence of such interactions in new emerging technology domains (Van Viaenen,
Moed & Van Raan, 1990; Meyer, 2000; McMillan, Narin & Deeds, 2000; Verbeek,
Callaert et al., 2002).

1.4 Insearch of additional indicators for more direct science-technology
interactions

Although non-patent references can be used to study science-technology interactions at
the macro level, this indicator falls short to describe direct science-technology
interactions at the micro level. Meyer (2000), based on a limited number of patent
cases studies, concludes that non-patent references should not be interpreted as
signalling a direct — and unidirectional — link or influence from science to technology as
sometimes suggested by the rhetoric of advocates who depict non-patent references as

an indicator of science-technology interactions.

12



Tijssen (2001) points in a similar direction: non-patent references should not be seen as
reflecting scientific sources leading directly to the invention, but rather be considered a

general indicator of ‘interaction’” between science and technology (Tijssen, 2001, p. 39).

This is of particular interest for studies on the presence of an anti-commons effect
where the identification of direct relations between scientific developments and patent
protection is crucial. For small samples, manual matching can be used (e.g. Murray &
Stern, 2007), but direct matching of patents and scientific publications requires specific
methods when large samples are desired. An example of a current approach is matching
patent inventor names and patentees with publication author names and affiliations to
identify individual science-related patents. However, this approach is not easy to
implement on a large scale: patentee name matching requires name cleaning and
addressing problems of name changes, name variants and organization entity resolution
(from research groups to faculties/departments and institutions/universities); inventor
name matching requires dealing with homonyms and first names and middle names and
initials. On top of that, inventor/author matching does not do the job alone as scholars
can be very active in both patenting and publishing and these activities do not
necessarily take place in the same research or technology (sub)field. Additional
information is needed to identify direct relationships between a single patent and

publication.

Developing new methods for the identification of direct science-technology interactions
for larger scale studies of the presence of an anti-commons effect is a particular

challenge and deserves further attention.
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2 Research questions and overview of the dissertation.

What gets us into trouble is not what we don't know.
It's what we know for sure that just ain't so.
Mark Twain

2.1 Core topic : Importance and (potentially negative) consequences of
science-intensive patents

In the introduction chapter we pointed already to the importance of science-technology
interactions for the scientific and technological development and welfare creation. The
interplay between technological and scientific realms is increasingly considered as
essential for being effective in terms of knowledge creation, technology development
and its translation into economic activity, especially for new emerging, knowledge
intensive fields of economic activity (Gibbons, Limoges et al., 1994; Meyer-Krahmer,

2000; Tijssen, 2001).

In this dissertation we want to elaborate on the importance and especially the
(potentially negative) consequences of the science-intensity of patents as one aspect of
the phenomenon of science-technology interactions and ‘scientification’ of
technological development. First we want to study the impact of the science-intensity of
patents on the effectiveness of technological development to shed some light on the
importance of science-intensity of patents. To the extent that there is a positive
relationship between science-intensity of patents and technological development,
strategies or policies to increase the science-intensity of patents makes sense and
should be reinforced. One way to do so is to stimulate direct interactions between
academia and industry and embrace the model of the ‘entrepreneurial university’ (see

introduction chapter).
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At the same time we must not be blind for potential pitfalls and recognize the threats of
increasing commercialization of scientific activities and introduction of intellectual
property rights in scientific activities. As described in the introduction chapter, most
empirical evidence however reports a positive relationship between patenting activities
of universities and publication outcomes, but the potential presence of an anti-
commons effect, limiting scientific progress in the long-term, remains an open topic for
discussion. Hence, in this dissertation we also want to check for the presence of an anti-
commons effect as potential negative consequence of science-intensive and academic

patenting.

The latter however requires the development of new techniques or methodologies to
identify direct science-technology interactions as present indicators and techniques fall

short to efficiently identify patent-publication matches on a large scale.

2.2 Data : Biotechnology patents and publications

We choose biotechnology as field under study throughout this dissertation because it is
an active field creating big expectations in terms of development of new economic
activities and welfare creation, and because it can be labelled as an industry in which
the interplay between science and technology is important. From the seventies onwards
scientific findings have been playing an important role within the industry (McMillan,
Narin & Deeds, 2000) resulting as well in numerous studies focusing on the role of
collaboration and networking (Deeds & Hill, 1996; Baum, Calabrese & Silverman, 2000;
Rothaermel & Deeds, 2004), including science-technology linkage which is particularly
strong in this field (e.g. Narin & Noma, 1985; Murray, 2002; Verbeek, Callaert et al.,
2002).

As stated by Heller and Eisenberg (1998), patent anti-commons could prove more
intractable in biomedical research than in other settings because of the importance of
patents for the biotechnology industry, the lack of substitutes for certain biomedical
discoveries (rivals may not be able to invent around) and the heterogeneity of interests
and resources among public and private patent owners. This makes biotechnology a

highly relevant choice as data source for our research questions.
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Datasets used across the distinct parts of this dissertation vary but start from a common
selection process to compile a large and exhaustive set of biotechnology patents and
publications for a broad range of countries and years. We select EPO and USPTO
biotechnology patents from PATSTAT (EPO Worldwide Patent Statistical Database)
based on the WIPO International Patent Classification system using the OECD
biotechnology classification (OECD 2005 and 2009) and we select biotechnology
publications from the WOS database (Thomson Reuters ISI Web of Science) based on

the subject areas as defined by the Web of Science

2.3 Research question 1 : Relation between science-intensity of patents and
technological development

One aspect of science-technology interactions is the ‘scientification” of technological
development and increasing science-intensity of patents. One way to observe this
phenomenon is by looking at the number of non-patent references pointing to scientific
literature: the number of non-patent references doubled for USPTO biotechnology
patents from 1991 to 2005. As mentioned in the introduction chapter, these references
must not be seen as a direct link from science to technology, but are nevertheless an
indication of science-technology interaction. The presence of scientific research in the
‘prior art’ description of a patented invention is seen as an indicator of the ‘distance’
between scientific findings on the one hand and technology development on the other
hand. As references to be found in patents are a reflection of prior art, more references
towards science fields signal more relevant prior art derived from scientific sources.
While this does not equal a unidirectional, influencing or contributing, link from the
cited paper towards the citing patent, it is clear that the more scientific references are
considered relevant for assessing and contextualizing the claims made within the

patent, the closer the technology is situated to scientific activity.

Studies addressing the relationship between science-intensity of patents — as measured
by the amount of non-patent references — on the one hand and the effectiveness of
technology development on the other hand are not frequent to be found. At a country
level, Van Looy, Zimmermann et al. (2003) examined the relationship between the

science-intensity of patents and technological performance (productivity, revealed
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technological advantage). Positive relationships have been observed for so-called high
tech domains like biotechnology, pharmaceuticals, organic fine chemistry and
semiconductors, while for other domains — including chemistry, food chemistry,
measurement and control technology but also telecommunications — no relationship
was found. These observations led the authors to conclude that the relevancy of
science-intensity when developing technology is a domain specific phenomenon (see in

this respect also Narin & Olivastro, 1992, and Grupp & Schmoch, 1992).

At the same time it can be observed that within the aforementioned analysis, indicators
pertaining to the scientific capabilities of a country have not been taken into account.
As such, the observed positive relationships might stem from the presence of scientific
capabilities; in this case one would merely be counting ‘spillover’ effects that could be
assessed equally by established bibliometric indicators pertaining to scientific

publications.

In this dissertation we want to contribute to the research on the effects of science-
intensive patents and want to address following research question: does the science-
intensity of patents — as measured by the amount of non-patent references — relates to
technological performance at the country level when scientific capabilities are brought

into the question?

Based on a large set of biotechnology patents and publications of 20 countries, we
investigate the relationship between science-intensity of patents (measured by the
amount of non-patent references) and technological productivity (measured by the
number of patent grants divided by the total population) controlling for scientific
productivity (measured by the number of scientific publications divided by the total

population).

2.4 Methodological part : Assessment of Latent Semantic Analysis (LSA) text
mining techniques to map patent and scientific publication documents

To the extent that there is a positive relationship between science-intensity of patents

and technological development, and hence general welfare creation, we want to check
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for the presence of an anti-commons effect due to the ‘scientification’ of technological

development.

As mentioned in the introduction chapter, a major challenge for the study of the
presence of an anti-commons effect, and in studies on science-technology interactions
in general, is the identification of science-related patents in general and the
identification of scientific results protected by intellectual property rights (IPR) in
particular to understand the magnitude and characteristics of the phenomenon. For
broader or high-level studies at the level of countries, sectors or technologies, the
matching of non-patent references with databases with bibliographic data or scientific
publications might yield valuable insights. For more low-level studies or direct science-
technology interactions, current approaches involve the use of the number of non-
patent references on patent documents, or, as described in the previous introduction
chapter, matching patent inventor names and patentees with publication authors and
affiliations. The former approach based on the number of non-patent references is easy
to conduct on a large scale but suffers from the vagueness of the value of a non-patent
reference as an indicator of science-intensity or science-relatedness (see introduction
chapter and e.g. Callaert, Van Looy et al., 2006). The latter approach based on patentee
and inventor name matching allows identification of direct interactions, but is not easy

to implement on a large scale as described in the introduction chapter.

A promising new approach involves text mining to directly match text documents based
on their contents to find patent and publication documents that are related by the
topics they address, the methods they use, the results they obtain and the inventions or
discoveries they address, as this might allow (semi)-automated compilation of large
datasets based on content similarity. In general this could be instrumental for, amongst
others, domain studies, trend detection/emerging field detection and science-
technology linkage and thus contribute to technology and innovation research. At this
moment, we are particularly interested in this text mining approach to identify patents
related to scientific publications based on their shared contents and especially to check

for documents with identical contents to identify scientific publications protected by
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patents, allowing to compile large datasets to check for the presence of an anti-

commons effect.

In this dissertation we want to contribute to the development of new techniques and
indicators to detect links between patents and scientific publications. We conduct a
thorough assessment of the Latent Semantic Analysis (LSA) text mining method and its
options (pre-processing, weighting, ...) to grasp similarities between patent documents
and scientific publications. We want to assess effectiveness (in terms of precision and
recall) and derive best practices on weighting and dimensionality reduction for
application on patent data, given the technical and juridical nature and hence different

linguistic context of patent and scientific publication documents.

The results of this methodological part will be used for the identification of patent-
publication pairs as input for the part devoted to our second research question about

the presence of an anti-commons effect.

2.5 Research question 2 : In search of anti-commons evidence

As stated in the introduction chapter, the presence of an anti-commons effect is not
favourable for long-term technological and scientific development. Further
development of entrepreneurial universities risks to trade in long-term scientific
development for short-term benefits of science-technology interactions. The blocking
power of patent holders on knowledge from a scientific nature might prune promising
new scientific development paths based on existent knowledge, radically changing the

way science developed over the last centuries.

In this dissertation we want to contribute to the research on an anti-commons effect
and want to address following research question: are scientific publications from which
the contents is part of a patent application less used, on average, in further
technological and scientific developments compared to scientific disclosure not

protected by intellectual property rights?

Again based on a large set of biotechnology patents and publications we first identify

patent-publication pairs, i.e. scientific publications from which the content (subject,
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methodology, findings, discovery) is subject of a patent application. Next we compare
forward citation rates of those patents and publications involved in patent-publication

pairs with patents and publications not involved in patent-publication pairs.

2.6 Overview of the dissertation

After this introduction and overview part we continue with a first empirical part
devoted to our first research question: chapter 3 contains the starting point of our
journey and examines the impact of the science-intensity of patents on the
technological performance of countries in the field of biotechnology using non-patent

references as indicator of science-intensity.

Because of limitations of current indicators and methods like non-patent references and
inventor name matching, we continue with a methodological part devoted to the
development of new techniques and indicators to detect (direct) links between patents
and scientific publications: chapter 4 contains a brief introduction to text mining and
the Latent Semantic Analysis (LSA) method. Next we present the results of an
explorative study of the use of LSA to detect similarity between patent documents and
scientific publications for small datasets (individual academic inventors) in chapter 5
and continue with the results of large-scale assessment of LSA to map patent and
scientific publication documents and derive a method for the identification of patent-
publication pairs in chapter 6. This methodological part is instrumental for our final goal

to detect anti-commons evidence.

Next we move to the second empirical part devoted to our final research question
about potential pitfalls: chapter 7 contains the analysis of citation flows of patent-

publication pairs to search for evidence of an anti-commons effect.

We finalize this dissertation with a part with summary and conclusions and directions
for further research: chapter 8 contains conclusions on the methodological part and

chapter 9 and on the empirical part.
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EMPIRICAL PART I :
IMPACT OF SCIENCE-INTENSITY OF PATENTS

29



3 Developing technology in the vicinity of science : An
examination of the relationship between science-
intensity of patents and technological productivity
within the field of biotechnology3.

There are no such things as applied sciences, only applications of science.
Louis Pasteur

3.1 Introduction

The starting point of this dissertation is the question about the impact of the science-
intensity of patents on technological development. Studies addressing the relationship
between science-intensity of patents — as measured by the amount of non-patent
references — on the one hand and the effectiveness of technology development on the
other hand are less frequent to be found. At a country level, Van Looy, Zimmermann et
al. (2003) examined the relationship between the science-intensity of patents and
technological performance (productivity, revealed technological advantage). Positive
relationships have been observed for so-called ‘high tech’ domains like biotechnology,
pharmaceuticals, organic fine chemistry and semiconductors, while for other domains —
including chemistry, food chemistry, measurement and control technology but also
telecommunications — no relationship was found. These observations led the authors to
conclude that the relevancy of science-intensity when developing technology is a
domain specific phenomenon (see in this respect also Grupp & Schmoch, 1992; and

Narin & Olivastro, 1992).

At the same time it can be observed that within the aforementioned analysis, indicators
pertaining to the scientific capabilities of a country have not been taken into account.

As such, the observed positive relationships might stem from the presence of scientific

* The study as described in this chapter has been published in Scientometrics (Van Looy, Magerman &
Debackere, 2007).

30



capabilities; in this case one would merely be counting ‘spillover’ effects that could be
assessed equally by established bibliometric indicators pertaining to scientific
publications. Hence, in order to assess the relevancy of using non-patent references as
an (additional) indicator to explain differences in technological performance, further
analysis — whereby scientific capabilities are taken into account —is required. It is in this
area that we want to situate this contribution. Within the biotechnology domain —
identified as a field in which the relationship between science and technology is
intimate (see for instance, McMillan, Narin & Deeds, 2000; and Van Looy, Zimmermann

et al., 2003) — the following research questions are being addressed:

- Does the science-intensity of patents — as measured by the amount of non-patent
references — relates to technological performance (country level) when scientific
capabilities are brought into the equation?

- If the relationship between scientific capabilities and technological activity over time
is to be conceived as bi-directional, what role does science-intensity play in this

respect?

Within this chapter we analyse biotechnology patents granted within the USPTO patent
system covering the time period 1992-2001. In line with the concept of national
innovation systems, countries are acting as the unit of analysis (Nelson, 1993). In the
next section we discuss the concepts and indicators used within this analysis, which will
allow us to present and discuss the findings obtained. However, before turning to the
empirical analysis, we first discuss in more detail the nature of non-patent references

found within patents as these references play a central role in the analysis undertaken.

3.2 A closer look at non-patent references

As became clear in the introduction chapter, considerable attention has been paid
recently to the analysis of non-patent references. At the same time, some concerns
about the exact meaning of these references have been uttered. Meyer (2000a), based
on a limited number of patent cases studies, concludes that non-patent references

should not be interpreted as signalling a direct — and unidirectional — link or influence
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from science to technology, as sometimes suggested by the rhetoric of advocates who

depict non-patent references as an indicator of science-technology interactions.

Tijssen (2001) points in a similar direction: non-patent references should not be seen as
reflecting scientific sources leading directly to the invention, but rather be considered a
general indicator of ‘interaction’ between science and technology (Tijssen, 2001, p. 39).
A closer look at the specific role references to prior art play within the patent
application is in this respect highly informative. Within the next paragraphs we focus on
the USPTO legislation and procedures as the data used within this analysis pertain to
USPTO. For an exhaustive overview with an emphasis on EPO, we refer to Michel &
Bettels (2001). At the same time, it can be noticed that the main difference between
both systems with respect to citing prior art relates to the amount of references to be
found - due to different disclosure obligations imposed on applicants - rather than its

nature.

Patents are documents issued by an authorized governmental agency which grants the
applicant the right to exclude others to produce or use a specific new device, apparatus
or process for a limited time period. Patents are granted to the applicant/assignee after
an examination that focuses on the novelty, inventive activity and industrial
applicability. During the granting process, patent examiners review the prior art
pertaining to the invention. While applicants are obliged — within the USPTO
examination process — to provide an overview of all known relevant prior art - which
can be either patents or other written documents - patent examiners do not limit
themselves to the prior art signalled by inventors and/or applicants. Based on
information, archives and databases available, patent examiners in the end decide
which references are relevant to assess the claims made. The examiners references are
used to decide on granting, including restricting claims, and are to be found on the front
page of patent documents, besides information pertaining to the invention, assignee(s)
and inventor(s). These references do not necessarily coincide with references provided
by the applicant; references provided by the applicant can be omitted while examiners

might add additional references as well.
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Stated otherwise, front page references as found in patent documents are being
introduced during the examination process for the purpose of evaluating the novelty
and inventiveness of the claims and their applicability, including contextualizing the
claims that are being made. As can be read in the patent examining procedure manual,
“The basic purpose for citing prior art in patent files is to inform the patent owner and
the public in general that such patents or printed publications are in existence and
should be considered when evaluating the validity of the patent claims. Placement of
citations in the patent file along with copies of the cited prior art will also ensure
consideration thereof during any subsequent reissue or re-examination proceeding.”
(Manual of Patent Examining Procedure, USPTO, italics added; see also, 35 U.S.C. 301
and 37 CFR 1.501).

It is clear that the specific role of references within patent application procedures is to
some extent different from the role references or citations play within scientific
publications. Within articles, references indicate sources of influence or serve as
reference points to delineate differences (novelty). At the same time, references to
previous work in scientific publications are introduced by the authors (sometimes with
some support of reviewers), implying in general that the cited references are known to
the author(s) and hence have had a certain influence on the genesis of the ideas and
insights developed within the article or paper. This clearly is not necessarily the case for
the front page references to be found within patent documents. References might be
added by examiners without the applicants being aware of their presence or without
this knowledge having influenced in any way the creation of the invention, as

documented recently by Meyer (2000a) and Tijssen, Buter & Van Leeuwen (2000).

Against this background, a citation is perceived here as a bit of information linking two
different documents. The presence of scientific research in the ‘prior art’ description of
a patented invention is seen as an indicator of the ‘distance’ between scientific findings
on the one hand and technology development on the other hand. As references to be
found in patents are a reflection of prior art, more references towards science fields
signal more relevant prior art derived from scientific sources. While this does not equal

a unidirectional, influencing or contributing, link from the cited paper towards the citing
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patent, it is clear that the more scientific references are considered relevant for
assessing and contextualizing the claims made within the patent, the closer the
technology is situated to scientific activity. As such it can be noticed that some of the
debate around the nature and meaning of non-patent references arises from neglecting
the precise role non-patent references fulfil within the patent procedure. Rather than
equalling non-patent references as signalling direct or unidirectional influences -
contributing to the genesis and development of the invention at hand - they are part of
the context in which the patent and its claims are to be situated. Hence, the more
scientific references are to be found within patents, the more technology development
is considered here as situated in the neighbourhood or vicinity of scientific

developments.

Indicators reflecting the amount of non-patent references can be grasped through
directly available and accessible data sources. More specifically, we use the amount of
non-patent references as found within published USPTO patent documents (so called
‘other references’) as an indicator of the science-intensity or science proximity of

patents.”

3.3 Data sources and indicators used

Delineating the biotechnology domain

As stated before we take biotechnology as science and technology field under study
because of the importance of the field and the presence of a strong interplay between
science and technology. In order to select relevant patents we build further on previous
research efforts focusing on the biotechnology industry. To retrieve all relevant
biotechnology patents, we use the search strategy developed in the biotechnology
domain study of the Steunpunt O&O Statistieken (Glanzel, Meyer et al., 2003). This
search strategy takes the OECD definition of the biotechnology area - which draws on

five different patent classes of the International Patent Classification - as a starting point

* A detailed content analysis of 10,000 non-patent references reveals that about 60% of these references
are references towards scientific journals (see Callaert, Van Looy et al., 2006). The remainder relates to
books, company reports, databases and the like. At the same time, the correlation between the number
of non-patent references and the number of journal references nearly equals 1, allowing to use the
frequency of occurrence of non-patent references to address the research questions outlined.
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(OECD, STI Scoreboard 2001: 32; see also Van Beuzekom, 2001). This search is extended
with two IPC subclasses which the Fraunhofer Classification Scheme includes as
biotechnology-relevant: C07G (Compounds of unknown constitution) and C12R
(indexing scheme related to subclasses C12C to C12Q or C12S, related to micro-
organisms). In addition to the WIPO International Patent Classification scheme, the US
Patent and Trademark Office (USPTQ) uses its own classification scheme. Based on the
US classification, Jaffe and his colleagues at NBER set up an alternative classification
scheme to the IPC-based Fraunhofer classification (e.g. Hall, Jaffe & Trajtenberg, 2001)
which also allows identifying biotechnology related patents. In accordance with this
NBER classification scheme, the US patent classes 435 and 800 were added to the
search strategy to delineate biotechnology from other US patents. Equipped with these
datasets, validation interviews were carried out with a number of field experts
confirming the overall validity of the approach. Appendix 3-1 provides more details

about the search keys used for patents.

As for publications, data retrieval is based on 9 relevant subject categories provided
within the framework of the WOS SCI Expanded database (Thomson Reuters ISI Web of
Science): DE ‘PLANT SCIENCES’; CO ‘BIOCHEMICAL RESEARCH METHODS’; CQ
‘BIOCHEMISTRY and MOLECULAR BIOLOGY’; DA ‘BIOPHYSICS’; DB ‘BIOTECHNOLOGY and
APPLIED MICROBIOLOGY’; QU ‘MICROBIOLOGY’; DR ‘CELL BIOLOGY’; KM ‘GENETICS and
HEREDITY’; and HY ‘DEVELOPMENTAL BIOLOGY’. All articles, letters, notes and reviews

published in journals classified in those subject categories are retrieved.

For the time period 1992-2001, this resulted in a total number of 51,460 USPTO
granted patents and 967,188 WOS publications.

Technological and scientific productivity
As an indicator of technological performance we use technological productivity. In order
to obtain this indicator, the yearly number of granted patents by country applied for

during the time period 1992-1999 is divided by the total population.” As data were

> At the same time, we conducted a parallel analysis using technological performance as measured by the
total number of patents (logarithmically transformed) and using population figures as independent

35



retrieved in 2002, patents granted during the time period 2000-2001 have been
omitted from the analysis as for these years the diminishing number of granted patents
— due to the time delays implied by the granting process — might considerably affect the

relationships examined.

It can be noted that the concept of technological productivity would be more accurately
depicted by dividing the number of patents by the total amount of R&D expenditures
within the field, or other input-related indicators (e.g. number of engineers or
researchers). While this is undoubtedly the case, the variety of disciplines and industries
involved as well as the lack of reliable data — at the country level — on R&D expenditures
and other input-related indicators that are to be attributed unambiguously to
biotechnology activities prevented such an approach. For the analysis reported in the
following section, logarithmic transformation of the technological productivity variable

has been applied in order to obtain a normal distribution.

All patents are grouped by country based on the nationality of the patent assignee.® In
the case of co-patenting involving multiple countries, full counts are applied for all
countries involved. Whereas patent data retrieved relate to patents granted during the
time period 1992-1999, we will use the application year of the patents within the
analysis. Given that the time period between applying and granting averages between 2
and 3 years, application dates are preferred to assess the relationship with scientific
capabilities. With respect to this latter, the total number of scientific publications — as
retrieved from WOS — within biotechnology is aggregated by country. Also here, in the
case of co-authored papers implying different countries, full counts are been applied. In
order to examine the relationship between technological performance and scientific
capabilities, patent indicators reflecting technology activity at moment TO (application

date) are related to scientific capabilities as measured at T1 to account for the delays

variables. Such an analysis reveals similar results as obtained here with respect to the relationships
between technological productivity, scientific productivity and science-intensity (see Appendix 3-2).

® As outlined by Dernis, Guellec & Van Pottelsberghe (2001) one could opt for allocating patents to
countries based on the nationality of the assignees and/or on the nationality of the inventors. While both
approaches have their advantages and disadvantages, we opted for assignees in order to be congruent
with the allocation process for publications which is based on the nationality of the affiliated institution.
In addition it can be noted that data obtained by adopting both approaches correlate high (e.g. r =0.99, p
< 0.001 for the country level data pertaining to 1994 reported by Dernis, Guellec & Van Pottelsberghe).
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observed in publications.” Also this variable has been transformed in order to obtain a

normal distribution.

Science-intensity

In order to assess the science proximity of patents, the number of non-patent citations
retrieved in patent documents is used here as a measure of the distance (or closeness)
between science and technology development (see also Schmoch, 1997). For each year
and country, average values are calculated.® As became clear above and similar to the
majority of studies that investigate the link between science and technology, we make
use of so-called USPTO front-page references. While it could be argued that the analysis
undertaken might benefit from including applicant given references (see for instance
Meyer, 2000b), their present unavailability within the database does not allow for
inclusion.? Hence, the analysis includes all examiner given references — to be found on
the front page — which include in most cases a considerable amount of applicant

references.

3.4 Results

Applying the search keys for patents and publications resulted in a dataset covering 20

countries'® demonstrating technology and scientific activities on a yearly base during

" An analysis with a time lag of two years yielded similar results as the ones reported here. As pointed out
by one of the reviewers, both for Canada and the USA, the time lag might be less due to the fact that
applicants tend to apply first in their country of origin. In order to assess whether this phenomenon
would affect the results obtained we also performed an analysis implying a differentiated time lag (USA
and Canada versus all other countries) of one year. These analysis differed from the ones presented here
only marginally in absolute terms and did not result in any change of the nature of the relationships found
nor the significance levels obtained.

® This variable has not been transformed as it is normally distributed. We also performed an analysis with
a logarithmical transformed version of this variable; this yielded similar results as the ones reported
further on in the study.

° Whether or not big differences would result from using either source remains to a large extent unclear.
While the social processes in which applicant and examiner’s roles are embedded might justify expected
differences, empirical work that demonstrates these differences remains scarce. A detailed analysis of
citations made in a sample of 366 patents in the genetic field (time period 1980-1985) by Collins & Wyatt
(1988) revealed no major differences with respect to citations given by examiners and applicants. Also the
recent analysis of Meyer (2000a) indicates that the majority of applicant given references tend to be
included in the references assigned by examiners.

% In total biotechnology patents were found for over 50 countries; within this analysis we only used
country data if patent activity was to be observed throughout the whole time period considered (1992—
1999).

37



the time period covered (1992-1999). Table 3-1 provides an overview of summary
statistics related to the key indicators by country. Science-intensity reflects the average
number of non-patent references found within patents; scientific and technological
productivity is expressed in terms of number of publications and patents per million
inhabitants. For technological and scientific productivity a logarithmic transformation is

performed in order to obtain a normal distribution.

Table 3-1: Descriptive statistics. Science-intensity, Technological productivity and
Scientific productivity by country

SCIENTIFIC TECHNOLOGICAL
SCIENCE-INTENSITY PRODUCTIVITY PRODUCTIVITY
Std Std Std

Country Mean dev N Mean dev N Mean dev N
Austria 1481 416 8 101.82 21.17 8 1.13 042 8
Australia 1472 542 8 138.18 18.39 8 194 111 8
Belgium 1132 356 8 14530 19.13 8 210 178 8
Canada 2412 490 8 150.59 5.09 8 3.08 123 8
Switzerland 11.10 339 8 277.56 2851 8 524 174 8
Germany 1132 238 8 101.70 1390 8 195 071 8
Denmark 10.25 312 8 232.76 26.06 8 10.80 490 8
Spain 817 530 8 64.55 2793 8 0.14 0.08 8
Finland 2247 831 8 149.40 63.08 8 234 098 8
France 1144 299 8 116.10 1045 8 202 111 8
Great Britain  15.14 531 8 159.03 12,65 8 225 088 8
Israel 1881 8.19 8 197.35 13.13 8 390 119 8
Italy 598 270 8 6730 8.01 8 038 0.19 8
Japan 6.65 1.06 8 7830 801 8 282 063 8
Korea 6.23 246 8 23.28 1251 8 039 015 8
Netherlands 13.60 4.10 8 179.79 1188 8 408 146 8
Norway 1223 483 8 135,53 1791 8 099 041 8
Sweden 1722 866 8 255.94 2430 8 231 103 8
Taiwan 1265 799 8 31.43 6.43 8 0.45 029 8
USA 23.53 4.07 8 12359 740 8 9.08 347 8
Total 13.59 7.15 160 136.48 70.39 160 2.87 3.12 160

Science-intensity: Average amount of non-patent references found within patent
documents;

Scientific Productivity: Average amount of scientific publications (within the field of
biotechnology) normalized by population (divided by million inhabitants);

Technological Productivity: Average amount of patents (within the field of biotechnology)
normalized by population (divided by million inhabitants).

As Table 3-1 makes clear one observes considerable differences between countries for

all three variables. Science-intensity is highest for Canada, the United States of America,
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Finland, Sweden and Israel. Considerable lower levels are observed for Spain, Italy,
Korea and Japan. In terms of scientific productivity, Switzerland, Sweden and Denmark
are ranked in the top 3; Taiwan, Korea, Italy, Japan and Spain are characterized by
productivity levels which are three to five times lower. These differences are
remarkably as they do not coincide systematically with English being a native language
within these countries. In terms of technological productivity, Denmark and the USA
display the highest figures, followed — although at a distance (50%) — by Switzerland and
the Netherlands. Low levels of technological productivity can be observed for Spain,

Italy, Korea, Taiwan and Norway.

Table 3-2 complements these data by providing an overview of the correlations
observed between the variables. One observes positive, significant relationships
between technological and scientific productivity; at the same time science-intensity

correlates positively with both productivity indicators.

Table 3-2 : Correlations between Scientific productivity, Technological productivity and
Science-intensity

Application Scientific Technological Science-
year productivity productivity intensity
L. Pearson Corr 1 0.147 0.11 -0.041
Application . .
year Sig (2-tailed) 0.065 0.168 0.609
N 160 160 160 160
L Pearson Corr 0.147 1 0.683** 0.255**
Scientific Sig (2-tailed 0.06 0 0.001
productivity ig (2-tailed) 065 ‘
N 160 160 160 160
. Pearson Corr 0.11 0.683** 1 0.399**
Technological Sia (2-tailed 0.168 0 0
productivity ig (2-tailed) ‘
N 160 160 160 160
. Pearson Corr -0.041 0.255** 0.399** 1
sclence- Sig (2-tailed 0.609 0.001 0
intensity ig (2-tailed) ' '
N 160 160 160 160

** Correlation is significant at the 0.01 level (2-tailed).

Within a next step, partial correlations have been calculated relating the different key
constructs one by one controlling for application year and the third key variable. Table
3-3 summarizes the results. While one observes again a positive relationship between
scientific and technological productivity as well as science-intensity and technological

productivity, the positive relationship between science-intensity and scientific
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productivity found without controlling for technological productivity disappears. Stated
otherwise, the correlation observed between scientific productivity and science-

intensity can be attributed to the relationship between both variables and technological

productivity.

