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Abstract

The rapid development of information and computer technology (ICT) in the
last two decades has fundamentally changed almost every discipline in science
and engineering, transforming many fields from data-poor to increasingly data-
rich, and calling for innovative data mining methods to conduct the related
research. Meanwhile, as data collection sources and channels continuously
evolve, data can be extracted from multiple information sources and observed
by various models. Therefore, learning from multi-view data has become a
crucial step in machine intelligence and knowledge discovery.

For the purpose of integrating and leveraging the mass amount of multi-
view data to obtain significant and complementary high-level knowledge,
this dissertation investigates learning from multi-view data from two sides:
clustering algorithm and text mining application.

The dissertation is organized into three parts.

In the first part, we analyze multi-view clustering from a multilinear perspective
and create several novel multi-view clustering algorithms. At first, modeling
multi-view data as a tensor, we present a novel tensor based multi-view
partitioning framework for integrating multi-view data in the context of
spectral clustering. Within this framework, a joint optimal subspace shared
by multi-view data as well as the multilinear relationships among multi-view
data are revealed by the relevant tensor methods. Second, taking multi-view
data as multiple graphs, we put forward a multi-view clustering strategy based
on simultaneous trace maximization (STM), which analyzes multi-view data
through a multilinear perspective as well. Third, a joint dimension reduction
scheme based on tensor decomposition is presented, particularly for multi-view
data. The dimension reduction scheme is embedded into the STM based multi-
view clustering strategy, which enables us to handle large-scale multi-view data.

In the second part, we investigate text mining to extract multi-view heteroge-
neous data from a large-scale publication database of Web of Science (WoS).
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iv ABSTRACT

In order to facilitate the scientific mapping that is useful for monitoring and
detecting new trends in different scientific fields, hybrid clustering, either in
vector spaces or in graph spaces, is carried out to integrate these multi-view
data. Regarding hybrid clustering in vector spaces, various methodologies are
included in a unified framework, which consists of two general approaches:
clustering ensemble and kernel fusion. A mutual information based weighting
scheme is proposed to leverage the effect of multiple data sources in hybrid
clustering. Concerning hybrid clustering in graph spaces, various graphs are
generated from multi-view data. Utilizing the complementary properties of
both text graph and citation graph, we present a hybrid strategy named
graph coupling. Meanwhile, based on the modularity optimization, our graph
coupling strategy detects the number of clusters automatically and provides a
top-down hierarchical analysis, which fits in with the practical applications. In
addition, the computation of this modularity based hybrid clustering method
is so efficient that it does well in partitioning large-scale data.

In the third part, we propose a novel strategy to derive knowledge from textual
information from a multi-view perspective. The multiple views can be different
controlled vocabularies, term weighting schemes, publishing time periods and
biomedical subjects. Our strategy has been applied to the MEDLINE corpus
and analyzed using a disease based data set. In particular, we investigate the
effect of combining multiple views for clustering and assessed whether vertical
searches can be more accurate for specific biological questions. Moreover, a
Web application of our multi-view text mining strategy is developed for gene
retrieval.

To conclude, the theory, algorithm, applications and software presented in this
dissertation provide an interesting perspective for clustering algorithms and
text mining applications. In addition, the obtained results are promising to be
applied and extended to many other relevant fields besides scientific mapping
and bioinformatics.
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Chapter 1

Introduction

1.1 General background

1.1.1 Multi-view data and multi-view learning

The rapid development of computer and information technology in the last
two decades has fundamentally changed almost every discipline in science and
engineering, transforming many fields from data-poor to increasingly data-rich,
and calling for innovative data mining methods to conduct the related research.

Meanwhile, as data collection sources and channels continuously evolve, data
can be extracted from multiple information sources and observed by various
models, which forms multi-view data, that is, the same instance with different
representations.

In general, each view may have different formulations or statistical properties.
In the common machine learning problem setting, we often assume that the
data is represented in a single vector space or in a single graph space. In
many real-life problems, however, the same instances of multi-view data may
be represented in several different vector spaces, or in several different graph
spaces, or even a mixture of vector spaces and graph spaces [150]. For example,
in scientific publication analysis, documents can be represented in the text
vector space as well as in the citation based graph space.

Learning from multi-view data has become a crucial step in machine intelligence
and knowledge discovery. On the one hand, many machine learning tasks
such as classification, regression and clustering, can significantly improve

1



2 INTRODUCTION

their performance if information from multi-view data can be properly
integrated and leveraged. On the other hand, regarding several emerging
fields and applications, such as, healthcare informatics, computer vision
and music retrieval in particular, comparing patterns from multi-view data
and understanding their relationships can be extremely beneficial for these
applications.

Meanwhile, according to the relevant definition [2], machine learning tasks
heavily rely on the empirical data where the latent patterns are hidden. As the
information contained within the data is incomplete or the data is corrupted by
noise, the goals of machine learning become challenging or even impossible to
achieve. As a result, multi-view learning is proposed to tackle these challenges.

Multi-view learning: It is assumed that multi-view data gives a broader
understanding of the task and thus yields better performance. The goal of
multi-view learning is to effectively explore and exploit the information from
multi-view data for the purpose of improving the learning performance [118].

1.1.2 Benefits of multi-view learning

In the following, the three apparent benefits from multi-view learning and the
relevant examples are illustrated.

Benefit one: recovering a full pattern by learning from multi-view
data with an example of 3D image reconstruction

As known, actual scenes can only be directly captured in the form of 2D plane
images, either by human eyes or by a camera. Because of the 3D structure
of the real world, the 2D image only contains limited information which is
inefficient to gain a complete understanding of the scene. Fortunately, thanks
to the excellent multi-view learning mechanism of the visual perception system,
human beings are able to perceive the 3D structure of the scene by seamlessly
integrating images about the surrounding scene from two perspectives (two
eyes). The basic visual perception mechanism of a human being is shown in
Figure 1.1.

Analogous to the visual system of human beings, computer vision was put
forward and its aim is to enable computers to imitate the functionality of human
vision through automatically learning from multiple views. As illustrated in
Figure 1.2, given multiple 2D images of a building which seem incomplete but
complementary, a 3D model of the building which seems more complete is
learned by collecting the essential evidence from various views.
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Figure 1.1: Human vision from multi-view data

View 1

View 2

View 3

View 4

View 5

Five single-view data

The reconstructed

picture

Figure 1.2: Computer vision from multi-view data
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Figure 1.3: Image denoising by averaging multi-view data

This example demonstrates learning from multi-view data tends to find a full
“picture”. Single-view data sometimes includes incomplete information while
multi-view data usually contains complementary information. As a result, a
relative complete pattern could be obtained by collecting the complementary
information from multi-view data, especially when the weaknesses of one view
are complemented by the strengths of other views.

Benefit two: reducing noise by learning from multi-view data with
an example of image denoising

Figure 1.3 illustrates a denoising example in image processing by learning from
multi-view data. As shown in the above, a planet in the space is observed by
five cameras at different nearby locations. All these pictures appear to be full
of noise due to the limitation of imaging technology, which may bring some
trouble to further observation and analysis. However, the noise of these five
pictures are different from each other because they are randomly generated
within each view (each camera).

On the other hand, the different random noise within each view can be
reduced through simply averaging the five pictures. At the same time, the
common pattern (the original image of the planet) shared by all these views
is emphasized by such an average operation. Thus an integrated picture with
less noise is obtained as can be seen in Figure 1.3.
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This image processing example demonstrates learning from multi-view data
leads to robust results by reducing the noise from each single-view data. In
general, the presence of noise in each single-view data (or the corruptness
of data) sometimes makes the detection of patterns (clusters) more difficult,
leading to the unsatisfied analysis of singel-view data. On the other hand,
multi-view learning is able to circumvent the side-effect of noise or corrupted
data in each view and emphasize the common pattern shared by multi-view
data.

Benefit three: facilitating the learning tasks which can not be
implemented only by single-view data with an example of Webpage
retrieval Another exciting application of learning from multi-view data is Web
information retrieval as illustrated in Figure 1.4. Webpages contain rich multi-
view data, such as textual content and hyperlinks. Each data has diverse
physical property. However, appropriate integration can accomplish some tasks
which is hard to implement in one single-view data. For instance, the big
success of Google lies in the elaborate integration of text and hyperlink data for
Webpage retrieval [113]. Given a query, a huge number of retrieved Webpages
are output. According to traditional information retrieval, the retrieval results
are ordered by calculating the similarity between the textual query and the
content of the Webpage. Due to the huge number of Webpages, it is impossible
to obtain the retrieval results with meaningful order online by this traditional
way.

On the other hand, the sparse hyperlinks can be employed to efficiently
calculate the relative importance (the order) of each Webpage, that is the basic
idea of PageRank. Then PageRank provides a meaning ranking of the huge
number of Webpages by offline computation. With such PageRank, the online
retrieval can be implemented by online matching of simply textual pattern,
rather than by intensive computation of textual similarity. As can be seen
in Figure 1.4, the integration of online textual pattern matching and offline
PageRank leads to the immediate retrieval.

This example shows that, learning from multi-view data is able to accomplish
the learning tasks that are impossible to implement by single-view data due to
its limitation. The complementary property among multi-view data is able to
overcome the limitation of single-view data and expand their application areas.

1.1.3 Challenges of multi-view learning

Traditionally, machine learning or data mining algorithms are conceived
for learning from single-view data. The need to develop general theories,
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Figure 1.4: Web information retrieval from multi-view data

frameworks, data structures, and heuristics, for multi-view learning has become
increasingly crucial.

Although some relevant work utilizing multi-view data has been proposed, these
methods are usually rather ad-hoc and do not adequately address some of the
most fundamental research issues in this field [118]. Unleashing the full power
of multi-view data is, however, a very challenging task.

The model of multi-view data for joint analysis. Multi-view data may
come from the same feature space or different feature spaces. The inherent
properties of multi-view data may vary remarkably, for instance, in scientific
publication analysis, text data denotes the attributes of each document while
citation data depicts the link relationships among various documents. For the
convenience of joint analysis, modeling multi-view data in a unified form is
required. How to model multi-view data in a proper way is a basic issue in
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multi-view learning.

Leveraging the effect of multi-view data. In many applications of multi-
view learning, it is of great interest to develop a strategy that is able to
investigate the underlying relationships amongst views. Then such a strategy
can potentially identify the interactions between multi-view data, and also
evaluate their learning capabilities. The latter can prove particularly useful
in problems where collecting the necessary data from a view may be resource
demanding and thus expensive [30]. Although it is known that various single-
view data play different roles in the joint learning, how to leverage their effect
to facilitate the learning tasks is still a challenging problem.

Dimension reduction of multi-view data. Computer power is growing by
Moore’s law while data volume is growing even faster. In practical applications,
both the number of objects and the number of features are becoming huge.
Moreover, multi-view observation could expand the data volume in a rapid
rate as well. Preprocessing by dimension reduction on multi-view data seems an
essential step for further analysis. Because multi-view data is more complicated
than single-view data, how to implement the joint dimension reduction of multi-
view data becomes a critical issue in multi-view learning.

In this Thesis, the above questions will be handled respectively. Meanwhile,
under the umbrella of multi-view learning, we focus on two basic tasks: multi-
view clustering and multi-view text mining. These two tasks are not separated
completely. In fact, text mining data can be directly employed to clustering.
On the other hand, clustering sometimes can be applied to facilitate text mining
tasks.

1.2 Clustering of multi-view data

1.2.1 Clustering analysis

Data clustering is a fundamental problem in many fields, such as machine
learning, data mining and computer vision. Unfortunately, there is no
universally accepted definition of a cluster, probably because of the diverse
forms of clusters in real applications [67]. For instance, in distance based
clustering analysis, two or more objects belong to the same cluster if they are
“close” according to a given distance (in this case geometrical distance) while in
concept based clustering, two or more objects belong to the same cluster if this
one defines a concept common to all that objects, in other words, objects are
grouped according to their fit to descriptive concepts, not according to simple
similarity measures [148]. But it is generally agreed that the objects belonging
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to a cluster satisfy certain internal coherence condition, while the objects not
belonging to a cluster usually do not satisfy this condition [67].

Although thousands of clustering algorithms have been published and continue
to appear, some fundamental challenges associated with clustering still remain:
for example, how to determine the unknown number of clusters in the given
data, how to evaluate the validity of discovered clusters and partition, which
clustering method is proper for current data, and how to define the pair-wise
similarity [67]. Furthermore, although an ideal cluster can be defined as a set
of points that is compact and isolated, the noise in the data usually makes
cluster analysis more difficult.

All in all, clustering analysis is virtually an exploratory tool, and the output of
clustering algorithms only suggests hypotheses [67].

1.2.2 Multi-view clustering

The aim of clustering is exploratory in nature to find the structural pattern
hidden in data. As to clustering on single-view data, the data structure
sometimes seems to be corrupted by noise or incomplete due to the limited
information it contains. Hence, we will explore how multiple views make
the clustering problem significantly more tractable. Concerning clustering of
multi-view data, based on the above benefits of multi-view learning, first, a
robust cluster structure is expected to be obtained because the random noise
and isolated outliers are deleted by learning from multiple views; second, a
cluster structure is expected to be found through fusing the complementary
information of multi-view data.

Bickel and Scheffer put forward the multi-view clustering concept in 2004
and empirically find that multi-view clustering strategy greatly improves on
its single-view counterparts [12]. In this original work, multi-view clustering
refers to clustering instances that are represented by multiple independent
sets of features. A multi-view clustering strategy via canonical correlation
analysis (CCA) is presented in [27]. This method assumes that the views
are uncorrelated given the cluster label. These two methods are based on an
assumption that multiple views are independent of each other. In fact, the
real multi-view data is not entirely uncorrelated and they usually share certain
inner relationship instead. Furthermore, with the number of views increasing,
it is hard to preserve the independence of these views. Therefore, such an
assumption limits the application of these methods.

A strategy named multiple view semi-supervised dimensionality reduction is
devised and employed to multi-view clustering [61]. A consensus pattern is
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learned from multiple embeddings of multi-view data. However, both this
strategy and CCA based multi-view clustering need part of labeled data which
is usually unavailable in practical applications.

Consequently, we will investigate the multi-view clustering under the free
assumptions of both unsupervised learning and existing certain dependent
relationship amid them, which would be more challenging but more close to
the reality.

1.2.3 Our multi-view clustering strategies

As to the integration of multi-view data, a natural idea is to concatenate
different types of data into a single vector. In fact, inter-feature dependencies
within one data set are more likely to be relevant than dependencies between
two different types of data [109]. Furthermore, since the structure of each view
is disparate, it is unwise to regard multiple representations as one view by
simply connecting all features. Thus concatenating multi-view data as a single
vector may treat the representation of each view in the same way and ignore
their diversities [61]. Consequently, we take multi-view data either as different
similarity matrices (kernels) or as a tensor, rather than as a concatenated
vector.

By treating various views differently, we can construct a kernel (or a similarity
matrix) on each data and obtain the sum of kernels for multi-view clustering.
Although only kernel summation seems simple and efficient to implement
and even can achieve good clustering performance, an automatic mechanism
assigning different weights to each kernel is still preferred. Such a weighting
mechanism can bring some apparent benefits, for instance, it can delete or
reduce the noisy kernel (view) and provide a boundary error guarantee [109].

With the aim of both integrating multi-view data in a proper way and utilizing
their inherent relationship to facilitate clustering, we carry out multi-view
clustering in the following perspectives.

Multi-view clustering by tensor decomposition

Multi-view data can be naturally modeled as a tensor. First, a common space
shared by multi-view data can be obtained by tensor decomposition. The
partitioning is carried out in this common space to get the final clustering
results. Second, the inherent relationship of multi-view data can be regarded
as a kind of multilinear relationship, which can be captured through tensor
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decomposition as well. Such a relationship actually corresponds to the weights
assigned to multi-view data.

In fact, our tensor based multi-view clustering strategy provides a general
framework to integrate multi-view data for joint partition. Hence, our
framework can be easily extended to other multi-view learning tasks, such as
classification and spectral embedding.

Our tensor based multi-view analysis is closely related to a concept named
multi-way analysis. Multi-way analysis is the natural extension of
multivariate analysis, when data are arranged in three- or higher way arrays
[19]. In analogy to a matrix, each direction in a high-way array is called a
way or a mode, and the number of levels in the mode is called the dimension
of that mode. Tensor decomposition has been successfully employed to multi-
way data analysis, such as, chemistry, food industries, social network analysis,
chemometrics, signal processing, Web search, data mining, scientific computing
and bioinformatics [3, 8, 19, 38, 76, 77, 89, 122, 128].

Multi-view analysis can be regarded as a special case of multi-way data analysis.
First, multi-view data is a kind of three-way data (a third-order tensor), in other
words, multi-view analysis is actually a type of three-way analysis. Second, the
three modes in multi-view data (the three directions of such a tensor) are fix,
that is, the three models refer to objects, features and views respectively.

Multi-view partitioning by simultaneous trace maximization

Multi-view data can also be modeled as multiple graphs. Each graph is usually
presented by its similarity (adjacency) matrix. The multilinear relationship
(weights) among multi-view data can be analyzed by simultaneous trace
maximization of the corresponding similarity matrices. At the same time, the
joint dimension reduction of multi-view data by tensor decomposition is taken
into account, which enables our strategy to handle large-scale multi-view data.

Multi-view clustering based mutual information analysis of multi-view data

Based on the measure of average normalized mutual information (ANMI) [127],
an automatic weighting strategy of multi-view data is proposed and applied to
multi-view clustering methods kernel fusion and clustering ensemble.

In addition, we also investigate the complementary properties of multi-view
data to facilitate the joint clustering. For example, in the scientific publication
analysis, we integrate the sparse links of citation data with the rich semantic
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meaning of text data, thereby leading to efficient partitioning of scalable data.
Nevertheless, such a strategy is only applicable to certain ad-hoc applications,
like Web mining and document analysis.

1.2.4 An example about the comparison between single-view
clustering and multi-view clustering

Here is an example of our multi-view clustering on a multiplex network.
Multiplex network refers to a group of networks which share the same nodes
(vertices) but multiple types of links [99]. Each type of links can be regarded as
a single view of the multiplex network. This synthetic multiplex network has 3
clusters, with each having 50, 100, 200 members respectively. We can generate
various views of interactions among these 350 nodes and we add some noise
to the network by randomly connecting any two vertices with low probability
[130]. From the three-view multiplex network, we can form three interaction
matrices, each of whose elements is the interaction strength of a pair of vertices.
The visualization of the three adjacency matrices is shown as Figure 1.5.

