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Abstract— Removing the safety fences that separate humans
and robots, to allow for an effective human-robot interaction,
requires innovative safety control systems. An advanced func-
tionality of a safety controller might be to detect the presence of
humans entering the robotic cell and to estimate their intention,
in order to enforce an effective safety reaction. This paper
proposes advanced algorithms for cognitive vision, empowered
by a dynamic model of human walking, for detection and
tracking of humans. Intention estimation is then addressed as
the problem of predicting online the trajectory of the human,
given a set of trajectories of walking people learnt offline
using an unsupervised classification algorithm. Results of the
application of the presented approach to a large number of
experiments on volunteers are also reported.

I. INTRODUCTION

Human-robot interaction, a key feature for the innovative

robotic cell, requires the elimination of the safety fences that

in the traditional industrial scenario provide a rigid separation

between the areas occupied by the robots and those occupied

by the humans. This lack of artificially imposed safety,

however, must be compensated for by new abilities of the

control system. A new functionality of the safety controller

might then be to detect and track the humans entering the

cell and to estimate, to some extent, their intentions.

While different meanings can be associated to the concept of

human intention, and consequently several ways to classify

this intention can be devised, in this context we will focus

on the prediction of the trajectory a human is supposed

to follow, after he/she has been tracked for a sufficient

amount of time. The overall goal is, in fact, to predict in

the least possible time which area in the vicinity of the

robot the human is heading to. Using this information, the

robot control system can be aware of the actual situation and

select the correct interaction mode (among those defined in

its design) as soon as an intention has been reliably identified,

thus increasing the chance that the safety actions conceived
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for the interaction mode are effective to resolve a possibly

dangerous situation.

The problems of human detection and tracking, and of

intention estimation, have been tackled before in the litera-

ture, from quite different points of view and with different

instrumentation. Since a thorough review of the state-of-the-

art of these problems in all different application domains is

out of the scope of this work, we will focus on the robotic

context only.

An approach based on stereo-vision, that aims at predicting

the probability of an accident in working environments where

human operators and robots cooperate, was presented in [1].

The methodology is based on a dynamic stochastic model of

the human motion, where the human is modeled as a moving

point. Another probabilistic approach, based on camera im-

ages, was illustrated in [2]. In this case, however, intentions

are represented as complex manipulation operations and no

motion prediction is considered.

A similar modeling approach, based on Hidden Markov

Models, has been adopted in [3], but in this case a laser

range finder for 3D position estimation was added to a

vision system. Other approaches, that combine vision and

the measurement of some psychological signals for human

intent and affective state estimation during robot interaction,

are presented in [4] and [5].

Finally, human intention estimation in the context of human-

robot physical interaction has also been considered in [6]–

[8].

With respect to the reported state-of-the-art, the approach

presented in this paper has some distinctive features:

• the sensory system used: just a couple of ceiling-

mounted commercial surveillance cameras, low-cost

sensors easily deployable in any robotic cell;

• the particular setting of the problem, where the goal is

to infer in the least possible time the area inside the

robotic cell the human is heading to;

• the kinematic model adopted to describe human motion,

which takes into account human orientation and does

not allow for walking sideways, a situation that is rather

uncommon in an industrial robotic cell.

The paper is organised as follows. Section II presents the

problem of estimating the human intention in an industrial

robotic cell, introducing the framework that characterises the

approach presented here. Sections III and IV respectively
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Fig. 1. An assembly line with several manual workstations (a) and an
example of area segmentation for human intention estimation (b).

describe the algorithms for human detection and tracking,

and for intention estimation. Section V illustrates the results

of the application of the presented approach to a large

number of experiments with volunteers. Conclusions are

drawn in Section VI.

II. ESTIMATING THE HUMAN INTENTION IN AN

INDUSTRIAL ROBOTIC CELL

Consider an assembly line (Fig. 1(a)) where humans and

robots coexist side-by-side, and even cooperate, without any

safety fence providing a rigid separation between the areas

occupied by the robots and those occupied by the humans.

Three different modes of human-robot interaction can be

introduced: coexistence, cooperation and interference. These

three modes are defined as follows:

• coexistence: a robot and a human are working side-

by-side in two contiguous workstations, or a human

is passing in the inspection corridor while a robot is

operating;

• cooperation: a robot and a human, working in two

contiguous workstations, are exchanging workpieces;

• interference: a human is entering the robot workspace.

