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k-Pattern Set Mining under Constraints
Tias Guns, Siegfried Nijssen, Luc De Raedt

Abstract—We introduce the problem of k-pattern set mining, concerned with finding a set of k related patterns under constraints.
This contrasts to regular pattern mining, where one searches for many individual patterns. The k-pattern set mining problem is a
very general problem that can be instantiated to a wide variety of well-known mining tasks including concept-learning, rule-learning,
redescription mining, conceptual clustering and tiling. To this end, we formulate a large number of constraints for use in k-pattern set
mining, both at the local level, that is, on individual patterns, and on the global level, that is, on the overall pattern set.
Building general solvers for the pattern set mining problem remains a challenge. Here, we investigate to what extent constraint
programming (CP) can be used as a general solution strategy. We present a mapping of pattern set constraints to constraints currently
available in CP. This allows us to investigate a large number of settings within a unified framework and to gain insight in the possibilities
and limitations of these solvers. This is important as it allows us to create guidelines in how to model new problems successfully and
how to model existing problems more efficiently. It also opens up the way for other solver technologies.

Index Terms—Data Mining, Pattern Set Mining, Constraints, Constraint Programming.

✦

1 INTRODUCTION

THE PROBLEM of local pattern mining can be for-
malised as that of finding the set of patterns

Th(L, p,D) = {π ∈ L|p(π,D) is true}, that is, the set of all
patterns π ∈ L that satisfy a constraint p with respect to
a database D. Numerous approaches to pattern mining
have been developed to effectively find the patterns
adhering to a set of constraints; a well-known example
is the problem of finding frequent itemsets.
In recent years it is increasingly recognized that the

result of a pattern mining operation can almost never be
used directly and needs to be post-processed in order to
become useful. The reasons are that the generated set of
patterns is typically too large, that is, the set of patterns
is too hard to interpret as the patterns interact with one
another. This has led to a typical step-wise procedure in
which pattern mining only forms an intermediate step in
the knowledge discovery process. In the first step, the
patterns adhering to some constraints are exhaustively
searched for. These patterns are usually called local pat-
terns. In the second step, some patterns are selected and
combined in a heuristic way to create a globalmodel. One
example is associative classification, where systems such
as CBA [1] and CMAR [2] build a classifier from a set
of association rules; other examples are concept-learning
[3], conceptual clustering [4], redescription mining [5]
and tiling [6]. These algorithms, which calculate a small
set of patterns, are algorithms that solve one particular
instance of the pattern set mining problem.
In contrast to constraint-based local pattern mining,

where mining problems are often well formalized and
anti-monotonicity is one of the guiding principles for the
development of algorithms, no unifying principles or al-
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gorithms exist for pattern set mining. Pattern set mining
tasks have been solved using wide ranges of heuristics
and greedy search strategies, often by searching for
patterns in a first step and by filtering these patterns in
a second step. The main problem with these approaches
is that it is unclear how they extend towards new and
unsolved problems. Indeed, to the best of the authors’
knowledge, there currently is no general approach for
finding pattern sets that generalizes over a large number
of settings.
In this article, we make a first step towards formally

specifying pattern set mining problems and solving them
by means of general algorithms. We develop a frame-
work in which a multitude of tasks, including concept-
learning, conceptual clustering, redescription mining
and tiling, can be formalized. The main idea in this
framework is to formalize mining tasks as problems
of finding k patterns that together satisfy constraints.
In contrast to earlier approaches, where constraints are
typically only formalized on the local level, that is,
on individual patterns, within this framework we also
formalize constraints on the global level, that is on the
pattern set as a whole. Both levels of constraints are
formalized at the same time, that is, in a single spec-
ification; we present a high-level modelling language,
independent from underlying frameworks, and show
how to use it to formulate many well-known tasks. A
key feature is hence that we open up the possibility that
mining problems are not solved in multiple steps, but
also in one single step.
Our vision is that these declaratively specified prob-

lems are solved using a general solver in a uniform way.
Developing such solvers is a challenge. In this article, we
take one constraint solving technology as starting point,
constraint programming, and investigate to what extent it
can be used to solve the k-pattern set mining problem.
Constraint programming is a generic framework for
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solving combinatorial and optimization problems under
constraints. It has been used successfully in numerous
applications, including constraint-based mining of in-
dividual patterns [7]. The key power of CP lies in its
generic approach to problem solving: users model a
problem by specifying constraints, and the CP solver
will use those constraints to find the solutions. This has
the advantage that new problems can be solved by only
changing the specification in terms of constraints; a new
solver is not needed. We will use these advantages of CP
to demonstrate the possibilities of a declarative approach
to data mining.
A potential issue is that CP solves problems using

exhaustive search. In our case, a CP system will also
attempt to solve the mining problem in one exhaustive
search step. Most current approaches to pattern set min-
ing do not use one exhaustive search step; we can hence
not expect that this approach is feasible in all cases. Thus,
a main task is to identify the limitations of this approach.
We do this by considering the following questions:

• which pattern set mining tasks can be solved in
reasonable time, using existing CP technology?

• which modeling choices can help to more effectively
solve pattern set mining problems?

A major element in answering these questions is the
identification of suitable modeling primitives available
in today’s CP systems. A first set of such guidelines
is developed in this article: starting from a set of well-
known pattern set mining problems we put constraints
in categories that are increasingly harder to solve. This
contributes new insights into the relation between lo-
cal and global constraints, as well as provides direc-
tions for modelling new problems. Furthermore, such
insights could also be used for developing more heuristic
declarative approaches, for instance, when combining
local search with exhaustive search. Hence, this work
may contribute to the longer term vision of developing
general purpose declarative data mining tools.

2 k-PATTERN SET MINING

In general, pattern mining is concerned with finding all
patterns π that adhere to some constraint p. The patterns
are defined by a pattern language L. The constraint p is
typically a conjunction of multiple constraints, that can
be defined on data D:

Th(L, p,D) = {π ∈ L | p(π,D) is true}. (1)

In the prototypical example of itemset mining, we start
from an itemset database, that is, a set D ⊆ T × I
where I is a set of items and T is a set of transaction
identifiers. The traditional itemset mining problem is
that of finding Th(I, p,D) = {I ⊆ I | p(I,D) is true}.
The pattern language is here the space of itemsets 2I ,
and p specifies the local constraints. The well-known
frequent itemset mining problem can be cast within this
framework by defining

p(I,D) = true iff |ϕ(I)| ≥ θ (2)

where ϕ(I) denotes the transactions that contain itemset
I , that is,

ϕ(I) = {t ∈ T | ∀i ∈ I : (t, i) ∈ D}. (3)

One of the problems with local pattern mining is
that if the constraint p is not restrictive enough, the
set of patterns in Th(L, p,D) becomes too large and
needs further processing before it can be used. This
resulted in the adoption of two step procedures in order
to arrive at a useful set of patterns. First, all patterns
that adhere to some chosen local constraints are mined
exhaustively. Then, these patterns are combined under a
set of global constraints, often including an optimisation
function f . Because of the size of the local pattern set,
usually heuristic techniques are used when searching
for the approximately best pattern set. Here we wish
to avoid this two step procedure by formulating all the
constraints directly on the entire pattern set, that is, on
a set containing a fixed number k of patterns.
The problem of k-pattern set mining under constraints

can now be defined as finding:

Th(L, p,D) = {Π ∈ Lk | p(Π,D) is true}. (4)

The pattern set Π consists of k patterns π. In its whole,
the pattern set Π forms a global model. The constraint p
specifies both local and global constraints at the overall
pattern set level. In addition, as the number of pattern
sets can become very large, we will study how to find
the best pattern set with respect to an optimisation
criterion f(Π). That is, we study how to find the optimal
pattern set Π by searching, for example, for the one with
maximum f(Π):

arg max
Π∈Th(L,p,D)

f(Π), (5)

where we still have the possibility to impose a set of
constraints in p.
In the rest of this paper, we assume that a k-pattern

set Π consists of k individual itemset patterns π. Every
pattern π is represented by its itemset I and transac-
tion set T : π = (I, T ). We write Π =

(

π1, . . . , πk
)

=
(

(I1, T 1), . . . , (Ik, T k)
)

. The transaction set consists of all
transactions or examples that are covered by the itemset.

2.1 Families of Constraints

In this section we will present four families of con-
straints. In the next section, we will then show how k-
pattern set mining problems can be specified as combina-
tions of constraints from these families. The first family
is the family of individual pattern constraints. The typical
local pattern mining constraints fall into this category.
Second, redundancy constraints can be used to constrain
or minimise the redundancy between different patterns.
Coverage constraints deal with defining and measuring
how well a pattern set covers the data. Given labelled
data, the discriminative constraints can be used to measure
and optimise how well a pattern or pattern set discrim-
inates between positive and negative examples.
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We will use the notation constraint ⇔ equation to
define a constraint in terms of an equation consisting
of operations on the itemsets I and transaction sets T .

