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Abstract

This paper presents a document classifier based on text content features and
its application to email classification. We test the validity of a classifier which
uses Principal Component Analysis Document Reconstruction (PCADR),
where the idea is that principal component analysis (PCA) can compress
optimally only the kind of documents - in our experiments email classes
- that are used to compute the principal components (PCs), and that for
other kinds of documents the compression will not perform well using only a
few components. Thus, the classifier computes separately the PCA for each
document class, and when a new instance arrives to be classified, this new
example is projected in each set of computed PCs corresponding to each class,
and then is reconstructed using the same PCs. The reconstruction error is
computed and the classifier assigns the instance to the class with the smallest
error or divergence from the class representation. We test this approach in
email filtering by distinguishing between two message classes (e.g. spam from
ham, or phishing from ham). The experiments show that PCADR is able
to obtain very good results with the different validation datasets employed,
reaching a better performance than the popular Support Vector Machine
classifier.
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1. Introduction

In automatic document classification the aim consists of automatically
assigning a new unseen document to one or more predefined classes, based
only on certain features of the new instance. Document classification can
be used for document filtering and routing to topic-specific processing mech-
anisms such as information extraction and machine translation. However,
it is equally useful for filtering and routing documents directly to humans.
Applications are e.g. filtering of news articles for knowledge workers, routing
of customer documents in a customer service department, identification of
criminal activities and filtering of undesired emails.

In the present work, we focus on document classification applied on fil-
tering emails, in order to present to the user only the desired messages, since
it is an important task given that email is one of the most popular ways of
communication between people in all social, politic or economic organiza-
tions; with people using this electronic medium to share information, ideas
and knowledge.

The popularity of emails is greatly due to the economy and rapidity of
sending emails, making it possible to share any kind of information with sev-
eral distant people at the same time. Nevertheless, these attributes that make
emails popular, constitute also their weak points, since, given the facility to
send them, the number of unsolicited messages with commercial and financial
purposes is enormous. The most common type is spam, which include mainly
publicity, but there are more dangerous types like phishing, which tries to
steal financial identities. The problem of undesired emails is a serious grow-
ing issue (Fawcett, 2003), which not only consumes users’ time and energy
to identify and remove these messages, but also causes many problems such
as taking up the limited mailbox space, wasting network bandwidth, loosing
important personal emails and even leads to direct financial losses. Given
that, automatic classification of messages is not only desired but required to
deal with this problem.

Within the several existing techniques to deal with email filtering (Guzella
and Caminhas, 2009), a very promising approach is the use of content-based
classifiers (Yu and Xu, 2008), using the text content of the messages rather
than black lists, header or sender information. Some seminal papers in this
sense include the use of bag-of-words representations and Bayesian classifiers
like (Androutsopoulos et al., 2000), (Brutlag and Meek, 2000), (Robinson,
2003) and (Carreras et al., 2001). There are also interesting works on phish-
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ing detection like (Fette et al., 2007) and (Abu-Nimeh et al., 2007), describ-
ing a set of important features to distinguish phishing emails. More recent
works include the use of n-grams as features (Kanaris et al., 2007) and Sup-
port Vector Machines (Sculley and Wachman, 2007) and compression models
as classifiers (Bratko et al., 2006). Although state-of-the-art email filtering
methods perform with high true positive and low false positive rates, there
is a constant search into novel ways of solving the problem, since spammers
and phishers are always evolving their techniques.

In this work we apply and test the validity of a novel approach for email fil-
tering based on document reconstruction with Principal Component Analysis
(PCADR). The technique of PCA reconstruction has been successfully used
in computer vision for pedestrian detection (Malagón-Borja and Fuentes,
2009) and novelty detection (Hoffmann, 2007), but as far as we know it has
not been used for text document classification or email filtering. The idea
of this approach is that PCA can only perform a good reconstruction of the
data that was used to compute the PCA basis, and that for other kind of
data the reconstruction is poor. Thus, the classifier performs separately the
PCA for each message class, obtaining a set of principal components (PCs)
for each class. When a new instance arrives to be classified, this new exam-
ple is projected in each set of computed PCs (reducing the dimensionality
of the example to obtain a reduced example) and then is reconstructed using
the same PCs. The reconstruction is understood as a projection of the re-
duced example into the original space, obtaining in this way a reconstructed
example which has a dimensionality equal to the original example. Finally,
the reconstruction error (the difference between the original example and the
reconstructed example) is computed and the classifier assigns the example to
the class with the smallest error.

One of the main drawbacks of PCA when applied to large datasets is the
expensive time it requires to perform an eigenvalue decomposition (O(n3)
using traditional methods) to find the PCs. In this work we deal with this
problem by using the Power Factorization Method (PFM), a technique that is
a generalization of the classic Power Method (Hotelling, 1933) which has been
successfully used in some image analysis applications like multiframe motion
segmentation (Vidal et al., 2008). PFM is simple and fast to approximate a
fixed number of eigenvectors from a dataset.

