
A Correspondence between
Type Checking via Reduction and Type Checking via Evaluation

Ilya Sergey∗,a,1, Dave Clarkea

aDistriNet & IBBT, Dept. Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200a, bus 2402, B-3001 Leuven-Heverlee, Belgium

Abstract

We describe a derivational approach to proving the equivalence of different representations of a type sys-
tem. Different ways of representing type assignments are convenient for particular applications such as
reasoning or implementation, but some kind of correspondence between them should be proven. In this
paper we address two such semantics for type checking: one, due to Kuan et al., in the form of a term
rewriting system and the other in the form of a traditional set of derivation rules. By employing a set of
techniques investigated by Danvy et al., we mechanically derive the correspondence between a reduction-
based semantics for type-checking and a traditional one in the form of derivation rules, implemented as a
recursive descent. The correspondence is established through a series of semantics-preserving functional
program transformations.

Key words: compositional evaluators, type checkers, continuation-passing style, defunctionalization,
refunctionalization

1. Introduction

A well-designed type system makes a tradeoff between the expressiveness of its definition and the effec-
tiveness of its implementation. Traditionally, type systems are described as collections of logical inference
rules that are convenient to reason about. Computationally, such a model, implemented straightforwardly
in a functional programming language, corresponds to a recursive descent over the inductively-defined lan-
guage syntax. However, other more algorithmic representations allow one to reason about computational
aspects of a type inference procedure. As an example of such a system, we consider a reduction semantics
for type checking, proposed initially by Kuan et al. [14]. Defined as a set of term-reduction rules, such
a term-rewriting system gives an operational view on the semantics of type checking, which is useful for
debugging complex type systems since the developer can trace each step of the type computation. Dealing
with such a term-rewriting system requires that one explicitly shows that the underlying type inference
algorithm is equivalent to the traditional system described as a set of derivation rules. For this purpose,
appropriate soundness and completeness theorems need to be proven [12].

In this paper a correspondence between a traditional type system and a corresponding reduction-based
semantics for type inference is provided by the construction and inter-derivation of their computational
counterparts. Thus no soundness and completeness theorems need to be proven: they are instead corollaries
of the correctness of inter-derivation and of the initial specification. Starting from the implementation
of a reduction-based semantics, we employ a set of techniques, investigated by Danvy et al. [1, 4, 6,
7, 8, 9], to eventually obtain a traditional recursive descent for type-checking via a series of semantics-
preserving functional-program transformations. The transformations we use are off-the-shelf [5] and we
invite an interested reader to take a look on the overview of the available techniques with references to the
corresponding correctness proofs [4].

∗Corresponding author
Email address: ilya.sergey@cs.kuleuven.be (Ilya Sergey)

1This work was carried out in September 2010 while the first author was visiting the Department of Computer Science at Aarhus
University.

Preprint submitted to Elsevier September 12, 2011



SLC H e ::= n | x | λx : τ.e | e e | τ→ e | num
CTX T ::= T e | τ T | τ→ T | [ ]
TYPE τ ::= num | τ→ τ

n ::= number

T [n] 7→t T [num] [tc-const]
T [λx : τ.e] 7→t T [τ→{τ/x} e] [tc-lam]

T [(τ1→ τ2) τ1] 7→t T [τ2] [tc-τβ]

Hybrid language and type-checking contexts Type-checking reduction rules

Figure 1: Reduction semantics of λH

(x : τ ∈ Γ)
Γ ` x : τ

[t-var]
Γ, x : τ1 ` e : τ2

Γ ` λx : τ1.e : τ1→ τ2
[t-lam]

Γ ` e1 : τ1→ τ2
Γ ` e2 : τ1

Γ ` e1e2 : τ2

[t-app] Γ ` number : num [t-num]