2.1.1 Individual Pattern Constraints

These are constraints that have been identified in the
framework of constraint-based pattern mining [8]. We
will review some of the most important constraints for
the itemset mining problem.
Coverage constraint. Because every itemset I uniquely

defines a transaction set ϕ(I), we will explicitly constrain
the set of transactions in a pattern π = (I, T ) to those
transactions containing the itemset:

coverage(π) ⇔ (T = ϕ(I) = {t ∈ T | ∀i ∈ I : (t, i) ∈ D}). (6)

Disjunctive coverage constraint. Alternatively, we can
define that a transaction is covered if it is covered by
at least one item. This is useful when mining for a
disjunction of items.

disjcoverage(π) ⇔ T = {t ∈ T | ∃i ∈ I : (t, i) ∈ D}. (7)

Closedness constraint. Dually to the coverage constraint,
we can enforce that an itemset must be the largest
itemset that is contained in all selected transactions:

closed(π) ⇔ (I = ψ(T ) = {i ∈ I | ∀t ∈ T : (t, i) ∈ D}). (8)

The two constraints combined define a closure operator
I = ψ(ϕ(I)). This provides a way to remove redundancy
among the patterns found.
Size constraints. The size of a pattern π = (I, T ) can

straightforwardly be measured as size(π) = |I|. In the
general case, we can define a lower or upper bound
constraint on any measure. With ≶ we will denote any
comparison ≶∈ {<,6, >,>,=, 6=}. A constraint on the
size of the pattern can thus be formulated as

size(π) ≶ θ ⇔ |I| ≶ θ. (9)

Frequency constraint. The frequency of an itemset is
simply the size of its transaction set: freq(π) = |T |,
which can also be constrained as |T | ≶ θ.

freq(π) ≶ θ ⇔ |T | ≶ θ. (10)

2.1.2 Redundancy Constraints

As pointed out in the introduction, an important prob-
lem in local pattern mining is that of redundancy among
patterns. We already defined the closedness constraint
that can be used to remove a certain kind of redun-
dancy of individual patterns. However a pattern can still
be considered logically redundant if it covers approx-
imately the same transactions as another pattern. One
way to measure this redundancy between two patterns
is by measuring the similarity or distance between their
transaction sets.
Distance measures. We can measure the overlap be-

tween two patterns as the size of the intersection be-
tween the transaction sets. Likewise, the distinctness

of two patterns can be measured by the size of the
symmetric difference between the transaction sets.

overlap(π1, π2) =
∣

∣T 1 ∩ T 2
∣

∣ , (11)

distinct(π1, π2) =
∣

∣(T 1 ∪ T 2) \ (T 1 ∩ T 2)
∣

∣ . (12)

The distance between two patterns can also be measured
using any distance measure between the two transaction
sets, for example the Jaccard similarity coefficient or the
Dice coefficient.

jaccard(π1, π2) = (|T 1 ∩ T 2|)/(|T 1 ∪ T 2|), (13)

dice(π1, π2) = (2 ∗ |T 1 ∩ T 2|)/(|T 1|+ |T 2|). (14)

Such measures can be constrained by a comparison
operator ≶∈ {<,6, >,>,=, 6=} and a threshold θ.
Combining measures. Since the measures only indicate

the redundancy between two patterns, and not an entire
pattern set, we often need to aggregate over all pairwise
combinations of patterns. A first approach is to constrain
the sum of all pairwise evaluations. Using the function
name dist() to indicate any distance measure, we may
define that:

sumdist(Π) ≶ θ ⇔
k
∑

i=1

k
∑

j=i+1

dist(πi, πj) ≶ θ. (15)

An alternative approach is to bound the minimum or
maximum value over all evaluations:
min

(

dist(π1, π2), dist(π1, π3), . . . , dist(π2, π3), . . .
)

≶ θ.
In the case of upper-bounding the minimum or lower-
bounding the maximum, this is equal to constraining
every pairwise evaluation separately. For example, when
constraining the minimum to be greater than a value θ,
this can be rewritten as follows:

min
i<j

(

dist(πi, πj)
)

≥ θ ⇔

dist(π1, π2) ≥ θ, dist(π1, π3) ≥ θ, . . . (16)

2.1.3 Coverage Constraints
Each individual pattern π = (I, T ) in our setting consists
of an itemset and its corresponding transaction set T ,
because of the above defined coverage constraint. The
cover of the entire pattern set Π is not explicit in our
formulation, but can be deduced from the covers of all
the individual patterns.
Pattern set cover. A pattern set can be interpreted

as a disjunction of the individual patterns. Hence, we
calculate the transaction set of the entire pattern set by
taking the union over the individual transaction sets:

cover (Π) = TΠ = T 1 ∪ · · · ∪ T k. (17)

Frequency of pattern set. The frequency of the pattern
set is then calculated exactly like the frequency of an
individual pattern: freq(Π) = |TΠ|. This can again be
constrained:

freq(Π) ≶ θ ⇔ |TΠ| ≶ θ. (18)

Area of pattern set. The area of a pattern set was studied
in the context of large tile mining [6]. The tile of a pattern
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contains all tuples (t, i) ∈ D that are covered by the
pattern: tile(π) = {(t, i) | t ∈ T, i ∈ I}. These tuples form
a tile or rectangle of 1’s in the binary database D. The
area of a single pattern is the number of tuples that are
covered in the tile: area(π) = |tile(π)| = |I| · |T |. The
area of a pattern set can now be defined as the union
of all the tiles of the individual patterns. Note that tiles
can be overlapping, but every tuple (t, i) covered is only
counted once.

area(Π) =
∣

∣tile(π1) ∪ . . . ∪ tile(πk)
∣

∣ . (19)

2.1.4 Discriminative Constraints

In many cases, one is interested in finding patterns in
labelled data, that is, data in which there is a label l
attached to each transaction t. We will only consider the
case where the label is either positive (+) or negative
(−), though this can be extended to more classes. In
this setting, the data can be divided into two partitions:
the set of transactions T + having label +, and the
transactions T − having label −. The positive cover of
a pattern is the cover of the pattern on the positive
examples: cover+(π) = T ∩ T +. Similarly, the negative
cover is cover−(π) = T ∩ T −. To simplify our formulas,
we will often abbreviate |cover+(π)| by p and |cover−(π)|
by n in this section. The same holds for the positive
and negative cover of the entire pattern set, where TΠ

is defined as in equation (17):

cover+(Π) = TΠ ∩ T +, (20)

cover−(Π) = TΠ ∩ T −. (21)

We can also define the closedness constraint only on
the positive transactions: closed+(π) ⇔ I = ψ(T ∩ T +);
similarly for closedness on the negative transactions.

Discriminative measures are typically defined by com-
paring the number of positive examples p and negative
examples n covered to the total number of positives
examples P and negatives examplesN . The total number
of positives P is simply the size of T +: P = |T +|,
likewise the total number of negatives N is N = |T −|.
The number of positive/negative examples covered by
an entire pattern set is then calculated as:

p = freq+(Π) = |cover+(Π)| = |TΠ ∩ T +|, (22)

n = freq−(Π) = |cover−(Π)| = |TΠ ∩ T −|. (23)

Accuracy of a pattern set. Accuracy is defined as the
proportion of examples that are correctly covered by
the pattern set: (p + (N − n))/(P + N). As P and N
are constant for a given dataset, one can equivalently
optimize the formula p − n [9]. Using equations (22)
and (23) and the principles explained above we get the
following formulation:

accuracy
(

freq+(Π), freq−(Π)
)

= freq+(Π)− freq−(Π) (24)

Using the same principles we can also use other discrim-
inatory measures, like weighted accuracy or the Laplace

estimate:

w accuracy :
freq+(Π)

|T +|
−

freq−(Π)

|T −|
, (25)

Laplace :
freq+(Π) + 1

freq+(Π) + freq−(Π) + 2
. (26)

The topic of identifying such measures has already been
studied extensively in pattern mining [10], [1] and in rule
learning [9].

2.2 Instantiations
As argued in the introduction, the k-pattern set min-
ing problem is very general and flexible. One of the
contributions of this paper is that we show how it
can be instantiated to address several well-known data
mining problems. This is explained in the following
paragraphs. We will present both satisfaction problems
and optimisation problems.
Satisfaction problems are specified by listing all the

constraints needing to be satisfied. Optimisation prob-
lems additionally start with the maximise or minimise
keywords, indicating the function to optimise. A solution
needs to satisfy all constraints; in case of an optimisation
problem, only the solution with the highest, or lowest,
value for the given optimisation function is sought.

2.2.1 k−term DNF Learning and Concept Learning
The main aim when learning a k−term formula in
disjunctive normal form (DNF) is to learn a formula
which performs a binary prediction task as accurately
as possible, given a set of labelled training examples.
A formal definition of k−term DNF learning was given
in [3]. Within our framework, we can interpret each
clause as an itemset, while the pattern set corresponds
to a disjunction of such clauses. We can formalise this
problem as finding pattern sets Π satisfying:

∀π ∈ Π : coverage(π),

∀π ∈ Π : closed+(π),

accuracy
(

freq+(Π), freq−(Π)
)

≥ θ. (27)

where we choose θ = |T +| if we do not wish to allow
for errors on the training data (pure DNF learning).
Note that we have added a closedness constraint on
the positive transactions; the main motivation for this
choice is that for any k−term DNF containing arbitrary
itemsets, there is an equally good or better k−term DNF
with only closed-on-the-positive itemsets [11]. Adding
this constraint also reduces the space of hypotheses and
hence reduces the practical complexity of the problem.
The above formulation would result in all k-pattern

sets that are accurate enough. In the concept learning
setting we are usually interested only in discovering the
most accurate pattern set. To achieve this, the above
satisfaction problem is turned into an optimisation prob-
lem:

maximise
Π

accuracy
(

freq+(Π), freq−(Π)
)

,

∀π ∈ Π : coverage(π), closed+(π).
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We can replace accuracy with any other discriminative
constraint as explained in section 2.1.4. Note that it is
easy to add other constraints to this formulation, like
a minimum frequency constraint on every individual
pattern:

maximise
Π

accuracy
(

freq+(Π), freq−(Π)
)

,

∀π ∈ Π : coverage(π), closed+(π),

∀π ∈ Π : freq(π) ≥ θ.