We test the PCADR approach with several public email corpora: PU1,
Ling-Spam, Phishing, SpamAssassin and TREC-07 spam corpus. These cor-
pora contain messages collected in different periods of time and under very
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different set-ups. In our experiments, we use 10-fold cross validation, an-
ticipatory testing and cross-corpus testing. The first validation reveals the
general behavior schema of the classifier. In the anticipatory testing, we or-
der emails from one corpus by date, we train the classifier on older emails and
test on more recent ones. This setting helps to understand if the variance of
the data captured by the PCA is able to persist over time. The cross-corpus
testing is designed to test the classifier in a more drastic scenario, changing
not only the timeframe, but also in data structure. This is accomplished by
training with messages from one corpus and testing with messages from a
different one. The goal of this last experimental setting is to understand if
PCADR is able to capture the essential core information from the classes it
wants to describe.

In order to have a better overview of the performance of the PCADR
classifier, we present a comparison for every experiment with the SMO clas-
sifier, a popular Support Vector Machine (SVM) with good behavior in text
document classification.

The contributions of our work are the evidence that the technique of
PCADR behaves very well in classifying email messages, its easy modeling
and fast implementation which permit to extend this technique to other (text)
classification tasks, and the evidence that PCADR is able to extract and
synthesize the essential information for robustly representing a class. This
method gives stable classification results when testing on different corpora,
and is able to generalize the class patterns in extreme circumstances, when
training under a given setup and testing with a complete different one. Our
findings contribute to the development of more advanced email filters and
open new opportunities for text classification in general.

The remainder of this paper is organised as follows. Section 2 gives an
overview of the related research. Section 3 introduces the architecture of
the classifier PCADR. Section 4 describes the corpora used in this work, the
preprocessing, the training and testing of the models and discusses our ex-
perimental evaluation of PCADR for email classification. Section 5 concludes
this work with lessons learnt and future research directions.

2. Related Research

Because in text classification, the documents are often represented by
a large vocabulary of individual terms, dimensionality reduction has been
popular for this task since the 90s. One of the most common technique is
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Latent Semantic Analysis (LSA) (Deerwester et al., 1990). LSA is an applica-
tion of principal component analysis (PCA) where a document is represented
along its semantic axes or topics. The dimensions in LSA are computed by
singular value decomposition of the term correlation matrix obtained from
a large document collection. In a text categorization task, documents are
represented by a LSA vector model both when training and testing the cat-
egorization system (e.g., (Ishii et al., 2006; Pu and Yang, 2006)). Other
models such as probabilistic Latent Semantic Analysis (pLSA) (Hofmann,
1999) and Latent Dirichlet Allocation (Blei et al., 2003) are currently pop-
ular as topic representation models; where documents are represented as a
mixture of topic distributions and topics as a mixture of words distributions.
These models have the disadvantage that identifying the correct number of
latent components is a difficult and computationally expensive problem (Blei
et al., 2003).

Linear Discriminant Analysis (LDA) is a classification/dimensionality re-
duction technique (Fisher, 1936), which uses the class information to project
the data into a new space where the ratio of between-class-variance to within-
class-variance is maximized in order to obtain an adequate class separability.
LDA performs a projection of the complete training set in the new space (one
projection per class). To classify a new unseen example it is projected into
the new space and then its projection is compared with the mean of each
projected training class. LDA also can be used as a dimensionality reduc-
tion technique similar to PCA, but using class information to improve the
separation between classes in the new space (Anderson, 2003). In (Torkkola,
2001), the author mentions that PCA aims at optimal representation of the
data but that it does not help for an optimal discrimination of the data,
and then proposes LDA to classify text documents. Nevertheless LDA as
classifier tends to perform worse than a Support Vector Machine (SVM) for
text classification (Kim et al., 2005).

Non-Negative Matrix Factorization (NMF) is another dimensionality re-
duction technique, similar to PCA. It projects the data to a new space, but
coefficients obtained with NMF are only positive. This method has recently
become popular for text classification (Barman et al., 2006; Berry et al., 2009;
Silva and Ribeiro, 2009).

In the field of email filtering, several different methods have been pro-
posed (e.g., (Gansterer et al., 2005; Goodman et al., 2005; Cormack, 2007;
Guzella and Caminhas, 2009)). We cite here some seminal papers for spam
classification using traditional Bayesian filters like (Androutsopoulos et al.,
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2000), (Robinson, 2003) and (Carreras et al., 2001). There are also interest-
ing works on phishing detection like (Fette et al., 2007), (Abu-Nimeh et al.,
2007) and (Gansterer and Pölz, 2009), where the authors describe discrim-
inative features to distinguish phishing emails. (Brutlag and Meek, 2000)
investigate the effect of feature selection by means of the mutual information
statistic on email filtering. (Xia and Wong, 2006) discuss email categoriza-
tion in the context of personal information management. In recent work like
(Bratko et al., 2006), (B́ıró et al., 2008) and (Kanaris et al., 2007) the authors
use respectively compression models, Latent Dirichlet Allocation models and
n-grams to produce more robust features for email filtering. In (Gomez and
Moens, 2010) and (Gomez and Moens, 2011), Biased Discriminant Analysis
(BDA) and Average Neighbor Margin Maximization (ANMM), two extended
versions of LDA, are used for email filtering. In (Janecek and Gansterer,
2010), the authors use several methods based on NMF for email filtering.

