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Purpose. To reduce beam hardening artifacts in CT in case of an unknown X-ray

spectrum and unknown material properties.

Methods. We assume that the object can be segmented into a few materials with

different attenuation coefficients, and parameterize the spectrum using a small num-

ber of energy bins. The corresponding unknown spectrum parameters and material

attenuation values are estimated by minimizing the difference between the measured

sinogram data and a simulated polychromatic sinogram. Three iterative algorithms

are derived from this approach: two reconstruction algorithms IGR and IFR, and

one sinogram precorrection method ISP.

Results. The methods are applied on real X-ray data of a high and a low-contrast

phantom. All three methods successfully reduce the cupping artifacts caused by the

beam polychromaticity in such a way that the reconstruction of each homogeneous

region is to good accuracy homogeneous, even in case the segmentation of the pre-

liminary reconstruction image is poor. In addition, the results show that the three

methods tolerate relatively large variations in uniformity within the segments.

Conclusions. We show that even without prior knowledge about materials or spec-

trum, effective beam hardening correction can be obtained.
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I. INTRODUCTION

When a monochromatic X-ray beam traverses a homogeneous object, the total atten-10

uation coefficient is linearly related to the thickness of the object along that ray (Beer’s

law). In general, however, CT X-ray sources are polychromatic. The linear relation does

not hold for polychromatic beams, since lower energy photons are more easily absorbed

than higher energy photons, which causes the beam to ‘harden’ as it propagates through the

object. This non-linear effect is referred to as beam-hardening. If the energy dependence of15

the absorption is not taken into account, reconstructions are contaminated by cupping and

streak artifacts1. Beam hardening correction is important in both medical and industrial

CT applications to improve the visual quality of the images and to obtain more accurate

segmentations, which is necessary for morphometric image analysis.

20

Beam hardening artifacts have been a subject of research for decades, resulting in a broad

variety of artifact reduction strategies. Beam hardening correction methods can roughly

be subdivided into four classes : hardware filtering, dual energy, statistical polychromatic

reconstruction, and linearization.

Hardware filtering is a common method to narrow the broad source spectrum. Thin metal25

plates that are placed between the source and the object absorb the lower energy photons

of the beam before the beam enters the object. Although hardware filters reduce the beam

hardening artifacts in the resulting image, the lower photon count also results in a decrease

of the signal to noise ratio.

In dual energy methods1–3, the energy-dependency of the attenuation coefficients is mod-30

eled as a linear combination of two basis functions representing the separate contributions

of the photo-electric effect and the scattering. The coefficients of the two basis functions are

needed for each image pixel. Therefore, two scans at different source voltages are required,

preferably with non-overlapping spectra3. After determining the coefficients, reconstructions

of the linear attenuation coefficient can be estimated at any energy within the diagnostic35

range. Dual energy CT in medical imaging is typically limited to specific applications e.g.

for measuring the bone mineral density in the lumbar spine4, improved detection of lung

embolism5, and plaque detection in coronary arteries using fast kV switching6.

Statistical reconstruction of polychromatic data is an approach explored by several
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authors7–10. The statistical beam hardening reduction methods basically incorporate the40

polychromatic nature of the beam in a maximum likelihood (ML) algorithm. This approach

assumes that the object consists of N known base substances, and that the energy depen-

dence of the attenuation coefficient for each pixel can be described as a linear combination

of the known energy dependencies of the base substances. Statistical methods are very

flexible with respect to various geometries, prior knowledge, noise statistics, etc. However,45

such methods are computationally very expensive.

Linearization methods aim to transform the measured polychromatic attenuation data

into monochromatic attenuation data. For homogeneous objects, the correction is typically

computed using the beam hardening curve, which describes the attenuation-thickness rela-

tion of the material, and which is acquired from a calibration scan11,12. For objects containing50

more than one material, this method can be extended13. Alternatively, the linearization

for multiple material objects can be performed using an iterative post reconstruction (IPR)

approach1,12,14–22. IPR methods are initialized with a preliminary reconstruction of the

data, which is used to estimate the intersection length of each material with each ray path.

Using these material thicknesses and prior knowledge about the spectrum and materials, the55

sinogram can be corrected. The resulting reconstruction image can then be used to initialize

a new iteration yielding improved estimates of the material thicknesses and consequently

improved beam hardening correction. Similarly to the statistical methods, the linearization

techniques assume that the object consists of a known number of materials with known

energy dependence of the attenuation coefficients. Some methods require uniform materials60

(e.g.16,18), others allow for mixtures of these base materials (e.g.1,19–21).

An important limitation of the statistical and linearization methods is the prior knowl-

edge about the materials and the energy spectrum of the source-detector system that is

required. In many industrial and in some medical cases (e.g. prostheses), the exact material65

composition is unknown, hence, the required prior knowledge is not available.

A few linearization methods have been developed that do not require prior knowledge

such as the spectrum and the attenuation coefficients of the materials. These methods

only require the number of materials N to be known and assume that the object consists70

of uniform materials. The methods of Van de Casteele et al.23, Gao et al.24 and Mou et
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al.25 offer nice results but have some limitations. The first two methods are limited to a

particular class of objects, while the third method is restricted to complete data and uses

a cost function based on data consistencies, which is specific for the used 2D fan beam

geometry.75

Recently, Krumm et al.26 proposed an iterative method similar to IPR method but which

does not require prior knowledge on the spectrum or material attenuations. The method

assumes N materials and segments an initial reconstruction, thus obtaining for each ray

an intersection length with each material. These N values correspond to a point in a80

N +1−dimensional hyperspace. A smooth hypersurface and an hyperplane are fitted to the

set of points obtained from all measured rays, representing respectively a polychromatic and

monochromatic approximation to the attenuation values. The difference between the two

surfaces is computed for each measured ray and used as an additive correction. For mild

beam hardening problems, i.e. when an adequate segmentation can be performed based on85

the uncorrected reconstruction, the method of Krumm et al. successfully suppresses beam

hardening artifacts in the reconstruction of piecewise constant objects.