Table 3-3 : Partial correlations between Scientific productivity, Technological productivity
and Science-intensity

Scientific Technological Science-
productivity  productivity intensity

L Pearson Corr 1 0.647** -0.0173
Scientific Sig (2-tailed 0 0.829
productivity ig (2-tailed) '

N 160 160 160
. Pearson Corr 0.647** 1 0.320**
Technological Sig (2-tailed 0 0
productivity ig (2-tailed)
N 160 160 160

. Pearson Corr -0.0173 0.320** 1
sclence- Sig (2-tailed 0.829 0
intensity ig (2-tailed) ‘

N 160 160 160

** Correlation is significant at the 0.01 level (2-tailed).

The positive relationship between technological productivity on the one hand and
scientific productivity and science-intensity can be observed as well when performing a
regression analysis as Table 3-4 makes clear. Both scientific productivity and science-

intensity turn out to be positively related to technological productivity.

Table 3-4 : Regression model. Dependent variable: Technological productivity.
Independent variables: Scientific productivity, Science-intensity and Application year.

Model summary
R R? Adjusted R? Std. error of the estimate
0.722 0.521 0.521 0.35633

Coefficients

Unstandardized coefficients Standardized

coefficients t Sig.
B Std. Error Beta
(Constant) -13.579 24.880 -0.546  0.586
Science-intensity 173.7 0.004 0.243 4,232 0.000
Application Year 6490 0.012 0.029 0.502 0.604
Scientific Productivity 4468 0.000 0.617 10.619 0.000
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These findings allow answering the two research questions addressed in this chapter in
an affirmative way: science-intensity is positively associated with technological
performance. This positive relationship is to be found as well when bringing scientific
capabilities into the equation. Stated otherwise, countries in which patents include
more non-patent references display higher levels of technological activity. Notice that
the same relationship holds for scientific capabilities: higher (lower) levels of scientific

productivity coincide with higher (lower) levels of technological productivity.

Within a final analysis, we explore the relationship over time between the three
variables under study. In a first step, additional variables where introduced reflecting
technological and scientific productivity as well as science-intensity at T+2.'* Given the
limited number of variables, we calculated the partial correlation coefficients between
the variables in line with the path analysis logic outlined by Blalock (1961) (see also
Davis, 1985). Two observations are emerging: first of all evidence is found for the
mutual or bi-directional influence of scientific and technological productivity over time.
Whereas technological productivity at T+2 is largely associated with past technological
productivity (T), a positive and significant relationship with scientific productivity is
observed and vice versa. Second, the science-intensity of patents not only seems to be
a ‘path dependent’ phenomenon — as the positive relationship between science-
intensity at T and T+2 indicates — a distinctive and positive association with
technological productivity (T+2) can be observed as well. Again, these findings reveal
that the amount of non-patent references coincides with varying levels of technological
productivity. Stated otherwise; the more technology development is situated in the
vicinity of scientific developments, the higher technological productivity. This
relationship holds within the field of biotechnology — at a country level — even after

introducing scientific productivity into the analysis.

Figure 3-1 summarizes the obtained partial correlation coefficients whereby only
significant relationships are depicted.”> Two observations are emerging: first of all

evidence is found for the mutual or bi-directional influence of scientific and

' An analogous analysis has been conducted with T+3 variables, yielding similar results.
2 For the variables at T+2 all other variables (T and T+2) have been controlled for; while for variables at
moment T, partial correlations imply a correction for the third variable (at moment T) only.
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technological productivity over time. Whereas technological productivity at T+2 is
largely associated with past technological productivity (T), a positive and significant
relationship with scientific productivity is observed and vice versa. Second, the science-
intensity of patents not only seems to be a ‘path dependent’ phenomenon — as the
positive relationship between science-intensity at T and T+2 indicates — a distinctive and
positive association with technological productivity (T+2) can be observed as well.
Again, these findings reveal that the amount of non-patent references coincides with
varying levels of technological productivity. Stated otherwise; the more technology
development is situated in the vicinity of scientific developments, the higher
technological productivity. This relationship holds within the field of biotechnology — at

a country level — even after introducing scientific productivity into the analysis.

Figure 3-1 : Partial correlation coefficients Technological and Scientific productivity and
Science-intensity TO and T+2 (path analysis)

0.474
p=0.000 .
Science
Science > intensity
intensity T+2
0.258 03768
p=0.019 p<0.004
0.754
=0.000
‘ P Techgolc;gict:?\
Technological productivi
productivity T+2
r
0.609
p=0.000
A J
p=0.046
/ Scientific
Scientific | productivity
praductivity T+2
0.871
p=0.000
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3.5 Conclusions, discussion and directions for further research

The relationship between science and technology within the field of biotechnology
indeed reveals itself here as reciprocal and bi-directional rather than unidirectional or
linear while at the same time both activity domains deploy their own ‘internal’

dynamics (see e.g. Rip, 1992).

At the same time a distinctive relationship between science-intensity or science
proximity — as measured by the amount of non-patent references — and technological
productivity has been observed. These findings corroborate the construct validity of
indicators based on non-patent references found within patents. In addition, the
positive relationship between science-intensity - or stated otherwise, the closeness
between science and technology - and technological productivity, corroborates the
relevancy of policy frameworks that foster interaction between knowledge/science
generating institutions (universities, research centres) and technology producers

(companies).

These findings also suggest interesting avenues for further research. While we focused
on one specific field (biotechnology), refining the insights obtained in terms of their
field specific nature requires extensions towards other fields. Likewise, introducing
extended time frames would allow assessing whether differential effects are to be
observed related to technological life cycle dynamics (Abernathy & Utterback, 1978;
Andersen, 2001). Finally, extending the analysis to include other patent system and
different counting methods (see Guellec & Van Pottelsberghe, 2001) seems more than
worthwhile to pursue in order to assess the robustness or the peculiarities of the

findings obtained.

3.6 Limitations of the use of non-patent references to study direct science-
technology relationships and the need for additional methodological
research

Although non-patent references can be used as indicator of science-technology linkages
at an aggregate level, as used in this chapter, this indicator falls short to detect direct

science-technology interactions — as described in the introduction of this dissertation.
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Because of limitations of current indicators and methods, we continue with a
methodological part devoted to the development of new techniques and indicators to
detect (direct) links between patents and scientific publications. This methodological
part is instrumental for our final goal to look for the presence of an anti-commons
effect, an important potential drawback induced by increasing academic patenting —
one aspect of increasing science-technology interactions. In this methodological section,

we develop a new indicator for direct interactions based on text mining.
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Appendix 3-1: Search strategy for biotechnology patents.

The search strategy developed in the biotechnology domain study of the Steunpunt
O&O Statistieken is used (Glanzel, Meyer et al., 2003). The starting point of that search
key is the OECD definition of the biotechnology of 2001 (OECD, ST/ Scoreboard 2001 : p.

32; see also Van Beuzekom, 2001) based on following 5 IPC subclasses:

e C12M : Apparatus for enzymology or microbiology;

e CI12N: Micro-organisms or enzymes; propagating, preserving, or maintaining micro-
organisms; mutation or genetic engineering; culture media;

e (C12P: Fermentation or enzyme-using processes to synthesise a desired chemical compound
or composition or to separate optical isomers from a racemic mixture;

e (C12Q: Measuring or testing processes involving enzymes or microorganisms; compositions
or test papers therefore; processes of preparing such compositions; condition-responsive
control in microbiological or enzymological processes;

e (C12S: Processes using enzymes or micro-organisms to liberate, separate or purify a pre-
existing compound or composition; processes using enzymes or micro-organisms to treat
textiles or to clean solid surfaces of materials.

Furthermore, two subclasses which the Fraunhofer Classification Scheme includes as
biotechnology-relevant were added: CO7G (Compounds of unknown constitution) and
C12R (indexing scheme related to subclasses C12C to C12Q or C12S, related to micro-

organisms).

In addition to the WIPO International Patent Classification scheme, the US Patent and
Trademark Office (USPTO) uses its own classification scheme. Based on the US
classification, Jaffe and his colleagues at NBER set up an alternative classification
scheme to the IPC-based Fraunhofer classification (e.g. Hall, Jaffe & Trajtenberg, 2001).
Also their classification allows to identify biotechnology related patents. In accordance
with this NBER classification scheme, the US patent classes 435 and 800 were added to
delineate biotechnology from US patents. There are few differences between USPTO
patents retrieved through IPC classes and the set of USPTO patents that was defined
based on the US classification. As initial tests indicated, the IPC classification identified

8% more patents than the US patent classification.
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Based on these datasets, validation interviews were carried out with a number of field
experts from the Belgian and Flemish biotechnology industry and research. The
interviews confirmed the validity of the overall approach, in particular for fields of
‘modern biotechnology’. All important actors in the biotechnology area were identified.
However, the interviews also indicated certain fields were not covered to the extent the
experts consulted would have expected. In collaboration with them, additional IPC
subclasses were added to the search strategy, in particular in the area of health and
food-biotechnology. These areas are covered mainly by the subclasses A61K (health)
and A23C (food). In order to avoid the inclusion of non-biotechnology patents, the IPC

was not only used at the subclass-level but also at the group-level.

Table 3-5 gives an overview of the different search strategies in the biotechnology
domain. The broadest possible search strategy was used, encompassing patents after
the OECD, Fraunhofer, and NBER classification as well as additional classes and groups

as identified in the validation exercise.

Table 3-5: Overview of search strategy for biotechnology patents

Source Selected classes

OECD definition based on IPC classification C12M; C12N; C12P; C12Q and C12S

Fraunhofer classification C07G; C12M; C12N; C12P; C12Q; C12R and C12S
NBER based US patent classification 435 and 800 (OCL classes)

Additional IPC subclasses based on expert

. . A23C*; A23J*; A61K*; CO7H; C07J and CO7K
interviews

* For these 3 subclasses only a selection of main groups and subgroups were included. See the Domain
study of the Steunpunt O&O Statistieken for an exhaustive list of all IPC codes used (Gldnzel, Meyer et
al., 2003).
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Appendix 3-2 : Alternative regression model with

technological performance measured by the number of

patents as dependent variable and population as

independent variable.

Table 3-6 : Alternative regression model. Dependent variable: Technological performance
(log patents). Independent variables: Scientific productivity, Science-intensity, Application

year and population

Model summary
R R? Adjusted R Std. error of the estimate
0.865 0.749 0.742 0.34363

Coefficients

Unstandardized coefficients Standardized

coefficients t Sig.
B Std. Error Beta
(Constant) -11.180 24.839 -0.450 0.653
Application year 4218 0.012 0.014 0.340 0.734
Science Intensity 127.7 0.004 0.134 3.096 0.002
Population 6643 0.101 0.005 0.066 0.948
Scientific Capabilities 1.206 0.112 0.833 10.798 0.000
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METHODOLOGICAL PART :
IN SEARCH OF NEW METHODS TO DETECT SCIENCE-TECHNOLOGY LINKS
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4 Introduction to text mining, potential applications in
the field of innovation studies, and the Latent Semantic
Analysis (LSA) method.

The question of whether computers can think
is about as relevant as the question of whether submarines can swim.
Edsger W. Dijkstra

4.1 Text mining

Text mining refers to the automated extraction of knowledge and information from text
by means of revealing relationships and patterns present, but not obvious, in a
document collection. Text mining covers a broad field of tasks including text
categorization, text clustering, information extraction, sentiment analysis, document
summarization, named entity recognition and question answering and is an
interdisciplinary field based on artificial intelligence, natural language processing,
computational linguistics, information retrieval, data mining, machine learning and

statistics.™

Technological advances and large scale availability of computing power attracted a lot
of interest for text mining in recent years, together with the observation that the vast
majority of (electronically available) information is stored as (unstructured) text and not
in structured databases. Hence database technologies and knowledge discovery in
structured databases (data mining) alone will fall short to disclose knowledge and
information from available resources. Text mining techniques can help to reveal

knowledge and information from large text collections, disclosing data not available in

B For more information on the application of text mining and its relation to other fields and techniques,
see e.g. Hearst, 1999, or Fan, Wallace et al., 2006. For an overview of techniques, see Vidhya & Aghila,
2010.
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structured databases. Given the overwhelming amount of unstructured data recorded

as texts, text mining will become increasingly valuable for research.

It is important to stress that these text mining techniques go beyond information
retrieval. Information retrieval helps in finding information based on a user request, and
is it obvious that text mining techniques can help in improving this. As such, currently,
information retrieval is probably the biggest area of text mining application and related
techniques are widely used. Information retrieval in itself does however not discover
new knowledge or insights, it just reveals what is already known to somebody (and also

the user issuing the search request has to know what he is looking for)'.

Text mining does go one step further and is about knowledge discovery, revealing new
things that were not obvious to discover by humans. Nice illustrations are some cases of
a literature-based approach to scientific discovery by Swanson: fish oil and Raynaud’s
syndrome; migraine and magnesium; and somatomedin C and arginine (Swanson, 1986,
1988 and 1990). The second case e.g. describes the discovery of the relationship
between ‘migraine’ and ‘spreading depression’ on the one hand, and ‘magnesium’ and
‘preventing depression’” on the other hand after a thorough search into medical
literature on migraine, suggesting magnesium deficiency as a factor in migraine. Prior to
this remarkable discovery — Swanson is an information scientist, not a physician - there
was no indication of this relationship whatsoever; his results triggered additional clinical
research, confirming his suggestion™. These case studies can be regarded as pioneering
cases of text mining — when text mining as such did not even exist — and were at the
basis of formalized study to literature-based discovery — so called Swanson Linking

(Swanson & Smalheiser, 1997).

4.2 History

Quantitative linguistics dates back to at least the middle of the 19th century (see
Grzybek & Kelih, 2004). However, the classical theoretical work by Zipf (1949) is

considered pioneering in quantitative linguistic (or text) analysis. Since the 1970s, a

% For an elaboration on this issue, see Hearst, 1999.
B Ramadan, Halvorson et al., 1989
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remarkable increase in activity has been witnessed in this aspect of information science.
As for its application to scientific literature, Wyllys’s study (1975) is among the first. Co-
word analysis, one of the most frequent techniques, was founded on the idea that the
co-occurrence of words describes the contents of documents and was developed for
purposes of evaluating research (Callon, Courtial et al., 1983). The extension of co-word
analysis to the full texts of large sets of publications was possible as soon as large
textual databases became available in electronic form; also the increasing availability of
computational power allowed further emergence of text mining approaches. Manning
& Schitze (2000) provide a comprehensive introduction to the statistical analysis of
natural language; Berry (2003) provide a survey of text mining research; Leopold, May &
PaaR (2004) give an overview of data and text mining fundamentals for science and
technology research; and Porter & Newman (2004) introduced the term ‘tech mining’ to
text mining of collections of patents on a specific topic. Other practical applications in
the field of bibliometrics and technometrics are presented by Courtial (1994), Noyons,
van Raan et al. (1994), Bassecoulard & Zitt (2004), Leydesdorff (2004), Glenisson,
Glanzel et al. (2005) and Janssens, Leta et al. (2006).

4.3 Application in innovation studies

As described in the previous section, application of text mining techniques in innovation
studies is not new and can provide the necessary input for a complex research setup
that would be impossible or at least difficult (i.e. time consuming because of involved

manual data treatment) to conduct without text mining techniques.

As mentioned earlier, a first and more traditional application of text mining is in the
field of information retrieval (conducting patent or publication searches on
bibliographic databases). But text mining techniques also allow for a new range of

applications:

- Domain studies: starting from a set of ‘seed patents’ that are representative for a
technological domain, concepts and topics can be extracted and used to match with
concepts and topics of other patents to identify related patents and delineate

technological domains by a set of patents;
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- Trend detection / emerging field detection: Concepts and topics extracted from a
set of patent documents can be clustered over time to identify new domains or to
follow the evolution of a domain;

- Science-technology linkage: concepts and topics extracted of a set of patent
documents can be compared to concepts and topics extracted from a set of

scientific publications to reveal similarity between patents and publications.

In this dissertation we will focus on this latter application by comparing patents and

scientific publications to identify patents originated from scientific disclosure.

4.4 Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) was developed late 1980s at BellCore/Bell Laboratories

by Landauer and his team of Cognitive Science Research (Landauer & Dumais, 1997):

“Latent Semantic Analysis (LSA) is a theory and method for extracting and representing
the meaning of words. Meaning is estimated using statistical computations applied to a
large corpus of text. The corpus embodies a set of mutual constraints that largely
determine the semantic similarity of words and sets of words. These constraints can be

solved using linear algebra methods, in particular, Singular Value Decomposition."16

LSA is a mathematical and statistical approach, claiming that semantic information can
be derived from a word-document co-occurrence matrix and words and documents can
be represented as points in a (high-dimensional) Euclidean space. Dimensionality

reduction is an essential part of this derivation.

LSA is based on the Vector Space Model (VSM), an algebraic representation of text
documents commonly used in information retrieval. This ‘bag-of-words’ approach can
be seen as a simple yet powerful representation (Salton, 1968; Salton, Wong & Yang,
1975; Salton & McGill, 1983). The vector space of a collection of texts is constructed by
representing each document as a vector containing the frequencies of the words or

terms the document is composed of as elements. Altogether, these document vectors

16 Landauer, McNamara et al. (Eds.), 2007, Handbook of Latent Semantic Analysis, Preface x.
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add up to a term-by-document matrix representing the full text collection. Relatedness
of documents can be derived from those vectors, e.g. by calculating the angle between

document vectors by means of a cosine measure.

However, this numerical representation of text data does not solve typical issues of
working with language. On the one hand there are morphological problems for the
proper identification of terms and the fact that not all terms in a text are of equal
importance. This can be solved by feature selection techniques (stemming, stop word
removal, collocations, synonym lists, domain vocabulary, part-of-speech taggers, chi-
square tests and information gain) and weighting schemes (TF-IDF, Log-Entropy). On the
other hand, there are or more fundamental issues with homonymy/polysemy and
synonymy. These issues require specific methods to (try to) understand the meaning of

words, and that is what LSA claims to do:

“It was thus a major surprise to discover that a conceptually simple algorithm applied to
bodies of ordinary text could learn to match literate humans on tasks that if done by
people would be assumed to imply understanding of the meaning of words and

passages. The model that first accomplishes this feat was LSA.”"

LSA rests on the single conceptually simple constraint that the representation of any
meaningful passage of text must be composed as a function of the representation of the
words it contains. Thus, LSA models a passage as a simple linear equation, and a large
corpus of text as a large set of simultaneous equations. The solution is in the form of a
set of vectors, one for each word and passage, in a semantic space and is solved by

Singular Value Decomposition (SVD).

Optimal dimension reduction is a common workhouse in analysis of complex problems
in many fields of science and engineering. Over 99.9% of the cells in the word-by-
paragraph or term-by-document matrix representing the documents in the vector space
turn out to be empty. This makes the comparison of word or paragraph meanings quite
chancy. However, after dimension reduction and reconstruction, every cell will be filled

with an estimate that yields a similarity between any paragraph and any other and

' Landauer, McNamara et al. (Eds.), 2007, Handbook of Latent Semantic Analysis, page 5.
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between any word and any other. This dimension reduction is crucial and is what
accounts for LSA’s advantage over most current methods of information retrieval, which
rely on matching literal words. It is also what accounts for its ability to measure the
similarity of two essays that use totally different words, and for all of the other
properties of LSA that defy the intuition that learning language from language is

impossible.

LSA builds upon semantic similarity and hence uses proximity models such as clustering,
factor analysis and multidimensional scaling (see Carroll & Arabie, 1980, for a survey).
Discovering latent proximity structure has previously been explored for automatic
document indexing and retrieval, using term and document clustering (Sparck Jones,
1971; Salton, 1968; Jardin & van Rijsbergen, 1971) and factor analysis (Atherton &
Borko, 1965; Borko & Bernick, 1963; Ossorio, 1966); LSA builds further on these factor
analysis techniques and constructs a concept-by-document matrix using a low-rank
approximation of the term-by-document matrix, combining dimensions or terms into

‘concepts’.

Singular Value Decomposition (SVD) is used as a rank lowering method to truncate the
original vector space to reveal the underlying or ‘latent’ semantic structure in the
pattern of word usage to define documents in a collection. This truncation allows
dealing with typical language issues like synonymy as different words expressing the
same idea are supposed to be close to each other in the reduced k-dimensional vector
space. SVD will decompose the original term-by-document matrix into orthogonal

factors that represent both terms and documents:
A=U.2. V"

with A the original term-by-document matrix, ¥ a diagonal matrix with the square roots
of singular values of A.A" and A".A (612> 6,2 > ... > 6,2), and U and V containing left and

right singular vectors.
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Instead of working with the original vector space represented by the original term-by-
document matrix A, one can work with the reduced vector space of lower rank, ignoring

all but the first k singular values in 2 and all but the first kK columns of U and V:
A — Amxn ~ A]:nxn — Umxklzkxlekxn

This dimension reduction to k dimensions provided by SVD is the closest rank-k
approximation available and allows eliminating noise and capturing the underlying
latent structure. The k dimensions in the new space are no longer (stemmed) words or
terms, but linear combinations of such linguistic terms, and the basic unit of analysis
becomes not just a mere word but a word-and-its-context, a concept (hence the

denomination of ‘concept space’).

Mind that the dimension reduction is not about computational simplification’® but a
fundamental aspect of the method to deal with language issues and reduce noise (terms
in documents that do not contribute to the meaning of the document or parts of the
document). As such, the choice of k is not arbitrary but needs to be chosen carefully to

truly represent the underlying latent structure of the data.

The choice of the number of concepts to be retained is not straightforward. Current
literature suggests to take 100 to 300 concepts for large datasets (Berry, Drmac &
Jessup, 1999; Jessup & Martin, 2001; Lizza & Sartoretto, 2001). For some applications it
might be better to use a subset of the first 100 or 300 dimensions (Landauer & Dumais,

1997).

4.5 Practical indexing and additional pre-processing steps

Indexing in practice
The encoding of the documents into vectors is called indexing. During indexing, a global
vocabulary is built up, assigning a unique identifier to each word encountered in the

entire document collection. With this global vocabulary, a vector is constructed for each

8 At the contrary, SVD will convert the original sparse matrix into a full matrix. Even for low values of k —
the number of retained dimension or concepts — this will result in a new document-by-term matrix of
lower rank but occupying far more memory and in general taking more computational resources to
process.
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document with as many elements as the total number of words in the global
vocabulary, generating the vector space. For words appearing in the document at hand,
the value of the respective vector elements of the document vector is equal to the
number of occurrences of that word in the document at hand. For words not appearing
in the document, the respective vector elements obtain a zero value. Thus, each
document is represented by a vector representing raw frequencies of occurrences in a
high-dimensional vector space of terms. As each document uses only a small subset of
words to describe its content, the resulting matrix is extremely sparse (containing

mostly zeros)®.

To improve the indexing process and achieve better grasp of the context of the

documents, subsequent additional pre-processing actions are commonly used:

Stop word removal
All common words that do not contribute to the distinctive meaning and context of

“un
d

documents can be removed before indexing (e.g. “a”, “the”). Commonly used word lists
are available containing a large set of so-called ’stop’ words (e.g. the SMART list of

Buckley and Salton, Cornell University).

Stemming

Instead of indexing words as they appear in the documents, linguistic stems can be used
for indexing. The basic idea is to reduce the number of words by introducing a common
denominator, called a stem, for words that share a common meaning (e.g. ‘produc’ for
“product”, “production”, “producing”, etc.). A well-known example is the Porter
stemmer (see van Rijsbergen, Robertson & Porter, 1980, and Porter, 1980). This
stemmer does not perform a linguistically correct lemmatization, but takes a pragmatic
approach in stripping suffixes from words to combine word variants with shared

meanings.

The idea of stemming is to improve the ability to detect similarity regardless of the use

of word variants (stemming reduces the number of synonyms, since multiple terms

% About 99.99% zero values.
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sharing the same stem are mapped onto the same concept or stem), but occasionally

stemming will create new homonyms because of stemming errors?.

Term reduction
According to Zipf's law a large number of terms only appear in one document. Such
hapaxes can be removed from the vocabulary because they are of little value in finding

communality between documents.

Weighting

Representing documents based on the occurrence and co-occurrence of terms (raw
frequencies) can be refined by introducing a weighting scheme to better distinguish the
distinctive nature of words and terms given the specific context under study (e.g. the
word ‘computer’ does not reveal the distinctive nature of a certain contribution within a
document set covering only papers on computer science). A commonly used weighting
scheme is the TF-IDF weighting scheme (Salton & McGill, 1983), in which the raw term
frequencies are multiplied by the inverse document frequency (IDF) for that term; this
results in augmenting the impact of relatively rare terms when calculating distance

measures:

Idﬁzlog+,
Zj:ll(fii)
with
1ift >0,
x(0)= Qift=0

i =term index

j =document index

fij = frequency of term i in document j
and n the number of documents.

20 A more in-depth analysis of the performance and advantages and disadvantages of stemming (which
are also language and corpus dependent) is outside the scope of this publication. The reader interested in

this aspect is referred to Lennon, Pierce et al., 1981; Harman, 1991; Krovetz, 1995; and Porter, 2001.
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Weighting has a similar effect as stop-word removal, since words commonly used across
all documents in the document set will be down-weighted compared to medium
frequency words, which carry the most significant information (Salton & Wu, 1981) — as
can be expected according to Zipf's law. On the other hand, TF-IDF weighting attributes
might introduce extreme weights to words with very low frequencies. Also, TF-IDF will
not grasp synonyms; hence, weights of commonly used synonyms will be over-rated, as
the weights of the individual (synonym) terms will be higher than the weight of the
underlying common concept. Despite these shortcomings, TF-IDF weighting is one of
the most popular weighting schemes, but other weighting schemes can also be used

(see Manning & Schiitze, 2000, for an overview).

Additional, more advanced, pre-processing tasks can be performed to further optimize
the indexing process (proper name recognition; word sense disambiguation; acronym
recognition; compound term and collocation detection; feature selection using
application-specific domain vocabulary or ontology, information gain, entropy or

Bayesian techniques)21.

4.6 Similarity or distance calculation

The similarity measure typically used in information retrieval applications is the cosine
similarity measure (Berry & Browne, 1999). It is an expression for the angle between
vectors, formulated as an inner product of two vectors, divided by the product of their

Euclidean norms.

If the vectors are normalized beforehand, this formula reduces to the simple inner
product. Since, in the original vector space, all vector elements are positive (a word will
appear zero times or more in a document), the results are values between 1 (for similar
vectors, i.e. pointing in the same direction) and 0 (for mutually orthogonal, entirely
unrelated vectors), even after application of a weighting scheme like TF-IDF. This yields
distances between 0 and 1 (1 — cosine a). This no longer holds for vectors in the reduced
concept space after SVD, since vector elements may become negative because of the

kxn

SVD, resulting in a concept-by-document space V' that is no longer positive semi-

! A more detailed description of these topics can be found in Moens, 2006.
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definite, and cosine values that might be negative, hence distances between 0 and
(theoretically) 2, although values larger than 1.3 are quite rare in practice. While other
similarity measures are possible (e.g. Jaccard, Dice, Euclidean distance — see Baeza-
Yates & Ribeiro-Neta, 1999), the cosine measure is amongst the most commonly used
when using LSA and seems superior as a similarity measure in LSA applications (Harman,

1986).

4.7 Other text mining methods

Before moving to the next chapters with our practical results of applying LSA on patent
and publication data, we wish to stress that the proposed LSA methodology is only one
available method for text content based similarity deduction. Other methods e.g. do not
rely on semantic representation but use semantic topic models based on generative
models (e.g. probabilistic inference models like probabilistic latent semantic modelling
and latent Dirichlet allocation - see e.g. Wong & Yao, 1995; Hofmann, 1999; Blei, Ng &
Jordan, 2003). These models do not rely on a spatial representation and do not suffer
from limitations to Euclidean geometry as imposed by the assumption of LSA that

documents can be represented as vectors in a vector space®’.

> |n an Euclidean space, similarity should be symmetric and not violate triangle inequality - d(x,z) < d(x,y)
+ d(y,z) - placing strong constraints on the location of points in a space given a set of distances (Griffiths,
Steyvers & Tenenbaum, 2007).
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5 Exploring the feasibility and accuracy of text mining
techniques based on Latent Semantic Analysis to detect
similarity between patent documents and scientific
publications?3,

I can't understand a word you say. And you're poorly dressed.
You must be some sort of technology expert. Or a rodeo clown.
Dilbert's pointy haired boss

5.1 Introduction

In this chapter, we investigate the feasibility and relevancy of content (lexical) analysis
implying both patent and publication documents. Text analysis is already being used in
efforts to delineate specific domains or subfields. Until now, such demarcation has
relied heavily on expert opinions to identify appropriate sets of terms and/or classes in
available classification schemes (e.g. Hicks, Martin & Irvine, 1986; Hinze & Grupp, 1996;
Glenisson, Glénzel et al., 2005; Glenisson, Glanzel & Persson, 2005; Rabeharisoa, 1992,
in fuel cells; Noyons, van Raan et al.,, 1994, in laser medicine; Schmoch, 2004, in
genetics; Glanzel, Meyer et al., 2003, in biotechnology and Meyer, 2000, in nano-
science and nanotechnology). Clearly, experts involved in domain studies would benefit
from automated results that indicate similarity and hence enable mapping,

categorization or classification.

But not only domain studies would profit from methodologies that permit the
identification of content similarity across different sets of documents. The current
debate on the relevance and appropriateness of academic patenting and
entrepreneurship reveals that, under certain conditions, combining scientific and

technological activities yields certain beneficial effects, including scientific productivity

2 The study as described in this chapter has been published in Scientometrics (Magerman, Van Looy &
Song, 2010).
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(see introduction chapter). At the same time, it can be noted that the occurrence of
such beneficial effects may be partly dependent on the (topic) relatedness of both
activities. Further analysis of whether and to what extent knowledge spillover dynamics
— between scientific and technological activity realms — are present and result in
positive 'reinforcing' rather than ‘jeopardizing’ dynamics might benefit from the ability
to assess content-relatedness between sets of documents — in this case, patents and
publications. Indeed the identification of science-related patents in general and the
identification of scientific results protected by intellectual property rights (IPR) in
particular is a major challenge. As described in the introduction chapter, current
approaches based on non-patent references or matching of patent inventors and

patentees with publication authors and affiliations has limitations.

We propose a new approach involving text mining to directly match text documents
based on their contents to find patent and publication documents that are related by
the topics they address, the methods they use, the results they obtain and the
inventions or discoveries they address, as this might allow (semi)-automated
compilation of large datasets based on robust constructs (content similarity). At this
moment, we are particularly interested in this text mining approach to check for
documents with identical contents to identify scientific publications protected by
patents, allowing to compile large datasets to check for the presence of an anti-

commons effect.

However, applicability of off-the-shelve text mining solutions is not straightforward at
this stage. Multiple methods are available but existing experience for patent data is
limited and more research is needed concerning effectiveness and best practices
(methods, pre-processing, source data, indexing options, number of concepts to be
retained, ...). In this chapter we present our study on a try-out of Latent Semantic
Analysis (LSA) based lexical text analysis techniques to construct distance measures that
are well suited to grasp similarities between patent and publication text documents.

This might allow identification of patents originated from scientific publications.

In this study, we limit ourselves to patents and publications of the same academic

inventor. Contrary to domain studies, which often involve thousands of documents, the
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number of relevant documents under consideration is much smaller. The choice of this
small scale set-up will simplify computational challenges. Indeed, in advance we do not
know where related patent-publication pairs can be found, forcing us to select a very
large number of patents and publications to be sure we have related patent-publication
pairs in our sample, resulting in computational challenges. By sticking to datasets of
patents and publication of the same academic inventor, we can use far smaller samples
and concentrate on validation issues to get first insights in the feasibility and accuracy of

this text mining based approach.