In all cases, the result will be a k-pattern set with
high accuracy on the examples. Every pattern π will
represents a learned concept.

2.2.2 Conceptual Clustering
The main aim of clustering algorithms is to find groups
of examples which are similar to each other. In concep-
tual clustering, the additional goal is to learn a concep-
tual description for each of these clusters [4]. In this
section, we consider a simplified version of conceptual
clustering, in which we call two examples similar if
they contain the same pattern. Hence, each cluster is
described by a pattern, and all examples that are covered
by the pattern are part of the cluster. We then formalise
conceptual clustering as finding pattern sets Π that do
not overlap and cover all the examples:

∀π ∈ Π : coverage(π), closed(π),

cover (Π) = T ,

∀πa, πb ∈ Π : overlap(πa, πb) = 0.

The solutions to this model form the restricted set of
clusterings that do not overlap. Still, finding all such
clusterings may not be desirable and finding one clus-
tering could be sufficient. In this case, it could be more
interesting to search for the best non-overlapping clus-
tering. There are multiple ways to define what the ‘best’
clustering is. One possible way is to prefer solutions in
which the sizes of the clusters do not differ too much
from each other. We can formalize this in several possible
ways. For example, we could search for solutions in
which the minimum size of the clusters is as large as
possible:

maximise
Π

min
(

freq(π1), . . . , freq(πk)
)

,

∀π ∈ Π : coverage(π), closed(π),

cover(Π) = T ,

∀πa, πb ∈ Π : overlap(πa, πb) = 0.

The minimum cluster size would be maximal if all
clusters have the same size; hence this formulation will
prefer more balanced solutions. Alternatively, one could
also use the following optimization criterion:

minimise
Π

max
(

freq(π1), . . .
)

−min
(

freq(π1), . . .
)

;

this would enforce a small difference between cluster
sizes more directly. We will compare these two settings
in the experimental section.

In the general case, other settings may also seem de-
sirable. For instance, the constraint that clusters are not
allowed to overlap might seem too restrictive, and one
could choose to use the following optimisation criterion:

minimise
Π

∑

πa,πb∈Π

overlap(πa, πb),

however, we determined experimentally that in many
datasets a set of k non-overlapping patterns can be
found, and hence this optimization criterion would give
the same solution as when using the overlap constraint;
further extensions of the model are needed in order to
make the setting more useful in practice. Of most interest
is probably the incorporation of arbitrary distance func-
tions in the optimisation, as is common in clustering. We
here restrict ourselves to distance functions that can be
defined over the item and transaction sets of the patterns.

2.2.3 k−Tiling

The main aim of tiling [6] is to cover as many 1s in a
binary matrix with a given number of patterns or tiles. A
tiling can be considered useful as the patterns in a tiling
are in some way most characteristic for the data. We can
formalise this problem as follows:

maximise
Π

area(Π),

∀π ∈ Π : coverage(π), closed(π).

The closedness constraint is not strictly necessary, but
closed itemsets cover a larger area than their non-closed
counterparts.

2.2.4 Redescription Mining

The main aim of redescription mining [5] is to find sets
of syntactically different formulas that all cover the same
set of transactions; such sets of formulas are of interest as
they point towards equivalences in the attributes in the
data. We assume given a number of disjoint partitions
of items I1 . . .Ik where ∀p : Ip ⊆ I and ∀p, q, p 6= q :
Ip ∩ Iq = ∅ and can formalize the problem in multiple
alternative ways.

We will restrict ourself to finding conjunctive formulas
that form redescriptions. In this setting, we may search
for a pattern set of size k as follows:

maximise
Π

freq(π1),

∀π ∈ Π : I ⊆ Ip(π),

∀π ∈ Π : covered(π), closed (π),

∀πa, πb ∈ Π : T a = T b,

where p(π) is the number of the item partition corre-
sponding to that pattern. In the case above, only the
frequency of one pattern needs to be maximised as all
patterns have to cover exactly the same transactions. As
this may be a too strict requirement, one could also solve
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the following problem where we search for an accurate
redescription of a sufficiently large number of examples:

minimise
Π

sumdist(Π),

∀π ∈ Π : I ⊆ Ip(π),

∀π ∈ Π : covered(π), closed(π),

∀π ∈ Π : freq(π) ≥ θ.

In principle every distance measure from Section 2.1.2
can be used. We compare these two settings further in
the experimental section.

3 CONSTRAINT PROGRAMMING

We will show how constraint programming (CP) pro-
vides a natural framework for solving k-pattern set
mining problems. We review the principles of constraint
programming in this section. The next section shows
how the constraints of Section 2 can be expressed in
a constraint programming system and how the system
uses them to find solutions.
Constraint programming addresses combinatorial (op-

timisation) problems through decomposition and sep-
aration of concerns. It separates the modelling of the
problem from the solving of the problem: constraint pro-
gramming starts from a model and the solver searches
for a solution.
A constraint satisfaction problem (CSP) (V , D, C) is spec-

ified using 1) a finite set of variables V ; 2) an initial
domain D, which maps every variable v ∈ V to a
finite set of possible values D(v); and 3) a finite set of
constraints C, each a boolean function on a subset of V .
A constraint optimisation problem is a CSP (V , D, C)

augmented with an objective function that maps a subset
of V to an evaluation score vs. The problem is then to find
the solution that satisfies all constraints and is maximal
(or minimal) with respect to the objective function.
Example 1 (CSP): A family of 5, consisting of a mother,

a father, a grandfather and two children has won a
holiday for 3 people. The parents decide that at least
one of them should join, but the father will only join iff
either the mother or the grandfather, but not both, goes.
We can model this problem as a CSP by having a vari-
able for every family member, namely G (grandfather),
F (father), M (mother) and Ch1 and Ch2 (the children).
If a person joins, the corresponding variable has value 1
and 0 otherwise; the domain of every variable is {0, 1}.
This is declaratively specified in line (28) below.

D(G), D(F ), D(M), D(Ch1), D(Ch2) = {0, 1} (28)

F +M ≥ 1 (29)

F ↔M +G = 1 (30)

G+ F +M + Ch1 + Ch2 = 3 (31)

We will specify the constraints by summing over these
boolean variables. In line (31) above, we specify that only
3 people can go on the holiday, by constraining the sum
of all the variables to be equal to 3. Line (29) specifies

Algorithm 1 Constraint-Search(D)

1: D :=propagate(D)
2: if D has failed then
3: return
4: end if
5: if ∃v ∈ V : |D(v)| > 1 then
6: v := argminv∈V,D(v)>1 f(v)
7: for all d ∈ D(v) do
8: Constraint-Search(D ∪ {v 7→ {d}})
9: end for

10: else
11: Output solution
12: end if

that at least one of the parents has to join. Finally line (30)
specifies that the father joins iff either the mother or
grandfather joins, using the shorthand notation that F
is true iff F 6= 0.

In the above example, we had to make some modelling
decisions. For example, we could have specified the con-
straint on line (29) using the boolean formulation F ∨M .
Also, some languages allow the use of set variables that
could model the family as a single set; however this
would complicate posting constraints on subsets or sin-
gle elements such as on lines (29, 30). When modelling a
problem it is often possible to specify it in different ways.
As different constraints are implemented differently, the
choice made can have an effect on runtime efficiency and
should be made in that context.

After specifying the CSP, the solver uses the con-
straints in its search for solution(s). The search tree of
a CSP is ordered from general to specific domains. The
root node consists of the initial domain D containing all
the possible values of each variable. Solutions are found
in the leaves of the search tree, where every variable v
has only one value in its domain D(v). A branch in the
search tree is created by assigning a value to a variable.

There are several search strategies that can be applied.
An outline of a general depth-first search algorithm is
given in Algorithm 1. The constraints are propagated
in line 1. If a constraint is violated (line 2) the search
will backtrack. If not all variables are assigned (line
5), the search algorithm will choose a variable (line
6) and branch over each of the values (line 7). For
optimisation problems, the above algorithm can easily
be changed into a branch-and-bound algorithm. In this
case a constraint is added on the evaluation score vs
(line 11); this constraint is updated each time a better
solution is found than the currently best known one, and
hence enforces that solutions worse than the currently
best known one are ignored.