Figure 1.5: The adjacency matrices of three different views in a synthetic
multiplex network

In order to demonstrate the power of multi-view clustering, we compare
single-view clustering methods with multi-view clustering methods w.r.t the
partitioning of this multiplex network. First, we implement spectral clustering
on each of the three single-view data. From the partitioning of each single-
view data, there is intensive overlap among the three clusters as shown in
the upper right part of Figure 1.6. Second, we average the multi-view data



12 INTRODUCTION

by spectral partitioning on the sum of multiple adjacency matrices and its
spectral projection is illustrated in the middle part of Figure 1.6. As compared
to single-view clustering, the cluster structure obtained by this multi-view
clustering strategy is more clear but the overlap still remains. Third, we
partition the multiplex network by a multi-view clustering strategy based on
a tensor method named multilinear singular value decomposition (MLSVD).
From the lower right part of Figure 1.6, it can be seen that the three clusters
are separated clearly. As compared to single-view clustering, the improvement
by our MLSVD based multi-view clustering strategy is apparent in terms
of partitioning results. This partitioning example suggests that with an
appropriate multi-view clustering mechanism, multi-view clustering can recover
the latent cluster structure hidden among multi-view data, which can not be
achieved by only single-view clustering.

1.3 Text mining from multiple views

Text mining comprises the intelligent automated analysis of textual data and
aims for extraction of interesting facts and relationships and discovery of
knowledge from large amounts of text [69]. For this purpose, text mining
employs techniques and algorithms from disciplines such as data mining,
information retrieval, statistics, mathematics, machine learning and natural
language processing [41]. Today, text mining is even used for emerging
trend detection, policy-making processes, intelligence services, press monitoring
to automatically detect breaking news, marketing, data protection, law
enforcement and personalized advertising [69]. As most information is currently
stored as text, text mining is believed to have a high commercial potential value.

Although the successful applications of text mining have been achieved in many
areas, the challenges still remain. For instance, text mining usually lacks the
deep and fully understanding of the literature and the information one needs
is often not recorded in textual form [36].

To tackle these challenges, first, we carry out multi-view text mining by
adopting multiple models and multiple data sources. Information fusion by
integrating multi-view information is expected to boost the understanding
about the knowledge from literature. Second, on the basis of text mining data,
we employ some machine learning or data mining schemes, such as clustering
and ranking, to deeply understand the pattern or information hidden in text
data.

In this research, some general text mining tasks are involved, such as
text clustering and information extraction [41]. Whereas some deep text
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Figure 1.6: Comparison of single-view clustering and multi-view clustering in
a multiplex network

analysis tasks have not been handled yet, for instance, production of granular
taxonomies, sentiment analysis, document summarization, entity relation
modeling and event detection.

In the following, at first, we introduce the multi-view data based on text mining
analysis. Next, we briefly present the two applications of our strategy: scientific
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mapping and biomedical analysis.

1.3.1 Multi-view data based on text mining

Multi-view data from text content: Multi-view text mining data can be
directly extracted from various literature databases. Multi-view text mining
data can also be generated by using various text mining models. Such text
mining models can be (but not limited to) ontologies, weighting schemes,
subjects and publication time periods of literatures.

Multi-view data by information extraction: Information extraction [35]
represents a starting point for computers analyzing unstructured text and
identifying key phrases and relationships within text. For instance, in scientific
publication analysis, bibliometric data is extracted as well and then the related
multi-view data is built up, such as cross-citation, co-citation and bibliographic
coupling [90].

In addition, the multi-view data generated by text mining implicitly or
explicitly can be integrated with other data to advance certain learning
tasks. For example, genes can be represented in the expression vector space
(corresponding to the genetic activity) and also in the term vector space
(corresponding to the text information) [52]. These two heterogeneous data
can be integrated together to facilitate the gene clustering [48].

1.3.2 Scientific mapping by multi-view text mining

The aim of scientific mapping is to understand the structure and evolution
of various research areas and of their relationships with other fields, based
on scientific publications [69]. Text mining is a powerful tool for automatic
retrieval of information and for mapping of knowledge embedded in text.
These documents contain textual information that can be directly mined for
knowledge by using text mining techniques. Besides, other information in these
documents can be extracted by text mining as well, such as the citation links,
co-occurrence of certain entities, relationships and even some events.

Glenisson [50, 51] and Janssens [69, 73] have conducted research on mapping
scientific disciplines by integrating multi-view data (textual content and
citation links). Glenssion started a pilot study of combining full text analysis
and bibliometric indicators, clustering papers within one journal [51]. Based on
text mining in a large-scale bibliographic database, Janssens devises the hybrid
clustering strategy by combining text model based on publication content and
graph model based on bibliometric data [69]. In this Thesis, we carry on the
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research of scientific mapping on a large-scale academic publication database
while we extract more multi-view data by text mining. For instance, based
on textual content, we generate multi-view text data of TF, IDF,TFIDF and
Binary-TFIDF while multi-view citation data is generated based on co-citation,
bibliographic coupling and binary-cross-citation.

In addition, we exploit some unified models either in vector spaces or in
graph spaces to discover the rich knowledge embedded in this giant amount
of publications. On the one hand, in vector spaces, we propose a mutual
information based weighted hybrid clustering strategy to integrate text mining
based multi-view data for joint mapping and such a strategy is applied to
clustering ensemble and kernel fusion. On the other hand, in graph spaces,
utilizing the complementary properties of text mining based multi-view data,
we formulate an optimal and efficient partitioning strategy named graph
coupling, which immediately provides a hierarchical cluster structure without
parameter setting for scalable databases.

Figure 1.7 illustrates an example of typical scientific mapping of the Web of
Science (WoS) journal database by integrating textual content and citation
links. For each cluster, the three most important terms are shown. The
network is visualized by Pajek [9]. The edges represent cross-citation links
and darker color represents more links between the paired clusters. The circle
size represents the number of journals within each cluster.

In scientific mapping, hybrid clustering is traditionally employed to refer to
multi-view clustering [69, 73]. Hence, we will alternatively use the name of
hybrid clustering and multi-view clustering in the following Chapters.

1.3.3 Biomedical analysis by multi-view text mining

Due to the increasing number of electronically available publications stored
in databases such as PubMed, there is an increasing interest in text mining
and information extraction strategies applied to the biomedical and molecular
biology literature. Figure 1.8 illustrates the number of publications related to
human genes each year from 1950 to 2010 and it appears that there is a rapid
rise since 2000, which also reflects the fast progress of biomedical research
during this period.

As known, literature can provide human beings with the best knowledge. For
instance, from the published biomedical literature, by text mining, we can
extract the existing knowledge (such as, the relationships and the patterns)
among biology entities (such as genes). As an example, we seek the
relationships between genes to aid the cancer diagnosis. By mining PubMed
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Figure 1.7: A scientific mapping example of 22 clusters on the WoS journal
database by MLSVD based multi-view clustering (Data source: Thomson
Reuters, Web of Science).

articles, genes are represented as term vectors in vector space model (VSM).
Each argument of the gene vector corresponds to a term of a fixed vocabulary
(ontology). Then a gene-by-gene similarity matrix is created by calculating the
gene-to-gene distances. This matrix is used as prior information to build the
basic structure of Bayesian decision network. The use of network seeds can
greatly improve the ability of Bayesian network analysis. Moreover, some data
mining methods, for instance, clustering, classification and ranking, can also
be applied on this similarity matrix to recognize other hidden patterns among
genes.

However, in the biomedical field, the analysis of such text data poses much
greater challenges than traditional data analysis methods (like manual analysis).
For example, genes and proteins are gigantic in size, very sophisticated in
function, and the patterns of their interactions are largely unknown [56]. Thus
it is a fertile field to develop sophisticated text or data mining methods for
in-depth biological literature analysis. From this point of view, text mining is
still very young with respect to biology and bioinformatics application. Figure
1.9 plots the number of text mining related papers in PubMed in recent ten
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Figure 1.8: The yearly paper distribution (only the human gene related papers
are included) in PubMed

years, it is obvious that text mining has attracted increasing attention in the
biomedical field.

In text mining, the selection of models plays a big role in the mining stage,
for example, various ontologies adopted result in diverse results. Therefore,
in this Thesis, we employ a strategy named multi-view text mining for the
clinical application. Multi-view text mining refers to the adoption of multiple
text mining models, instead of traditionally relying on one model [147]. The
multiple views can be different publication time periods, different weighting
schemes, different ontologies, different biomedical disciplines and even different
citations of these publications. This multi-view text mining provides a flexible
and robust framework: on the one hand, one can get a “full picture” through
integrating several views for information fusion; on the other hand, one can
obtain the vertical observation through one specific view. In particular, we
develop a search engine for gene retrieval via such a multi-view text mining
scheme, which owns the functionality of both information fusion and vertical
search. Glenssion [49] as well as Yu [147] have carried out some similar work,
however, their research is limited to using various ontologies.
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Figure 1.9: The trend of text mining research in biomedical field in recent ten
years, estimated from PubMed

1.4 Chapter by Chapter Overview

The overview of each Chapter and its relationship with the author’s paper are
presented in the following.

Chapter 2 presents a novel tensor-based framework for integrating heteroge-
neous multi-view data in the context of spectral clustering. Our framework
includes two novel formulations: that is, multi-view clustering based on
optimization integration (MC-OI) and that based on matrix integration (MC-
MI). We show that the solutions for both formulations can be computed by
tensor decompositions. We evaluate our methods on synthetic data and two
real-world data sets in comparison with baseline methods. Experimental results
demonstrate that the proposed formulations are effective in integrating multi-
view data in heterogeneous environments.

Chapter 3 puts forward a multi-view clustering strategy based on simultaneous
trace maximization, which can be regarded as a multi-view extension of spectral
clustering. Our strategy is able to leverage the effect of various views for
simultaneous analysis. The pre-processing of dimension reduction is embedded
into our strategy by tensor decomposition so that our algorithms are well suited
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to the application of large-scale data processing. Our strategy can also be
expanded to other clustering schemes to form their multi-view variants, for
instance, k-means clustering and modularity based clustering.

Chapter 4 investigates text mining to extract multi-view heterogeneous data
from a large-scale WoS database. Hybrid clustering is carried out to
integrate those multi-view data to facilitate the scientific mapping. Various
methodologies are included in a unified framework, which consists of two
general approaches: clustering ensemble and kernel fusion. A mutual
information based weighting scheme is proposed to leverage the effect of
multiple data sources in hybrid clustering. Three different algorithms are
extended by the proposed weighting scheme and they are employed on a large
journal set retrieved from the Web of Science (WoS) database.

Chapter 5 tackles the multi-view clustering from a network analysis point of
view. At first, multi-view data are modeled in graph spaces, instead of vector
spaces. Then we presented a hybrid clustering strategy named graph coupling,
by using the complementary properties of both text data and citation data.
Based on the modularity optimization, our strategy detects the number of
clusters automatically and provides a top-down hierarchical analysis, which
fits in with the practical applications. In addition, the method is so efficient
that it does well in partitioning large-scale data. We apply our method to
cluster the journals of the WoS database.

chapter 6 proposes a novel strategy to provide text prior information from
a multi-view perspective. The strategy is implemented by text mining on
the Medical Literature Analysis and Retrieval System Online (MEDLINE)
database. Our strategy can be applied to do information fusion by integrating
multi-view data or provide certain domain knowledge from a small vertical
perspective. A Web application of our strategy is developed for gene retrieval.
The multiple views can be different controlled vocabularies, weighting schemes,
publishing time periods and biomedical subjects. In addition, we employ a set
of genes which belong to different diseases to test our multi-view gene retrieval
system.

Chapter 7 summarizes the Thesis and introduces several issues that are worth
further investigation.

The overview of the relationship between the different Chapters in this
dissertation is illustrated in Figure 1.10. As can be seen, both Chapter 4
and Chapter 5 not only belong to multi-view clustering but also belong to
multi-view text mining. In addition, the connection of different Chapters is
not limited to the above illustration, for instance, in Chapter 6 that focuses
on multi-view text mining, tensor based multi-view clustering strategy is still
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Figure 1.10: Structure of the dissertation

applied for relationship analysis.

1.5 Related research topics in ESAT-SCD, K.U.Leuven

Based on the research conducted in SISTA, an ideal mix is present of
methodological and practical expertise in this Thesis. The relevant research
topics are presented by one or several recently-finished PhD Thesis. The
overview of the connection with SISTA research is illustrated in Figure 1.11.

• Clustering by data fusion and multi-view text mining
Yu S., Kernel-based data fusion for machine learning: methods and
applications in bioinformatics and text mining, PhD thesis, Faculty of
Engineering, K.U.Leuven (Leuven, Belgium), Nov. 2009.
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Figure 1.11: Overview of the connection between this dissertation and the
relevant research in SISTA

• Multilinear algebra and tensor decomposition
Ishteva M., Numerical methods for the best low multilinear rank ap-
proximation of higher-order tensors, PhD thesis, Faculty of Engineering,
K.U.Leuven (Leuven, Belgium), Dec. 2009.

• Unsupervised learning and spectral clustering
Alzate C., Support vector methods for unsupervised learning, PhD
thesis, Faculty of Engineering, K.U.Leuven (Leuven, Belgium), May 2009.

• Hybrid clustering and Scientific mapping
Janssens F., Clustering of scientific fields by integrating text mining and
bibliometrics, PhD thesis, Faculty of Engineering, K.U.Leuven (Leuven,
Belgium), May 2007.

• Biomedical literature text mining
Glenisson P., Integrating scientific literature with large scale gene
expression analysis, PhD thesis, Faculty of Engineering, K.U.Leuven
(Leuven, Belgium), Jun. 2004.
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Van Vooren S., Data mining for molecular karyotyping: linked
analysis of array-CGH data and biomedical text, PhD thesis, Faculty
of Engineering, K.U.Leuven (Leuven, Belgium), Sep. 2009

• Data fusion of Genetics, Molecular Biology, and Biomedical sources
Coessens B., Data integration techniques for molecular biology research,
PhD thesis, Faculty of Engineering, K.U.Leuven (Leuven, Belgium), Jun.
2006.

Gevaert O., A Bayesian network integration framework for modeling
biomedical data, PhD thesis, Faculty of Engineering, K.U.Leuven
(Leuven, Belgium), Dec. 2008.

1.6 Contributions of this dissertation

1.6.1 Personal contributions

This Thesis is mainly composed of original and independent works of the author
in several aspects. The content presented in Chapter 2, 3, 4, 5 and 6 represent
the author’s personal contribution in multi-view clustering theory, algorithmic
innovation and they are all based on publications with first authorship. In
Chapter 6, the author collected the corpus data, investigated the bio-ontologies,
performed text mining, designed and programed the Web-interface, evaluated
the performance and drafted the manuscript. The set of benchmark disease
genes and the biomedical validation are based on the collaboration with the
co-authors. In both Chapter 4 and Chapter 5, the author designed the
algorithms and developed the software. The experimental data set adapted was
collected and partially processed by the co-author. The author programmed
and applied the proposed algorithms on the experimental data set, evaluated
the performance and drafted the manuscript. In conclusion, 90% of the work
presented in this Thesis is based on the author’s independent research and
contribution.

1.6.2 Main contributions

• Tensor model based multi-view clustering. We address multi-
view clustering from a multilinear perspective. Tensor is a natural
model for multi-view data. Thus, we propose to model multi-view
data as a tensor and develop a new framework of multi-view spectral
partitioning by tensor methods. Within this framework, two novel
clustering schemes with tensor based solutions: multi-view clustering by
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optimization integration and multi-view clustering by matrix integration,
which can integrate data from multiple heterogeneous sources. This
contribution will be discussed in Chapter 2.

The related papers:

Liu X., De Lathauwer L., Janssens F., De Moor B., Hybrid Clustering
on Multiple Information Sources via HOSVD, in Proc. of the 7th
International Symposium on Neural Networks (ISNN 2010), 2010, pp.
337-345.

Liu X., De Lathauwer L., De Moor B., Multi-view Partitioning via
Tensor Methods, submitted to IEEE Transactions on Knowledge and
Data Engineering.

• Multi-view clustering by simultaneous trace optimization with
joint dimension reduction. Through simultaneous trace maximization
of multiple similarity matrices that describe multi-view data, we obtain
the multilinear relationship of multi-view data to facilitate the clustering.
This efficient strategy is well suited to dealing with large-scale data. It is
easily extended to other common clustering methods to formulate their
multi-view variants, for example, k-means and modularity maximization
based clustering. Based on a tensor decomposition method of MLSVD,
we develop a joint dimension reduction strategy for multi-view data.
As compared with dimension reduction by principal component analysis
(PCA) on a matrix applicable to single-view data, our strategy is powerful
because it is able to reduce a set of matrices simultaneously. This strategy
can be utilized as a pre-processing scheme for multi-view clustering as well
as other multi-view learning tasks. This contribution will be discussed in
Chapter 3.

The related paper:

Liu X., De Lathauwer L., Glänzel W., De Moor B., Optimal Clustering
and Joint Dimension Reduction of Multiple Graphs, in preparation.

• Hybrid clustering of multi-view text mining based on mutual
information. Based on bibliometric analysis, we generate five different
features in citation spaces and five other features in text spaces by
text mining. Each feature provides an independent but complementary
observation of the journal instances and thus we implement hybrid
clustering on their combination to seek a joint scientific mapping, which is
useful for monitoring and detecting new trends in different scientific fields.
According to our empirical results and the observations in other related
research, there exists certain relationship between average normalized
mutual information (ANMI) of one data and its clustering performance.
Therefore, we utilize ANMI to assign the weight to each single-view data
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for hybrid clustering. This weighted hybrid clustering is carried out on
two levels of information fusion: kernel fusion and partition integration
(clustering ensemble). The proposed approach is able to provide a more
refined structural mapping of journal sets. This contribution will be
discussed in Chapter 4.

The related papers:

Liu X., Yu S., Janssens F., Glänzel W., Moreau Y., De Moor B., Weighted
Hybrid Clustering by Combining Text Mining and Bibliometrics on Large-
Scale Journal Database, Journal of the American Society for Information
Science and Technology (JASIST), vol. 61, no. 6, 2010, pp. 1105-1119.

Yu S., Liu X., Tranchevent L., Glänzel W., Suykens J., De Moor B.,
Moreau Y., Optimized Data Fusion for K-means Laplacian Clustering,
Bioinformatics, vol. 27, no. 21, Jan. 2011, pp. 118-126.

Liu X., Yu S., Moreau Y., De Moor B., Glänzel W., Janssens F., Hybrid
Clustering of Text Mining and Bibliometrics Applied to Journal Sets, in
Proc. of the SIAM Data Mining Conference 09 (SIAM DM 09), Sparks,
Nevada USA, May 2009, pp. 46-60.

• Scalable hybrid clustering based on network analysis. By
modelling our data as a graph or network with sparse links, we investigate
the (textual) attributes of each node besides the (citation) links amid
them and even combine these two kinds of information to facilitate the
community detection task. We focus on the partitioning of the multiplex
network. In addition, we tackle the practical issues, for instance, the
determination of cluster number and the hierarchical partition structure.
This contribution will be discussed in Chapter 5.

