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Abstract

In this paper we introduce generalized S-estimators for the multivariate regression

model. This class of estimators combines high robustness and high efficiency. They

are defined by minimizing the determinant of a robust estimator of the scatter

matrix of differences of residuals. In the special case of a multivariate location

model, the generalized S-estimator has the important independency property, and

can be used for high breakdown estimation in independent component analysis.

Robustness properties of the estimators are investigated by deriving their breakdown

point and the influence function. We also study the efficiency of the estimators,

both asymptotically and at finite samples. To obtain inference for the regression

parameters, we discuss the fast and robust bootstrap for multivariate generalized

S-estimators. The method is illustrated on several real data examples.
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1 Introduction

In this paper we introduce a new class of estimators for the multivariate regres-

sion model, called Generalized S-estimators (GS). Generalized S-estimators

are defined by minimizing the determinant of a robust estimator of the scat-

ter matrix of differences of residuals. Using differences instead of the residuals

themselves has several advantages. First of all, at most models this will lead to

an increase in statistical efficiency, while the robustness of the estimators, as

measured by their breakdown point, remains the same. The breakdown point

of an estimator is the highest possible percentage of outliers than an estimator

can withstand. It turns out to be possible to achieve the highest possible value

for the breakdown point, 50%, even when working with differences of resid-

uals. A second advantage is that GS-estimators allow to estimate the slope

and the scatter matrix of the error terms of the multivariate regression model,

without needing to estimate the intercept. Hence, the estimation procedure is

“intercept free.”

The multivariate regression model encompasses both the multivariate location-

scale model, as a multivariate regression model with only an intercept, and

the univariate regression model. While GS-estimators were already consid-

ered for univariate regression (Croux et al. 1994), they were not studied yet

for the multivariate location-scale model. In the latter model, the “intercept

free” property of the GS estimator translates into “location free” estimation.

Hence, GS-estimators allow for estimation of scatter while not needing to esti-

mate the location. Moreover, since the GS-estimator is based on differences, it

has the independence property, meaning that when the components of a ran-

dom vector are independent, the scatter matrix estimate is diagonal (Tyler et
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al. 2007). This is not true for S-estimators of scatter in general. The indepen-

dence property is highly important in independent component analysis (ICA).

Briefly, the ICA problem consists of finding an original random vector with

independent components when only an unknown linear mixture is observed

(Hyvärinen et al. 2001). Oja et al. (2006) proposed a method for ICA that is

based on the use of two different scatter matrices that are required to have the

independence property; see also Tyler et al (2007). By using the GS-estimator,

a high breakdown approach to robust ICA is obtained. Other scatter matrix

estimators, based on differences of observations were proposed by Dümbgen

(1998), and Sirkiä et al. (2007). They are of the M-type and their breakdown

point decreases with the dimension (Dümbgen and Tyler 2005), and thus do

not have a high degree of robustness.

Consider the multivariate linear regression model given by

y = α + BTu + ǫ (1)

where u is the p-variate predictor, y the q-variate response and ǫ the q-variate

error term which has center zero and a positive definite scatter matrix Σ.

The unknown parameters θ = (α,BT )T ∈ R
(p+1)×q and Σ ∈ R

q×q are to be

estimated from the observations Zn = {zi := (xT
i ,yT

i )T = (1,uT
i ,yT

i )T , i =

1, . . . , n} ⊂ R
p+q+1. The classical estimator for this model is the least squares

estimator, but it is well known that this estimator can be highly influenced

by outliers.

In the univariate regression case a lot of research has been done to con-

struct more robust estimators. Classes of robust estimators in this setting

include M-estimators (Hampel et al. 1986), least median of squares and least

trimmed squares estimators (Rousseeuw 1984), S-estimators (Rousseeuw and
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Yohai 1984), MM-estimators (Yohai 1987), CM-estimators (Mendes and Tyler

1996) and τ -estimators (Yohai and Zamar 1988). Croux et al. (1994) intro-

duced a class of regression estimators, called generalized S-estimators or GS-

estimators. While an S-estimator of regression minimizes an S-estimator of

scale of the residuals, a GS-estimator minimizes an S-estimator of scale ap-

plied on the pairwise differences of the residuals, instead of on the residuals

themselves. It has been shown that for bounded loss functions these univariate

GS-estimators have nice properties such as a high breakdown point, a higher

efficiency than the original S-estimators. Moreover, they do not require the

assumption of asymmetric errors (see also Hössjer et al. 1994, Berrendero and

Romo 1998 and Berrendero 2002). In this paper, we extend the definition of

GS-estimates to multivariate regression.

Recently, several robust estimators for multivariate regression have been in-

troduced. Methods based on robust estimators for multivariate location and

scatter applied to the joint distribution of responses and explanatory vari-

ables have been proposed by Ollila, Oja and Hettmansperger (2002) using

sign covariance matrices, Ollila, Oja and Koivunen (2003) using rank covari-

ance matrices and Rousseeuw et al. (2004) using the minimum covariance

determinant estimator. An alternative approach is to define a robust regres-

sion estimator by minimizing a robust estimate of the covariance matrix of the

residuals. Agulló et al. (2008) proposed the multivariate least trimmed squares

estimator, Van Aelst and Willems (2005) considered multivariate regression

S-estimators, while Ben, Martinez and Yohai (2006) introduced τ -estimators

for multivariate regression. All these procedures, however, are not based on

differences of residuals, and are not intercept or location free.

The remainder of the paper is organized as follows. In Section 2 we intro-
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duce the multivariate regression GS-estimators and determine their breakdown

point. Section 3 describes the algorithm for computing the GS-estimators. In

Section 4 we define the functional form of the estimator. We show that the

GS-functional is Fisher-consistent if the differences of the errors have an ellip-

tical distribution. We also derive the influence function of the GS-functional.

Asymptotic variances and corresponding efficiencies are given in Section 5.

Section 6 discusses the fast and robust bootstrap method for GS-estimators.

Section 7 presents two real data examples and Section 8 concludes. All the

proofs can be found in the Appendix.

2 Definition and breakdown point

We now define Generalized S-estimators for the multivariate regression model

given in (1).

Definition 1 Let Zn = {zi := (xT
i ,yT

i )T = (1,uT
i ,yT

i )T , i = 1, . . . , n} ⊂

R
p+q+1. The GS-estimates of multivariate regression (B̂n, Σ̂n) minimizes among

all (B,C) ∈ R
p×q × PDS(q), with PDS(q) the set of positive definite sym-

metric q × q matrices, the determinant |C|, subject to the condition

(
n

2

)−1 ∑

i<j

ρ([(ri − rj)
T C−1(ri − rj)]

1/2) = k (2)

where ri = yi − BTui − α.

Note that the objective function does not depend on the intercept α. The

constant k can be chosen as k = EF×F [ρ(‖ǫ1−ǫ2‖)], which ensures consistency

at the model with error distribution F (see Section 4). The choice ρ(u) = u2

yields the non-robust least squares (LS) estimator. To obtain robust estimates,
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we impose the following properties on the loss function ρ:

• ρ is symmetric, twice continuously differentiable and ρ(0) = 0

• ρ is strictly increasing on [0, c] and constant on [c,∞) for some c < ∞.

Throughout this paper we use the well-known class of Tukey biweight ρ-

functions given by:

ρc(t) =





t2

2
− t4

2c2
+ t6

6c4
, |t| ≤ c

c2

6
, |t| ≥ c

Similarly as in Lopuhaä (1989), it can be shown that definition 1 implies that

multivariate GS-estimators satisfy the following first-order conditions:

∑

i<j

u(dij)(ui − uj)(yi − yj − BT (ui − uj))
T = 0 (3)

∑

i<j

{qu(dij)(yi − yj − BT (ui − uj))(yi − yj − BT (ui − uj))
T − v(dij)C} = 0

(4)

with d2
ij = (yi −yj −BT (ui −uj))

T C−1(yi −yj −BT (ui −uj)), u(t) = ψ(t)/t

and v(t) = ψ(t)t − ρ(t) + k, where ψ(t) = ρ′(t).

To study the global robustness of the multivariate GS-estimators, we derive

their finite-sample breakdown point. For a given data set Zn, the finite-sample

breakdown point ǫ∗n of an estimator Tn is the smallest fraction of observations

of Zn that need to be replaced by arbitrary values to carry the estimate Tn

beyond all bounds (Donoho and Huber 1983). Formally,

ǫ∗n(Tn,Zn) = min

{
m

n
; sup

Z′
n

‖Tn(Zn) − Tn(Z ′
n)‖ = ∞

}

where the supremum is over all possible collections Z ′
n that differ from Zn

in at most m data points. The breakdown point of a covariance estimator is
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the smallest fraction of outliers that can make the first eigenvalue arbitrarily

large or the last eigenvalue arbitrarily small. We derive the breakdown point

for data sets that satisfy the following general position condition.

Condition 1 The differences of the observations (uT
i ,yT

i )T are in general po-

sition, meaning that no
(

p+q+1
2

)
of the differences ((ui−uj)

T , (yi−yj)
T )T with

i < j belong to the same hyperplane in R
p+q.

Note that if the differences of the (uT
i ,yT

i )T are in general position, then the

points (uT
i ,yT

i )T themselves are also in general position. The latter means

that no p + q + 1 of the (uT
i ,yT

i )T lie on the same hyperplane of R
p+q. If

the observations are sampled from a continuous distribution, then condition 1

holds with probability 1.

The breakdown point of multivariate regression GS-estimators, given next,

extends the results for the univariate regression case in Croux et al. (1994).

Theorem 1 Let Zn ⊂ R
p+q+1. Denote r := k/ sup(ρ). If Zn satisfies condi-

tion 1 and
(

n
2

)
(1 − r) ≥

(
p+q+1

2

)
then the breakdown point of the multivariate

GS-estimator is given by

ǫ∗n(B̂n,Zn) = ǫ∗n(Σ̂n,Zn) =
1

n
min(⌈n − 1/2 −

√
1 + (1 − r)(4n2 − 4n)/2⌉,

⌈1/2 − p − q +
√

1 + (1 − r)(4n2 − 4n)/2⌉).

The maximal breakdown point is achieved for r = 1 − ((n − 1 + p + q)2 −

1)/(4n2−4n), in which case ǫ∗n = ⌈n−p−q/2⌉/n. The asymptotic breakdown

point ǫ∗ = lim
n→∞ǫ∗n equals

ǫ∗ = min(1 −
√

1 − r,
√

1 − r).
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Taking r = 0.75 yields an asymptotic breakdown point of ǫ∗ = 0.5. Hence,

GS-estimators can attain the highest possible value for the breakdown point.

In practice, if the GS-estimator needs to achieve a specified breakdown point

ǫ∗, for example ǫ∗ = 0.5, and to have consistency at a model with error distri-

bution F , typically the normal distribution, the constant c in Tukey’s biweight

function needs to be taken as the solution of 1−
√

1 − EF×F [ρc(‖ǫ1 − ǫ2‖)]/(c2/6) =

ǫ∗.

3 Algorithm

The algorithm we propose is anologous to the fast S-algorithm of Salibian-

Barrera and Yohai (2006) for univariate regression. For any sequence of values

e1, . . . , eñ, the corresponding scale s is given by the solution of

1

ñ

ñ∑

i=1

ρ
(

ei

s

)
= k.