Following the idea of stating the human intention estimation

problem as a prediction of the area to which the human

is heading, the robotic cell is segmented into four different

areas (Fig. 1(b)) as follows:

• Human worker Area (HA) and Robot Area (RA):

rectangular regions spanning the space in front of a

workstation occupied by a human worker or a robot,

including the space needed by the worker or the robot

to accomplish the task and a portion of the space behind

them, as well.

• Inspection Corridor (IC): a rectangular region located

behind the human worker and robot areas (a corridor

that goes through the robotic cell, used, for example,

by human workers to reach their workstations).

• Cooperation Area (CA): a rectangular aisle located

between the human worker and robot areas, representing

the space where a cooperation between a human worker

and a robot can take place.

On the basis of the robotic cell segmentation in Fig. 1(b), the

three interaction modes can be characterised with respect to

the human’s position/velocity, the position of the human arms

and the robot Tool Centre Point (TCP) position/velocity as

shown in Table I. As suggested by this table, to perform

intention estimation during close cooperation the human

arms’ position have to be tracked as well. A ceiling mounted

surveillance camera, however, is not suitable to track small

features such as human arms, moving at rather high speed,

with the required precision. For this reason, the present

paper will focus on intention estimation of a walking human.

Possible extensions of the proposed methodology to intention

estimation during close human-robot interaction will be

considered in the future.

III. HUMAN DETECTION AND TRACKING

The human detection and tracking algorithm relies on a

simplified model of the world, including some prior knowl-

edge about walking humans (e.g. the fact that humans walk

on the floor, enter the scene from its borders, etc.) as will

be explained further on.

This simplified model is designed as a state machine, where

each state represents a configuration of objects in the scene.

The transitions between different states represent object

movements, as well as the event of objects entering or leaving

the scene.

The task of human detection and tracking can then be

formalised as follows: given a set of observed images of

the scene, deduce a likely state sequence that could have

produced those images.

In this paper, we propose an approach where the images

observed by several ceiling mounted cameras are first pro-

cessed using a foreground/background segmentation, and

then interpreted in terms of a state sequence in the state

machine model of the world.

A. Foreground/background segmentation

A static camera viewing the scene produces one image

for each time step, where most of the pixels belong to a

static or pseudo-static background. The task of the fore-

ground/background segmentation algorithm is to segment out

the foreground, i.e. moving objects that represent the features

of interest in the scene, from the background.

The foreground/background segmentation is an important

step for many video surveillance applications, being thus a

well studied problem in the context of computer vision [9].

For the present application the segmentation algorithm, be-

sides being robust, should be causal and computationally

efficient, in order to be implementable on a realtime system.

Two OpenCV [10] advanced algorithms, fulfilling the afore-

mentioned requirements, were thus selected: one based on

colour and colour co-occurrence features [11], another using

a Gaussian mixture model with shadow detection [12] that

allows the background model to be multi-modal and to take

object colours into account in the segmentation process.

B. The observation model

To explain the segmented images observed in the camera

frames, a simplified model of the world is used, assuming

that the scene consists of a flat ground plane on which



Interaction modes Human position Human velocity Arm position TCP position TCP velocity

Co-existence
belongs to IC towards HA
belongs to IC parallel to IC
belongs to HA zero belongs to HA

Co-operation
belongs to IC zero belongs to CA

belongs to CA
belongs to RA towards CA

belongs to HA zero belongs to CA
belongs to CA
belongs to RA towards CA

Interference

belongs to IC towards RA
belongs to RA
belongs to HA towards RA
belongs to HA zero belongs to RA

TABLE I

CHARACTERISATION OF INTERACTION MODES.

(a) (b) (c)

Fig. 2. Left: illustration of the world state in the case of a single human located at pose (xi, yi, θi). Middle: the expected observation given the current
world state. Right: the true noise-free observation.

humans walk around.