The related papers:

Zhang L., Liu X., Janssens F., Liang L., Glänzel W., Subject Clustering
Analysis Based on ISI Category Classification, Journal of Informetrics,
vol. 4, no. 2, Apr. 2010, pp. 185-193.

Liu X., Yu S., Moreau Y., De Moor B., Glänzel W., Janssens F., Hybrid
Clustering by Integrating Text and Citation based Graphs in Journal
Database Analysis, in Proc. of the 2009 IEEE International Conference
on Data Mining Workshops (ICDMW2009), Miami, Florida, Dec. 2009,
pp. 521-526.

Liu X., De Moor B., Glänzel W., A Hierarchical and Optimal Clustering
of the WoS Journal Database by Hybrid Information, in Proceedings
of 13th International Conference on Scientometrics and Informetrics
(ISSI2011), Durban, South Africa, July 2011, pp. 485-496.
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• Information fusion and vertical search by multi-view text
mining. We extend the multi-view text mining concept from multiple
controlled vocabularies to multiple publishing time periods, weighting
schemes and even subjects. These multiple perspectives allow us to obtain
knowledge by a specific point of view or integrate multiple views for
joint analysis. The software of Text Prior is developed to implement
the information fusion and vertical search for gene retrieval. This
contribution will be discussed in Chapter 6.

The related paper:

Liu X., Gevaert O., Tranchevent L., Moreau Y., De Moor B., A Web
Portal for Multi-view Text Mining and Vertical Searches, submitted to
BMC Bioinformatics.





Chapter 2

Multi-view clustering by
tensor methods

2.1 Introduction

In many real-world problems, objects can be described by multiple sets
of features. For example, in scientific literature mining, both the textual
content and the citation link between articles are often used in the knowledge
discovery processes [91]. In multiplex network analysis, we are given a set of
multiple networks that share the same nodes but possess network-specific links
representing different types of relationships between nodes [99]. A particular
instance of this scenario is the social network of university students, which
may include symmetrized connections from (i) Facebook friendship, (ii) picture
friendship, (iii) roommate relations, and (iv) student housing-group preference.
These diverse individual activities result in multiple relationship networks
among students. Such a learning scenario is called multi-view learning, since
each feature set describes a view of the same set of underlying objects. A simple
approach to learn from these multi-view data is to learning from each view
separately. However, such approaches fail to account for the complementary
information encoded into different views.

Multi-view clustering refers to the clustering of the same class of entities with
multi-view representations, either from various information sources or from
different feature generators. Compared with the clustering that is implemented
on single-view data, multi-view clustering is expected to obtain robust and
novel partitioning results by exploiting the complementary information in

27
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different views. One of the recent developments in clustering is the spectral
clustering technique, which has seen an explosive proliferation over the past
few years [135]. Among many other factors, such as easy implementation and
efficiency, one of the key advantages of spectral clustering is that it is based on
the relaxation of a global clustering criterion (i.e., normalized cuts). Spectral
clustering has been widely employed in many real applications, from image
segmentation to community detection. Although spectral clustering [94] works
well on single-view data, it is not well suited for the presentation of multi-view
data, since it is inherently based on matrix decompositions.

Recently, several multi-view clustering algorithms have been proposed [5,
12, 27, 34, 91, 92, 127, 131, 150]. These multi-view clustering techniques
have been shown to yield better performance in comparison to single-view
techniques. However, as we will discuss in the related work, the limitations
of some algorithms are apparent. For instance, some techniques assume
that the dimensions of the features in multiple views are the same, limiting
their applicability to the homogeneous settings. Some other techniques only
concentrate on the clustering of two-view data so that it might be hard to
extend them to more than a two-view situation [12]. In addition, an appropriate
weighting scheme is lacking for these multiple views although coordinating
various information from them is also one crucial step in gaining good clustering
results [127, 132]. A unified framework that can integrate various types of multi-
view data is lacking [92, 131].

Traditionally, tensor-based methods have been used to model multi-view data
[76]. Tensors are higher-order generalizations of matrices, and some tensor
methods are very powerful to analyze the latent pattern hidden in the multi-
view data. Tensor decompositions [31, 77] capture multilinear structures in
higher-order data-sets, where the data have more than two modes. Tensor
decompositions and multi-way analysis allow naturally to extract hidden
(latent) components (cluster structure) and investigate complex relationship
among them. Tensors have been successfully applied to several domains, such as
chemometrics, signal processing, Web search, data mining, scientific computing
and bioinformatics [3, 8, 38, 76, 77, 101, 110, 122, 128].

In this Chapter, we propose a multi-view clustering framework based on
tensor methods. Our formulations model the multi-view data as a tensor
and seek a joint latent optimal subspace by tensor analysis. Our framework
can leverage the inherent consistency among multi-view data and integrate
their information seamlessly. Apart from other multi-view clustering strategies,
which are usually devised for ad hoc application, our method provides a
general framework in which some limitations of prior methods are overcome
systematically. In particular, our framework can be extended to various types
of multi-view data. Almost any multiple similarity matrices of the same
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entities are allowed to be embedded into our framework. In addition, since our
framework can obtain a joint optimal subspace, it can be easily extended to
other related machine learning tasks, such as classification, spectral embedding
and collaborative filtering. Our framework consists of two novel algorithms:
multi-view clustering based on optimization integration (MC-OI) and that
based on matrix integration (MC-MI). In particular, MC-MI can assign each
view a suitable weight to boost the clustering. For each strategy, we provide two
tensor based solutions. In fact, just as the other variants of PCA in machine
learning applications [144], our strategy can be taken as a multi-view PCA
analysis.

As an illustrative example of synthetic data shown in Figure 2.1, we intend to
use it to compare three partitioning strategies to show the power of our tensor
based multi-view partitioning. There are two groups of data points in a 3-D
space, suppose based on our limited measurements (such as 2-D cameras in
the real world), only the 2-D projection information of these data points could
be observed (such as, X-Y projection, Y-Z projection and X-Z projection in a
3-D X-Y-Z coordinate system). We call each of the three 2-D projection data,
single-view data. We can find the group information by adopting a spectral
partitioning on each of these three single-view data. As shown in the upper right
part of Figure 2.1, from each spectral projection of single-view data, there is
significant overlap among these two groups of data points. Obviously, we could
not recover the cluster structure only by each single-view data.

On the other hand, a natural idea is to integrate these three-view observations
for joint partitioning, that is multi-view clustering. Thus, we investigate the
spectral projection of two multi-view clustering strategies: multiple kernel
fusion (MKF) and MC-OI based on MLSVD (MC-OI-MLSVD). As shown in
the middle right part of Figure 2.1, the overlap among these two groups still
remains by the spectral projection of MKF so that it is hard to get the correct
group structure as well. Whereas, from the lower right part of Figure 2.1, the
two groups are separated clearly by MC-OI-MLSVD and consequently a good
group structure can be recovered from this three-view data. In this example,
it shows that our tensor based multi-view clustering strategy is able to obtain
the latent cluster structure hidden amid multi-view data.

To the best of our knowledge, our work is the first unified attempt to address
multi-view clustering within the framework of tensor methods. The key
contributions of our work can be summarized as follows:

• We propose to model multi-view data as a tensor and develop a new
framework of multi-view clustering by tensor methods.
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Spectral projection by each 2D data
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analysis
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fusion

Multi-view
analysis

Multi-view
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Figure 2.1: Comparison of single-view projection versus multi-view projection.

• We present two novel multi-view clustering strategies with their tensor
solutions.

• We systematically evaluate our methods on both a synthetic data set and
two real applications.

The rest of the Chapter is organized as follows. To start, Section 2.2 reviews the
related work. Then, Section 2.3 introduces the concepts of spectral clustering.
Next, Section 2.4 presents our tensor based multi-view clustering algorithms.
After that, Section 2.5 demonstrates the experimental results on synthetic
data and practical applications. The related research issues are discussed in
Section 2.6. Finally, we conclude in Section 2.7.
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2.2 Related work

2.2.1 Multi-view clustering

Bickel and Scheffere [12] propose a multi-view clustering method that extends
k-means and hierarchical clustering to deal with data with two conditionally
independent views. A multi-view clustering strategy via canonical correlation
analysis (CCA) is presented in [27]. This method assumes that the views are
uncorrelated given the cluster label. The above algorithms only concentrate
on the clustering of two-view data thus it might be hard to extend them to
more than two-view situations. Meanwhile our strategy is applicable to any
multi-view situation. Long et al. [92] formulate a multi-view spectral clustering
method while investigating multiple spectral dimension reduction. A clustering
method based on linked matrix factorization is introduced to fuse information
from multiple graphs in [132]. Zhou et al. [150] develop a multi-view clustering
strategy via generalizing the normalized cut from a single view to multiple views
and subsequently they build a multi-view transductive inference. In the above
algorithms, a common problem is that the analysis of inherent relationship
among multi-view data might be neglected. While in our tensor based strategy,
the multilinear relationship among multi-view data is taken into account.

2.2.2 Community detection of multi-view networks

Tang et al. propose the concept of feature integration to implement
the clustering of multi-view social networks [131]. Based on modularity
optimization, Mucha et al. [99] develop a generalized framework of network
quality functions that allow studies of community structure in a general setting
encompassing networks that evolve over time, have multiple types of links
(multiplexity), and have multiple scales. These methods are applicable to
specific type of data with sparse links while our strategy is devised for general
data.

2.2.3 Kernel fusion and clustering ensemble

Multiple kernel learning aims at finding a combination of kernels to optimize
for classification or clustering [74, 91]. Such a solution might sound natural, but
its underlying principal is not clear [150]. In addition, the heavy computation
of their convex optimization makes them only applicable to small databases
[91]. Meanwhile, with the recent research progress in tensor decomposition
[121], our strategy has the potential to tackle large-scale databases. Clustering
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ensemble is also known as clustering aggregation or consensus clustering, which
integrates different partitions into a consolidated partition with a consensus
function [5, 127]. However, clustering ensemble methods usually concentrate
on single-view data to overcome the drawback of k-means. In fact, clustering
ensemble is embedded into our strategy to facilitate the final partitioning.

2.2.4 Tensor based clustering

Sun et al. [128] introduce a dynamic tensor analysis (DTA) algorithm and
its variants, and apply them to anomaly detection and multi-way latent
semantic indexing. It seems their clustering method is designed for dynamic
stream data. Dunlavy et al. [38] apply Parallel Factor Analysis (PARAFAC)
decomposition for analyzing scientific publication data with multiple linkage.
Selee et al. create a new tensor decomposition called Implicit Slice Canonical
Decomposition (IMSCAND) to group information when multiple similarities
are known [122]. The last two ideas that integrate multi-view data as
a tensor are similar to ours. But our methods rely on a Tucker-type
tensor decomposition. Furthermore, in these methods, all single-view data is
considered equally important, while we will present a technique that compute
weights for the different views.

2.3 Spectral clustering

Spectral clustering was originally derived based on relaxation of the normalized
cut formulation for clustering [123]. In particular, spectral clustering involves a
matrix trace optimization problem [94, 108]. We show in this Chapter that the
spectral clustering formalism can be extended to deal with multi-view problems
based on tensor computations.

Given a set of N data points {xi}Ni=1 where xi ∈ R
p is the ith data point

(p is the number of feature dimensions), a similarity sij ≥ 0 can be defined
for each pair of data points xi and xj based on some similarity measure. An
intuitive way to represent this data set is using a graph G = (V, E) in which
the vertices V represent the data points and the edges eij ∈ E characterize
the similarity between data points quantified by sij . Usually, the similarity
measure is symmetric, and the graph is undirected. The affinity matrix of the
graph G is the matrix S with the ijth entry Sij = sij . The degree of the vertex
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di, defined as

di =
N
∑

j=1

sij , (2.1)

is the sum of all the weights of edges connected to di. The degree matrix D
is a diagonal matrix containing the vertex degrees d1, ..., dN on the diagonal.
It follows from the spectral embedding formalism [94, 108, 123] that the
Laplacian matrix is defined as L = D − S, and the normalized Laplacian
matrix, corresponding to the normalized cuts (NCut), is defined as

LNCut = D−1/2LD−1/2 = I− SN , (2.2)

where SN is the normalized similarity matrix and defined as

SN = D−1/2SD−1/2. (2.3)

The matrices SN and LNCut have the same eigenvectors, and their eigenvalues
are related as λ(SN ) = 1 − λ(LNCut), where λ(SN ) and λ(LNCut) are the
eigenvalues for SN and LNCut, respectively.

2.3.1 Single-view spectral clustering

We first consider spectral clustering in the single-view setting [94]. Suppose
U ∈ R

N×K is the relaxed assignment matrix, where N is the number of data
points and K is the number of clusters. The spectral clustering problem can
be expressed as

min
U

trace(UTLNCutU),

s.t. UTU = I.

(2.4)

It follows from the Ky Fan theorem [112] that the optimal solution to the
problem in (2.4) is the top K eigenvectors of LNCut. Considering the
relationship between SN and LNCut, the spectral clustering formulation can
also be expressed as

max
U

trace(UTSNU),

s.t. UTU = I.

(2.5)
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Since SN is positive semi-definite, the spectral clustering can be re-formulated
as a Frobenius norm optimization problem as follows:

max
U

‖UTSNU‖
2

F ,

s.t. UTU = I.

(2.6)

The objective functions in (2.5) and (2.6) are different, but they happen to
have the same optimal solution, namely, the columns of a matrix U span the
dominant eigenspace of SN .

2.3.2 Multi-view spectral clustering

Given multi-view data, the clustering result could be improved if the multiple
views are integrated in an appropriate way. We have the following two strategies
to integrate the multi-view data in the context of spectral clustering. Our
multi-view partitioning strategies are expected to capture the complementary
information conveyed in different views so that they are able to achieve better
or robust clustering results.

Multi-view clustering by optimization integration (MC-OI)

Based on the spectral partitioning of each single-view data, the first strategy
is to integrate the objective functions of individual partitions from each single-
view data. In particular, we consider the optimization of multi-view clustering
by simply adding individual objective functions as in

max
U

V
∑

v=1

‖UTS
(v)
N U‖

2

F ,

s.t. UTU = I,

(2.7)

where S
(v)
N is the normalized similarity matrix for the vth view and U is the

common factor shared by multiple views.

Multi-view clustering by matrix integration (MC-MI)

The second multi-view clustering strategy is to combine the normalized
similarity matrices from different views, leading to the following integrated
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similarity matrix as

S̃ = w1S
(1)
N + w2S

(2)
N + ...+ wV S

(V )
N , (2.8)

where wv are the weights of each view and W = [w1, w2, · · · , wV ]T . The multi-
view clustering based on S̃ can be formulated as follows:

max
U,wv

‖UT S̃U‖
2

F ,

s.t. UTU = I, wv > 0 and
V
∑

v=1

w2
v = 1,

(2.9)

where the unknown weighting factors wv play a crucial role in the above
optimization. Once wv are determined, MC-MI can be handled as a common
spectral clustering problem defined in (2.6). In addition, weighting factors wv
can also be considered as the weights (contribution) of different views during
joint partitioning.

2.4 Multi-view spectral clustering via tensor meth-
ods

Following the two multi-view clustering strategies discussed above, we present
the tensor-based solutions in this section. Compared to the single-view spectral
clustering, which is solved by matrix decomposition, we formulate our multi-
view clustering by tensor decomposition. The overview of the tensor-based
method is depicted in Figure 2.2. As shown in the left part of Figure 2.2, the
goal of single-view spectral clustering is to find an optimal latent subspace from
single-view data. In contrast, with multi-view data, we want to obtain a joint
optimal subspace with the aid of tensor methods.

2.4.1 Background on tensors

We provide some basic background on tensors and their decompositions in the
following. We refer the readers to [31, 32, 77] for more detailed treatment on
this topic. A tensor is a multidimensional array [77]. The order of a tensor is
the number of modes (or ways). A first-order tensor is a vector, a second order
tensor is a matrix and a tensor of order three or higher is called a higher-order
tensor. We only investigate third-order tensor methods that are relevant to our
problem.
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Figure 2.2: Comparison between single view (left) and multi-view (right)
spectral clustering.

Matrix unfolding is the process of re-ordering the elements of a 3-way array
into a matrix. The n-mode (n = 1, 2, 3) matrix unfoldings of a tensor A ∈
R
I1×I2×I3 are denoted by A(1),A(3) and A(3) separately. For example, the

matrix unfolding A(1) is a matrix with the number of rows I1 and the number
of its columns is the product of dimensionalities of all other modes, that is,
I2 × I3. The matrix unfolding of a third-order tensor is illustrated in Figure
2.3.

A tensor can be multiplied by a matrix. Consider a tensor A ∈ R
I1×I2×I3 and

a matrix B ∈ R
J1×I1 , C ∈ R

J2×I2 , D ∈ R
J3×I3 , then the 1-mode product

(A×1 B), 2-mode product (A×2 C) and 3-mode product (A×3 D) are defined
by

(A×1 B)j1i2i3 =
I1
∑

i1=1

ai1i2i3bj1i1 , ∀j1, i2, i3, (2.10)

(A×2 C)i1j2i3 =
I2
∑

i2=1

ai1i2i3cj2i2 , ∀i1, j2, i3, (2.11)
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Figure 2.3: Matrix unfolding of a third-order tensor

(A×3 D)i1i2j3 =
I3
∑

i3=1

ai1i2i3dj3i3 , ∀i1, i2, j3, (2.12)

respectively.

Multilinear singular value decomposition (MLSVD) [31, 134] is a form of higher-
order extension of matrix Singular Value Decomposition (SVD). It decomposes
a tensor into a core tensor multiplied by a matrix along each mode. In the
three-way case where A ∈ R

I1×I2×I3 , we have

A = B ×1 U×2 V×3 W, (2.13)

where U ∈ R
I1×I1 , V ∈ R

I2×I2 and W ∈ R
I3×I3 are called factor matrices

or factors and can be thought of as the principal components of the original
tensor along each mode. The factor matrices U,V and W are assumed to
be column-wise orthonormal. The tensor B ∈ R

I1×I2×I3 is called the core
tensor. In MLSVD, B has a very specific structure, namely, it satisfies “all-
orthogonal” and “ordering” constraints, see [31]. The elements of B show the
level of interaction between different components. According to [31], given a
tensorA, its matrix factors U,V and W as defined in (2.13) can be computed as
the left singular vectors of its matrix unfoldings A(1),A(2) and A(3) respectively.
The tensor approximation by truncating the decomposition is named truncated
MLSVD. A decomposition as (2.13), with or without constraint, is also known
as a Tucker decomposition [134].
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2.4.2 Tensor construction

As aforementioned in the introduction section, multi-view data can be naturally
modelled as a tensor. The construction of a tensor is a key step to devise our
multi-view clustering algorithm. There are several options for constructing a
tensor with multi-view data. In [62], a tensor is constructed by stacking the
object-by-feature matrices derived from multiple views in a tensor as shown
in the left part of Figure 2.4. Omberg et al. adopt an analogous scheme to
formulate an integrative framework for joint analysis of DNA microarray data
from different studies [110]. This kind of tensor construction is only applicable
to the scenario of homogeneous data sources, where the dimensions of different
feature spaces are the same. In fact, many multi-view applications deal with
heterogeneous data sources in which the dimensions of various feature spaces
are different. For instance, in our later application to scientific publication
analysis, the citation feature space has the dimension of 8,305 while the
dimension of the text feature space is more than 600,000.