Propagation of constraints is the essential operation in
constraint programming: it is the act of removing a value
from the domain of a variable when it can be determined
that the value can no longer be part of any viable solu-
tion. Propagation is realised through propagators; every
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Algorithm 2 Propagator for
∑

B ≥ θ

1: Lowerbound :=
∑

Bi∈B

minD(Bx)

2: Upperbound :=
∑

Bi∈B

maxD(Bx)

3: if Lowerbound ≥ θ then
4: % Constraint is respected
5: end if
6: if Upperbound < θ then
7: % Constraint is violated
8: end if
9: if Upperbound = θ then
10: for all Bi ∈ B : D(Bi) = {maxD(Bi)} %

Propagate
11: end if

constraint is implemented by a propagator. The con-
straints we will use are often of the form Function(V ) ≶
X where ≶∈ {<,6, >,>,=, 6=}, V is a set of variables
and X is either another variable or a constant. We shall
use so-called bound-consistent propagators, which operate
on the bounds of the variables. In such propagators, the
upper- and lower-bound of the variables are used and
possibly constrained. The upper-bound of a variable V
is the largest value in its domain, which we denote by
Upperbound(V ) = maxD(V ); likewise the lower-bound
is the minimal value in the domain. The upper- and
lower-bounds of variables in a set V can often be used
to calculate an upper- and lower-bound on the outcomes
of a function f(V ). This is illustrated in the table below
for basic arithmetic functions over 2 variables:

Function Lower-bound Upper-bound
V1 + V2 minD(V1) + minD(V2) maxD(V1) + maxD(V2)
V1 − V2 minD(V1) −maxD(V2) maxD(V1) −minD(V2)
V1 ∗ V2 minD(V1) ∗minD(V2) maxD(V1) ∗maxD(V2)
V1 ÷ V2 minD(V1) ÷maxD(V2) maxD(V1) ÷minD(V2)

These bounds can be used in several ways to update
the domains of variables. In a constraint of the kind
Function(V ) ≶ X where X is a variable, we can update
the bounds of the variable X . Furthermore we can iter-
atively fix variables in V (keeping the domains of other
variables unchanged); those values can be removed from
consideration which result in a bound that no longer
satisfies the constraint.
As an example, consider a vector of boolean variables

B = (B1, B2, . . . , Bn). A propagator for the constraint
∑n

i=1Bi ≥ θ, abbreviated by
∑

B, is given in Algo-
rithm 2. It first calculates the upper- and lower-bound
of the summation function, and then checks if the con-
straint is satisfied or violated, and tries to propagate
when possible. Depending on the operator ≶ and on
whether it is constrained by a variable or an actual value,
a similar but different propagator can be implemented.
More details on the implementation of such propagator
variants can be found in a text book on constraint
programming [12].
Another important concept that we will often use is

the reification of constraints. A reified constraint B ↔ C
is one that binds a boolean variable B to the truth value
of the constraint C. When it can be detected that the
constraint is satisfied, or violated, this is propagated by
setting B = 1, or B = 0 respectively. Likewise, if B is
assigned to 1 or 0, constraint C, respectively ¬ C, will be
enforced.
In many of our models, we use reified boolean vari-

ables that are only used within an arithmetic constraint.
We will use an Iverson bracket notation to shorten the
notation of such constraints. The Iverson brackets [·]
denote an operator which returns 1 if the constraint
within brackets is satisfied, or 0 otherwise. Consider two
vectors V = V1 . . . Vn andW =W1 . . .Wn of equal length
n, and we wish to sum over the truth values Bx where
∀x ∈ {1 . . . n} : Bx ↔ Vx +Wx ≥ 1. We can abbreviate
this sum to

∑

x[Vx +Wx ≥ 1].
Example 2 (CSP Continued): Let us illustrate how the

search and propagation are performed for Example 1.
We will abbreviate the domain value {0} to 0, {1} to 1
and {0, 1} to ?, such that we can write the initial domains
of the variables 〈G,F,M,Ch1, Ch2〉 as 〈?, ?, ?, ?, ?〉. This
is the initial domain and is depicted in the root of the
search tree in Figure 1.
Initially none of the constraints can be propagated, so

the search will pick a variable and assign a value to it.
Which variable and value to pick can be defined by so-
called variable and value order heuristics. The choice
of the heuristics can have a huge impact on runtime
efficiency, as different choices will lead to differently
shaped search trees. We will use a general variable or-
dering heuristic that is known to perform good, namely
to dynamically choose the variable that occurs in the
most constraints. As value ordering we will first consider
exclusion (V = 0) followed by inclusion (V = 1). In our
example, initially the variables F and M both appear in
3 constraints, so the first variable of these two would be
chosen and set to F = 0. This leads to the search node
with domain values 〈?, 0, ?, ?, ?〉, as shown in the upper
left of Figure 1.
Because of F = 0, constraint F +M ≥ 1 propagates

that the mother has to join on the holiday trip (M = 1). In
constraint F ↔M +G = 1 the reified variable F is false,
so the inverse constraint is posted:M+G 6= 1. Because of
M = 1, this constraint propagates M +G 6= 1 ⇒ 1+G 6=
1 ⇒ G 6= 0, so G = 1. At this point, the domain values
are 〈1, 0, 1, ?, ?〉. Constraint G+ F +M +Ch1 +Ch2 = 3
can now be simplified: 1 + 0 + 1 + Ch1 + Ch2 = 3 ⇒
Ch1 + Ch2 = 1. This constraint can not be simplified
any further, so our partial solution remains 〈1, 0, 1, ?, ?〉.
The search now branches over Ch1 = 0, which leads
constraint Ch1 + Ch2 = 1 to propagate that Ch2 = 1.
This results in the first solution: 〈1, 0, 1, 0, 1〉. The search
backtracks to 〈1, 0, 1, ?, ?〉 and branches over Ch1 = 1,
leading to the solution 〈1, 0, 1, 1, 0〉. The search now
backtracks to 〈?, ?, ?, ?, ?〉 and branches over F = 1.
Constraint F +M ≥ 1 is now satisfied, so it is removed
from consideration. In constraint F ↔ M + G = 1 the
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Fig. 1: Search tree for the holiday example.

reified variable F is true, so the reified constraint is
replaced byM+G = 1. This does not lead to any further
propagation. Constraint G+ F +M + Ch1 + Ch2 = 3 is
simplified to G+M+Ch1+Ch2 = 2, but remains bound-
consistent. Since no more propagation can happen, the
search procedures chooses the most constrained variable
M and sets M = 0: 〈?, 1, 0, ?, ?〉. The CP solver will
continue to alternate propagation and search in this way,
until all solutions are found.

4 k−PATTERN SET MINING USING CON-
STRAINT PROGRAMMING

With its declarative modelling language and constraint-
based search, constraint programming contains all the
necessary elements to address the general problem of
k-pattern set mining. Two questions remain; how can k-
pattern set mining problems be specified in a CP system,
and how effective will the search be?

In local pattern mining, the search space of itemset
mining problems has size O(2n), where n = |I|, the
number of items in the database. Clearly, a naı̈ve al-
gorithm that would simply enumerate and test each
pattern would not perform well. Thanks to the effective
propagation of the constraints involved, for example the
well-known frequency constraint, fast and efficient algo-
rithms exist that do exhaustive search without having
to enumerate each pattern. For k-pattern set mining, the
search space has size O(2nk) with n the number of items
in the database and k the number of patterns in the
set. Hence, to do exhaustive search, it becomes even
more crucial to have constraints that effectively prune
the search space.

In this section, we first study how the individual
constraints of section 2.1 can be modelled in a constraint
programming framework, and how effective their prop-
agation will be. We then take a closer look at how the
problem instantiations are modelled in the framework.

4.1 Modelling Constraints

Constraints are typically divided into two broad cate-
gories: local constraints and global constraints. A con-
straint is local when it is defined on one individual
pattern, and global when it is defined on multiple pat-
terns. This definition of a global constraint differs from
the usual definition in constraint programming, where
a global constraint indicates a constraint that relates a
number of variables in a non-trivial way. During the
study of the effectiveness of each constraint, we identify
two new and special categories. Within the category of
local constraints we identify local look-ahead constraints,
and within the category of global constraints, the pair-
wise global constraints. This further distinction will give
us a better understanding of the effectiveness of the
constraints, which will help us to better understand the
search behaviour of the models at large.

In our study all patterns are itemsets. We assume the
itemset database D is represented as a binary matrix
of size |I| ∗ |T | with Dti = 1 ↔ (t, i) ∈ D. As
in [7] we will represent a pattern’s tuple π = (I, T )
by introducing a boolean variable for every item i and
every transaction identifier t; in this way, an itemset I
can be seen as a sequence of boolean variables Ii and a
transaction set as a sequence of variables Tt. For instance,
the pattern ({1, 3}, {1, 2, 5}), which has items 1 and 3,
and is covered by transactions 1, 2 and 5 is represented
as: (〈1, 0, 1〉, 〈1, 1, 0, 0, 1〉). A pattern set of size k simply
consists of k such patterns: ∀p=1..k : πp = (Ip, T p).

4.1.1 Individual Pattern Constraints

Individual pattern constraints are by definition local
constraints. We will not distinguish local constraints by
being monotonic or anti-monotonic with respect to set
inclusion, as common in constraint-based mining. In the
constraint programming framework we always calculate
bounds on the domains of variables, which is not tied
to set inclusion/exclusion specifically. Note that from a
constraint programming perspective, every constraint is
monotonic with respect to the domain of the variables,
as a propagator can only remove values from it.

We will review the constraints explained in Sec-
tion 2.1.1 and elaborate on how they can be formulated
in the constraint programming framework. We will also
discuss their propagation power and categorise them
as regular local or local look-ahead constraints. An
overview can be found in Table 1.