A walking human is represented by a rectangular box

(Fig. 2(a)), that can translate and rotate around an axis

parallel to the vertical dimension of the box, and crossing

the base in its centre. The pose of the i-th human in the

scene is thus completely described by the coordinate of

the rectangular box base centre (xi, yi), with respect to a

reference frame fixed on the ground plane, and by the angle

θi formed between the tangent to the walking path and the

x-axis. To produce complete trajectories with many people

in the scene, however, an integer number li, that univocally

identifies the i-th human, is added as well.

To keep the world model simple and efficient, only a few

different types of humans, each one characterised by dif-

ferent (but fixed and a priori known) box dimensions, are

considered. Summarising, the state of this simplified world

model is represented by a configuration of humans, and is

specified by the number N of humans present in the scene

and, for each of those humans, by a pose si = (xi, yi, θi)
and an identifier li, for i = 1, . . . , N .

Given a set of possible states, an expected segmentation

image can be generated, by rendering the box model, and

comparing it with the observed foreground (Fig. 2). How

similar the rendered and measured foreground are depends on

how precisely the box model approximates a human, and how

many small objects, that will be considered noise, appear in

the scene foreground (more details can be found in [13]).

The previous statement, however, is based on the assumption

that humans are the unique moving objects in the camera

field of view. If this is not true for some parts of the

image, such as where robots are operating, those parts can

be masked out, by rendering a 3D model of the robot in

its current pose. A simpler and more efficient approach is

to place a static box covering the entire working area of

each robot. The system will be blind in the masked area but,

by using several cameras viewing the scene from different

angles, it will still be able to detect and track humans within

the entire scene.

Whatever the level of detail of the selected observation

model is, the idea of generating a virtual world represen-

tation, based on the actual estimate of the world state, and

comparing this representation with the measured foreground

to update the state estimate, is the key aspect of the human

detection and tracking algorithm.

C. Human tracking with a particle filter

The presence of noise and imprecisions in the segmented

image, the roughness of the observation model, the possibil-

ity that different sets of states yield similar virtual foreground

images, do not allow to deterministically evaluate the exact

state of the world at each time instant. Instead, a probability

distribution over all the possible states is maintained, in

the form of a set of weighted particles that are propagated

forward in time – namely, a particle filter. This forward

propagation can be based on a stochastic motion model that

describes how the states typically evolve or, as it will be



explained in Section III-D, on a simplified (but deterministic)

kinematic model of a walking human.

The distribution of the multi-object state qt at time t, given

the observations up to that time, O0,...,t, is represented by a

set St =
{

q
(1)
t , q

(2)
t , . . . , q

(p)
t

}

of p samples called particles.

Each particle q
(j)
t , in turn, represents a set of Q

(j)
t single

object states

q
(j)
t =

{

(xi, yi, θi, li)
∣

∣

∣
i = 1, . . . , Q

(j)
t

}

Then, the initial distribution S0 is assumed to be known, and

equivalent to a scene that is empty with probability 1. The

effect of this initial assumption, however, is only local in

time, since the background model is updated. Even if there

were humans in the scene at time t = 0, the algorithm will

converge to the correct distribution once they move out of

the scene or close to the borders.

The algorithm propagates the distribution forward in time,

from frame to frame. In particular, the distribution of the

previous frame, St−1, is propagated by sampling some

stochastic state transfer function h that models the motion

of the humans (see Section III-D), for each of the particles

in St−1. The set of transformed particles forms a prediction

distribution

S−
t =

{

q
−(j)
t = h

(

q
(j)
t

) ∣

∣

∣
j = 1, . . . , p

}

representing the distribution of the predicted state q−t at

time t, given the observations up to time t − 1. Each of

the elements of St−1 is then compared to the measured

foreground, as described in Section III-B, yielding a weight

α
(j)
t that describes how likely the state q

−(j)
t is, given the

current foreground.

Finally, a new distribution St is generated by randomly

choosing a single sample from S−
t p times, where the

probability of choosing a particle corresponds to its weight,

i.e. the particle q
−(j)
t is chosen with probability α

(j)
t /ᾱ

(j)
t

where

ᾱ
(j)
t =

p
∑

j=1

α
(j)
t

is a normalisation factor.

Note that the same sample might be chosen several times, in

which case St will contain several identical particles.

To generate single object measurements, the multi-object

distribution St is simplified, extracting, for each identifier l,
the state of the corresponding human and the probability that

he/she is present in the current frame.