Figure 2: Type system for the simply typed lambda calculus

1.1. Starting point: a hybrid language for type checking
We consider a reduction system for type checking the simply typed lambda calculus. The system was

originally proposed by Kuan et al. [14] and is presented as a case study in the scope of PLT Redex frame-
work [13]. The approach scales to Curry-Hindley type inference and Hindley-Milner let-polymorphism.
The techniques presented in the current paper can be adjusted for these cases by adding unification vari-
ables, so for the sake of brevity we examine only the simplest model. The hybrid language λH and its
semantics are described in Figure 1. The reduction system introduces a type-checking context T that in-
duces a left-most, inner-most order of reduction. Variable occurrences are replaced by their types at the
moment a λ-abstraction is reduced according to rule [tc-lam]. Rule [tc-lam] also introduces the arrow type
constructor. Finally, rule [tc-τβ] syntactically matches the function parameter type against an argument
type.

The classical way to represent type checking is via a collection of logical derivation rules. Such rules
for the simply typed lambda calculus are given in Figure 2. According to Kuan et al., a complete type
reduction sequence is one that reduces to a type, which corresponds to a well-typed term. The following
theorem states that a complete type reduction sequence corresponds to a complete type derivation proof
tree for a well-typed term in the host language and vice versa.

Theorem 1.1. [14] (Soundness and Completeness for 7→t ) For any e and τ, /0 ` e : τ iff e 7→∗t τ

The question we address in this paper is whether a natural correspondence between these semantics
exists which avoids the need for the soundness and completeness theorems. The answer to this question is
positive and below we show how to derive a traditional type-checker mechanically from the given rewriting
system. The contribution of the paper is a demonstation of how the application of well-studied program
derivations to type checkers is helpful to show an equivalence between them.

1.2. Paper outline
The remainder of the paper is structured as follows. Section 2 gives an overview of our method,

enumerating the techniques involved. Section 3 describes an implementation of the hybrid language and its
reduction semantics in Standard ML. Section 4 describes a set of program transformations corresponding
to the transition from the reduction-based semantics for type inference to a traditional recursive descent.
Section 5 provides a brief survey of related work. Section 6 concludes.

2. Method overview

The overview of the program metamorphoses is shown in Figure 3. We start by providing the im-
plementation of a hybrid language for the simply typed lambda calculus, a notion of closures in it and

2



.
Reduction-Based

Type Checker

Refocusing (§ 4.1)
+

Contraction inlining (§ 4.2)

��

Recursive
Descent

Reduction-Free
Type Checker

Lightweight Fusion (§ 4.3)

Transition Compression (§ 4.4)
// Big-Step

CEK machine

Direct-Style Transform (§ 4.8)
+

Refunctionalization (§ 4.7)
+

Switching domains (§ 4.6)

OO

Figure 3: Inter-derivation

a corresponding reduction semantics via contraction as a starting point for further transformations (Sec-
tion 3). The reduction-based normalization function is transformed to a family of reduction-free normal-
ization functions, i.e., ones where no intermediate closure is ever constructed. In order to do so, we first
refocus the reduction-based normalization function to obtain a small-step abstract machine implementing
the iteration of the refocus function (Section 4.1). After inlining the contraction function (Section 4.2), we
transform this small-step abstract machine into a big-step one applying a technique known as “lightweight
fusion by fixed-point promotion” [7] (Section 4.3). This machine exhibits a number of corridor transitions,
which we compress (Section 4.4). We then flatten its configurations and rename its transition functions
to something more intuitive (Section 4.5). We also switch domains of evaluator functions to factor out
artifacts of the hybrid language (Section 4.6). The resulting abstract machine is in defunctionalized form,
so we refunctionalize it (Section 4.7). The result is in continuation-passing style, so we transform it into
direct style (Section 4.8). The final result is a traditional compositional type-checker.

Standard ML (SML) [15] is used as a metalanguage. SML is a statically-typed, call-by-value language
with computational effects. In Section 4.8 we rely on the library of undelimited continuations to model
top-level exceptions. For the sake of brevity, we omit most program artifacts (sometimes only giving their
signature), keeping only essential parts to demonstrate the corresponding program transformation.2 At
each transformation stage the trailing index of all involved functions is incremented.