In line with the LSA approach, which is in essence a PCA applied to a
term-document matrix, most of the works devoted to text classification and
email filtering where PCA is used, employ PCA as a first step to reduce
the dimension of the term space, after which the classification is performed
using standard classification algorithms (e.g., SVM, Naive Bayes, k-nearest
neighbor) (Gee, 2003; Gansterer et al., 2007). In this work, we focus on
the discriminative properties of PCA to build a classifier for filtering email
messages in a framework where PCA is used for document reconstruction.
To the best of our knowledge there is no work devoted to PCA document
reconstruction in email filtering or text classification in general.

3. Classifier Architecture

3.1. Principal Component Analysis for Document Reconstruction.

Principal Components Analysis (PCA) was first developed by Pearson
(Pearson, 1901) and its statistical properties were investigated in detail by
Hotelling in his seminal paper (Hotelling, 1933). Anderson (Anderson, 2003)
has given one the most comprehensive exposition of this technique. In gen-
eral, PCA is a popular method that reduces data dimensionality by perform-
ing a covariance analysis between factors (Jolliffe, 1986). Such technique has
been successfully used as an initial step in many applications in computer
vision, data compression, pattern recognition, etc. The formulation of stan-
dard linear PCA, using emails as the data to compress, is as follows. Let
{(x1, c1), (x2, c2), . . . , (xn, cn)}, with X = {x1,x2, . . . ,xn}, be a set of labeled
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email messages with their corresponding classes, where xi ∈ Rd is the i-th
email, represented as a d dimensional column vector (where d is the number
of features used to represent a message), and ci ∈ C is the label of xi. The
“mean message vector” of the set is defined as:

µ =
1

n

n∑
i=1

xi (1)

Then, considering M = X − µ as the original data centered by subtracting
the mean vector, the covariance matrix Co is given by:

Co =
1

n
(M)(M)T (2)

The next step consists of computing the eigenvalues and their correspond-
ing eigenvectors from the covariance matrix; these vectors form a PCA basis
or the principal components (PCs) of Co. These eigenvectors can be com-
puted in several ways. In our system we do not compute the eigenvectors
directly from Co, rather we use a relation of the covariance matrix with the
Singular Value Decomposition (SVD), since SVD is less restrictive and can
be performed on any d× n matrix.

The SVD is a technique for decomposing a matrix into a set of rotation
and scale matrices. Using the same M as above, we have the decomposition
as:

M = USVT (3)

where M ∈ Rd×n is the original centered data, U ∈ Rd×d, S is a diagonal
matrix of size Rd×n, and V ∈ Rn×n; with both U and V being orthogonal.
The following equation show the relation between SVD and the covariance
matrix using the matrix M as the link:

MMT = (USVT )(USVT )T = USVTVSUT = US2UT (4)

We use that relation to compute the PCA basis (i.e. the PCs) using the
Power Factorization Method (PFM), a technique that is a generalization of
the Power Method and which reduces the required processing time by com-
puting only a given (fixed) number of PCs instead of performing the complete
decomposition. This method is explained with more detail in section 3.2.

The computed PCs are then sorted in decreasing order using the eigen-
values as reference, in this manner a projection onto the space defined by the
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first l PCs (1 ≪ l ≪ d) would be optimal with respect to the information
loss.

Now, let W be the matrix whose columns are the first l PCs extracted
from the matrix X using the process described above, with W ∈ Rd×l. The
projection of an email message x (represented as a column vector) into the
eigenspace is:

p = WT (x− µ) (5)

The concept of document/message reconstruction with PCA can be un-
derstood as follows: the message vector is first projected into the PCs, and
from this projection, the idea is to try to recover the original message vector
using the same PCs. Thus the reconstructed message vector x′ is:

x′ = Wp+ µ = WWT (x− µ) + µ (6)

Finally, the reconstruction error is defined as the difference between the
original message vector and the reconstructed message vector. Using the
Euclidean distance we have:

r = |x− x′| =

√√√√ d∑
i=1

(xi − x′
i)
2 (7)

In general, when more PCs are used to obtain the projection, the infor-
mation loss will be less; thus we will have a more accurate reconstruction of
the message vector. Additionally, the more similar the message vector x is to
the messages used to generate the matrix W, the better the reconstruction
will be for a fixed number of PCs.