Given the set Ql of the single object states with id l, found

within the multi-object particles q
(j)
t , i.e.

Ql =
{

(xi, yi, θi)
∣

∣

∣
(xi, yi, θi, li) ∈ ∪jq

(j)
t and li = l

}

the expected human state ŝl is given by

ŝl =
1

|Ql|
∑

si∈Ql

si

and the probability he/she is in the current frame by Ql/p.

D. A simplified kinematic model for walking humans

To propagate the particles a simplified kinematic model,

describing a walking human, can be adopted. In particular,

in this paper the extended unicycle model proposed by [14]

is considered


















ẋi = vi cos (θi)

ẏi = vi sin (θi)

θ̇i = κivi

κ̇i = φi

where (xi, yi, θi) represents the pose of the i-th human, vi
is the linear (nonholonomic) velocity along the direction of

motion, κi is the curvature and φi is the derivative of the

curvature, respectively.

Consider now the forward velocity vi. In principle it varies

with time along the path and depends on a large number of

factors (see [15] and [16]), but it has been also demonstrated

that for short paths it can be considered constant (see

e.g. [14]). Holding this assumption, the previous model can

be rewritten in terms of the natural coordinate as follows


















x′
i = cos (θi)

y′i = sin (θi)

θ′i = κi

κ′
i = φi/vi

(1)

where the notation ′ represents the derivative with respect to

the natural coordinate.

IV. INTENTION ESTIMATION

Our intention estimation algorithm for walking humans

consists of two phases: offline trajectory classification and

learning, and online interaction area prediction. The former

is based on an unsupervised classification algorithm, which

uses the Expectation Maximisation (EM) technique (see [17]

for further details). The latter concerns the realtime predic-

tion of the area to which each human is heading, of the time

at which the area will be reached, and of the probability

associated to this prediction.

A. Offline unsupervised human path classification

To classify the experimental trajectories recorded by the

human tracking algorithm into a small set of motion patterns,

the technique presented in [17] was used. The recorded data,

represented by a set of paths (i.e. sequences of Cartesian co-

ordinates of the base centre of the box representing a human)

of different length in time and space, are classified into a set

Θ = {θ1, . . . , θM} of M patterns. Each motion pattern θm is

represented by a sequence of Gaussian distributions, i.e. a set

θm =
{

θ1m, . . . , θKm
}

of K Gaussian distributions, where the

k-th Gaussian θkm is represented by a Cartesian coordinate

µk
m and its covariance Σk

m.

The covariance matrices Σk
m and the number K of Gaus-

sian distributions are manually chosen, making a compromise

between the desired prediction accuracy of where people will

be at a certain future time instant and the inherent noise on

the walking trajectories. The same standard deviation σ is



chosen for all M motion patterns: Σk
m = σ2I2 ∀m, k. The

lower the standard deviation is chosen to be, the higher the

number of model trajectories will be.

The classification algorithm, based on the EM technique,

learns in an unsupervised way the number of model trajec-

tories M and the means µk
m of the Gaussian distributions.

B. Online path and interaction area prediction

The area prediction is performed online in two steps.

First, the trajectory that the human is following is estimated

based on the learnt motion patterns Θ. Second, the area

that the human is headed to is predicted based on the

intersection between the predicted path and the interaction

areas (co-existence, cooperation, or interference) described

in Section II.

In the first step, for each observed human, online trajectory

prediction is performed, using a Hidden Markov Model

(HMM) with a number of K discretised states1 µk
m located

along the M motion patterns. The human forward velocity is

also estimated through a suitable Kalman filter. Together with

knowledge about the followed motion pattern, this allows to

compute when the person will enter a certain area.

The probability distribution over the discrete HMM states

along the motion patterns is updated as follows. In a

prediction step, the probability of each discretised state is

propagated along the motion pattern, taking into account

the estimated walking velocity of the person. This results

in a probability distribution with probabilities over states

p
−
(

µk
m

)

. In an observation step, the probability of each

discretised state is updated based on the distance between

the state and the position of the observed human.

Given a HMM state located at µk
m and the observed position

of the walking human πi = (xi, yi), the probability of this

state is updated as

p

(

µk
m|πi

)

=
1√
2πσ

e
−

1

2σ2‖πi−µk

m‖2

· p−
(

µk
m

)

.