In this paper, we propose an alternative approach based on a physical model. It is as-

sumed that the spectrum can be represented with a small and predefined number of energy90

bins, and that the object consists of a known number of different materials. We propose

iterative procedures that 1) segment the object, assigning each pixel to one of the materials,

2) estimate the amplitude of each energy bin and 3) estimate the attenuation coefficient

of each material for each of the energy bins. The parameter estimation is treated as an

optimization problem, minimizing the difference between the observed measurements and95

the polychromatic projection computed from the estimated parameters. The algorithms do

not require the materials to be perfectly uniform, they can deal with small density variations

within each material.

Based on this approach, three algorithms are proposed. The iterative gradient based

reconstruction (IGR) minimizes the cost function by alternatingly updating a subset of100

the parameters. To allow for non-uniformities within each material, a relative density is

estimated for each pixel. This relative density estimation is the most expensive part. With

an iterative filtered backprojection approach (IFR), we have attempted to accelerate this
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step by replacing an adjoint operation (backprojection) with a pseudo inverse operation

(filtered backprojection). IGR and IFR are reconstruction algorithms, which update an im-105

age by minimizing the difference between the measurement and a polychromatic simulation.

Applying similar assumptions in the sinogram domain and omitting the relative density

parameters leads to an iterative sinogram preprocessing method (ISP), where a sinogram is

updated based on the difference between a monochromatic and polychromatic simulation,

as proposed by14,26,27.110

The proposed algorithms require the number of materials to be known but do not use

any information about the source-detector spectrum or material properties. The price to

pay is that the reconstructed values cannot be interpreted as accurate estimates of the at-

tenuation coefficients at a specific energy because the algorithms do not attempt to estimate115

the actual energy corresponding to each energy bin. The goal, however, is to correct the

cupping and streaking artifacts caused by beam hardening.

The paper is outlined as follows. Section 2 introduces the notations and concepts, and

Section 3 describes the polychromatic model. The IGR, IFR and ISP methods are described120

in Section 4. The proposed methods have been evaluated for real X-ray CT data of 2- and

3-material hardware phantoms, and in addition on simulated clinical data, as described in

Sections 5 and 6. Finally, the conclusion is found in Section 7.

II. NOTATIONS AND CONCEPTS

Assume an object that consists of N materials with attenuation coefficients µn(E), n =125

1...N , that depend on the energy E. Denote by J the number of pixels on the reconstruction

grid. We assume that each pixel contains exactly one material defined by a vector of binary

variables s = {sn,j}, with sn,j = 1 if voxel j contains material n, and sn,j = 0 otherwise.

Consider projection lines, denoted by an index i = 1...D, for which an intensity measure is

obtained at the detector, and denote by li,j the intersection length of ray i with pixel j. We130

also introduce the relative density dj of the material in each pixel, with d = {dj}, to allow

the reconstruction of small non-uniformities within each segment. When a monochromatic

X-ray beam with intensity I0 and energy E0 passes through the object along a path i, the
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monochromatic exit intensity for that specific ray can be expressed as (Beer-Lambert).

Imono,i = I0e
−

∑N
n=1 µn(E0)

∑J
j=1 li,jdjsn,j . (1)

We assume that I0 is independent of i for convenience. If an air scan is available, the

possible position dependence of I0 can easily be taken into account.

The monochromatic attenuation Amono for a given energy E0 is defined as the logarithm

of the ratio of the input and output intensities for that energy, and behaves linearly with

respect to the traversed thickness:

Amono,i =
N∑

n=1

µn(E0)
J∑

j=1

li,jdjsn,j. (2)

Note that Amono,i is the desired quantity used by analytic reconstruction algorithms. We

use FBP in the text and equations to denote any analytic reconstruction algorithm suitable

for the given 2D or 3D geometry, e.g. filtered backprojection (FBP), FDK28, helical cone

beam reconstruction29.

In practice, the emitted X-ray photons have varying energies E ∈ [0, Emax] and also the

detector response is energy dependent. The measured intensity of such a polychromatic

beam along a path i can be expressed as the sum of the monochromatic contributions for

each energy E:

Imeas
poly,i =

∫ Emax

0

I0(E)e−
∑N

n=1 µn(E)
∑J

j=1 li,jdjsn,jdE, (3)

where I0(E) = Isource(E)ϵ(E) is referred to below as the “source-detector energy spectrum”,

equal to the product of the incident energy spectrum Isource(E) with the detector efficiency

ϵ(E).

The polychromatic attenuation Ameas
poly,i along a path i that is used by non-corrected algorithms

is defined by

Ameas
poly,i = log

(
I0

Imeas
poly,i

)
, (4)

with I0 the total incident beam intensity I0 =
∫ E0

0
I0(E)dE.135
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III. POLYCHROMATIC MODEL

Assume that the attenuation coefficients µn(E) and the source spectrum I0(E) are un-

known. We model the source-detector energy spectrum as a discrete set of Em energy bins

with intensities {Ie} (e = 1...Em). Using this model, the output polychromatic intensity

Isimpoly,i for a path i is given by

Isimpoly,i =
Em∑
e=1

Iee
−

∑N
n=1 µn,e

∑J
j=1 li,jdjsn,j , (5)

where µ = {µn,e} represents a set of effective attenuation coefficients corresponding to each

material/energy bin pair. With this model, the polychromatic output attenuation Asim
poly is

computed using

Asim
poly,i = − log

(
Em∑
e=1

IFe e
−

∑N
n=1 µn,e

∑J
j=1 li,jdjsn,j

)
, (6)

where IFe = Ie∑
e Ie

represents the fraction of the total spectrum intensity corresponding to

the eth energy bin.