3.2. Power Factorization Method.

Performing PCA using traditional methods like the QZ algorithm (Moler
and Stewart, 1973), is expensive for large matrices because the internal de-
composition takes O(n3), then the use of alternative methods is useful. The
Power Factorization Method (PFM) is a generalization of the classic Power
Method exposed by Hotelling (Hotelling, 1933), and is a fast technique for
approximating low rank matrices. The PFM technique is discussed in detail
in (Hartley and Schaffalitzky, 2004) and (Morita and Kanade, 1997). In order
to carry out PCA using PFM in our system, we have the centered message
matrix M ∈ Rd×n defined above. Then, the idea is to represent the column
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space of M by a small number l of vectors. Also, we want to find the matrix
M̂ of rank l that is closest to M using the Frobenius norm. A common way
to do it is by using SVD. Let M = USVT , where the diagonal entries of
S (the singular values) are in descending order. Then the first l columns of
U form an orthonormal basis for the dimension-l subspace, i.e. the PCA
basis or the PCs we need. Additionally, the closest rank-l matrix to M is the
matrix M̂ = US(l)VT , where S(l) represents the (diagonal) matrix formed
from S by setting all but the first l diagonal entries to zero.

In the PFM algorithm, two matrices are estimated W ∈ Rd×l and B ∈
Rn×l, such that X̂ = WBT is the closest rank-l approximation to M. Here,
W has orthonormal columns, which therefore are the PCs we are looking for
and W is the projection matrix we need. The matrix estimation is done by a
simple iterative procedure, which starts from an initial value for the matrix
W0, then:

1. k ← 0

2. Bk = MTWk

3. Wk+1 = MBk

4. Apply the Gram-Schmidt algorithm (QR-factorization) to orthonor-
malize the columns of Wk+1

5. k ← k + 1

According to (Hartley and Schaffalitzky, 2004), the product WkB
T
k is

guaranteed to converge linearly (even from a random starting point for W0)

to the closest rank-l matrix M̂ to M. In the same work,the authors establish
that a small number (in this work we use 6) of iterations of the procedure is
sufficient to converge to the PCA basis.

3.3. Classification using PCADR.

PCA can be seen as a process to reveal the internal structure of the data
that are being analyzed, by means of looking for the set of PCs that best
describes the variance or the distribution of such data. Therefore, these PCs
are going to preserve better the information of the messages on which the
PCA was applied, or of those that are similar. Thus, if we have a set of PCs
that were obtained from a set of, for example, spam messages only, these
must better reconstruct other spam messages than another type of messages
(for example ham), and viceversa, if we have a set of PCs obtained from ham
messages, the reconstruction of the spam messages will not be as good.

9



Given such assumption, a classifier based on PCA document/message
reconstruction (PCADR) can be created. This classifier will decide when an
unseen incoming message belongs to one of two exclusive classes (e.g. spam
from ham, or phishing from ham). The algorithm to perform this binary
classification is the following:

Before the actual classification, we train the classifier:

1. Preprocess the labeled messages to obtain two message matrices X for
class 1 and Y for class 2

2. Perform PCA for the message matrixX to obtain the projection matrix
Wx, composed by l PCs, and the mean vector µx

3. Perform PCA for the message matrixY to obtain the projection matrix
Wy, composed by l PCs, and the mean vector µy

For each new message we assign the appropriate class:

1. Preprocess the message to obtain the message vector z

2. Use the matrices Wx and Wy and the mean vectors µx and µy to
perform two reconstructions
(a) z′x = WT

xWx(z− µx) + µx

(b) z′y = WT
y Wy(z− µy) + µy

3. Obtain the reconstruction errors
(a) rx = |z− z′x|
(b) ry = |z− z′y|

4. The total reconstruction error is then rt = ary− brx, where a and b are
positive values used to weigh the errors, depending on the importance
of each class

5. Classify the message using the following criterion

class(z)=

{
class 1 if rt ≥ 0
class 2 if rt < 0

4. Experiments and Results

4.1. Corpora.

The public email corpora we use for performing our tests are: the PU11

corpus (Androutsopoulos et al., 2000); the Ling-Spam2 (LS ) corpus (An-

1Available at: http://nlp.cs.aueb.gr/software.html
2Available at: http://nlp.cs.aueb.gr/software.html
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Corpus Spam Phishing Ham Total

PU1 481 618 1099
PC 1250 1250 2500
LS 481 2412 2893
SA 4150 1897 6047

TREC 50199 25220 75419

Table 1: Number of messages per corpus.

droutsopoulos et al., 2000); the SpamAssassin (SA)3 corpus; the TREC 2007
Public Spam Corpus (TREC )4(Cormack, 2007); and finally the Phishing
Corpus (PC ), created by randomly selecting 1250 phishing messages from
the Nazario’s corpus5 and 1250 ham messages from the TREC corpus. The
number of emails in each corpus is listed in table 1 in ascending order.