The fast S-algorithm uses local improvement steps (I-steps) to update an

initial estimate of the regression coefficients. In our algorithm, the I-steps

are based on the scale of the norm of the pairwise differences of the residuals

‖ri−rj‖C = ((ri−rj)
T C−1(ri−rj))

1/2. The actual algorithm can be described

as follows:

1. Draw N random sub-samples of size p + q. For each sub-sample calculate

the least squares estimate B̂0
m, m = 1, . . . , N , and the corresponding shape

matrix Γ̂0
m of the residuals, i.e. the covariance matrix Σ̂0

m of the residuals

is rescaled to have determinant equal to 1. Denote the residuals by ri(B̂0
m),

for i = 1, . . . , n.

2. For each sub-sample, apply κ I-steps (e.g. κ = 2) as follows. Set v = 1.
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a. Calculate an approximate solution of equation (2), as

sv =

√√√√√s2
v−1 ×


∑

i<j

ρ(‖ri(B̂v−1
m ) − rj(B̂v−1

m )‖
Γ̂v−1

m
/sv−1)/

(
n

2

)
k




with s0 the median absolute deviation of the norms ‖ri(B̂v−1
m )−rj(B̂v−1

m )‖
Γ̂v−1

m
.

b. Determine the weights wij = u(‖ri(B̂v−1
m )−rj(B̂v−1

m )‖
Γ̂v−1

m
/sv) and calculate

B̂v
m as the weighted least squares fit based on the differences of the ob-

servations. Compute then Σ̂v
m =

∑
i<j wij(ri(B̂v−1

m )− rj(B̂v−1
m ))(ri(B̂v−1

m )−

rj(B̂v−1
m ))T with corresponding shape estimate Γ̂v

m.

c. Calculate the pairwise differences of the residuals corresponding to B̂v
m.

d. Repeat steps a, b and c for v = 2, . . . , κ.

Each sub-sample thus yields an improved estimate (B̂κ
m, Γ̂κ

m),m = 1, . . . , N .

3. We now select the τ best solutions (e.g. τ = 5) in an efficient way. For m =

1, . . . , τ , we calculate the scale sm = s(‖ri(B̂κ
m)− rj(B̂κ

m)‖
Γ̂κ

m
),m = 1, . . . , τ .

For m ≥ τ , we denote by Im the set containing the τ optimal solutions found

after examining the first m candidates, and Am denotes the maximum of

the scales of the solutions in Im. The next solution (B̂κ
m+1, Γ̂

κ
m+1) will be

included in Im+1 if and only if s(‖ri(B̂κ
m+1) − rj(B̂κ

m+1)‖Γ̂κ
m+1

) < Am which

is equivalent to

1(
n
2

)
∑

i<j

ρ(‖ri(B̂κ
m+1) − rj(B̂κ

m+1)‖Γ̂κ
m+1

/Am) < k. (5)

If condition (5) holds, then we compute the scale s(‖ri(B̂κ
m+1)−rj(B̂κ

m+1)‖Γ̂κ
m+1

)

and we correspondingly update Im and Am to obtain Im+1 and Am+1. If in-

equality (5) does not hold, then Im+1 = Im and Am+1 = Am. Let us denote

(B̂B
m, Γ̂B

m, sB
m),m = 1, . . . , τ the τ optimal solutions and sB

m their correspond-

ing scales, for m = 1, . . . , τ .

4. Apply further I-steps to each of the optimal solutions (B̂B
m, Γ̂B

m, sB
m), m =

1, . . . , τ , until convergence, which yields the fully iterated solutions (B̂F
m, Γ̂F

m, sF
m),
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m = 1, . . . , τ, where sF
m = s(‖ri(B̂F

m) − rj(B̂F
m)‖

Γ̂F
m
). The final estimate is

the solution (B̂F
m, Γ̂F

m) associated with the smallest scale sF
m and the corre-

sponding estimate of the covariance matrix of the residuals is obtained as

Σ̂F
m = (sF

m)2Γ̂F
m.

4 Fisher-consistency and influence function

Let H denote the class of all distributions on R
p+q. We define the GS-functional

GS: H → (Rp×q × PDS(q)) as the solution GS(H) = (BGS(H), ΣGS(H)) of

the problem of minimizing |C| subject to

∫∫
ρ([(y1−y2−BT (u1−u2))

T C−1(y1−y2−BT (u1−u2))]
1/2)dH(z1)dH(z2) = k

among all (B,C) ∈ R
p×q × PDS(q) and where zl = (uT

l ,yT
l )T for l = 1, 2. It

can be easily seen that the resulting GS-functional is affine equivariant.

We assume that the following two conditions are satisfied for the distribution

H of z = (uT ,yT )T in model (1).

Condition 2 We assume that the differences of the errors ǫi−ǫj in model (1)

have a distribution FΣ with density fΣ(x) = g(xT Σ−1x)/
√
|Σ|, with Σ ∈

PDS(q) the scatter matrix. Furthermore, the function g is assumed to have a

strictly negative derivative g′.

Condition 2 requires that the error terms have a unimodal elliptically symmet-

ric distribution around the origin. Note that if the error terms are independent

and elliptically symmetrically, then the distribution of the differences of the

errors remains elliptically symmetric (Hult and Lindskog 2002). We need an-

other regularity condition on the model distribution H, before stating the
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result on Fisher-consistency.

Condition 3 For all β ∈ R
p and γ ∈ R

q not both equal to zero at the same

time, it holds that

PH(βT (u1 − u2) + γT (y1 − y2) = 0) < 1 − r.

Theorem 2 The functionals BGS and ΣGS are Fisher-consistent estimators

of the parameters B and Σ at any model distribution H satisfying conditions 2

and 3:

BGS(H) = B and ΣGS(H) = Σ.

The influence function of a functional T at a distribution H measures the

effect on T of an infinitesimal contamination at a single point (Hampel et

al. 1986). If we denote a point mass distribution at z = (uT ,yT )T by ∆z,

and consider the contaminated distribution Hε,z = (1 − ε)H + ε∆z, then the

influence function is given by

IF (z; T,H) = lim
ε↓0

T (Hε,z) − T (H)

ε
=

∂

∂ε
T (Hε,z)|ε=0.

Due to affine equivariance of the GS-functional, it suffices to look at model

distributions H0 that satisfy conditions 2 and 3 and for which B = 0, and

Σ = Iq. Denote F0 = FIq
and let G be the distribution of u.

Theorem 3 For model distributions H0 verifying the above conditions, the

influence functions of the GS-estimators for multivariate regression at z0 =

(uT
0 ,yT

0 )T are given by
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IF (z0;BGS, H0) = [Cov(u)]−1(u0 − EG[u])
ψ̄(y0)

T

β
(6)

IF (z0; ΣGS, H0) = IF (y0; ΣGS, F0)

=
2

γ1

qEF0

[
ψ(‖y1 − y0‖)‖y1 − y0‖

(
(y1 − y0)(y1 − y0)

T

‖y1 − y0‖2
− 1

q
Iq

)]

+
4EF0 [ρ(‖y1 − y0‖) − k]

γ3

Iq (7)

where

ψ̄(y0) = EF0

[
ψ(‖y0 − y1‖)
‖y0 − y1‖

(y0 − y1)

]
,

and β = EF0×F0

[
1
q
ψ′(‖y1 − y2‖) +

(
1 − 1

q

)
u(‖y1 − y2‖)

]
, γ1 = EF0×F0 [ψ

′(‖y1−

y2‖)‖y1−y2‖2+(q+1)ψ(‖y1−y2‖)‖y1−y2‖]/(q+2) and γ3 = EF0×F0 [ψ(‖y1−

y2‖)‖y1 − y2‖].

For the model with only a constant term, the expression of the influence

function of ΣGS is equivalent to the influence function of the symmetrized

M-estimators of multivariate scatter of Sirkiä et al. (2007). If q = 1, then the

influence function of BGS is identical to the influence function of the univariate

GS-estimator (see Croux et al. 1994). Since ψ̄ is a bounded function, it can

be seen that the influence function of BGS is bounded in y0 but unbounded

in u0. Hence good leverage points can have a high effect on the GS-estimator,

but bad leverage points will have a bounded influence.

5 Efficiency

The asymptotic variance-covariance matrix of the GS-estimator at the model

distribution H0 can be computed by means of the influence function, as

ASV (BGS, H0) = E[IF (z;BGS, H0) ⊗ IF (z;BGS, H0)
T ]
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(see Hampel et al. 1986) where A ⊗ B denotes the Kronecker product of a

(d1 × d2) matrix A with a (d3 × d4) matrix B, which results in a (d1d3 × d2d4)

matrix with d1d2 blocks of size (d3 × d4). For 1 ≤ j ≤ d1 and 1 ≤ k ≤ d2

the (j, k)th block equals ajkB, where ajk are the elements of the matrix A.

Denoting Σu := Cov[u], it follows from (6) that

ASV (BGS, H0) = Kpq

(
diag

(
EF0 [ψ̄(y0) ⊗ ψ̄(y0)

T ]

β2

)
⊗ Σ−1

u

)
, (8)

where Kpq is the commutation matrix, a (pq × pq) matrix consisting of pq

blocks of size (q × p). For 1 ≤ l ≤ p and 1 ≤ m ≤ q the (l,m)th block of Kpq

equals the (q×p) matrix ∆ml which is 1 at entry (m, l) and 0 everywhere else.

From (6) and (8) we find that the asymptotic variance of (BGS)jk is

ASV ((BGS)jk, H0) = (Σ−1
u )jj

EF0 [ψ̄(y0)
2
k]

β2
(9)

while the asymptotic covariances, for j 6= j′, are given by

ASC((BGS)jk, (BGS)j′k, H0) = (Σ−1
u )jj′

EF0 [ψ̄(y0)
2
k]

β2

and all other asymptotic covariances (for k 6= k′) equal 0.

Since we assumed, w.l.o.g. due to affine equivariance, that Σu = Ip at H0, we

have that all asymptotic covariances are zero. Furthermore ASV ((BGS)jk, H0) =

EF0 [ψ̄(y0)
2
k]/β

2 does not depend on k and j. Hence, we can compute the

asymptotic relative efficiency of the GS-estimator with respect to the least-

squares estimator as:

ARE(BGS, H0) =
ASV ((BLS)jk, H0)

ASV ((BGS)jk, H0)
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for all j = 1, . . . , p and k = 1, . . . , q. The asymptotic relative efficiency of

a multivariate regression GS-estimator does not depend on the dimension

p or the distribution of the carriers, but only on the dimension q and the

distribution of the errors terms.

Table 1 shows the relative asymptotic efficiencies for H0 a multivariate normal

distribution, and for a multivariate Student distributions Tν with ν = 3 and 8

degrees of freedom. Results are presented for both GS- and S-estimators (see

Table 3.1 in Van Aelst and Willems 2005 for the efficiencies of S-estimators),

based on a Tukey biweight loss function. The reported values in Table 1 are

based on numerical integration of the analytic expression in (9). From Table 1

we see that the efficiencies for the GS-estimator are high for the 25% as well as

for the 50% breakdown point case. For the T3 distribution, the GS-estimator is

far more efficient than the least squares estimator. For the T8 distribution the

GS-estimator still outperforms the LS-estimator in higher dimensions. Com-

paring the GS-estimator with the S-estimator, we see that using the pairwise

differences generally results in a higher efficiency, in particular for the 50%

breakdown point estimates.