So, a first question that arises is related to whether traditional assumptions applied in
large-scale text mining applications are as relevant for small-scale applications - such as
the one envisaged here. In addition, combining different types of documents — i.e.
scientific publications and patent documents — introduces an additional level of
complexity, which justifies further analysis to assess the relevance and accuracy of text

mining algorithms.

As became apparent from the previous chapter on text mining and the LSA method,
different options and methods are available to arrive at similarity measures. This variety
of possible approaches is translated into following research design: for the six academic
inventors under study, we calculate a set of 23 distance measure variants and use these
variants to derive similarity scores for all scientific puplications and patent documents
based on the content of the documents (title and abstract). It will become clear that
different options and calculation methods indeed yield different outcomes. Hence, in a
next step of the analysis, we compare the accuracy of the measures obtained by
comparing them with independently obtained assessments of similarity. This will not
only allow us to draw conclusions on the feasibility of the overall approach; our findings
also suggest tentative propositions on the methods and options that are best suited for

small-scale applications, implying documents of a heterogeneous nature.

5.2 Research design

The ability to automatically match large numbers of patent and publication documents

opens interesting perspectives for search and retrieval applications, clustering
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applications, discriminate analysis, domains studies, emerging fields detection, science
and technology linkage, and so on. Although text mining applications have proven to be
useful in some areas, there is still limited proof of its ability to actually identify relevant
similarities for patent and publication documents, especially at the micro level (see e.g.
Engelsman & van Raan, 1994, and Bassecoulard & Zitt, 2004, for some meso and macro

level applications of lexical patent and publication coupling).

When it comes to patents and publications, only titles and abstracts are widely and
easily available. Large sets of full-text documents are difficult or expensive to obtain. At
the same time, while text mining may be relevant for natural language documents,
publication and especially patent abstracts rarely read as natural language. Moreover,
as the previous chapter has shown, implementing a text mining procedure requires
many options and parameters to be set. Together, all these options and parameters
generate a broad spectrum of possibilities to represent the documents in a vector
space, and hence to arrive at distance measures. Although some generally accepted
practices exist, there is still a lack of clarity about which options yield better results and

under what circumstances.

This study aims at a systematic comparison between variants of distance measures
resulting from a set of procedural options based on LSA. First, we seek to verify whether
different options yield different similarity outcomes when applied to small sets of
patents and publications. Next, we wish to determine if these differences also coincide
with differences in accuracy by comparing the obtained similarity measures with
independently obtained similarity ratings. This comparison will also allow us to draw

tentative conclusions on the feasibility of practical applications.

Data

For this feasibility study, we do not use our biotechnology patent and publication
dataset, but we instead selected six academic inventors from the Catholic University of
Leuven — four from the medical faculty and two from the engineering faculty. All WO,
EPO and USPTO patents were downloaded from MicroPatent (Thomson Reuters
Micropatent) where one of the six professors appeared as inventors. After

deduplication of the patent families and removal of patents without abstracts, 30
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patents, ranging from 2 to 12 patents per academic inventor, were retained. Next, all
publications of these professors appearing in the WOS database (Thomson Reuters ISI
Web of Science) were downloaded. This resulted in 437 publications, ranging from 33 to
106 publications per professor (again only publications with an abstract were retained).

Together, the dataset contains 467 documents.

Text mining options: delineation of selected parameters.

To assess the similarity between patent and publication documents, the distance
between every (seed) patent and all publications of the same academic inventor is
calculated using a variety of text-mining-based distance measures based on Latent
Semantic Analysis (LSA). Stop-word removal using the SMART stop-word list was applied
before indexing, as well as stemming using the Snowball analyser with the Porter
stemming algorithm. Without these options, distance measures tend to yield unreliable
results because too much non-relevant information is introduced. There is some debate
about the reliability of Porter’s stemmer for scientific and technological language. The
rules this stemmer is composed of were conducted from natural languages examples;
applied on the somewhat distinct language of science and technology, stemming errors
might introduce too much unwanted homonyms. We decided to include stemming as
our previous research experience showed significant better results when using

stemming, but this issue definitely deserves more attention.

All terms occurring in only one document were removed. To further refine the index,
some high frequency words that do not convey much information in the patent and
publication context (“method”, “present”, “result”, “studi” and “type”) were also

removed.

Most literature indicates TF-IDF weighting as a valuable step to obtain relevant distance
measures by down-weighting less important terms. To verify the impact of weighting
for smaller scale applications, and in combination with SVD dimensionality reduction,
we included both TF-IDF weighting and no weighting (using the raw term frequencies) in

our model.
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The literature also suggests that LSA using SVD can improve significantly the
performance of the distance measures compared to a cosine measure applied on the
full vector space. Traditionally, rank-k approximations containing a few hundred
dimensions are used. While this undoubtedly makes sense in large datasets containing
thousands of documents — since the global vocabulary of these sets can contain ten
thousands of terms — the relevance for small datasets is less clear, resulting in the

inclusion of the level of dimensionality reduction by SVD in our research design.

Normally, a set of documents is indexed and weighted as a whole, and SVD is performed
on the global index of all documents. In our set-up, we are only interested in relations
within the set of patents and publications of the respective academic inventors.
Accordingly, we have two options to perform weighting and SVD: index all documents of
all academic inventors together and perform weighting and SVD on the global, unified
vocabulary of all six academic inventors, or index the documents separately for each
academic inventor and perform weighting and SVD on the case-specific vocabulary of
the respective academic inventor. The individual or case-specific approach holds the
promise that the weighting and SVD might be optimized for each professor individually;
this may vyield better results since we are only interested in relations within the
document set of an academic inventor. But this case-specific approach implies that the
individual document sets are small while one can expect that revealing the underlying
latent structure in a document set by SVD requires large document collections. We
included both the global unified vocabulary weighting and SVD and local case-specific
weighting and SVD in our analysis. For the case-specific vocabulary approach, the
highest rank-k approximation that can be used depends on the smallest document set
of all academic inventors, which is 66 (a professor with 2 patents and 33 scientific
publications). We opted to include rank-k approximations of 30, 20, 10, and 5 (as
previous research on small document sets suggests the relevance of very low values of
k, see Glenisson, Gldnzel et al., 2005; and Glenisson, Glénzel & Persson, 2005). For the
global unified vocabulary approach, the highest rank-k approximation possible is 467
(the total number of documents for all academic inventors). We opted to include rank-k
approximations of 300 and 100, and also included 30, 20, 10, and 5 for comparison with

the case-specific approach. For simplicity, we will denote the different rank-k
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approximations by ‘SVD’ followed by the rank-k approximation (e.g. SVD 30 means we

applied LSA using a rank-30 SVD approximation).

To summarize, we have incorporated the following options into our model: global
unified document indexing (Index=G) and individual case document indexing (Index=C);
no weighting (Weighting=NO) and TF-IDF weighting (Weighting=Tl); and no SVD
reduction and reduction to 5, 10, 20, 30, 100, and 300 concepts (the latter two only for
the global unified document indexing). Final similarity scores are obtained by using a
cosine measure in the vector space created by the indexing process according to the

distinct options. Table 5-1 contains an overview of the options and obtained measures.

Table 5-1 : Overview of distance measures

Measure Index Weighting SVD Measure Index Weighting SVD
1 u NO No SVD 15 C NO No SVD
2 u NO 5 16 C NO 5
3 U NO 10 17 C NO 10
4 U NO 20 18 C NO 20
5 U NO 30 19 C NO 30
6 U NO 100
7 U NO 300
8 u Tl No SVD 20 C Tl No SVD
9 u Tl 5 21 C Tl 5
10 u T 10 22 C Tl 10
11 u Tl 20 23 C Tl 20
12 U T 30 24 C Tl 30
13 U Tl 100
14 U T 300

There are fewer measures with local case document indexing because it is not possible
to use SVD 100 and beyond for those measures because of the small datasets. Note in
this respect that, while Table 5-1 lists 24 combinations, there are only 23 distinct
measures. Indeed, when neither weighting nor SVD are applied, global unified
document indexing and individual case document indexing yield the same distance
scores for the set of relevant documents, hence measure 1 and measure 15 yield

identical results.

All distances between all seed patents and all target publications were calculated using

these different distance measure variants.
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We deliberately decided not to apply more pre-processing tasks, like compound term
and collocation detection, because we want to keep the processing simple and
automated. These more advanced pre-processing tasks almost always imply more
human involvement and manual attention. In this setting, we want to try out if a simple

automatic approach will work.

5.3 Comparative analysis of distance measures

Differences in measure characteristics

An overview of the obtained descriptive statistics of all measures can be found in
Appendix 5-1. It is clear that one group of measures (measures with no SVD or high
rank-k SVD — SVD with high number of retained dimension) displays a highly skewed
distribution, while other measures (measures with low rank-k SVD — SVD with low

number of retained dimensions) are far less skewed.

Figure 5-1 : Distribution of distances for four representative measures
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Figure 5-1 contains the distribution of four representative measures for the distance
scores of all patent-publication combinations®. M1 is the measure with neither
weighting nor SVD; M3 is a measure without weighting and high level of dimensionality
reduction — i.e. low rank-k SVD (SVD 10) — performed on the global unified document
set; M13 is a measure with weighting and medium level of SVD reduction (SVD 100)
performed on the global unified document set; and M24 is a measure with weighting
and medium level of SVD reduction (SVD 30) performed on the local case document set.
The Y-axis indicates the number of patent-publication pairs having distances within the

range indicated on the X-axis (distance buckets of 0.1).

The measure M3 with high levels of SVD reduction - hence only few retained
dimensions - is very distinct from the other measures and has a counter-intuitive shape
since one does not expect so many ‘close’ pairs — and certainly not more close pairs
than distinct pairs (average distance is rather low, see Appendix 5-1), while for the other
measures we observe distributions that are more in line with the expectations (i.e., less
close pairs and more pairs that are more distant)®. It seems that high levels of
dimensionality reduction maps too many unrelated terms to a small number of
concepts, artificially creating close pairs. However, to arrive at such a conclusion, one
needs to do more than inspecting descriptive statistics. In a next step, we compare the

calculated similarity scores with similarity ratings obtained from independent ratings.

Assessing accuracy of measures

In order to compare and asses the accuracy of the different measures, patent-
publication combinations have been rated independently. For the six professors in our
study, 16 patents (all patents of four academic inventors and a selection of patents of
the remaining two academic inventors - 3 out of 9 and 4 out of 12 patents respectively)

were assessed independently in terms of relatedness.

** To have as a better idea of the distribution of obtained distance scores amongst similarity measures, all
potential combinations between all patents and all publications are included, which yields far more
combinations compared to the 2,345 combinations obtained if we only look at patent-publication
combinations of each individual academic inventor.

% In line with the way the data for this figure was constructed: all combinations between all patents and
all combinations of all academic inventors are included. As we expect that patents and publications of
distinct academic inventors are rather unrelated, we expect far more distant patent-publication
combinations compared to close combinations.
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We opted for two independent ratings for each individual case (all patent-publication
combinations of a given academic inventor) in order to be sure that this independent
assessment was carried out in a consistent manner. In total, five different persons — all
active and experienced in the field of science and technology studies — have been

involved in this exercise for all six academic inventors.

Each validator was required to rate the relatedness between patent documents on the
one hand, and publications on the other. Three categories have been used, ranging
from 'highly related' to 'unrelated’, with ‘somewhat related’ as the third category. In a
next step, the scores of each patent-publication combination were compared and Kappa
scores — indicating between-subject consistency — were calculated. In the case of two
assessments differing greatly (highly related versus unrelated), both validators reviewed
their assessments, potentially - but not necessarily - resulting in an adaptation of one or
both scores. After this iteration, Kappa scores were obtained for every academic
inventor, ranging from 0.62 to 0.90, signalling satisfactory and even excellent levels of

consistency (average for the six academic inventors: 0.83).

For all measures, it now becomes feasible to assess the relation between the ‘expert’
assessment on the one hand, and the relatedness as obtained by the calculated
measures on the other. That means, for the selected 16 patents, all patent-publication
combinations were independently rated by two experts, and for every academic
inventor, the expert score of all patent-publication combinations was used in an ANOVA
analysis as independent variable, with the obtained distance scores according to the 24

measures as dependent variable.

Table 5-2 provides an overview of the average R? obtained for the measures under
study. For every measure, this table contains the average of the R? values obtained for
each academic inventor, i.e. R? value resulting from the ANOVA analysis with the expert
scores as independent variable and obtained distance scores as dependent variable for
all patent-publication combinations of the given academic inventor. The higher the
observed R?, the more calculated similarity scores coincide with the independent expert

assessments.
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Table 5-2 : Congruence levels obtained for different measures under study

Index Weighting SVD Mean R? Std deviationR2 N
5 0.247 0.257 16

10 0321 0.254 16

NO 20 0362 0.274 16

30 0379 0.270 16

g NoSVD 0.401 0.293 16
S 5 0.191 0.203 16
10 0356 0.265 16

TF-IDF 20  0.409 0.277 16

30 0.413(4) 0.295 16

NoSVD 0.459 (3) 0.288 16

5 0.106 0.135 16

10  0.195 0.273 16

20 0.242 0.280 16

NO 30 0.285 0.324 16

100 0.341 0.314 16

300 0.386 0.286 16

E’ NoSVD 0.401 0.293 16
s 5 0.133 0.185 16
10  0.202 0.263 16

20 0.251 0.296 16

TF-IDF 30 0314 0.335 16

100  0.340 0.324 16

300 0.482(2) 0.285 16

NoSVD 0.489 (1) 0.301 16

Mean R?values in bold and italic denote the four highest values obtained amongst all measures.

An inspection of Table 5-2 immediately reveals considerable differences between
different measures. Measures coinciding most with independent assessment scores
imply either high rank-k SVD —i.e. low levels of dimensionality reduction, like k=300 — or
no SVD at all, in conjunction with a unified thesaurus and the application of TF-IDF
weighting. Closely related — in terms of accuracy — are measures that combine
weighting with a case-based thesaurus either without SVD or low levels of
dimensionality reduction (k=30)%. Differences with less performing combinations are

highly significant (p<0.0001).

Again according to Table 5-2, better performing measures share the characteristic that

they are relatively modest in terms of information reduction. Applying no SVD by

?® Note that, in this case-based indexing approach, SVD rank-k values of 30 can be considered as low
dimensionality reduction as most dimensions are retained (given the size of case-based document sets).
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definition implies refraining from reducing the initial word space, while applying SVD
with a relatively large number of dimensions also respects the potential richness of the

underlying information.

TF-IDF weighing also has a positive impact, albeit smaller than the application of SVD.
The positive impact of weighting can be understood as distinct elements of documents

being emphasized.

While the observations related to weighting may come as no surprise, the results on
SVD are more counter-intuitive. As Table 5-2 reveals, SVD performs worst under all
circumstances compared to a cosine measure on the full vector space, especially with a
limited number of dimensions. The higher the number of dimension retained, the more
the scores approximate the scores with no SVD applied, but there is no level of SVD
reduction beating these scores. Given the premises of LSA, we expected better scores

for at least some levels of SVD dimensionality reduction.

While the reduction in overall R? in Table 5-2 already illustrates the deterioration,
scrutinizing specific patent-publication combinations really reveals the impact of
parameter choices. Appendix 5-2 contains the title and abstract of one patent
document and two publications, (co-) authored by an academic inventor under study.
On reading these documents, it becomes apparent that one publication is 'highly
related' while the other is ‘unrelated’. Table 5-3 provides a detailed insight with respect
to the distances obtained under different indexing parameter choices. Note that low
values indicate similarity — with a zero value indicating complete similarity — while
values approaching 1 signal no relatedness at all. As Table 5-3 clarifies, applying an SVD
solution with a limited number of dimensions (k=5) results in similarity measures that
suggest that publication 2 is more related to the patent document than publication 1,
while in fact the opposite holds true. This phenomenon manifests itself both when using
a unified or a case-based thesaurus. This example illustrates how a strong reduction in
underlying information may result in vector spaces that — when used to calculate

distances between objects — yield distance measures of a misleading nature.
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Table 5-3 : Example of impact of specific text mining choices on obtained distance scores

Seed Patent Gluten biopolymers

Publication 1 - . .
u ° Designing new materials from wheat protein.

(close to seed patent)

Publication 2 In situ polymerization of thermoplastic

(far from seed patent) composites based on cyclic oligomers.

Options taken to arrive at

. Obtained distance values
distance score

Publication 1 Publication 2 Assessment
L ublication ublication

Index Weighting  SVD (highly related) (unrelated)

Unified NO 5 0.015 0.009 Misleading
Unified TF-IDF 300 0.102 0.908 Accurate

Case NO 5 0.051 0.036 Misleading
Case TF-IDF 30 0.030 0.967 Accurate

At the same time, the two other measures shown in Table 5-3 (unified thesaurus, SVD
300 and case-based thesaurus, SVD 30) also illustrate the feasibility of applying text
mining algorithms to detect similarity, even in the case of document sets stemming
from different activity realms (patents and publications). Overall, these observations
suggest that choices made, with respect to the setup of a vector space model and how
to proceed when calculating similarity measures, affect considerably the outcomes

obtained.

5.4 Conclusions, discussion, limitations, and directions for further research.

In this study, we applied and validated a set of content based similarity measures based
on Latent Semantic Analysis (LSA) text mining techniques to construct distance
measures that might allow us to grasp similarities between patent documents and
scientific publications. We used small-scale patent and publication datasets of six

academic inventors to examine the feasibility of matching patents with publications.

Several options for obtaining similarity measures within the framework of this model
have been outlined and assessed in terms of accuracy. Our findings reveal that different
options and methods coincide with considerable differences in terms of accuracy. While
several combinations allow us to arrive at acceptable solutions, certain combinations

display low levels of accuracy and even result in misleading similarity measures. For
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relatively small datasets, options that respect the potential richness of the underlying
data yield better results: either one opts for no dimensionality reduction (cosine on the
full vector space) or one opts for dimensionality reduction retaining a relatively high
number of dimensions. In addition, weighting has a beneficial impact under these
conditions. For a set of small datasets, a global unified indexing and weighting (and SVD,
if applied) approach does not yield worse results than an individual, case based,
indexing and weighting approach. This is an interesting finding because a global unified
indexing approach is far more convenient in practice. But LSA seems not to redeem its
promise to deal with synonymy and polysemy problems in our setting; all measures
involving SVD perform worse than a plain cosine measure on the full vectors space. We
suspect this has to do with the low number of documents in the sample, especially for

our case based indexing and SVD approach.

At the same time, this analysis has some limitations which might inspire future research.
First, while our analysis might also contribute to the making of better-informed choices
when confronted with larger and more heterogeneous document sets, further research
might investigate which set of options yields better results when one works with larger
datasets. Especially the effects of LSA deserve more attention (from which point
onwards LSA improves results and how it deals with synonymy, polysemy and
homonymy problems in practical datasets). Second, while several combinations yield
relevant outcomes — and the specific example introduced in Table 5-3 clearly indicates
the potential of text mining for the given purposes — average observed R? for the better
set of options are not extremely high (approaching 0.50%). Improving accuracy levels
might be feasible by further broadening the set of pre-processing options. For instance,
when inspecting several patent-publication combinations, it became apparent that
introducing more synonyms or collocations and phrase detection might further
contribute to improving accuracy. Hence, research focusing on the precise impact of
additional parameters not included in this design seems highly relevant. Finally, certain
of our cases also seem to suggest that there is not much relatedness to be observed

across patents and publications. Indeed, the question arises to what extent it is feasible

%’ Note that for some academic inventors R? of 0.80 has been obtained.
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to define — for a given set of processing options — absolute values that would clearly
detect the presence or absence of similarity (taking into account the inevitable trade-
offs between recall and precision). While far from straightforward to conduct, the
availability of a set of ‘threshold’ values would be especially beneficial for situations in
which possibilities for extensive validation are limited. As the lack of extensive
validation efforts will probably be the rule rather than the exception for most practical
applications, the availability of validated threshold values might have a huge impact on
the diffusion rate of text mining techniques in this and related fields. Accordingly, we
hope that the analysis presented here will act as a source of inspiration for other

researchers to engage in such efforts.
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Appendix 5-1 : Basic descriptive statistics for all measures.

Field descriptions:

Index: Union (U); Case (C)
Weighting:  No weighting (NO); TF-IDF weighting (TI)
SVD: SVD rank-k reduction (0 = no SVD dimensionality reduction)
M: Measure identification number
Mean: Mean distance between patents and publications
Std Dev: Standard deviation of distance
Min/Max: Minimum / maximum distance
Median: Median distance
Low Q/Upp Q: Lower / upper quartile
Q Range: Quartile range
Kurt: Kurtosis
Skew: Skewness

Index Weighting SVD M Mean ;::’ Min Max Median Lt:lw ng Ra(:ge Kurt Skew
U NO 0 1 091 0.10 0.00 1.00 0.94 0.88 0.98 0.0-9 16.72 -3.16
U NO 5 2 0.31 0.26 0.00 1.16 0.25 0.08 0.49 0.40 -0.56 0.71
U NO 10 3 0.42 0.28 0.00 1.17 0.40 0.17 0.64 047 -1.09 0.22
U NO 20 4 0.54 0.27 0.00 1.24 0.57 0.334 0.75 0.42 -0.92 -0.24
u NO 30 5 0.62 0.26 0.00 1.19 0.66 0.44 083 0.38 -0.66 -0.51
U NO 100 6 0.80 0.19 0.00 1.19 0.85 0.71 093 0.22 1.88 -1.38
U NO 300 7 0.87 0.14 0.00 1.04 0.92 0.83 0.97 0.13 7.84 -2.37
U Tl 0 8 0.95 0.09 0.00 1.00 0.97 0.94 0.99 0.05 37.17 -5.04
U Tl 5 9 0.12 0.13 0.00 1.18 0.08 0.04 0.17 0.13 15.00 3.05
U Tl 10 10 0.31 0.27 0.00 1.23 0.23 0.07 049 041 -0.36  0.79
U Tl 200 11 045 029 000 124 0.44 017 0.70 052 -1.17 0.5
U TI 30 12 053 0.29 0.00 1.19 0.57 0.27 0.79 0.52 -1.19 -0.23
U Tl 100 13 0.77 0.22 0.00 1.36 0.84 0.67 094 0.26 1.08 -1.23
U Tl 300 14 090 0.14 0.00 1.08 0.95 0.87 0.98 0.11 11.66 -3.02
C NO 5 16 0.43 0.28 0.00 1.35 0.40 0.20 0.65 0.46 -0.91 0.32
C NO 10 17 060 0.26 0.00 1.35 0.63 0.41 0.81 0.40 -0.79 -0.24
C NO 20 18 0.73 0.22 0.00 1.19 0.77 0.60 0.89 0.29 0.32 -0.91
C NO 30 19 0.78 0.20 0.00 1.17 0.83 0.69 0.93 0.23 1.72 -1.31
C Tl 0 20 0.96 0.08 0.00 1.00 0.98 0.96 0.99 0.03 55.53 -6.23
C Tl 5 21 033 0.29 0.00 1.50 0.23 0.08 0.54 0.46 -0.37 0.82
C Tl 10 22 054 030 000 121 0.57 0.29 0.80 0.51 -1.19 -0.15
C Tl 20 23 0.70 0.26 0.00 1.28 0.77 0.53 091 0.38 -0.35 -0.72
C TI 30 24 0.78 0.22 0.00 1.35 0.84 0.67 0.95 0.28 111 -1.17
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Appendix 5-2 : Title and abstract of one patent document
and two publications (highly related and unrelated)
authored by the same academic inventor.

Seed patent: Gluten biopolymers

This invention consists of a modified gluten biopolymer for use in industrial applications, such as
composites and foams. In the present work, the fracture toughness of the gluten polymer was improved
with the addition of a thiol-containing modifying agent. This work also resulted in the development of a
gluten biopolymer-modified fiber bundle, demonstrating the potential to process fully biodegradable
composite materials. Qualitative analysis suggests that a reasonably strong interface between the
natural fibers and biopolymer matrix can form spontaneously under the proper conditions. Therefore
this invention relates to a modified gluten biopolymer for use in industrial applications, such as
composites, stabilized foams and molded articles of manufactures. The present invention relates to a
new gluten based biopolymer with modified properties, such as an increase in impact strength, and
prepared by using thiol-containing molecules. The multifunctional activity of the polythiol-containing
molecules generates the potential for the development of a new material base for commodity plastics.
The invention furthermore relates to a new composite material comprising gluten-coated fiber, its use
and the method for preparing the composite material.

Publication 1 (highly related to the patent document): Designing new materials from wheat protein

We recently discovered that wheat gluten could be formed into a tough, plastic-like substance when
thiol-terminated, star-branched molecules are incorporated directly into the protein structure. This
discovery offers the exciting possibility of developing biodegradable high-performance engineering
plastics and composites from renewable resources that are competitive with their synthetic
counterparts. Wheat gluten powder is available at a cost of less than $0.5/Ib, so if processing costs can
be controlled, an inexpensive alternative to synthetic polymers may be possible. In the present work, we
demonstrate the ability to toughen an otherwise brittle protein-based material by increasing the yield
stress and strain-to-failure, without compromising stiffness. Water absorption results suggest that the
cross-link density of the polymer is increased by the presence of the thiol-terminated, star-branched
additive in the protein. Size-exclusion high performance liquid chromatography data of molded tri-thiol-
modified gluten are consistent with that of a polymer that has been further cross-linked when compared
directly with unmodified gluten, handled under identical conditions. Remarkably, the mechanical
properties of our gluten formulations stored in ambient conditions were found to improve with time.

Publication 2 (unrelated to the patent document): In situ polymerization of thermoplastic composites
based on cyclic oligomers

The high melt viscosity of thermoplastics is the main issue when producing continuously reinforced
thermoplastic composites. For this reason, production methods for thermoplastic and thermoset
composites differ substantially. Lowering the viscosity of thermoplastics to a value below 1 Pa.s enables
the use of thermoset production methods such as resin transfer molding (RTM). In order to achieve
these low viscosities, a low viscous mixture of prepolymers and catalyst can be infused into a mold
where the polymerization reaction takes place. Only a limited number of polymerization reactions are
compatible with a closed mold process. These polymerization reactions proceed rapidly compared to the
curing reaction of thermosets used in RTM. Therefore, the processing window is narrow, and managing
the processing parameters is crucial. This paper describes the production and properties of a glass fiber
reinforced polyester produced from cyclic oligoesters.
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6 Assessment of Latent Semantic Analysis (LSA) text
mining algorithms for large scale mapping of patent
and scientific publication documents.

The great tragedy of science:
the slaying of a beautiful hypothesis by an ugly fact.
Thomas Huxley

6.1 Introduction

In the previous chapter we examined the application of Latent Semantic Analysis (LSA)
for smaller, pre-structured — i.e. both patent and publication selection is done at the
level of an academic inventor — datasets (see also Magerman, Van Looy & Song, 2010).
Results are promising but it became clear that generally accepted LSA options do not

always yield the best results for our setup.

In this study we conduct a thorough assessment of the LSA text mining method and its
options (pre-processing, weighting, ...) to grasp similarities between patent documents
and scientific publications on a larger scale, without the need for compiling datasets at
the level of individual academic inventors (which is not convenient for larger datasets).
We want to assess effectiveness (in terms of precision and recall) and derive best
practices on weighting and dimensionality reduction for application on patent data,
given the technical and juridical nature and hence different linguistic context of patent
and scientific publication documents. Our primary goal is to set up a method to identify
scientific publications that are protected by patents (so called ‘patent-publication’ or
‘patent-paper’ pairs, i.e. scientific publications from which the contents — methodology,
findings, discovery/invention — is subject of a patent publication). We use LSA to derive
similarity from a large set of patent and scientific publication documents (88,248 patent
documents and 948,432 scientific publications) based on 40 similarity measurement

variants; four weighting schemas — no term weighting; binary weighting; inverted
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document frequency; and term frequency x inverted document frequency — are
combined with ten levels of dimensionality reduction — no SVD reduction; 1,000; 500;
300; 200; 100; 50; 25; 10; 5 dimensions — and the cosine metric. In addition we also
include three similarity measure variants into the comparison based on the number of
common terms weighted by the total number of terms of the documents. A thorough
validation is set up to compare the performance of those measure variants: the degree
of similarity of 300 patent-publication combinations is rated by experts to compare with
the outcomes of the text mining measures and about 30,000 patents from control sets

are used to check the robustness of the expert validation results.

We first discuss the dataset used and the retained options to derive the measure
variants. Next we will present aggregated results and first insights based on the
distribution of similarity scores for a large set of patent-publication combinations,
followed by results and insights based on an expert validation of 300 patent-publication
pairs. Next we will elaborate on some LSA/SVD issues revealed by the results and

finalise with conclusions.

6.2 Data and methodology

Match patents and publications based on content

We primarily want to identify so called patent-publication or patent-paper pairs, i.e.
scientific publications for which the contents — methodology, findings,
discovery/invention — is subject of a patent application. We do this by matching patent
and publication documents based on content similarity using LSA text mining
algorithms. For all patents, we derive similarity scores for all publications for a set of
measurements variants based on LSA. Patent-publication combinations having a high
content similarity are regarded to originate from the same inventive event. The choice
of the best measure to grasp meaningful relations among patent and publication

documents depends on a validation exercise.

We apply our method on patents and publications from the biotechnology field as it is
known to be a science-intensive field with substantial science-technology interactions,

and because we want to use the results and insights to check for the presence of an
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anti-commons effect, which is especially relevant for biotechnology (see the
introduction chapter). We compile a set of patent and publication documents related to
biotechnology and calculate the content similarity between all patents and publications
in the set to reveal patent-publication combinations originating from the same inventive

event.

Selection of biotechnology patents

On the patent side, we limit ourselves to the OECD definition of biotechnology to
identify biotechnology patents (OECD, 2005 and 2009), defining 30 International Patent
Classification subclasses/groups related to biotechnology (see Appendix 6-1 for the list
of IPC-subclasses/groups used for the selection). We use PATSTAT (EPO Worldwide
Patent Statistical Database) to retrieve all EPO and USPTO granted patents with
application and grant year between 1991 and 2008 according to the 30 defined IPC-
subclasses/groups related to biotechnology. This leads to a set of 27,241 EPO and
91,775 USPTO granted patents (PATSTAT edition October 2009).

As text mining techniques are applied for the further identification of patent-publication
pairs, only patents with titles and a minimum abstract length of 250 characters are
withheld, resulting in a final patent dataset of 7,254 EPO and 80,994 USPTO

biotechnology patents (hence 88,248 patents in total).

Selection of scientific publications

On the publication side, we select biotechnology publications (articles, letters, notes,
reviews)?® from the WOS database (Thomson Reuters ISI Web of Science) based on the
Web of Science subject classification, for the same time period 1991-2008 (volume
year). 243,361 publications are revealed from subject category ‘Biotechnology and

Applied Microbiology’.