3. A Reduction-Based Type Checker

This section provides the initial implementation of λH in SML, which will be used for further transfor-
mations in Section 4.

3.1. Reduction-based hybrid term normalization

The reduction-based normalization of hybrid terms is implemented by providing an abstract syntax, a
notion of contraction and a reduction strategy. Then we provide a one-step reduction function that decom-
poses a non-value closure into a potential redex and a reduction context, contracts the potential redex, if it
is actually one, and then recomposes the context with the contractum. Finally we define a reduction-based
normalization function that repeatedly applies the one-step reduction function until a value (i.e., an actual
type of an expression) is reached.

In the specification of λH , the contraction of lambda expressions (rule [tc-lam]) is specified using a
meta-level notion of capture-avoiding substitutions. However, most implementations do not use actual
substitutions and keep an explicit representation of what should be substituted on demand, leaving the
term untouched [10, pages 100–105]. To model explicit substitutions, we chose the applicative order
version of Curien’s calculus, which uses closures, i.e, terms together with their lexical environment [3]3.
The environments map variables to values (i.e., types in this case) while reducing an expression, which
corresponds do the capture-avoiding substitution strategy [5, Section 6]. The chosen calculus allows us
to come eventually in Section 4 to a well-known representation of a type-checking algorithm with an
environment Γ, which predictably serves the same purpose.

2The accompanying code and the technical report with detailed listings are available from
http://people.cs.kuleuven.be/ilya.sergey/type-reduction/

3The cited paper also relates values in the language of closures with values in λ-calculus (see Section 2.5).

3



3.2. Abstract syntax of λH : closures and values
The abstract syntax for λH , which is presented in Figure 1, is described in SML below. It includes

integer literals, identifiers, lambda-abstractions, applications as well as “hybrid” elements such as numeric
types and arrows τ→ e. Types are either numeric types or arrow types. The special value T_ERROR s is used
for typing errors; it cannot be a constituent of any other type.

datatype typ = T_NUM
| T_ARR of typ * typ
| T_ERROR of string

datatype term = LIT of int
| IDE of string
| LAM of string * typ * term
| APP of term * term

datatype hterm = H_LIT of int
| H_IDE of string
| H_LAM of string * typ * hterm
| H_APP of hterm * hterm
| H_TARR of typ * hterm
| H_TNUM

Typing environments TEnv represent bindings of identifiers to types, which are values in the hybrid
language. In order to keep to the uniform approach for different semantics for type inference [18], we
leave environments parametrized by the type parameter ’a, which is instantiated with typ in this case.

signature TEnv = sig
type ’a gamma
val empty : (string * ’a) gamma
val extend : string * ’a * (string * ’a) gamma -> (string * ’b) gamma
val lookup : string * (string * ’a) gamma -> ’a option

end

We introduce closures into the hybrid language in order to represent the environment-based reduction
system. A closure can either be a number, a ground closure pairing a term and an environment, a combi-
nation of closures, a closure for a hybrid arrow expression, or a closure for a value arrow element, namely
an arrow type. A value in the hybrid language is either an integer or a function type. Environments bind
identifiers to values.

datatype closure = CLO_NUM
| CLO_GND of hterm * bindings
| CLO_APP of closure * closure
| CLO_ARR of typ * closure
| CLO_ARR_TYPE of typ

withtype bindings = typ TEnv.gamma

We also specify the corresponding embeddings values to closures and terms to hybrid terms (the defi-
nitions are omitted):

val type_to_closure : typ -> closure
val term_to_hterm : term -> hterm

3.3. Notion of contraction
A potential redex is either a numeric literal, a ground closure pairing an identifier and an environment,

an application of a value to another value, a lambda-abstraction to be type-reduced, an arrow type, or a
ground closure pairing a term application and an environment.