We also performed a simulation study to investigate the finite-sample efficiency

of the GS-estimator. We generated m = 1 000 random samples with predic-

tors drawn from the multivariate standard normal distribution. The errors

were generated from the multivariate normal distribution or from the mul-

tivariate T3 distribution. We considered multivariate regression models with

p + 1 = 2 and q = 2 and p + 1 = 5 and q = 5. The matrix (α,BT )T was set

to zero. For each sample we calculated both the S-estimates (including an in-

tercept term) and GS-estimates. The Monte Carlo variance of B̂n is measured
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Table 1

Asymptotic relative efficiencies for S- and GS-estimators with respect to the LS

estimator at normal and Student distributions.

ǫ∗ 25% 50%

GS q = 1 q = 2 q = 3 q = 5 q = 10 q = 1 q = 2 q = 3 q = 5 q = 10

Φ 0.818 0.912 0.940 0.974 0.973 0.683 0.719 0.770 0.843 0.923

T8 0.982 1.077 1.103 1.138 1.162 0.798 0.885 0.944 1.031 1.151

T3 1.902 2.061 2.125 2.235 2.342 1.603 1.872 2.070 2.196 2.445

S q = 1 q = 2 q = 3 q = 5 q = 10 q = 1 q = 2 q = 3 q = 5 q = 10

Φ 0.759 0.912 0.951 0.976 0.990 0.287 0.580 0.722 0.846 0.933

T8 0.894 1.059 1.108 1.141 1.162 0.390 0.739 0.897 1.038 1.153

T3 1.738 2.035 2.137 2.222 2.289 0.904 1.601 1.903 2.177 2.140

as n ave
j,k

(V̂ar((B̂n)jk)) for j = 1, . . . , p and k = 1, . . . , q, where V̂ar((B̂n)jk)

is the empirical variance over the m simulated estimates. The finite-sample

relative efficiency is then computed as the inverse of this variance estimate for

the normal distribution, and as ν/(ν − 2) divided by the variance estimate

for the Tν distribution. Table 2 lists these finite-sample relative efficiencies for

the 25% breakdown S- and GS-estimator for the normal and T3 model. The

finite-sample relative efficiencies are generally slightly lower than the asymp-

totic relative efficiencies of Table 1. If we compare the GS-estimator with

the S-estimator we see that the relative efficiencies are comparable at the

normal distribution, but at the T3 distribution the relative efficiencies of the
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Table 2

Finite-sample relative efficiencies for B̂GS and B̂S (25% breakdown) with respect to

the LS estimator at the normal and T3 distribution

n = 30 n = 50 n = 100 n = 200 n = ∞

q = 2 0.881 0.901 0.858 0.867 0.912

Φ

q = 5 0.797 0.859 0.921 0.941 0.974

GS

q = 2 1.809 1.859 1.901 2.025 2.061

T3

q = 5 1.415 1.669 1.861 1.960 2.235

q = 2 0.875 0.901 0.859 0.867 0.912

Φ

q = 5 0.798 0.862 0.924 0.945 0.976

S

q = 2 1.788 1.838 1.882 2.005 2.035

T3

q = 5 1.407 1.656 1.846 1.943 2.222

GS-estimator are always higher.

6 Robust inference

6.1 Fast and robust bootstrap

We now consider the issue of statistical inference for the regression parameter

B. We use the fast and robust bootstrap procedure introduced by Salibian-

Barrera and Zamar (2002) for univariate regression MM-estimators. The boot-

strap principle is to generate a large number of samples from the original data
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set, and to recalculate the estimates for each of these resamples. Then, the

distribution, of
√

n(B̂n − B) can be approximated by the sample distribution

of
√

n(B̂∗
n−B̂n) where B̂∗

n is the value of the resampled estimator. When there

are outliers present in the data, this method can be expected to be more ac-

curate than using the asymptotic variance. However, the standard bootstrap

procedure is non-robust, as some bootstrap samples may contain a fraction of

outliers that exceeds the breakdown point of the robust estimates, and compu-

tationally demanding, due to the high computation time of robust estimators.

Both these problems are resolved by the fast and robust bootstrap (FRB)

procedure.

For S-estimators in multivariate models, inference based on FRB has been

developed by Van Aelst and Willems (2005) and Salibian-Barrera, Van Aelst

and Willems (2006, 2008). The FRB procedure computes bootstrap values of

B̂n without explicitly calculating the actual estimate for each resample. The

FRB gains a considerable amount of computation time by approximating B̂∗
n in

each resample based on a fixed-point representation of the estimator. Because

a reweighted representation of the estimator is bootstrapped, the method will

be more robust since outliers downweighted in the original sample, will also

be downweighted in each resample, regardless the fraction of outliers in each

resample.

Suppose that an estimator of the parameter Θ can be represented by a smooth

fixed-point equation g(Θ̂n) = Θ̂n, with g depending on n. Then, using the

smoothness of g, we can calculate a Taylor expansion about the limiting value

of the estimate Θ̂n:

Θ̂n = g(Θ) + ∇g(Θ)(Θ̂n − Θ) + Rn
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where Rn is a remainder term and ∇g(.) is the matrix of partial derivatives.

Supposing that the remainder term is small, this equation can be rewritten as

√
n(Θ̂n − Θ) ≈ [I −∇g(Θ)]−1

√
n(g(Θ) − Θ).

Taking bootstrap equivalents at both sides and estimating the matrix [I −

∇g(Θ)]−1 by [I −∇g(Θ̂n)]−1 yields

√
n(Θ̂∗

n − Θ̂n) ≈ [I −∇g(Θ̂n)]−1
√

n(g∗(Θ̂n) − Θ̂n). (10)

For each bootstrap sample, we can calculate the right-hand side of this equa-

tion instead of the left-hand side. Hence, we approximate the actual estimate

in each sample by computing the function g∗ in Θ̂n and then apply a linear

correction given by [I −∇g(Θ̂n)]−1.

We now apply this procedure to the multivariate GS-estimator. We can rewrite

the estimating equations (3) and (4) as

B̂n =An(B̂n, Σ̂n)−1Bn(B̂n, Σ̂n)

Σ̂n =Vn(B̂n, Σ̂n) + wn(B̂n, Σ̂n)Σ̂n

where

An(B,C) =
∑

i<j

u(dij)(ui − uj)(ui − uj)
T

Bn(B,C) =
∑

i<j

u(dij)(ui − uj)(yi − yj)
T

Vn(B,C) =
1(

n
2

)
k

∑

i<j

qu(dij)(yi − yj − BT (ui − uj))(yi − yj − BT (ui − uj))
T

wn(B,C) =
1(

n
2

)
k

∑

i<j

w(dij)
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with w(t) = ρ(t) − ρ′(t)t. Write

Θ :=




vec(B)

vec(Σ)




, Θ̂n :=




vec(B̂n)

vec(Σ̂n)




,

and for any matrices B and C, put

g




vec(B)

vec(C)




:=




vec(An(B,C)−1Bn(B,C))

vec(Vn(B,C) + wn(B,C)C)




.

The expression for the matrix ∇g(.) of partial derivatives can be found in the

Appendix.

Now, for a bootstrap sample {((u∗
i )

T , (y∗
i )

T )T , i = 1, . . . , n} we have that

g∗(Θ̂n) =




vec(A∗
n(B̂n, Σ̂n)−1B∗

n(B̂n, Σ̂n))

vec(V∗
n(B̂n, Σ̂n) + w∗

n(B̂n, Σ̂n)Σ̂n)




where A∗
n, B∗

n, V∗
n and w∗

n are the bootstrap versions of the quantities An,

Bn, Vn and wn, that is with (uT
i ,yT

i )T replaced by ((u∗
i )

T , (y∗
i )

T )T . Thus,

in order to get the values of
√

n(Θ̂∗
n − Θ̂n) for each bootstrap sample, we

calculate g∗(Θ̂n), apply the linear correction given by the matrix of partial

derivatives and use approximation (10). We use casewise resampling to gener-

ate the bootstrap samples, which means that we draw with replacement from

the observations {(uT
i ,yT

i )T , i = 1, . . . , n}.

We now focus on confidence intervals resulting from the FRB procedure. We

investigate the robustness of the bootstrap confidence interval by deriving

the breakdown point of bootstrap quantile estimates. For a statistic Tn, and
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t ∈ [0, 1], let Q∗
t denote the tth quantile of the bootstrap sample distribution

of T ∗
n :

Q∗
t = min{x :

1

R
× #{T ∗j

n ≥ x; j = 1, . . . , R} ≤ t}

where R is the number of bootstrap samples drawn. Singh (1998) defined the

upper breakdown point of a statistic as the minimum proportion of asymmetric

contamination that can carry the statistic over any bound. The expected upper

breakdown point of the bootstrap quantile Q∗
t is defined as the minimum

proportion of asymmetric contamination that is expected to be able to carry

Q∗
t over any bound, where the expectation is taken over the distribution of

drawing R samples with replacement. For the FRB, if we look at the pairwise

differences of the observations in a bootstrap sample, then this sample of

differences must contain at least p differences of two good observations. Hence,

we need in the bootstrap sample at least cp good observations such that
(

cp

2

)
≥

p to obtain at least p differences of good observations among the differences

of the bootstrap sample. An easy calculation yields cp = ⌈1
2
+ 1

2

√
1 + 8p ⌉. Let

B(n, δ) be the number of distinct non-outlying observations in a resample of

size n, drawn with replacement from a sample of size n with a proportion δ

of outliers.

Theorem 4 Let Zn ⊂ R
p+q+1 and assume that the data satisfies condition 1.

Let ǫ∗n be the breakdown point of a GS-estimate B̂n. Then the expected upper

breakdown point of the t-th fast bootstrap quantile for any regression parameter

Bjk, j = 1, . . . , p; k = 1, . . . , q is given by min(ǫ∗n, ǫE
n ) where

ǫE
n = inf{δ ∈ [0, 1] : P (B(n, δ) < cp) ≥ t}.

Table 3 lists values for ǫE
n for different dimensions and samples sizes, for the
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Table 3

Expected upper breakdown values for FRB using maximal breakdown GS-

estimators

p = 2, q = 1 p = 8, q = 2

n 10 30 50 100 20 30 50 100

Q∗
0.05 ǫE

n 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Q∗
0.005 ǫE

n 0.30 0.50 0.50 0.50 0.40 0.50 0.50 0.50

GS-estimator with maximal breakdown point. Two different quantiles Q∗
0.05

and Q∗
0.005 are considered, which can respectively be used to construct 90%

and 99% percentile confidence intervals. We see that only for the smallest

sample sizes the expected upper breakdown point for the FRB is lower than

50%, in all other cases the maximum breakdown point is reached.

We now show that the FRB converges to the same limiting distribution as the

distribution of the GS-estimator does. We need the following assumptions on

ρ:

(A.1) The following functions are bounded and almost everywhere continu-

ous:

ρ′(x)

x
,
ρ′′(x)

x2
− ρ′(x)

x3
,
ρ′′′(x)

x3
− 3

ρ′′(x)

x4
+ 3

ρ′(x)

x5
, ρ′′(x) and

ρ′′′(x)

x

(A.2) EG×G[ρ′(d)
d

(u1 − u2)(u1 − u2)
T ]−1 exists.