In our approach, the aim is to find the reconstructed image for which the difference between

the corresponding simulated polychromatic sinogram Asim
poly,i and the measured sinogram

Ameas
poly,i is minimized in a least square sense. In other words, the aim is to minimize the cost

function Φ(µ, IF ,d, s) defined by

Φ(µ, IF ,d, s) =
1

D

D∑
i=1

(
log

(
Imeas
poly,i

I0

)
− log

( Em∑
e=1

IFe e−
∑N

n=1 µn,e

∑J
j=1 li,jdjsn,j

))2

, (7)

where the attenuation coefficients µ = {µn,e}, relative bin intensities IF = {IFe }, the seg-

mentation s = {sn,j} and the relative densities d = {dj} are the parameters to be estimated.

Note that the cost function defined in Eq. (7) is not convex, and since Φ(µ, IF ,d, s) =140

Φ(µ/2, IF , 2d, s) its minimization clearly does not have a unique solution. The three methods

proposed below aim at finding an interesting (local) minimum. It is therefore important to

initialize the optimization procedures with a good estimate of the parameters.
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IV. METHODS

A. Gradient based optimization (IGR)145

The IGR approach defines the problem as an explicit optimization problem. Each opera-

tion in the iteration attempts to decrease the cost function (Eq. (7)), and is guaranteed not

to increase it.

The IGR method is initialized by performing a preliminary reconstruction R0 = FBP(Ameas
poly )150

and selecting the number of materials N and of energy bins Em. Each iteration w of the

algorithm consists of the following steps:

1. Determine parameters s

Segment the image Rw−1 into N segments by thresholding. In the first iteration (w =

1), the segmentation is performed by k-means clustering30. For w > 1, the thresholds

are adapted in such a way that the new thresholds minimize the cost function (Eq. (7)),

sw = argmin
s

Φ(µw−1, IF,w−1,dw−1, s) (8)

where the notation argmins stands for the optimization of the cost function over the set

of segmentations s that can be generated by varying the threshold parameters. If no

set of thresholds is found that decreases Φ, the current segmentation is used without155

update in the next iteration, so sw = sw−1.

2. Update of the relative density

In the first iteration (w = 1), the relative densities are assigned the value dj = 1

for j = 1...J . For w > 1, the relative density parameters dw are determined using a

gradient descent algorithm (see Appendix A) such that

dw
= argmin

d≥0
Φ(µw−1, IF,w−1,d, sw). (9)

3. Attenuation and fractional intensity

Compute updated attenuation coefficients µw and fractional intensities IF,w by min-

imizing the cost function Φ at constant relative density and segmentation, using a

gradient based algorithm:(
µw, IF,w

)
= arg min

µ>0,IF≥0

Φ(µ, IF ,dw, sw), (10)
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with the constraint µn,e1 > µn,e2 if e1 < e2. In the first iteration, the seed values of

the intensity fractions for the optimization procedure are set at IFj = 1/Em. The opti-

mization of µn,e in the first iteration is initialized by computing the mean attenuation

⟨µ⟩n in each of the segments and assigning the initial values 0.2⟨µ⟩n, ⟨µ⟩n, and 5⟨µ⟩n160

to the three energy bins.

4. Image update

At this point all reconstruction parameters (µ, IF ,d, s) are updated. A new image is

needed for segmentation and display purposes only. We arbitrarily choose the following

updated image Rw
j for the segmentation in the next iteration:

Rw
j = dwj

∑
n

µw
IGR,ns

w
n,j. (11)

where µw
IGR,n is the median of {µw

n,e, e = 1...Em}.

Concerning the practical implementation, a few remarks are in order:

• Recall that, since the cost function is non-convex, only a local minimum can be found.165

The notation arg min should be interpreted as reaching a local minimum.

• For the relative density update step, the algorithm described in appendix A is imple-

mented using data subsets. Only one pass through the complete dataset is performed

and consequently only a lowering of the cost function is obtained.

• To derive a stop criterion for the IGR algorithm, we define the polychromatic model

error ϵw of iteration w to be the value of the cost function Φ(µw, IF,w,dw, sw). This

polychromatic model error is easily monitored, and is guaranteed to decrease mono-

tonically as the number of iterations increases. The iterative procedure is terminated

once following criterion is met:

ϵw + ϵw−1

ϵw−2 + ϵw−3
> t, (12)

with 0 < t < 1 a threshold value. The averaging between pairs of successive iterations170

aims at improving the robustness of the stop criterion.
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B. FBP-based optimization (IFR)

An important disadvantage of the proposed IGR method is its computational complexity.

The determination of the relative densities dwj (step 2) represents the main computational

bottleneck because several backprojection operations need to be performed. In the IFR175

method we attempt to accelerate this step by replacing the back projections with a pseudo

inverse operation: filtered backprojection.

The proposed FBP-based optimization method (IFR) is identical to the IGR method,

except for the relative density update step (2), which is replaced by

dw
= dw−1

+ωw · FBP(Ameas
p −Asim

p (µw−1, IF,w−1,dw−1
, sw)), (13)

where the dot denotes an elementwise multiplication and ω is a diagonal relaxation factor

with elements

ωw
j =

1∑N
n=1 µ

w−1
IFR,n s

w
n,j

(14)

where we chose µw
IFR,n = max{µw

n,e, e = 1, . . . , Em} since it yields a conservative step size.