However, to ensure that all potentially related scientific publications are present in the
dataset, we extend this ‘core’ publication set with publications from nine related

subject categories: ‘Biochemical Research Methods’; ‘Biochemistry & Molecular

%% Articles are by far the biggest category (90% articles compared to 1.5% letters, 2% notes and 6.5%
reviews).
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Biology’; ‘Biophysics’; ‘Plant Sciences’; ‘Cell Biology’; ‘Developmental Biology’; ‘Food
Sciences & Technology’; ‘Genetics & Heredity’ and ‘Microbiology Materials’®®. This
results in more than 1.75 million additional publications for the period 1991-2008 - a
considerable computational challenge for the text mining method to identify patent-
publication pairs. To lower the number of publications for ease of calculations without
losing too much relevant documents, we only retain those publications from this
extended set that are citing or are cited by at least one publication from our core set,

sizing down the extended publication set to 683,674 publications.

Finally we also add all — not necessarily biotechnology - publications from three
multidisciplinary journals (‘Nature’, ‘Science’ and ‘Proceedings of the National Academy

of Sciences of the United States of America’) resulting in 97,970 additional publications.

Again we only retain publication documents with titles and a minimum abstract length
of 250 characters, resulting in a final publication set of 948,432 biotechnology related

publications3o.

Selection of control sets

To check the validity of our text mining method we also compile three control sets with
patent documents that are not related to biotechnology: agriculture; automotive; and
materials. For each of these control sets, we randomly select 2,500 EPO and 7,500
USPTO granted patent documents from the same time period based on IPC-codes
(respectively IPC class AO1 for agriculture; B60 and B62 for automotive, and IPC subclass
GO1N, GO1R and HOL1L for materials)*’. As always we only retain documents with titles
and a minimum abstract length of 250 characters, resulting in a control set of 29,952

patents related to agriculture, automotive and materials.

» We want to thank Wolfgang Glanzel for his kind help in the development of a search strategy for
biotechnology publications.

% As all publication of three multidisciplinary journals are included, non-biotechnology publications will
also be present as it is not straightforward to isolate biotechnology publications from those
multidisciplinary journals.

*! patents of the control groups are selected in such a way that there is no overlap with biotechnology
patents, i.e., patents classified in both biotechnology IPC classes and one of the control sets IPC classes
are not selected for the control groups, only for the biotechnology group. This is of particular interest for
the agriculture control group, as this group can be related to biotechnology and share some IPC codes
(AO1H 1/00 and AO1H 4/00).
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Combined dataset

In total, 1,174,021 patent and publication documents are originally selected based on
the respective search keys, of which 1,066,632 documents are included in our final
setup (all documents having an abstract of substantial length to allow text mining):
88,248 biotechnology patents; 9,952 agriculture patents; 10,000 automotive patents;
10,000 materials patents; 219,713 core biotechnology publications; 647,029 extended

biotechnology publications and 81,690 publications from multidisciplinary journals.

6.3 Derivation of content similarity

Index parameters and comparison of measures based on Latent Semantic
Analysis

We want to match patents and publications based on content similarity, and want to
use LSA to derive content similarity from the patent and publication documents. In
practice, applying this method involves multiple pre-processing steps to convert a
document collection into a document-by-term matrix (tokenization, indexing, weighting,
see previous chapters), and for every of those steps, multiple options are available,
resulting in a myriad of choices to arrive at a document-by-term matrix as input for the
LSA model. As stated before, the application of LSA in itself also requires a careful
choice of the level of dimensionality reduction. Finally, multiple metrics are available to
arrive at a similarity value. This heterogeneity in the process to derive content-based
similarity measures makes the choice of the best similarity measure (and all
corresponding pre-processing options required) very challenging for the purpose at
hand, especially as best practices are not readily available. Moreover, our previous
experience revealed that common practice does not always yield the best results (see

previous chapter and Magerman, Van Looy & Song, 2010).

To shed a light on the feasibility and performance of LSA content-based measures for
large scale patent-publication matching, we again compare multiple measures based on
multiple weighting options and multiple levels of dimensionality reduction, combined
with a limited number of pre-processing steps and the cosine metric. This allows us to
check the effect of weighting and dimensionality reduction options on the performance

of the matching method and select the best measure and procedure to arrive at reliable
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matching results. In total we combine four weighting methods with ten levels of
dimensionality reduction, resulting in a setup with 40 measures based on LSA. To
complete the assessment of the performance of text mining based measures for patent-
publication matching, we also add three measures based on a simple count of the

number of common terms between documents.

Pre-processing choices

The first step in the process it to convert the document collection into a numerical
dataset. LSA is based on the Vector Space Model: every document is represented by a
vector in a highly dimensional space and every element in the vector represents the

weight for a given term for the document at hand.

In practice this is done by an indexer splitting text documents into tokens or terms and
compiling a list on how many times a given term appears in a given document. We use
Apache-Lucene™, an open source text search engine library, for the indexingsz. During
the indexing process, a minimal number of stop words is removed, numbers are

removed** and stemming is applied (Porter stemmer)®.

Next we use MathWorks Matlab™, a commercial packet for mathematical and technical
computing, for the construction of the vector space by converting the Lucene full text

3637 This results in a matrix with 1,066,632 rows

index into a document-by-term matrix
(documents) and 729,761 columns (stemmed terms). After removal of terms/stems only
appearing in one document, we end up with a document-by-term matrix with 1,066,632
documents and 301,697 terms/stems. This document-by-term matrix contains the raw
term frequencies, i.e. the number of times a given term/stem appears in a given

document.

32 http://lucene.apache.org/java/docs/index.html

** Based on the Snowball English stop word list
(http://snowball.tartarus.org/algorithms/englisch/stop.txt)

** Only numbers are removed, i.e. terms that only contain digits. Digits that are part of terms with
alphanumerical characters (e.g. chemical formula) are untouched.

s http://tartarus.org/~martin/PorterStemmer/index.html

36 http://www.mathworks.com/products/matlab/

7 We want to thank Frizo Janssens who was so kind to share his proprietary Matlab code for the import
of the full text index into Matlab and compilation of a document-by-term matrix.
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We deliberately choose not to apply more pre-processing tasks, like compound term
and collocation detection, because we want to keep the processing simple and
automated. These more advanced pre-processing tasks almost always imply more
human involvement and manual attention, while we want to opt for an automatic

approach®.

4 weighting methods

To improve retrieval and matching performance, raw term frequencies are weighted to
take into account the relative importance of a term in a given document or in the
complete corpus. Many weighting methods are available, and as in our previous setup
we again choose TF-IDF weighting for our current setup as it is commonly used in text

mining.

To get a better understanding of the impact of weighting, we again include a non-
weighted variant (using the raw term frequencies) and two alternative weighting
methods: binary weighting and IDF (inverted document frequency) weighting. In the
binary weighting method, we only take the presence or absence of a given term in a
given document into account and we ignore the number of occurrences, i.e., the binary
weighted frequency of a given term i and document j is equal to 0 if TF;=0 and is equal
to 1if TF; > 1 (with TF — term frequency — the number of times a given term appears in a
given document). In the IDF weighting method, we combine the binary weighting
method with the inverted document frequency, i.e., we replace the raw term frequency

for a given term i and document j by the IDF value of the given term i*°.

To summarize, we compare four weighting methods for the document-by-term matrix:
(1) the raw term frequency (the number of occurrences of the given term in the given
document); (2) the binary term frequency (0 if the given term is absent in the given
document, 1 if the given term is present in the given document); (3) the inverted
document frequency (0 if the given term is absent in the given document, the inverted
document frequency value if the given term is present in given document); and (4) the

TF-IDF value (multiplication of term frequency with inverted document frequency).

%% A more elaborated overview on pre-processing options can be found in chapter 4.
%% For more information on IDF and TF-IDF, see chapter 4.
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10 levels of dimensionality reduction

Dimensionality reduction is an essential part in the LSA method. It truncates the vector
space to reveal the underlying or ‘latent’ semantic structure in the document collection
by mapping terms on latent concepts by combining terms in linear relationships.
Truncation is done by applying Singular Value Decomposition (SVD) to get a rank-k
approximation of the original matrix. Dimensionality reduction is supposed to remove
the ‘noise’ due to polysemy and synonymy present in text documents, but the level of
dimensionality reduction, or the best selection of the rank (k) of the truncated
document-by-term matrix, is an open question. As mentioned before, empirical testing
shows that the optimal choice for the number of dimensions ranges between 100 and
300 for large datasets (see chapter 4). For small datasets, low values of k (below 10)
seem to work as well (Glenisson, Glanzel et al., 2005), although our previous experience
suggests the use of large values of k, but also reveals that no dimensionality reduction

at all might perform best*.

In this study, we compare multiple levels of reduction (defined by k, the rank order of
the truncated document-by-term matrix, i.e. the number of dimensions to retain). We
include following nine levels of k: 1,000; 500; 300; 200; 100; 50; 25; 10; 5. And to assess
the overall value of LSA and dimensionality reduction, we compare these nine levels of
dimensionality reduction with a tenth variant, namely no dimensionality reduction at all
(which is basically not an LSA-based measure anymore as it is just an application of the

cosine metric on the full vector space).

40 LSA measures and 3 measures based on common terms

To summarize, we compare 40 measures based on LSA by combining 4 levels of term
weighting with 9 levels of dimensionality reduction by SVD and no dimensionality
reduction at all. For all these 40 measures, we use limited pre-processing options (stop

word removal and stemming) and the cosine metric to arrive at a similarity value.

We also include three measures based on the count of the number of terms the patent

and publication document have in common. For these three measures, not based on

¥ see previous chapter and Magerman, Van Looy & Song, 2010.
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the cosine metric, we use the same pre-processing options as for the 40 measures
based on LSA (stop word removal and stemming). To arrive at a similarity metric with
values between 0 and 1 starting from the number of common terms, three variants of
normalization are used: (1) divide the number of common terms by the minimum of the
number of terms of the patent document on the one hand and the number of terms of
the publication document on the other hand (‘common terms MIN’); (2) divide the
number of common terms by the maximum of the number of terms of the patent
document and the publication document (‘common terms MAX’); and (3) divide the
number of common terms by the average of the number of terms of both documents
(‘common terms AVG’)*!. The second option is more restrictive compared to the first
option and only attributes high similarities if both documents are almost identical (the
intersection of both documents is equal to the union of both documents: A + B=A n B).
The first option also attributes high similarity if one document is a subset of another
document, even if the latter document contains far more information (the intersection
of both documents is equal to one of the documents, but potential large remainder or
complement of that one document is neglected: A+ B # A n B but A=A n B). Hence the
first option will yield higher similarity values for the same document combinations than

the second option, and the third options will be somewhere in-between.

6.4 Aggregated results

Similarity calculations

We calculate similarity scores between all 88,248 biotechnology patents and all 948,432
biotechnology publications according to the 43 defined similarity measures. For every
patent, the closest 10,000 publications and corresponding similarity scores were

retained for every of the 43 measure variants.*?

We do the same for all 29,952 patents in the control set; for every control patent we

calculate similarity scores with all of the 948,432 biotechnology publications according

*L For the ease of reference, we will use ‘common terms MIN’, ‘common terms MAX’ and ‘common terms
AVG’ to denote the measures based on the number of common terms and their respective normalization
method throughout this document.

2 Retaining all similarities of all 83 billion combinations 43 times is impossible because of current day
storage limitations.
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to the 43 defined similarity measure variants and retain again the closest 10,000

publications for every control patent and measure variant.

Comparison of distributions

To get a first look at the differences amongst measure variants, we compare the
distribution of the obtained similarity scores amongst measures. For every measure, we
take for every biotechnology patent the closest publication and the corresponding
similarity score, hence 88,248 similarity scores for every measure variant. Based on
those scores we derive relative distributions displaying the proportion of biotechnology
patents having a closest biotechnology publication in a given similarity interval (one
histogram for every similarity measure variant). We do the same for all patents related
to agriculture, automotive and materials (again one histogram for every similarity
measure variant and every control set). For any given measure variant, we can compare
the distributions of the similarity scores of the biotechnology patents and the patents
related to agriculture, automotive and materials as we used the relative share of
patents having a closest publication within a given similarity interval and not the

absolute number of patents.

Figure 6-1 shows the distribution of similarity scores for the patent groups
(biotechnology and three control groups) for the similarity measure variant using TF-IDF
weighting and SVD of rank 300, a commonly used measure. The Y-axis contains the
proportion of patents having a closest publication with similarity given by the X-axis
(with intervals of 0.05). Five distributions are combined: one for the biotechnology
patents (solid thin line), one for every control group — agriculture (AGR), automotive
(AUT) and materials (MAT) (non-solid lines) — and one for all patents together —

biotechnology patents and all patents from all three control sets (thick solid line).

The distribution of similarity scores of the group of biotechnology patents (solid thin
line) falls more or less together with the distribution of all patents (solid thick line) and
almost has the same median value. Striking are the relative high similarity scores: the
median similarity for all patents is 0.76, or 50% of all patents have a scientific
publication with similarity above 0.76. These high average similarity scores are

suspicious, although this might simply be a norming or calibration problem.
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Figure 6-1: Distribution of similarity scores of patents to closest publication according to
TF-IDF SVD 300 (markers=median values)
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More striking is the distribution of the similarity scores between patents related to
materials and their closest biotechnology publication (dot-dash line). We expect the
similarity score distributions of control set patents to be to the left of the similarity
score distribution of biotechnology patents, as we expect that those control set patents
are, on average, less related to biotechnology publications compared to biotechnology
patents. However, here we observe that the distribution for materials patents is shifted
to the right compared to the distribution of the group of biotechnology patents and the
median value for these materials patents is 0.78. This means that, on average, patents
related to materials are more closely related to biotechnology publications than patents
related to biotechnology. This is very unlikely and suggests that similarity values based
on TF-IDF weighting and SVD of rank 300 do not grasp the real relation between the

patent and scientific publication documents.

We observe this phenomenon for all measure variants based on SVD, and the lower the

number of retained dimensions, the worse (the more distributions of similarity scores

94



shift to the right and the less difference between the distribution of similarities for
patents of the control groups — non-biotechnology patent to biotechnology publication -
compared to the group of biotechnology patents). Weighting methods have some effect
too: distributions based on binary weighting and IDF weighting are shifted more to the
left compared to TF-IDF weighting and raw frequencies, regardless of the number of
retained dimensions, and no weighting at all and binary weighting tend to suffer less
from the phenomenon of patents of control groups being more similar to scientific
biotechnology publications than biotechnology patents. SVD only seems to vyield
meaningful similarity values when a high number of dimensions are retained (500 or
more) and not in combination with TF-IDF weighting (SVD with 1,000 dimensions and

TF-IDF weighting still reveals unrealistic distributions).

Figure 6-2 : Distribution of similarity scores of patents to closest publication according to
TF-IDF without SVD (markers=median values)
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Figure 6-2 shows the distribution of similarity scores between patents and their closest
biotechnology scientific publication according to the similarity measure variant using TF-

IDF weighting without SVD dimensionality reduction. This distribution makes sense:
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patents from control groups (agriculture, automotive, materials) are on average less
similar to biotechnology patents. Even more, there are barely control set patents having
high similarity with biotechnology patents. The other weighting methods, combined
with no dimensionality reduction, yield similar distributions, although binary and IDF

weighting results are slightly more peaked and shifted to the left.

Finally, Figure 6-3 shows the distribution of similarity scores of the measure variant
based on the number of common terms normalized by the minimum of the term length
of both documents (‘common terms MIN’).

Figure 6-3 : Distribution of similarity scores of patents to closest publication according to

number of common terms normalized for minimum term length (‘common terms MIN’)
(markers=median values)
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Also here we observe an expected distribution with control set patents scoring
significantly lower similarity scores compared to the biotechnology patents. All three
measures based on the number of common terms yield expected results, although

‘common terms MIN’ yields the highest distinctive power between biotechnology
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patents and control set patents. Even more, this measure seems to yield the best

distinctive power of all measure variants under study

Preliminary conclusions

The comparison of the distribution of the similarity between patents and their closest
scientific biotechnology publication and the pattern of biotech patent similarities
compared to control patent similarities (agriculture, automotive, materials) amongst
measure variants raises questions about the validity of LSA-based measures to match
patent documents and scientific publications. Not only do LSA-based measures vyield
remarkably high similarity scores, they also do not score non-biotechnology patents as
less similar to biotechnology publications compared to biotechnology patents, which
suggests that these measure variants do not reflect real similarities present in the
document collection. The less dimensions are retained, the more obtained similarity
scores seem to deviate from the real relations between the documents. This effect is
even reinforced when using TF-IDF weighting, a commonly used weighting method.
Similarity measures based on the cosine metric without dimensionality reduction seem
to perform better, in combination with any of the tested weighting schemas, as well as
the three measures based on the count of common terms. The one normalized by the
minimum of the number of terms of both documents (‘common terms MIN’) seems to

yield the best results.

These remarkable results deserve a closer look to patent-publication combinations
yielding high similarity values. Table 6-1 contains the similarity scores of a patent-
publication combination scoring high on TF-IDF in combination with SVD (ranging from
0.928 to 0.995, depending on the number of retained dimensions). The title of the
patent is: “Process and rotary milking parlor for the identification of a milking stall and
an animal, in particular a cow, in a rotary milking parlor.” And the title of the scientific
publication is: “Growth-behavior of Lactobacillus-acidophilus and biochemical
characteristics and acceptability of Acidophilus milk made from camel milk.” Title and
abstract of both documents make clear that both documents are only (very) slightly
related; both are about milk, but the patent is about an apparatus for milking, while the

publication is about a comparison of cow milk and camel milk for characteristics on
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Lactobacillus acidophilus fermentation (see Appendix 6-2 for the full abstract of both
documents). Obtained similarity scores contain considerable variation among weighting

methods and dimensionality reduction options.

Table 6-1 : Similarity scores for patent US7104218 and publication A1994PC04400005
according to various measures

Weighting Dimensions retained (SVD)

method ALL 1000 500 300 200 100 50 25 10 5
Raw 0.511 0.837 0.873 0.905 0.754 0.391 0.368 0.608 0.691 0.673
Binary 0.083 0.057 0.025 0.023 0.056 0.087 -0.030 0.492 0.763 0.750
IDF 0.095 0.168 0.162 0.260 0.375 0.403 0.504 0.532 0.698 0.738
TFIDF 0.364 0.928 0.973 0.986 0.991 0.991 0.995 0.980 0.959 0.960

Especially TF-IDF in combination with SVD yields high scores; other measures yield lower
scores, better reflecting the limited relationship between both documents, although all
weighting methods yield high values for high levels of dimensionality reduction (low
values of k, right side of the table). In general, binary and IDF weighting yield lower
scores compared to raw frequencies and TF-IDF weighting, although there are some
exceptions. The measures based on the number of common terms vyield low scores
(0.10, 0.07 and 0.08 for ‘common terms MIN’, ‘common terms MAX' and ‘common

terms AVG’ respectively), in line with the real similarity between the two documents.

Mind also the non-linear relation between similarity scores and dimensionality
reduction; lower number of retained dimensions do not necessarily yields the highest
similarity scores (see e.g. the results for raw term vectors: starting from 0.837 for 1,000
dimensions it goes up to 0.905 for 300 dimensions, to go down to 0.368 for 50
dimensions to go up again for lower dimensions). This example proves again that the
choice of the right level of dimensionality reduction is not straightforward and also that

the weighting method has a considerable impact on the results.

6.5 Firstvalidation: comparison of the validity of the measures

Validation setup
To assess the validity of LSA-based measures and to get more insight in the contribution

of weighting and dimensionality reduction levels in the performance of those measures,

98



we set up a validation at the level of individual patent-publication combinations. We
select 250 patent-publication cases with variation in similarity scores amongst measure
variants. For those 250 cases, we do an independent assessment of experts to rate the
similarity on a five-level scale and we check the consistency between the expert
assessment and the similarity scores obtained by each of the 43 measure variants for

the 250 selected validation cases. This allows us to select the best performing measures.

Selection of 250 patent-publication combinations to validate

As almost all LSA-based measures tend to attribute high similarity scores to patent-
publication combinations, we focus on the selection of patent-publication combinations
with high obtained similarity scores to check whether these combinations are indeed
similar. At the same time, we want to select patent-publication combinations for
validation that have substantial variation in similarity scores amongst measures (it
would not be very informative to select patent-publication combinations scoring high or

low on all measures).

Starting point are the 88,248 biotechnology patents. For all those patents, the closest
scientific biotechnology publication was selected according to a representative selection
of 31 measures (all three measures based on common terms; the non-SVD cosine
measure for the four weighting variants; and SVD cosine measure variants with their
four weighting variants for k=10, 50, 200, 300, 500 and 1,000). For every measure in this
selection, the 1,000 most similar patent-publication combinations are retained. After
removal of duplicate patent-publication combinations (patent-publication combinations
scoring within the top 1,000 for more than one measure), 16,717 patent-publication
combinations are left. Out of this selection, 250 combinations were selected in groups
of combinations that score high on one measure and low on as many other measures as

.1 43 44
possible® .

320 cases scoring high on ‘common terms MIN’; 20 cases scoring high on ‘common terms MAX’; 10 cases
scoring high on ‘common terms AVG’; 4x20 cases scoring high on the 4 weighting variants of the cosine
measure without dimensionality reduction (one set of 20 cases for each weighting variant); 3x4x10 cases
scoring high on the 4 weighting variants of the cosine measure with low (k=1000-500), medium (k=300-
100) and high (k=50-5) dimensionality reduction respectively (one set of 10 cases for every weighting
variant and dimensionality reduction level).
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Expert assessment of 250 cases

A group of 9 people® rated all validation cases (patent-publication combinations)
assessing the extent to which the content of the patent document and scientific
publication cover the same invention/discovery using a five-level scale: not related at all
(1), somewhat related (2), related (3), highly related (4) and identical (5). Every case was
independently rated by two people: 176 cases got an identical score by the two raters;
21 cases got scores with a difference of one level; 8 cases got scores with a difference of
2 levels and 45 cases were judged complex. All complex cases and all cases with more
than one level difference in scores were assessed by an additional rater resulting in 210
cases of total agreement; 39 cases of small disagreement (one level) and 1 remaining

case of big disagreement (two levels).

The two independent scores were unified by taking the average of the two scores and
rounded to arrive again at a 5 level score. To deal with the potential disagreement
amongst raters, two final scores were retained: a conservative one by rounding the
average of the scores down to the nearest integer, and an optimistic one by rounding
the average up to the nearest integer. Table 6-2 contains the distribution of similarity
levels amongst validated patent-publication combinations according to the conservative

and optimistic validation.

Table 6-2 : Distribution of similarity levels amongst validated patent-publication
combinations according to conservative and optimistic validation of experts

Score Conservative Optimistic
Identical 161 165
Highly related 8 15
Related 17 10
Somewhat related 10 27
Not related 54 33
Total 250 250

The fact that more than 50% of the cases are judged to be identical has to do with the

selection method; our selection started from a set with the 1,000 most similar

* To compensate for the difference in distributions amongst measures, rank orders were used to
evaluate high and low similarities instead of the absolute similarity values.

* All nine persons involved in the validation are familiar with patents and publications and IPR and 3 of
them are also experts in biotechnology.
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combinations for each and every measure, as we observe that SVD-based measures

tend to attribute high similarity values to patent-publication combinations.

Check consistency between expert scores and 43 similarity measures

Given the expert assessment of the 250 validation cases, an ANOVA-type of analysis can
be used to check the consistency between the expert scores (conservative and
optimistic) and the calculated similarity values. Table 6-3 contains the results of the
GLM regression based on 250 patent-publication validation cases for the conservative
expert score. This table contains for every measure the R? value for the GLM regression
with the conservative expert score as independent variable and the similarity values of
the given measure as dependent variable (R? values higher than 0.50 are emphasized in

bold and italic).

Table 6-3 : Congruence between (conservative) 5-level scale expert similarity assessment
and calculated similarity measures (R2 values of GLM regression based on conservative
expert scores of 250 validation cases)

Measure R? Measure R?
No SVD 0.61 No SVD 0.71
SVD 1000 0.34 SVD 1000 0.45
SVD 500 0.31 SVD 500 0.34
5 SVD 300 0.30 E. SVD 300 0.26
© | SVD 200 0.31 &= | SvD 200 0.21
SvD 100 0.30 SvD 100 0.17
SVvD 25 0.22 SVvD 25 0.14
SVD 5 0.11 SVD 5 0.11
No SVD 0.77 No SVD 0.80
SVD 1000 0.65 SVD 1000 0.63
SvD 500 0.63 SvD 500 0.57
4 SvD 300 0.58 w | SVD 300 0.54
@ | svD 200 0.51 = SvD 200 0.51
SvD 100 0.45 SvD 100 0.49
SvD 25 0.38 SvD 25 0.46
SVD 5 0.20 SVD 5 0.21
Common terms (weighted by min number of terms) 0.82
Common terms (weighted by max number of terms) 0.68
Common terms (weighted by avg number of terms) 0.75

Mean R?values in bold denote values higher than 0.5.

Table 6-3 reveals that the application of SVD dimensionality reduction has a negative

impact on the performance of similarity measures: for all weighting methods,
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dimensionality reduction results in lower R? values, i.e. less congruence between the
calculated similarity score according to the measure and the similarity level as assessed
by the experts. And the larger the dimensionality reduction, the lower the obtained R?
values. This is especially the case when raw frequencies or TF-IDF weighting is used —
remarkable as the combination of TF-IDF weighting and SVD dimensionality reduction is
commonly used. Binary and IDF-weighting (lower part of the table) outperforms raw
frequencies and TF-IDF-weighting, whether or not SVD is used, and the combination of
IDF-weighting without SVD, i.e. a cosine metric based on an IDF-weighted document-by-
term matrix, yields the highest R? (0.80) of all cosine-based measures. Striking is also
that simple metrics based on the number of common terms score very high, even more,
the metric based on the number of common terms weighted by the minimum number

of terms of both documents (‘common terms MIN’) yields the highest R? value (0.82).

When the optimistic expert scores are used instead of the conservative expert scores,
results stay the same: despite small changes in R? (upward for some measures,
downwards for others), conclusions about SVD dimensionality reduction, weighting

method and best measures remain the same.

Also, when we convert the 5-level scale expert scores to 2-level scale expert scores
(identical versus not-identical) to focus on the identification of patent-publication pairs,

results stay the same.

First validation results

Our ANOVA results reveal that the similarity measure ‘common terms MIN’ best
matches our expert validation. Of course it does not come to a complete surprise that
measures based on the number of common terms perform that well: the more terms in
common, the more you can expect both documents to be similar. But on the other hand
these simple measures based on the number of common terms might miss relevant
matches because they do not deal with language related issues like homonymy,
polysemy and synonymy. It is remarkable that despite this lack of complexity these
measures come closest to the expert assessment of similarity — clearly beating LSA
measures that do claim to deal with typical language issues. Another remarkable

observation is the consistency between ‘common terms MIN’ and the presence or

102



absence of a publication author in the list of patent inventors — a strong indication
whether or not the patent and publication is identical, i.e. shares the same contents
(methodology, findings, discovery). All patent-publication combinations with a similarity
of 0.59 or above according to this measure do have a publication author listed as patent
inventor, and all combinations with a similarity of 0.50 or below do not have a
publication author listed as patent inventor (with one exception with a similarity value
of 0.16). In between are 5 cases, 3 with and 2 without a publication author listed as

patent inventor. This consistency is a strong indication of the validity of this measure®.

If we take 0.55 as a threshold value (in between the zone with shared inventor/author
and the zone without shared inventor/author) and translate the 5-scale expert score to
a 2-scale score (identical or not identical — as we are primarily concerned about finding
patent-publication pairs, hence primarily concerned about identical versus not-identical
patent-publication combinations) we obtain a confusion matrix as displayed in Table 6-4
(using the conservative expert scores).

Table 6-4 : Confusion matrix for the measure based on the number of common terms

weighted by minimum number of terms of both documents (based on conservative expert
scores of 250 validation cases with threshold value of 0.55)

Measure COMMON
TERMS MIN
. Not
|dentical identical
168 82
«~ ¢ ldentical 161 160 1
o 2
o £
x a
wo o Not 9 8 81
identical

This results in a precision of 0.95 (percentage of document combinations classified as

related by the automated method that are correct according to the experts: 160/168 —

6 Although the presence or absence of a shared inventor/author is a strong additional indication of
content similarity, using this criterion on its own to identify patent-publication combinations is not
straightforward — as stated in the introduction chapter — because of practical reasons (how to deal with
spelling errors in names; presence or absence of initials and middle names; homonyms) and conceptual
reasons (the same person can be involved in multiple discoveries/inventions, hence two documents of
the same inventor/author can have a complete different contents). It is the combination of content
relatedness and presence of shared inventor/author that yields a robust indicator.
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to what extent is the automated method correct when it predicts a match) and a recall
of 0.99 (percentage of document combinations that are related according to the experts
that are classified as related by the automated method: 160/161 — to what extent does
the automated method not miss relevant matches). When the optimistic expert scores
are used, the number of identical patent-publication combinations according to the
experts raise from 161 to 165, and this results in an even higher precision of 0.98 and

recall of 0.99.

Although the validation seems to result in excellent precision and recall scores for an
automated classification method, these scores are misleading because the distribution
of the obtained similarity scores according to measure ‘common terms MIN’ is
completely different within the validation sample and the total population. We have an
underrepresentation of document combinations that are less related in our validation
sample because the selection of validation cases was primarily based on combinations
scoring high on at least one measure. As listed in Table 6-2, more than 65% of the cases
in the validation sample were rated identical by the experts, while the relative number
of patent-publication pairs in the full populations will be far, far lower. In reality, the
number of document cases with average or low similarity scores will completely
outnumber the cases with high scores. And although the relative number of
misclassifications might by reasonable, this large group with average scores will result in
a high number of mismatches in absolute terms, pulling down the relative number of
correct classifications and negatively influencing precision and recall. To get reliable
precision and recall scores, the relative number of mismatches has to be combined with
the absolute number of document combinations to correct for the differences in
distribution. We will come back on this issue later on when presenting validation results

based on an extended validation set.

6.6 Additional validation: validation based on control sets

Validation setup
Apart from the expert validation, the control sets can be used for additional validation.
As described earlier, three control sets were created with patents related to agriculture,

automotive and materials, with 29,952 patents in total. These patents are presumed to
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be unrelated to biotechnology publications, meaning that we do not expect to find
biotechnology publications having a high content similarity with any of these control set
patents.” If we apply our measure ‘common terms MIN’ on all combinations of the
29,952 control set patents and the 948,432 biotechnology publications, we expect not

to find high similarity scores.

Additional validation results

In total we find 126 combinations of control set patents and biotechnology publications
with a similarity value of 0.60 or above according to the measure ‘common terms MIN’
(about 0.04% of all control set patents), compared to 4,499 combinations of
biotechnology patents and biotechnology publications (about 5.10% of all
biotechnology patents). This significant difference in the ratio of patent-publication
combinations with high content similarity between the group of biotechnology patents
and the group of control patents is again an indication of the validity of our measure.
Yet it might be interesting to dig into those 126 control set cases with high similarity. 51
of those cases have a similarity of 0.70 and above, and 12 cases even have similarities of

0.80 and above.