Consequently, we prefer a construction that is independent of data dimension,
thereby enabling the integration of heterogeneous data sources. Based on
this motivation, we propose to build a tensor A from the multiple similarity
matrices {S(1)

N ,S
(2)
N , · · · ,S

(V )
N } derived from multiple views as the frontal slices.

In this research, we call this type of tensor similarity tensor. Different from
the former data tensor, this similarity tensor is partially symmetric. The
first and the second dimensions I1 and I2 of the tensor A are equal to the
corresponding dimension of the similarity matrices S

(v)
N , (v = 1, . . . , V ), and

its third dimension V equals the number of multiple views (different similarity
matrices). The construction of a similarity tensor is illustrated in the right part
of Figure 2.4. Since the similarity of each view is computed in different spaces,
the normalization of each similarity matrix is required. Indeed, our definition
of similarity matrix in (2.3) could be regarded as a normalization step.

2.4.3 MC-OI by tensor methods

We first discuss the optimization integration approach for multi-view clustering.
Suppose a similarity tensor A is built from similarity matrices S

(v)
N ∈

R
N×N (v = 1, . . . , V ), the integration of spectral optimization can be written

as

V
∑

v=1

‖UTS
(v)
N U‖

2

F = ‖A×1 UT ×2 UT ×3 I‖
2

F , (2.14)
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Figure 2.4: Comparison of different formulations of multi-view learning using
tensor methods.

where the column space of U ∈ R
N×K is the joint optimal subspace and I ∈

R
V×V is an identity matrix. The spectral decomposition of the similarity tensor
A in this case can be illustrated as in Figure 2.5.
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Figure 2.5: Illustration of multi-view clustering by optimization integration
using tensor decomposition.

The optimization of multi-view clustering in (2.7) can be re-formulated based
on tensor computation as

max
U

‖A×1 UT ×2 UT ×3 I‖
2

F ,

s.t. UTU = I.

(2.15)

This optimization can be approximated by MLSVD and we call this method
multi-view clustering by optimization integration based on MLSVD (MC-OI-
MLSVD). As explained in [31], projection by MLSVD on the dominant higher-
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order singular vectors usually gives a good approximation of the given tensor.
Consequently, we propose to take the columns of U to be the dominant 1-mode
singular vectors. Our experimental results show that this solution usually leads
to satisfactory performance. The dominant 1-mode singular vectors of U are
equal to the dominant left singular vectors of A(1). The truncated MLSVD
obtained this way does not maximize (2.7) in general. However, the result
is usually satisfactory and the algorithm is efficient and easy to implement.
Moreover, there exists an upper bound on the approximation error as shown
in [31]. The pseudo code of MC-OI-MLSVD is presented as follows:

Algorithm 2.4.1: MC-OI-MLSVD(S(1),S(2), ...,S(V ), K)

comment: K is the number of clusters

1. Build a similarity tensor A
2. Obtain the unfolding matrix A(1)

3. Compute U from the subspace spanned by

the dominant left K singular vectors of A(1)

4. Normalize the rows of U to unit length

5. Calculate the cluster idx with k −means on U

return (idx : the clustering label)

Meanwhile, there exist other tensor based solutions. For example, this
optimization can be solved by a tensor approximation method called higher-
order orthogonal iteration (HOOI), which is an alternating least-squares (ALS)
algorithm [32, 82].

The basic idea of HOOI is to solve the following maximization problem:

max
U,V,W

‖A×1 UT ×2 VT ×3 WT ‖
2

F ,

s.t. UTU = I, VTV = I and WTW = I.

(2.16)

At each step, the estimate of one of the matrices U,V,W is optimized, while
the other two are fixed. In order to maximize with respect to the unknown
matrix U, the objective function of (2.16) is treated as a quadratic expression
in U. It follows from

‖A×1 UT ×2 VT ×3 WT ‖
2

F = ‖UT (A(1)(V⊗W))‖
2

F
, (2.17)

where the columns of U ∈ R
I×P build an orthonormal basis for the P -

dimensional left dominant subspace of the column space of A(1)(V ⊗ W),
and the solution can be obtained from the SVD of A(1)(V ⊗W) [31]. The
optimization with respect to V and W is performed in similar ways. Usually,
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the optimization of HOOI is initialized by MLSVD. Thus, the resulting
algorithm called MC-OI-HOOI, is presented as follows:

Algorithm 2.4.2: MC-OI-HOOI(S(1),S(2), ...,S(V ),K)

Build a similarity tensor A

Obtain the unfolding matrices A(1), A(2) and A(3)

comment: obtain an initial U0 and V0 by MLSVD

while <!convergence >

do







step1 : Ui+1 in dominant subspace of

A(1)(Vi ⊗ I)
step2 : Vi+1 in dominant subspace of

A(2)(Ui ⊗ I)
comment: i is the counter of iteration

Normalize the rows of U to unit length

Calculate the cluster idx with k −means on U

return (idx : the clustering label)

The tensor decomposition in both MC-OI-MLSVD and MC-OI-HOOI is in
fact a kind of joint matrix compression as shown in Figure 2.6, where the
truncated tensor decomposition in the upper part can be understood as the joint
compression of a set of matrices in the lower part. Matrix U in both parts is the
common factor shared among multi-view data, and a set of similarity matrices
Λ(1), . . . ,Λ(V ), which form the front slices of the core tensor in the upper part,
capture the characteristics of each view.

2.4.4 MC-MI by tensor methods

Since the effect of multi-view data differs from each other, each of them can
be assigned an appropriate weight for joint analysis. In this case, the spectral
decomposition of the similarity tensor A can be illustrated in Figure 2.7, in
which U denotes the joint optimal subspace that we want to compute, andW =
[w1, w2, · · · , wV ]T denotes the weights of each view. The objective function of
multi-view clustering of matrix integration (MC-MI) can be written as

‖UT S̃U‖
2

F = ‖UT (
V
∑

v=1

wvS
(v)
N )U‖2F = ‖A×1 UT ×2 UT ×3W

T ‖
2

F . (2.18)
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Thus the optimization of multi-view clustering in (2.9) can be re-written as

max
U,W
‖A×1 UT ×2 UT ×3W

T ‖
2

F , W =







w1

...
wV







s.t. UTU = I, ‖W‖
2
F = 1.

(2.19)

We can obtain the solution of this weighted multi-view clustering by HOOI.
In addition, other algorithms can also be employed to solve this tensor based
optimization problem, see [65] and reference herein.

Since the optimal HOOI solution usually leads to expensive computation, we
simplify the main steps of the HOOI solution by an equivalent but efficient
implementation. Taking the fact that W is not a matrix but a vector into
account, we replace the optimization of the decomposed factors in each mode
with the sum of matrices and its eigenvalue decomposition (EVD). The pseudo
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code of MC-MI-HOOI is shown in the following,

Algorithm 2.4.3: MC-MI-HOOI(S(1),S(2), ..., S(V ), K)

Build a similarity tensor A

Obtain the unfolding matrices A(1), A(2) and A(3)

comment: obtain an initial U0 by MLSVD

while <!convergence >

do

{

step1 : Calculating Wi as the dominant left singular vector of A(3)(Ui ⊗Ui)

step2 : Computing a new integration matrix S̃ by
∑

V

v
wvS

(i)

step3 : Obtaining Ui+1 by eigenvalue decomposition of S̃

comment: i is the counter of iteration

Normalize the rows of U to unit length

Calculate the cluster idx with k −means on U

return (idx : the clustering label)

In the MC-OI framework, we discussed two alternative approaches, MC-OI-
MLSVD and MC-OI-HOOI. In the present section, we only discussed MC-MI-
HOOI. The reason is that tests indicated that in the MC-MI framework, mere
truncation of the MLSVD, retaining only one vector in the third model, often
yields unsatisfactory results.

2.5 Experimental Evaluation

In this section, we report experimental results of the proposed multi-view
partitioning strategies in comparison with baseline multi-view clustering
methods.
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2.5.1 Baseline methods

The following six baseline multi-view clustering methods are employed for later
comparison.

• Multiple kernel fusion (MKF): Joachims et al. [74] integrate different
kernels by linear combination for hybrid clustering. The similarity matrix
defined in (2.3) can be regarded as a linear kernel as well. In this research
we adopt the average integration of multiple kernels, which actually is
equal to the concatenation of the different normalized feature vectors
from various single views [69].

• Feature integration (FI) [131]: With spectral analysis on each view, their
structure features are extracted and then integrated together, on which
SVD is implemented to obtain the cross-view principal components for
clustering.

• Strehl’s clustering ensemble algorithm (SA) [127]: Strehl & Ghosh
formulate the optimal consensus as the partition that shares the most
information with the partitions to combine. Three heuristic consensus
algorithms (cluster-based similarity partition, hyper-graph partition and
meta-clustering) based on graph partitioning are employed to obtain the
combined partition.

• AdacVote [5]: Ayad & Kamel propose a cumulative vote weighting
method to compute an empirical probability distribution summarizing
the ensemble.

• CP-ALS [25, 57]: The CANDECOMP/PARAFAC (CP) decomposition
is usually solved by an alternating least squares (ALS) algorithm, which
we implement with a Matlab based tensor toolbox [6].

• Linked matrix factorization (LMF): In Tang’s work [132], a quasi-Newton
method named Limited memory BFGS (L-BFGS) is adopted for the
optimization of LMF. We implement this algorithm with the aid of an
optimization matlab toolbox named Poblano [37].

In our experiments, MC-OI-HOOI, MC-MI-HOOI, CP-ALS and LMF require
initialization and parameter setting. The code of MLSVD and HOOI can be
referred to the Matlab based tensor toolbox [6]. We develop our multi-view
clustering algorithms by Matlab. Regarding CP-ALS, we adopt the default
initialization and parameter setting as defined in the toolbox itself. All the
other three algorithms are sensitive to the initialization, for example, LMF
does not work under random initialization. So we initialize them by MLSVD
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which usually provides a good initialization. On the other hand, all of these
algorithms are not sensitive to the parameter setting and thus we choose their
parameters as the default setting.

2.5.2 Performance measures

Regarding clustering evaluation, the data sets used in our experiments are
provided with labels. Therefore the clustering performance is evaluated as
compared to the automatic partitions with the labels using Adaptive Rand
Index (ARI) [63] and Normalized Mutual Information (NMI) [127]. To evaluate
the ARI and NMI performance, we set cluster number M = 7 on journal data
and M = 14 on disease data.

In order to overcome the drawback of the k-means algorithm which is sensitive
to various initializations, we adopt the combination of clustering ensemble of
SA method and k-means as the final partitioning scheme for both spectral
clustering and multi-view clustering. In particular, we first repeat each
clustering method 50 times and deal with the 50 times clustering ensemble
by SA method to obtain the final consensus partition. Consequently, the final
partition by each clustering algorithm is unique.

2.5.3 Experiment on a synthetic multiplex network

We first evaluate and compare different clustering strategies applied to synthetic
multi-view data. The synthetic data has 3 communties (clusters), which have
50, 100, 200 members respectively [130]. We can generate various views of
interactions among these 350 vertices, that is, each view forms a network that
shares the same vertices but has a different interaction pattern. For each view,
group members connect with each other following a randomly generated within-
group interaction probability. The interaction probability differs with respect
to groups at distinct views. After that, we add some noise to the network
by randomly connecting any two vertices with low probability. The different
views demonstrate different interaction patterns. In this multi-view network
which can also be called multiplex network according to [99], we construct four
interaction matrices, each of whose elements is the interaction strength of a
pair of vertices. The visualization of the four adjacency matrices is shown as
Figure 2.8. They can then be used to construct a tensor. We apply spectral
clustering to each single-view network.

In Table 2.1, we list the clustering evaluation on each single view data as well as
those of multi-view clustering methods. First, it is clear that most multi-view
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Figure 2.8: Visualization of the adjacency matrices of a synthetic multiplex
network.

.

Table 2.1: Evaluation of clustering methods on a four view synthetic multiplex
network

Methods NMI ARI
S-A1 0.7605 0.7995

Single View S-A2 0.8928 0.9192
S-A3 0.7198 0.8196
S-A4 0.6318 0.5599
MC-OI-MLSVD 0.9321 0.9508
MC-OI-HOOI 0.9241 0.9509

Multi View MC-MI-HOOI 0.9431 0.9670
MKF 0.9156 0.9429
FI 0.8893 0.9243
SA 0.9251 0.9540
AdacVote 0.8951 0.9400
CP-ALS 0.5491 0.1274

clustering results are better than single-view clustering results. This could be
easily explained by the patterns shown in Figure 2.8. The first view of the
network (left above) only shows one group, and the fourth view (right below)
involves another group with the other two groups hidden behind the noise.
Thus, using single view is unlikely to recover the inherent cluster structure.
This phenomenon is also validated by the low NMI as well as ARI of these
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Table 2.2: The weighting coefficients of multi-view data by MC-MI-HOOI on
synthetic data

Sources Ranking of wv wv Performance ranking
A1 3 0.4725 3
A2 2 0.5288 1
A3 1 0.5643 2
A4 4 0.4433 4

two views. Applying multiple views helps reduce the noise and uncover the
shared cluster structure. Second, compared with the other five baseline multi-
view clustering strategies (since LMF works very bad on this data, we omit its
comparison), our tensor based clustering methods perform better. In particular,
MC-OI-MLSVD and MC-MI-HOOI are obviously superior to others based on
both NMI and ARI evaluations.

To evaluate whether the optimized weights assigned on single-view data are
correlated with their clustering performance, we compare the ranking of the
weighting coefficients obtained by MC-MI-HOOI with the ranking of the
corresponding clustering performance in Table 2.2. The ranking of the optimal
weights of these multiple views is generally consistent with the ranking of
their corresponding clustering performance. As shown, the top two largest
coefficients correctly indicate the top two best individual data sources (A2 and
A3).

In addition, as shown in Figure 2.8, the single-view data A3 with the largest
weight contains the most information (three obvious clusters) while the single-
view data A4 with the lest weight contains the lest information (one obvious
cluster). The reason why our multi-view clustering algorithm of MC-MI-HOOI
performs best might be due to the fact that it can leverages the effect of different
single-view data in a reasonable way: during the joint clustering, the most
informative view A3 plays the most part (the largest weight) while the lest
informative view A4 plays lest part (the lest weight).

2.5.4 Application on scientific documents analysis

In this section, we apply our algorithms to the scientific analysis of the Web of
Science (WoS) journal set. Our objective is to map these journals into different
subjects by clustering algorithms.
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Data description

Historically, bibliometric researchers have focused solely on citation analysis or
text analysis, but not on both simultaneously. Recently, many researchers
have applied text mining and citation analysis to the journal set analysis.
The integration of lexical and citation information is a promising strategy
towards better mappings [91]. We adopt a data set obtained from the WoS
database by Thomson Scientific which contains articles, letters, notes and
reviews from the years 2002 till 2006. To create a balanced benchmark data
for evaluation, we select 7 categories consisting of 1424 journals. The titles,
abstracts and keywords of the journal publications are indexed by a Jakarta
Lucene based text mining program using no controlled vocabulary. The weights
are calculated by four weighting schemes: Term Frequency (TF), Inverse
Document Frequency (IDF), Term Frequency-Inverse Document Frequency
(TF-IDF) and binary. Therefore, we have obtained four data sources as the
lexical information of journals. These four kinds of text data are directly
represented as similarity matrices. At the same time, four kinds of citation
data represent link-based relationships among journals and consequently, from
them, we construct corresponding affinity matrices, denoted as cross-citation,
co-citation, bibliographic coupling and binary cross-citation. The detail of
journal data are presented in Chapter 4.

We implement the proposed tensor based multi-view clustering methods to
integrate multi-view data on journal data. To evaluate the performance, we
also apply six popular multi-view clustering methods mentioned in Section V
to integrate multi-view data. To verify whether the integration of multi-view
data by tensor methods indeed improves the clustering performance, we first
systematically compare the performance of all the individual data sources using
spectral clustering. As shown in the left part of Table 2.3, the best spectral
clustering is obtained on TFIDF data (NMI 0.7280, ARI 0.6601).

Afterwards, we also investigate the performance of integrating all single-view
data using all compared multi-view clustering algorithms presented in the
right part of Table 2.3. In particular, of all the algorithms we compared, the
best performance is obtained by the MC-OI-HOOI method (NMI 0.7605, ARI
0.7262).

The comparison between the ranking of weighting coefficients by MC-MI-HOOI
with the ranking of clustering performance is shown in Table 2.4. Because text
and citation data are heterogeneous data sources, we compare each integration
of them in their own feature spaces separately. In general, the ranking of the
optimal weights obtained in this experiment is consistent with the ranking of
their individual performance. For instance, within the citation feature space,
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Table 2.3: Clustering performance on WoS journal database. S-BGC: Single-
view clustering on Bibliographic coupling data.

SC-Algorithm NMI ARI MC-Algorithm NMI ARI
S-TFIDF 0.7280 0.6601 MC-OI-MLSVD 0.7331 0.6615
S-IDF 0.7020 0.6422 MC-OI-HOOI 0.7605 0.7262
S-TF 0.6742 0.6305 MC-MI-HOOI 0.7287 0.6756
s-Binary-Text 0.6432 0.6022 MKF 0.7327 0.6787
S-cross-citation 0.6833 0.6057 FI 0.6944 0.6031
S-co-citation 0.6815 0.6565 SA 0.7226 0.6952
S-BGC 0.4398 0.3348 AdacVote 0.7454 0.7176
S-Binary-citation 0.5831 0.5238 CP-ALS 0.7042 0.6377

LMF 0.5935 0.5058

Table 2.4: The weighting coefficients of multi-view data obtained by MC-MI-
HOOI on journal data.