4.2. Preprocessing.

In general an email consists of two parts: the header and the body mes-
sage. The header contains information about the message in the form of
many fields like sender, subject, receiver, servers, etc. The body contains
the message itself and usually takes one of two forms: HTML or plain-text.
The HTML emails contain a set of tags to format the text to be displayed
on screen. Before applying PCADR, the corpora of emails are pre-processed
by removing all the structured information, i.e. the header and the HTML
tags. In this way, only the text content from the document is extracted.
The next step consists of building the vocabulary of the email messages. We
choose to remove words that are evenly distributed over the classes by means
of a mutual information statistic, obtaining 1000 initial features for the PU1
and PC datasets and 5000 initial features for the rest of the corpora. These
numbers were selected depending on the number of unique terms in the cor-
pus, considering that PU1 and PC are the smallest corpora. Additionally, we
weight the remaining words in each document by a TF-IDF schema. In this
way the importance of each term increases proportionally to the number of
times it appears in the document, but is offset by the frequency of the term
in the whole corpus. We do this preprocessing for each corpus, and what we

3Available at: http://spamassassin.apache.org/publiccorpus/
4Available at: http://plg.uwaterloo.ca/∼gvcormac/treccorpus07/
5Available at: http://monkey.org/∼jose/wiki/doku.php?id=PhishingCorpus
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X =



x1 x2 x3 . . . xn

tfidf1,1 tfidf1,2 tfidf1,3 . . . tfidf1,n
tfidf2,1 tfidf2,2 tfidf2,3 . . . tfidf2,n

.

..
.
..

.

..
. . .

.

..
tfidfd,1 tfidfd,2 tfidfd,3 . . . tfidfd,n



Y =



y1 y2 y3 . . . ym

tfidf1,1 tfidf1,2 tfidf1,3 . . . tfidf1,m
tfidf2,1 tfidf2,2 tfidf2,3 . . . tfidf2,m

..

.
..
.

..

.
. . .

..

.
tfidfd,1 tfidfd,2 tfidfd,3 . . . tfidfd,m



Figure 1: Structure of the data matrices.

obtain at the end are the message matrices X ∈ Rd×n and Y ∈ Rd×m, where
each column is a message vector of size d ∈ {1000, 5000}, and n and m are
the numbers of messages of each class in the corpus. These message matrices
are the ones used to perform the PCADR. The structure of the matrices X
and Y is shown is figure 1.

4.3. Training and Testing the Classification Model.

The model for training is constructed by applying PCA to the message
matrices X and Y as explained in sections 3.1 and 3.2, to obtain the pro-
jection matrices Wx and Wy as explained in section 3.3, which are stored
and used later for the testing phase. Experimentally we defined the value
l = 128 to be the rank of the W matrices, i.e. PCADR is performed using
128 features. We chose this value since the rank of the W matrices should be
significantly reduced (in this case about or less than one order of magnitude)
than the one of the original data matrices X and Y. The proposed rank
reduction makes it worth applying the PFM to fast extract the PCs, while
preserving the variance inside the original data (Gomez and Moens, 2010),
(Gomez and Moens, 2011).

In the case of the experiments where we classify spam versus ham, spam
is considered as the positive class, or matrix X. In the case of phishing
versus ham, phishing is the positive class, or matrix X. Consequently, for
the values of a and b, which indicate the weight of each error in the testing
phase as explained in section 3.3, we defined experimentally values of a = 1
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and b = 1.03, giving more importance to the ham class. This is done because
in general, the idea is to preserve the ham messages, i.e., to reduce the false
positives. Changing these weights leads to build a classifier with different
behavior.

In order to assess the time complexity of the PCA based on PFM and
the accuracy of the classifier based on the PCs of a class, we also perform
experiments with the traditional singular value decomposition, using the im-
plementation provided by the Jama package, which is based on the QZ al-
gorithm. Given that the PCs extracted with the PFM could be different
than the ones found by the traditional method, slight differences in the re-
construction are expected and consequently small changes in the measures
of performance are also expected, but, these differences are not statistically
significant (ρ > 0.05, using a Wilcoxon signed rank test testing the hypoth-
esis that F (x) <> G(y) i.e. the values of one method tend to be different
than the values of the other).

Additionally, in order to compare the performance of the PCADR classi-
fier, we also use the popular SMO classifier (Platt, 1998), a linear SVM which
is known by its very good performance in sparse data and which is especially
well suited for text classification. We used the SMO implementation from the
Weka package, using the following settings: a lineal kernel (polynomial with
exponent 1); complexity constant equal to 100, which makes the SVM works
better (Sculley and Wachman, 2007); gamma of 0.001; no normalization of
the variables, which makes the SVM to work faster with sparse instances
(Witten and Frank, 2000); and building of logistic models, in order to obtain
better constructions of the ROC (see below). The SVM is trained using the
whole set of terms (without any feature selection or extraction), and using
binary representation (1 if the feature is present in the message and 0 if not)
since it is known that a binary representation performs better than the TF-
IDF representation with a SVM (Drucker et al., 1999). The total number of
terms varies depending of the corpus. We used several reported parameters
from the literature trying to obtain the best (and fast) performance for SVM
in text classification.