Appendix 6-3 contains an example of a combination of a control set patent and
biotechnology publication (common terms min = 0.82; common terms max = 0.06). This
example demonstrates the weakness of using the minimum number of terms of both
documents as weight to normalize the number of common terms to arrive at a metric.
The patent abstract is far shorter compared to the publication abstract, and as almost
all terms of the patent abstract are present in the publication abstract, a high similarity
is obtained when using the minimum number of terms of both documents as weighting
factor. This approach seems to make sense in general; if the abstract of one document
is a subset of the abstract of the other document, they can be regarded as identical. We
checked this for multiple cases where there is a big difference in the similarity value

based on measure ‘common terms MIN’ and measure ‘common terms MAX — an

* As stated before, patents of the control groups are selected in such a way that there is no overlap with
biotechnology patents, i.e., patents classified in both biotechnology IPC classes and one of the control set
IPC classes are not selected for the control groups, only for the biotechnology group. This is of particular
interest for the agriculture control group, as this group can be related to biotechnology and share some
IPC codes (AO1H 1/00 and AO1H 4/00).
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indication of document combinations with unbalanced text length — and indeed, for the
vast majority of those cases the longer document just contains more details or a longer
introduction or results, but the actual relevant contents is the same. So there is some
anecdotic evidence to back up the use of the minimum number of terms as weight (on
top of the empirical results of the ANOVA-analysis revealing this measure as the best
performing one). However, when one of the documents is too small, or when the
difference in length is too big, using the minimum number of terms as weight leads to
unreliable results (even for human experts it becomes difficult to assess similarity for

these cases).

If we go back to our 126 control set patents with high similarity with a biotechnology
publication (weighted by the minimum number of terms of both documents — measure
‘common terms MIN’), it is striking that all of them do have low similarity values when
the maximum number of terms of both documents is used as weight (measure
‘common terms MAX’) - i.e. there is a big difference in the length of both documents.
Only 21 of those cases have a similarity ‘common terms MAX’ above 0.10, and only 2
above 0.20 (with a maximum of 0.25). In our validation set of 250 cases, 71 cases have a
similarity ‘common terms MAX’ of 0.25 or below; and only 2 of those cases are rated as

identical by the experts (one cases of 0.24 and one case of 0.20).

Additional criterion

The insights of the additional validation suggest that a correction is needed for
document combinations with one small and one large document. For those cases, our
best performing measure ‘common terms MIN’ might be misleading and an additional
criterion based on document length is needed. Instead of adding an absolute criterion
based on document size, we examine the impact of an additional relative measure, as
we have already one measure available: measure ‘common terms MAX’. So we combine
the primary criterion based on measure ‘common terms MIN’ (e.g. above 0.55) with a
secondary criterion based on measure ‘common terms MAX’ to correct for doubt cases.
The results of the additional validation based on the control sets suggests that the
threshold for this secondary criterion ‘common terms MAX’ is somewhere between 0.20

and 0.30 (almost all combinations from the control set score below 0.20 on this
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criterion with a few exceptions between 0.20 and 0.30, and all combinations in our
validation sample of 250 expert rated cases scoring below 0.20 on this criterion are

rated not identical by the experts).

Applying this secondary criterion ‘common terms MAX’ with threshold around 0.20
does not influence the classification of the 250 expert rated cases in our validation
sample because none of those cases with primary criterion ‘common terms MIN’ above
0.55 score below 0.20 on the secondary criterion (4 cases score between 0.20 and 0.30,

and all four are rated identical by the experts).

However, the control set validation proves that setting the threshold value for the
secondary criterion ‘common terms MAX’ does has a significant impact (e.g. setting the
value to 0.20 would discard all matches found for the control set patents). If we look at
the global biotechnology dataset (88,248 biotechnology patents and 948,432
biotechnology publications), and take the 1,000 closest combinations for every patent
according to measure ‘common terms MIN’, there are 112,847 patent-publication
combinations above 0.55 for the primary criterion ‘common terms MIN’, but the vast
majority of those combinations score low on the secondary criterion ‘common terms
MAX’. Table 6-5 contains the distribution of the ‘common terms MAX’ scores for the

combinations above 0.55 for ‘common terms MIN’.

Table 6-5 : Distribution of second criterion scores ‘common terms MAX’ for all patent-
publication combinations with primary criterion ‘common terms MIN’ above 0.55

Number of patent-
publication
combinations
(cumulative)

Number of patent-
publication
combinations

Second criterion ‘COMMON
TERMS MAX’ range

0.35<x 631 631
0.30<x<0.35 262 893
0.25<x<0.30 747 1,640
0.20<x<0.25 2,856 4,496
0.15<x<0.20 14,053 18,549
0.10<x<0.15 56,093 74,642

0<x<0.10 38,205 112,847

The figures in table Table 6-5 make clear that matching results are extremely sensitive

to threshold setting; even within the range of 0.20-0.30 the impact on the number of
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matches is significant (from 4,496 combinations labelled as identical by the automatic
method for a threshold value of 0.55 for ‘common terms MIN’ and 0.20 for ‘common
terms MAX’ to 893 combinations labelled as identical for the same threshold value for

‘common terms MIN’ but a threshold value of 0.30 for ‘common terms MAX’).

6.7 Final validation: selection of 50 additional cases for expert validation

Validation setup

As the first validation set of 250 cases for validation cases does not allow for careful
selection of the threshold value for the secondary criterion - as we do not have enough
cases with low scores on ‘common terms MAX’ in our validation sample - 50 additional
cases were selected. For the selection of these additional cases, we do not only look for
cases with low scores on the secondary criterion ‘common terms MAX’, but also for
potential false negatives and false positives for the primary criterion ‘common terms
MIN’. The idea is the create a robustness check for a classification method based on
‘common terms MIN’ and ‘common terms MAX’ by deliberately selecting additional
validation cases that are though, i.e. difficult to classify because they are in the grey
zone between identical and not-identical combinations or cases that are expected to be
misclassified based on the information we have. To obtain a balanced and
representative selection, we split up the selection of additional validation cases by

similarity range for the primary criterion ‘common terms MIN’:

0.81-1.00 : this is normally the save zone were we only expect to find patent-publication
combinations that are identical (the first validation only revealed one case not rated as
‘identical’ by the experts). For this zone, we are interested in potential false positives
introduced by the primary criterion, so we select 5 cases without shared
inventor/author because these are unlikely to be identical (all those cases happen to

have a low score on the secondary criterion).

0.71-0.80 : this is still rather a save zone (the first validation only revealed one or two
cases not rated as ‘identical’ by the experts - depending whether conservative or
optimistic expert scores are used). For this zone, we are interested in potential false

positives introduced by the primary criterion and in potential false negatives introduced

108



by the secondary criterion. We take 5 cases without shared inventor/author (potential
false positives) and with high scores on the secondary criterion (how to set second
criterion threshold to discard false positives); 5 cases with shared inventor/author and
low scores on the secondary criterion (to what extend will the secondary criterion
introduce false negatives); and 10 cases with shared inventor/author and a secondary
criterion value around 0.3 (to help finding a solid threshold for the secondary criterion),

so 20 cases in total.

0.61-0.70 : this is a grey zone with multiple mismatches according to the first validation.
We follow the same logic for the selection of cases as for the previous range: 8 cases
without shared inventor/author and with high scores on the secondary criterion and 7
cases with shared inventor/author and low scores on the secondary criterion, so 15

cases in total.

Below 0.61 : here we are interested in false positives in the frontier zone (‘common
terms MIN’ in the range of 0.55-0.60) and in false negatives for lower values on the
primary criterion ‘common terms MIN’. We select 5 cases scoring high on the primary
criterion (within this range) and without shared inventor/author or low value on the
secondary criterion, and 5 cases scoring low on the primary criterion (within this range)

and with shared inventor/author.

Final validation results
Those 50 cases were again rated by two experts as in the first validation. Table 6-6
contains the result of the validation for every range and subset based on conservative

expert scores.
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Table 6-6 : Expert validation results (conservative) for 50 additional cases by primary
criterion range (‘common terms MIN’) and validation subset

IDENTICAL NOT IDENTICAL
ACCORDING TO ACCORDING TO
Range . Total EXPERTS EXPERTS
primary Validation subset cases
criterion Range Range
Cases secondary Cases secondary
criterion criterion
0.81-1.00 Potential false positives 5 0 5 0.11-0.18
0.71-0.80 Potential false positives 5 1 0.28 4 0.25-0.33
0.71-0.80 Potential false negatives 5 0 5 0.10-0.16
0.71-0.80 Secondary criterion 10 9 0.31-0.41 1 0.36
around 0.3
0.61-0.70 Potential false positives 8 1 0.32 7 0.29-0.45
0.61-0.70 Potential false negatives 7 2 0.24-0.26 5 0.20-0.26
<0.61 Potential false positives 5 1 0.35 4 0.30-0.51
<0.61 Potential false negatives 5 2 0.36 3 0.35-0.40

For the first range (‘common terms MIN’ in the range of 0.81-1.00) results are good for
the false positives: all cases that score high on ‘common terms MIN’ but that were
suspect of being false positives (because they had no shared inventor/author) are rated
as not identical by the expert validation. It is clear that the secondary criterion based on
‘common terms MAX’ easily discards all those false positives with a clear threshold

value of 0.18).

For the second range (0.71-0.80), results are still reasonable, although a proper
selection of the threshold value for the secondary criterion is not clear. A threshold
value below 0.36 will introduce false positives, but a threshold value above 0.28 will
introduce false negatives, so no clear cut-off point exists and a trade-off has to be made

(e.g. a threshold value of 0.30 results in 3 false positives and 1 false negative).

For the third range (0.61-0.70), the overlap gets bigger and the choice for a threshold
value for the secondary criterion gets complicated. A threshold value below 0.45 will
introduce false positives, but a threshold value above 0.24 will introduce false
negatives, so again no clear cut-off point exists and a trade-off has to be made (e.g. a

threshold value of 0.30 results in 2 false negatives and 5 false positive).
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Finally, the last range (< 0.61) requires even higher values for the secondary criterion to
discard false positives (0.51) but the overlap is not much bigger compared to the
previous range (at least 0.36 to prevent false negatives). We observe identical
combinations (according to the expert validation) up to a similarity of 0.46 for ‘common
terms MIN’, but distinction from false positives is difficult, even with ‘common terms

MAX’ as secondary criterion.

Based on these results, it makes sense to add a secondary criterion based on the
number of common terms weighted by the maximum number of terms of documents to
eliminate potential false positives with minimal introduction of false negatives. But the
results in Table 6-6 also reveal that for lower values of ‘common terms MIN’ a clear

distinction between identical and non-identical combinations is not possible.

It is clear that setting thresholds on the primary criterion (‘common terms MIN’) and
secondary criterion (‘common terms MAX’) is a trade-off between false positives and

false negatives, or precision and recall.

Table 6-7 contains precision and recall for different thresholds on the primary and
secondary criteria (optimal precision, optimal recall, and balanced precision/recall)
based on all 300 cases rated by experts (both for the conservative and optimistic expert

scores).

Table 6-7 : Precision and recall for different thresholds on primary and secondary criterion
(optimal precision, optimal recall, balanced precision) (based on conservative and
optimistic expert scores for 300 validated cases)

CONSERVATIVE EXPERT OPTIMISTIC EXPERT

Primary Secondary OPINION OPINION

criterion criterion Precision Recall Precision Recall
0.50 0.10 0.81 0.99 0.88 0.98
0.50 0.32 0.91 0.92 0.94 0.88
0.50 0.61 0.98 0.55 1.00 0.51
0.55 0.10 0.82 0.98 0.88 0.97
0.55 0.30 0.90 0.93 0.93 0.89
0.55 0.61 0.98 0.55 1.00 0.51
0.60 0.10 0.83 0.95 0.98 0.94
0.60 0.29 0.91 0.92 0.94 0.88
0.60 0.61 0.98 0.55 1.00 0.51
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Optimal precision scores can be obtained with a recall around 0.55/0.51, optimal recall
scores can be obtained with a precision around 0.81/0.88 and balanced precision/recall
scores around 0.90 are possible for both precision and recall at the same time (e.g.

‘common terms MIN’ above 0.55 and ‘common terms MAX’ above 0.30).

As stated before, we have to keep in mind that the precision and recall figures listed in
Table 6-7 are not representative for the total population because obtained similarity
values for ‘common terms MIN’ and ‘common terms MAX'’ are not equally distributed in
the validation sample and the total population (very high number of identical document
combinations in the validation sample). As there are only a very limited amount of
document combinations scoring high on the proposed measures in the total population,
it is more appropriate to derive precision and recall measures based on validation cases
scoring around the threshold values. Take for instance a threshold value of 0.55 for
‘common terms MIN’ and 0.30 for ‘common terms MAX’. According to the conservative
expert validation, this would result in a precision of 0.90 (184 combinations classified as
pair by the automated method in the validation set of which 165 are real pairs
according to the experts) and a recall of 0.93 (165 real pairs retrieved by the automated
method in the validation set compared to 177 real pairs identified by the experts).
Applied on the full population this would mean that we would label 893 patent
publication combinations as identical (see Table 6-5), and by doing so, about 89 of those
cases would be wrongly labelled identical (10%), and at the same time we would miss
about 61 cases (7%). However, if we look at the cases with ‘common terms MAX’
between 0.30 and 0.25 in our validation set, we find 9 cases of which 5 cases are
assessed as identical by the experts, or 55%. These matches will be missed by the
automated method when the threshold for the secondary criterion is set to 0.30. If this
55% match rate is representative for the whole population in the range of 0.25 and 0.30
for ‘common terms MAX’, we would miss 411 patent-publication pairs in this range for

X/48

‘common terms MAX' ™. In the range of 0.20-0.25 for ‘common terms MAX’, we observe

34% matches in the validation sample. Again according to Table 6-5 we would miss an

a8 According to table Table 6-5, we have 747 cases in the total population with ‘common terms MIN’
above 0.55 and ‘common terms MAX’ in the range of 0.25 and 0.30, of which 55% or 411 cases are
expected to be identical according to the validation.
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additional 971 patent-publication pairs. If we continue this reasoning, we and up with a
match rate of 20% for the range 0.15-0.20 resulting in another 2,811 missed patent
publication pairs. This makes a total of 4,193 expected missed patent-publication pairs,
far more than the 61 cases we initially expected. According to these estimations, the

real recall rate is 16%.

The same problem occurs for precision rates. In the range 0.30-0.35 for ‘common terms
MAX’, the precision rate in the validation set 53%. Again according to table Table 6-5
this would mean already 123 false positives. For ‘common terms MIN’ equal to 0.35 and
above, precision rate is 94% hence 38 additional false positives, or 161 false positives in
total, again more than the 89 false positives initially expected according to the precision
rates in table Table 6-7. According to the estimations based on the full dataset, the real

precision rate is 82%.

The button line is that precision and recall rates derived from the validation sample are
not representative for the whole population because we have far, far more patent-
publication combinations scoring low on the proposed distance measures while we
initially calculated precision and recall rates from sample data with an
overrepresentation of patent-publication combinations scoring high on the respective
distance measures. Especially recall rates are suffering from this issue. However, the
magnitude of the difference between the precision and recall rates averaged over the
validation sample and the real rates based on the distribution in the global population
heavily depends on the representativeness of those cases scoring low in the validation
set. As the previous examples describes, these derived numbers are based on only 28
cases scoring less than 0.30 for ‘common terms MAX’ (given a score of 0.55 or above on
‘common terms MIN’). More validation cases with lower scores are needed to get a
more reliable estimate of the real precision and recall. But to be at the save side, the
threshold on ‘common terms MIN’ has to be increased to get acceptable precision rates

(e.g. t0 0.60).

Precision can be improved by introducing a third criterion: the presence of a shared
inventor/author. Although this extra criterion helps to make results more robust, large

scale application on big datasets might not be straightforward.
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6.8 Where does it go wrong for TF-IDF and SVD

Weighting issues

The most remarkable finding of this study is the bad performance of SVD-based
measures, even with commonly used pre-processing options and levels of
dimensionality reduction (e.g. TF-IDF weighting in combination with SVD with 300-1,000

dimensions).

When it comes to the influence of weighting, Table 6-3 reveals that weighting methods
taking into account term frequencies (raw frequencies and TF-IDF weighting) perform
worse compared to weighting methods ignoring term frequencies for all levels of
dimensionality reduction. In line with these findings we also observe better
performance for the measures based on the number of common terms, measures which

also ignore term frequencies.

Looking at individual cases gives some insight in the implications of the choice of a
weighting method. In general, including term frequencies is expected to generate better
results as the number of times a given term appears in one document is an indication of
the importance of that term in that particular document. However, for our patent-
publication document combinations (mostly of a rather moderate length and with
highly technical content), this additional notion of importance derived from term
frequencies seems to be of less relevance in the assessment of similarity of the
documents. Indeed, when looking at multiple document combinations, the human
judgement on similarity is far more driven by the kind of terms in the documents rather
than the number of times a particular term appears in a document. This observation
explains why weighting methods taking into account term frequencies do not perform
better, but not why they perform worse. Again looking at individual cases reveals some

additional insights.

First of all, stemming errors and tokenization and parsing issues sometimes cause
artificial inflation of term frequencies, magnifying the impact of the underlying

stemming and tokenization errors.
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Appendix 6-4 contains an example of a patent-publication combination where the
amplification of a stemming error results in misleading similarity scores for weighting
methods taking into account term frequency. The patent document is about an
incubator with external gas feed. The publication document is about gibberellin
metabolism in suspension-cultured cells of raphanus-sativus. Both documents have
nothing in common, yet score high on some measures (and score significantly higher for
measures including term frequencies). Both documents have only two (stemmed) terms
in common, ‘feed’ and ‘ga’. But the stemmed term ‘ga’ occurs 9 times in the patent
document and 29 times in the publication document, resulting in high weights when the
term frequency is included. But the stemmed term ‘ga’ in the patent document is a
stemming error derived from ‘gas’, while the stemmed term ‘ga’ in the publication
document is an abbreviation of ‘gibberellin” and has nothing to do with the stemmed
term ‘ga’ in the patent document. For weighting methods not taking term frequency
into account, this stemming error counts as just one (be it wrongly) matching term, but
for weighting methods using term frequency, this stemming error is magnified and leads

to erroneous results.

Appendix 6-5 contains an example of a patent-publication combination where
tokenization and parsing issues result in misleading similarity values for weighting
methods taking into account term frequencies. Again both documents are not related
and have only two terms in common: ‘alpha’ and ‘beta’. Both of these terms occur a lot
in both documents as part of chemical formulas, and these high term frequencies result
in higher similarity values for weighting methods based on term frequencies. But the
larger chemical formulas these terms are part of, are not related. It would probably be

better to parse and index those formulas as one piece, but this is not straightforward.

Secondly, we observe that words with a particular meaning and hence very relevant in
the assessment of similarity tend to have smaller term frequencies compared to natural
language words with a more general meaning. For weighting methods including term
frequencies, the weight of these more general natural language words becomes too
influential in the derivation of similarity by the cosine metric. This issue might be

specific to the technical nature of the documents — i.e. for our set of patent and
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publication documents, low frequency technical words are far more important for the
assessment of similarity compared to higher frequency natural language words.
Weighting terms by their respective IDF values does only partially correct this problem;
TF-IDF performs better than no weighting at all, and IDF performs (slightly) better than

binary weighting, but TF-IDF still performs worse compared to binary or IDF weighting.

Given these insights, it might be worthwhile to investigate to leave stemming out of the
pre-processing steps and to devote additional efforts for a more advanced tokenization
and parsing, especially to better deal with chemical formula. Another approach is to
improve feature selection to eliminate or further down-weight terms which are too

general in meaning to be significant in the derivation of similarity.

SVD issues

It is not clear why LSA — or SVD — fails, or why SVD tends to assign unrealistic high
similarity scores to document combinations - mind in that respect the high similarity
scores for the patents in the materials control set. While some anecdotic evidence
exists to explain differences in weighting performance, disentangling the bad
performance of SVD in general is of a different level of complexity. Looking at individual
cases is not very informative as it is virtually impossible to trace back term vectors after
SVD to the original terms and contents. The document-by-concept matrix compiled by
the SVD solution contains the scores of all documents on newly formed latent concepts,
and every latent concept consists of a linear combination of all original terms, i.e. a

linear combination with 301,697 components.

There are however some general reasons why LSA or SVD might fail for our dataset. The
first reason is that the dataset might not be large enough to derive the latent structure.
This is however very unlikely for our dataset as it contains almost one million
documents. A related issue might be that the individual documents are not long enough
to grasp the contents of the documents. This issue might be relevant for our dataset as

we work with titles and abstracts, and especially patent abstracts tend to be rather
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small (about 39 unique terms on average for patents and 65 unique terms on average

for publications49). We will come back to this issue in the next sections.

Another reason for the unfulfilled expectations might be that the chosen levels of
dimensionality reduction are not appropriate for our dataset, or that our derived SVD
solutions for our selection of k-values accidentally do not grasp the latent structure of
the data. The former deserves more attention, although literature suggests 300 to 1,000
concepts is enough to capture the topics in a document set (see chapter 4), which is the
range we included in our setup. We will also come back to this issue in the next
sections. The latter is very unlikely: SVD solutions are based on the singular values of
the full document-by-term matrix. Changing the number of retained
dimensions/concepts does not alter the values of the singular values, it only alters the
number of singular values and singular vectors taken into account to approximate the
original document-by-term matrix. As singular values are ordered by magnitude and
values drop significantly, small changes in the number of retained dimensions cannot
have big effects once beyond the first tens or hundreds of singular values. Moreover,
we have four fundamentally different SVD derivations because of the four weighting
methods, and all those variants yield SVD based measures that underperform compared

to cosine measures on the full vector space.

A complete different kind of issues resides in the technical nature of the documents.
Maybe the specific context of patent and publication documents does not allow the
method to achieve its full potential. LSA is intended to derive meaning from text based
on large samples of ‘narrative’ documents. The distinctive language use within our
dataset might not be appropriate (might especially be of a concern for patent
documents where phrasing might reflect tactical and strategic consideration more than
technical disclosure, e.g. to maximize legal claims to get broad application protection or
to disguise the real contents to mislead competitors). A related issue might be that we
are combining patent documents with scientific publications, two document spheres
that might be too different to derive a latent structure that fits both. These potential

causes of failure might look farfetched, but it is clear when reading patent abstracts that

49 . . .
After stop word removal, stemming and removal of words appearing in only one document.
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such documents have little in common with typical applications as e.g. the ones
described in the Handbook of Latent Semantic Analysis (Landauer, McNamara et al.,
2007). However, finding evidence for these raised issues is not straightforward. One
could set up validation exercises as the ones deployed in this chapter to evaluate LSA
performance on a distinct subset with only patents and a distinct subset with only
scientific publications. Another avenue might be to compare the LSA performance when
more descriptive abstract are used, e.g. using the Derwent Abstracts as available in the
Derwent World Patent Index (Thomson Reuters Derwent World Patent Index), which are
abstracts rewritten by scientifically-trained editors detailing claims and disclosures of
the invention and highlighting main use and advantages. Pursuing such additional
research efforts might reveal interesting information on the applicability of LSA on

patent and publication data, but goes beyond the limitations of this dissertation.

One final reason why LSA might fall short is the limitation to Euclidean geometry as
imposed by the assumption of LSA that documents are represented as vectors in a
vector space. In an Euclidean space, similarity should be symmetric and not violate
triangle inequality - d(x,z) < d(x,y) + d(y,z) - placing strong constraints on the location of
point in a space given a set of distances (Griffiths, Steyvers & Tenenbaum, 2007). This
issue however is a general one and not directly related to the limitations of our patent
and publication dataset; it is related to problems when dealing with high-dimensional
spaces (‘curse of dimensionality’). In high dimensional spaces all data appear to be
sparse and dissimilar, preventing efficient identification of communalities. Other text
mining techniques not relying on spatial representations might be more appropriate,
like generative topic models as Probabilistic Latent Semantic Modelling (Hofmann,
1999) and Latent Dirichlet Allocation (Blei, Ng & Jordan, 2003), but the exploration of

those methods are again beyond the limits of this dissertation.

In the next sections, we will elaborate more on the impact of document size and the

impact of the number of retained dimensions/concept on the performance of SVD.

Impact of document size on SVD performance
The poor performance of SVD might be related to the document size, as especially

patent abstracts tend to be short. To get more insight in this issue, we include
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document size when we check for the congruence between obtained calculated
similarity scores and the expert validation scores. For all patent-publication
combinations in the validation sample, we use the minimum document size, i.e. the
minimum of the number of terms of the patent document and the publication
document, as indicator of the document length. If we include this in the regression
analysis, i.e. if we take again the compiled similarity measure variants as dependent
variables and we take the expert score and the document size as independent variables,
results reveal that document size has no impact on the similarity scores for our measure
‘common terms MIN’, but that the impact is significant (at the 5% level) for all cosine
based measures without SVD. For binary and IDF weighting in combination with SVD,
document size also has a significant impact on the similarity score, but not for SVD in
combination with TF-IDF weighting or raw frequencies. Overall, the impact is small,
except for binary and IDF weighting in combination with SVD, where R? values can
improve with 8 to 11 percentage points compared to the model with only the expert
score as independent variable. Whether we use the total number of terms or the
number of distinct terms does not make a lot difference, although results are somewhat
softened when the number of distinct terms is used to derive the document size

indicator.

Likewise, we also had a look at the difference in document size within a patent-
publication document, as we know there are many combinations with a small document
combined with a large document. Now we used the ratio between the number of terms
of the smallest document and the number of terms of the largest document as indicator
of document size difference. If we take the expert scores and the document size
difference as independent variables, we see comparable results as for the document
size effect, but with stronger impact. Again the impact is not significant for our measure
‘common terms MIN’ but is significant for all cosine based measures without SVD, for
binary weighting and IDF weighting with SVD, and for TF-IDF weighting and raw
frequencies with SVD 1,000. The impact of the document size difference is higher than
the impact of the document size, with R? values increasing with 15 to 20 percentage

points for binary and IDF weighting with SVD.
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If we also include both document size and document size difference in the model, and
the interaction between document size and document size difference, we observe that
the significance of the document size disappears and the impact of document size

difference remains.

These results tend to suggest that SVD based measures in combination with binary and
IDF weighting are influenced by the document size difference, which might be an
explanation for the poor performance. However, this is not a complete explanation as
this impact is rather moderate for SVD in combination with TF-IDF weighting and no

weighting at all, while those measures perform worst.

In a last analysis trying to disentangle the relation between document size and
performance, we looked at direct influence of document size and measure
performance. All patent-publication pairs in the validation sample where uniformly
divided into three groups: group one with small documents (measured as before by the
minimum number of terms of the patent and publication document); group two with
medium size documents; and group three with large documents. Now we perform a
regression analysis with the similarity measures as dependent variable and the expert
scores as independent variable for each of the three groups. For measure ‘common
terms MIN’, performance goes down for larger documents (R?> of 87% for small
documents to 61% for large documents). For cosine based measures without SVD,
performance of binary and IDF weighting also goes down by about 15 percentage
points; for raw frequencies performance goes up considerable (R? from 38% to 72%),
and for TF-IDF weighting performance remains more or less constant (R? around 64%).
For SVD with low levels of dimensionality reduction (k=1,000) we see the performance
slightly going down for larger documents for binary and IDF weighting, but heavily going
up for TF-IDF weighting and no weighting. If we do the same kind of analysis with
document size difference instead of document size, we observe a considerable increase
in performance of SVD with low levels of dimensionality reduction (k=1,000) for TF-IDF
weighting and raw frequencies for patent-publication combinations that are balanced in
document size, while performance remains more or less constant for binary and IDF

weighting.

120



To summarize, we see that document size and document size difference has a different
impact on the measures depending on the weighting schema used. The three measures
based on the number of common terms, and the cosine measures without SVD and
without term frequencies (binary and IDF weighting) tend to perform worse for larger
documents and/or documents of equal size. There seems to be a normalization problem
for these measures. More important is that SVD-based measures and especially TF-IDF
measures in combination with low levels of dimensionality reduction perform far better
for larger and more balanced patent-publication combinations, although not yet beating
our preferred measures ‘common terms MIN’. In this respect it would be interesting to
combine both document size and document size difference in the same analysis. The
problem is that the number of observations in the validation set becomes low for some
combinations of document size and document size difference, and that the variance

amongst expert scores becomes very low for some of these combinations.

We have to be careful in deriving hard evidence from these analyses, as the validation
sample is rather small - especially when split up by size and size difference - but it seems
that document size and document size difference have an impact on SVD based
measures and might at least partially explain the bad performance of e.g. TF-IDF
weighting in combination with SVD because of our rather short patent abstract
documents. A larger validation sample with a more balanced design when it comes to

document size and document size difference is required to disentangle this further.

Impact of the number of retained dimensions/concepts and stability of the
SVD solution

As stated before, the choice of k, the number of retained dimensions or concepts, is not
straightforward. In this study, the maximum value of k taken into consideration was
1,000 because of computational limitations. Although literature suggest to take 100 to
300 concepts (see chapter 4), the variety of topics present in our patent and publication
set might require more concept to be taken into account to grasp the latent structure of
the dataset. Computationally limitations prevent us from deriving SVD solution with
more than 1,000 retained dimensions/concepts for our large dataset, but using a

smaller sample allows us to go beyond 1,000 retained concepts in the SVD calculation.
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We started from the original raw document-by-term matrix, the document-by-term
matrix after IDF weighting, and the document-by-term matrix after TF-IDF weighting.
Every time we selected 5% random patents from each group (biotechnology,
agriculture, automotive and materials) and 5% random publications from our original
dataset. However, we made sure that patent-publication combinations that are present
in our expert validation set are also present in all samples. This resulted in three
different subsamples of 53,332 patent and publication documents, based on three
different weighting methods (mind that not only the weighting method is different, but
that selected patents and publications are also different, except for the patent-
publication combinations present in our validation sample, which are present in all
three subsamples). For all three subsamples, we performed SVD with k=5,000 and

calculated distances between all patents and publications within the samples™°.

Figure 6-4 : Distribution of similarity scores of patents to closest publication according to
TF-IDF SVD 5000 (based on 5% sample) (markers=median values)
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>0 Going beyond 5,000 retained dimensions/concept when deriving an SVD solution from our 5% sample
takes an extremely amount of computing time and was not feasible for more than one variant.
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This results in the same kind of information as described in section 6.4 (‘Aggregated
results’), except for a smaller sample. This means that we can again plot distributions
and compare similarity scores of patents and their closest publications for the
biotechnology patents and control group patents. Figure 6-4 shows the distribution of
similarity scores for the similarity measure using TF-IDF weighting and SVD of rank
5,000. The distributions are more shifted to the left compared to the distributions for
TF-IDF with lower rank SVD, and there is also a clear distinction between biotechnology
patents and control set patents. In short, these distributions are more in line with the
expectations, and with the results of TF-IDF weighting without SVD or the similarity
measures based on the number of common terms. For the raw document-by-term
matrix, and the one after IDF weighting, we find the same kind of results when applying
SVD with rank 5,000. In short, we find realistic distributions when SVD with a high
number of retained dimensions/concepts is used. Remind that the selection of patents
and publication is different for the three samples, so we observe the same kind of
improvement for 3 independent subsets. As all validated patent-publication
combinations are present in all three subsets, we can again check the congruence
between the obtained similarity scores according to those three measures and the
expert scores, as we did in section 6.5 (‘First validation: comparison of the validity of the

measures’).