Frequency constraint. The frequency constraint is the
key constraint of frequent itemset mining. It is defined
as the number of transactions that cover the itemset. In
our CP formulation we have boolean variables Tt that
represent whether the transaction with id t covers the
itemset or not. The frequency of the itemset π = (I, T )
can then be computed as:

freq(π) =
∑

t∈T

Tt. (32)
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constraint category set
constraint name notation CP

local look-ahead

coverage(π) T = ϕ(I) ∀t ∈ T : Tt ↔
∑

i∈I

Ii(1−Dti) = 0

disjcoverage(π) T = α(I) ∀t ∈ T : Tt ↔
∑

i∈I

IiDti > 0

closed(π) I = ψ(T ) ∀i ∈ I : Ii ↔
∑

t∈T

Tt(1 −Dti) = 0

freq(π) ≥ θ |T | ≥ θ ∀i ∈ I : Ii →
∑

t∈T

TtDti ≥ θ

size(π) ≥ θ |I| ≥ θ ∀t ∈ T : Tt →
∑

i∈I

IiDti ≥ θ

regular local

freq(π) ≤ θ |T | ≤ θ
∑

t∈T

Tt ≤ θ

size(π) ≤ θ |I| ≤ θ
∑

i∈I

Ii ≤ θ

TABLE 1: Individual pattern constraints

To constrain the frequency, we could simply constrain
this sum, for example given a minimal frequency thresh-
old θ:

∑

t∈T Tt ≥ θ. This would be a regular local
constraint: it calculates the lower and upper bound of
a function on decision variables, and makes sure that
they respect the threshold. The propagator for such a
constraint was given in Algorithm 2. However, con-
straining the frequency in this way does not take the link
between individual items and transactions into account.
If during search an item occurs in less than the required
number of transactions, it is easy to show that this
individual item can never be part of a frequent itemset.
Every time that the search would branch over this item
by including it in the itemset, all the transactions that
do not cover this item would be removed. After this
removal, the number of transactions remaining is lower
than the supplied threshold, so the frequency constraint
would fail repeatedly. We can avoid this problem by
formulating the following constraint. If an item is in the
current itemset (Ii = 1), then the number of transactions
that cover this itemset (

∑

t∈T TtDti) must be above the
frequency threshold:

∀i ∈ I : Ii →
∑

t∈T

TtDti ≥ θ (33)

When this constraint is posted, the solver will check
for each individual item whether it can be part of a
frequent itemset, at every node in the search tree. We
call this kind of constraint a local look-ahead constraint,
because it looks ahead for an individual variable and
determines which values can still contribute to a valid
solution in the future. A local look-ahead constraint like
in equation (33) will often lead to better propagation
than its regular local counterpart in equation (32). In
a CP system, local look-ahead constraints can typically
be modelled as reified constraints. We introduced reified
constraints in Section 3.
Coverage constraint. The coverage constraint can be

formulated as a local look-ahead constraint on every
transaction Tt: a transaction is in the transaction set (Tt =
1) if the items not in the transaction (∀i : Dti = 0) are not

constraint category set
constraint name notation CP

pairwise

overlap(π1, π2) |T 1 ∩ T 2|
∑

t∈T

[T 1
t + T 2

t = 2]

distinct(π1, π2) |(T 1∪T 2)\(T 1∩T 2)|
∑

t∈T

[T 1
t + T 2

t = 1]

jaccard (π1, π2)
|T 1 ∩ T 2|

|T 1 ∪ T 2|

∑

t∈T

[T 1
t + T 2

t = 2]

∑

t∈T

[T 1
t + T 2

t ≥ 1]

min
a<b

dist(πa, πb) ≥ θ min
a<b

dist(πa, πb) ≥ θ ∀a < b :
dist(πa, πb) ≥ θ

global
∑

a<b

dist(πa, πb) ≶ θ
∑

a<b

dist(πa, πb) ≶ θ
∑

a<b

Vab ≶ θ,

Vab = dist(πa, πb)

min
a<b

dist(πa, πb) ≤ θ min
a<b

dist(πa, πb) ≤ θ min
a<b

Vab ≤ θ,

Vab = dist(πa, πb)

TABLE 2: Redundancy constraints and their combinations

in the itemset (∀i,Dti = 0 : Ii = 0); this can equivalently
be written as

∀t ∈ T : Tt ↔
∑

i∈I

Ii(1−Dti) = 0. (34)

The double implication ↔ here guarantees that if there is
an item that is not in the transaction (

∑

i∈I Ii(1−Dti) 6=
0), then that transaction is not covered; hence Tt = 0.

Closedness constraint. This constraint is very similar
to the coverage constraint, but is formulated on items
instead of transactions (see Table 1).

Size constraints. The minimum size constraint can be
formulated as a local look-ahead constraint in a simi-
lar way as the minimum frequency constraint. In this
case, look-ahead is done on the transaction variables:
if a transaction does not have the minimum required
number of items, then it can never cover an itemset of
the minimum size, so the transaction can be removed.

Formulating a maximum size constraint as a look-
ahead constraint is less useful; even if a transaction
contains more than the required number of items, we
cannot remove it from consideration, as not all these
items necessarily have to be included in an itemset.

4.1.2 Redundancy Constraints

In Table 2 we give an overview of the redundancy
constraints and how to combine them, as explained in
Section 2.1.2.

Distance measures. In CP the cardinality of a set can
in principle be calculated by summing 0/1 variables
representing the elements in the set. However, to deal
with redundancy, we often need to calculate the cardi-
nality of a set which is the result of comparing two other
sets. Representing the intermediary set with additional
variables would make our notation cumbersome. For in-
stance, to calculate the overlap overlap(π1, π2) = |T1∩T2|,
we would first need to calculate the set T1∩T2, and then
sum the variables representing this set. As a short-hand
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constraint category set
constraint name notation CP

global

freq(Π) ≶ θ |
⋃

π T | ≶ θ
∑

t∈T

Bt ≶ θ, where Bt =



(
∑

p∈{1..k}

T
p
t ) ≥ 1





accuracy(Π) ≶ θ (freq+(Π)− freq−(Π)) ≶ θ





∑

t∈T +

Bt −
∑

t∈T −

Bt



 ≶ θ, where Bt =









∑

p∈{1..k}

T
p
t



 ≥ 1





area(Π) ≶ θ |
⋃

π(I × T )| ≶ θ
∑

i∈I,t∈T

Bit ≶ θ, where Bit =









∑

p∈{1..k}

[Ipi + T
p
t = 2]



 ≥ 1





TABLE 3: Coverage and discriminative constraints

notation we will therefore combine the set operation and
the size calculation as follows:

|T 1 ∩ T 2| =
∑

t∈T

[T 1
t + T 2

t = 2]. (35)

Here we count the number of transactions for which both
T 1
t and T 2

t are 1 by using the Iverson bracket notation.
Redundancy constraints measure the distance between
two patterns, so they are by nature pairwise constraints.
Combining measures. The goal is not to constrain one

pair of patterns, but all the pairs in a pattern set. The way
in which this aggregation is done defines the complexity
of constraining the redundancy of the overall pattern
set. Constraining all the distances at once would result
in one large global constraint. An example of this is
when we would sum over all the pairwise distances:
∑

a<b

dist(πa, πb) ≶ θ.

This constraint would not propagate very well as a
change in one pattern will not directly influence the
other patterns. Typically many of the distances would
have to be known before the constraint can propagate a
change on the other distances. A better solution would
be to constrain every distance individually. Consider
the case where we want to constrain the smallest pair-
wise distance to be larger than a certain threshold θ:
(

mina<b dist(πa, πb)
)

≥ θ. In this case, we can put
a constraint on each pair separately: if the smallest
distance has to be larger than the threshold, then all
distances have to be larger than the threshold: ∀a <
b : dist(πa, πb) ≥ θ. In this case, we can decompose
the global constraint in a number of independent pair-
wise constraints. This difference in propagation strength
motivates us to discriminate pairwise constraints from
regular global constraints.

4.1.3 Coverage and Discriminative Constraints

In Table 3 we list the coverage and discriminative con-
straints discussed in Section 2.1.3 and Section 2.1.4. The
cover of the entire pattern set depends on the cover
of every individual pattern TΠ = T 1 ∪ · · · ∪ T k. If a
transaction is covered by one pattern, it is covered by
the pattern set. Hence, a transaction t is covered iff
∃π ∈ Π : Tt = 1. In constraint programming we can
model this by introducing a temporary variable Bt for
every transaction t, where Bt ↔ (

∑

p∈{1...k} T
p
t ) ≥ 1.

Coverage and discriminative constraints, which we orig-
inally defined on the transaction sets of individual pat-
terns, can also be defined on such temporary variables.
Because of the indirect relation between patterns through
these temporary variables, coverage and discriminative
constraints are categorised as regular global constraints.
A special case is the area constraint, for which we need

to calculate the number of ones in the matrix that is
covered by the set of patterns. We can model this by
introducing a temporary variable Bit for every element
in the matrix. Bit = 1, iff at least one tile covers that
element, that is, ∃π ∈ Π : (Ii = 1 ∧ Tt = 1). Equivalently

Bit =
[(

∑

p∈{1..k}[I
p
i + T p

t = 2]
)

≥ 1
]

. This constraint

can not propagate the truth-value of Bit well: if Bit = 1
then it should propagate that at least 1 pattern covers
this element, but this is only possible of all but one
pattern are known not to cover it. Additionally, the area
constraint contains |I| ∗ |T | such variables, where |T | is
typically large. Hence, we can expect this constraint to
have particularly weak propagation.

