
An adaptive hyper-heuristic for CHeSC 2011

M. Mısır1,2, P. De Causmaecker2, G. Vanden Berghe1,2, and K. Verbeeck1,2

1 CODeS, KAHO Sint-Lieven
{mustafa.misir,greet.vandenberghe,katja.verbeeck}@kahosl.be

2 CODeS, Department of Computer Science, K.U.Leuven Campus Kortrijk
patrick.decausmaecker@kuleuven-kortrijk.be

1 Introduction

The present study proposes a new selection hyper-heuristic providing several
adaptive features to cope with the requirements of managing different heuristic
sets. The approach suggested provides an intelligent way of selecting heuristics,
determines effective heuristic pairs and adapts the parameters of certain heuris-
tics online. In addition, an adaptive list-based threshold accepting mechanism
was developed. It enables deciding whether to accept the solutions generated by
the selected heuristics or not. The details of these mechanisms are presented in
the following sections.

2 Maintaining an Adaptive Dynamic Heuristic Set

Maintaining an adaptive dynamic heuristic set (ADHS) is a method assessing the
performance of each heuristic at the end of a number of iterations, i.e. a phase,
to keep the best performing heuristics in the set whilst excluding the others.
A performance metric based on simple quality indicators such as improvement
capability and speed, is used to decide upon exclusion of a heuristic. The details
of this metric regarding heuristic i is shown in Equation 1. In this equation,
Cp,best(i) denotes the number of new best solutions found. fimp(i) and fwrs(i)

show the total improvement and worsening provided. fp,imp(i) and fp,wrs(i) refer
to the same measurement but only in a phase. tremain refers to the remaining
time to finish the whole search process. tspent(i) and tp,spent(i) are the time spent
by heuristic i until that moment and the same measurement during a phase
respectively. For each contributing performance element, a weight wi is utilised.
The values of these weights are set in a decreasing manner. The weights are
sufficiently different to manage them in order of importance.

pi = w1

[(
Cp,best(i) + 1

)2(
tremain/tp,spent(i)

)]
× b+

w2

(
fp,imp(i)/tp,spent(i)

)
− w3

(
fp,wrs(i)/tp,spent(i)

)
+

w4

(
fimp(i)/tspent(i)

)
− w5

(
fwrs(i)/tspent(i)

)
(1)

b =

1,
∑n
i=0 Cp,best(i) > 0

0, otw.



The corresponding pi values are ranked and a quality index (QI ∈ [1, n]) value
is determined for each heuristic based on this ranking. The heuristics with a QI

less than the average of QIs are excluded, which means that it will not be called
for a number of phases. This number is called tabu duration d and it is set to√
2n. If a heuristic is consecutively excluded, its tabu duration is incremented

by 1. Alternatively, if a heuristic is not excluded after performing a phase, its
tabu duration is set back to the initial value. This incrementation continues until
the corresponding tabu duration reaches its upper bound, which is set to 2

√
2n.

Whenever the tabu duration is equal to its upper bound, ADHS permanently
excludes this heuristic.

The phase length (pl) is set to (d × phfactor) iterations. phfactor is a prede-
termined constant for a proper pl and it is set to 500. Whenever the heuristic
subset is updated, pl is adjusted with respect to the average time required for
performing a move by a non-tabu heuristic. As a reference point, the number of
phases requested (phrequested = 100) during the whole run is used to determine a
possible phase duration. pl ∈ [d× phbase, d× phfactor ] is calculated based on Equa-
tion 2. Cmoves(i) shows the number of times heuristic i is called. The calculated
value is constantly checked to keep it within its bounds.

pl =
(
ttotal/phrequested

)
/

n∑
i=0

(
tspent(i)/Cmoves(i)

)
.isTabu(i) (2)

Extreme heuristic exclusion : At the end of each phase, some of the heuristics
which did not find new best solutions during the phase are additionally excluded
based on Equation 3. The standard deviation and the average of the exc(i) values
are used to determine the heuristics that should be excluded.

exc(i) =
(
tspent(i)/Cmoves(i)

)
/
(
tspent(fastest)/Cmoves(fastest)

)
(3)

In order to select a heuristic from the heuristic subset, a probability vector is
maintained. The selection probabilities of the heuristics are calculated as shown
in Equation 4.