Table 6-8 is an extension of Table 6-3 for the three weighing variants for which we
derived a 5% sample and calculated a rank-5,000 SVD solution, and contains again the
results of the ANOVA-type of analysis to check consistency between the expert scores
and calculated similarity scores. We see that higher number of retained
dimensions/concepts have a significant positive effect; for IDF weighting and TF-IDF

weighting, obtained results even approach the variants without SVD.
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Table 6-8 : Congruence between (conservative) 5-level scale expert similarity assessment
and calculated similarity measures, including high rank-k SVD based on 5% sample (R?
values of GLM regression based on conservative expert scores of 250 validation cases)

Measure R? Measure R?
No SVD 0.61 No SVD 0.71
SVD 5000 (5% sample) 0.56 SVD 5000 (5% sample) 0.68
SVD 1000 0.34 SVD 1000 0.45
= SVD 500 0.31 w SVD 500 0.34
< SVD 300 0.30 E SVD 300 0.26
SVvD 200 0.31 SVvD 200 0.21
SvD 100 0.30 SvD 100 0.17
SVD 25 0.22 SVD 25 0.14
SVD 5 0.11 SVD 5 0.11
No SVD 0.80
SVD 5000 (5% sample) 0.79
SVD 1000 0.63
SVD 500 0.57
2 NA S | sVD 300 0.54
SVvD 200 0.51
SvD 100 0.49
SVD 25 0.46
SVD 5 0.21
Common terms (weighted by min number of terms) 0.82
Common terms (weighted by max number of terms) 0.68
Common terms (weighted by avg number of terms) 0.75

Mean R?values in bold denote values higher than 0.5.

To be sure obtained R? values are not the result of an accidental good fit of the
particular SVD solutions, we created a second 5% subsample based on IDF weighting,
derived another rank-5000 SVD solution, calculated similarities of validated patent-
publication combinations again and checked congruence with the expert scores, and
obtained an R? value of 0.793, remarkably close to the R? value of 0.786 of the first 5%
subset based on IDF weighting. This suggest that SVD solutions are rather stable for a

given rank-k solutions for subsets within a large document collection.

Table 6-8 also suggest a positive relationship between the number of retained
dimensions and the congruence with expert scores. Figure 6-5 contains more ANOVA

results and lists the obtained R? value for the measure based on IDF weighting in
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combination with high level rank-k SVD in the range 500 to 10,000 in steps of 500 for

the 5% subset, together with the captured variance™.

Figure 6-5: Congruence between (conservative) 5-level scale expert similarity assessment
and calculated similarity measures based on IDF weighting for high rank-k SVD based on
5% sample (R? values of GLM regression based on conservative expert scores of 250
validation cases)
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The solid horizontal thick line represents the R? value obtained when all dimensions are
taken into account - cosine on the full vector space defined by the 5% sample after IDF
weighting (left axis, 0.801). The thin solid line represents the R? value obtained by a
given rank-k SVD solution based on IDF weighting (left axis, R*? of 0.60 for 500
dimensions to 0.806 for 10,000 dimensions). The more dimension/concepts are
retained, the more the R? values of the SVD-based measure approach the one for the
full vector space. The dashed line represents the percentage of variance captured by a
given rank-k, i.e. the variance present in the approximate document-by-term

(document-by-concept) matrix after SVD compared to the total variance in the original

> We were only able to go to k=10,000 for one variant because of the extreme amount of computing time
required.
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document-by-term matrix of the 5% sample (right axis, 22% for 500 dimension to 85%

for 10,000 dimensions).

This table again confirms the positive relationship between the number of retained
dimensions/concepts and the congruence with expert similarity scores, approaching the
R? of 0.801 of a plain cosines on the full vector space based on IDF weighting of the 5%

sample.

Striking is the resemblance between the obtained R? value from the original dataset and
the 5% sample for the same absolute level of dimensionality reduction. Both for the
original large dataset as for the 5% sample, the obtained R? value when applying the
cosine measure to the full vector space is equal to 0.80. The same for the rank-500 and
rank-1,000 SVD solutions: R? of 0.60 for rank-500 SVD from the 5% sample compared to
0.57 from the full dataset, and R? of 0.66 for rank-1,000 from the 5% sample compared
to 0.63 from the full dataset. Again an indication that SVD solutions are rather stable for
the same rank-k level regardless of the data sample used to derive the SVD solution
within a large dataset. Mind that the rank-1,000 SVD solution from the full dataset maps
301,697 (stemmed) terms to 1,000 concepts, a reduction to 0.33% of the original
number of dimensions. As the 5% sample subset contained 48,561 (stemmed) terms, a
rank-1,000 SVD solution from that sample represents a reduction to 2% of the original
dimension (capturing 33% of the original variance). It seems that the absolute number
of retained dimensions is more important than the relative number of retained

dimensions, i.e. relative to the total number of dimensions in the original vector space.

More important, Figure 6-5 does shed some light on the most pressing question: does a
further increase in the number of retained dimension/concepts allow the SVD-based
measure to perform better compared to the cosine measure applied on the full vector
space, or are obtained similarity scores — and hence performance — merely converging
to the ones obtained by the cosine measure on the full vector space. By definition
obtained scores of the SVD-based measure will be identical to cosines scores obtained
from the full vector space for levels of rank-k solutions approaching the original number
of dimensions. The point of LSA/SVD is that there are intermediate levels of

dimensionality reduction where the SVD-based measure will perform better compared
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to the cosine measure obtained from the full vector space. The dotted line in Figure 6-5
represents hypothetical R? values in function of the number of retained
dimensions/concepts after SVD as claimed by the LSA method: for levels of
dimensionality reduction that are too low, performance will be inferior compared to the
cosine measure applied on the full vector space (horizontal thick solid line) because too
much relevant information is not taken into account. But for a given range of k — in this
hypothetical example between k=1,500 and k=3,500 — performance will be superior
because noise — biasing full cosine calculations — is removed from the data, to slide
down again beneath the level of the full cosine, to eventually approaching again the
performance of the full cosine for values of k approaching the original number of
dimensions. In our real sample, we do not observe this behaviour, i.e. we do not
observe ranges of k where the SVD-based measure, based on IDF weighting, performs
clearly better than the cosine measure calculated on the full vector space after IDF
weighting. We only see the SVD-based measure approaching the full cosine measure.
However, there might be ranges beyond 10,000 dimensions/concepts where the SVD-
based measure performs better, but unfortunately we cannot check that because of
computational limitations to derive those SVD solutions. One can observe at the very
right of the figure, for k-values beyond 8,000, that the R? values of the SVD-based
measure are slightly higher compared to the R? value for the cosine measure on the full
vector space (0.806 versus 0.801), however we strongly believe this is due to rounding
errors. Given the curve of the performance of the SVD-based measure in function of the
number of retained dimensions, the scenario of (very) high k-values resulting in the
SVD-based measure to perform better than the cosine measure on the full vector space
seems very unlikely; our solution with rank 10,000 already captures 85% of the original
variance, and the R? curve of the SVD-based measure is almost flat in this region of k-
values. As SVD solutions are dependent of singular values in descending order, one can
expect that the dashed curve representing the captured variance in function of the
number of retained dimensions will continue to increase at very slow rates beyond
k=10,000, and that the obtained R? values will follow this pattern, making further
significant increases in R? values for the SVD-based measures unlikely. Anyhow, if

LSA/SVD indeed requires such very high levels of k to perform, and if it would be
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feasible to derive such SVD solutions for very high levels of k — e.g. by using a sample of
documents to derive the SVD solution and projecting or folding in all other documents
into the newly created truncated vector space — the method would still be virtually
impossible to apply for big datasets because of a lack of storage to retain those big full

matrices.

To conclude, we doubt whether further increasing the number of retained
dimensions/concepts will result in similarity measures that perform better than a cosine
measure derived from the full vector space, let alone the practical feasibility of such a
solution. It seems that the dimensionality reduction imposed by SVD is not only cutting
off noise, but also relevant information, resulting in the observed pattern of the SVD-
based measure approaching but never beating the cosine measures based on the full
vector space. This brings us back to the question why this SVD approach would work for

some datasets but not for ours.

6.9 Conclusions, discussion, limitations, and directions for further research

In this study we thoroughly assessed Latent Semantic Analysis (LSA) as a text mining
technique to match patent and publication documents based on their contents. The
goal is to find patent and publication documents that are related by the topics they
address, the methods they use, the results they obtain and the inventions or discoveries
they address. This would bypass limitation of current approaches like IPC-codes, non-
patent references, and patent inventor and patentee name matching, and allow to

compile large scale datasets for a broad range of applications in innovation studies.

As off-the-shelve text mining solutions are not readily available and experience with
patent data is limited, we have set up a large comparison exercise based on the LSA
method combining four weighting methods and ten levels of dimensionality reduction,
and added three measures based on the number of common terms. Similarity value
distributions obtained after application on a large dataset revealed unexpected patterns
for LSA-based measures with unrealistic high average similarities and non-
biotechnology control set patents being — on average — not less similar to biotechnology

publications than biotechnology patents. These results suggest that LSA-based
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measures tend to overestimate similarity and not grasp the real topic similarity of

patent and publication documents.

Expert validation of 250 cases confirmed the poor performance of LSA based measures.
SVD dimensionality reduction results in less congruence with the expert assessment of
similarity compared to cosine measures applied on the full vector space, and the less
dimensions retained, the less congruence. The term weighting method used also effects
the performance; binary and IDF weighting yielded better results compared to TF-IDF
weighting and no weighting at all, a remarkable observation as TF-IDF in combination
with SVD retaining 300-500 dimensions is a commonly used method. We observed that
a cosine metric applied on the fill vector space after binary or IDF weighting yields the
best results. However, measures based on the number of common terms between
documents perform slightly better. As in the previous study (see previous chapter), the
claim that LSA can outperform such simple measures based on common terms or co-
occurrence because of a better understanding of the meaning of language of this

former method is not backed up by our data.

The weighting method has a significant impact on the performance of the method and it
seems that methods taking into account term frequencies perform worse, partly
because of stemming and parsing issues, partly because common natural language
words tend to get too much weight in the similarity derivation. Better stemming and

parsing will probably improve performance.

We propose a combination of measures that allow a more robust identification of
similar patent and publication documents: ‘common terms MIN’, the measure based on
the number of common terms weighted for the minimum of the number of terms of the
patent and the publication document, as a primary criterion to identify similar
documents, combined with ‘common terms MAX’, the measure based on the number of
common terms weighted for the maximum number of terms of the patent and the
publication document, as a secondary criterion to eliminate doubt cases due to
combinations of short and long documents. Especially when precision is important,
those measures deliver good results. When recall gets important, things get more

complicated because there are no threshold values that allow a clear cut distinction

129



between the two groups. The typical trade-off between precision and recall remains a
though one, especially as final results are very sensitive to threshold values: small
changes in the threshold values for both the primary as secondary criterion result in big
differences in the number of matches in the total population. This is particularly
problematic for the secondary criterion ‘common terms MAX’, needed to clear out
doubt cases: the vast majority of potential matches based on the primary criterion
‘common terms MIN’ score very low on ‘common terms MAX’, so small changes in the
range of ‘common terms MAX’ to discard doubt cases (0.20-0.35) have a huge impact. It
seems that our method suffers from too many documents with short abstracts that are
very difficult to judge, even for human experts. A potential remedy is to extend
document sizes by including patent claims or full documents contents, and not only title
and abstract, into the analysis, or use extended abstracts as the ones supplied by the

Derwent World Patent Index.

When it comes to the identification of patent-publication pairs, i.e. scientific
publications from which the contents is covered by patent protection, quality of the
results can greatly benefit from an additional third criterion based on the presence or
absence of a shared inventor/author. Although inventor-author name matching is not
straightforward for larger datasets because of homonymy problems, spelling errors and
variation, and use of middle names and initials, the combination of a content based
measure like our ‘common terms MIN’ and ‘common terms MAX’ and the presence of a
shared inventor/author might be the way to go, because the biggest challenge in
inventor-author name matching — the homonymy issue — is largely controlled for when

combined with a content bases measure.

A remarking observation is the poor performance of SVD-based measures. It is not clear
why the specific context of our data does not allow the LSA-method to achieve its full
potential. It is unlikely that our dataset size is not large enough, nor that we did not
retain enough dimensions/concepts. There are indications that the document size and
document size differences are negatively influencing the SVD-based measures. But it
might also be due to the particular language use in our patent and publication dataset.

Again, using the full text of patent and publication documents, or extended abstracts as
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supplied by the Derwent World Patent Index, might resolve this, although we lack hard

evidence that larger or better abstracts would resolve the issues.

What is clear is that, for our dataset, the dimensionality reduction imposed by LSA/SVD
is cutting off valuable information instead of noise. We observe a gradually increasing
performance for increasing number of retained dimensions, but we do not observe a
range of dimensions for which the performance is better than that of a cosine measure
applied on the full vector space; the performance of LSA/SVD is just approaching the
performance of a cosine measure on the full vector space for higher numbers of
retained dimensions, in contradiction to the claims of LSA that dimensionality reduction

would improve results (understanding the ‘latent’ structure).

Another remarkable observation is that patents of our materials control set are — on
average — more related to biotechnology publications than are biotechnology patents.
This information can act as a source of inspiration to reveal the shortcomings of SVD on
our data. However, looking into many individual cases did not reveal significant
information to explain the higher obtained similarity scores nor the poor performance

of SVD.

A final reason why LSA might fall short is the limitation to Euclidean geometry as
imposed by the assumption of LSA that documents are represented as vectors in a
vector space. In an Euclidean space, similarity should be symmetric and not violate
triangle inequality - d(x,z) < d(x,y) + d(y,z) - placing strong constraints on the location of
point in a space given a set of distances (Griffiths, Steyvers & Tenenbaum, 2007). Other
text mining techniques not relying on spatial representations, like generative topic
models as Probabilistic Latent Semantic Modelling (Hofmann, 1999) and Latent Dirichlet
Allocation (Blei, Ng & Jordan, 2003), might be more appropriate to deal with this aspect

of the curse of dimensionality.

To conclude, the debate about the value of more complex text mining methods for
application on patent and scientific publication data — complex in the sense that they try
to deal with the characteristics of text and language — compared to simpler methods

based on common terms or co-occurrence does not end here. For our purpose, the
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identification of patent-publication pairs, a simple measure based on the number of
common terms performs best. While claims of LSA are not backed up by our
observations, and simpler seems to be better — in line with Occam’s razor principle —
other text mining techniques are available and it is worthwhile to investigate the
application of those techniques on our data, like the generative topic models mentioned

before.
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Appendix 6-1 : OECD biotechnology IPC codes (OECD, 2005
and 2009).

IPC codes Title

AO01H 1/00 Processes for modifying genotypes

AO01H 4/00 Plant reproduction by tissue culture techniques

A61K 38/00 Medicinal preparations containing peptides

A61K 39/00 Medicinal preparations containing antigens or antibodies

A61K 48/00 Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic
diseases; Gene therapy

CO2F 3/34 Biological treatment of water, waste water, or sewage: characterised by the micro-organisms used

C07G 11/00 Compounds of unknown constitution: antibiotics

C07G 13/00 Compounds of unknown constitution: vitamins

C07G 15/00 Compounds of unknown constitution: hormones

C07K 4/00 Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof

CO7K 14/00 Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof

C07K 16/00 Immunoglobulins, e.g. monoclonal or polyclonal antibodies

C07K 17/00 Carrier-bound or immobilised peptides; Preparation thereof

C07K 19/00 Hybrid peptides

ci2m Apparatus for enzymology or microbiology

C12N Micro-organisms or enzymes; compositions thereof

C12P Fermentation or enzyme-using processes to synthesise a desired chemical compound or composition or to
separate optical isomers from a racemic mixture

C120 Measuring or testing processes invol_v_ing enzymes or micro-_organisms; gomppsitio_ns or test papers therefor;
processes of preparing such compositions; condition-responsive control in microbiological or enzymological
processes

C12S Processes using enzymes or micro-organisms to liberate, separate or purify a pre-existing compound or

composition processes using enzymes or micro-organisms to treat textiles or to clean solid surfaces of materials

GO1N 27/327

Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means: biochemical

GO1N 33/53*

Investigating or analysing materials by specific methods not covered by the preceding groups: immunoassay;

GO1N 33/54*

Investigating or analysing materials by specific methods not covered by the preceding groups: double or second
antibody: with steric inhibition or signal modification: with an insoluble carrier for immobilising
immunochemicals: the carrier being organic: synthetic resin: as water suspendable particles: with antigen or
antibody attached to the carrier via a bridging agent: Carbohydrates: with antigen or antibody entrapped within
the carrier

GO1N 33/55*

Investigating or analysing materials by specific methods not covered by the preceding groups: the carrier being
inorganic: Glass or silica: Metal or metal coated: the carrier being a biological cell or cell fragment: Red blood
cell: Fixed or stabilised red blood cell: using kinetic measurement: using diffusion or migration of antigen or
antibody: through a gel

GO1N 33/57*

Investigating or analysing materials by specific methods not covered by the preceding groups: for venereal
disease: for enzymes or isoenzymes: for cancer: for hepatitis: involving monoclonal antibodies: involving
limulus lysate

GO1N 33/68 Investigating or analysing materials by specific methods not covered by the preceding groups: involving
proteins, peptides or amino acids

GO1N 33/74 Investigating or analysing materials by specific methods not covered by the preceding groups: involving
hormones

GO1N 33/76 Investigating or analysing materials by specific methods not covered by the preceding groups: human chorionic
gonadotropin

GO1N 33/78 Investigating or analysing materials by specific methods not covered by the preceding groups: thyroid gland
hormones

GO1N 33/88 Investigating or analysing materials by specific methods not covered by the preceding groups: involving
prostaglandins

GO1N 33/92 Investigating or analysing materials by specific methods not covered by the preceding groups: involving lipids,

e.g. cholesterol

* Those IPC codes also include subgroups up to one digit (0 or 1 digit). For example, in addition to the code GO1N 33/53, the
codes GO1N 33/531, GO1N 33/532, etc. are included.
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Appendix 6-2 : Example of a patent-publication
combination with high but misleading similarity according
to the measure based on TF-IDF and SVD.

Following patent-publication combination is an example of a combination with high similarity
scores according to the measures based on TF-IDF and SVD. Similarity scores for these measures
range from 0.928 to 0.995 depending of the number of dimensions retained (see last line in the
table). Title and abstract of both documents make clear that both documents are only (very)
slightly related; both are about milk, but the patent is about an apparatus for milking, while the
publication is about a comparison of cow milk and camel milk for characteristics on Lactobacillus
acidophilus fermentation.

The measures based on the number of common terms yield low scores (0.10, 0.07 and 0.08
depending whether the minimum number of terms, the maximum number of terms or the
average number of terms of both documents is used as weighting factor).

Biotechnology patent title and abstract:

Process and rotary milking parlor for the identification of a milking stall and an animal, in
particular a cow, in a rotary milking parlor.

For the determination of the occupancy of a milking stall by an animal, in particular a cow, in a
rotary milking parlor with a plurality of milking stalls which are disposed on a rotatable milking
platform, a process is proposed in which the identification of the animal only takes place after it
has entered the milking stall in which it is supposed to be milked.

Biotechnology publication title and abstract:

Growth-behavior of Lactobacillus-Acidophilus and biochemical characteristics and acceptability
of Acidophillus milk made from camel milk.

Acidophilus milk was made from camel milk and compared to that made from cow milk.
Although the camel milk supported the growth of L. acidophilus, the quality of acidophilus milk
from cow milk was superior. Bovine acidophilus had firm curd while that made from camel milk
had flocks with no curd formation. The initial proteolysis of raw camel milk provided ready
substrates for L. acidophilus for more protein breakdown in the acidophilus milk made from it.

Similarity values

Weighting Dimensions retained (SVD)

method ALL 1000 500 300 200 100 50 25 10 5
Raw 0.511 0.837 0.873 0.905 0.754 0.391 0.368 0.608 0.691 0.673
Binary 0.083 0.057 0.025 0.023 0.056 0.087 -0.030 0.492 0.763 0.750
IDF 0.095 0.168 0.162 0.260 0.375 0.403 0.504 0.532 0.698 0.738
TFIDF 0.364 0.928 0.973 0.986 0.991 0.991 0.995 0.980 0.959 0.960
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Appendix 6-3 : Example of a patent-publication
combination of a control set patent and biotechnology
publication with high but misleading similarity according
to the measure based on the number of common terms
weighted by the minimum of the number of terms of both
documents (‘common terms MIN’).

9 common terms out of 11 terms of the patent document and 141 terms of the publication
document (after stemming, stop word removal and removal of terms only appearing once in the
document set): common terms min = 0.82; common terms max = 0.06.

Control patent title and abstract:

Inbred maize line PHBG4

An inbred maize line, designated PHBG4, the plants and seeds of inbred maize line PHBG4,
methods for producing a maize plant produced by crossing the inbred line PHBG4 with itself or
with another maize plant, and hybrid maize seeds and plants produced by crossing the inbred
line PHBG4 with another maize line or plant.

Biotechnology publication title and abstract:

Major QTLs for disease resistance and other traits identified in recombinant inbred lines from
tropical maize hybrids

Major QTLs (quantitative trait loci) with large genetic effects often provide the basis for rapid
genetic gains with quantitative traits like disease anti pest tolerance. This study sought to
identify major QTLs in maize through the creation and use of recombinant inbred lines (RILs)
based uniquely on hybrids of elite tropical and temperate inbreds. Nine single crosses involving
ten inbreds served as the source of 1072 RILs created through six cycles of single seed descent
in the absence of selection in Hawaii. About 30 sublines of each of the ten parental inbreds
were bred to estimate means and variances of quantitative traits under study. These
parameters were then used to predict RIL segregations of major QTLs based on normal
probability distributions, designated here the RIL-NP method. Segregations were also tested for
fit to expected ratios by the use of maximum likelihood estimators. The nine sets of RILs were
grown selectively under disease epiphytotics at experimental stations in the United States,
Korea, Mexico, Nigeria, and the Philippines. Major QTLs apparently acting monogenically
(segregating 1:1 in RILs) were identified to control general resistance to the following diseases:
Southern rust: Common rust, Northern le:lf blight, Southern leaf blight, Bacterial leaf blight,
Stewart's bacterial wilt, Maize mosaic virus and Maize streak virus. Digenic segregations with
additive gene action appeared to characterize QTLs governing resistance to Striga witchweed
and to European corn borer. Major QTLs were also observed for polymorphisms in ear height,
plant height, maturity, tassel branch number and central tassel-spike length. Examples are cited
of molecular mapping based on these RILs. The potential use of major QTLs in marker-assisted
selection is discussed in relation to the transfer to temper;lce germplasm of tolerances to
disease, insect and stress from the largely untapped tropical germplasm.
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Appendix 6-4 : Example of a patent-publication
combination with stemming error with high impact on
weighting methods including term frequencies.

Both documents have nothing in common, yet score significantly higher for measures based on
weighting methods including term frequencies). Both documents have only two (stemmed)
terms in common (after stemming and stop word removal), ‘feed’ and ‘ga’. But the stemmed
term ‘ga’ occurs 9 times in the patent document and 29 times in the publication document,
resulting in high weights when the term frequency is included. But the stemmed term ‘ga’ in the
patent document is a stemming error derived from ‘gas’, while the stemmed term ‘ga’ in the
publication document is an abbreviation of ‘gibberellin’ and has nothing to do with the
stemmed term ‘ga’ in the patent document. For weighting methods not taking term frequency
into account, this stemming error counts as just matching term, but for weighting methods
using term frequency, this stemming error is magnified and leads to erroneous results.

Biotechnology patent title and abstract:

Incubator with external gas feed.

An incubator with an external gas feed is disclosed, wherein a gas is supplied to an interior
space of the incubator to maintain an interior atmosphere with a constant gas-to-air ratio. The
gas is supplied to the interior space through a gas nozzle forming a gas jet. The gas jet draws in
the interior atmosphere through an injector effect, thereby thoroughly mixing the gas with the
interior atmosphere.

Biotechnology publication title and abstract:

Gibberellin metabolism in suspension-cultured cells of raphanus-sativus.

Gibberellin A(1) (GA(1)), GA(4), GA(9), GA(19) and GA(20), which are known to be native to
Japanese radish (Raphanus sativus), were applied as [H-3]GAs and [H-2]GAs to cell suspension
cultures of R. sativus. As the metabolites in [H-2]GA-feeds, [H-2]GA(8) from [H-2]GA(1), [H-
2]GA(1) and [H-2]GA(2) from [H-2]GA(4), [H-2]GA(1), [H-2]GA(4) and [H-2]GA(20) from [H-
2]GA(9), [H-2]GA(20) from [H-2]GA(19), and [H-2]GA(1) and [H-2]GA(20)-15-ene from [H-
2]GA(20) were identified by GC-SIM. The distribution of [H-3]GA metabolites after HPLC
corresponded closely with that of the [H-2]GA metabolites, except in the case of the [H-
2]GA(20)-feeds. Based on the metabolic patterns of applied GAs, it is supposed that 13-
hydroxylation from GA(4) is much more dominant than 3 beta-hydroxylation from GA(20) in
pathways leading to GA(1) in suspension cultured cells of R. sativus.

Similarity values

Weighting Dimensions retained (SVD)

method ALL 1000 500 300 200 100 50 25 10 5
Raw 0.688 0.881 0.960 0.958 0.638 0.294 0.229 0.362 0.361 0.443
Binary 0.072 0.088 0.017 0.052 0.056 0.066 0.066 0.144 0.307 0.525
IDF 0.056 0.128 0.128 0.171 0.222 0.218 0.220 0.270 0.471 0.689
TFIDF 0.594 0.941 0.972 0984 0.988 0.936 0.847 0.886 0.928 0.961
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Appendix 6-5 : Example of a patent-publication
combination with tokenization and parsing issues with
high impact on weighting methods including term
frequencies.

Both documents are not related and have only two terms in common: ‘alpha’ and ‘beta’ (after
stemming and stop word removal). Both of these terms occur a lot in both documents as part of
chemical formulas, and these high term frequencies result in higher similarity values for
weighting methods based on term frequencies. But the larger chemical formulas these terms
are part of, are not related. If would probably be better to parse and index those formulas as
one piece, but this is not straightforward.

Biotechnology patent title and abstract:

alpha -mannosidase inhibitors

¢4S-(4 alpha ,4a beta ,5 beta ,6 alpha ,7 alpha ,7a alpha )!-Octahydro-1H-1-pyrindine-4,5,6,7-
tetrols and ¢4R-(4 alpha ,4a alpha ,5 alpha ,6 beta ,7 beta ,7a beta )!-octahydro-1H-1-pyrindine-
4,5,6,7-tetrols are useful as inhibitors of alpha-mannosidase and are useful immunostimulants,
chemoprotective and radioprotective agents and antimetastatic agents.

Biotechnology publication title and abstract:

Taxanes from Taxus mairei

Four new taxane diterpenes, 9 alpha-hydroxy-14 beta-(2-methylbutyryl)oxy-2 alpha, 5 alpha, 10
beta-triacetoxytaxa-4(20), 11-diene, 2 alpha, 5 alpha, 9 alpha, 10 beta, 14 beta-
pentaacetoxytaxa-4(20),11-diene, 5 alpha-(cinnamoyl)oxy-7 beta-hydroxy-9 alpha, 10 beta-13
alpha-triacetoxytaxa-4(20), 11-diene and 5 alpha-hydroxy-9 alpha, 10 beta, 13 alpha-
triacetoxytaxa-4(20), 11-diene, along with 12 known taxa-4(20),11-dienes, have been isolated
from twigs of Taxus mairei and their structures determined by spectral methods. Copyright (C)
1996 Elsevier Science Ltd.

Similarity values

Weighting Dimensions retained (SVD)

method ALL 1000 500 300 200 100 50 25 10 5
Raw 0.705 0928 0930 0.946 0.952 0970 0.985 0.993 0.999 0.997
Binary 0.089 0.248 0.259 0.295 0.328 0.349 0.198 0.159 0.420 0.785
IDF 0.011 0.248 0.298 0.353 0.389 0.545 0.507 0.397 0.412 0.517
TFIDF 0.199 0935 0970 0.982 0.988 0.994 0.996 0.998 0.999 0.997
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EMPIRICAL PART II :
POTENTIAL PITFALLS — IN SEARCH OF ANTI-COMMONS EVIDENCE

141



7 In search of anti-commons evidence: patent-
publication pairs in biotechnology. An analysis of
citation flows.

There are three reasons why lawyers are being used more and more in scientific experiments.
First, every year there are more of them around.

Second, lab assistants don't get attached to them.

And, third, there are some things that rats just won't do.

Anonymous

7.1 Introduction

In this chapter we want to close the circle by looking at one potential pitfall of academic
patenting and increasing commercialization of science in general: the potential
introduction of an anti-commons effect. We started our journey by looking at the
relation between the science-intensity of patents and technological performance of
countries as we observe increasing science-intensity of patents throughout the last
years. One aspect of the ‘scientification’ of patents is the increasing trend of academic
patenting, which is to be encouraged to the extent it has a positive impact on
technological performance (see chapter 3). However, concerns arise about the
privatization of science and the creation of an anti-commons effect (see introduction
chapter). In this chapter we want to contribute to the research on an anti-commons
effect in biotechnology by comparing citation patterns of patents and scientific
publications for a large dataset containing all EPO and USPTO biotechnology patents
from the PATSTAT database (EPO Worldwide Patent Statistical Database) and scientific
publications published in journals covered by the WOS database (Thomson Reuters ISl
Web of Science) from 1991 to 2008. First we investigate whether biotechnology
publications for which a counterpart exists in the patent system (so called ‘patent-

publication pairs’ or ‘patent-paper pairs’, scientific publications from which the contents
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- methodology, findings, discovery - is part of a patent application) are cited differently
(more/less) within scientific journals, compared to similar biotechnology publications
without a patent counterpart. If an anti-commons effect is present, we expect to
observe less forward citations for the publications that are part of a patent-publication
pair (related to a patent) as scholars would refrain from building upon those
publications because of uncertainty imposed by IPR claims. Next, we engage in a similar
analysis, focusing this time on ‘technological’ citations: to what extent are patents that
are part of a patent-publication pair (related to a scientific publication) cited differently
by other patents compared to biotechnology patents without a counterpart in the

scientific literature.

The former will allow us to shed some light on the fear that exploitation of scientific
findings is hampering scientific development by pruning promising developments due to
the introduction of (potentially blocking) patents. The latter will allow us to look at the

technological impact of scientific developments that become translated into a patent.

An important methodological aspect for this kind of studies relates to the identification
of those patent-publication pairs, scientific publications for which a patent equivalent is
present. To obtain a broad set of patent-publication pairs, we stepped down from a
manually guided process of mapping patent and scientific publications and developed a
new approach of automated, large scale, mapping of patents and scientific publications
based on content similarity by relying on text mining algorithms, as developed in the
previous methodological chapters. This approach allows large scale processing of

patents and scientific publications to detect patent-publication pairs.

Within the next pages, we first outline the selection of the data used for this analysis,
followed by a description of the methodology adopted to assess the similarity between
patents and scientific publications. This section is followed by reporting the findings, for
scientific citations and patent citations respectively. We conclude with outlining the

limitations of our work and suggest avenues for further research in this area.
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7.2 Data and methodology

Field selection

As throughout the whole dissertation we focus again on patents and scientific
publications in the field of biotechnology because it is a field well known for the
presence of science-technology linkages and because the large scale exploitation of
biomedical research makes it more susceptible to an anti-commons effect (Heller &

Eisenberg, 1998).

Patents and publications were selected based on technological and scientific
classification schemes respectively. Patent-publication pairs were identified by matching
the content of titles and abstracts of patents and scientific publications using text

mining algorithms.

Selection of biotechnology patents and publications

For this study we use the same dataset as compiled in the previous chapter to develop
our method to map patents and publications (OECD definition of biotechnology52 for
patents from the PATSTAT database - EPO and USPTO - and 10 relevant subject
categories plus three major multidisciplinary journals for publications in the WOS
database). This wraps up to 88,248 granted EPO and USPTO biotechnology patents and
948,432 biotechnology publications from the period 1991-2008.