For testing we performed several types of experiments: 10-fold cross vali-
dation, anticipatory testing and cross-corpus testing. It is known that 10-fold
cross validation is not the best way to test an email filter (Bratko et al., 2006),
but we performed these experiments to test how well the PCADR performs
under a fixed scenario. We applied 10-fold cross validation for: PU1, PC and
LS corpora. For the PU1 and LS corpora, they were already divided by the
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Experiment Training Testing
corpus corpus

1 Subset of 4500 messages (2250 spam Whole LS corpus
and 2250 ham) from TREC corpus

2 Whole LS corpus Subset of 4500 messages (2250 spam
and 2250 ham) from TREC corpus

3 Subset of 9000 messages (4500 spam Whole SA corpus
and 4500 ham) from TREC corpus

4 Whole SA corpus Subset of 9000 messages (4500 spam
and 4500 ham) from TREC corpus

5 Whole LS corpus Whole SA corpus
6 Whole SA corpus Whole LS corpus

Table 2: Description of the cross-corpus experiments

creators (Androutsopoulos et al., 2000) into 10 parts of equal size, with equal
proportion of ham and spam messages across the 10 parts. The PC corpus
was randomly split into 10 parts, keeping the same proportion of phishing
and ham consistent across the 10 parts.

We also performed one experiment in order to test the anticipatory pro-
prieties of the classifiers by training with data in the past and test with data
in the future. This experiment was done for the TREC corpus, where the
emails are sorted by date, using a one-off schema, by taking a small part of
the examples with an early date for training, and the later data for testing.
We took 9020 messages, corresponding to the first week, for training and the
remaining 66399 messages, corresponding to (almost) 11 weeks in the future
for testing.

Finally, the cross-corpus experiments were done by training the models
with messages from one corpus and tested with messages from a complete
different corpus. We performed six cross-corpus experiments which are spec-
ified in table 2. The cross-corpus experiments were designed thinking about
extreme cases where an email filter is trained with email messages that were
selected under one given setup (users, inboxes, dates, subjects, etc.) and is
tested under a complete different one. In this way we can see how well the
features and the classifiers are able to generalize on the email classes.

As is common in the binary email filtering problem, we present results
taking spam (or phishing) messages as the positive class, since these are the
messages filtered by the models. Results are expressed for each experiment
using the spam (phishing) F1 measure (computed only for the positive spam
or phishing class), which summarizes the spam (phishing) precision and spam
(phishing) recall; accuracy, which gives a general overview of the classification
with the defined parameters; and the area under the ROC (Receiver Oper-
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ating Characteristic) curve (here called ROCA). The ROCA metric aims at
a high true positive rate and a low false positive rate and it is an important
measure for commercial settings in email filtering, where the cost for mis-
classifying a legitimate email as spam or phishing is high. In the case of the
SVM classifier, the classifier first fits a logistic model to its output in order
to produce a ROC for the classification. In the case of the PCADR classifier,
the ROC is constructed by varying the classification threshold according to
the total reconstruction error in the training data, where rt ≥ threshold indi-
cates a positive classification (usually threshold = 0), obtaining in this way
the set of points to plot the ROC. Finally, in both cases, using a library from
Weka, based on the Mann Whitney statistic (Mann and Whitney, 1947), we
obtain the ROCA measure.

All the experiments were performed using a Core i7 1.7Ghz PC with 4GB
in RAM using Windows and Java.

4.4. 10-Fold Cross Validation.

Tables 3, 4 and 5 show the results for the PCADR and SVM classifiers for
the three corpora: PU1, PC, and LS, performing a normal classification using
10-fold cross validation. The first column of each table indicates the method:
PCADR (PFM), where the PCs used in the reconstruction were estimated
using the PFM method; PCADR (SVD), where the PCs were found using
the traditional singular value decomposition; and SVM, the SMO used with
the whole set of terms. The second column shows the number of features
used by each classifier. The third, fourth and fifth columns respectively show
the performance in terms of: F1, accuracy and ROCA, respectively. The two
last columns show the training and testing time respectively. The training
time for PCADR includes the preprocessing of the messages (text extraction
and vectorization) and the calculations to approximate the matrices Wx and
Wy. Training time for SVM includes the preprocessing of messages (text
extraction and vectorization) and the training of the classifier. Testing time
for PCADR includes the preprocessing of messages, the projection with the
W matrices and the classification with the PCADR model. Testing time for
the SVM includes the preprocessing of the messages and the classification
with its model. Testing time is given for classifying the whole test set. Both
training and testing times are expressed in seconds.