After this, the probabilities of all HMM states are normalised

such that the sum of all probabilities equals one.

Each time a human is detected for the first time, the Hidden

Markov Model is initialised with a uniform distribution.

In the second step, the probability over interaction areas is

computed. Suppose that we want to predict the probability

that interaction area Aj is visited by the i-th person at a

certain time t in the (near) future. This is expressed as

p(Aj , t|πi). By applying the total probability theorem and

Bayes’ rule, probability p (Aj , t|πi) can be expressed as

p(Aj , t|πi) =
∑

m,k

p(Aj , t, µ
k
m|πi)

=
∑

m,k

p(Aj , t|µk
m, πi)p(µ

k
m|πi)

In this expression, probability p(µk
m|πi) is known, since it is

the HMM state that is updated each time a new observation

1K may be chosen to be different from the number of Gaussian
distributions learnt in the offline classification phase.

is available. Probability p(Aj , t|µk
m, πi) is modeled to equal

1 if the person, starting from µk
m, is predicted to be inside

area Aj at time t, using the same prediction model that is

used to update the HMM states. If the person is predicted not

to be inside area Aj at time t, probability p(Aj , t|µm
k , πi)

equals 0.

Notice that, the probability distribution p(Aj , t|πi) can at

certain times be a multi-modal distribution over the interac-

tion areas.

V. EXPERIMENTAL RESULTS

As a proof of concept of the feasibility of the pro-

posed methodology, an experimental scenario was set up

(Fig. 3), that resembles to some extent the one described

in Section II2. An environment of approximately 3× 2.5m,

delimited by walls and fences and with a single entrance,

was selected. An ABB IRB140 robot is placed in the centre

of this space, surrounded by an interference area (red area

marked with number 3 in Fig. 3) that covers the workspace

of the selected task. Two tables, representing workstations,

were added at the left and right side of the robot, each one

with a corresponding cooperation area (blue areas marked

with number 2 in Fig. 3).

Finally, two more areas, that are far from the robot and are

intended to be coexistence areas (blue areas crossed with a

red line and marked with number 1 in Fig. 3), were added

as well.

The robotic cell was equipped with two AXIS 212 ceiling

mounted surveillance cameras. The two cameras were sus-

pended at about 3m and located at a distance that ensures

a complete overlap on the interference area. The zoom

factor and the pan/tilt settings were selected according to

this requirement, as well. The acquisition rate was fixed at

30 fps, prioritising the frame-rate in case of low light. A

multi-threaded software architecture optimised for an 8-cores

Intelr i7 processor allows to execute the algorithm with

a cycle time that ensures to exploit the maximum camera

acquisition rate.

A set of five volunteers was selected to perform five differ-

ent experiments of human detection and intention estimation

in the robotic cell previously described. Each experiment is

structured according to the following steps:

1) the volunteer enters the robotic cell from a door located

in the bottom-right corner;

2) the volunteer steps towards a preconceived destination

(one among five of the interaction areas previously

described);

3) the volunteer stops at the destination and performs a

simple task;

4) the volunteer comes back to the entrance door;

5) the volunteer leaves the robotic cell.

An experimental protocol, including a thorough description

of each experiment and a detailed set of instructions for the

2Though the size of the cell and the layout of the interaction areas are
only similar to the environment depicted in Fig. 1, the experimental scenario
here considered (Fig. 3) is even more general and complex, and thus more
suitable to demonstrate the effectiveness of the proposed approach.



Fig. 3. A top view of the robotic cell environment.

volunteers, was also prepared (the protocol is not reported

here due to space limitations). According to this protocol,

five healthy volunteers were selected, characterised by dif-

ferent heights and wearing different but common clothes.

Fifty experiments, two for each volunteer and interaction

area, were run to test the functionality of the human de-

tection and intention estimation algorithms, following the

protocol described above. Snapshots taken during three such

experiments are shown in Fig. 4, for an approach towards

a coexistence area, a cooperation area, and an interference

area, respectively. Notice that, throughout all the experiments

the subject is correctly detected and tracked by the system

(the bounding box correctly follows the subject). Also notice

that, though the robot was moving during the experiments,

its motion is masked by the system in order to avoid any

misinterpretation of this motion as coming from a moving

person.