Text mining oriented identification of patent-publication pairs

The identification of patent-publication pairs (scientific publications from which the
contents - methodology, findings, discovery - is part of a patent application) is based on
the content similarity of titles and abstracts of patents and publications, as developed in
the previous chapter. For all patents, the similarity with all publications is derived based
on content similarity metrics. Patent-publication combinations with similarity scores
beyond thresholds are retained as patent-publication pairs under the condition that at

least one of the patent inventors is listed as publication author.

Based on the insights from our large comparative study as outlined in the previous

chapter, two metrics are combined for the classification of patent-publication

*0ECD, 2005 and 2009. See also previous chapter.
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combinations. The number of common terms, divided by the minimum of the number
of terms of the patent document on the one hand and of the publication document on
the other hand, is used for a first selection of patent-publication combinations with
significant content similarity (CommonTermsMin > 0.60). A second criterion, based on
the number of common terms divided by the maximum of the number of terms of the
patent document and publication document, is used to filter out ambiguous cases
(CommonTermsMax = 0.30). These two content-based criteria are combined with an
additional criterion based on authorship: at least one of the patent inventors has to be
listed as a publication author. Together those three criteria allow an accurate
identification of patent-publication pairs; threshold values on the measures were set in
a conservative way to eliminate false positives at the cost of a lower coverage (high

precision but lower recall).

Identified patent-publication pairs

The starting point for the identification of patent-publication pairs is the combined
dataset of 88,248 biotech patents and 948,432 biotech publications from 1991 to
2008, Application of the first matching criterion, a content similarity of at least 0.60
based on the number of common terms weighted for the minimum of the number of
terms of both documents, yields 27,250 related patent-publication combinations out of
the more than 80 billion combinations under examination. Application of the second
matching criterion, a content similarity of at least 0.30 based on the number of common
terms weighted for the maximum of the number of terms of both documents, results in
645 patent-publication pairs. Application of the last criterion, at least one patent
inventor being listed as a publication author, results in a final set of 584 patent-
publication pairs. 17 patents are matched with multiple publications (up to three
publications), which seems to be cases of (partly) disclosure of the same results in
multiple scientific articles. At the same time, 115 publications are matched to multiple
patents (up to seven patents), which revealed to be members of the same patent

family. Hence we have 566 distinct biotechnology patents having a paired

>3 Only patents and publications with titles and abstracts of sufficient length are retained to allow for
content-based matching.
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biotechnology publication, and 400 distinct biotechnology publications having a paired

biotechnology patent.

Remember that we deliberately opted for a very conservative selection to identify
patent-publication pairs. Especially the second criterion filters out a lot of ambiguous
cases, so we can be confident that the described patent-publication matching method

reveals real patent-publication combinations.

7.3 Findings on citation patterns of scientific publications (publication-to-
publication citations)

Within this section we report and discuss the empirical results obtained when analysing
scientific citations - i.e. citations from other scientific publications - to scientific
publications that are part of a patent-publication pair. This analysis implies a
comparison with scientific citations to scientific publications which do not belong to a

patent-publication pair (that do not have a patent counterpart).

Descriptive statistics

Table 7-1 shows the evolution of the number of biotechnology publications and the
number of forward citations from other scientific publications. The left part of the table
contains data for all biotechnology publications; the right part of the table contains data
for those biotechnology publications that are paired with a patent, i.e. publications that

are part of a patent applications (patent-publication pairs).

The number of biotechnology publications in our dataset is steadily growing from
31,381 in 1991 to 76,004 publications in 2008. After a first period characterized by
double-digit growth figures (from 1991 to 1995 - 10 to 12 per cent annual growth in
publication outcome), we observe a period of moderate growth (4.3 to 8.0 per cent
between 1996 and 1999) followed by a period of volatility during the most recent years
(-2.5% to 2% with some upward outliers in 2003, 2005 and 2008).

The average number of forward publication citations (publication-to-publication

citations counted by a 10-year citation window: year of publication plus following nine

146



years)™ for the biotechnology publications follows a more or less stable pattern; within
a first time period observed citation rates vary between 45 and 50 (till 2000) followed
by a decrease from 2000 onwards, reflecting the shorter time window of observation
(citation counts based on a 10-year citation window cannot be complete for the last 9
years). The average number of forward citations for all publications between 1991 and

2000 is 46.9 (median number of forward citations is 20).

Table 7-1 : Number of biotechnology publications and forward citations per year

ALL BIOTECHNOLOGY PUBLICATIONS PAIRED BIOTECHNOLOGY PUBLICATIONS

Average number Average number

Publication Number of Number of

.. of forward . of forward
year publications citations publications citations
1991 31,381 50.53 16 229.31
1992 35,185 49.29 22 77.82
1993 38,677 49.46 25 150.44
1994 42,764 47.11 40 133.05
1995 48,092 45.97 43 140.23
1996 50,788 44.43 35 224.94
1997 53,175 45.91 40 233.88
1998 57,361 45.99 41 204.83
1999 59,866 45.76 40 78.23
2000 61,072 47.12 26 104.88
2001 62,299 43.29 29 286.48
2002 63,409 38.57 13 69.00
2003 66,564 33.51 14 62.79
2004 65,705 28.47 8 28.38
2005 72,378 22.24 4 43.25
2006 70,529 15.99 2 63.50
2007 69,756 10.58 1 2.00
2008 76,004 4.97 1 16.00

Total/Average 1,025,005 34.64 400 156.51

For the period 1991-2000 (the period relevant for comparison because of the 10-year
citation window) we have 328 publications that are part of a patent-publication pair,
starting from 16 in 1991 and rapidly growing to 40 in 1994, to smooth out around 40
between 1994 and 1999, and ending with a decrease to 26 in 2000. For those

publications, the average number of forward citations is far more volatile throughout

>* For all forward publication citation counts in this chapter we use citation counts based on a 10-year
citation window except when explicitly mentioned otherwise.
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the years, ranging from a minimum of 77.8 forward citations on average in 1992 to a
maximum of 233.9 citations on average in 1997, with no clear trend. The average
number of forward citations for all publications that are part of a patent-publication

pair for the total period of 1991-2000 is 161.8 (median number of forward citations is

equal to 65).

On average we clearly observe substantially higher forward citation counts for
publications that are part of a patent-publication pair and other publications (mean of
161.8 versus 46.9, median of 65 versus 20 for the time period 1991-2000). But not only
the average numbers are higher, the complete distribution of forward citation counts is

shifted to the right in favour of publications that are part of a patent-publication pair.

Figure 7-1 : Distribution of the number of forward publication citations for all
biotechnology publications and biotechnology publications part of a patent-publication
pair (1991-2000)
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Figure 7-1 shows the distribution of the number of forward publication citations for all
biotechnology publications and biotechnology publication part of a patent-publication
pair for the period 1991-2000. 25% of paired biotechnology publications have 27 or less

citations compared to 7 or less citations for the first quartile for all biotechnology
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publications; 50% of paired biotechnology publications have 65 citations or less (20
citations for all biotechnology publications) and 75% of paired citations have 160 or less
citations (48 citations for all biotechnology publications). At the right side of the
distribution we observe substantial outliers, especially for publications that are related

to a patent.

One potential explanation for the higher number of forward citations for paired
publications might be the difference in the number of authors. Publications having more
authors tend to have more forward citations - as is confirmed by our data (an average of
38 forward citations for single authored papers up to 46 citations for publications with 5
authors and 86 citations for publications with 10 authors)>. We indeed observe a higher
number of authors for paired publications (26% more authors on average), but this
seems not to be a satisfactory explanation for the differences in citation behaviour; for
publications with the same number of authors, the average number of forward citations
is again substantially higher for paired publications, with a notable exception for single
authored publications (an average of 19 citations for single authored paired publications
up to 135 citations for paired publications with 5 authors and 345 citations for paired

publications with 10 authors)’®.

Another, more important, consideration when observing the difference in forward
citation counts is the presence of a selection bias for paired publications towards higher
quality publications. For the large overall biotechnology publication sample, all kind of
quality levels will be present in the dataset. But for publications that are part of a
patent-publication pair, one can expect to find more publications of higher quality than
average, i.e. publications valuable enough to justify costs and effort to apply for a
patent. We need to correct for quality differences to obtain a fair comparison between
paired (publications with a patent counterpart) and non-paired (publications without a

patent counterpart) publications. We to take into account the journal in which

>> 78% of the biotechnology publications in our sample have 5 or less authors, 20% have 6 to 10 authors.
*® When comparing the number of forward citations for groups of publications with a given number of
authors with a bin size of 5, paired publications always have a substantial higher number of forward
citations. For publications having 1, 2, ... 10 authors (the vast majority of publications), paired publications
always have higher citation counts for all levels of the number of authors, except for single authored
publications.
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publications are published as an indication of the quality level of publications (i.e. we

assume underlying journal impact factors are a good indication of the average quality of

publications appearing in that journal).

Table 7-2 : Top publishing and top cited journals for all biotechnology publications and for
biotechnology publications with a paired patent (1991-2000)

ALL BIOTECHNOLOGY PUBLICATIONS

BIOTECHNOLOGY PUBLICATIONS WITH PAIRED

BIOLOGY

PATENT
2 2
g s_t g =%
J R g 5382
Journal ° v g S Journal ° o328
g 233 ¥ 8%
g @ e g “ge
< <
PROCEEDINGS OF THE
JOURNAL OF BIOLOGICAL NATIONAL ACADEMY OF
67.14  4.969 108.99 22.269
- CHEMISTRY % | SCIENCES OF THE UNITED %
[ STATES OF AMERICA
§ BIOCHEMISTRY 4503 1.67% | SCIENCE 550.68 8.54%
o JOURNAL OF
%" BACTERIOLOGY 3446  1.66% | CELL 36636  6.71%
7]
5 APPLIED AND
JOURNAL OF BIOLOGICAL
4 ENVIRONMENTAL 3301 159% | ieMISTRY 98.67 6.40%
§- MICROBIOLOGY
BIOCHEMICAL AND
BIOPHYSICAL RESEARCH 32.74  1.31% | NUCLEIC ACIDS RESEARCH 57.9  3.05%
COMMUNICATIONS
NATURE REVIEWS
0, 0,
MOLECULAR CELL BloLoGy ~ 200-56  0.00% | NATURE 803.13  2.44%
%]
2 ANNUAL REVIEW OF
g BIOCHEMISTRY 37420 0.06% | MOLECULAR CELL 617.33  0.91%
=}
= ANNUAL REVIEW OF CELL . .
3 BIOLOGY 305.20 0.01% | SCIENCE 550.68 8.54%
g_ CELL 296.03 0.78% | CELL 366.36  6.71%
° ANNUAL REVIEW OF CELL
AND DEVELOPMENTAL 280.95 0.02% | GENES & DEVELOPMENT 307.00 1.52%

Table 7-2 contains the most important journals for biotechnology publications for the

period 1991-2000. The top of the table contains the most important journals in terms of

the number of biotechnology publications — expressed in share of all biotech

publications — while the bottom of the table contains the most important journals

measured by the average number of forward citations for the biotechnology
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publications®. The left side of the table contains the most important journals for all
biotechnology publications in our sample and the right side contains the most
important journals for biotechnology publications that are part of a patent-publication
pair (publications with a patent counterpart). For every journal the average number of
forward citations (for the biotechnology publications in our sample) and the share of

biotechnology publications within our sample are listed®.

Paired sample T-tests

To test whether forward citations to paired publications - publications that are part of a
patent-publication pair, i.e. have a scientific counterpart - differ from publications that
are not related to patents, controlling for quality differences, we perform a series of
paired sample T-tests. Every time we split up our set of biotechnology publications into
paired publications (with patent counterpart) and non-paired publications (without
patent counterpart) and control for quality differences by grouping forward citation
counts by journal and publication year. For every journal and publication year
containing at least one paired publication, we compare the average number of forward
citations of paired biotechnology publications with the average number of forward
citations of non-paired publications for that same year and journal. This allows for a
comparison taking into account quality differences as expressed by the differences in
the journal quality. Multiple T-tests are performed based on different comparison of
paired and non-paired publications to test the robustness of the findings. Table 7-3

contains the results of the paired sample T-tests.

>’ The three multidisciplinary journals that were added to our selection of biotechnology patents also
represent a large share of all in our dataset (PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF
THE UNITED STATES OF AMERICA: 5.3%; NATURE, 3.1% and SCIENCE: 2.8%) but this is misleading as all
publication of those journals were included in our dataset — and not only the biotechnology publications -
as there is no straightforward way to identify biotechnology publications within these journals.

*% For the right side of the table, the share of paired biotechnology publications is listed.
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Table 7-3 : Results of paired sample T-tests for paired and non-paired publications (1991-

2000)
Test N Mean1l Mean2 Difference tvalue Pr> |t|
F:r‘:fard 190 13047 7424  56.23 4.33 0.0001
Paired vs non- citations
paired i
Withoutself 155 19601 6502 50.99 4.07 0.0001
citations
Paired vs non- Forward 59 22497 131.63  93.34 312 0.0028
paired citations
at least 2 paired i
(at least 2 p Withoutself o5 57 11788  84.82 297  0.0043
publications) citations
F
orward 764 6057 4269  17.88 572  0.0001
Paired and grey citations
zone vs all others  \Without self
vithout sell 264 5300 3648  16.61 559  0.0001
citations
Paired and grey Forward
zone vs all others  cvations 281 9641 5964  36.77 5.57 0.0001
(at least 2 paired h ¢
or grey zone Withoutselt o1 g585 5176  34.09 5.43 0.0001
publications) citations
Academic,
Forward 24 12294 10483  18.11 088  0.3899
government/non- citations
profit, hospital
patentee vs Withoutself ) 10681 o189  14.92 076 04521
affiliation citations

In total 5 tests are performed. In the first test, we take all 328 distinct biotechnology
publications from the period 1991-2000 (to allow a full 10-year citation window) that
are paired to a biotechnology patent and compare the average number of forward
citations (130.47) with the average number of forward citations of all 106,027 non-
paired biotechnology publications from the same period 1991-2000 (average of
74.24)>°. We group the average number of forward citations by journal and publication
year, and compare the 190 resulting journal/year group averages using a paired sample
T-test and find that the difference is significant. We do the same correcting the number
of forward citations by the number of self citations to get the net number of citations

without self citations and again find a significant difference (116.01 versus 65.02)

> Only biotechnology publication suited for text mining - i.e. with a title and abstract of substantial length
- are included in the comparison. This additional filter is applied on all samples of all performed T-tests.
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To allow more variation for the paired publications, we performed a second test based
on the data of the first test but only retaining journal/year combinations having at least
two paired publications, reducing the number of journal/year combinations to 59 with
197 paired publications versus 60,848 non-paired publications. Again we find a
significant difference in the number of forward citations, both for all citations and for

net citations (corrected for self citations).

The problem with the samples used in the first two T-tests is that the number of paired
publications is very low compared to the total number of biotechnology publications
because of the very conservative selection of patent-publication pairs. As a robustness
check, we relax the patent-publication pair selection criteria and include additional
patent-publication pairs. In practice, we add a grey zone of patent-publication
combinations scoring 0.50 or above on the first content similarity based criterion
(number of common terms weighted for the minimum number of terms of both
documents) and scoring 0.25 or above on the second content similarity based criterion
(number of common terms weighted for the maximum number of terms of both
documents) - compared to respectively 0.60 and 0.30 for the original selection of
patent-publication pairs. This results in 3,432 additional combinations with 1,979
distinct patents and 1,939 distinct publications. The third T-test uses this sample to
compare forward citations between the group of paired publications, including the
additional paired publications retrieved by the relaxed thresholds, with all other
biotechnology publications. Again citation averages by journal/year combinations are
compared (764 journal/year combinations; 1,681 paired publications versus 197,556
non-paired publications). The difference in the average number of citations is again

significant, both for all citations and for net citations (corrected for self citations).

Again, to allow more variation for the paired publications, we perform a forth test
based on the data of the third test but only retaining journal/year combinations having
at least two (extended) paired publications, reducing the number of journal/year
combinations to 281 with 1,198 paired publications versus 135,409 non-paired
publications. Again we find a significant difference in the number of forward citations,

both for all citations and net citations (corrected for self citations).
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The T-last test is a bit different and looks for differences in the nature of paired
publications. We observe that the majority of our paired biotechnology publications are
linked to a patent with at least one patentee from the academic or government/non-
profit or hospital sector (253 out of 328 paired publications between 1991 and 2000).
71 paired biotechnology publications are linked to a patent with at least one company
patentee, of which 10 are copatented with an organization of the academic,
government/non-profit or hospital sector. This does not necessarily mean that
companies are less involved in both publishing and patenting the same
invention/discovery in se, it is just a reflection of the fact that companies are less

involved in publishing in journals covered by the WOS database.

However, it is a well-known phenomenon that hospital, government/non-profit and
especially academic institutions do not always act as a patentee even when the
invention is related to activities within these institutions. So we know that the number
of academic, government/non-profit and hospital patents is underestimated when only
looking at the patentee sector. This can be resolved by identifying patent inventors
residing in academic, government/non-profit or hospital institutions not acting as
patentee. We used an indirect way to identify those inventors for those publications
paired with a patent. We look at the affiliations of the related publication, and if at least
one of the affiliations is an academic, government/non-profit or hospital organization,
we label the related patent as having an inventor from the academic, government/non-
profit or hospital sector, based on the fact that, because of our selection process, every
patent-publication pair has a shared inventor/author. This construct is not a perfect
indicator: a publication might be linked to more than one affiliation, but as our WOS
dataset does not allow to identify which author belongs to which affiliation, we have no
clue whether the shared inventor/author is really the one belonging to the academic,

government/non-profit or hospital affiliation.

Using our identification method, we found 61 paired publications with an academic,
government/non-profit or hospital affiliation where this affiliation is not acting as

patentee on the related patent. In total this makes that 314 out of 328 paired
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publications between 1991 and 2000 are linked to an organization from the academic,

government/non-profit or hospital sector.

The last T-test tests whether there are differences in the average number of forward
citations between paired publications linked to a patent with a patentee from the
academic, government/non-profit or hospital sector and paired publications without
such patentee but with an affiliation to an academic, government/non-profit or hospital
organization. Because of the limited number of observations, citations averages are not
compared on the level of journal and publication year combinations, but at the level of
journals. There are 24 journals having paired publications from both groups: 180 paired
publications linked to a patent with a patentee from the academic, government/non-
profit or hospital sector, and 56 paired publications linked to a patent without such
patentee but with an affiliation to one of those sectors. Now we find that there is no
significant difference in average number of citations between those two groups, nor for
the total number of citations, nor for the net number of citations corrected for self
citations (Pr>|t| = 0.39 and 0.45 respectively). The idea to conduct this test was
triggered by findings of Czarnitski, Glanzel & Hussinger (2009) in the debate of the
quantitative and qualitative effects of academic patenting. They take into account the
heterogeneity of patenting activities and find that academic patenting with non-profit
organizations increases publication quantity and quality and are complementary to
academic activities, while academic patenting with corporations have a negative
impact. Our last T-test makes the same distinction: it compares average forward citation
counts between paired publications linked to a patent with a non-profit patentee and
paired publications linked to a patent with no non-profit patentee (hence with a
company as patentee) but with an affiliation to an academic, government/non-profit or
hospital institution (hence indication of an academic or non-profit patent despite the
absence of an academic or non-profit patentee). As stated before, we do not find a
significant difference in the number of forward citations, albeit that our sample is very

small.

Results of the T-tests reveal that paired publications have significantly more forward

citations on average, and that there is no indication that paired publications linked with
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a non-profit patentee have a significantly different citation counts compared to paired

publications with a non-profit inventor (but commercial patentee).

However, this increase in the forward citations for paired publications is not present for
all journals. For 49 journals we find an increase, for 31 journals we find a decrease.
Table 7-4 contains the journals with the highest increase and decrease — in absolute

terms - in the number of forward citations for paired publications.

Table 7-4 : Journals with highest increase and decrease of average forward citations for
paired publications

Journals with highest increase - in relative terms - in the number for forward citations for
paired publications

Journal Absolute increase Relative increase
Nature + 604 x 4.0
Molecular Cell + 457 x 3.8
Journal of Immunological Methods + 56 x 3.3
Current Microbiology + 19 x 3.0
Current opinion in chemical biology +125 x2.9

Journals with highest decrease — in relative terms — in the number of forward citations for
paired publications

Journal Absolute decrease Relative decrease
Bioinformatics - 62 +8.8
Canadian Journal of Botany - 1 +6.7
Journal of Applied Microbiology - 12 +3.0
Biochimica et biophysica acta-molecular ... - 34 +2.8
Biotechnology Techniques - 4 +2.8

Multivariate analysis

We also performed a multivariate analysis to verify the significance of the observed
difference when controlling for other factors. Given the nature of the data (citation
data) we opted for a negative binomial regression with the number of forward citations
as dependent variable and a dummy variable indicating whether a publication is part of
a patent-publication pair or not (i.e has a patent counterpart or not) as independent

variable.

To adjust for the expected difference in average quality between paired and non-paired
publications (due to the potential selection bias of publications that are part of a
patent-publication pair), we only include publications from journals that have at least
one publication that could be paired with a patent, i.e., we only use publications that

are comparable in average impact factor because they originate from the same set of
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journals. This leaves 400 biotechnology publications that are part of a patent-
publication pair, and 451,803 biotechnology publications that are not part of a patent-
publication pair for the whole period 1991-2008%.

For this analysis, we use net citation counts, i.e. citations counts corrected for self
citations, as dependent variable. We further control for journal of publications (105
distinct journals), publication document type (article, letter, note, review), number of
backward publication-to-publication citations, and finally, the number of authors. We
also include a time variable (1 for the first year, 1991, up to 18 for the last year, 2008)

and a squared time variable to accommodate evolutions over time.

Table 7-5 : Results of negative binomial regression for 1991-2008 (dependent variable:
number of net forward publication citations —i.e. without self citations — of publications)

95% Wald Hypothesis Test
Std.  Confidence Interval Wald Chi-

Parameter B Error Lower - Upper Square df Sig.
(Intercept) 2.966 .1258 2.719 3.213 555.643 1 .000
Pair (Y/N) 450 .0506 .350 .549 78945 1 .000
Document type:

Article -574 .0113 -.596 -.552 2589.688 1 .000

Letter -.774 .0590 -.890 -.659 172.469 1 .000

Note -.567 .0175 -.601 -.533 1051989 1 .000

Review 0
g;‘g?i:;grf] 212'3"(’;2‘1 013 .0001  .013 014 10416453 1 .000
Number of authors .033 .0005 .032 .034 4613.407 1 .000
Time .125 .0015 122 .128 7191199 1 .000
Time? -.012 .0001 -.013 -.012 29450.994 1 .000
2::;r(1)z|)dumm|es Included

Table 7-5 reports the results of the regression analysis of forward publication citations
of publications. Publications being part of patent-publication pairs have significantly
more forward publication citations (Pair Y/N). One also notices a positive relationship
between forward citations and the number of authors as well as the number of
backward citations. Citation rates differ between document types: reviews receive more

citations compared to articles, letters and notes. The number of forward citations differ

% Again only publications with titles and abstracts of substantial length were included in the analysis.

157



significantly between journals (journal dummies have been included, but not reported,

n=104). Finally, the observed citation rates reflect an inverse U pattern over time.

When removing outliers, i.e. all publications with a forward citation count larger than
the mean plus three times the standard deviation, similar results are obtained then the

ones reported in Table 7-5.

Comparison of citation counts before and after patent grant

Inspired by the observation of Murray & Stern (2007) - a relative decline in citation
patterns after patents have been granted — we also verify whether the citation rates
differ before and after a patent has been published or granted. We follow the reasoning
of Murray and Stern, stating that if a patent grant comes to a complete surprise to
follow-on researchers, i.e. if researchers that continue working on previous discoveries
are not aware of pending patent applications on those previous discoveries, a drop in
citation rate can be an indication of the presence of an anti-commons effect. The
reasoning behind this construct is that if researchers are not aware whether a given
piece of knowledge is subject to patent filing, they will use (cite) this knowledge
(publication) in a normal way. As soon as a patent covering that piece of knowledge is
granted, those follow-on researchers might stop using (citing) this knowledge because
of the perceived ‘price’ (patent rights) of building on the prior discovery. Hence in case
of the presence of an anti-commons effect, forward citations of publications that are
part of a patent-publication pair are expected to drop as soon as the corresponding

patent is granted.

To test this we split up forward citation counts for all paired publications into the
number of citations received before and after the grant year of their corresponding

patent61 62 63

. These numbers are aggregated at the level of journals and publication
years, resulting in two average citations counts; one for the pre-grant period, and one

for the post-grant period. Next, for every observed journal and publication year having

®! For those publications linked to multiple patents (multiple members of patent families), the earliest
patent grant data was used to split citations into a pre-grant and post-grant period.

%2 Eor this analysis, the total number of citations was used, including self citations.

6 Only publications of period 1991-2000 are included to have a full 10-year citation window for all
publications and to make use of the fact that USPTO applications were not made public before 2001,
making the changes of a ‘surprise’ grant to follow-up researchers more likely.
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paired publications, we construct a control group that consists of all non-paired
biotechnology publications published in that given journal and year. For these
publications, forward citations are split up in exactly the same manner as to reflect the
pre- and post-grant period. This is done as follows: if for a given journal and publication
year only one paired publication is present, we split citation counts for all non-paired
publications published in the same year and journal based on the lag between the
publication year of the journal and grant year or the corresponding patent. This is again
aggregated at the level of the journal and publication year, resulting in an average
citation count pre- and post-grant for non-paired patents for the given journal and
publication year. If a given journal has multiple publications with a paired patent in a
given publication year, we split up forward publication citation counts for the non-
paired publications multiple times, once for every lag between the publication year and
the grant year of the corresponding patents. All these numbers are aggregated at the
level of the journal and publication year, resulting in an average citation count pre- and
post-grant for non-paired publications (pre- and post-grant of the corresponding
patents linked to paired publications of the same journal and publication year). Finally,
for all combinations of journals and publication years in which paired publications have
been observed, we calculate the ratio between citation received by paired publications
and non-paired publications two times: for the pre-grant period as well as the post-
grant period. If an anti-commons effect would manifest itself, the citation ratio between
paired publications and non-paired publications would drop significantly after granting

of the corresponding patents.

As Table 7-6 indicates, the ratio of average citations received by paired publications and
non-paired publications equals to 1.71 for the pre-grant period and 1.74 for the post-
grant period. Controlling for journal and publication year, these figures mean that
paired publications, i.e. publications having a patent counterpart, receive on average
1.71 more citations in the pre-grant period compared to publications without patent
counterparts for the same period, and that paired publications receive on average 1.74
more citations in the post-grant period compared to publications without patent
counterpart for the same period. While these descriptive statistics do not indicate a

decline, a formal t-test reveals that both ratios are not significantly different (p=0.86).
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As such, our data do not show any sign of anti-common effects that become visible after

patent rights have been granted.

Table 7-6 : Results of independent sample T-test — Ratio average citations paired/non-
paired publication pre-grant versus post-grant (1991-2000)

Lower cl Upper cl
Variable Class N mean Mean mean
Ratio average citations | ot 288 1.42 1.71 2.00
pairs/non-pairs
Ratio average citations o orant 288 1.48 1.74 2.00
pairs/non- pairs
Diff (1-2) -0.43 -0.03 0.36
T-TESTS
Variable Method Variances DF t value Pr> |t]
Ratio average citations Pooled Equal 574 -0.17 0.8666
pairs/non-pairs
Ratioaverage citations ¢\ thwaite  Unequal 565  -0.17 0.8666
pairs/non-pairs
EQUALITY OF VARIANCES
Variable Method Num DF Den DF F value Pr>F
Ratio average citations 0 1oq F 287 287 1.29 0.0299

pairs/non-pairs

Murray & Stern (2007) made use of a natural experiment as USPTO patent applications
prior to 2001 were not published until grant, making the granting of a patent an
external shock. However, we have both EPO and USPTO in our dataset, and EPO patents
are published 18 months after filing. This means that the granting of an EPO patent does
not come to a complete surprise as researchers can be aware of pending patent
applications far before the granting of the EPO patent. Hence, if an anti-commons effect
is present, citation rates can already go down after the first publication of the EPO
application, depending on the behaviour of the researchers when they are aware of
pending patent applications. As splitting our analysis for USPTO patents (based on grant
year) and EPO patents (based on publication year) is not straightforward because of
patent family issues, we performed an alternative independent sample T-test in which
we do not split citation counts into citation counts received before and after patent
grant, but before and after the first publication of the patent document. For EPO

patents, this publication date is 18 months after patent filing; for USPTO patents, this
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publication date is when the patent is granted for patents up to 2001 and 18 months
after patent filing for patents after 2001. After recalculation of citation lags based on
publication date instead of grant date, we can again compare citation rates before and
after publication (instead of grant). For this test we find similar results as the one based
on grant date: controlling for journal and publication year, we find that paired
publications, i.e. publications having a patent counterpart, receive on average 1.49
more citations in the pre-publication period compared to publications without patent
counterparts for the same period, and that paired publications receive on average 1.54
more citations in the post-publication period compared to publications without patent
counterpart for the same period. Again a formal t-test reveals that both ratios are not

significantly different (p=0.71).
7.4 Findings on citation patterns of patents (patent-to-patent citations)

Within this section we report and discuss the empirical results obtained when analysing
patent citations - i.e. citations from other patent document - to patent documents that
are part of a patent-publication pair. This analysis implies a comparison with patent

citations to patent documents which do not belong to a patent-publication pair.

Descriptive results

Table 7-7 provides a summary overview of the number of (granted) biotechnology
patents under study as well as the observed average number of forward patent
citations, organized by application year. Again the left side of the table contains data for
all biotechnology patents, while the right side contains data for the paired
biotechnology patents, i.e. patents with a counterpart in the scientific literature

(patent-publication pairs).

The number of biotechnology patent grants in our dataset is starting at 3,069 patents in
1991 and exponentially growing to 9,881 patents in 1995%. In 1996 the number of

patents falls down to 5,635 to level around (and later above) 7,000 patents in the period

4 Al patent counts mentioned in this chapter are granted patents by application year for patents having a
substantial title and abstract length to be of use in text mining, unless stated otherwise.
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1997 to 2001. After 2001 the number of patents gradually diminishes.®® The average
number of forward patent citations (patent-to-patent citations) for the biotechnology
patents follow a negative trend, starting around 16 from 1991 to 1993 and steadily
going down from 1994 onwards (a decrease of roughly 1.5 for every year)®® ®. The
average number of forward citations for all biotechnology patents is 8.9 (median
number of forward citations is 4). For the period 1991-2000 (to allow for a sufficient

time lag for citations) the average number of forward citations is 11.4 (median is equal

to 5).
Table 7-7 : Number of biotechnology patents and forward citations per year
ALL BIOTECHNOLOGY PATENTS PAIRED BIOTECHNOLOGY PATENTS
Application Number of 3‘;2:?;:“;:; er:t Number of 3‘;2:?;:“:;2?&

year patents citations patents citations
1991 3,069 16.21 9 14.56
1992 3,727 16.14 11 24.09
1993 4,392 16.01 25 12.68
1994 6,170 14.39 37 11.16
1995 9,881 14.60 71 13.51
1996 5,635 12.13 33 6.45
1997 7,097 10.12 56 11.68
1998 6,974 8.30 70 8.84
1999 7,742 7.35 58 5.47
2000 7,798 5.46 65 3.52
2001 7,509 4.43 49 2.86
2002 6,315 3.06 30 3.17
2003 4,554 2.50 19 1.26
2004 3,590 2.16 23 11.52
2005 2,342 1.67 7 0.57
2006 1,170 1.61 3 0.33
2007 275 1.03 0 N/A
2008 8 0.75 0 N/A

Total/Average 88,248 8.94 566 8.21

% For more recent years, trends in granted patent numbers per application year are not reliable because
of declining grants due to the grant lag in patent systems.