This relaxation factor is empirical (see also “Link with the IFR method” in IVC) but ensures

that the update step is correct from the dimensional point of view.180

The iteration (13) reaches a fixed point if the simulated polychromatic sinogram exactly

matches the measured data. However, the choice of the relaxation factor (14) is empirical

and therefore, in contrast with the IGR method, there is no guarantee that the update step

(13) decreases the value of the cost function, though this was observed in the numerical

experiments in section 6. The IFR method proceeds with the same steps (3) and (4) as the185

IGR method.

C. Sinogram Preprocessing method (ISP)

The large number of relative density parameters to be estimated in the IGR and IFR

methods might in some cases negatively influence the conditioning of the optimization prob-

lem and the stability in the presence of noise. Though standard regularization techniques190

might be used to alleviate this problem, we propose in this section a third method (ISP),

which does not require relative density parameters (i.e. dj = 1 for all pixels) while still

allowing to recover structures that have been inaccurately segmented.
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Starting with an initial image estimate R0 =FBP(Ameas
poly ), each ISP iteration consists of

the following steps:195

1. Determine parameters s

The parameters sw are determined by thresholding the image Rw−1. The thresholds

are adapted as for the IGR and IFR method.

2. Attenuation and fractional energy

Updated attenuation coefficients and fractional energies are calculated as in IGR and

IFR: (
µw, IF,w

)
= arg min

µ,IF
Φ(µ, IF ,d = 1, sw). (15)

except that all relative densities are set equal to 1.

3. Reference attenuation and mono- and polychromatic simulation

Reference attenuation coefficients µw
ISP,n are determined (see below for the derivation

of the reference attenuation coefficients). The monochromatic and polychromatic sim-

ulations are then calculated using respectively

Asim,w
mono,i =

N∑
n=1

µw
ISP,n

J∑
j=1

li,js
w
n,j. (16)

and eq. (6) with dwj = 1,

Asim,w
poly,i = − log

(
Em∑
e=1

IF,we e−
∑N

n=1 µ
w
n,e

∑J
j=1 li,js

w
n,j

)
, (17)

4. Corrected sinogram and image update

A monochromatized sinogram Acorr,w is calculated using

Acorr,w = Ameas
poly + (Asim,w

mono − Asim,w
poly ) (18)

and the next image estimate is reconstructed as Rw =FBP(Acorr,w).200

As for the previous methods, the iterations are terminated when the stop criterion (eq. (12))

is satisfied.

The ISP method is similar to sinogram pre-processing methods of the type proposed by

Nalcioglu and Lou27, which monochromatize the polychromatic measurement by adding a

correction C, given in this case by C = Asim,w
mono − Asim,w

poly . In the two first methods (IGR205
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and IFR) described above, the reconstructed image is given by equation (11), and small

deviations from piecewise constant images as well as segmentation errors could be recovered

only thanks to the presence of the relative density parameters. The reason why the ISP

method allows modeling such small deviations despite the fact that relative densities are

fixed as dwj = 1 for all w and all pixels j is that the corrected sinogram (18) still contains210

the original measurements.

Reference attenuation coefficients

To derive a set of reference attenuation coefficients for sinogram correction, note that the

updated sinogram in Eq. (18) is composed of the original measured sinogram and a correc-215

tion term based on the estimated parameters. Assume a case in which the segmentation

procedure classifies two low-contrast materials as one material. Since the relative density

parameters, which compensate for misclassification in the IGR and IFR method, are set to

dj = 1 for all j in the ISP method, information about the discrimination of the materials

is only present in the measured data, not in the correction term. We expect that low con-220

trast features will be optimally visible in the updated reconstruction image if the reference

attenuation coefficients µISP = {µISP,n} used in Eq. (16) minimize the magnitude of the

correction term in Eq. (18), i.e. if they minimize the following quadratic functional with

respect to µ:

Ψ(µw
ISP) =

D∑
i

(
Asim,w

mono,i − Asim,w
poly,i

)2
=

D∑
i

(
N∑

n=1

µw
ISP,nt

w
n,i + log

(
Em∑
e=1

IF,we e−
∑N

n=1 µ
w
n,et

w
n,i

))2

. (19)

with

twn,i =
J∑

j=1

li,js
w
n,j. (20)

To solve this minimization problem, define a matrix Bw with elements

bwn,n′ =
D∑
i

twn,it
w
n′,i n, n′ = 1...N, (21)

and a vector v as

vwn = −
D∑
i

twn,i log
( Em∑

e=1

IF,we e−
∑N

n=1 µ
w
n,etn,i

)
n = 1...N. (22)
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The minimum of the functional in Eq. (19) is then given by

µw = Bw+v, (23)

where Bw+ denotes the Moore-Penrose generalized inverse of matrix Bw.225

Link with the IFR method

There is a link between the IFR and ISP methods. Assuming that FBP is the exact inverse

of the system matrix defined by the li,j, and multiplying the IFR update step by 1/ωw, one

finds that (13) is equivalent to230

J∑
j

N∑
n=1

µw−1
IFR,n s

w
n,jli,jd

w
j =

Ameas
poly +

J∑
j

N∑
n=1

µw−1
IFR,n s

w
n,j li,jd

w−1
j −Asim

poly(µ
w−1, IF,w−1,dw−1

, sw) (24)

Identifying the LHS with Acorr,w and the second term in the RHS with Asim,w
mono in (18), we see

that the two methods are closely related, although the identification is of course not exact

since all relative densities are set equal to 1 in the ISP method.