Theorem 5 Let ρ be a loss function satisfying (A.1). Let (B̂n, Σ̂n) be the

multivariate GS-estimators and assume that B̂n
P→ B and Σ̂n

P→ Σ. Then,

given that assumption (A.2) is satisfied, the distributions of
√

n(B̂∗
n − B̂n)
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and
√

n(Σ̂∗
n − Σ̂n) converge weakly to the same limit distributions as those of

√
n(B̂n−B) and

√
n(Σ̂n−Σ) respectively, conditional on the first n observations

and along almost all sample sequences.

6.2 Simulation results

We investigate the performance of confidence intervals for the regression co-

efficients based on FRB. Simulations were performed for sample sizes n = 30,

50, 100 and 200 for a multivariate regression model with p = 4 and q = 5.

The predictor variables were generated from a multivariate normal distribu-

tion Np(0, Ip). The true value of the parameter B was set to 1p,q, the p × q

matrix having 1 for each entry. We consider the following simulations schemes:

• normal errors: generated from Nq(0, Iq)

• long-tailed errors: generated from a multivariate Student distribution with

3 degrees of freedom (T3)

• vertical outliers: a proportion 1−δ of the errors is generated from Nq(0, Iq),

and a proportion δ generated from Nq(5
√

χ2
q,.991q,1, 1.5Iq), for δ = 0.15 and

δ = 0.25

• bad leverage points: a proportion 1 − δ of the errors is generated from

Nq(0, Iq), and a proportion δ of the responses generated from Nq(−101q,1, 10Iq)

with corresponding predictors replaced by predictors generated from Np(101p,1, 10Ip),

for δ = 0.15 and δ = 0.25.

We computed both the 25% and 50% GS-estimators for 1 000 data sets gen-

erated as described above and applied the FRB procedure with B = 1 000

recalculated values (B̂∗
n, Σ̂

∗
n).
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Bootstrap confidence intervals for the components Bjk were constructed us-

ing the bias corrected and accelerated (BCA) method (see e.g. Davison and

Hinkley 1997). The bootstrap intervals are compared with confidence intervals

based on the asymptotic normality of the GS-estimator. The latter 100(1−α)%

confidence intervals are of the form

[
(B̂n)jk − Φ−1(1 − α

2
)
√

V̂jk/n, (B̂n)jk + Φ−1(1 − α

2
)
√

V̂jk/n
]

where V̂jk denotes the empirical version of the asymptotic variance (EASV)

of the (j, k)-th component of B̂n. The estimates V̂jk are obtained by replacing

Σ by Σ̂n, replacing F0 by the empirical distribution of the vectors Σ̂−1/2
n (yi −

B̂T
n ui), and finally replacing Σu by the corresponding sample moment.

Figure 1 shows the coverage for 95% confidence intervals computed by FRB

and EASV. From Figure 1 we clearly see that the coverage of the EASV-based

intervals is generally lower than 95%. As the sample size grows, the EASV-

based intervals converge to a 95% coverage, except in the case of bad leverage

points. The FRB performs better than the EASV method. For small sample

sizes the FRB is generally somewhat conservative except for bad leverage

points. However, also in that case the coverage converges quickly to 95% when

the sample size increases.
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Fig. 1. Coverage for 95% confidence intervals, for FRB (–) and EASV (- -):

p = 4; q = 5.
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7 Examples

School data

This example considers data of n = 70 school sites in the U.S. (Charnes,

Cooper and Rhodes 1981). We fit a multivariate regression model with 3 re-

sponse variables: total reading score measured by the Metropolitan Achieve-

ment Test, total mathematics score measured by the Metropolitan Achieve-

ment Test and the Coopersmith self-esteem inventory. There are 5 explanatory

variables: education level of mother, highest occupation of a family member,

number of parental visits to the school, parent counselling concerning school-

related topics and the number of teachers at the school. The model parameters

were estimated with the least squares estimator and with 50% breakdown GS-

estimator. We considered a model with intercept. For the GS-estimator, the

intercept was estimated afterwards by applying an efficient robust estimator

of multivariate location on the residuals of the GS-estimator yi − B̂t
nui, for

i = 1, . . . , n. An appropriate choice is the M-type estimator of location of Lop-

uhaä (1992). This estimator is highly robust and highly efficient but requires

a preliminary estimate of the scatter matrix. The GS-estimator, however, de-

livers a residual scatter matrix estimate of the residuals, along with the slope

estimator, which we then use in the procedure of Lopuhaä (1992).

The diagnostic plots in Figure 2 show the Mahalanobis distances of the resid-

uals versus the Mahalanobis distances of the explanatory variables (see also

Rousseeuw et al. 2004). The left panel presents this plot for the least squares

estimator, the right panel for the multivariate GS. For the diagnostic plot

based on the robust GS, the Mahalanobis distances are computed using the
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robust GS-estimator of Σ, and are therefore called robust distances. The hor-

izontal and vertical lines correspond respectively to
√

χ2
q,.975 and

√
χ2

p,.975, and

enable us to classify data points into regular observations, vertical outliers,

good and bad leverage points. The least squares estimator detects one small

vertical outlier and 5 small to moderate good leverage points. On the other

hand, the GS-estimator reveals one very large bad leverage point (59), two

moderate to large bad leverage points (35 and 44) and two moderate to large

vertical outliers (12 and 21). Moreover, there are at least five good leverage

points (10, 67, 1, 66, 50). The least squares estimator is thus clearly attracted

by the bad leverage points. Table 4 gives 95% confidence intervals, computed

with the fast and robust bootstrap discussed in Section 6, for the slope ma-

trix based on S- and GS-estimates. The confidence limits using GS-estimates

are in bold whenever this interval is shorter than the corresponding interval

based on S-estimates. We see that for almost all parameters the GS-estimates

yield more precise confidence intervals. This is without surprise, since GS is

in general more efficient than S.
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Fig. 2. Diagnostic plots for the school data; (a) Least squares estimator; (b) 50%

breakdown GS-estimator
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Table 4

95% confidence limits for the school data based on S- and GS-estimates

S-estimate lower upper GS-estimate lower upper

B11 0.109 -0.064 0.265 0.112 -0.052 0.267

B21 4.441 1.660 6.826 4.542 1.980 6.980

B31 0.056 -0.523 0.571 0.019 -0.562 0.490

B41 -0.637 -1.150 -0.202 -0.632 -1.082 -0.219

B51 -0.128 -0.591 0.107 -0.129 -0.513 0.155

B12 0.057 -0.161 0.228 0.053 -0.158 0.223

B22 4.952 2.374 7.913 5.131 2.444 8.304

B32 0.141 -0.625 0.798 0.094 -0.639 0.746

B42 -0.726 -1.295 -0.261 -0.726 -1.190 -0.282

B52 -0.147 -0.575 0.071 -0.147 -0.522 0.084

B13 -0.021 -0.070 0.027 -0.021 -0.065 0.025

B23 1.573 0.884 2.385 1.602 0.861 2.444

B33 0.270 0.099 0.476 0.258 0.075 0.437

B43 0.013 -0.240 0.232 0.018 -0.211 0.223

B53 0.041 -0.049 0.132 0.039 -0.053 0.126

Forbes data

The GS-estimator can also be used as a high-breakdown scatter estimator in

a multivariate location-scale model, taking p = 0 in model (1). Afterwards the

location vector can be estimated using the robust and efficient M-estimator of

Lopuhaä (1992). We illustrate this with a data set taken from the ‘The Data

and Story Library’

(http://lib.stat.cmu.edu/DASL/Stories/Forbes500CompaniesSales.html), which
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contains several facts about 79 companies selected from the Forbes 500 list of

1986. We look at the following six variables: Assets (amount of assets in mil-

lions), Sales (amount of sales in millions), Market-value (market-value of the

company in millions), Profits (profits in millions), Cash-flow (cash-flow in mil-

lions) and Employees (number of employees in thousands). Figure 3 compares

the Mahalanobis distances computed with empirical mean and covariance ma-

trix (horizontal axis) with the robust distances based on the 50% breakdown

GS-estimator (vertical axis) using a distance-distance plot as proposed by

Rousseeuw and Van Driessen (1999). If we draw horizontal and vertical lines

at the usual cut off
√

χ2
6,0.975 = 3.8012, the 9 outliers are detected by both

estimators. However, there are 14 extra observations that have a robust dis-

tance above the cutoff while their Mahalanobis distances lie below the cutoff.

Clearly the classical estimates were affected by the presence of these outliers.
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Fig. 3. Distance-distance plot for the Forbes data
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8 Conclusion

In this paper, we discussed generalized S-estimators, i.e. S-estimators applied

to the pairwise differences of the observations, in the multivariate regression

context. We showed that they maintain the same good properties as in the

univariate case, such as a high breakdown point and a higher efficiency than

the multivariate regression S-estimators. To compute the GS-estimator, we

constructed an algorithm based on improvement steps similar as in the fast

S-algorithm for univariate regression. Furthermore we developed a fast and

robust bootstrap method for the multivariate GS-estimators to obtain robust

inference for the regression slopes. The examples illustrated the robustness

and efficiency of the GS-estimator and its corresponding bootstrap inference.

GS-estimators estimate the regression slopes and the residual covariance ma-

trix without needing to estimate the intercept. In the special case of the mul-

tivariate location-scale model, this implies that we can estimate the scatter

matrix without needing to estimate the location of the observations. As illus-

trated in the examples, the intercept can easily be estimated afterwards by

using the efficient and robust M-estimator of multivariate location of Lopuhaä

(1992), using the residual covariance matrix of the GS-estimator as an initial

estimator. In fact, similarly as for MM-estimators (Yohai 1987, Tatsuoka and

Tyler 2000) one can also consider to re-estimate the regression slopes using

a multivariate regression M-estimator based on an initial GS scatter matrix

estimate. However, such an M-step is intended to increase the low efficiency of

the initial estimator. Since GS-estimators already have a fairly high efficiency

(Table 1), we do not expect that the M-step yields much further improvement.
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Finally, let us stress that all the theoretical results obtained in this paper also

apply to the multivariate location-scale model, the latter being a special case of

the multivariate regression model. The properties of the GS-estimator were not

yet investigated in the multivariate location-scale model. The major advantage

of the GS-estimators of scatter with respect to most existing robust estimators

of scatter is that they have the independency property. Hence, as discussed

in the introduction, they are well suited for independent component analysis,

and present a high breakdown alternative for the estimators considered by

Sirkiä et al. (2007).

A Appendix

Proof of Theorem 1. Denote by m the number of points in the original

data set of size n that are replaced by arbitrary points. This implies that

the
(

n
2

)
differences in the contaminated data set contain

(
m
2

)
+ m(n − m)

contaminated differences. Since we apply the multivariate S-estimator on the

set of differences, it follows from Theorem 1 in Van Aelst and Willems (2005)

that the maximum number of outliers that is allowed before the estimator

breaks down is given by

min(⌈
(
n

2

)
r⌉, ⌈

(
n

2

)
−

(
n

2

)
r⌉ − hVn

) − 1

with r = k/ sup ρ and hVn
is the maximal number of differences lying on

the same hyperplane. Hence breakdown because the number of contaminated

differences exceeds ⌈
(

n
2

)
r⌉ − 1, occurs if

(
m

2

)
+ m(n − m) ≥

(
n

2

)
r (A.1)
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The smallest solution of the corresponding equality −m2+(−1+2n)m−n(n−

1)r = 0 yields m = ⌈n − 1
2
−

√
1 − 4n(1 − r) + 4n2(1 − r)/2⌉ (which in the

limit yields m/n < 1 −
√

1 − r).