From these 10-fold cross validation experiments we can observe that the
SVM classifier needs a large number of features in order to be able to map
from features to classes; on the other hand PCADR performs quite well and
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Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.96966 0.97358 0.98916 39.29 3.57
PCADR (SVD) 128 0.96748 0.97176 0.98946 58.23 4.06

SVM 23312 0.96150 0.96542 0.99176 25.29 16.93

Table 3: Performance of the methods for the PU1 corpus using 10-fold cross validation
(the quantities are averages over the 10-folds)

Method Number of Phishing Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.98334 0.98346 0.99694 115.95 7.31
PCADR (SVD) 128 0.98334 0.98346 0.99704 242.73 7.69

SVM 39506 0.98271 0.98263 0.99803 106.90 20.04

Table 4: Performance of the methods for the PC corpus using 10-fold cross validation (the
quantities are averages over the 10-folds)

Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.97553 0.99170 0.99861 162.25 21.76
PCADR (SVD) 128 0.97553 0.99170 0.99788 3199.63 23.50

SVM 55833 0.96286 0.98791 0.99903 60.00 39.83

Table 5: Performance of the methods for the LS corpus using 10-fold cross validation (the
quantities are averages over the 10-folds)
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is competitive with a small set of features, meaning that PCA is capturing
most of the data variance from the training set in the projection matrices
Wx and Wy, and these matrices are able to reconstruct well the unlabeled
messages of the same class. The advantage of using few features is reflected in
the testing time, where SVM requires more time to perform the classification,
given the large number of features it uses. In these experiments the PCADR
classifier is able to outperform the SVM classifier in terms of F1 and accuracy,
but not in terms of the ROCA measure. Nevertheless, running Wilcoxon
signed rank tests (testing the hypothesis that F (x) <> G(y), i.e. the values
of one method tend to be different than the values of the other) over the
classification results for each corpus we found that the differences between
PCADR and SVM are not statistically significant (ρ > 0.05) in any of the
three corpora with any of the measures of performance. This means both
classifiers perform similar in a fixed email classification scenario.

Additionally, in the case of the PU1 and PC corpora, where 1000 words
where selected to form the vocabulary, there is not a big difference between
the two methods PFM and traditional SVD to compute the PCs used for
classification in PCADR. Nevertheless, when we used more words to form
the vocabulary, like with the LS corpus, the benefit of PFM over SVD can
be clearly seen, since training time with the PFM is only a fraction of the
time with the SVD traditional method.

4.5. Anticipatory Experiment.

Table 6 shows the results of the classification for the TREC-07 spam cor-
pus using the anticipatory testing as described above. In this case, the SVM
surpasses the PCADR classifier in terms of all the measures, but in general,
the results from PCADR are still competitive and result in a better testing
time. This behavior was expected since the training set is composed by a
larger number of messages and a bigger variation of topics than in the 10-fold
cross validation experiments (several thousands of messages). The testing set
has a similar diversity and composition than the training one, which requires
a big diversity in the (or a big number of) variables used to map between
examples and classes. Then, as the SVM captures a much bigger number of
features from the testing set than the PCADR, the SVM is able to perform
a better classification. This result implies that a bigger vocabulary and/or a
bigger number of selected PCs to perform the classification with the PCADR
classifier would be necessary to capture the variance in the data so to better
represent the classes. Similar to the experiment with the LS corpus, here the
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Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.97275 0.96439 0.98820 597.05 4033.30
PCADR (SVD) 128 0.97262 0.96425 0.98788 22595.25 4023.55

SVM 47534 0.98041 0.97490 0.99510 457.50 5081.72

Table 6: Performance of the methods for TREC corpus using one-off experiment. Here we
sort the corpus by date, and then we take from the beginning of the corpus 9020 emails
that have an early date for training and the remaining 66399 emails for testing

training time with the PFM is only a fraction of the training time with the
traditional SVD method.

4.6. Cross-Corpus Experiments.

The cross-corpus experiments are more interesting for the task of email
classification, since in the previous 10-fold cross validation and anticipatory
experiments the structure of the training and testing sets are very similar.
Both sets are obtained from the same corpus under similar conditions, i.e.
collected from the same server(s), the same set of users, the same period
of time, labeled using the same rules, etc. In the cross-corpus experiments,
different set-ups for training and testing are used, with the purpose of sim-
ulating a more realistic scenario, where the settings for training and testing
of a filter could be different as is often the case with commercial products.

Tables 7, 8, 9, 10, 11 and 12 present the result for the six cross-corpus
experiments explained above. Except for the results in table 11 (experiment
5), where we train with the LS corpus and test with the SA corpus, in the rest
of the results it is the PCADR classifier that outperforms the SVM in terms
of all measures (F1, accuracy and ROCA), and even for the training time, the
PFM version of PCADR is very competitive. Running Wilcoxon signed rank
tests using the collected data from the several cross-corpus experiments, we
test the hypothesis of F (x) > G(y), i.e. if the values of PCADR tend to be
better than the ones of SVM, and we found this hypothesis being true (even
with the results of experiment 5) and the difference is statistically significant
with ρ < 0.05 for every performance measure.