D. Acceleration

When applying iterative beam hardening methods as presented in this paper to mild235

beam hardening problems, the number of iterations is very small. In Section V, examples of

challenging beam hardening artifacts are presented for which the number of iterations that is

required to meet condition (12), is quite large. Performing a large number of reconstructions

on a whole 3D dataset is not desirable. We address this problem by performing a preliminary

fast iterative beam hardening correction on a downsampled sinogram and image grid. In240

addition, we found that the number of iterations can further be reduced by smoothing the

reconstructed image prior to the segmentation in each iteration.

We implemented the following strategy to accelerate the three algorithms:

Stage (1) Apply the beam hardening reduction method on a downsampled sinogram until the

stop criterion (12) is reached. In each iteration, a Gaussian filter is used to smooth245

the updated image before segmentation.
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Stage (2) Use the resulting sinogram (for the ISP method) or reconstruction image (IGR and

IFR) of step (1) to initialize a new series of beam hardening correction iterations

without Gaussian smoothing, until condition C is met.

Stage (3) Upsample the corrected sinogram/image resulting from step (2) to the size of the250

original measured sinogram. Finalize the algorithm by performing iterations until the

stop criterion (12) is reached.

In addition we used ordered subsets for projections and backprojections in the relative

density update step of IGR (see Eq. (A11))31.

V. EXPERIMENTS255

The proposed beam hardening artifact reduction methods are evaluated using two dedi-

cated physical phantoms: the Bean and the Barbapapa phantom (see Fig. 1). Both phantoms

consist of a non-convex polymethylmethacrylaat (PMMA) body in which several holes are

drilled. The three holes of the low-contrast Bean phantom are filled with air, mineral spirit

and water, the latter having a low physical contrast with PMMA. The Barbapapa phantom260

has five holes of which three are filled with aluminum, representing a high-contrast problem.

X-ray data of both phantoms were acquired using a SkyScan 1172 µCT scanner with

circular cone beam geometry. The tube voltage was deliberately set as low as 60 kV to

induce challenging beam hardening artifacts, and hardware filtering and the software beam265

hardening correction option were turned off. We selected only the central slice and rebinned

the data to a parallel beam sinogram, consisting of 300 equally spaced views with angular

range [0, π[, and 1000 radial samples. The images were reconstructed on a 1000× 1000 grid

with a pixel size of 25.16µm.

270

To simulate medical data, a digital segment image was generated based on a real CT

scan of a human body at shoulder height. The segment image, shown in Fig. 1(c) consists of275

two uniform materials (adipose tissue and soft tissue), and one material (cortical bone) with
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Aluminum

Air PMMA

1 cm

(a)Barbapapa phantom

Air

Water

PMMA

Mineral spirit

1 cm

(b)Bean phantom (c)Shoulder phantom

Figure 1. Pictures of the phantoms. (a) and (b) are hardware phantoms; (c) is a simulated phantom

non-uniform density ((densitymax − densitymin)/densitymin = 2). Realistic polychromatic

data was simulated using a tungsten spectrum of 60 kV, discretized in 30 bins of 2 keV,

obtained from Report 7832. No energy-dependent detector response was taken into account.

The corresponding attenuation values for each material were obtained from the ICRU-44280

report33. The simulated polychromatic data was then obtained by forward projection using

Eq. (4). No scatter or inhomogeneous bow-tie filtering were considered.

To correct beam hardening artifacts for the three phantoms phantoms, we followed the

acceleration strategy described in Section IVD with the stop criterion parameter t = 0.97.285

The methods were initialized using downsampled sinograms and a Gaussian smoothing filter

with a standard deviation of 1 pixel. For the Barbapapa and Bean phantom, the downsam-

pled sinograms contained 250 radial by 150 angular samples, yielding reconstruction images

on a 250 × 250 pixels grid with pixel size 100.64µm. The downsampled sinogram of the

Shoulder phantom contained 256 radial by 180 angular samples.290

All beam hardening correction experiments were performed using 3 energy bins and N = 3

materials (including air).

VI. RESULTS AND DISCUSSION

A. Beam hardening correction for Barbapapa and Bean phantom295

Fig. 2 shows the FBP reconstruction of the Barbapapa phantom from the uncorrected

measured sinogram. In this image, important cupping artifacts can be observed in the
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(a) FBP (b) IGR

(c) IFR (d) ISP

Figure 2. Reconstructions from experimental data of the Barbapapa phantom.

PMMA and aluminum area. In addition, the background attenuation in the convex hull of

the phantom is overestimated. Note also the streak artifacts in between the aluminum rods,

which could mask air holes.300

The IGR, IFR and ISP methods were evaluated for the Barbapapa phantom. The re-

sulting reconstruction images are depicted in Fig. 2(b), (c) and (d), respectively. The IGR

and IFR images are displayed using the monochromatic µw
IGR,n. From these images and the

corresponding line profiles along the central horizontal line, which are plotted in Fig. 3 (a),305

(b) and (c), it can be observed that all three methods strongly suppress the cupping and

streak artifacts compared to a non-corrected FBP reconstruction. Note that the meaning

of the reconstructed image values is different for IGR and IFR compared to ISP. IGR and

IFR produce three images with attenuation coefficients, one for each energy bin. In con-

trast, ISP produces a single sinogram, which after reconstruction yields a single image with310
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(a) IGR (b) IFR (c) ISP

Figure 3. Line profiles along the vertically centered horizontal line in the reconstruction image of

the Barbapapa phantom. The black line corresponds to the uncorrected FBP reconstruction; the

grey line represents the corrected reconstruction.

effective attenuation coefficients. ISP also yields N × Em estimates for the attenuation of

each material at each energy bin, but these are only used during the computation of the

sinogram updates. The relation between these estimates and the reconstructed attenuation

values is complex and depends on the object and on the energy spectrum.