Text data Ranking of wv wv Performance ranking
TFIDF 0.5890 1 1
IDF 0.4519 3 2
TF 0.5580 2 3
Binary-Text 0.3708 4 4
Citation Ranking of wv wv Performance ranking
cross-citation 0.5372 2 2
co-citation 0.5771 1 1
Bibliographic coupling 0.5095 3 4
Binary-citation 0.3446 4 3

the top 2 largest coefficients correctly indicate the top 2 best individual data
source (co-citation and cross-citation).

2.5.5 Experiment on disease gene clustering

Text mining helps biologists automatically collect disease-gene associations
from large volumes of biological literature. Given a list of genes, we can generate
a gene-by-term matrix by the retrieval from the MEDLINE database. We
can also obtain multi-view gene-by-term matrices. The view represents a text
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mining result retrieved by specific controlled vocabularies, hence multi-view
text mining is featured as applying multiple controlled vocabularies to retrieve
the gene-centric perspectives from free text publications. The clustering
methods can be implemented on these genes to get the group information,
which can be utilized for further disease analysis.

The data sets contain ten different gene-by-term text profiles indexed by ten
controlled vocabularies. The original disease-related gene data set contains 620
genes which are known to be relevant to 29 diseases. To avoid the effect of
imbalanced clusters which may affect the evaluation, we only keep the diseases
that have 11 to 40 relevant genes. This data processing results in 14 genetic
diseases and 278 genes. Because the present paper focuses on non-overlapping
(“hard”) clustering, we further remove 16 genes which are relevant to multiple
diseases and 17 genes whose term vectors are empty for one of those ten
vocabularies. The remaining 245 disease relevant genes are clustered into 14
clusters and biologically evaluated by their disease labels. For each vocabulary
based gene-by-term data source, we create a similarity matrix using the value
of the cosine similarity for two vectors. The details of disease gene data can be
referred to Chapter 6.

At first, as shown in the left part of Table 2.5, the best clustering performance of
individual data sources is obtained on LDDB text mining profile (NMI 0.7088,
ARI 0.5942).

Afterwards, we also investigate the performance of integrating all single-view
data using all compared multi-view clustering methods presented in the right
part of Table 2.5. In particular, of all the methods we compared, the best
performance is also obtained by the MC-OI-HOOI method (NMI 0.7732, ARI
0.6473) as the former experiment on journal data. The strategies with the
next two best performances are still our tensor methods, MC-MI-HOOI (NMI
0.7494, ARI 0.6015) and MC-OI-MLSVD (NMI 0.7429, ARI 0.6030). All of our
tensor methods are not only beyond spectral clustering results of any single-
view data but also superior to the six baseline multi-view clustering methods,
which demonstrates the power of our strategy.

In Table 2.6, we present the comparison between the ranking of weighting
coefficients of multi-view data with the ranking of the corresponding clustering
performance. As shown, the largest coefficient correctly indicates the best
individual data source (LDDB), and also the smallest coefficient correctly
indicates the worst individual data source (KO). As a whole, the optimal
weights obtained in our experiments are consistent with the ranking of the
corresponding performance.

In spectral clustering, by checking the “elbow” of the plot of eigenvalues of
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Table 2.5: Clustering performance on disease data set.

SC-Algorithm NMI ARI MC-Algorithm NMI ARI
S-GO 0.5367 0.3657 MC-OI-MLSVD 0.7429 0.6030
S-MeSH 0.7072 0.5134 MC-OI-HOOI 0.7732 0.6473
S-OMIM 0.6971 0.4901 MC-MI-HOOI 0.7494 0.6015
S-NCI 0.5153 0.3063 MKF 0.7002 0.5445
S-eVO 0.6048 0.3845 FI 0.6743 0.4830
S-KO 0.3187 0.1194 SA 0.7016 0.5495
S-LDDB 0.7088 0.5942 AdacVote 0.6093 0.5349
S-MP 0.6582 0.4962 CP-ALS 0.7241 0.5154
S-SNOMED 0.6819 0.5205 LMF 0.6058 0.4402
S-Uniprot 0.5692 0.3303

Table 2.6: The weighting coefficients of multi-view data obtained by MC-MI-
HOOI on disease data.

Sources Ranking of wv wv Performance ranking
GO 9 0.2544 8
MeSH 7 0.2842 2
OMIM 4 0.2973 3
NCI 6 0.2931 9
eVO 3 0.3021 6
KO 10 0.2216 10
LDDB 1 0.5303 1
MP 2 0.3113 5
SNOMED 8 0.2713 4
Uniprot 5 0.2970 7
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single-view data [94], it may provide a heuristic guess on the optimal cluster
number. Analogously, regarding tensor based multi-view clustering, we also
intend to explore the relationship between the optimal cluster number and 1-
mode singular values of similarity tensors. In Figure 2.9, from each tensor of
our three data sets, we plot the top 20 1-mode singular values. As shown in
Figure 2.9, the “elbow” in synthetic data is quite obvious at the number of 2 or
3 (the real cluster number is 3). In journal data, the “elbow” is more likely to
range from 2 to 10 (the real cluster number is 7). In disease data, the “elbow” is
from 2 to 15 (the real cluster number is 14). It seems that checking the “elbow”
of the plot of 1-mode singular values might also offer a heuristic estimation of
the optimal cluster number for the tensor based multi-view clustering strategies.
Moreover, as can be observed in Figure 2.10 and Figure 2.11, we also compare
the 1-mode singular value curves using different tensors of journal data and
gene-disease data. Where the tensors are generated from different number
of views, for instance, in journal data, we generate different tensors by using
various combinations from 2 to 7 views randomly. As shown, for each data, the
1-mode singular value plot is quite stable w.r.t. the different combination of
multiple views.

To investigate the computational time, we benchmark our tensor based multi-
view clustering algorithms with 6 different multi-view clustering methods on
the two application data sets. As shown in Table 2.7, our three strategies
(MC-OI-MLSVD, MC-OI-HOOI and MC-MI-HOOI) are efficient. For instance,
they are faster than four multi-view clustering methods (SA, AdacVote, CP-
ALS and LMF). Obviously, MC-OI-MLSVD is more efficient. On the other
hand, compared with MKF and FI, which our three algorithms are behind, our
proposed methods yield much better performance or more enriched information
(the weighting factor of the individual sources). Meanwhile, the two clustering
ensemble methods SA and AdacVote require more computation time since they
involve the partitioning of each single-view data. Consequently, with number
of views increasing, the computation of the clustering ensemble methods will
become more and more intensive.

2.6 Discussion

Based on the clustering performance of the multi-view clustering strategies,
MKF is efficient when compared with tensor based strategies. However, MKF
only combines multiple kernels (similarity matrices) in a simple way using
the average sum of multiple similarities. Such a simple combination neglects
the discriminating capability of each kernel. Clustering ensemble methods
(SA and AdacVote) rely on discrete hard clustering. Using only the final
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Figure 2.9: Plot of the top 20 1-mode singular values of tensors constructed
from different multi-view data (synthetic data on the left, journal data on the
middle and disease data on the right). All multi-view data within each data
are employed to construct the relevant tensor.

Table 2.7: Comparison of CPU time of all multi-view clustering algorithms on
real applications

Algorithm disease data (seconds) journal data (seconds)
MC-OI-MLSVD 4.82 33.34
MC-OI-HOOI 9.32 64.98
MC-MI-HOOI 2.79 41.75
MKF 1.23 3.97
FI 3.94 20.06
SA 37.29 60.94
AdacVote 37.31 44.67
CP-ALS 7.82 127.55
LMF 9.40 203.41

partition information seems too fragile to integrate. In addition, because
the partitioning of every single-view data is required, the implementation of
clustering ensemble methods is not efficient as shown in Table 2.7. Considering
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Figure 2.10: The plot of top 20 1-mode singular values by various tensor from
journal data. These tensors are composed of various number of multi-view data
from 2 views to 7 views. As shown, the 1-mode singular value curves are quite
insensitive to which number of views are integrated.

LMF, we found that the clustering performance relies on the initialization, and
hence the partitioning results are quite unstable. Moreover, its optimization
mechanism consumes much time. For CP-ALS, the failure might be due to
the un-orthogonal property of the relaxed assignment matrix U after tensor
decomposition. The reason is that the similarity matrix in (2.3) we adopted
to construct the tensor corresponds to the Ncut based Laplacian matrix which
requires the orthogonal partition in spectral clustering.

Meanwhile, our tensor based multi-view spectral clustering can be thought
of as a “Multi-view PCA” analysis, which integrates multi-view information
seamlessly and forms a joint optimal subspace. Therefore our strategy
can extract the latent pattern shared by all views and filter out irrelevant
information or noise. The tensor based multi-view clustering by optimization
integration strategy (MC-OI-MLSVD and MC-OI-HOOI) leverages the effect
of each single-view data in an appropriate way while the tensor based multi-
view clustering by matrix integration strategy (MC-MI-HOOI) is able to utilize
the linear relationship of multi-view data for joint analysis.

One thing we need to emphasize is that, to some degree, our multi-view
clustering relies on the complementary property of multi-view data. As
shown in Figure 2.1 and Figure 2.8, as long as multi-view data owns enough
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Figure 2.11: The plot of top 20 1-mode singular values by various tensor from
disease gene data. These tensors are composed of various number of multi-view
data from 2 views to 9 views. As shown, the 1-mode singular value curves are
quite insensitive to which number of views are integrated.

complementary information and there is a clear cluster structure hidden amid
them, our tensor based multi-view clustering methods are able to facilitate the
detection of the latent cluster structure as expected. Although each single-view
data may contain incomplete structure information or much noise.

In our former experiments, MC-OI-HOOI seems to work well to integrate
multi-view heterogeneous data (data from different feature spaces) for joint
clustering. For example, it works best to integrate ten-view data generated from
different content (controlled vocabularies). Moreover, MC-OI-HOOI works best
to integrate four views of text data with four views of citation data. The
reason might be that MC-OI-HOOI provides an optimal common subspace
shared by multi-view heterogeneous data by simultaneously analyzing them
together. Meanwhile, MC-MI-HOOI appears to work well to integrate multi-
view homogeneous data (data from the same feature space) for joint clustering
because it utilizes the linear relationship of multi-view homogeneous data to
boost the joint clustering. For example, MC-MI-HOOI works best to integrate
our multi-view synthetic data as well. In fact, our synthetic data can be
regarded as a kind of homogeneous data. Thanks to its fast computation and
good clustering performance, our MC-OI-MLSVD is an efficient multi-view
clustering strategy for integrating multi-view heterogeneous data.



56 MULTI-VIEW CLUSTERING BY TENSOR METHODS

2.7 Summary

We proposed a multi-view clustering framework based on high-order analogues
of the matrix SVD and PCA. Our framework can be regarded as a multi-view
extension of spectral clustering. By our tensor formulation, both heterogeneous
information and homogeneous information can be integrated to facilitate the
clustering task.

We presented two new multi-view clustering strategies: multi-view clustering by
optimization integration (MC-OI) as well as by matrix integration (MC-MI).
The relevant tensor based solutions are proposed, which are either iterative
optimization or efficient approximation. All of them are capable of utilizing
global information of multi-view data while taking the effect of single-view
data into consideration. Furthermore, these different methods can be applied
to various practical scenarios.

We employed our algorithms to both the synthetic data and two real
applications. The clustering performance demonstrated that our algorithms are
not only superior to single-view spectral clustering methods, but also superior
to other baseline multi-view clustering methods.

In later research, we will carry out the following directions:

(1) We will investigate other alternative tensor solutions, such as Individual
Difference in Scaling (INDSCAL) [25], as well as efficient tensor decomposition
for scalable applications.

(2) We will extend our multi-view clustering algorithm to higher-order data (we
only use three-order data in this research), such as, adding another temporal
order that allows data to vary at different time points.

(3) Our framework is not limited to the clustering analysis. Since its core is
to seek a joint optimal latent subspace, it can be extended to other multi-view
learning tasks: for instance, classification, spectral embedding, collaborative
filtering and even information retrieval.



Chapter 3

Optimal clustering and joint
dimension reduction of
multiple graphs

3.1 Introduction

The fast development of information technology allows us to observe the
objects from different views as well as to collect these multi-view data.
In this research, multi-view data refers to the same class of entities with
multi-view representations. In many cases, the information provided by
single-view data is insufficient to recover the inherent patterns due to the
limited perspective of observation while multi-view data contains rich and
complementary information, which allows us to obtain robust and better
patterns.

Multi-view data is universal in a wide variety of applications. For example,
two types of data are often used in journal database analysis: textual content
and citation links, both of which describe the same journal entities but
contain heterogeneous information. These two types of data are not entirely
independent; they are actually closely correlated and supplement each other
[73, 91]. Multi-view clustering of both data might provide a nice mapping of
journal sets.

Another example is gene categorization in the biomedical applications. From
the clinical experiments, we can obtain a description of genes while another

57
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description can be provided by text mining from literatures. The integration
of these two types of heterogeneous information for joint clustering is expected
to get better understanding of gene groups.
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Figure 3.1: Conceptual overview of our multi-view clustering strategies based
on simultaneous trace maximization

In practical spectral clustering, a graph is modeled from single-view data, while
in our multi-view clustering setting, multiple graphs are extracted from multi-
view data. In each graph, the nodes denote the instances that we are interested
in, such as the documents and the genes in above examples.

Although spectral clustering works well in single-view data, it is not well suited
to the presentation of multi-view data that might be better treated using
nonlinear or multilinear methods. Therefore, by modeling multi-view data
as multiple graphs, we extend spectral clustering from a multilinear algebra
perspective.

In fact, many researchers turn to multi-view clustering that refers to the
joint partitioning of multi-view data [12, 92, 127, 130, 150]. These multi-
view clustering solutions might sound natural and even can achieve better
performance. However, the limits of some algorithms are apparent. For
instance, a simple and appropriate weighting scheme is required to fully utilize
the inherent relationship of multi-view data (multiple graphs) [130, 132]. Some
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multi-view clustering algorithms only work well in small-scale data sets [91].
Nevertheless, under practical scenarios, the number of instances is constantly
huge, for example, there are nearly six million documents in the Web of Science
(WoS) database from years 2002-2006. At the same time, with multiple views,
the data volume becomes increasingly scalable, thus leading to the intensive
computation of multi-view clustering. Hence, it is imperative to carry out the
joint dimension reduction of multiple graphs before clustering, which has not
yet been tackled by former research to our best knowledge.

Furthermore, some of these multi-view algorithms only concentrate on the
clustering of using two-view data, and it is hard to extend them to a situation
with more than two views [12, 27]. As a whole, even though the research of
multi-view clustering has recently received considerable attention, it still seems
to be at an early stage.

Therefore, to fully utilize the relationship of multi-view data (multiple graphs),
we propose a clustering strategy that optimizes their multilinear relationship
just by simply simultaneous trace maximization. Meanwhile, to handle
the scalable clustering of multi-view data, we present a joint dimension
reduction scheme for multiple graphs with the aid of multilinear singular value
decomposition (MLSVD). Besides, our strategy is applicable to a situation with
more than two views.

To the best of our knowledge, our work is the first unified attempt to
address multi-view clustering by multilinear solution of simultaneous trace
maximization together with the joint dimension reduction of multiple graphs.

Our work has three key contributions:

• By modeling multi-view data as multiple graphs, we propose a new
framework of adaptive multi-view clustering by using simultaneous trace
maximization (MC-STM), which is able to unravel the linear relationship
among multi-view data in a simple way.

• With scalable data of multiple graphs, we put forward a joint dimension
reduction scheme by MLSVD, which allows us to partition multi-view
data efficiently.

• Based on the simultaneous trace maximization (STM) strategy, we
formulate multi-view variants of other clustering strategies as well: multi-
view clustering based on modularity optimization and multi-view k-means
clustering.
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3.2 Related work

The research on multi-view clustering, clustering ensemble and kernel fusion
has been introduced in the Chapter 1. Other relevant work is discussed as
follows.

Multi-view learning Zhu et al. [152] design a hybrid classification
algorithm by carrying out a joint factorization on both the linkage adjacency
matrix and the document-term matrix. Zhou et al. [151] devise a new
document recommendation method by combining multiple graphs to measure
document similarities; and according to the nature of different graphs, various
factorization strategies are adopted. An integrated k-means-Laplacian (KL)
clustering method is introduced in [136], which combines both k-means
clustering on data attributes and spectral clustering on pairwise relations. This
integrated KL clustering method performs well for a situation with two specific
views (attribute data and relation data) and small scale data. Yu et al. [145]
propose a clustering algorithm to combine multiple kernels and Laplacians
and the coefficients of kernels and Laplacians can be optimized automatically,
which formulation shares the similar flavor with our algorithms. However, that
strategy works well on small databases, due to its heavy computation. In
addition, based on multiple kernel learning, a strategy named heterogeneous
feature machine is put forward for visual recognition [24]. Cai et al. propose
a multi-modal spectral clustering with non-negative constrain to integrate
heterogeneous image features for visual recognition [21].

Topic model To some degree, some strategies of topic model can be considered
to be multiview clustering from a probabilistic perspective. For instance,
PHITS-PLSA combines Probabilistic Hyperlink-Induced Topic Search (PHITS)
with Probabilistic Latent Semantic Analysis (PLSA) for document clustering
[20]. Erosheve et al. [40] combine Latent Dirichlet Allocation (LDA) with LDA-
Link for network analysis. Nallapti et al. [102] combine the mixed membership
stochastic block model with LDA, and extend the LDA-Link-Word model.
A community detection method to combine the conditional link model and
discriminative content model is presented in [141]. De Semt et al. [34] propose a
unified probabilistic model to simultaneously model latent topics from bilingual
corpora that discuss comparable content and use the topics as features in a
cross-lingual, dictionary-less text categorization task. As known, one major
problem with these topic model methods is that it is hard to implement them
on data with high-dimension features. Hence, the limited scalability of topic
model hinders its applications to a wider range. In addition, with the number
of views increasing, it becomes difficult to apply these topic models.

Dimension reduction PCA is a well-known dimension reduction scheme;
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nevertheless, it only works with vectorized representations of data. A
two-dimensional PCA (2DPCA) algorithm is proposed for image processing
[140], where an image is generally modeled as a matrix. Ye [143] presents
data as a matrix and formulates an algorithm named generalized low rank
approximations of matrices (GLRAM) by approximating a collection of
matrices with a set of small-size matrices with lower rank. The formulation
of that approximation algorithm is closely related to that of MLSVD. Lu et
al. introduce a multilinear PCA (MPCA) framework for feature extraction of
tensor based objects (video sequences) [93]. Wang and Ahuja [137] present a
tensor based approximation approach for dimensionality reduction and apply
that approach to object recognition (For example, a moving toy in video
sequences). Different from these dimension reduction scenarios for vision or
image data, based on MLSVD, we propose a joint dimension reduction scheme
for multiple graphs, which is applicable to general data. In addition, dimension
reduction by tensor methods has been used in signal processing and that scheme
has been demonstrated to obtain an efficient implementation while accurate
estimations [33]. Ishteva et al also mention a type of hierarchical Tucker format
for joint dimension reduction [64].