We now consider breakdown because the number of contaminated differences

on the same hyperplane exceeds ⌈
(

n
2

)
−

(
n
2

)
r⌉ − hVn

−1. From condition 1 it

follows that the estimator can break down as soon as

(
p + q

2

)
+

(
m

2

)
+ m(p + q) ≥

(
n

2

)
−

(
n

2

)
r. (A.2)

The smallest solution of the corresponding equality yields m = ⌈1
2
− p − q +

1
2

√
1 − 4n − 4n2r + 4nr + 4n2⌉ (which in the limit yields m/n <

√
1 − r).

For any C ∈ PDS(q), let λ1(C) ≥ λ2(C) . . . ≥ λq(C) denote its eigenvalues.

Put

m = min(⌈n − 1/2 −
√

1 + (1 − r)(4n2 − 4n)/2⌉,
⌈1/2 − p − q +

√
1 + (1 − r)(4n2 − 4n)/2⌉) − 1

We first show that ǫ∗n > m by showing that the estimator doesn’t break down

if we contaminate at most m observations. Formally we show that ∃M,α only

depending on Zn, such that for every Z ′
n = {(1, (u′

i)
T , (y′

i)
T )T ; 1 ≤ i ≤ n}

obtained by replacing at most m observations from Zn, we have ‖B̂n(Z ′
n)‖ ≤

M and λ1(Σ̂n(Z ′
n)) ≤ α and λq(Σ̂n(Z ′

n)) > 0. The norm we use is

‖A‖ = sup
‖u‖=1

‖Au‖.

The inequality ‖AB‖ ≤ ‖A‖‖B‖ holds for any A ∈ R
p×q and B ∈ R

q×r.

Sometimes we will also use the L2-norm ‖A‖2 = (Σi,j|Aij|2)1/2. Since these

norms are topologically equivalent, we know that ∃α1, α2 > 0 such that ∀B ∈

R
p×q : α1‖B‖ ≤ ‖B‖2 ≤ α2‖B‖. For w ∈ R

k(k ∈ N\{0}), we have that
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‖w‖ = ‖w‖2.

Let us denote by Vn the set of the differences corresponding to the data set

Zn, that is, Vn = {((ui − uj)
T , (yi − yj)

T )T ; 1 ≤ i < j ≤ n}. Similarly, V ′
n

corresponds to the contaminated data set Z ′
n.

W.l.o.g. we assume that c = 1 and thus sup(ρ) = ρ(∞) = 1 such that r = k.

Indeed we can always rescale the function ρ if necessary. Since ρ is continuous

and we have that

(
n

2

)
k −

(
m

2

)
− m(n − m) =

(
n

2

)
r −

(
m

2

)
− m(n − m) > 0

according to the reverse of (A.1), we can find a smallest radius s > 0 and

cylinder C(0, s2Iq) := {(w,v); ‖v‖ ≤ s} such that

∑

((ui−uj)T ,(yi−yj)T )T∈Vn

ρ

(
‖yi − yj‖

s

)
=

(
n

2

)
k −

(
m

2

)
− m(n − m).

This yields the determinant V = |s2Iq| = s2q. For the smallest cylinder

C(0, l2Iq) = {(w,v); ‖v‖ ≤ l} such that

∑

((ui−uj)T ,(yi−yj)T )T∈Vn∩V ′
n

ρ

(
‖yi − yj‖

l

)
=

(
n

2

)
k −

(
m

2

)
− m(n − m)

it then holds that |l2Iq| = l2q ≤ V . Moreover,

∑

((u′

i
−u′

j
)T ,(y′

i
−y′

j
)T )T∈V ′

n

ρ

(‖y′
i − y′

j‖
l

)

≤
∑

((ui−uj)T ,(yi−yj)T )T∈Vn∩V ′
n

ρ

(
‖yi − yj‖

l

)
+

(
m

2

)
+ m(n − m) =

(
n

2

)
k.

It follows that for the optimal solution C(B̂n(Z ′
n), Σ̂n(Z ′

n)) = C(B̂n(V ′
n), Σ̂n(V ′

n)) :=

{(w,v); (v − B̂n(V ′
n)Tw)T Σ̂n(V ′

n)−1(v − B̂n(V ′
n)Tw) ≤ 1} that satisfies

∑

((u′

i
−u′

j
)T ,(y′

i
−y′

j
)T )T∈V ′

n

ρ
(
d′

ij(B̂n(V ′
n), Σ̂n(V ′

n))
)
≤

(
n

2

)
k (A.3)
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where d′
ij(B̂n(V ′

n), Σ̂n(V ′
n)) = ((r′ij)

T Σ̂n(V ′
n)−1r′ij)

1/2 with r′ij = y′
i − y′

j −

B̂n(V ′
n)T (u′

i − u′
j), we must have that |Σ̂n(V ′

n)| ≤ V .

Condition (A.3) implies that the cylinder C(B̂n(V ′
n), Σ̂n(V ′

n)) contains a subcol-

lection of at least
(

n
2

)
−

(
n
2

)
r points of V ′

n. From the reverse of (A.2) it follows

that this subcollection contains at least
(

n
2

)
−

(
n
2

)
r −

(
m
2

)
>

(
p+q
2

)
+ m(p + q)

differences that involve at least one original data point of Zn. This inequality

implies one of the two following cases:

• this cylinder contains at least p+q+1 differences between two original data

points not all lying on the same hyperplane.

• the cylinder contains at most
(

p+q
2

)
differences of original data points and

these differences are lying on a hyperplane. The above inequality then im-

plies that there is at least 1 contaminated point for which the differences

with p + q + 1 original data points are lying in the cylinder.

We now show that, for every V > 0, there exists a constant M > 0, only

depending on Zn, such that ‖B̂n(V ′
n)‖ > M implies that the determinant of

Σ̂n(V ′
n) is larger than V .

Let λ1 ≥ . . . ≥ λq be the eigenvalues of Σ̂n(V ′
n), then |Σ̂n(V ′

n)| = λ1 . . . λq. In

the first case there exists a constant β > 0 such that λj > β for all j = 1, . . . , q.

(For every w ∈ R
p, the axes of the ellipsoid {v|(v−B̂n(V ′

n)Tw)T Σ̂n(V ′
n)−1(v−

B̂n(V ′
n)Tw) ≤ 1} have lengths

√
λj; j = 1, . . . , q.)

For symmetric q× q matrices A, it holds that λq(A) = inf
v

vT Av
vT v

from which we

obtain that for (w,v) ∈ C(B̂n(V ′
n), Σ̂n(V ′

n))

‖v − B̂n(V ′
n)Tw‖2 ≤ (v − B̂n(V ′

n)Tw)T Σ̂n(V ′
n)−1(v − B̂n(V ′

n)Tw)λ1 ≤ λ1.
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In particular, for v = 0 we have ‖B̂n(V ′
n)Tw‖2 ≤ λ1.

Since C(B̂n(V ′
n), Σ̂n(V ′

n)) contains p + q + 1 differences of 2 original points

that are in general position, there exists a constant d > 0, not depending on

B̂n(V ′
n) or Σ̂n(V ′

n), such that ‖w‖ < d implies that (w,0) ∈ C(B̂n(V ′
n), Σ̂n(V ′

n)).

If follows that sup
‖w‖=d

‖B̂n(V ′
n)Tw‖2 ≤ λ1, so ‖B̂n(V ′

n)T‖2 ≤ λ1

d2 .

Now consider case 2 where we have at least 1 contaminated point whose differ-

ences with p+q+1 original points belongs to C(B̂n(V ′
n), Σ̂n(V ′

n)). From the tri-

angle inequality if follows that the
(

p+q+1
2

)
differences of these p+q+1 original

points belong to C2(B̂n(V ′
n), Σ̂n(V ′

n)) = {(w,v); (v−B̂n(V ′
n)Tw)T Σ̂n(V ′

n)−1(v−

B̂n(V ′
n)Tw) ≤ 4}. Because C2(B̂n(V ′

n), Σ̂n(V ′
n)) contains

(
p+q+1

2

)
differences of

original points which are in general position, then similarly as in case 1 it fol-

lows that there exists constants β > 0 and d > 0 such that ‖B̂n(V ′
n)T‖2 ≤ λ1

d2 .

Hence, in both cases we obtain that

‖B̂n(V ′
n)‖ ≤ 1

α1

‖B̂n(V ′
n)‖2 =

1

α1

‖B̂n(V ′
n)T‖2 ≤

α2

α1

‖B̂n(V ′
n)T‖ ≤ α2

√
λ1

α1d
.

Define

M =
α2V

1/2

α1dβ
q−1
2

.

Then we have that ‖B̂n(V ′
n)‖ > M implies that |Σ̂n(V ′

n)| = λ1 · · ·λq > V .

As shown, ‖B̂n(V ′
n)‖ > M implies that |Σ̂n(V ′

n)| > V which yields a contradic-

tion. We have thus shown that ‖B̂n(V ′
n)‖ ≤ M . Moreover, since |Σ̂n(V ′

n)| ≤ V

and λj > β for all j = 1, . . . , q, there exists a constant 0 < α < ∞ (depending

on β and V ) such that λ1(Σ̂n(V ′
n)) ≤ α.

We now prove that ǫn(B̂n(V ′
n)), ǫn(Σ̂n(V ′

n)) ≤ 1
n
⌈n−1/2−

√
1 + (1 − r)(4n2 − 4n)/2⌉.

Replace ⌈n−1/2−
√

1 + (1 − r)(4n2 − 4n)/2⌉ points of Zn to obtain Z ′
n, then
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V ′
n has at least

(
n
2

)
r contaminated differences, call this amount m′. Let

C(B, C) = {(w,v); (v − BTw)T C−1(v − BTw) ≤ 1} (A.4)

be a cylinder that satisfies

∑

((u′

i
−u′

j
)T ,(y′

i
−y′

j
)T )T∈V ′

n

ρ(d′
ij(B,C)) ≤

(
n

2

)
k =

(
n

2

)
r. (A.5)

Now suppose that all differences where at least one contaminated point is

involved, are outside C(B,C). Then

∑

((u′

i
−u′

j
)T ,(y′

i
−y′

j
)T )T∈V ′

n

ρ(d′
ij(B,C)) =

∑

((u′

i
−u′

j
)T ,(y′

i
−y′

j
)T )T∈Vn∩V ′

n

ρ(d′
ij(B,C))+m′ ≥

(
n

2

)
r.

If m′ =
(

n
2

)
r then

(
n
2

)
− m′ =

(
n
2

)
−

(
n
2

)
r ≥

(
p+q+1

2

)
, so there exists at least

one difference ((u′
i − u′

j)
T , (y′

i − y′
j)

T )T ∈ Vn ∩ V ′
n for which d′

ij(B,C) > 0.

Because ρ is strictly increasing, this implies that
∑

V ′
n
ρ(d′

ij(B,C)) >
(

n
2

)
r so

we have a contradiction. Hence, any cylinder of type (A.4) that satisfies (A.5)

contains at least one difference involving an outlier. By letting ‖y‖ → ∞ for

the contaminated points and also making sure that the distance between them

is large, we have ‖y1 − y2‖ → ∞ in all cases, hence we can make sure that at

least one of the eigenvalues of C goes to infinity. Therefore, both B̂n(Zn) and

Σ̂n(Zn) break down in this case.