datatype potential_redex
= PR_NUM
| PR_IDE of string * bindings
| PR_APP of typ * typ
| PR_LAM of string * typ * hterm * bindings
| PR_ARR of typ * typ
| PR_PROP of hterm * hterm * bindings

A potential redex may trigger a contraction or it may get stuck. These outcomes are captured by the
following datatype:

4



datatype contract_or_error = CONTRACTUM of closure
| ERROR of string

The string content of ERROR is an error message.
The contraction function contract reflects the type-checking reduction rules for λH . For instance, any

integer literal contracts to a number type T_NUM, a lambda expression contracts to an arrow expression of
the hybrid language, and the contraction of a potential redex PR_APP checks whether its first parameter is a
function type and its parameter type matches the argument of the application.

(* contract: potential_redex -> contract_or_error *)
fun contract PR_NUM

= CONTRACTUM CLO_NUM
| contract (PR_ARR (t1, t2))

= CONTRACTUM (type_to_closure (T_ARR (t1, t2)))
| contract (PR_IDE (x, bs))

= (case TEnv.lookup (x, bs)
of NONE => ERROR "undeclared identifier"
| (SOME v) => CONTRACTUM (type_to_closure v))

| contract (PR_LAM (x, t, e, bs))
= CONTRACTUM (CLO_GND (H_TARR (t, e), TEnv.extend (x, t, bs)))

| contract (PR_APP (T_ARR (t1, t2), v))
= if t1 = v
then CONTRACTUM (type_to_closure t2)
else ERROR "parameter type mismatch"

| contract (PR_PROP (t0, t1, bs))
= CONTRACTUM (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)))

| contract (PR_APP (t1, t2))
= ERROR "non-function application"

A non-value closure is stuck when an identifier does not occur in the current environment or non-
function type is used in a function position or a function parameter’s type does not correspond to the actual
argument’s type.

3.4. Reduction strategy

Reduction contexts are defined as follows:

datatype hctx = CTX_MT
| CTX_FUN of hctx * closure
| CTX_ARG of typ * hctx
| CTX_ARR of typ * hctx

A context is a closure with a hole, represented inside-out in a zipper-like fashion. Following the de-
scription of λH ’s reduction semantics we seek the left-most inner-most potential redex in a closure. In
order to reduce a closure, it is first decomposed. The closure might be a value and not contain any poten-
tial redex or it can be decomposed into a potential redex and a reduction context. These possibilities are
captured by the following datatype:

datatype type_or_decomposition = VAL of typ
| DEC of potential_redex * hctx

A decomposition function recursively searches for the left-most inner-most redex in a closure. Ex-
amples of some specific decomposition functions may be found in recent work of Danvy [5]. In our im-
plementation we define decomposition (decompose) as a big-step abstract machine with two state-transition
functions, decompose_closure and decompose_context. The former traverses a given closure and accumulates
the reduction context until it finds a value and the latter dispatches over the accumulated context to deter-
mine whether the given closure is a value or a potential redex. The function decompose starts by decomposing
a closure within an empty context. For the full definition of the decomposition functions, see the accompa-
nying code. The recomposition function recompose takes a context and a value to embed, peels off context
layers and iteratively constructs the resulting closure. The signatures of these functions are:

val decompose_closure : closure * hctx -> type_or_decomposition
val decompose_context : hctx * typ -> type_or_decomposition
val decompose : closure -> type_or_decomposition
val recompose : hctx * closure -> closure

5



3.5. Reduction-based normalization
Reduction-based normalization is based on a function that iterates a one-step reduction function until

it yields a value (i.e., it reaches a fixed point). At each iteration the normalization function inspects its
argument. If it is a potential redex within some context it will be contracted using the function contract

from Section 3.3 and then be recomposed. If during contraction an error occurs, it must be reported:

datatype result = RESULT of typ
| WRONG of string

(* iterate: type_or_decomposition -> result -> result *)
fun iterate (VAL v) = RESULT v

| iterate (DEC (pr, C))
= (case contract pr

of (CONTRACTUM c’) => iterate (decompose (recompose (C, c’)))
| (ERROR s) => WRONG s)

At this point we should take into account the fact the terms we want to type-check via reduction-
based normalization are from the host language (and described by the data type term) whereas intermediate
values of reductions are within the larger hybrid language (i.e., they are of type hterm). So we should first
embed “plain” terms into “hybrid” ones using the function term_to_hterm. The function type_check runs the
reduction-based normalization function normalize and processes an obtained result.