% In contrast with the publication citation counts (publication-to-publication citations), patent counts in
this study are not counted by a fixed citation window but continuously for all succeeding years up to
2009, the last year for which we have information available. This explains the early fall in average number
of citations.

 The patent citation counts are corrected for patent families, both at the cited as at the citing side. At
the cited side, all citations to the patent and one of its DOCDB patent family members are added
together. At the citing cite, citations of multiple members of the same DOCDB patent family are counted
as one.
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The number of biotechnology patents linked to a publication (566) follows a trend
similar to the overall evolution of biotechnology patents: first an exponential growth
phase starting from 9 in 1991 to 71 in 1995, followed by a drop to 33 in 1996 and a
phase with numbers fluctuating around 63 between 1995 and 2000. Again the numbers
gradually diminish after 2001, with a notable exception of 2004 (23 patents for 2004
versus 19 patents for 2003 and 7 patents for 2005). The average number of forward
patent citations (patent-to-patent citations) for the biotechnology patents linked to a
scientific publication follow a less stable pattern and fluctuate around 13 for the period
1991-1997 (with a significant positive raise to 24 in 1992 and negative drop to 6.45 in
1996) and steadily goes down from 1997 onwards (with a steep increase to 11.52 in
2004; compared to 1.26 in 2003 and 0.57 in 2005). The average number of forward
citations for biotechnology patents linked to a publication is 8.2 (median number of
forward citations is 3). For the period 1991-2000, the average number of forward
citations is 9.5 (median is equal to 4). These averages are about 8% lower compared to

non-paired patents.

As can be expected, patent-publication pairs are largely related to academic patenting;
52% of biotechnology patents that are linked to a publication have at least one
academic patentee, compared to 18% for all non-paired biotechnology patents. Patents
with at least one government or non-profit patentee are also overrepresented in the set
of patents closely related to publications (23% for paired patents versus 10% for non-

paired patents).

Multivariate analysis

In order to assess whether observed differences are statistically significant, we
performed a negative binomial regression with the number of forward patent-to-patent
citations as dependent variable and a dummy variable indicating whether a patent is or
is not part of a patent-publication pair as independent variable. We use all 88,248
biotechnology patents having a title and abstract of substantial length (to be suited for
text mining): 566 patents that are part of a patent-publication pair and 87,682 patents

that are not part of a patent-publication pair.
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We further control for the patent system (EPO or USPTO), the number of IPC-codes
(technological specialization), the presence of an academic patentee, the number of
backward scientific non-patent citations, the number of backward patent citations, the
number of forward publication citations (citations from WOS publications to the
particular patent), the number of inventors and the number of patentees. We also
included dummy variables for all 11 biotechnology IPC-subclasses (4 digits) present in
our selection of biotechnology patents (see Appendix 6-1 of previous chapter for all IPC-
codes as used in the OECD biotechnology definition). Again we include a time variable (1
for the first year, 1991, up to 18 for the last year, 2008) and a squared time variable to
include the evolution over time.
Table 7-8 : Results of negative binomial regression for 1991-2008 (dependent variable:

number of forward patent citations of patents — corrected for DOCDB patent family
members, both at cited and citing side)

95% Wald Hypothesis Test
Std. Confidence Interval  Wald Chi-

Parameter B Error Lower - Upper Square df Sig.
(Intercept) 2.300 .0197 2.262 2.339 13585.101 1 .000
Pair (Y/N) .058 .0460 -.032 .148 1.599 1 .206
Patent system

EPO -.193 .0140 -.221 -.166 190.450 1 .000

USPTO 0
Subfield dummies
(IPC-subclasses) Included
(n=11)
Number of IPC codes .043 .0008 .042 .045 3265.759 1 .000
Has university patentee 30 5097 017 055 13462 1  .000
(Y/N)
Number of backward
scientific non-patent .003 .0002 .003 .003 248.658 1 .000
citations
Number of backward 016  .0003  .016 017 3370269 1 .000
patent citations
Number of forward
publication citations 141 .0052 131 .152 744.627 1 .000
from WOS publications
Number of inventors .018 .0019 .014 .022 92.591 1 .000
Number of patentees -.010 .0074 -.025 .004 1.945 1 .163
Time -.063 .0042 -.071 -.055 228.478 1 .000
Time? -.007 .0003 -.008 -.007 766.940 1 .000

Table 7-8 reports the results of the regression analysis of forward patent citations of

patents. Patents being part of a patent-publication pair have more forward publication
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citations (variable Pair Y/N), but the difference is not significant. USPTO patents have
more citations than EPO patents. All other controlling variables have a significant and
positive impact, except for the number of patentees, which has a negative but not
significant impact, and time, which displays a decreasing, curvilinear relationship with

patent citations.

After removing outliers, i.e. all patents with a forward citation count larger than the
mean plus three times the standard deviation, similar results are obtained as the ones
reported in Table 7-8. Finally, when we limit the time period to all patents applied for
between 1991 and 2000 — in order to allow all patents to have at least 10 years of
forward patent citations — patent that are part of a patent-publication pair have less
forward patent citations, but also this difference is not significant (both when including
and excluding outliers). Overall, we observe no significant difference in terms of
(forward) patent citations when comparing patents that are associated with a scientific

publication with their solitary counterparts.

7.5 Conclusions, discussion and directions for further research

In this study, we have applied a text mining methodology to examine the possible
presence of anti-commons effects in biotechnology research. Inspired by previous work
undertaken by Murray, Stern and others, we analysed citation flows stemming from
patent-publication pairs present within the field of biotechnology (scientific publications
from which the contents - methodology, findings, discovery - is part of a patent
application). The delineation of the biotechnology domain was based on the use and the
refined application of existing classification schemes. An elaborate text mining scheme
was developed and implemented in order to identify and validate the patent-
publication pairs. A total of 584 patent-publication pairs were ultimately included in the
citation analysis. The necessary validation and control strategies were introduced and
executed. After taking into account these controls and studying the citation patterns of
the documents included in the patent-publication pairs, we were not able to detect a
significant anti-commons effect on the basis of the 584 pairs identified. On the contrary,

scientific publications belonging to a patent-publication pair receive significantly more
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scientific citations than their counterparts for which no patent document has been
identified. We also do not find a significant difference for citations rates before and
after patent publication or grant. Also we do not find differences in the citation rates of
publications linked to a patent with an academic or non-profit patentee compared to
publications linked to a patent with an academic or non-profit inventor but no academic
or non-profit patentee (hence commercial patentee). As such, our findings do not reveal
the presence of anti-commons effects once scientific findings become translated into
intellectual property rights (in this case, patents). In terms of technological citations, we
observed no difference between patents belonging to a patent-publication pair and
patent documents that are not associated directly with a scientific publication. As such,
no additional impact — on future technological developments — is observed when patent

documents are situated in the vicinity of science.

These findings add to the current stock of insights on the interaction between patenting
and publication behaviour. Through the design and application of text mining
techniques on a broad set of data, we intended to take the current insights a step
further. Extensive validation efforts were undertaken in order to confirm the results
obtained. These results definitely are an invitation to further examine the joint effects

of patenting and publishing activities by scientists.

However, our current approach also has limitations. A first point of attention is the
limited number of patent-publication pairs identified by the method; 584 patent-
publication pairs for all biotechnology patents and (WOS-covered) publications from
1991 to 2008 is low compared to 169 paired publications found by Murray & Stern
(2007) in Nature Biotechnology in the period 1997-1999. Although relaxing our criteria
to identify patent-publication pairs and using these additional patent-publication pairs
in our analyses do not undermine our findings, it is worth to find out why we are
missing patent-publication pairs compared to the manual method of Murray & Stern
(we only find 9 Nature Biotechnology publications paired to a patent for the same
period). An inverse search approach, in which we first match patents and publications
based on inventor/author name matching followed by a text mining approach to assess

content similarity and eliminate false matches because of homonyms might reduce
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recall, without jeopardizing high precision levels compared to traditional name

matching techniques, and is definitely worth trying.

A second point of attention is the difficulty to control for the heterogeneity in the large
set of biotechnology publications compared to the small set of publications that are part
of a patent-publication pair. This makes it difficult to distinguish underuse because of a
potential anti-commons effects from general qualitative differences when observing
differences in citation counts (especially because there is a bias for paired publications
as we can expect to find more publications of higher quality in that group — i.e.
publications valuable enough to justify costs and efforts to apply for a patent). Murray
& Stern (2007) use a natural experiment based on the non-disclosure of USPTO patent
filings prior to 2001 to grasp direct anti-commons effects. Besides this approach, we
control for general quality differences by matching paired and non-paired publications
on journal and volume year, assuming journal impact factors are a good indication of
the average quality and citation rate of published publications. However, robustness of
results would benefit from additional matching criteria or control variables to further
rule out general quality differences. E.g. sector and country of affiliations of
publications, and citation network information might be included. Another interesting
and feasible experiment is to compile a dataset of all publications of all authors having a
publication paired with a patent, and look for differences in citation rates between the

paired and non-paired publications of the same author.

Another point of attention that arises is the one of generalization towards other fields
of ‘techno-scientific’ economic activity. Can we substantiate the current findings in
technology domains such as materials or in other fields? And can we corroborate and
consolidate the robustness of the text mining methodology that was deployed, as well
as a further, independent, confirmation of the optimal identification algorithm. A last
point pertains to the continuous cross-validation of the results obtained with our
method with the results obtained by sets of patent-publication pairs that have been

constructed manually by experts, like the Murray & Stern dataset mentioned before.

Besides previous points, disentangling patent-publication pairs by their nature deserves

more attention. In line with Czarnitzki, Glanzel & Hussinger (2009) we did already look
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at the differences between patent-publication pairs with an academic or non-profit
patentee compared to those with an academic or non-profit inventor, but additional
research is needed to get more insight in the dynamics and heterogeneity of patentees

and publishers.

Finally, the absence of an anti-commons effect does not imply that we have reached the
end of the patent-publication debate. On the contrary, we still need a far better
understanding of the many, often multidimensional, spillovers that involvement of
scientists in both patent and publication activities can bring and generate. These
spillovers do not only occur at the material level, but also at the immaterial, cognitive
level. Understanding them and linking them to the performance of scientists in setting
and advancing their research agendas, remains a question of primary importance. A
better insight into these substantive relationships, both at the personal level and at the
institutional level, can indeed only improve our understanding of the effective and

fruitful management of scientific activity.
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8 Methodological part: application of text mining
techniques to identify science-technology interactions.

Essentially, all models are wrong, but some are useful.
George E. P. Box

8.1 Summary and conclusions

In our methodological part we thoroughly assessed LSA as a text mining technique to
match patent and publication documents based on their contents. The goal is to find
patent and publication documents that are related by the topics they address, the
methods they use, the results they obtain and the inventions or discoveries they
address. This would bypass limitations of current approaches based on IPC-codes, non-
patent references, and patent inventor and patentee matching with publication author
and affiliation, and allow to compile large scale datasets for a broad range of
applications in innovation studies. On the one hand we used small-scale patent and
publication datasets of six academic inventors to examine the feasibility of matching
patents with publications using a Vector Space Model and a Latent Semantic Analysis
text mining approach. On the other hand, we did a large scale matching exercise for

biotechnology patents and publications.

As off-the-shelve text mining solutions are not readily available and experience with
patent data is limited, we have set up a large measure variant comparison exercise
based on the LSA method. Several options for obtaining similarity measures within the
framework of this model — based on multiple weighting methods and multiple levels of
dimensionality reduction — have been outlined and assessed in terms of precision and

recall.

Our findings reveal that different options and methods available coincide with

considerable differences in terms of accuracy. While several combinations allow us to
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arrive at acceptable solutions, certain combinations display low levels of accuracy and
even result in misleading similarity measures, both for the exercise with the small
samples as for the exercise with the large set of biotechnology patents and publications.
These results suggest that LSA-based measures tend to overestimate similarity and not
grasp the real topic similarity of patent and publication documents. LSA seems not to
redeem its promise to deal with synonymy and polysemy problems in our setting; SVD
dimensionality reduction results in less congruence with the expert assessment of
similarity compared with cosine measures applied on the full vector space, and the less

dimensions retained, the less congruence.

The term weighting method used also effects the performance; for small datasets we
only compared raw frequencies and TF-IDF weighting and observe that TF-IDF weighting
works best. However, for the large dataset we also included binary weighting and IDF
weighting and observed that those weighting methods yield better results compared to
TF-IDF weighting and raw term frequencies, a remarkable observation as TF-IDF in
combination with SVD retaining 300 to 500 dimensions is a commonly used method.
Weighting methods including term frequencies suffer from tokenization and parsing
errors, explaining the better performance of binary and IDF weighting. We believe this is
a dataset specific problem caused by tokenization and parsing errors, reinforced
because of term frequencies, of chemical formula which are rather common in our

technical dataset.

We observe that a cosine metric applied on the full vector space after binary or IDF
weighting vyields the best results. However, simple measures based on the number of
terms documents have in common perform slightly better, in line with Occam’s razor
principle. The claim that LSA can outperform such simple measures based on common
terms or co-occurrence because of a better understanding of the meaning of language

of this former method is not backed up by our data.

We propose a combination of measures that allow a more robust identification of
similar patent and publication documents: ‘common terms MIN’, the measure based on
the number of common terms weighted for the minimum of the number of terms of the

patent and the publication document, as a primary criterion to identify similar
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documents, combined with ‘common terms MAX’, the measure based on the number of
common terms weighted for the maximum number of terms of the patent and the
publication document, as a secondary criterion to eliminate doubt cases due to
combinations of short and long documents. Especially when precision is important,
those measures deliver good results. When completeness or recall gets important,
things get more complicated because there are no threshold values that allow a clear

cut distinction between groups.

When it comes to the identification of patent-publication pairs, i.e. scientific
publications from which the contents is covered by patent protection, quality of the
results can benefit from an additional third criterion based on the presence or absence
of a shared inventor/author. Although inventor-author name matching is not
straightforward for larger datasets because of homonymy problems, spelling errors and
name variation, and the use of middle names and initials, the combination of a content
based measure like our ‘common terms MIN’ and ‘common terms MAX' and the
presence of a shared inventor/author might be the way to go, because the biggest
challenge in inventor-author name matching — the homonymy issue — is largely

controlled for when combined with a content bases measure.

8.2 Limitations and directions for further research

It is clear that the outlined automated method still have limitations and does not work
well in all circumstances. The typical trade-off between precision and recall remains a
though one, especially as final results are very sensitive to threshold values: small
changes in the threshold values for both the primary as secondary criterion result in big
differences in the number of matches in the total population. This is particularly
problematic for the secondary criterion ‘common terms MAX’, needed to clear out
doubt cases: the vast majority of potential matches based on the primary criterion
‘common terms MIN’ score very low on ‘common terms MAX’, so small changes in the
range of ‘common terms MAX’ to discard doubt cases (0.20-0.35) have a huge impact. It
seems that our method suffers from too many documents with short abstracts that are

very difficult to judge. On the other hand, this seems not to be due to the shortcomings
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of an automated method, but due to the characteristics of the dataset. There are simply
too many documents with short abstracts that seem to have some relatedness with
documents with large abstracts, and even for human experts these combinations are
very difficult to assess. We might have to conclude that for these document
combinations accurate assessment of similarity is simply impossible. A potential remedy
is to extend document sizes by including patent claims or full document contents - and
not only title and abstract - into the analysis, or use extended abstracts as supplied e.g.

by the Derwent World Patent Index.

Regardless of the problems with document combinations that differ largely in size, the
number of patent-publication pairs revealed seems low compared to the total
population of patents and publications involved. Although precision is high, recall is a
problem. The measurement of the thru recall rate in the overall population is difficult.
Our validation set does not contain that many missed matches, and hence recall rates
seems high, but the global number of patent-publication pairs seems so low compared
to the total population of patents and publications that there is no doubt a substantial
amount of patent-publication pairs is missed. Ways to improve recall are not clear
because we only do have a very limited amount of false negatives in our validation
sample. Cross-validation with other datasets with patent-publication pairs would be

very valuable to get more insights why patent-publication pairs are missed.

Improving precision and recall levels might be feasible by further broadening the set of
pre-processing options. For instance, when inspecting several patent-publication pairs,
it became apparent that introducing more synonyms or collocations and phrase
detection might further contribute to improving results. More advanced feature
selection techniques would also improve the performance of weighting methods that
take term frequencies into account, like TF-IDF weighting. Hence, research focusing on
the precise impact of additional parameters not included in this design seems relevant.
However, practical use might be limited because these additional processing options
require considerable manual intervention and this might not be feasible for every single
text mining exercise. Unless one would be able to derive synonym lists and collocations

that are specific for patents or publications, or that are relevant for a particular science
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or technology field. One route definitely worth pursuing is the improvement of
tokenization and parsing to eliminate errors - especially from chemical formulas which
are rather common in our technical dataset - which are getting reinforced because of
term frequencies. We believe this will improve the performance of TF-IDF weighting.
Related to this issue are stemming errors, also reinforced by term frequencies. One
might consider not to use stemming and try to solve synonymy problems using more

advanced feature selection techniques.

A remarking observation is the poor performance of SVD-based measures. It is not clear
why the specific context of our data does not allow the LSA-method to achieve its full
potential. It is unlikely that our dataset size is not large enough, nor that we did not
retain enough dimensions/concepts. There are indications that the document size and
document size differences are negatively influencing the SVD-based measures. But it
might also be due to the particular language use in our patent and publication dataset.
Again, using the full text of patent and publication documents, or extended abstracts as
supplied by the Derwent World Patent Index, might resolve this, although we lack hard

evidence that larger or better abstracts would resolve the issues.

What is clear is that, for our dataset, the dimensionality reduction imposed by LSA/SVD
is cutting off valuable information instead of noise. We observe a gradually increasing
performance for increasing number of retained dimensions, but we do not observe a
range of dimensions for which the performance is better than that of a cosine measure
applied on the full vector space; the performance of LSA/SVD is just approaching the
performance of a cosine measure on the full vector space for higher numbers of
retained dimensions, in contradiction to the claims of LSA that dimensionality reduction

would improve results (understanding the ‘latent’ structure).

Another remarkable observation is that patents of our materials control set are — on
average — more related to biotechnology publications than are biotechnology patents
when SVD-based measures are used. This information can act as a source of inspiration
to reveal the shortcomings of SVD on our data. However, looking into many individual
cases did not reveal significant information to explain the higher obtained similarity

scores nor the poor performance of SVD.
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Disentangling the bad performance of SVD in general is very difficult. Looking at
individual cases is not very informative as it is virtually impossible to trace back term
vectors after SVD to the original terms and contents. The document-by-concept matrix
compiled by the SVD solution contains the scores of all documents on newly formed
latent concepts, and every latent concept consists of a linear combination of all original
terms, i.e. a linear combination with 301,697 components. Although multiple reasons of
the limited performance of the LSA application on our dataset can be put forward, hard
evidence is limited. We are almost certain that the chosen level of dimensionality
reduction is not too low and the problem resides in the fact that LSA is not grasping the
latent structure and cutting valuable information. There are some indications that the
document size and size differences are causing problems, and we are almost certain
that some of the observed weighting issues are due to tokenization, parsing and
stemming errors. However, testing each and every suspicion is very time consuming.
We propose first to deal with tokenization and parsing issues, and next conduct
additional tests on the impact of document size and size differences and try our larger

documents (full patent and publication documents or e.g. Derwent Abstracts).

One final reason why LSA might fall short is the limitation to Euclidean geometry as
imposed by the assumption of LSA that documents are represented as vectors in a
vector space. In an Euclidean space, similarity should be symmetric and not violate
triangle inequality - d(x,z) < d(x,y) + d(y,z) - placing strong constraints on the location of
points in a space given a set of distances (Griffiths, Steyvers & Tenenbaum, 2007). This
issue however is a general one and not directly related to the limitations of our patent
and publication dataset; it is related to problems when dealing with high-dimensional
spaces (‘curse of dimensionality’). In high dimensional spaces all data appear to be
sparse and dissimilar, preventing efficient identification of communalities. Other text
mining techniques not relying on spatial representations might be more appropriate,
like generative topic models as Probabilistic Latent Semantic Modelling (Hofmann,

1999) and Latent Dirichlet Allocation (Blei, Ng & Jordan, 2003).

To conclude, the debate about the value of more complex text mining methods for

application on patent and scientific publication data — complex in the sense that they try
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to deal with the characteristics of text and language — compared to simpler methods
based on common terms or co-occurrence does not end here. While claims of LSA are
not backed up by our observations, and simpler seems to be better — see also Occam’s
Razor principle - denoting where exactly it goes wrong with LSA remains tough, but this
does not refrain us to continue with a method to detect patent-publication similarities

based on content relatedness for dealing with our empirical questions.
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9 Empirical part: impact of science-intensity of patents
and the potential threat of an anti-commons effect.

Once a new technology rolls over you,
if you're not part of the steamroller,
you're part of the road.

Stewart Brand

9.1 Summary and conclusions on the impact of science-intensity of patents

First we had a look at the impact of science-intensive patents on technological
development at the country level. We selected all granted USPTO biotechnology
patents and WOS publications (Thomson Reuters ISI Web of Science) for the period
1992-1999 for 20 countries having patent activity in biotechnology throughout the
whole time period. We used the number of examiner-given front page non-patent
references of the USPTO patents as an indicator of science-intensity, and the number of
granted patents, divided by the population, as indicator for the technological
productivity of a country. We correct for the scientific productivity and used the
number of publications, again divided by the population, as indicator for the scientific

productivity of a country.

Our findings revealed that within the field of biotechnology, the science-intensity or
science proximity — as measured by the amount of non-patent references — of patents is
positively associated with technological productivity. The relationship between science
and technology within the field of biotechnology indeed reveals itself here as reciprocal
and bi-directional rather than unidirectional or linear. These findings corroborate the
construct validity of indicators based on non-patent references found within patents. In
addition, the positive relationship between science-intensity, or stated otherwise, the
closeness between science and technology, and technological productivity,

corroborates the relevancy of policy frameworks that foster interaction between
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knowledge/science generating institutions (universities, research centres) and

technology producers (companies).

9.2 Limitations and directions for further research on the impact of science-
intensity

These findings also suggest interesting avenues for further research. While we focused
on one specific field (biotechnology), refining the insights obtained in terms of their
field specific nature requires extensions towards other fields. Likewise, introducing
extended time frames would allow assessing whether differential effects are to be
observed related to technological life cycle dynamics. Extending the analysis to include
other patent system and different counting methods (see Guellec & Van Pottelsberghe,
2001) seems more than worthwhile to pursue in order to assess the robustness or the
peculiarities of the findings obtained. Finally, additional insights in the value of non-
patent references as indicator of scientific intensity and additional indicators of science-
intensity are very valuable to include in this exercise. In this respect we think about the
presence of an academic inventor or an inventor that also publishes scientific
publications, or patents cited by scientific publications. And of course, content base text
mining methods, as developed in this dissertations, could also be instrumental to get a
better grasp of science-intensity, both directly (identification of patent-publication
pairs) and indirectly (helping to solve homonymy problems when identifying academic

inventors and inventors involved in scientific publishing).

9.3 Summary and conclusions on the potential threat of an anti-commons

effect

As observed in our first study, the increasing science-intensity of patenting seems to
have a positive effect on technological performance. One aspect of this ‘scientification’
of patenting is the proliferation of academic patenting. The backside of this
phenomenon is the ‘privatization’ of scientific commons, altering the model of open
science and potentially hampering scientific progress because of the blocking power of

patent holders. This fear is nicely expressed by the metaphor of the ‘Tragedy of the anti-
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commons’ by Heller, referring to the underuse of scarce resources because of too much

ownership.

In this study, we have applied a text mining methodology to examine the possible
presence of anti-commons effects in biotechnology research. Inspired by previous work
undertaken by Murray, Stern and others, we analysed citation flows stemming from
patent-publication pairs present within the field of biotechnology. The delineation of
the biotechnology domain was based on the use and the refined application of existing
classification schemes. An elaborate text mining scheme was developed and
implemented in order to identify and validate the patent-publication pairs. A total of
584 pairs were ultimately included in the citation analysis. The necessary validation and
control strategies were introduced and executed. After taking into account these
controls and studying the citation patterns of the documents included in the patent-
publication pairs, we were not able to detect a significant anti-commons effect on the
basis of the 584 pairs identified. On the contrary, scientific publications belonging to a
patent-publication pair receive significantly more scientific citations than their
counterparts for which no patent document has been identified. We also do not find a
significant difference for citations rates before and after patent publication or grant.
Also we do not find differences in the citation rates of publications linked to a patent
with an academic or non-profit patentee compared to publications linked to a patent
with an academic or non-profit inventor but no academic or non-profit patentee. As
such, our findings do not reveal the presence of anti-commons effects once scientific
findings become translated into intellectual property rights (in this case, patents). In
terms of technological citations, we observed no difference between patents belonging
to a patent-publication pair and patent documents that are not associated directly with
a scientific publication. As such, no additional impact — on future technological
developments — is observed when patent documents are situated in the vicinity of

science.

These findings add to the current stock of insights on the interaction between patenting
and publication behaviour. Through the design and application of text mining

techniques on a broad set of data, we intended to take the current insights a step
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further. Extensive validation efforts were undertaken in order to confirm the results

obtained.

Our findings backup policy frameworks that encourage science-technology interactions
and the concept of the entrepreneurial university and academic patenting. The threat of
an anti-commons effect did not reveal itself in our data. To the extent that academic
patenting has a positive influence on both academia and industry — complementarities
and spillovers, market of ideas, additional funding for (basic) research — this observation
might be reassuring. However one has to bear in mind that a potential anti-commons
effect is not the only threat of academic patenting. Although literature suggests that
academic patenting has no negative impact on the quantity and quality of the scientific
output of involved academic inventors, doubts still raise whether this trend might cause
a shift in the orientation of research, and especially in a shift to more — potentially
profitable — applied research away from basic research, also potentially jeopardizing

scientific and technological development in the long run.

Finally, the absence of an anti-commons effect does not imply that we have reached the
end of the patent-publication debate. On the contrary, we still need a far better
understanding of the many, often multidimensional, spillovers that involvement of
scientists in both patent and publication activities can bring and generate. These
spillovers do not only occur at the material level, but also at the immaterial, cognitive
level. Understanding them and linking them to the performance of scientists in setting
and advancing their research agendas, remains a question of primary importance. A
better insight into these substantive relationships, both at the personal level and at the
institutional level, can indeed only improve our understanding of the effective and

fruitful management of scientific activity.

9.4 Limitations and directions for further research on the potential threat of
an anti-commons effect

These results definitely are an invitation to further examine the joint effects of
patenting and publishing activities by scientists. However, our current approach also has

limitations.
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The first point relates to corroborating and consolidating the robustness of the text
mining methodology that was deployed, as well as a further, independent, confirmation
of the optimal identification algorithm. Although we strongly believe in the precision or
accuracy of the method, as mentioned already in the conclusions of the methodological
part, doubts arise when it comes to the recall or exhaustiveness of the method,
resulting in an undersampling of patent-publication pairs in our study. 584 patent-
publication pairs for all biotechnology patents and (WOS-covered) publications from
1991 to 2008 is low compared to 169 paired publications found by Murray & Stern
(2007) in Nature Biotechnology in the period 1997-1999. Although relaxing our criteria
to identify patent-publication pairs and using these additional patent-publication pairs
in our analyses does not undermine our findings, it is worth to find out why we are
missing patent-publication pairs compared to the manual method of Murray & Stern
(we only find 9 Nature Biotechnology publications paired to a patent for the same
period). An inverse search approach, in which we first match patents and publications
based on inventor/author name matching followed by a text mining approach to assess
content similarity and eliminate false matches because of homonyms, might reduce
recall, without jeopardizing high precision levels compared to traditional name

matching techniques, and is definitely worth trying.

A second point of attention is the difficulty to control for the heterogeneity in the large
set of biotechnology publications compared to the small set of publications that are part
of a patent-publication pair. This makes it difficult to distinguish underuse because of a
potential anti-commons effects from general qualitative differences when observing
differences in citation counts (especially because there is a bias for paired publications
as we can expect to find more publications of higher quality in that group — i.e.
publications valuable enough to justify costs and efforts to apply for a patent). Murray
& Stern (2007) use a natural experiment based on the non-disclosure of USPTO patent
filings prior to 2001 to grasp direct anti-commons effects. Besides this approach, we
control for general quality differences by matching paired and non-paired publications
on journal and volume year, assuming journal impact factors are a good indication of
the average quality and citation rate of published publications. However, robustness of

results would benefit from additional matching criteria or control variables to further
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rule out general quality differences. E.g. sector and country of affiliations of
publications, and citation network information might be included. Another interesting
and feasible experiment is to compile a dataset of all publications of all authors having a
publication paired with a patent, and look for differences in citation rates between the

paired and non-paired publications of the same author.

Another point of attention that arises is the one of generalization towards other fields
of ‘techno-scientific’ economic activity. Can we substantiate the current findings in
technology domains such as materials or in other fields? And can we corroborate and
consolidate the robustness of the text mining methodology that was deployed, as well
as a further, independent, confirmation of the optimal identification algorithm. A last
point pertains to the continuous cross-validation of the results obtained with our
method with the results obtained by sets of patent-publication pairs that have been

constructed manually by experts, like the Murray & Stern dataset mentioned before.

Besides previous points, disentangling patent-publication pairs by their nature deserves
more attention. In line with Czarnitzki, Glanzel & Hussinger (2009) we did already look
at the differences between patent-publication pairs with an academic or non-profit
patentee compared to those with an academic or non-profit inventor, but additional
research is needed to get more insight in the dynamics and heterogeneity of patentees

and publishers.

Finally we also want to remark that citation patterns are only one aspect of the diffusion
of knowledge and follow-on research and therefore comparison of citation patterns is
not the ultimate method to shed a light on the anti-commons issue. First of all not all
IPR-protected scientific discoveries will be published in the form of a scientific
publication, and this kind of ‘privatized’ scientific knowledge remains unobserved in our
method based on the identification of patent-publication pairs. On the other hand there
are many reasons to cite previous work in a scientific publication — not necessarily
implying knowledge diffusion or follow-on research — and knowledge diffusion is more
than just citing previous work. We also must bear in mind that individual scientists
feeling blocked by a patent for their own research have different means to deal with

this threat without necessarily jeopardizing their follow-on research. They can also try
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to circumvent or invent around, or even to ignore the threat if they believe that chances
of litigation are small. These adaptation strategies will be highly situational and for
instance different for immaterialized knowledge that is easy to reproduce, research
tools, or materialized knowledge like material transfer agreements. The role of research
exemption should be mentioned here too, turning the debate on academic patenting in
a complex story that cannot by grasped by one study or indicator. More fundamental
insights are needed on the barriers scientists encounter with potentially blocking
patents and the way they deal with it. We still need a far better understanding of the
many, often multidimensional, spillovers that involvement of scientists in both patent
and publication activities can bring and generate. These spillovers do not only occur at
the material level, but also at the immaterial, cognitive level. Understanding them and
linking them to the performance of scientists in setting and advancing their research
agendas, remains a question of primary importance. A better insight into these
substantive relationships, both at the personal level and at the institutional level, can
indeed only improve our understanding of the effective and fruitful management of

scientific activity.
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