We now show that ǫ∗n ≤ (⌈1/2 − p − q +
√

1 + (1 − r)(4n2 − 4n)/2⌉)/n. Con-

dition 1 implies that there are at most p + q original points on the same

hyperplane of R
p+q. Hence, ∃α ∈ R

q, γ ∈ R
p such that αTyi − γTui = 0 for all

i ∈ I ⊂ {1, . . . , n} with size(I) = p + q. If α 6= 0 then ∃B ∈ R
p×q such that

γ = Bα which implies αT (yi − BTui) = 0,∀i ∈ I, so yi − BTui ∈ S with S a

(q − 1)-dimensional subspace of R
q. Take D ∈ R

p×q with ‖D‖ = 1 such that
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{DTu;u ∈ R
p} ⊂ S (such a D always exists). Now replace m = ⌈1/2−p−q +

√
1 + (1 − r)(4n2 − 4n)/2⌉ observations of Zn, not lying on S by ((lu0)

T , ((B+

tD)T lu0)
T )T , l = 1, . . . ,m for some arbitrarily chosen u0 ∈ R

p and t ∈ R. For

the contaminated points it then holds that the residuals rl(B+tD) equal 0 and

thus also the differences between residuals of two contaminated data points

equal 0. For the difference of two observations with indices i, j ∈ I we have

that (ri−rj)(B+tD) = yi−yj−BT (ui−uj)−tDT (ui−uj) ∈ S and for the dif-

ference of an observation with index i ∈ I and a contaminated observation we

have (ri−rl)(B+tD) = ri(B+tD) ∈ S. Denote {e1, . . . , eq−1} an orthonormal

basis of S and eq a normed vector orthogonal to S. Denote P = [e1, . . . , eq].

Consider C of the form C = PΛP T with Λ = diag(λ1, . . . , λq). Then we have

that ((rl − rl′)(B + tD))T C−1(rl − rl′)(B + tD) = 0 for the difference of 2

outliers. For the observations satisfying (ri − rj)(B + tD) ∈ S, there exists

coefficients ζ1, . . . , ζq such that (ri − rj)(B + tD) =
∑q−1

k=1 ζkek. Therefore

((ri − rj)(B + tD))T C−1(ri − rj)(B + tD)

=
q−1∑

k=1

ζke
T
k

( q∑

l=1

λ−1
l ele

T
l

) q−1∑

k=1

ζkek

=




q−1∑

k=1

ζkλ
−1
k eT

k




q−1∑

k=1

ζkek =
q−1∑

k=1

ζ2
kλ

−1
k .

Now
∑

i<j ρ((((ri − rj)(B + tD))T C−1(ri − rj)(B + tD))1/2) =

∑

diff of 2 outliers

+
∑

number on S

+
∑

remainder

≤
∑

number on S

+

(
n

2

)
r.

where number on S =
(

p+q
2

)
+⌈1/2−p−q+

√
1 + (1 − r)(4n2 − 4n)/2⌉(p+q).

Hence we need
∑

number on S

≤ 0. (A.6)

By letting λ1, . . . , λq−1 → ∞ we can make ((ri−rj)(B+tD))TC−1(ri−rj)(B+

tD) → 0, such that
∑

number on S → 0. We have that the optimal solution
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(B̂n(Z ′
n), Σ̂n(Z ′

n)) satisfies |Σ̂n(Z ′
n)| ≤ |C| for any (B+tD,C) satisfying (A.6).

Now |C| = λ1 · · ·λq and condition (A.6) does not depend on λq so we can let

λq → 0 yielding |C| → 0. By letting t → ∞, we thus obtain that both B̂n(Z ′
n)

and Σ̂n(Z ′
n) break down.

If α = 0, then γTui = 0 for all i ∈ I. We now put the

m = ⌈1/2− p− q +
√

1 + (1 − r)(4n2 − 4n)/2⌉ outliers on the vertical hyper-

plane γTui = 0 at infinity such that at least
(

n
2

)
−

(
n
2

)
r differences are lying

on the vertical hyperplane. It can easily be seen that if at least
(

n
2

)
−

(
n
2

)
r

points lie on a hyperplane, then this hyperplane is an optimal solution with an

accompanying covariance matrix having zero determinant. In this case how-

ever, the hyperplane γT (ui −uj) = 0 is vertical such that ‖B̂n(Z ′
n)‖ = ∞ and

|Σ̂n(Z ′
n| = 0. ¤

Proof of Theorem 2. Due to equivariance we may assume that B = 0 and

Σ = Iq, so y1 − y2 = ǫ1 − ǫ2 ∼ F . It now suffices to show that BGS(H) = 0.

Since the constant k can be chosen such that k = EF [ρ(‖ǫ1 − ǫ2‖)] which

assures consistency at the model with F the distribution of the difference of

the errors, it follows that ΣGS(H) = Iq. Because BGS is the GS-solution it

satisfies the first order condition:

∫∫
u(dH(r1 − r2))(u1 − u2)(y1 − y2 − BT

GS(H)(u1 − u2))T dH(u1 − u2,y1 − y2) = 0 (A.7)

Now suppose that BGS 6= 0. Let λ1, . . . , λq be the eigenvalues of ΣGS and

v1, . . . ,vq the corresponding eigenvectors. There will be at least one 1 ≤ j ≤ q

such that BGSvj 6= 0. Fix this j. From (A.7) it follows that we should have

∫∫
vT

j (BT
GS(u1 − u2))u(dH(r1 − r2))(y1 − y2 − BT

GS(H)(u1 − u2))
TvjdF (y1 − y2)dG(u1 − u2) = 0

which can be rewritten as
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∫

Rp
vT

j (BT
GS(u1 − u2))I(u1 − u2)dG(u1 − u2) = 0 (A.8)

with

I(u1 − u2) =
∫

Rq
u(dH(r1 − r2))(y1 − y2 −BT

GS(H)(u1 − u2))
TvjdF (y1 − y2).

Fix u1 − u2 and set d = (d1, . . . , dq)
T := BT

GS(u1 − u2). Since y1 − y2 is

spherically symmetrically distributed, for computing I(u1−u2) we may assume

w.l.o.g. that ΣGS = diag(λ1 . . . , λq) as well as vj = (1, 0, . . . , 0)T .

Because u(s) = ρ′(s)/s only differs from zero if s ≤ c. With s = dH(r1−r2) we

obtain
√∑q

j=1
(y1j−y2j−dj)2

λj
≤ c. For every d1 − c

√
λ1 ≤ y11 − y21 ≤ d1 + c

√
λ1

denote

C(y11−y21) =



(y12 − y22, . . . , y1q − y2q) ∈ R

q−1|
q∑

j=2

(y1j − y2j − dj)
2

λj

≤ c2 − (y11 − y21 − d1)
2

λ1





Then we can rewrite I(u1 − u2) as

I(u1 − u2)

=

∫ d1+c
√

λ1

d1−c
√

λ1

∫

C(y11−y21)

u(dH(r1 − r2))(y11 − y21 − d1)g((y11 − y21)2 + · · · + (y1q − y2q)2)d(y11 − y21) . . . d(y1q − y2q)

=

∫ c
√

λ1

−c
√

λ1

t

∫

C(d1+t)

u(dH(r1 − r2))g((d1 + t)2 + · · · + (y1q − y2q)2)d(y12 − y22) . . . d(y1q − y2q)dt.

Since C(d1 + t) = C(d1 − t) it follows that

I(u1 − u2) =
∫ c

√
λ1

0
t
∫

C(d1+t)
u(dH(r1 − r2))g

(
(d1 + t)2 + (y12 − y22)

2 + · · · + (y1q − y2q)
2
)

−g
(
(d1 − t)2 + (y12 − y22)

2 + · · · + (y1q − y2q)
2
)
d(y12 − y22) . . . d(y1q − y2q)dt.

If d1 > 0 we have (d1 + t)2 + (y12 − y22)
2 + · · · + (y1q − y2q)

2 > (d1 − t)2 +

(y12 − y22)
2 + · · · + (y1q − y2q)

2 (for t > 0) and since g is strictly decreasing

this implies I(u1 − u2) < 0. Similarly, we can show that d1 < 0 implies
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I(u1 − u2) > 0 and that d1 = 0 yields I(u1 − u2) = 0. Hence, we have shown

that vT
j (BT

GS(u1−u2)) > 0 implies I(u1−u2) < 0 and if vT
j (BT

GS(u1−u2)) < 0,

then I(u1 − u2) > 0. Also vT
j (BT

GS(u1 − u2)) = 0 implies I(u1 − u2) = 0.

However, due to the regularity condition 3 on the model distribution, the

latter event occurs with probability less than 1 − r. Therefore, we obtain

∫

Rp
vT

j (BT
GS(u1 − u2))I(u1 − u2)dG(u1 − u2) < 0

which contradicts (A.8), so we conclude that BGS = 0. ¤

Proof of Theorem 3. It can be shown that the GS-functional GS(H) =

(BGS(H), ΣGS(H)) can be represented (as in Lopuhaä 1989) by the following

equations

∫∫
u(dH(r1 − r2))(u1 − u2)(y1 − y2 − BT

GS(H)(u1 − u2))
T dHdH = 0 (A.9)

∫∫
qu(dH(r1 − r2))(y1 − y2 − BT

GS(H)(u1 − u2))(y1 − y2 − BT
GS(H)(u1 − u2))

T dHdH

=
∫∫

v(dH(r1 − r2))dHdHΣGS(H) (A.10)

with (u1,y1) and (u2,y2) realizations of two independent variables ∼ H. ri =

yi − BTui − α so r1 − r2 = y1 − y2 − BT
GS(H)(u1 − u2) and dH(r1 − r2) =

((r1 − r2)
T Σ−1

GS(H)(r1 − r2))
1/2.