4.1.4 Symmetry Breaking Constraints

We model the set of k patterns in constraint program-
ming by means of an array of k patterns. An artefact of
this is that syntactic variations of the same pattern set
can be generated, for example (π1, π2) and (π2, π1). This
is something well-known in constraint programming
that can be solved by means of so-called symmetry break-
ing constraints [12]. In many cases, symmetry breaking
constraints impose a strict ordering on the patterns in
the pattern set.
There are many ways to impose an ordering on the

array of patterns. The most straightforward way is to
impose a simple lexicographic ordering on the patterns
in the array:

symm breaking(Π) : π1 < π2 < . . . < πk (36)

Given that the order constraint can be enforced between
every pair of patterns, this constraint falls in the category
of pairwise constraints.
There are some design decisions to be made when

ordering patterns. Of course, one can impose a lexi-
cographic ordering on the itemsets of the patterns in
the array. In case every pattern is a closed itemset,
the itemset uniquely defines the transaction set and
the transaction set uniquely defines the itemset. Hence
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instead of lexicographically ordering the itemsets, one
can also order the transaction sets. As the transaction
set is typically larger than the itemset, this could lead to
better propagation as more variables are involved.
Alternatively, one could order the patterns primarily

on some property like frequency or accuracy, and use a
lexicographic order on the item- or transaction sets of the
patterns to break ties. Finally there is also the choice to
post the order constraints only on subsequent patterns,
or between all pairs of patterns. Posting them between
all pairs requires (n− 1)(n− 2)/2 additional constraints,
but could result in some additional pruning.

4.2 Modelling Instantiations

The constraints introduced in the previous section allow
us to model all the mining problems that were intro-
duced in Section 2.2. Essentially, to obtain a complete CP
model, we need to enter the appropriate CP formulations
of constraints in the problem descriptions of Section 2.2.
Let us illustrate this for the problem of concept learning.

One step: When we fill in the formulas of the previ-
ous section in the model of equation (27), we obtain this
CP model:

∀p ∈ {1, . . . , k}

∀t ∈ T : T p
t ↔

∑

i∈I

Ipi (1−Dti) = 0, (Coverage)

∀i ∈ I : Ipi ↔
∑

t∈T +

T p
t (1−Dti) = 0, (Closed+)

∀t ∈ T : Bt = [(
∑

p∈{1..k}

T p
t ) ≥ 1],

∑

t∈T +

Bt −
∑

t∈T −

Bt ≥ θ, (Accurate)

T 1 < T 2 < . . . < T k (Symm.Br .)

This model captures a problem that involves k pat-
terns at the same time; constraint programming systems
provide a strategy for finding optimal solutions to this
problem. The important advantage of this model is that
it allows a one step solution to the concept learning
problem.

Two step: Nevertheless, one can also use CP systems
to find an optimal solution in two steps. Closed-on-the-
positive itemsets are also sufficient in this case. First,
all itemsets that fulfil the coverage(π) and closed+(π)
constraints are mined. Using all itemsets found, a new
transactional database is created in which every item
represents an itemset. On this new transactional database
another pattern mining problem is solved, with the
following constraints:

disjcoverage(π),

size(π) = k,

accuracy
(

freq+(π), freq−(π)
)

≥ θ.

Each resulting itemset corresponds to a set of local pat-
terns and is hence a pattern set. The constraints enforce

Transactions Items Density Class distr.
anneal 812 53 42% 77%
audiology 216 148 45% 26%
hepatitis 137 44 50% 81%
lymph 148 60 38% 55%
primary-tumor 336 31 48% 24%
soybean 630 50 32% 15%
tic-tac-toe 958 27 33% 65%
vote 435 48 33% 61%
zoo 101 36 44% 40%

TABLE 4: Dataset properties

the desired size k and accuracy θ. This approach is sim-
ilar to the approach chosen in [13], where additionally a
frequency constraint is used. Our hope is that the single-
step approach outperforms this more traditional step-
wise approach. Whether this is the case will be explored
in the next section.

5 EXPERIMENTS

As shown in the previous section, constraint program-
ming offers a powerful framework that fits the general
problem of k-pattern set mining. Constraint program-
ming has a generic search strategy of propagation and
exhaustive search. The big question that we will try
to answer in this section is: How suitable is a generic
CP approach, which uses exhaustive search, for pattern set
mining?
We have argued for the importance of constraints that

propagate well, as this is needed to keep the search space
manageable. In this section, we perform an experimental
study on each of the introduced pattern set mining tasks.
For each task, we will study the performance of the
CP approach, and link these results to the constraints
involved in the model.
The aim of these results is to gather a better under-

standing in the suitability of CP systems for a broad
range of tasks. The goal is not to evaluate individual
tasks. Constraint programming offers us a single frame-
work for all k-pattern set mining problems. Although
each of the tasks can be modelled in the CP framework,
that does not necessarily mean it can be solved effi-
ciently. Hence, our goal is to study the opportunities and
limitations of the constraint programming framework for
k-pattern set mining in general.
We focus our study around the following questions:

1) how does the proposed one step approach compare
to the two step procedure?

2) how does the k-pattern set mining approach scale
to the different tasks?

3) what is the relation between the performance of a
model and the constraints involved?

We study these questions by performing experiments
for each of the four tasks of interest, that is, concept-
learning, clustering, tiling and rediscription mining. We
conclude with some general conclusions.
For the experiments we used Gecode [14], an open

and efficient constraint programming solver. It includes
propagators for all the constraints used in this paper.
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Fig. 2: Comparing a one step exhaustive search with a two
step exhaustive search to concept learning.

For constraints of the form
∑

[B1 + B2 ≶ α] we added
a simple propagator that directly calculates the sum
at large, thus avoiding to store an auxiliary variable
for every single reified sum. The datasets used are
from the UCI Machine Learning repository [15] and
were discretised using binary splits into eight equal-
frequency bins. The majority class was chosen as the
positive class. The properties of the resulting datasets
are listed in Table 4. Experiments were performed
on PCs running Ubuntu 8.04 with Intel(R) Core(TM)2
Quad CPU Q9550 processors and 4GB of RAM. All
datasets and source code used will be available online at
http://dtai.cs.kuleuven.be/CP4IM/ upon pub-
lication of this article, as are our other results on com-
bining pattern mining and constraint programming.

5.1 k−term DNF Learning and Concept Learning

We focus on the concept learning setting in which we
want to maximise the accuracy of the pattern set. In
case a k-pattern set is found that covers all positive
transactions and none of the negative ones, this setting
is identical to pure k-term DNF learning.
We start by investigating the first question: how does

the proposed one step approach compare to the two step
procedure (Q1)? We compare both in our CP framework.
In the two step approach, detailed in Section 4.2, first
all patterns given a minimum frequency threshold are
mined, and in the second step the best combination of
k patterns is sought using constraint programming. In
the one step approach we search for the k pattern set
directly; a minimum frequency constraint is not needed,
but we add it for comparison. Figure 2 shows the result
of this experiment for the lymph and vote datasets. The
two step approach performs very good for high fre-
quency thresholds such as 50% and 70%; for low thresh-
olds the two step approach can not handle the amount
of candidate patterns that is generated in the first step.
In our experiments, it could only handle up to a few
thousand generated patterns. The one step approach on

Fig. 3: Runtime and number of propagations per node for the
concept learning setting.

the other hand does not rely on the frequency constraint;
even when there are potentially large amounts of local
patterns, and hence the two-step method fails, the one
step method can use the global constraints, up to certain
values of k to reduce the size of the search space.
Next, we investigate the question how the approach

scales to different tasks (Q2). In Figure 3 we study the k-
pattern set mining problem of concept learning without
a minimum frequency threshold on different datasets.
For k = 1 we are able to find the single concept that best
describes the data in less than a second. For k = 2 the
two best concepts are also found in a reasonable amount
of time, but for larger k the run times quickly become
very large and the scalability is limited.
This can be explained by looking at the types of

constraints involved, as mentioned in our third question
(Q3). Overall, the concept learning model consists of the
coverage and closed local look-ahead constraints which
we already found to perform well in previous work [8],
as well as the global accuracy constraint and pairwise
lexicographic ordering constraints (no frequency con-
straint are needed). The case k = 1 is special, as there
are no ordering constraints and the accuracy constraint
is local. For k = 2, there is a pairwise ordering constraint;
the accuracy constraint is also pairwise as it is expressed
on only two patterns. Starting from k = 3 more pairwise
constraints are added, and the accuracy constraint be-
comes a regular global constraint.
Our hypothesis is that the more patterns are included

in the pattern set, the less efficient the propagation of
the global constraint becomes and hence the longer the
search will take. To test this hypothesis, we plot the
average number of constraint propagations per node of
the search tree on the right of Figure 3. We observe that
the number of propagations per node decreases or stays
the same, except for the audiology dataset for which it
increases moderately. Knowing that the number of nodes
in the search tree grows quickly for increasing k, a lack
of increase in propagation means that many of those
nodes will have to be visited. Hence for large k, the
global accuracy constraint and the pairwise ordering do
not allow for sufficient propagation to make the search
feasible.

5.2 Conceptual clustering

In conceptual clustering, one is interested in finding
clusters that are described by conceptual descriptions.
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Fig. 4: Runtime and number of conceptual clusterings for
varying k.