(* normalize: term -> result *)
fun normalize t = iterate (decompose (CLO_GND (term_to_hterm t, TEnv.empty)))

(* type_check: term -> typ *)
fun type_check t

= case normalize t
of (RESULT v) => v
| WRONG s => T_ERROR s

4. From Reduction-Based to Compositional Type Checker

In this section we follow a systematic approach to the construction of a reduction-free normalization
function out of a reduction-based normalization function [5].

4.1. Refocusing
The operation of decomposing and recomposing a term is usually referred as refocusing. By a sim-

ple observation, a refocusing function may be expressed via the decompose_closure function, mentioned in
Section 3.

(* refocus : closure * hctx -> type_or_decomposition *)
fun refocus (c, C) = decompose_closure (c, C)

The new version of the type checker differs from the original one by the definition of the function
iterate1 using the function refocus instead the composition of decompose and recompose. The type checker is
now reduction-free since no step-based reduction function is involved.

4.2. Inlining the contraction function
We inline the function contract (Section 3.3) in the definition of iterate1. There are six cases in the

definition of contract, so the DEC clause in the definition of iterate1 is replaced by six DEC clauses. The
resulting function is called iterate2.

4.3. Lightweight fusion: from small-step to big-step abstract machine
The next step is to fuse the definitions of iterate2 and refocus from the previous section. The result of

the fusion, called iterate3, is directly applied to the result of decompose_closure and decompose_context. The
result is a big-step abstract machine consisting of three mutually tail-recursive state-transition functions [7]:

• refocus3_closure, the composition of iterate2 and decompose_closure and a clone of decompose_closure,

• refocus3_context, the composition of iterate2 and decompose_context, which directly calls iterate3

over the value of decomposition,

• iterate3, a clone of iterate2 that calls the fused function refocus3_closure.

6



4.4. Compressing corridor transitions

In the abstract machine from the previous section many transitions are corridors, i.e., they yield con-
figurations for which there is a unique place for further consumption. In this section we compress these
configurations. We copy the functions from the previous sections, changing their indices from 3 to 4.

After this transformation all clauses of the function refocus4_closure for non-ground closures are now
dead as well as the fact that all transition of refocus4_closure are now over ground closures, so we can
flatten them by peeling off the “closure” part.

4.5. Renaming transition functions and flattening configurations

The resulting simplified machine is a familiar ‘eval/apply/continue’ abstract machine operating over
ground closures. For this section we rename refocus4_closure to eval5, refocus4_context to continue5 and
iterate4 to apply5. We flatten the configuration of refocus4_closure as well as definitions of values and
contexts. Therefore, closures are no longer involved in computations, and the former hybrid contexts now
look as follows:

datatype context = CTX_MT
| CTX_FUN of context * hterm * bindings
| CTX_ARG of value * context
| CTX_ARR of value * context

datatype result = RESULT of value
| WRONG of string

val eval5: hterm * bindings * context -> result

(* normalize5: term -> result *)
fun normalize5 t = eval5 (term_to_hterm t, TEnv.empty , CTX_MT)

4.6. Removing hybrid artifacts and switching domains

The next simplification is to remove λH -related artifacts from machine configurations. We copy func-
tions from the previous section and perform some extra corridor transition compressions:

eval5 (H_LAM (x, t, e), gamma , C)
= (* by unfolding the definition of eval5 *)
eval5 (H_TARR (t, e), TEnv.extend (x, type_to_value t, gamma), C)
= (* by unfolding the definition of eval5 *)
eval5 (e, TEnv.extend (x, type_to_value t, gamma), CTX_ARR (type_to_value t, C))