3.3 Multi-view clustering based on spectral opti-
mization

Regarding the formulation of spectral clustering, there are several types of
Laplacian matrices to choose [94]. However, we just define our Laplacian matrix
based on normalized cut (NCut). Then the optimization of spectral clustering
is a maximization process, thus leading to the formulation of our multi-view
clustering algorithms based on simultaneous trace maximization. Otherwise,
we can not obtain our multi-view clustering formulation directly.

The single-view spectral clustering is formulated as Chapter 1, where SN ∈
R
N×N is a NCut based similarity matrix; U ∈ R

N×K is a relaxed assignment
(indicator) matrix; N is the number of instances and K is the number of
clusters. From a single-view graph, we can formulate the spectral clustering by
trace based optimization.

We expect that integrating multiple graphs is able to facilitate clustering tasks.
By extending spectral clustering that is usually implemented on single-view
data, we put forward a multi-view clustering framework by integrating the
trace based clustering optimization of each graph.

From multi-view (V views) graphs, we can generate the corresponding
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normalized similarity matrices S
(v)
N (v = 1, 2, ..., V ) accordingly. A natural

idea is to link the trace based spectral optimization of each single-view graph
for joint analysis,

max
U,wv

V
∑

v=1

wvtrace(UTS
(v)
N U),

s.t. UTU = I, wv > 0 and
V
∑

v=1

w2
v = 1,

(3.1)

where wv are the weighting factors of each view. It is hard to solve (3.1)
directly, hence we will seek its solution by alternating optimization in next
Section. Because our simultaneous trace maximization only involves norm-
2 operation, we only limit our work to norm-2 based optimization. It is
worthwhile pointing out that the weighting factors wv can be interpreted in
two ways from the multilinear algebra perspective. First, wv can be considered
to be the contribution of each single-view graph to the multi-view clustering.
Second, wv can be regarded as the linear coefficients of each similarity matrice
to form the new integration matrix.

The comparison between single-view spectral clustering and our multi-view
clustering is given in Figure 3.1. Similar to spectral clustering, the aim of our
multi-view clustering is also to obtain the relaxed indicator matrix U∗, the
columns of which construct the optimal latent subspace.

3.4 Multi-view clustering via simultaneous trace

maximization (MC-STM)

Since our multi-view clustering framework is based on trace optimization, we
present an alternating least square (ALS) strategy named simultaneous trace
maximization (STM) to solve the unknown parameters (the weighting vectors
wv and the relaxed indicator matrix U) as defined in (3.1).

Given multiple similarity matrices S
(1)
N , ..,S

(V )
N ∈ R

N×N , K is the cluster
number and K < N , we attempt to maximize

f(W,U) =
V
∑

v=1

K
∑

k=1

wv(S̃
(v)

N )kk, (3.2)

in which U ∈ R
N×K is orthonormal; W ∈ R

V is unit-norm; W =

[w1, w2, .., wV ]T ; S̃
(v)

N = UTS
(v)
N U, v = 1, ..., V and (S̃

(v)

N )kk denotes the kth
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diagonal element. The matrix S
(v)
N are not necessarily positive (semi)definite.

(3.2) will be written as

f(W,U) =
V
∑

v=1

wvtraceK(S̃
(v)

N ). (3.3)

Because both U and W are unknowns, (3.2) or (3.3) is not convex. Nevertheless,
if we fix one of the unknowns, the optimization problem becomes quadratic
and can be solved optimally. Thus, alternating least squares techniques swap
between fixing U and fixingW . When U is fixed, the scheme recomputesW by
solving a least-square problem, and vice verse. This optimization ensures that
each step decreases (3.3) until convergence. We implement the simultaneous
trace maximization as the following procedures.

3.4.1 Calculating the weighting vector W

Given U, the objective function of f(•) in (3.3) can be written as

f(W ) =
V
∑

v=1

wv

K
∑

k=1

(S̃
(v)

N )kk,

=WT (
K
∑

k=1

(S̃
(1)

N )kk, ...,
K
∑

k=1

(S̃
(v)

N )kk)T .

(3.4)

Suppose Y = (
∑K
k=1(S̃(1)

N )kk, ...,
∑K
k=1(S̃(V )

N )kk)T , we get

f(W ) =WTY. (3.5)

From (3.5), the optimal weighting vector W is given by
Y

‖Y ‖2
.

The intuition hidden in our strategy is that the objective function is to obtain
the largest variance and the single-view data (or similarity matrix) with larger
variance will be assigned to a larger weight for joint analysis, which utilizes the
multilinear relationship among various views.

3.4.2 Obtaining the relaxed cluster indicator matrix U

Note that trace is a linear function, for instance,

trace(αA + βB) = α trace(A) + β trace(B). (3.6)
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Hence, given W , the objective function f(•) can be written as

f(U) = trace(UT (
V
∑

v=1

wvS
(v)
N )U). (3.7)

Hence, we have to determine the optimal U for only one matrix, namely,
∑V
v=1 wvS

(v)
N , which we write as S̃ ∈ R

N×N . It is obvious that we can obtain
the optimal U by the eigenvalue decomposition (EVD) of the matrix S̃.

As we obtain the relaxed indicator matrix U, we can carry out the final
partitioning by k-means (or other partitioning strategies) to obtain the cluster
labels. The pseudo code of MC-STM is presented as follows:

Algorithm 3.4.1: MC-STM(S
(1)
N
,S

(2)
N
, ...,S

(V )
N
,K)

comment: Given an initial matrix U and the cluster number K

1. Calculate the weighting vector W
2. Obtain the relaxed indicator matrix U

3. Go back to 1 until convergence
4. Normalize the rows of U to unit length

5. Calculate the cluster idx with k−means on U

return (idx : the clustering label)

This linear combination of multiple similarity matrices (multi-view graphs) can
be understood from a PCA point of view. Taking each similarity matrix (each
view) as a component in the view space, the new integration matrix generated
by our STM can be understood as the principal component in the view space.
Then the optimal weights are the linear coefficients of multiple views to form
this principal component that keeps as much variance from multiple views
as possible. Thus this analysis preserves the maximum variance from multi-
view data. On the contrary, just averaging the combination of these multiple
similarity matrices is unable to preserve such variance.

3.4.3 The initialization of MC-STM

To carry out our STM based algorithm, in the first place, we need to provide
the initialization of the relaxed indicator matrix U. Four initialization schemes
(but not limited to these four) are listed as the following.

1. Identity matrix method: the matrix U is set as part of an identity matrix;
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2. Random orthonormal vector method: the columns of U are initialized as
a set of random mutually orthonormal vectors;

3. Average spectral projection method: the normalized similarity matrices
can be averagely summed and the matrix U is taken as the top K
eigenvectors of the summed matrix;

4. Truncated MLSVD method: A similarity tensor can be constructed by
taking each similarity matrix as the frontal slices. The matrix U is
obtained by MLSVD of the similarity tensor.

Various initializations might cause different clustering results, which we will
investigate in the experimental part.

3.4.4 The convergence of MC-STM

W.r.t the iterative maximization scheme of our MC-STM, convergence to a
local optimum is guaranteed because in each step we maximally increase the
objective function f(•). It may be necessary to reinitialize a number of times
in order to find the global optimum. In fact, as demonstrated in both Section
3.8 and Section 3.9, our strategy has a good convergence property.

3.5 Joint dimension reduction of multiple graphs
for clustering

3.5.1 Dimension reduction by SVD

Working with the original, high-dimensional data may be too time-consuming
or even computationally infeasible. Moreover, it is known that, with an
appropriate dimension reduction scheme, the low-dimensional estimators often
have a smaller variance than high-dimensional estimators, which may lead to
more accurate results. Consequently, in real applications, pre-processing of
dimension reduction is a vital step to handle large-scale data. For the case of
matrix representation of single-view data, SVD or PCA is a powerful tool to
implement the dimension reduction on high dimension data [144].

Regarding multi-view data that is in the form of multiple graphs in this research,
it generally leads to scalability as compared to single-view data. Meanwhile,
owing to the overlap among various views, much redundant information exists
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amid them. Therefore, it is imperative to carry out joint dimension reduction
of multi-view data.

Analogous to SVD on single-view data, we employ its multi-view counterpart
of MLSVD to carry out the joint dimension reduction of multi-view data.
MLSVD usually leads to expensive computation as well. Nevertheless, the
recent progress on scalable tensor decomposition [78, 121] allows us to efficiently
implement MLSVD on large-scale data .

Besides, the related tensor knowledge has been introduced in the Chapter 2,
the property of the core tensor is essential to the formulation of our dimension
reduction strategy, which we will introduce in the following.

3.5.2 Basic knowledge of MLSVD

Suppose A is a original tensor and B is a core tensor after MLSVD, the
subtensors Bin=α, obtained by fixing the nth index to α (where n = 1, 2, 3
is the mode number, in this case, Bin is a matrix), has the following properties.

1. All-orthogonality: two subtensors Bin=α and Bin=β are orthogonal for all
possible values of n, α and β subject to α 6= β.

〈Bin=α,Bin=β〉 = 0, when α 6= β, (3.8)

2. Ordering:

‖Bin=1‖F > ‖Bin=2‖F > . . . ,> ‖Bin=In‖F > 0, (3.9)

for all possible values of n, where ‖ • ‖F means Frobenius-norm.

The Frobenius-norms ‖Bin=i‖F , symbolized by δ(n)
i are n-mode singular values

of A.

The Frobenius-norm of a tensor A is given by

‖A‖F =
√

∑

i1

∑

i2

∑

i3

a2
i1,i2,i3

. (3.10)

In addition, there exits a certain relationship between the core tensor and the
original tensor under the full MLSVD as the following,

‖A‖F = ‖B‖F . (3.11)
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3.5.3 MC-STM-MLSVD

During truncated MLSVD, a core tensor is able to provide a good approxima-
tion of its original tensor, preserving the maximal variance. As a result, the core
tensor can be employed to replace the original tensor to carry out the relevant
operation. Modeling different objects as different tensors, Phan & Cichocki
[115] employ core tensors to replace the original tensors as the significant
features to carry out the classification task. By formulating generalized low
rank approximations of a set of matrices, Ye [143] proposes a similar strategy
to use a set of low-rank decomposed matrices, implementing image compression
and recognition. The set of low-rank decomposed matrices can be considered
to be an alternative formulation of our core tensor. In our strategy, at first, we
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construct a similarity tensor from the original similarity matrices of each graph
as in the Chapter 2. The frontal slice of the similarity tensor corresponds to
the original similarity matrix of each view. Then we implement MLSVD to get
a set of small-size matrices for each graph. The joint dimension reduction of
multiple graphs is illustrated in Figure 3.2 and the truncated MLSVD of the
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similarity tensor is written

A ≈ Ã ×1 VT ×2 VT ×3 IT , (3.12)

where V ∈ R
N×K

′

is the 1-mode factor matrix that is a common factor shared
by multi-view data and K

′

is the truncated (reduced) dimension. Because of
the partially symmetric property of this similarity tensor (the spaces of 1-mode
and 2-mode are exactly same), the 2-mode factor matrix equals the 1-mode
factor matrix V . Since we only care about the decomposition of 1 and 2-mode
which are relevant to the object space for clustering, simply, we set the 3-mode
factor matrix as an identity matrix I. Ã ∈ R

K
′

×K
′

×V is the core tensor after
the truncated MLSVD, representing the interaction of each mode.

Next, we matricize the core tensor Ã as a set of matices: Cv = C(1 : K
′

, 1 : K
′

, 1), v =

1, . . . , V,Cv ∈ R
K
′

×K
′

. Hence, we replace the original similarity matrix S
(v)
N

with Cv to implement the simultaneous trace maximization. Consequently,
the size of the similarity matrix is reduced from N × N to K

′

× K
′

, thus
causing an efficient implementation. Subsequently, an optimal subpace of
UC ∈ R

K
′

×K is obtained by simultaneous trace maximization on small-size
matrices C1, . . . ,CV .

Finally, in order to recover the original optimal object subspace U ∈ R
N×K ,

the following multiplication is required,

U = VUC . (3.13)

Then we can partition the multiplied matrix U to get the final clustering labels.
By embedding this joint dimension reduction scheme by MLSVD with MC-
STM, we call this strategy MC-STM-MLSVD. The pseudo code of our MC-
STM-MLSVD is listed as follows.

Algorithm 3.5.1: MC-STM-MLSVD(S
(1)
N
,S

(2)
N
, ...,S

(V )
N
,K)

comment: K is the number of clusters

1. Build a similarity tensor A
2. Implement MLSVD on A and get V and core tensor C

3. Matricize core tensor to a set of matrices Cv
4. Carry out MC − STM on Cv and get UC

5. Multiply U
′

with V to recover the optimal subspace U = VUC
6. Normalize the rows of U to unit length

7. Calculate the cluster idx with k−means clustering on U

return (idx : the clustering label)

In addition, other tensor methods are also feasible to implement this joint
dimension reduction, such as higher-order orthogonal iteration (HOOI) [32].
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During this joint dimension reduction scheme, however, the problem remains
as to how to select the proper number of the reduced dimensions K

′

. There
are two possible ways to handle this problem. In the first place, K

′

can be
set according to test and error. Within a range of K

′

, certain clustering
evaluation measures are adopted to check which K

′

leads to good clustering
performance. The second solution is based on 1-mode singular value analysis
of the similarity tensor, which is analogous to the singular value analysis of
matrix decomposition. Through the observation of the distribution of 1-mode
singular values in descending order, we seek K

′

>= K so that the 1-mode
singular values δ(1)

K′+1
<< δ

(1)

K′
, where δ(1)

K′
denotes the K

′

th 1-mode singular
value and all the 1-mode singular values are sorted in a descending order. This
selection is based on the assumption that the corresponding part of the core
tensor Ã does not really contribute much to the approximation of the original
tensor A during this tensor truncation.

3.6 Extension to other multi-view clustering

As known, several other clustering algorithms can be presented by alternative
optimal formulation of trace maximization, which allows us to extend our
MC-STM strategies to formulate the corresponding multi-view solutions.
Meanwhile, the joint dimension reduction of multi-view data by MLSVD is
applicable to these extensions as well.

3.6.1 Multi-view clustering by modularity optimization

Both modularity matrix and modularity based spectral optimization is referred
to Chapter 5 and the related paper [106]. Given modularity matrices Bv (v =
1, 2, ..., V ) from multiple graphs, the multi-view clustering is formulated as,

max
U,wv

V
∑

v=1

wvtrace(UTBvU),

s.t. UTU = I, wv > 0 and
V
∑

v=1

w2
v = 1,

(3.14)

which can be solved by simultaneous trace maximization as well.

In fact, the modularity matrix Bv is not guaranteed to be positive (semi)
definite. If Bv has not less than K positive eigenvalues, U is taken equal
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to the K
′

eigenvectors corresponding to the largest eigenvalues of Bv. If Bv
has only K̃ < K

′

positive eigenvalues, then the first K̃ rows of U are taken
equal to the K̃ eigenvectors corresponding to the positive eigenvalues of Bv,
complemented with the K

′

−K̃ eigenvectors corresponding to the least negative
eigenvalues of Bv.

Another remedy is that we can regularize the modularity matrix to guarantee
that it is positive (semi)definite [106].

3.6.2 Multi-view k-means clustering

According to [145], if the single-view data X (feature-by-object matrix) has
zero sample means, the objective function of k-means is given by

max
U

trace(UTXTXU),

s.t. UTU = I.

(3.15)

Given multi-view data Xv, v = 1, . . . , V , we can also formulate multi-view k-
means clustering as the following,

max
U,wv

V
∑

v=1

wvtrace(UTXTvXvU),

s.t. UTU = I, wv > 0 and
V
∑

v=1

w2
v = 1.

(3.16)

3.7 Experimental setting

In this and next section, we will cross compare our multi-view spectral
clustering methods and the other seven baseline multi-view clustering methods
MKF, SA, FI, AdacVote, LMF, MC-OI-MLSVD and MC-MI-HOOI, which
have been introduced in the last Chapter. In our experiments, both MC-MI-
HOOI and LMF are initialized by MLSVD. We develop the STM algorithm
by Matlab since the algorithm only involves basic matrix operations. The
implementation of MLSVD can be referred to the Matlab based tensor toolbox
[6].

In addition, we will exam other five aspects of our strategies, such as, the
weighting analysis of STM, the initialization of STM, the convergence of STM,
the joint dimension reduction scheme of STM and even the computation time.
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3.7.1 Clustering evaluation

We adopt two clustering validation measures Adaptive Rand Index (ARI) [63]
and Normalized Mutual Information (NMI) [127] to evaluate our clustering
results. k-means clustering is employed as final partitioning method; then each
clustering method is repeated for 50 times and the mean value is taken for
comparison.

3.8 Experiment on disease gene clustering

Disease gene data with ten views has been presented in the Chapter 2. The
clustering instances are 245 genes belonging to 14 diseases (14 clusters).

3.8.1 Clustering performance on disease gene data

At first, we implement the spectral clustering on the ten single-view data
respectively and the clustering performance is presented in Table 3.1. As can
be seen, the best clustering performance of individual data sources is obtained
on the LDDB text mining profile (NMI 0.7065, ARI 0.5669).

Afterwards, we investigate the multi-view clustering performance of integrating
all single-view data. The comparison of all related multi-view clustering
algorithms (we also list the best clustering on single-view data LDDB for
comparison) is presented in Table 3.2.

In addition, we also list the best clustering on single-view data LDDB for
comparison with these multi-view clustering strategies. Of all the methods we
compared, the top two best performance is obtained by our two STM based
strategies MC-STM-MLSVD and MC-STM. Thus our multi-view clustering
methods are not only beyond spectral clustering of any single-view data but
also superior to the seven baseline multi-view clustering methods. For instance,
the NMI values is improved from 0.7065 by LDDB (best single-view data) to
0.7451 by MC-STM-MLSVD while the ARI value is improved from 0.5474 by
MC-MI-HOOI (the best alternative multi-view clustering strategy) to 0.5938 by
MC-STM-MLSVD. As shown, the improvement by our STM based strategy is
statistically significant, thus demonstrating the effectiveness of our multi-view
weighting strategy by simultaneous trace maximization.
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Table 3.1: The clustering performance of single-view data on disease gene
data. The mean values and standard deviations are observed from 50 random
repetitions. The best performance is indicated in bold.