In our case the conceptual description is an itemset, and
the corresponding transactions constitute the cluster. The
goal is to find a clustering with a certain number k of
non-overlapping clusters.
To address the question how CP scales to different

tasks (Q2), we first consider the differences between
the constraint satisfaction setting (in which we wish
to find all solutions that satisfy the constraints), and
optimisation settings, as given in Section 2.2.2.
Figure 4 shows the run time and the number of non-

overlapping clusterings found in different datasets, for
varying k. We observe that many non-overlapping clus-
ters exist. This is explained by the high dimensionality
of our binary data. For increasing k, the runtime and the
number of clusterings found increases exponentially. A
similar phenomenon occurs in traditional itemset min-
ing: weak constraints, in our case a high value of k, lead
to a combinatorial explosion where most time is spent
on enumerating the solutions.
When looking at the resulting clusterings in more

detail, we noticed that many of the clusterings include
patterns that cover only one transaction. For k = 3, it
is common to have one large cluster covering most of
the examples, one medium sized cluster, and one cluster
that covers only one transaction. Such clusterings can
be considered less interesting than those in which the
clusters cover about the same number of transactions.
To avoid this, we introduced the optimisation settings
in which we search for more balanced clusterings.
The left figures in Figure 5 illustrate the first optimisa-

tion setting, in which we maximise the minimum cluster
size, while the right figures illustrates the second setting,
in which we minimise the cluster range. In both cases,
the figures show the runtime, minimum cluster size and
cluster size range for different sizes k.
We see that the size of the smallest cluster decreases

as the number of clusters k increases. The range of the
clusters differs depending on the specific dataset. How-
ever, there is a decreasing trend in the range, indicating
that a larger number of clusters can more evenly cluster
the data.
To assess the influence of the types of constraints

(Q3), it is also useful to compare the left and right
figures in Figure 5. We see that the second approach,
in which the range is optimised, scales less well for
increasing k, although the solutions found are almost
always the same. The difference can be explained by the

Fig. 5: Mining a pattern set clustering with k conceptual
clusters. Left: when optimising the minimum cluster size.
Right: when optimising the cluster size range.

difference between the ‘minimum size’ constraint and
the ‘size range’ constraint. The minimum size constraint
acts as a local frequency constraint once one candidate
solution has been found. In all later solutions, each
cluster has to contain at least as many examples as the
smallest cluster of the earlier solution. The size range
constraint, on the other hand, is a global constraint that
operates on the minimum and maximum value over
all clusters in the clustering, and does not reduce to
a simple local frequency constraint during the search.
We can conclude that if there is a choice between local
and global constraints, then local constraints should be
preferred as they propagate more effectively.

5.3 k−Tiling

In section 4.1.3 we presented a formulation of the area
constraint and discussed why this constraint will propa-
gate badly. Not only does it depend on |I|∗|T | variables,
but each of these variables has only a weak relation to
the patterns in the set. For this reason, we do not expect
the k−tiling model to perform well, making it a good
setting to investigate the limits of our CP approach (Q2).
We will compare finding the optimal k-tiling to finding

a greedy approximation of it. The greedy method iter-
atively searches for the single pattern (tile) that covers
the largest uncovered area in the database, where we
implemented the search for the best scoring tile also
in the CP system; this iterative greedy algorithm is
known to be approximate the optimum [6]. The iterative
procedure continues until k patterns are found.
Table 5 shows the maximum k for which an optimal

k-tiling was found within a time limit of 6 hours per
run, and the corresponding area. We also report the area
found by a greedy k-tiling algorithm for the same value
of k. Note that the highly efficient greedy algorithm
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pattset k-tiling greedy k-tiling
max k area for this k area for this k

soybean 3 4447 4357
zoo 3 772 749
lymph 2 1445 1424
primary-tumor 2 1841 1841
tic-tac-toe 2 876 876
vote 2 1758 1758

TABLE 5: Maximum k and area for the k-tiling problem on
multiple datasets, with a timeout of 6 hours. The right column
shows the area for the same k, when using a greedy tiling
algorithm.

always finished within 10 seconds. Only for very small
values of k could an optimal k-tiling be found. Although
the CP method finds the optimal solution, the greedy
method’s area was always close to or equal to it. In the
global CP approach, the area constraint is too weak to
prune the search space significantly, and the search space
is too big to enumerate exhaustively. This shows that for
k-tiling, an exhaustive search method is not advised, at
least not using the area constraint of Section 4.1.3.

5.4 Redescription mining

We consider the case where the data consists of two par-
titions; they both range over the same set of transactions
but consist of two different sets of items. A description
is a pattern defined on one of the partitions of items.
We are interested in finding redescriptions, namely two
patterns from the different partitions that cover many or
all of the same examples. In our experimental setting,
we randomly partitioned the attributes in two classes.
To investigate (Q1) we compare two approaches for

finding the most frequent exact redescription. The first
approach is a one step approach and models the entire
problem in CP. In the solution, the patterns cover exactly
the same set of examples and this set is the largest of
all redescriptions. In the second approach, we first find
all closed itemsets that have at least one item in each
partition. Redescriptions can be found by postprocessing
these itemsets, as the union of two closed itemsets with
equal coverage must be a closed itemset in the original
data as well. Table 6 shows the run time needed for the
one step approach (column 2) and for the first step of
the two step approach (column 4). Finding all closed
itemsets already takes more time than finding the global
optimal solution in one step for most datasets. In the two
step approach, each of the patterns would also have to
be post-processed. This would increase the difference in
runtime even further, especially for datasets with many
solutions. Hence, on this problem the one step approach
is again more promising.
To investigate (Q2) we compare the several settings

for redescription mining introduced in Section 2.2.4.
The first three columns of Table 6 list the result for
the most frequent exact redescription. Figure 6 shows
results from searching for the best redescription under
different frequency thresholds, where we use the distinct
measure explained in Section 4 as quality measure. A

exact redescriptions closed sets
time (s) rel. freq. time (s) nr. solutions

hepatitis 0.08 4.38% 14.12 1824950
primary-tumor 0.02 0.60% 0.34 29395
vote 0.1 0.92% 0.4 32669
soybean 0.13 3.81% 0.11 2769
zoo 0.02 39.60% 0.03 3029

TABLE 6: Run times for redescription mining settings; on
the left, runtime and relative frequency when searching for
the exact redescription covering most examples; on the right,
runtime and number of patterns found when mining all closed
sets forming a redescription.

Fig. 6: Run time, distinctiveness and average frequency of
patterns when searching the least distinct redescription given
a minimum frequency threshold.

distinctiveness of zero corresponds to an exact redis-
cription. The run times for finding the redescriptions
are generally low in these settings. Except for the zoo
dataset, the relative frequency of the redescriptions in
Table 6 is low (column 3). For these datasets, there
are no exact redescriptions covering many transactions.
Figure 6 shows the result for different minimum fre-
quency thresholds. Low minimum frequency thresholds
lead to more similar patterns but possibly less interesting
ones. Higher thresholds lead to more distinct patterns
which are usually a lot more prominent in the data.
When we study the run times of these results, we can
draw the following conclusions with respect to (Q3).
The low run times can be attributed to the constraints
at hand: the usual coverage and closedness local look-
ahead constraints, a pairwise constraint between the two
transaction sets, and a minimum frequency local look-
ahead constraint for the branch-and-bound search in the
first setting. The local look-ahead constraints are known
to propagate well, and the pairwise constraint is able to
immediately propagate changes in one transaction set to
the other. Posting these constraints leads to very effective
propagation and thus fast execution times. In the second
setting, like the constraint for exact redescriptions, the
distinct constraint is also a pairwise constraint. Although
less effective, the fact that it is pairwise allows the
constraint to effectively propagate changes between two
transaction sets too.
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5.5 Discussion

We have focussed our study of the suitability of exhaus-
tive search for pattern set mining on three questions.

The first question was how the proposed one step
approach compared to a more traditional two step proce-
dure. The results on the concept learning and redescrip-
tion mining problems showed that a one step exhaustive
search is more efficient than a two step exhaustive
search. In the two step approach the bottleneck is the
large number of patterns found in the first step, in which
the second step then has to search for a subset. The one
step approach, on the other hand, can use the constraints
of the global model to reduce the number of patterns that
need to be considered. Compared to greedy strategies,
however, the approach is much slower and rarely finds
significantly better results.

The second question was how the k-pattern set mining
approach scales to different tasks. There are significant
differences in the scalability of the approach, depending
on the task at hand. Even for the same task, as we saw for
conceptual clustering, alternative formulations that find
the same solutions can have different runtime behaviour.

The third question was what the relation between the
performance of a model and its constraints was. The
differences in runtime depend on the constraints used.
The k-tiling problem was the task with the fewest con-
straints, involving the largest amount of variables. Con-
sequently, it scaled very badly and only found solutions
for the lowest values of k. Concept learning, with its
better propagating accuracy constraint, performed better
than k-tiling, although its scalability was also limited.
Conceptual clustering performed better, especially when
formulating it such that the optimisation constraints are
local constraints. Lastly, the best results were obtained
for the redescription mining task, which contained only
local look-ahead and pairwise constraints.

A key question in this section was whether a generic
CP approach that uses exhaustive search is also suitable
for pattern set mining. We found that the answer de-
pends on the constraints involved in the model of the
mining task. As is the case in traditional pattern mining,
when there are only local constraints, most of which
are local-lookahead constraints, then the generic CP
approach is possible. Interestingly, when there are local
lookahead constraints, as well as pairwise constraints,
the approach is feasible too. This was the case for the
redescription mining and our models of conceptual clus-
tering. In fact, when k = 2 all tasks contain only pairwise
constraints. Indeed for all tasks for k = 2, solutions were
found in an acceptable time.

In the presence of non-pairwise global constraints,
the use of the proposed framework is limited to small
values of k. It appears that a crucial factor is whether
constraints are local look-ahead constraints or pairwise
constraints. Nonetheless, we believe that our study can
lead to a better understanding of constraints, which
can help the development of heuristic approaches as

well. For example, the greedy approach that iteratively
called the CP solver to mine for local patterns performed
very well. This raises the question whether a general
approach using such a large neighbourhood search [16]
strategy could be devised for the k-pattern set mining
problem at large.