We first derive the influence function of the slope matrix BGS at H0. From (A.9)

it follows that

∂

∂ǫ

∫∫
u(dHǫ

(r1 − r2))(u1 − u2)(y1 − y2 −BT
GS(Hǫ)(u1 − u2))

T dHǫdHǫ|ǫ=0 = 0

where Hǫ = Hǫ,z0 = (1 − ǫ)H0 + ǫ∆z0 . This yields
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∂

∂ǫ

[
(1 − ǫ)2

∫∫
u(dHǫ

(r1 − r2))(u1 − u2)(y1 − y2 − BT
GS(Hǫ)(u1 − u2))

T dH0dH0

+ 2ǫ(1 − ǫ)
∫∫

u(dHǫ
(r1 − r2))(u1 − u2)(y1 − y2 − BT

GS(Hǫ)(u1 − u2))
T dH0∆z0

+ ǫ2
∫∫

u(dHǫ
(r1 − r2))(u1 − u2)(y1 − y2 − BT

GS(Hǫ)(u1 − u2))
T ∆2

z0

]
|ǫ=0 = 0

Differentiating with respect to ǫ and accounting for equation (A.9) yields

∂

∂ǫ

[∫∫
u(dHǫ

(r1 − r2))(u1 − u2)(y1 − y2 − BT
GS(Hǫ)(u1 − u2))

T dH0dH0

]
|ǫ=0

+ 2
∫∫

u(dH0(r1 − r2))(u1 − u2)(y1 − y2 − BT
GS(H0)(u1 − u2))

T dH0∆z0 = 0

Rewriting term 1, we get

−
∫∫

u′(dH0(r1 − r2))
∂

∂ǫ
dHǫ

(r1 − r2)|ǫ=0(u1 − u2)(y1 − y2 − BT
GS(H0)(u1 − u2))

T dH0dH0

−
∫∫

u(dH0(r1 − r2))(u1 − u2)(u1 − u2)
T (−IF (z0;BGS, H0))dH0dH0

= 2
∫

u(dH0(r1 − r0))(u1 − u0)(y1 − y0 − BT
GS(H0)(u1 − u0))

T dH0

Since BGS(H0) = 0 and ΣGS(H0) = Iq we have dH0(r1−r2) =
√

(y1 − y2)T (y1 − y2) =

‖y1 − y2‖. Hence, we obtain

−
∫∫

u′(‖y1 − y2‖)
∂

∂ǫ
dHǫ

(r1 − r2)|ǫ=0(u1 − u2)(y1 − y2)
T dH0dH0

+
∫∫

u(‖y1 − y2‖)(u1 − u2)(u1 − u2)
T dH0dH0IF (z0;BGS, H0)

= 2
∫

u(dH0(r1 − r0))(u1 − u0)(y1 − y0)
T dH0 (A.11)

Using that

∂

∂ǫ
dHǫ

(r1 − r2)|ǫ=0

=
(−IF (z0;BGS, H0)

T (u1 − u2))
T

‖y1 − y2‖
(y1 − y2) +

1

2

(y1 − y2)
T

‖y1 − y2‖
IF (z0; Σ

−1
GS, H0)(y1 − y2)

the first term of (A.11) becomes
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−
∫∫

u′(‖y1 − y2‖)
∂

∂ǫ
dHǫ(r1 − r2)|ǫ=0(u1 − u2)(y1 − y2)

T dH0dH0

=

∫∫
(u1 − u2)(u1 − u2)

T dGdGIF (z0;BGS , H0)

∫∫
u′(‖y1 − y2‖)
‖y1 − y2‖

(y1 − y2)(y1 − y2)
T dF0dF0

− 1

2

∫∫
(u1 − u2)dGdG

∫∫
u′(‖y1 − y2‖)
‖y1 − y2‖

(y1 − y2)
T IF (z0; Σ

−1
GS , H0)(y1 − y2)(y1 − y2)

T dF0dF0

The last term vanishes because EG×G[u1 − u2] = 0. Hence equation (A.11)

becomes:

EG×G[(u1 − u2)(u1 − u2)
T ]IF (z0;BGS , H0)

[∫∫
u′(‖y1 − y2‖)
‖y1 − y2‖

(y1 − y2)(y1 − y2)
T dF0dF0

+

∫∫
u(‖y1 − y2‖)dF0dF0

]

= 2

∫
u(dH0(r1 − r0))(u1 − u0)(y1 − y0)

T dH0

From symmetry it follows that
∫∫ u′(‖y1−y2‖)

‖y1−y2‖ (y1 − y2)(y1 − y2)
T dF0dF0 =

∫∫
u′(‖y1 − y2‖)1

q
‖y1 − y2‖dF0dF0Iq hence we obtain

IF (z0;BGS , H0) = EG×G[(u1 − u2)(u1 − u2)
T ]−1 2

∫
u(‖y1 − y0‖)(u1 − u0)(y1 − y0)

T dH0

EF0×F0

[
u′(‖y1 − y2‖)‖y1−y2‖

q + u(‖y1 − y2‖)
]

Using u′(t)t = ψ′(t) − ψ(t)/t yields

IF (z0;BGS, H0)

= EG×G[(u1 − u2)(u1 − u2)
T ]−1 2

∫
(u1 − u0)dG

∫
u(‖y1 − y0‖)(y1 − y0)

T dF0

EF0×F0

[
1
q
ψ′(‖y1 − y2‖) +

(
1 − 1

q

)
u(‖y1 − y2‖)

]

= [Cov(u)]−1

∫
(u1 − u0)dG

∫
u(‖y1 − y0‖)(y1 − y0)

T dF0

EF0×F0

[
1
q
ψ′(‖y1 − y2‖) +

(
1 − 1

q

)
u(‖y1 − y2‖)

]

The influence function of ΣGS is derived in a similar way, now by differentiating

equation (A.10)

∂

∂ǫ

∫∫
qu(dHǫ

(r1 − r2))(y1 − y2 − BT
GS(Hǫ)(u1 − u2))(y1 − y2 − BT

GS(Hǫ)(u1 − u2))T dHǫdHǫ|ǫ=0

=
∂

∂ǫ

∫∫
v(dHǫ

(r1 − r2))dHǫdHǫ|ǫ=0ΣGS(H0) +

∫∫
v(dH0

(r1 − r2))dH0dH0IF (z0; ΣGS , H0)
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Differentiating and taking (A.10) into account leads to

EH0×H0 [v(‖y1 − y2‖)]IF (z0, ΣGS, H0)

+
1

2

∫∫ v′(‖y1 − y2‖)
‖y1 − y2‖

(y1 − y2)
T IF (z0, Σ

−1
GS, H0)(y1 − y2)dH0dH0Iq

− q

2

∫∫ u′(‖y1 − y2‖)
‖y1 − y2‖

(y1 − y2)
T IF (z0, Σ

−1
GS, H0)(y1 − y2)(y1 − y2)(y1 − y2)

T dH0dH0

= 2
∫

qu(‖y1 − y0‖)(y1 − y0)(y1 − y0)
T dH0 − 2

∫
v(‖y1 − y0‖)dH0Iq

and we rewrite this as (using IF (z0; Σ
−1
GS, H0) = −IF (z0; ΣGS, H0))

EH0×H0 [v(‖y1 − y2‖)]IF (z0, ΣGS , H0)

− 1

2

q∑

i,j=1

∫∫
v′(‖y1 − y2‖)
‖y1 − y2‖

(y1 − y2)
T
i IF (z0, (ΣGS)ij , H0)(y1 − y2)jdH0dH0Iq

+
q

2

q∑

i,j=1

∫∫
u′(‖y1 − y2‖)
‖y1 − y2‖

(y1 − y2)iIF (z0, (ΣGS)ij , H0)(y1 − y2)j(y1 − y2)(y1 − y2)
T dH0dH0

= 2

∫
qu(‖y1 − y0‖)(y1 − y0)(y1 − y0)

T dH0 − 2

∫
v(‖y1 − y0‖)dH0Iq

Eliminating the terms which are 0 and following Lopuhaä (1999, Lemma 2.1)

it holds that

γ1IF (z0; ΣGS, H0) − γ2trIF (z0; ΣGS, H0)Iq

= 2
∫

qu(‖y1 − y0‖)(y1 − y0)(y1 − y0)
T dH0 − 2

∫
v(‖y1 − y0‖)dH0Iq

where

γ1 = EF0×F0 [v(‖y1 − y2‖)] +
1

q + 2
EF0×F0

[
u′(‖y1 − y2‖)(‖y1 − y2‖)3

]

γ2 = EF0×F0

[
1

2q
v′(‖y1 − y2‖)‖y1 − y2‖

]
− 1

2(q + 2)
EF0×F0

[
u′(‖y1 − y2)‖y1 − y2‖3

]

or rewriting this with γ3 = EF0×F0 [ψ(‖y1 − y2‖)‖y1 − y2‖] gives:
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IF (z0; ΣGS , H0)

=
2

γ1
q

∫
ψ(‖y1 − y0‖)‖y1 − y0‖

[
(y1 − y0)(y1 − y0)

T

‖y1 − y0‖2
− 1

q
Iq

]
dF0 +

4
∫

(ρ(‖y1 − y0‖) − H)dF0

γ3
Iq

¤

Expression for ∇g(.). The matrix of partial derivatives ∇g(.) is given by

pq qq

pq ∂vec(A−1
n Bn)

∂vec(B)T

∂vec(A−1
n Bn)

∂vec(C)T

qq ∂vec(Vn+wnC)
∂vec(B)T

∂vec(Vn+wnC)
∂vec(C)T

These expressions can be obtained by differentiation. Denote ri := yi−BTui−

α

1.

∂vec(A−1
n Bn)

∂vec(B)T

=−(Iq ⊗ A−1
n )

∑

i<j

u′(dij)

dij
vec((ui − uj)(yi − yj)

T )vec((ui − uj)(ri − rj)
T C−1)T

+ (Bn ⊗ Ip)
T ((AT

n )−1 ⊗ A−1
n )

∑

i<j

u′(dij)

dij
vec((ui − uj)(ui − uj)

T )vec((ui − uj)(ri − rj)
T C−1)T

2.

∂vec(A−1
n Bn)

∂vec(C)T

=−(Iq ⊗ A−1
n )

∑

i<j

u′(dij)

2dij
vec((ui − uj)(yi − yj)

T )vec(C−1(ri − rj)(ri − rj)
T C−1)T

+ (Bn ⊗ Ip)
T ((AT

n )−1 ⊗ A−1
n )

∑

i<j

u′(dij)

2dij
vec((ui − uj)(ui − uj)

T )vec(C−1(ri − rj)(ri − rj)
T C−1)T
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3.

∂vec(Vn + wnC)

∂vec(B)T

=− 1(
n
2

)
k

∑

i<j

qu(dij) [(Iq ⊗ (ri − rj)) + ((ri − rj) ⊗ Iq)] ((ui − uj)
T ⊗ Iq)Kpq

− 1(
n
2

)
k

∑

i<j

w′(dij)

dij
vecCvec((ui − uj)(ri − rj)

T C−1)T

− 1(
n
2

)
k

∑

i<j

q
u′(dij)

dij
vec((ri − rj)(ri − rj)

T )vec((ui − uj)(ri − rj)
T C−1)T

4.

∂vec(Vn + wnC)

∂vec(C)T

=− 1(
n
2

)
k

∑

i<j

q
u′(dij)

2dij
vec((ri − rj)(ri − rj)

T )vec(C−1(ri − rj)(ri − rj)
T C−1)T

− 1(
n
2

)
k

∑

i<j

w′(dij)

2dij
vecCvec(C−1(ri − rj)(ri − rj)

T C−1)T

+
1(

n
2

)
k

∑

i<j

w(dij)Iqq

Lemma 1 Let (ũT
1 , ỹ1)

T , . . . , (ũT
n , ỹn)T be n ≥ p observations in R

p+1 and

wij ≥ 0 are weights associated with the difference of observation i and j.

Denote ui − uj =
√

wij(ũi − ũj) and yi − yj =
√

wij(ỹi − ỹj) such that if

diffUn = [uT
1 − uT

2 ,uT
1 − uT

3 , . . . ,uT
n−1 − uT

n ]T

then diffUn
TdiffUn has full rank. For a given (ũT

n+1, ỹn+1)
T let β̂n+1 be the

weighted least squares regression estimate for the differences of the n+1 points.

For any C > 0 and M > 0 there exists a finite constant K such that ‖β̂n+1‖ ≤

K for any (ũT
n+1, ỹn+1)

T with |yn+1 − yi| ≤ C + |βT (un+1 − ui)| for every

difference getting a non-zero weight and for some β with ‖β‖ < M , and K

only depends on the differences of the first n points and the constants C and

M .
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Proof of Lemma 1. Let β̂n be the weighted least squares estimate based

on the differences of the first n points. Let us denote diffun+1 = (uT
1 −

uT
n+1, . . . ,u

T
n − uT

n+1)
T , it can using Seber (1984 p.519) then be shown that

β̂n+1 = (diffUT
ndiffUn+diffuT

n+1diffun+1)
−1(diffUT

ndiffYn+diffuT
n+1diffyn+1).