Method NMI ARI
GO 0.5502±0.0138 0.3458±0.0367
MeSH 0.6988±0.0227 0.5200±0.05
OMIM 0.6912±0.0193 0.4965±0.0458
NCI 0.5088±0.0125 0.2833±0.0168
eVO 0.5896±0.0185 0.3633±0.0267
KO 0.3222±0.0083 0.1161±0.0081
LDDB 0.7065±0.0147 0.5669±0.0283
MP 0.6516±0.0220 0.4643±0.0418
SNOMED 0.6673±0.0231 0.4868±00453
Uniprot 0.5713±0.0183 0.3460±0.034

Table 3.2: The clustering performance of various multi-view clustering
strategies on disease gene data. The mean values and standard deviations
are observed from 50 random repetitions. The best performance is shown in
bold. The p-values are statistically evaluated with the best performance using
paired t-test.

Algorithm NMI p-value ARI p-value
MC-STM 0.7319±0.0137 1.43e-04 0.5841±0.026 0.3202
MC-STM-MLSVD 0.7451±0.0123 —– 0.5938±0.0287 —–
MKF 0.7028±0.0229 2.83e-06 0.5215±0.0527 2.42e-06
FI 0.6868±0.0207 1.67e-13 0.5106±0.0532 4.58e-07
AdacVote 0.6439±0.0308 2.16e-16 0.4103±0.0704 1.39e-15
SA 0.6896±0.0190 2.51e-13 0.5314±0.0316 4.87e-08
MC-OI-MLSVD 0.7282±0.0183 3.16e-05 0.5205±0.0409 5.13e-04
LDDB 0.7065±0.0147 6.22e-09 0.5669±0.0283 0.0017
LMF 0.5481 ± 0.003 6.16e-20 0.3518 ± 0.002 3.19e-18
MC-MI-HOOI 0.7221 ± 0.003 3.27e-11 0.5474 ± 0.002 2.63e-06
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3.8.2 The analysis of the weighting coefficients of multiple
graphs on disease gene data

To evaluate whether the optimized weights assigned on each single-view data
are correlated with the clustering performance, the comparison between the
ranking of weighting coefficients of each single-view data and the ranking of
their clustering performance is illustrated in Table 3.3.

The comparison suggests that, in general, there exits a corresponding
relationship between the weighting factors and the clustering performance. For
instance, the largest weighting coefficient corresponds to the best clustering
performance (LDDB) while the least weighting coefficient to the worst
clustering performance (KO). The comparison results suggest that the single-
view data with best clustering performance makes most contribution to the
joint analysis while the single-view data with worst clustering performance
makes least contribution.

However, as can be seen in Table 3.3, the ranking of these optimal weighting
coefficients are not completely consistent with the ranking of the corresponding
clustering performance. This inconsistency may be due to the fact that there
is certain linear overlap among the different views.

In addition, we also list the weighting coefficients obtained by MC-MI-HOOI
for comparison as presented in Table 3.3. Although the weighting coefficients
by MC-MI-HOOI are slightly different from these by our STM based multi-view
clustering strategies, the rankings by these strategies are almost the same as
that by our strategies (except the exchange of 5th and 6th). This conincidence
may be due to the fact that all these strategies are based on multilinear analysis.

3.8.3 The analysis of the initialization schemes of STM on
disease gene data

We investigate four various initialization methods introduced in Subsection
3.4.3 to see the effect of these initialization schemes on our clustering strategies.
The running time and clustering evaluation of our clustering strategies together
with these four initialization schemes are provided in Table 3.4.

As can be seen, regarding these four initial schemes, all their clustering
performance under our multi-view clustering strategies (either by MC-STM
or by MC-STM-MLSVD), is quite similar, indicating that our multi-view
clustering strategy is insensitive to initializations. Hence, we adopt the
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Table 3.3: The weighting coefficients of multi-view data on disease gene data.
Pranking refers to the ranking of clustering performance. w(1)

v obtained by
MC-STM, w(2)

v obtained by MC-STM-MLSVD and w(3)
v obtained by MC-MI-

HOOI.
.

Sources Ranking w
(1)
v Ranking w

(2)
v Ranking w

(3)
v Pranking

GO 9 0.1821 9 0.1819 9 0.2544 8
MeSH 7 0.2328 7 0.2326 7 0.2842 2
OMIM 4 0.2540 4 0.2538 4 0.2973 4
NCI 5 0.2422 5 0.2420 6 0.2931 9
eVO 3 0.2721 3 0.2720 3 0.3021 6
KO 10 0.1311 10 0.1310 10 0.2216 10
LDDB 1 0.7218 1 0.7223 1 0.5303 1
MP 2 0.2729 2 0.2727 2 0.3113 5
Snomed 8 0.2113 8 0.2111 8 0.2713 3
uniprot 6 0.2410 6 0.2409 5 0.2970 7

Table 3.4: The clustering performance of our STM based multi-view clustering
algorithms with four initialization schemes on disease gene data

Schemes Clustering methods NMI ARI Time (seconds)

Random MC-STM 0.7289±0.01 0.5782±0.03 0.0077
MC-STM-MLSVD 0.7460±0.01 0.5940±0.03 0.0082

Identity MC-STM 0.7306±0.01 0.5787±0.02 4.0e-05
MC-STM-MLSVD 0.7423±0.01 0.581±0.04 4.1e-05

MLSVD MC-STM 0.7292±0.02 0.5786±0.03 0.0947
MC-STM-MLSVD 0.7493±0.01 0.5972±0.04 0.0944

Average MC-STM 0.7317±0.01 0.5828±0.03 0.0391
MC-STM-MLSVD 0.7451±0.01 0.5938±0.03 0.0397

initialization scheme of identity matrix due to the lest computation time it
requires. In addition, in light of the insensitive property of the initialization
scheme, our strategies appear to be beyond some multi-view clustering
strategies that rely on a proper initialization, such as LMF.



EXPERIMENT ON DISEASE GENE CLUSTERING 75

1 2 3
10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

Iteration
O

bj
ec

tiv
e 

fu
nc

tio
n

MC−STM−MLSVD

 

 

Random

Identity

MLSVD

Average

1 2 3 4
10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

MC−STM 

 

 

Random

Identity

MLSVD

Average

Figure 3.3: The convergence of MC-STM and MC-STM-MLSVD with various
initialization schemes on disease gene data

3.8.4 The analysis of the convergence of STM on disease
gene data

We investigate the convergence of both MC-STM and MC-STM-MLSVD during
the optimization stage. Within each strategy, the values of their objective
functions at various iterative steps are plotted in Figure 3.3. In the first place,
both of our strategies with various initializations converge within less than
three iterative steps, which seems very fast. Second, with various initialization
methods, all the objective functions of our multi-view clustering strategies
constantly converge to the same point.

3.8.5 The analysis of the joint dimension reduction of multiple
graphs on disease gene data

At first, as presented in Table 3.1, our strategy MC-STM–MLSVD which
contains the joint dimension reduction scheme, achieves the best clustering
results and its improvement over other alternative clustering algorithms, is
significant.
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Next, as can be observed in Table 3.3, both the ranking of weighting factors,
and even the values of these factors, by both MC-STM and MC-STM-
MLSVD, are almost the same. Since these weighting coefficients denote the
linear relationship of multi-view data, this result demonstrates the MLSVD
based dimension reduction strategy is capable of capturing the inherent linear
relationship among multi-view data as implemented in the original space.

Afterwards, according to Figure 3.3, it is apparent that MC-STM-MLSVD
(around two iterations) converges faster than MC-STM (around three itera-
tions). It seems that the faster convergence is also caused by the joint dimension
reduction of multiple graphs.

Besides, we investigate the performance of dimension reduction by varying the
number of the dimensions, based on the distribution of the 1-mode singular
values of the similarity tensor. The 1-mode singular values of the similarity
tensor on disease gene data are partially plotted in Figure 3.4. It is obvious
that the 1-mode singular values become smaller when the descending order is
over 50. Hence, we vary the dimension from 2 to 50, and the relevant clustering
performance is shown in Figure 3.5. It can be observed that there is a peak
region around 14 (in particular, in the ARI observation), which is exactly the
number of clusters (diseases). This analysis implicates that the scheme of joint
dimension reduction may achieve good results when the number of the reduced
dimension is chosen around the number of clusters. As a result, in our MC-
STM-MLSVD, the number of dimension is chosen as exactly the number of
clusters in above clustering analysis.

3.9 Experiment of scientific mapping

In contrast to disease gene data, this Web of Science (WoS) database is large
(8,305 journal objects and 669,860 terms) as well as the cluster distribution is
biased (the number of members within each cluster varies from 25 to 1140).
Consequently, the clustering task is full of challenges. The two views we adopt
to obtain scientific mapping are text mining (TFIDF) and bibliometric data
(cross-citation). In order to provide a scientific mapping of WoS, integrating the
two heterogeneous data, we apply our algorithms to cluster the 8305 journals
into 22 clusters, which is the number of Essential Science Indicator (ESI)
subjects as the reference categories in WoS. The detail of journal data and
ESI subjects is presented in Chapter 4.
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Figure 3.4: The distribution of the top 50 1-mode singular values of the
similarity tensor on disease gene data.
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Figure 3.5: Clustering performance of MC-STM-MLSVD with varied dimension
on disease gene data.
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3.9.1 Clustering performance on journal data

We implement spectral clustering on two single-view data and the related multi-
view clustering strategies for comparison. The clustering evaluation of the
related clustering algorithms can be observed in Table 3.5. First, the best
single-view clustering performance (NMI 0.5386, ARI 0.3312) is obtained by
TFIDF data. Next, except MC-MI-HOOI and MC-STM, the performance of
our MC-STM-MLSVD (NMI 0.5615, ARI 0.3531) is superior to other clustering
strategies, including multi-view clustering as well as single-view clustering.
Moreover, the improvement by MC-STM-MLSVD is statistically significant.

In addition, MC-STM has the similar performance (NMI 0.5613, ARI 0.3512)
as MC-STM-MLSVD and MC-MI-HOOI and there is no difference between
the three multi-view clustering algorithms in term of statistical significance
(p-value between MC-STM and MC-STM-MLSVD: 0.8708; p-value between
MC-STM and MC-STM-MLSVD: 0.4215).

3.9.2 The analysis of the weighting coefficients of multiple
graphs on journal data

Table 3.6 gives the weighting factors optimized by three multi-view clustering
strategies as well as the corresponding clustering performance (ARI evaluation).
As can be seen, according to the results of these three clustering schemes, the
weighting factor of CRC is larger than that of TFIDF. At the same time, the
clustering performance of CRC is better than that of TFIDF as well. The
comparison suggests that, in this two-view case, the ranking of weighting
factors of both single-view data is consistent with the ranking of their clustering
performance. This experimental result is also in line with the common sense of
bibliometric analysis: the citation is more informative and reliable while text
contains much noise, hence citation data should dominantly contribute to the
joint analysis.

3.9.3 The analysis of initialization schemes of STM on journal
data

As can be observed in Table 3.7, we analyze the clustering performance of our
clustering strategies with various initializations on the journal data. Similar
to the analysis on disease gene data, there is no big difference among these
four initialization solutions, all of which lead to almost the same clustering
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Table 3.5: Clustering evaluation of the related clustering algorithms on journal
data. Two single-view clustering methods and eight multi-view clustering
methods. The mean values and standard deviations are observed from 50
random repetitions. The best performance is shown in bold. The p-values
are statistically evaluated with the best performance using paired t-test.

Algorithm NMI p-value ARI p-value

MC-STM-MLSVD 0.5615±0.0039 —- 0.3531±0.0168 —–
MC-STM 0.5613±0.0036 0.8708 0.3512±0.0175 0.6069
TFIDF 0.5256±0.0062 1.31e-19 0.3033±0.0077 4.06e-23
CRC 0.5386±0.0065 9.39e-13 0.3312±0.0161 1.03e-5
MKF 0.5524±0.0061 1.47e-10 0.3028±0.009 7.937e-22
FI 0.5540±0.0064 5.84e-7 0.335±0.0218 9.5e-4
AdacVote 0.5482±0.0065 1.28e-12 0.3264±0.0224 2.0723e-6
SA 0.5105±0.0334 4.52e-14 0.2769±0.0333 5.33e-18
MC-OI-MLSVD 0.5550±0.006 1.18e-4 0.3392±0.0181 2.02e-3
MC-MI-HOOI 0.5618 ± 0.0004 0.4215 0.3534 ± 0.0032 0.7201

Table 3.6: The weighting coefficients of multi-view data on journal data. w(1)
v

obtained by MC-STM, w(2)
v obtained by MC-STM-MLSVD and w(1)

v obtained
by MC-MI-HOOI.

Source w
(1)
v w

(2)
v w

(3)
v ARI

TFIDF 0.3190 0.3226 0.3829 0.3033
CRC 0.9478 0.9465 0.9234 0.3412

performance. The comparison results also demonstrate our STM based
optimization strategy is insensitive to the various initializations.

3.9.4 The analysis of convergence of STM on journal data

The convergence of our clustering strategies on journal data can be observed
in Figure 3.6. In the first place, regarding this large-scale data, both of
our strategies still gain good performance, converging within less than three
iterative steps. Second, all objective functions of various initialization schemes
converge to the same point (the maximal objective function) nicely.
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Table 3.7: The clustering performance of our STM based multi-view clustering
strategies with four initialization schemes on journal data

Schemes Clustering methods NMI ARI Time(s)

Random MC-STM 0.5627+0.0064 0.3558+0.022 92.61
MC-STM-MLSVD 0.5627+0.0048 0.3513+0.0141 0.0028

Identity MC-STM 0.5622+0.0061 0.3534+0.017 0.015
MC-STM-MLSVD 0.5624+ 0.0047 0.3527+0.0154 0.0125

MLSVD MC-STM 0.5617+0.0053 0.3513+0.016 863
MC-STM-MLSVD 0.5630+0.0045 0.3549+0.0171 0.2876

Average MC-STM 0.5621+0.005 0.3525+0.0172 145
MC-STM-MLSVD 0.5630+0.0050 0.3567+0.0165 0.6156
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Figure 3.6: The convergence of MC-STM and MC-STM-MLSVD with various
initialization schemes on journal data
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3.9.5 The analysis of joint dimension reduction of multiple
graphs on journal data

First, as shown in Table 3.5, on this large-scale journal data, our MC-STM-
MLSVD still achieves better clustering performance.

Second, Table 3.6 reveals that MC-STM-MLSVD is still able to capture the
inherent linear relationship of multi-view data as MC-STM does in the original
space because the weighting coefficients by both strategies are almost the same.

Like the convergence analysis of disease gene data, MC-STM-MLSVD (around
two iterations) converges faster than MC-STM (around three iterations) as
illustrated in Figure 3.6.

Finally, the 1-mode singular values of the similarity tensor on journal data
are partially plotted in Figure 3.7. It can be observed that the 1-mode
singular values become tiny after the top 100. Thus, we exam the clustering
performance of MC-STM-MLSVD by varying the dimension from 2 to 100. As
can be observed in Figure 3.8, regarding the clustering performance of these
dimension reduction cases, there is a peak region around 22 (in particular,
in the ARI observation), which is exactly the number of standard benchmark
categories (the 22 ESI categories). This analysis echoes the dimension reduction
analysis of disease gene data: it seems that MC-STM-MLSVD is able to achieve
good clustering performance when the dimension is set around the number of
clusters.

3.9.6 Comparison of the computation time of the relevant
clustering algorithms

To investigate the computational time of the multi-view clustering algorithms,
we benchmark our multi-view clustering strategies with other alternative
methods on the two applications. As can be seen in Table 3.8, both of our
strategies, MC-STM and MC-STM-MLSVD, seem to be efficient. In particular,
on the large-scale journal data, they are only behind MC-OI-MLSVD. However,
in contrast to MC-OI-MLSVD, our two strategies are able to yield more
enriched information (the weighting factor of each view). Furthermore, among
our two strategies, MC-STM-MLSVD appears superior in terms of computation
time due to the joint dimension reduction scheme. At the same time, MC-MI-
HOOI which is able to provide weighting factors as well is comparable to our
strategies in term of clustering performance; nevertheless, its computation time
is nearly six times longer than our strategies on large-scale journal data, which
appears quite inefficient in real applications.
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Figure 3.7: The distribution of top 100 1-mode singular values of the similar
tensor on journal data.
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Figure 3.8: Clustering performance of MC-STM-MLSVD with varied dimension
on journal data.
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Table 3.8: Comparison of CPU time of all multi-view clustering algorithms on
real applications

Algorithm journal data (seconds) disease data (seconds)

SA 1200 95
AdacVote 1200 98
MKF 1726 7
FI 2093 21
MC-OI-MLSVD 939 9
LMF 3683 207
MC-MI-HOOI 7460 8.29
MC-STM 1325 32
MC-STM-MLSVD 1081 11

3.10 Discussion

Our proposed methods provide a loose framework for the clustering of multi-
view data, which is not limited to spectral formulation. For instance, it can be
extended to multi-view modularity based clustering and multi-view k-means
clustering. Hence, theoretically, any types of clustering with the alternative
formulation of trace maximization can be extended to its multi-view clustering
variants by our STM strategy.

In this Chapter, we mainly discuss the research of multi-view clustering. In
fact, as illustrated in Figure 3.1, our strategy aims to seek an optimal latent
subspace of objects. Therefore, it can be extended to other multi-view learning
tasks: such as classification [142, 152], spectral embedding and collaborative
filtering [151].

Many researchers are concerned with the convex optimization of clustering
methods. Based on the experimental analysis, the alternative maximization
solution of our multi-view clustering strategies seems satisfactory. In addition,
our strategies are able to achieve good convergence. Consequently, we neglect
the step of finding the convex solution that would be very time-consuming.

Concerning the strategy of MC-STM, it can efficiently captures the linear
relationship of multiple graphs through simply simultaneous trace maximiza-
tion. Through this kind of multilinear analysis, the complementary information
among multi-view data, such as the text data and citation data, is fully
employed, which can facilitate the joint clustering based on our experimental
analysis. Meanwhile, our MC-STM-MLSVD is the joint dimension reduction
version of our multi-view clustering strategy. With MLSVD, the noise or
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the redundant data among multi-view data is removed to some degree before
the joint clustering analysis. Therefore as compared to MC-STM, MC-STM-
MLSVD has several apparent advantages based on our applications:

• More efficient implementation with short computational time (or even
less memory);

• Same or even better clustering performance;

• Better convergence property;

• Recovering the same linear relationship among multi-view data within
the low dimension spaces

Nevertheless, the efficiency of MC-STM-MLSVD depends on the dimension
reduction scheme of MLSVD, which usually leads to heavy computation w.r.t
large-scale data. At the same time, some research work about the efficient
implementation of MLSVD has been proposed [78, 121]. For instance, MLSVD
can be simplified as eigenvalue decomposition (EVD) and the relevant tensor
operations can be simplified to the operation between vectors and matrices.
We will investigate this issue in the further research.