315

Fig. 4 shows results for the Bean phantom. Fig. 4(a), (b), (d) and (e) correspond to the

uncorrected FBP, the IGR, IFR and ISP reconstructions from the 60 kV unfiltered scan,

respectively. The line profiles corresponding to the latter three methods, along the line

shown in Fig. 5 (a), are depicted in Fig. 5 (b) to (d). Again, a strong suppression of the320

cupping artifacts is observed for all three methods.

The Bean phantom challenges the contrast sensitivity of the methods. Due to the low

CT value contrast between water and PMMA, those materials are considered as one mate-

rial by the segmentation procedure. However, in all three reconstruction images, the water325

area can be discriminated from the surrounding PMMA. For the IGR and IFR methods,

this is due to the introduction of the relative density parameter, which compensates the

assignment of the water pixels to PMMA by a slight increase in relative density. In the

ISP method, on the other hand, the polychromatic model will not differentiate between

the water and PMMA. However, by maximizing the contribution of the measured data to330

the corrected sinogram through the selection of the reference attenuation coefficients (see

section IVC), the ISP method does have a mechanism to tolerate non-uniform features in
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(a) FBP of unfiltered (b) IGR of unfiltered (c) FBP of hardware prefiltered

data (60kV) data (60kV) data (60kV)

(d) IFR of unfiltered (e) ISP of unfiltered (f) FBP of hardware prefiltered

data (60kV) data (60kV) data (80 kV)

Figure 4. Reconstructions from experimental data of the Bean phantom.

the images. It can be concluded that, despite the assumption of uniform segments, the

methods tolerate a certain degree of non-uniformity.

335

As a comparison, we also show the reconstruction image from X-ray data obtained with

hardware prefiltering of the X-ray beam. Fig. 4(c) and (f) depict the standard FBP recon-

struction from X-ray data of the same Bean phantom acquired with Al-Cu prefiltering of

a 60kV and a 80kV beam, respectively, whereas figures (a), (b), (d) and (e) were obtained

from unfiltered 60kV data. The filtered data were acquired using a higher tube current340

as to compensate for the reduced incident flux on the object caused by prefiltering. The

images show that beam prefiltering effectively reduces beam hardening artifacts, but also

reduces the contrast between water and PMMA, due to the increased effective energy of the

entrance beam.345
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(a) profile line (b) IGR

(c) IFR (d) ISP

Figure 5. Profiles in the reconstruction images of the IGR, IFR and ISP methods along the broken

profile line shown in (a) for the Bean phantom. The black line corresponds to the uncorrected FBP

reconstruction; the grey line represents the corrected reconstruction.

Fig. 6 and Fig. 7 show the results of the beam hardening correction for the Shoulder

phantom, displayed at a low-contrast enhancing grey scale and a large grey scale range,

respectively. To show the stability of the algorithms for larger and structurally complicated

non-homogeneous areas, the beam hardening correction was performed using three materials

(N=3) corresponding to air, soft+adipose tissue, and bone (with varying relative densities).350

The line profiles corresponding to the IGR, IFR and ISP methods are depicted in Fig. 8 (a)

to (c). It can be observed from Fig. 6,Fig. 7 and Fig. 8 that, although the material segments

are clearly non-homogeneous, the cupping artifacts are removed and an important reduction

of streaks between bone parts is obtained. These results suggest that the methods might be

applicable for medical or preclinical data.355
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(a) FBP (b) IGR

(c) IFR (d) ISP

Figure 6. Reconstructions from experimental data of the Shoulder phantom (soft tissue low contrast

enhancing gray scale range).

B. Convergence

The cost function that is optimized in each iteration is non-convex, and therefore none of

the three algorithms can guarantee convergence to a global optimum. In practice, we found

that the obtained parameter estimations were dependent of the initial seed parameters, but

without noticeable impact on the reconstruction images.360

In Fig. 9 the evolution of the model error throughout successive iterations is plotted for the

Barbapapa (a) and the Bean phantom (b). The IGR, IFR and ISP methods used in total

76, 47 and 17 iterations, respectively, to run through the successive acceleration steps of

the scheme in Section IVD and reach the final stop criterion for the Barbapapa phantom.

For the Bean phantom, these numbers are respectively 45, 39 and 17, and for the Shoulder365

phantom 97, 45 and 19 iterations. The peaks in Fig. 9 correspond to transitions to the next

acceleration stage. Although only the IGR method guarantees a monotonic decrease of the

cost function value as a function of the iteration number within a single acceleration stage,

the IFR and ISP method show a similar trend. The model error converges more slowly in

the IGR method compared to the IFR method, which can be explained by the nature of the370

optimization. In each iteration, IFR estimates the relative density map di using the FBP
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(a) FBP (b) IGR

(c) IFR (d) ISP

Figure 7. Reconstructions from experimental data of the Shoulder phantom (large grey scale

range).

(a)IGR (b) IFR (c) ISP

Figure 8. Line profiles along the vertically centered horizontal line in the reconstruction image of

the Shoulder phantom. The black line corresponds to the uncorrected FBP reconstruction; the

grey line represents the corrected reconstruction.

in which the filtering enhances the high frequencies. In the IGR method, where the relative

density map is computed using a limited number of least squares optimization steps, the

high frequencies are introduced more slowly.

A shared observation for both phantoms for the IGR and IFR method is the similar value375

of the model error, obtained after convergence. This could be expected since IGR and IFR

minimize the same cost function. For the ISP method, on the other hand, a higher model
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error is obtained as a consequence of the much lower number of degrees of freedom in the

cost function. This, however, does not imply an inferior image quality compared to the IFR

and IGR images, since the ISP method has an alternative mechanism in sinogram space to380

tolerate non-uniformities within segments.