Denote V = (diffUT
ndiffUn)−1 which is positive definite, then

β̂n+1

= [Ip − V diffuT
n+1(In + diffun+1V diffuT

n+1)−1diffun+1]β̂n

+ [V − V diffuT
n+1(In + diffun+1V diffuT

n+1)−1diffun+1V ]diffuT
n+1diffyn+1

To simplify the notation, put U = diffun+1, A = Ip − V UT (In + UV UT )−1U ,

and B = V − V UT (In + UV UT )−1UV such that we have

β̂n+1 = Aβ̂n + BUTdiffyn+1.

We have to show that A and BUTdiffyn+1 are bounded for any ũn+1 and

ỹn+1 or equivalently for every U and diffyn+1 satisfying the conditions stated

above. Note that In + UV UT is positive definite because ∀x 6= 0 ∈ R
n :

xT (In+UV UT )x = xT Inx+xTUV UTx > 0 since V is positive definite. Hence,

(In + UV UT )−1 is also positive definite and has a bounded norm. I + UV UT

has (i, j)th element given by

δi,j +
∑

k

(∑

l

uilvlk

)
ujk

and is of order ‖U‖2. Because V UT U is also of the order ‖U‖2 the expression

V UT (In + UV UT )−1U remains bounded as ‖U‖ → ∞. Hence, A remains

bounded for any U . For BUTdiffyn+1 we have the following inequalities:

‖BUTdiffyn+1‖≤‖BUT C‖ + ‖BUT Uβ‖
≤‖BUT‖|C| + ‖BUT U‖‖β‖
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Note that BUT U = V UT (In+UV UT )−1U = Ip−A which shows that ‖BUT U‖

is bounded. By assumption we have that ‖β‖ ≤ M such that it remains to

be shown that ‖BUT‖ is bounded. Note that BUT = V UT /‖U‖2(‖U‖−2(In +

UV UT ))−1. The (j, k)th element of V UT is
∑

i vjiuki. Since

|uki|
‖U‖ ≤ |uki|

‖uk‖
≤ 1

which implies that

|uki|
‖U‖2

→ 0,

we have that V UT /‖U‖2 goes to 0 when ‖U‖ → ∞. Moreover (‖U‖−2(In +

UV UT ))−1 is bounded when ‖U‖ → ∞. ¤

Proof of Theorem 4. We have to prove that the bootstrap estimates B̂∗
n and

Σ̂∗
n can only breakdown in bootstrap samples that contain less than cp distinct

good observations, which implies that there are less than p differences of two

good observations. For Σ̂∗
n only the explosion breakdown point is relevant,

since implosion is not harmful for the eventual (i.e. after linear correction) fast

bootstrap estimate of the parameter B. Note that the linear correction matrix

given by the partial derivatives is only computed once, based on the original

sample, and it will be as robust as the original GS-estimates are. Hence it has

breakdown point ǫ∗n. Now the bootstrap estimates (without linear correction)

are given by

B̂∗
n =A∗

n(B̂n, Σ̂n)−1B∗
n(B̂n, Σ̂n)

Σ̂∗
n =V∗

n(B̂n, Σ̂n) + w∗
n(B̂n, Σ̂n)Σ̂n.

It can easily be seen that Vn and w∗
n are in any case bounded so that we

only have to show that B̂n remains bounded when there are at least p distinct

differences of two good observations. Note that p is a strict minimum since
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otherwise it might occur that A∗
n is singular. (Here we assume that differences

of two good observations have weight u(d∗
ij) > 0.)

Now, B̂n is a multivariate weighted least squares estimate and we can apply

Lemma 1 since a multivariate least squares coefficient estimate essentially con-

sists of q univariate least squares estimates. The weights u(d∗
ij) are bounded,

hence they can only have a bounded effect. Consider a bootstrap sample with

k ≥ cp distinct good observations and suppose that (uT
k+1,y

T
k+1)

T is some

outlier included in the bootstrap sample. The effect of this outlier on the

bootstrap estimate will be bounded as can be seen as follows. There exists

some L, only depending on the original data set Zn such that λ1(Σ̂n) < L

for all Z ′
n obtained by replacing less than ǫ∗nn observations. It then holds that

inf
v

vT Σ̂−1v
vT v

= λq(Σ̂
−1
n ) > 1/L. Hence, in case ‖yk+1−yi−B̂T

n (uk+1−ui)‖ ≥
√

Lc

(where c is the constant for which it holds that ρ is constant on [c,∞)) it fol-

lows that
√

(yk+1 − yi − B̂T
n (uk+1 − ui))T Σ̂−1

n (yk+1 − yi − B̂T
n (uk+1 − ui)) ≥

c and consequently the difference will obtain zero weight in the weighted least

squares. In case ‖yk+1 − yi − B̂T
n (uk+1 − ui)‖ <

√
Lc for a certain i we have

that |yk+1,j − yi,j − B̂T
n,j(uk+1 − ui)| <

√
Lc for each j = 1, . . . , q. And also

|yk+1,j−yi,j| <
√

Lc+|B̂T
n,j(uk+1−ui)|. Furthermore, from the robustness of the

GS-estimator we have for all Z ′
n that ‖B̂n,j‖ < M for some M only depending

on Zn. Because only the differences satisfying ‖yk+1 − yi − B̂T
n (uk+1 − ui)‖ <

√
Lc have an influence it follows from Lemma 1 that there exists a bound

on the weighted least squares estimate ‖B̂WLS
k+1,j‖ depending only on the first

k observations, and on L, c and M . Hence, if we now consider all bootstrap

samples with at least cp distinct good observations we obtain a bound only

depending on the original data set Zn. The expected upper breakdown point

follows immediately. ¤
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Lemma 2 Let Z1 := (U1, Y1), . . . , Zn := (Un, Yn) ∼ F be a sequence of

i.i.d. random vectors. Let (Bn, Sn) be consistent estimators for (B, Σ). Let

κ : R → R be a function that is bounded and almost everywhere continuous.

If κ̃(Z1 −Z2, B, S) = κ((Y1 −Y2 −BT (U1 −U2))S
−1(Y1 −Y2 −BT (U1 −U2))),

then

1(
n
2

)
∑

i<j

κ̃(Zi − Zj, Bn, Sn)
P→ EF [κ̃(Z1 − Z2,B, Σ)]

Proof of Lemma 2. The proof is based on an argument used in Davies

(1987, proof of Theorem 3). Denote κ̃n(z1 − z2) := κ̃(z1 − z2, Bn, Sn) and

κ̃(z1 − z2) := κ̃(z1 − z2,B, Σ). For any z1 and z2 such that κ is continuous at

(y1 − y2 − BT (u1 − u2))Σ
−1(y1 − y2 − BT (u1 − u2)), and for any sequence

(z1n − z2n)n such that (z1n − z2n)n → z1 − z2, we have that

κ̃n(z1n − z2n) →
n→∞ κ̃(z1 − z2).

Since κ is almost everywhere continuous, this convergence holds for almost all

z1−z2. Let Hn be the empirical distribution of Z1−Z2, . . . , Zn−1−Zn we know

that Hn(z1−z2)
a.s.→ H(z1−z2) by using Theorem 4.1.1 of Révész (1968) which

states the law of the large numbers for strong stationary sequences. Hence we

can apply Theorem 5.5 of Billingsley (1968). Define γ : R → R by γ(y) = y if

inf κ ≤ y ≤ sup κ, γ(y) = sup κ if y ≥ sup κ and γ(y) = inf κ if y ≤ inf κ. We

then obtain from the theorem that

∫
γ(κ̃n(z1 − z2))dHn →

∫
γ(κ̃(z1 − z2))dH

since γ is bounded and uniformly continuous.

Proof of Theorem 5. We mostly follow the lines of Salibian-Barrera and

Zamar (2002) and Salibian-Barrera et al. (2006).
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We can write the estimating equations as follows:

B̂n =An(B̂n, Σ̂n)−1Bn(B̂n, Σ̂n)

Σ̂n =Vn(B̂n, Σ̂n) + wn(B̂n, Σ̂n)Σ̂n

with properly defined functions An, Bn, Vn and wn.

Consider the function f : R
pq+q2 → R

pq+q2
, for B ∈ R

p×q and C ∈ R
q×q:

f




vec(B)

vec(C)




:=




vec(An(B,C)−1Bn(B,C))

vec(Vn(B,C) + wn(B,C)C)




Let Θ̂n := (vec(B̂n)T vec(Σ̂n)T )T . We have that f(Θ̂n) = Θ̂n. Since ρ is suffi-

ciently smooth, the function f allows a Taylor expansion around Θ := (vec(B)T vec(Σ)T )T :

Θ̂n = f(Θ) + ∇f(Θ)(Θ̂n − Θ) +
1

2
(I ⊗ (Θ̂n − Θ)T )Hf(Θ̃n)(Θ̂n − Θ) (A.12)

Here ∇f(.) ∈ R
(pq+qq)×(pq+qq) is the Jacobian and Hf(.) ∈ R

(pq+q2)2×(pq+q2) is

the Hessian matrix of f . The value of Θ̃n in the remainder term lies between

Θ̂n and Θ. The Hessian is obtained by taking the partial derivatives of the

entries of the Jacobian, the matrix of the partial derivatives of f . Straightfor-

ward calculations then yield that each entry in the Hessian is a combination

of products of means. Taking into account that the derivative of ρ vanishes

outside some interval, the assumptions on ρ ensure the existence of the pop-

ulation analogues of the means. Furthermore, Lemma 2 then guarantees that

‖Hf(Θ̃n)‖ = Op(1).

From the consistency of the estimators we have that ‖Θ̂n − Θ‖ = Op(n
−1/2).

It follows that the remainder term is op(n
−1/2).

We can now rewrite (A.12) as follows:
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√
n(Θ̂n − Θ) = [I −∇f(Θ)]−1

√
n(f(Θ) − Θ) + op(1).

It needs to be shown that the bootstrap distribution of the right-hand side

of this equation converges to the asymptotic distribution of
√

n(Θ̂n −Θ). For

any Xn, Yn, by Xn
.∼ Yn, we denote that Xn and Yn have the same limiting

distribution. We have

√
n(Θ̂n − Θ)

.∼ [I −∇f(Θ)]−1
√

n(f(Θ) − Θ). (A.13)

Define the function g : R
p×p × R

p×q × R
q×q × R

q×q → R
pq+q2

by

g(A,B, V,W ) = (vec(A−1B)T , vec(V + W )T )T .

Denote T = (vec(B)T vec(C)T )T and

Y n(T ) := (An(.),Bn(.),Vn(.),Wn(.))

where Wn(.) := wn(.)C. Note that the components are actually means. Fur-

thermore, denote by µY (T ) the limiting values of these means. We then have

g(Y n(T )) = f(T ) for any T and also g(µY (Θ)) = Θ.

From here we can follow the same reasoning as in Salibian-Barrera et al. (2006)

which leads to

√
n(Θ̂n − Θ)

.∼ [I −∇f(Θ̂n)]−1
√

n(f∗(Θ̂n) − Θ̂n))

The right-hand side is actually (vec(
√

n(B̂∗
n − B̂n))T vec(

√
n(Σ̂∗

n − Σ̂n))T )T ,

and the proof is complete. ¤
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