In experiment 1, shown in table 7, we train with examples from the TREC
corpus and test with examples from the LS corpus. Here we can observe that
PCADR is able to better represent the classes using the PCs of the training
set; while, the SVM has a poor performance using all unique terms. This
means that the word features used in TREC to train the classifier are not
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Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.72253 0.91531 0.90112 341.97 257.39
PCADR (SVD) 128 0.71412 0.91393 0.89914 6379.02 238.73

SVM 52883 0.31714 0.30487 0.73783 317.90 353.15

Table 7: Performance of the methods for cross-corpus experiment 1. Here we train with
examples from the TREC corpus and then we test with examples from the LS corpus

Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.65582 0.67993 0.64093 200.81 329.90
PCADR (SVD) 128 0.65642 0.68149 0.64113 6689.64 321.86

SVM 59661 0.45408 0.57161 0.59817 165.20 360.86

Table 8: Performance of the methods for cross-corpus experiment 2. Here we train with
examples from the LS corpus and then we test with examples from the TREC corpus

present in the LS corpus, which makes it hard for the SVM to classify the
examples in the LS corpus. On the other hand, the variance of the frequency
of the terms extracted with PCADR is a better representation of the classes.

For the rest of the experiments we observe a similar behavior, but the
differences in performance between PCADR and SVM are smaller compared
to the first experiment. This means that the word features used to train the
classifier are more present in the testing set. Even so, PCADR is better to
represent the classes and to better generalize across corpora and time frames
using the reconstruction matrices.

5. Conclusions

In this paper we have presented and evaluated a novel technique based
on PCA document reconstruction (PCADR) in the context of email filtering

Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.66807 0.81773 0.86722 588.93 427.67
PCADR (SVD) 128 0.66546 0.81558 0.86740 18351.16 355.34

SVM 47534 0.60054 0.70505 0.80823 477.64 558.38

Table 9: Performance of the methods for cross-corpus experiment 3. Here we train with
examples from the TREC corpus and then we test with examples from the SA corpus

19



Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.72822 0.65142 0.84313 333.88 574.44
PCADR (SVD) 128 0.73050 0.65353 0.84183 16253.53 512.53

SVM 57021 0.68146 0.58631 0.78746 171.98 712.85

Table 10: Performance of the methods for cross-corpus experiment 4. Here we train with
examples from the SA corpus and then we test with examples from the TREC corpus

Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.69658 0.74681 0.89275 173.49 405.71
PCADR (SVD) 128 0.69737 0.74747 0.89311 3330.07 414.24

SVM 59661 0.76428 0.83247 0.89827 102.65 598.43

Table 11: Performance of the methods for cross-corpus experiment 5. Here we train with
examples from the LS corpus and then we test with examples from the SA corpus

Method Number of Spam Training Testing
Features F1 Accuracy ROCA Time (s) Time (s)

PCADR (PFM) 128 0.81883 0.93881 0.95381 317 236.8
PCADR (SVD) 128 0.81115 0.93674 0.95236 13943.27 233.35

SVM 57021 0.40589 0.55375 0.86661 174.9 364.3

Table 12: Performance of the methods for cross-corpus experiment 6. Here we train with
examples from the SA corpus and then we test with examples from the LS corpus
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while using only text-content features. The approach is understood as a
classifier based on the good discrimination properties of the variance between
datasets obtained when performing PCA. We have shown that this technique
is able to well preserve the diversity of the data using only a few PCs and
that the PCs represent important class information in terms of variance for
each dataset. This information is expressed as a projection matrix, and when
used to reconstruct an unseen example to be classified, the class matrix with
similar properties enables to reconstruct such example with minor loss of
information. The reconstructed example based on a given class matrix that
is closest to the original example indicates the class of the example.

Results show that PCADR performs well when separating spam from
ham, and phishing from ham messages. PCADR is able to outperform a
SVM when considering the accuracy of the classification, and in terms of
F1 and ROCA for most of the experiments, with the advantage of PCADR
being faster than the SVM when classifying test examples. When comput-
ing the PCs based on the Power Factorization Method (PFM), PCADR is
competitive in training time in comparison to a SVM. PCADR is especially
well suited for classification when training with a labeled dataset collected
using a given setup and testing with a dataset collected with another setup.
This type of approach could be useful for commercial products where filters
are used to classify messages not similar in superficial structure to the ones
used for training.

In the future we want to apply the PCADR method to other text clas-
sification tasks. PCADR can be easily extended to deal with a multiclass
problem by simply constructing a W matrix per class, and then performing
the reconstruction with each matrix. Also, it would be interesting to com-
bine PCADR with another classifier to produce a weighted decision about
the class. In particular for email filtering, the PCADR classifier can be com-
plemented with the use of other non-text-content features, like header, link
and embedded image information.
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