(a) Barbapapa phantom (b) Bean phantom (c) Shoulder phantom

Figure 9. Evolution of the cost value as a function of iteration number for the IGR, IFR and ISP

methods. The dash-dotted, dashed and solid curves denote the cost function for the IGR, IFR and

ISP methods, respectively.

C. Segmentation

(a) Initialisation (b) ISP Iteration 3 (c) ISP final iteration

Figure 10. Illustration of the segmentation improvement in successive iterations of the beam

hardening correction procedure.

Fig. 10(a) shows the segmentation of the first FBP reconstruction. Note that quantitative385

measurements based on this segmentation would introduce potentially important errors. The

major challenge for the reconstruction of this phantom is to obtain a correct segmentation

from this primary image. The center and right images of Figure 10 show the gradual
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improvement of the segmentation image through successive iterations for the ISP method.

A similar trend (not shown) was observed for the IGR and IFR method. The images390

demonstrate that the three methods are able to recover accurate reconstruction images with

realistic segmentations, even when the segmentation of the initial reconstruction is poor.

As a segmentation with global thresholding is suboptimal, a significant reduction of the

number of iterations might be obtained using sophisticated segmentation strategies, e.g.

adaptive thresholding by projection distance minimization34. The selection of appropriate395

segmentation methods is beyond the scope of this paper.

D. Computational complexity

The major factor affecting the computational complexity of the three methods is the num-

ber of back- and forward projections (both O(P 2Q)) with P and Q respectively the number

of detector pixels and angles, as shown in Table I. Recall that iterative postreconstruction400

(IPR) beam hardening correction methods, which were described in the Introduction, require

only one back- and one forward projection per iteration, whereas the proposed algorithms

described in Section IV, require in each iteration multiple backprojections for the segmenta-

tion, and the IGR requires in addition multiple back- an forward projections for the relative

density update. Note, however, that other segmentation strategies such as histogram based405

thresholding could be considered, which would then reduce the computational complexity

of IFR and ISP to one back- and one forward projection per iteration, like IPR methods.

IGR IFR ISP

Segmentation N per segmentation N per segmentation N per segmentation

iteration iteration iteration

Relative density update N+2 1 not applicable

Attenuation and fractional intensities 0 0 0

Image Update not applicable not applicable 1

Table I. Number of back- or forward projections used in the different steps of the IGR, IFR and

ISP algorithms (see Section IV); N is the number of materials.
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E. Interpretation of the image and the estimated parameters

An approximate analysis of the reconstructed attenuation coefficients for the Barbapapa

phantom is given in Fig. 11, using the source-detector energy spectrum and material char-410

acteristics which were unknown to the algorithms. For each energy bin and each material,

the algorithms yield an intensity IFe and an attenuation coefficient µn,e with dimension

cm−1. Using the material properties for aluminum and PMMA, these estimated attenuation

coefficients were used to assign energies Ẽn,e to each energy bin and each material, and these

assignments turned out to be uniquely determined in this case. The results are plotted in415

Fig. 11 as a set of impulses of height IFe positioned at energies Ẽn,e and superimposed on

top of the real spectrum. Although the number of materials and energy bins is too small to

draw definite conclusions, the figure suggests that the obtained set of discrete energy peaks

is compatible with the source-detector spectrum. For a (nearly) monochromatic spectrum,

the methods are expected to yield (almost) exact attenuation coefficients corresponding to420

the spectrum energy.

Fig. 12 presents an alternative analysis of the same data, which compares the attenua-

tion coefficients obtained by the three methods with the known material attenuation curves

(solid lines) of aluminum (grey) and PMMA (black). The energy boundaries in the figure are425

obtained by dividing the spectrum of Fig. 11 in three bins, such that the integrals over the

bins correspond to the estimated fractions IFe , with e = 1..Em. The estimated attenuation

coefficients µn,e, indicated with stars and plotted in the center of the corresponding energy

bins, are within or close to the µ intervals determined by the known attenuation curves for

each energy bin.430

VII. CONCLUSION

In this paper, we described three iterative methods for beam hardening correction for

objects consisting of multiple, uniform materials. The methods are implemented for a 2D

parallel beam geometry, but are readily extendable to any acquisition geometry.435

The three methods aim at minimizing a cost function based on a discretized model for

polychromatic attenuation. The IGR method, and its accelerated approximating method
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(a) IGR (b) IFR (c) ISP

Figure 11. Comparison for the Barbapapa phantom of the real spectrum with the discrete spectrum

that is composed (see text) from the obtained set of attenuation coefficients and corresponding

fractional intensities, using also the known material properties (that were unknown to the methods).

The grey and black lines represent the results for aluminum and PMMA, respectively.

(a) IGR (b) IFR (c) ISP

Figure 12. Comparison of the linear attenuation coefficients obtained by the three methods (stars)

with the known attenuation curves (solid lines), where the grey and black lines represent the

materials aluminum and PMMA, respectively. The obtained linear attenuation coefficients are

plotted in the center of their corresponding energy bins (see text), which are delineated by the

black vertical lines.

IFR, aim at reducing beam hardening artifacts in the reconstruction image by modeling the

object function using relative density parameters. The ISP method, in which the relative

density parameter is omitted, is an iterative sinogram preprocessing method. For all three440

methods, the number of materials is considered to be known beforehand, but no information

on the energy spectrum of the source-detector system or on the energy dependent attenua-

tion coefficients of the materials is used. This is a significant practical advantage compared

to most other beam hardening correction methods, which often require material and spec-

trum calibration. The three methods successfully reduce the cupping artifacts caused by445
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the beam polychromaticity in such a way that the reconstruction of each homogeneous

region is to good accuracy homogeneous, even in case the segmentation of the preliminary

reconstruction image is poor. In addition, the results show that the three methods are fairly

robust for segmentation errors in the initial reconstruction, and allow visualizing small

variations in the uniformity of the segments. For the simulated clinical scan in Fig. 6, the450

density variation was as large as a factor 2 in the bone.