pri =
(
(Cbest(i) + 1)/tspent

)(1+3tf3) (4)

tf = (texec − telapsed)/texec

3 Relay Hybridisation

The hyper-heuristic also investigates a simple relay hybridisation approach to
determine effective pairs of heuristics that are applied consecutively. For that
purpose, a heuristic list of size 10 is maintained for each heuristic. The choice of
the first heuristic is made by a learning automaton that keeps a probability list



with the selection probabilities of the first heuristics [1]. A linear reward-inaction
update scheme is used for updating the probabilities. This scheme increases the
probability of a heuristic that found new best solutions. The details are presented
in Algorithm 1. In the pseudocode, Cphase is a counter showing the number of
iterations passed during the current phase. Cbest,s and Cbest,r refer to the number
of new best solutions found by the regular selection mechanism and the relay
hybridisation respectively. p is a random variable to decide upon using relay
hybridisation. p′ is another random variable for choosing the second heuristic.

Algorithm 1: Relay hybridisation

Input: listsize = 10; γ ∈ (0.02, 50); p, p′ ∈ [0 : 1]
1 γ = (Cbest,s + 1)/(Cbest,r + 1)
2 if p ≤ (Cphase/pl)

γ then
3 select an LLH using a learning automaton and apply it to S → S′

4 if size(listi) > 0 and p′ <= 0.25 then
5 select an LLH from listi and apply to S′ → S′′

6 else
7 select an LLH and apply to S′ → S′′

end

end

In addition, the tabu approach used for ADHS is applied to disable relay
hybridisation if it could not deliver a new best solution after a phase.

3.1 Heuristic Parameter Adaptation

Certain heuristics have a parameter called “intensity of mutation” denoting the
impact of the perturbation. The other heuristics concentrating on improvement
only have a parameter called “depth of search” referring to the number of con-
secutive steps to check for improvement. A reward-penalty strategy is employed
to dynamically adapt these parameters.

4 Move Acceptance

4.1 Adaptive Iteration Limited List-based Threshold Accepting

Adaptive iteration limited list-based threshold accepting (AILLA) is a threshold
accepting mechanism determining the threshold level in a dynamic manner using
the fitness values of the previously found new best solutions. The details of this
mechanism is presented in Algorithm 1.

The iteration limit (k) is updated as shown in Equation 5. For the list length
(l), the update rule presented in Equation 6 is utilised (lbase = 5, linitial = 10).



Algorithm 2: AILLA move acceptance
Input: i = 1, K ≥ k ≥ 0, l > 0
for i=0 to l-1 do bestlist(i) = f(Sinitial)

1 if adapt iterations ≥ K then
2 if i < l− 1 then
3 i+ +

end

end

4 if f(S′) < f(S) then
5 S ← S′

6 w iterations = 0

7 if f(S′) < f(Sb) then
8 i = 1

9 Sb ← S′

10 w iterations = adapt iterations = 0
11 bestlist.remove(last)
12 bestlist.add(0, f(Sb))

end

13 else if f(S′) = f(S) then
14 S ← S′

15 else
16 w iterations+ +
17 adapt iterations+ +

18 if w iterations ≥ k and f(S′) ≤ bestlist(i) then
19 S ← S′ and w iterations = 0

end

end

k =

((l − 1)× k + iterelapsed)/l, if cw = 0

((l − 1)× k +
∑cw
i=0 k × 0.5i × tf)/l, otherwise

(5)

cw = iterelapsed/k

l = lbase + (linitial − lbase + 1)tf
3

(6)

The threshold level (bestlist(i)) starts from the lowest value and increases to
the value placed in the l th location of the list. Whenever the threshold level
reaches this value l, a new initial solution is generated to find new best solutions
faster. Depending on the remaining execution time, the cost of reinitialisation
and the possibility of finding a new best solution after reinitialisation, reinisial-
isation is disabled or not.

References

1. M. Misir, T. Wauters, K. Verbeeck, and G. Vanden Berghe. A new learning hyper-
heuristic for the traveling tournament problem. In Proceedings of the 8th Meta-
heuristic International Conference (MIC’09), Hamburg, Germany, July 13–16 2009.