As a result, there are no more clauses mentioning elements of the hybrid language such as H_TNUM

(removed as an unused clause of eval5) and H_TARR. So now we can switch the domain of the eval5, continue5
and apply5 functions from hterm to term. The second observation is that algebraic data type result is in fact
isomorphic to the data type typ, so we can switch the domain of values as well as follows:

RESULT (T NUM) 7→ T NUM
RESULT (T ARR (τ1,τ2)) 7→ T ARR (τ1,τ2)

WRONG (s) 7→ T ERROR (s)

This might come as a surprise, but the resulting abstract machine is the well-known environment-based
CEK machine [11].

4.7. Refunctionalization

The abstract machine obtained in the previous section is in fact in defunctionalized form [9]: the re-
duction contexts, together with continue6, are the first-order counterpart of continuations. To obtain the
higher-order counterpart we use a technique known as refunctionalization [8]. The resulting refunctional-
ized program is a compositional evaluation function in continuation-passing style.

7



4.8. Back to direct style

The refunctionalized definition from the previous section is in continuation-passing style: it has a
functional accumulator and all of its calls are tail calls. To implement it in direct style in the presence of
non-local returns in cases where typing error occurs, the library for undelimited continuations SMLofNJ.Cont,
provided by Standard ML of New Jersey, is used.

val callcc = SMLofNJ.Cont.callcc
val throw = SMLofNJ.Cont.throw

(* normalize8: term -> typ *)
fun normalize8 t = callcc (fn top =>

let fun eval8 (LIT n, gamma) = T_NUM
| eval8 (IDE x, gamma) = (case TEnv.lookup (x, gamma)

of NONE => throw top (T_ERROR "undeclared identifier")
| (SOME v) => v)

| eval8 (LAM (x, t, e), gamma)
= T_ARR (t, eval8 (e, TEnv.extend (x, t, gamma)))

| eval8 (APP (e0, e1), gamma)
= let val t = eval8 (e0, gamma)

val v1 = eval8 (e1, gamma)
in (case t of T_ARR (t1, t2)

=> if t1 = v1 then t2 else throw top (T_ERROR "parameter type mismatch")
| _ => throw top (T_ERROR "non-function application"))

end
in eval8 (t, TEnv.empty)
end)

(* type_check: term -> typ *)
fun type_check t = normalize8 t

The resulting program is a traditional evaluator for type checking, such as the one described by Pierce [17,
pages 113-116]. The only one difference is that our implementation uses undelimited continuations via
callcc to propagate encountered type errors whereas a classical implementation would just perform some
additional check in each clause of the eval function or use the exceptions. This last transition completes
the chain of transformations.

5. Related work and applications

The functional correspondence between different semantics artifacts has been applied to various tasks.
Ager et al. [1] investigate a correspondence between semantics described in terms of monadic evaluators
and languages with computational effects. They show that a calculus for tail-recursive stack inspection
corresponds to a lifted state monad. This correspondence allows one to combine it with other monads
and obtain abstract machines with both tail-recursive stack inspection and other computational effects.
More recently, Anton and Thiemann [2] took reduction semantics for different implementations of corou-
tines from the literature and obtained equivalent definitional interpreters by applying the same sequence
of transformations we used. The obtained operational semantics is transformed further into a denotational
implementation that provides a necessary basis to construct a sound type system.

Reduction semantics for type inference provides a powerful framework to implement type debuggers
and improve the quality of error messages. Currently, the majority of techniques used for this task rely
on program slicing [19]. The explicit notion of evaluation context for type inference can provide better
information for type reification based on the expected type of an expression, as it is done, for instance, in
the Scala programming language [16].