A limitation of the method is that the reconstructed values cannot be interpreted as accu-

rate estimates of the attenuation coefficients at a specific energy. Nevertheless, the results

suggest that the relation between the estimated intensities of the energy bins and the re-

constructed attenuations is compatible with the known material properties.455

Our results also illustrated that, in spite of additional beam hardening effects introduced

in the raw data, it can be favorable to perform the acquisition with little instead of strong

hardware beam prefiltering so as to preserve the image contrast of low contrast objects.

As discussed in the introduction, another method that does not require prior knowledge on460

the spectrum and materials properties has been proposed by Krumm et al.26. That method

is similar to the ISP method but fits the data with a generic polychromatic model, which

depends on a much larger number of parameters than the ISP method since the latter uses

the physical model in equation (17). The required number of parameters in the Krumm

method grows exponentially with the number of materials, as opposed to linearly for the ISP465

algorithm. The price to pay is an increased computational complexity for the latter method.

The methods are general methods and their applicability is restricted to objects for which

the spectral behavior within a single segment is sufficiently uniform. However, the results

presented in this paper indicate that successful beam hardening artifact reduction can be470

obtained, even if there are relatively large density variations within a segment. Future

work will be needed to investigate the influence of scatter, bow-tie filtering, systematic

reconstruction errors, to compare the resolution and noise properties of the three proposed

methods, and to determine the practical application field.
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Appendix A: Update of the relative density in IGR

We present here the gradient descent algorithm used to calculate the relative density

update step of the IGR method. The algorithm is derived by seeking a surrogate func-

tion ΦA(d,d
n) of the cost function in equation (9), which satisfies the usual conditions

ΦA(d,d
n) ≥ Φ(d) and ΦA(d

n,dn) = Φ(dn)35,36. Note that all other parameters of the cost

function are omitted here since they are kept constant during the relative density update

step. The next iterate is then obtained as

dn+1 = argmin
d≥0

ΦA(d,d
n) (A1)

and is easily calculated provided ΦA(d,d
n) has a simple structure. Due to the complexity

of the cost function, we could only build a simple separable surrogate for the approximation

of Φ by a quadratic Taylor expansion:

Φ(d) ≃ Φ(dn) +
J∑

j=1

∂Φ

∂dj

∣∣∣∣∣
dn

(
dj − dnj

)
+

1

2

J∑
j=1

J∑
h=1

∂2Φ

∂dj∂dh

∣∣∣∣∣
dn

(
dj − dnj

)(
dh − dnh

)
(A2)

The first derivative of Φ is given by:

∂Φ(d)

∂dj
=

2

D

Em∑
e=1

[∑
m

µm,esm,j

][∑
i

li,j

(
ln

Ip,i
I0

− lnPi) ·
Pi,e

Pi

]
(A3)

with

Pi,e = IFe exp
(
−
∑
m

µm,e

∑
j

li,jdjsm,j

)
(A4)

Pi =
Em∑
e

Pi,e (A5)
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In addition we simplify the second derivative in (A2) by only keeping the dominant term

of the second derivative, assuming that (ln
Ip,i
I0

− lnPi) can be neglected when we are close

enough to the solution. With this approximation, the second derivative becomes:

∂2Φ(d)

∂dj∂dh
≃ Hj,h(d)

.
=

2

D

∑
e

[∑
m

µm,esm,j

]
·
∑
i

li,jli,hPi,e

∑
e′ Pi,e′

∑
m′ µm′,e′sm′,h

P 2
i

(A6)

Because the RHS of (A6) is always positive and

2
(
dj − dnj

)(
dh − dnh

)
≤
(
dj − dnj

)2
+
(
dh − dnh

)2
(A7)

it follows that:485 ∑
j

∑
h

Hj,h(d
n)
(
dj − dnj

)(
dh − dnh

)
≤
∑
j

∑
h

Hj,h(d
n)
(
dj − dnj

)2
(A8)

This allows to introduce the surrogate ΦA

ΦA(d,d
n) = Φ(dn) +

∑
j

∂Φ

∂dj

∣∣∣∣∣
dn

(
dj − dnj

)
+

1

2

∑
j

∑
h

Hj,h(d
n)
(
dj − dnj

)2
. (A9)

This function satisfies ΦA(d
n,dn) = Φ(dn) and (at the approximations described above),

ΦA(d
n,dn) ≥ Φ(dn). Minimizing ΦA(d,d

n) is trivial since the variables are separated.

Setting the derivative of ΦA with respect to dj to zero yields

dj = dnj −
∂Φ
∂dj

∣∣∣
dn∑

h Hj,h(dn)
, (A10)

which corresponds to a gradient descent with a diagonal pre-conditionner 1/
∑

h Hj,h(d
n).

The second derivative in (Eq. (A6)) contains one backprojection for each energy bin. To limit

the number of backprojections we multiply each term in the second derivative by Pi

Pi,e
> 1,

which results in only one backprojection. This approximation does not lead to instability

because it only decreases the step size. Adding a final non-negativity constraint, the ISF490

update step becomes:

dn+1
j =

dnj −
∑

e

[∑
m µm,esm,j

][∑
i li,j

(
ln

Ip,i
I0

− lnPi) · Pi,e

Pi

]
∑

e

[∑
m µm,esm,j

]
·
∑

i li,j
1
Pi

∑
e′ Pi,e′

∑
m′ µm′,e′

(∑
h li,hsm′,h

)


+

(A11)

with [x]+ = x if x ≥ 0 and [x]+ = 0 if x < 0.
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