6 RELATED WORK

There are two distinctive features in our approach. First,
the framework for k-pattern set mining can – in contrast
to most other approaches in data mining and machine
learning – be used to tackle a wide variety of tasks
such as classification, clustering, redescription mining
and tiling. Second, our work sets itself apart by using
a one step exhaustive approach, while other techniques
to mining pattern sets typically use a two step approach
or a heuristic one step approach.
Similar to our work is the recent work of Khiari et

al. [17] who propose to mine for n-ary patterns, patterns
containing n patterns, using constraint programming.
Our independently developed work goes well beyond
theirs by covering a much wider range of tasks and by
providing a profound study on the propagation power of
the constraints. In retrospect, the good efficiency results
they achieved can be explained by our results: they
performed experiments with either 2 or 4 patterns, in
which all constraints were local-lookahead or pairwise
constraints. We have observed and explained why this
is essential for an exhaustive CP approach to be efficient.
We will first review local techniques to reducing re-

dundancy in the collection of mined patterns. We then
in turn discuss global exhaustive two step techniques
and global heuristic techniques.

6.1 Local Techniques

Techniques for removing redundancy at the local level
typically focus on finding patterns that form a condensed
representation ([18], [19], [20], [21]). Condensed repre-
sentations range from exact representations for which
the frequency of each pattern can be reconstructed, to
lossy representations that discard information regarding
frequency [20]. Whether a pattern is part of a condensed
representation depends on its sub- and supersets. This
can often be efficiently determined during search, mak-
ing many condensed representations an adequate tool
for decreasing not only the number of patterns found
but also the computational resources needed. However,
there are no guarantees as to the size of the reduction, so
condensed representations solve the redundancy prob-
lem only partly. Because of its advantages, condensed
representations are usually mined for in the first step
of typical two step algorithms. Our approach considers
only closed frequent patterns. It is possible to use other
condensed representations such as the ones defined in
[8], although it could be that the globally optimal pattern
set does not exist for some condensed representations.
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6.2 Global Exhaustive Two step Techniques

The framework for k-pattern set mining that we in-
troduced builds upon the notion of exhaustive pattern
set mining by De Raedt and Zimmermann [13]. They
provided a general definition of two step constraint-
based pattern set mining by exploiting the analogies
with local pattern mining. The key differences with
the present approach is that their work assumes a two
step procedure, that is, it actually is centred around the
computation of

Th(L, p,D) = {Π ⊆ Th(L, p′,D) | p(Π,D) is true}

in which first a local pattern mining step is performed,
resulting in the set Th(L, p′,D) and then subsets con-
taining such patterns are searched for. A further dif-
ference with the present approach is that we look for
sets containing a fixed number of patterns. While this
is more restrictive it is – in our opinion – essential
from a computational perspective. Lastly, because the
approach of [13] is derived from local pattern mining,
it suffers from the same problems as the original pattern
mining algorithms, namely an overwhelming amount of
pattern sets, many of which are redundant. To avoid this
problem, we focussed on finding the optimal pattern set,
according to some measure, directly. By removing this
optimisation criterion, our approach can be used to find
all pattern sets too.
Related to the interpretation of a pattern set as a DNF

formula is also the BLOSOM framework [22], which
can mine for all DNF and CNF expressions in a binary
dataset. BLOSOM uses the notion of closed DNF and
minimal DNF to minimise the logical redundancy in the
expressions. However, a two step approach is again used
in which first (variants of) frequent patterns are searched
and later post-processed.

6.3 Global Heuristic Techniques

While [13] used an exhaustive two step approach to
finding pattern sets, there are numerous heuristic ap-
proaches to finding global pattern sets that first perform
a local pattern mining step and then heuristically post-
process the result ([1], [23]) (see [24] for an overview).
Thus the second step does not guarantee that the opti-
mal solutions are found. Furthermore, these approaches
usually focus on one specific problem setting such as
classification. For instance, CBA [1] first computes all fre-
quent itemsets (with their most frequent class label) and
then induces an ordered rule-list classifier by removing
redundant itemsets. Several alternative techniques (for
instance, [23], [25]) define measures of redundancy and
ways to select only a limited number of patterns. Among
them, one step greedy methods are also common [26],
[25]. Constructing a concise pattern set for use in classi-
fication can be seen as a form of feature selection.
Another related problem setting is that of finding a

good compression of the entire collection of frequent
patterns. There exist many different approaches such

as clustering the collection of frequent patterns [27],
finding the patterns that best approximate the entire
collection [28], ordering the patterns such that each
prefix is a good summary [29], ordering according to
statistical p-value [30], and more. By nature, these tech-
niques also work in two steps: first find all patterns
given a minimum frequency threshold, then compress
that collection of patterns.
Techniques also exist that try to compress the dataset

rather than the collection of patterns. For example,
the KRIMP algorithm [31] uses a Minimal Description
Length based global measure of compression. The com-
pressed set of patterns covers all transactions, as we
also often required in this work. Alternatively, a greedy
covering technique similar to the one used in [28] could
be applied on the dataset. However, in both cases, again
a heuristic algorithm is used and the size of the selected
pattern set is unbounded.
In [32], Knobbe and Ho present the concept of a

pattern team as a small subset of patterns that optimises
a measure. They identify a number of intuitions about
pattern sets, and four measures that satisfy them; two of
these are unsupervised measures while the other two are
supervised. The first supervised measure uses a classifier
and cross validation to assess the quality of a pattern
team, which is beyond the scope of our work. The second
supervised measure is area under the ROC curve. We
showed in [33] that it is possible to exhaustively find
the set of all patterns on the ROC convex hull, even
without restricting the set to a size k. The work in [32]
differs from ours as they mostly focus on how quality
measures cover certain intuitions while we focus on how
to express many constraints in one framework and also
on the impact of these constraints on exhaustive search.
Lastly, declarative languages for data mining tasks

have been proposed before [34], [35], [36], usually mod-
elled after the idea of inductive databases [37]. Rather
than being a query language, we propose a modelling
language closer to mathematical programming, in which
constraints can be decomposed, alternative formulations
and optimisation criteria can be expressed.

7 CONCLUSIONS

We introduced the k-pattern set mining problem. It tack-
les pattern mining directly at a global level rather than
at a local one. Furthermore, it allows for the specification
of many different mining tasks in a uniform way by
varying the involved constraints.
We used constraint programming methodologies and

solvers for addressing the k-pattern set mining problem
in a general way. This was realized by mapping each
of the presented k-pattern set mining tasks to models in
the CP framework. However, often multiple equivalent
modelling strategies are possible and the model that is
chosen can have a large influence on the performance of
the solver. To provide guidelines for choosing amongst
alternative formulations, we categorized the individual
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constraints on the basis of their propagation power.
Except for the natural distinction between local con-
straints on individual patterns and global constraints on
multiple patterns, we identified two special categories:
local-lookahead constraints, a type of local constraint,
and pairwise constraints, which are global constraints
restricted to two patterns. Constraints in these two cate-
gories propagate better than regular local or global con-
straints. Propagation strength is important for techniques
that rely on exhaustive search, such as CP.
Using the CP framework, we evaluated the feasibility

of exhaustive search for pattern set mining. We found
that a one-step search method is often more effective
than a two-step method in which an exhaustive search
is performed in both steps. In general, we can conclude
that the feasibility of exhaustive search depends on the
constraints involved. When the problem specification
consists mostly of local-lookahead and pairwise con-
straints, then exhaustive search can be capable of finding
the optimal solution. However, in case there are other,
non-pairwise global constraints, an exhaustive solution
method will not perform well.
Nonetheless, we believe that the study of individual

constraints and of how constraints interact can lead to
a better understanding of the relationship between local
and global constraints. Further studies, for example on
what other global constraints can be decomposed into
pairwise constraints, can lead to advances of exhaustive
as well as heuristic algorithms. In general, the study of
the relation between local and global constraints, not
necessarily in a one step exhaustive framework, merits
further study. We hope to have contributed to this by
providing a framework for rapid prototyping of existing
and new problems, as well as for the controlled study
of individual constraints.
There are several interesting issues for future work.

First, we have presented a general problem formulation
of pattern set mining and studied a number of con-
straints and instantiations. There is a whole range of
other pattern set mining tasks and constraints that can
also be studied within the k-pattern set mining frame-
work. The usefulness of constraints, especially when
using exhaustive search, depends on how well constraint
can propagate. Further study on the propagation power
of constraints is required. Interesting questions include:
what global constraints can be decomposed into pairwise
constraints? Are better propagation algorithms possible
for existing (global) constraints?
We have investigated the opportunities and limitations

of using constraint programming to solve the general
k-pattern set mining problem. Constraint programming
uses exhaustive search and the feasibility of the CP
approach depended on the constraints involved. It is an
open question whether other solvers can be used to solve
the general k-pattern set mining problem given only
its description in terms of constraints. In the artificial
intelligence community, a number of constraint-based
heuristic approaches have been developed that follow

a similar declarative approach as constraint program-
ming. Prominent examples include large neighbourhood
search [16] and constraint-based local search [38]. The
authors believe such methods could provide a general
solution for tasks where the CP approach currently lacks.
The presented framework implements a part of our

long term vision to develop generally applicable declar-
ative data mining tools. Possibilities for future work
include the extension towards other data mining tasks
that are not necessarily connected to pattern mining,
and linking the framework to the many data mining
methods based on mathematical programming. In the
long term, this should allow data mining experts to solve
data mining problems by specifying a series of models in
an declarative data mining language with an integrated
solver environment [39].
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