A subset of the walking trajectories obtained from these

experiments (2D plots of the estimated trajectories, for the

same experiments as in Fig. 4, are shown in Fig. 8) was

then used to learn, in an unsupervised way, the different

motion patterns for the environment in Fig. 3. For this, the

algorithm described in Section IV-A was used, adopting a

standard deviation of 0.5m and representing each motion

pattern with 12 Gaussian distributions.

During the experiment the intention estimation algorithm

computes, at each sampling time, the probability that each

interaction area is reached by the tracked person for a number

of discrete future time instants (up to 10 s in the future). For

example, a 1-step ahead prediction, corresponding to 0.5 s
look ahead into the future, gives, at each time instant and for

each of the interaction areas, the probability that the tracked

human will be in that area 0.5 s later.

Plots of the interaction area probabilities, generated with a

4-step ahead3 prediction (2 s look ahead into the future), are

shown in Figs. 5, 6, and 7, for each of the experiments in

3Adopting a 4-step ahead prediction is a good compromise between
performance and robustness. In a real application, however, the safety
controller will select the best look ahead time to resolve a possibly
dangerous situation on the basis of the interpretation of the situation.

Fig. 4. Consider, for example, the coexistence experiment

(first row of Fig. 4, and Fig. 5), i.e. the one in which the

human walks towards the interaction area at the bottom left

corner of the robotic cell. From Fig. 5 it follows that, when

the human has walked for approximately 1.17m along his

trajectory, corresponding to the 43% of the trajectory length,

the safety system is able to predict that the coexistence area

at the bottom left corner of the robotic cell will be reached

in 2 s.

We can thus conclude that in the experiments of coexistence,

cooperation and interference, shown in Figs. 5, 6, and 7, the

intention estimation algorithm is successful in predicting the

correct interaction area before the first half of the path has

been covered (the correct interaction area is predicted when

the human has walked 43%, 25% and 28% of the path

for the coexistence, cooperation and interference experiment,

respectively). This aspect is made clear in Fig. 8, where a

point is highlighted on each estimated path, corresponding to

the position at which the probability associated to the correct

interaction area is larger than 0.65.

From Figs. 5, 6, and 7, it is also evident that when a human

is close to the entrance, trajectories heading to different

interaction areas are so similar that cannot be easily distin-

guished. For this reason, it might happen that at the beginning

of a trajectory more than one interaction probability is

significantly greater than zero4 (see e.g. Figs. 5 and 6). As

a consequence, a decision threshold of 0.65 is adequate to

predict the interaction area sufficiently in advance, without

affecting the robustness of the approach.

Results have then been generalised to a large number of

experiments on volunteers, in order to give statistical evi-

dence of the reliability of the method. Out of 50 experiments

performed with 6 volunteers, in 46 of them, corresponding

to 92% of the total, the intention of the human is correctly

recognised, meaning that the first interaction area whose

probability reaches 0.65 is the correct one.

Finally, in the accompanying video seven different clips

are presented, showing the results of the human detection

and tracking and of the intention estimation algorithms. In

the video, the predicted interaction area is marked, as soon as

the associated probability becomes larger than the threshold,

by a red tag.

VI. CONCLUSIONS

This work fits into the broader task of developing the

part of a robot controller in charge of ensuring a certain

degree of safety in the interaction between humans and

industrial robots, even in the absence of protective fences.

Estimation of human intention is an important ingredient of

the safety strategy, as it allows the system to enter the correct

interaction mode and then to anticipate the enforcement of

the appropriate safety behaviour.

This paper has presented an approach to human intention

estimation, where cognitive vision algorithms are used in

4This issue is strongly related to the size and geometry of the considered
robotic cell, making the intention estimation in this environment particularly
challenging.



Fig. 4. A sequence of frames extracted from a coexistence experiment (first line), a cooperation experiment (second line), and an interference experiment
(third line).
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Fig. 5. Probabilities of the 5 interaction areas with respect to the
natural coordinate for the coexistence experiment (the dashed line shows
the threshold adopted for the prediction of the interaction area).

combination with statistical methods to estimate the prob-

ability of occupancy of a few areas in the robotic cell in

future times. An experimental validation shows the practical

validity of the method.
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