6. Conclusion

In this work we implemented a reduction semantics for type checking and a traditional recursive descent
type checker as programs in SML. Through a series of behaviour-preserving program transformations we
have shown that both these models are computationally equivalent and in fact just represent different ways
to compute the same result. To the best of our knowledge, this is the first application of the study of the
relation between reduction-free and reduction-based semantics to type systems. The result is a step towards
reusing different computational models for type checking, whose equivalence is correct by construction.

8



Acknowledgements

We would like to express our sincerest gratitude to Olivier Danvy for his encouragement and insightful
comments on the paper, and for suggesting the problem in the first place. We are grateful to José Proença
for proof-reading a draft version. We also thank the anonymous reviewers for the comments and especially
for the suggestions on the cleanup and reorganization of the accompanying code.

References

[1] M.S. Ager, O. Danvy, J. Midtgaard, A functional correspondence between monadic evaluators and ab-
stract machines for languages with computational effects, Theoretical Computer Science 342 (2005)
149–172.

[2] K. Anton, P. Thiemann, Deriving type systems and implementations for coroutines, in: APLAS ’10,
pp. 63–79.

[3] M. Biernacka, O. Danvy, A concrete framework for environment machines, Transactions on Compu-
tational Logic 9 (2007) 6+.

[4] O. Danvy, Defunctionalized interpreters for programming languages, in: ICFP ’08, pp. 131–142.

[5] O. Danvy, From Reduction-Based to Reduction-Free Normalization, in: P. Koopman, R. Plasmeijer,
D. Swierstra (Eds.), Advanced Functional Programming, Sixth International School, Nijmegen, The
Netherlands, 2008, pp. 66–164. Lecture notes including 70+ exercises.

[6] O. Danvy, K. Millikin, A Rational Deconstruction of Landin’s SECD Machine with the J Operator,
Logical Methods in Computer Science 4 (2008).

[7] O. Danvy, K. Millikin, On the equivalence between small-step and big-step abstract machines: a
simple application of lightweight fusion, Information Processing Letters 106 (2008) 100–109.

[8] O. Danvy, K. Millikin, Refunctionalization at Work, Science of Computer Programming 74 (2009)
534–549.

[9] O. Danvy, L.R. Nielsen, Defunctionalization at work, in: PPDP ’01, pp. 162–174. Extended version
available as the technical report BRICS RS-01-23.

[10] M. Felleisen, R.B. Findler, M. Flatt, Semantics Engineering with PLT Redex, 1st edition, The MIT
Press, August 2009.

[11] M. Felleisen, D.P. Friedman, Control operators, the SECD machine, and the λ-calculus, in: M. Wirs-
ing (Ed.), Formal Description of Programming Concepts III, Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1986, pp. 193–217.

[12] G. Kuan, A rewriting semantics for type inference, Technical Report TR-2007-01, University of
Chicago, 2007.

[13] G. Kuan, Type Checking and Inference via Reductions, in: M. Felleisen, R.B. Findler, M. Flatt (Eds.),
Semantics Engineering with PLT Redex, 1st edition, The MIT Press, August 2009, pp. 403–428.

[14] G. Kuan, D. MacQueen, R.B. Findler, A rewriting semantics for type inference, in: ESOP ’07, pp.
426–440.

[15] R. Milner, M. Tofte, D. MacQueen, The Definition of Standard ML, MIT Press, Cambridge, MA,
USA, 1997.

[16] M. Odersky, The Scala Language Specification, version 2.9, 2011. URL http://www.scala-lang.
org/docu/files/ScalaReference.pdf.

[17] B.C. Pierce, Types and programming languages, MIT Press, Cambridge, MA, USA, 2002.

[18] I. Sergey, D. Clarke, From type checking by recursive descent to type checking with an abstract
machine, in: LDTA ’11, pp. 9–15.

[19] F. Tip, A survey of program slicing techniques, Journal of Programming Languages 3 (1995) 121–
189.

9