3.11 Summary

The main points of this paper are three-fold:

• Our multi-view clustering strategies are able to efficiently utilize the linear
relationship of multiple graphs for joint analysis.

• The joint dimension reduction scheme of multiple graphs allows us to
handle large-scale data. Through joint dimension reduction, without
destroying the linear relationship of multi-view data, our strategy
MC-STM-MLSVD can achieve the same or even better clustering
performance.

• The general framework of our multi-view clustering can be easily extended
to other trace maximization based clustering (modularity optimization
based clustering and k-means clustering).

In addition, as shown in (3.7), because our STM scheme mainly involves the
EVD of a matrix during multi-view clustering stage no matter how many graphs
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(views) are involved, our multi-view clustering strategies are applicable to any
multi-view conditions.

We applied our strategies to two real applications: grouping genes in the disease
gene data and scientific mapping of WoS data. Both applications demonstrate
the effectiveness of both our STM based multi-view clustering strategy and the
joint dimension reduction scheme of multiple graphs.





Chapter 4

Scientific mapping by hybrid
clustering in vector spaces

4.1 Introduction

In scientometrics, information from journals can be categorized lexically or
with citations. An important area of scientometric research is the clustering
or mapping of scientific publications. The widely used method of co-citation
clustering was introduced independently by Small [124, 125] and Marshakova
[95]. Cross-citation based cluster analysis for science mapping is different; while
the former is usually based on links connecting individual documents, the latter
requires aggregation of documents to units like journals or subject fields among
which cross-citation links are established. Some advantages of this method (for
instance, the possibility to analyze directed information flows) are undermined
by possible biases. For example, bias could be caused by the use of predefined
units (journals, subject categories etc.) implying already certain structural
classification. Journal cross-citation clustering has been used by Leydesdorff
[87], Leydesdorff and Rafols [88], and Boyack, Börner, and Klavans [15], while
Moya-Anegón et al. [98] applied subject co-citation analysis to visualize the
structure of science and its dynamics.

The integration of lexical similarities and citation links has also attracted
interest in other fields such as search engine design (i.e., Google combines
text and links [18]). The combination of link-based clustering with a
textual approach was suggested as early as 1990 to improve the efficiency
and usability of co-citation and co-word analysis. One of the aims was to

87
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improve the apparently low recall of co-citation analysis concerning current
work [16, 17, 153]. The combination of link-based and textual methods also
makes it possible to cluster objects whenever links are weak or missing (e.g. in
the case of poorly cited or un-cited papers). The present study is based on
a new combined citation/lexical-based clustering approach [70], which forms
a hybrid solution in two respects. First, it combines citations and text,
and second, it uses individual papers to cluster the journals in which they
appear. Furthermore, the lexical component is used to label the journal clusters
obtained for interpretation.

Hybrid clustering has also been applied in various document analysis appli-
cations [12, 59, 97, 138] as well as science mapping research [50, 69, 91].
Although these approaches all combine lexical and citation information, the
actual algorithms applied are quite diverse. For web document analysis, Modha
& Spangler [97] integrated similarity matrices from terms, out-links and in-
links by a weighted linear combination, and the data partition was obtained
from the combined similarity matrix using the toric k-means algorithm. He
et al. [59] incorporated three types of information (hyperlink, textual and
co-citation information) to cluster web documents using a graph-cut algorithm.
Bickel & Scheffer [12] investigated web documents and combined intrinsic views
(page content) with extrinsic views (anchor texts of inbound hyperlinks). Three
clustering algorithms (generic Expectation-Maximization (EM), k-means and
agglomerative) were applied to combine the different views as hybrid clustering.
With exception of Web page analysis, Glenisson et al. [49] combined textual
analysis and bibliometrics to improve the performance of journal publication
clustering. Janssens [69] proposed an un-biased combination of textual content
and citation links on the basis of Fisher’s inverse chi-square for agglomerative
clustering. Liu et al. [91] reviewed some popular hybrid clustering techniques
within a unified computational framework and proposed an Adaptive Kernel
k-means Clustering (AKKC) algorithm to learn the optimal combination of
kernels constructed from heterogeneous data sources.

The present study advances the hybrid clustering approach in terms of
using larger-scale experimental data and combining more refined data models.
Large-scale journal data presents a challenge to hybrid clustering, because
the journal sets are usually expressed in a high dimension vector space
and a massive amount of journals usually represents a large number of
scientific fields. Moreover, the present study combines the lexical and
citation data into ten heterogeneous representations for hybrid clustering.
Therefore, when the dimensionality, the number of samples, and the number
of categorizations are all large, many existing algorithms become inefficient.
To tackle this problem, we present a new hybrid clustering approach for large-
scale journal data in terms of scalability and efficiency. The data used in
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this research was collected from the Web of Science (WoS) journal database
from the period 2002-2006, which contains over 6,000,000 publications. In our
approach, the above mentioned ten data sources are combined in a weighted
manner, where the weights are determined by the Average Normalized Mutual
Information (ANMI) between the single source partitions and the hybrid
clustering partitions based on combined data. To evaluate the reliability of the
clustering obtained on journal sets, we compared the clustering results with
the standard categorizations, Essential Science Indicators (ESI), provided by
Thomson Scientific (Philadelphia, PA, USA). We systematically compare the
automatic clustering results obtained by all methods with the standard ESI
categorizations. We also apply some statistical evaluation methods to produce
label-independent evaluations. In total, twelve different hybrid clustering
algorithms are investigated and benchmarked using two external and two
internal validation measures. The experimental results show that the proposed
algorithms can achieve both improved clustering result and high efficiency.

In sum, our contributions are three-fold:

• We propose an ANMI-based weighted hybrid clustering scheme and
formulate the related variants of clustering ensemble methods and
multiple kernel fusion.

• We generate ten multi-view text mining data from both textual perspec-
tive and citation perspective for joint analysis.

• The strategy is applied to the scientific mapping of WoS journal database
and several clustering evaluation measurements are adopted.

This Chapter is organized as follows. The adopted data set and the standard
ESI categorizations are described in next Section. We then present the
proposed hybrid clustering methodologies and the ANMI weighting scheme.
Next, the experimental results are analyzed. Afterward, we illustrate and
investigate the mapping of journal sets obtained from hybrid clustering.

4.2 Journal database analysis

4.2.1 Data sources and data processing

The original journal data contains more than six million published papers
from 2002 to 2006 (i.e., articles, letters, notes, reviews, etc.) indexed in the
WoS database provided by Thomson Scientific. Citations received by these
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papers have been determined for a variable citation window beginning with
the publication year, up to 2006. An item-by-item procedure was used with
special identification-keys made up of bibliographic data elements, which were
extracted from the first-author names, journal title, publication year, volume
and the first page. To resolve ambiguities, journals were checked for the name
changes and the papers were checked for name changes and merged accordingly.
Journals not covered in the entire period (from 2002 to 2006) have been omitted.
Two criteria were applied to select journals for clustering: at first, only the
journals with at least 50 publications from 2002 to 2006 were investigated, and
others were removed from the data set; then only those journals with more
than 30 citations from 2002 to 2006 were kept. With this kind of selection
criteria, we obtained 8305 journals (in paper level, there are more than six
million papers) as the data set adopted in this Chapter.

4.2.2 Text mining analysis

The titles, abstracts and keywords of the journal publications were indexed
with a Jakarta Lucene [55] based text mining program using no controlled
vocabulary. The index contains 9,473,061 terms but we cut the Zipf curve of
the indexed terms at the head and the tail to remove rare terms, stopwords and
common words [73]. These words are known to be usually irrelevant and noisy
for clustering purposes. After the Zipf cut, 669,860 meaningful terms were used
to represent the journals in a vector space model where the terms are attributes
and the weights are calculated using four weighting schemes: TF-IDF, IDF, TF
and binary. The paper-by-term vectors are then aggregated to journal-by-term
vectors as the representations of the lexical data. Therefore, we have obtained
four sub-models as the textual data sources varied with the term weighting
scheme. We applied Latent Semantic Indexing (LSI) [11] on the TF-IDF data
to reduce the dimensionality to 200 LSI factors. LSI is implemented on the basis
of the SVD algorithm. The number of LSI factors was selected empirically in
a similar way as the preliminary work of Janssens [69]. For the 8305 journals,
on a dual Opteron 250 with 16 GB RAM, time taken for LSI computation was
around 105 minutes. Then this new textual feature is named LSI-TFIDF.

4.2.3 Citation analysis

We investigated the citations among the selected publications in five aspects.
These citation data can be generated by information extraction from WoS
database.
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• CRC: Cross-citation between two papers is defined as the frequency of
citations between each other. We ignored the direction of citations by
symmetrizing the cross-citation matrix.

• BV-CRC: To neglect the side effect of the large amount of citations
appearing in the journals, we used binary value 1 (0) to represent whether
there is (no) citation between two journals, termed binary cross-citation.

• COC: Co-citation refers to the number of times two papers are cited
together in subsequent literature. The co-citation frequency of two papers
is equal to the number of papers that cite them simultaneously.

• BGC: Bibliographic coupling occurs when two papers reference a
common third paper in their bibliographies. The coupling frequency is
equal to the number of papers they simultaneously cite.

• LSI-CRC: We also applied LSI on the sparse matrix with cross-citations
to reduce the dimensionality. The selection of the number of the LSI
factors was also based on the previous work [69] and was set to 150.

The citations among papers were all aggregated to the journal level. The
citation All the textual data sources and citation data sources were converted
into kernels using a linear kernel function. In particular, for the textual data,
the kernel matrices were normalized and their elements correspond to the cosine
value of pair-wise journal-by-term vectors.

4.2.4 Reference labels of journals

As mentioned in last Section, to evaluate the science mapping results,
we refer to the twenty-two categorizations of ESI, which are curated by
various professional experts. Our main objective is thus to compare the
automatic mapping obtained by the proposed hybrid methods against the ESI
categorizations. As shown in Table 4.1, the number of journals contained in the
different ESI fields is quite imbalanced. For instance, the largest field (Clinical
Medicine) contains 1410 journals, whereas the smallest (Multidisciplinary) only
has 25 journals.

4.3 Weighted hybrid clustering for large-scale data

The hybrid clustering algorithms considered in our experiments can be
divided into two approaches: clustering ensemble and kernel-fusion clustering.
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Table 4.1: The 22-field Essential Science Indicator (ESI) labels of the WoS
journal database

Field # ESI field Num Field # ESI field Num
1 Agricultural Science 183 12 Mathematics 312
2 Biology & Biochemistry 342 13 Microbiology 87
3 Chemistry 441 14 Molecular Biology & Genetics 195
4 Clinical Medicine 1410 15 Multidisciplinary 25
5 Computer Science 242 16 NeroScience & Behavior 194
6 Economics & Business 299 17 Pharmacology & Toxicology 135
7 Engineering 704 18 Physics 264
8 Environment/ Ecology 217 19 Plant & Animal Science 608
9 Geoscience 277 20 Psychology/Psychiatry 448
10 Immunology 73 21 Social Science 968
11 Materials Sciences 258 22 Space Science 47

Clustering ensemble is also known as clustering aggregation or consensus
clustering, which integrates different partitions into a consolidated partition
with a consensus function. Kernel-fusion clustering maps the data sets into a
high dimensional feature space and combines them as kernel matrices. Then a
kernel based clustering algorithm is applied to the combined kernel matrix.
The details about these two approaches are mentioned in our earlier work
[91]. The present study proposes a novel weighting scheme on the basis of
ANMI to leverage the effect of multiple sources in hybrid clustering. For all
sub-models, the one with the largest ANMI value is expected to have the
most relevant information and therefore it should contribute dominantly to
the hybrid clustering.

4.3.1 Definition of ANMI

ANMI has been employed in clustering ensemble algorithms [127], where the
optimal cluster ensemble is obtained by maximizing the ANMI value. Given a
set of cluster labels P = {P1, . . . , Pv, . . . , PV }, where V is the number of views,
Pv represents the labels obtained from a single sub-model and N is the number
of sub-models. ANMI measures the average normalized mutual information
between Pv and P , given by

ANMI(Pv, P ) =
1
V − 1

V
∑

j=1,j 6=v

NMI(Pv, Pj), (4.1)
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where NMI is the normalized mutual information indicating the common
information shared by two partitions, given by

NMI(Pv, Pj) =

∑C
k=1

∑C
m=1 ckmlog(

nckm
akbm

)
√

(
∑C
k=1 eklog(

ek
n ))(
∑C
m=1 fmlog(

fm
n ))

(4.2)

In the formulation above, C is the cluster number; ek is the number of data
points contained in the k-th cluster in the partition Pv; fm is the number of
samples contained in the m-th cluster in the partition Pj ; ckm is the number
of intersection samples between the k-th cluster from Pv and the m-th cluster
from Pj . In particular, if Pj is the standard reference labels, NMI(Pv, Pj)
evaluates the performance of Pv with the standard labels.

4.3.2 Comparison of ANMI with other evaluation measures

In data fusion applications, the use of external validation indicators is an
appropriate way to provide data-independent evaluations about the clustering
quality, however, they rely on the known reference labels. In contrast, the
statistical validation indicators (internal validation indicators) depend on the
scales, the structures and the dimensionalities of data, thus they are not suitable
to be compared among multiple data sources. In this case, the reliability of
the internal and the external validation indicators can be judged by cross-
comparing with each other. The ANMI adopted in our approach belongs to
the internal validation case because it does not require any reference labels. To
prove its reliability, we compare the ANMI with external validation indicators
(NMI and Adjusted Rand Index [ARI]) using the individual sub-models of
journal sets. Besides the ANMI, we also compare the other two internal
validation indicators (Mean Silhouette Value [MSV] and modularity). As
illustrated in Figure 4.1, the ANMI shows almost the same trend as the NMI
and the ARI when predicting the model performance. In contrast, the MSV
and the modularity show some similar trends but are not very consistent
with the curve of the NMI and the ARI. The merit of ANMI is that the
performance is evaluated on the basis of information criterion, which avoids the
data dependency on scales, structures and dimensionalities. In our problem,
the ANMI shows similar evaluation on sub-models as the NMI and the ARI,
which both need the extra reference labels for evaluation. Therefore ANMI
is reliable to apply in explorative data analysis. Furthermore, the validity of
ANMI as an evaluation measure has also been introduced by Strehl & Ghosh
[127].
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Figure 4.1: Comparison of ANMI with the external-validation indicators (NMI
and ARI) and the internal-validation indicators (MSV and Modularity).

4.3.3 Weighting scheme

As explained, our approach assumes that when different sub-models are applied
for the hybrid clustering, the more relevant sub-models should contribute
more to the hybrid clustering. A straightforward way to leverage the sub-
models is to weigh them according to the values of their indicators (i.e., the
ANMI values, the MSV values, the modularity values, etc.). Based on this
assumption, we propose an ANMI-based weighting scheme to combine the
kernel matrices (similarity matrices) of multiple sub-models as a weighted
convex linear combination. The conceptual scheme of our proposed weighting
scheme is depicted in Figure 4.2.

As illustrated in Figure 4.2, the weighted hybrid clustering consists of several
steps which may be summarized as follows:

• Step 1: The kernels of all sub-models are constructed and clustered
individually by Ward’s linkage based hierarchical clustering [68]. The
obtained partition of each sub-model is denoted as Pv. For all the
submodels, the set of partitions is denoted as P = {P1, P2, . . . , PV }. As
introduced, ten sub-models are involved so V is equal to 10.

• Step 2: Based on P , the clustering result of each sub-model is evaluated
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using the ANMI as defined in (4.1). The ANMI index is denoted as av,
given by

av = ANMI(Pv, P ), v ∈ {1, 2, . . . , V }. (4.3)

• Step 3: We compute the weights wv of sub-models as proportional to
their ANMI values, given by

wv =
av

a1 + . . .+ av + . . .+ aV
, v ∈ {1, 2, . . . , V }. (4.4)

• Step 4: Using the weights obtained in step 3, we combine the kernels in a
weighted manner, and alternatively, we integrate the labels of sub-models
as weighted clustering ensemble. The algorithms are briefly described as
follows:

– Weighted kernel-fusion clustering method (WKFCM). In
kernel-fusion clustering method (KFCM), given a set of kernels
Kv, v = 1, . . . , V , constructed from V sub-models, to leverage their
effects in hybrid clustering, we integrate their kernels as a weighted
combination, given by

K =
V
∑

v=1

wvKv. (4.5)

The combined kernel K is further applied by single kernel based
clustering algorithms (i.e., kernel k-means, hierarchical clustering
based on kernel spaces, spectral clustering, etc.).

– Weighted clustering ensemble (WSA and WEAC-AL). In
clustering ensemble, the partitions of all sub-models are {P1, . . . , PV }
usually considered as equally important. To incorporate the weights,
we extend the algorithm of SA proposed by Strehl & Ghosh [127],
as the Weighted Strehl’s Clustering Ensemble Algorithm (WSA).
Moreover, we also analogously extend the Evidence Accumulation
Clustering with Average Link (EAC-AL) algorithm proposed by
Fred & Jain [44] as the weighted EACA-AL algorithm (WEAC-AL).
Both extensions are straightforward: in the original versions, the
partitions of multiple sub-models are considered as the input; in the
weighted versions, the input is formulated as {w1P1, . . . , wV PV }.

Collectively, we have proposed three weighted hybrid clustering methods on
the basis of ANMI (WKFCM, WSA, WEAC-AL).



WEIGHTED HYBRID CLUSTERING FOR LARGE-SCALE DATA 97

4.3.4 Clustering evaluation

Mean silhouette value (MSV) The silhouette value of a clustered object
(e.g., journal) measures its similarities with the objects within the cluster versus
the objects outside of the cluster [117], given by:

S(i) =
min(B(i, Cj))−W (i)
max(min(B(i, Cj),W (i)))

, (4.6)

where W (i) is the average distance from object to all other objects within
its cluster, and B(i, Cj) is the average distance from object i to all objects
in another cluster Cj . The MSV for all objects is an intrinsic measure on
the overall quality of a clustering solution. MSV may vary with the number of
clusters, which is also useful to find the appropriate cluster number statistically.
In the journal database, the dimensionality of lexical data is extremely high
so the distance based calculation of MSV is computationally expensive. As an
alternative solution, we pre-compute the paired distances of all samples and
store it as a kernel, in this way, the average distance required in the MSV value
is directly computable in the kernel of paired distances.

Modularity. Newman [107] introduced modularity as a graph-based evalu-
ation of the clustering quality. Up to a multiplicative constant, modularity
calculates the number of intra-cluster links minus the expected number in an
equivalent network with the same clusters, but with links given at random. It
means good clustering may have more links within (and fewer links between)
the clusters than could be expected from the random links. Modularity is
defined as follows: a k × k symmetric matrix e is defined as the element, eij
is the fraction of all the edges in the network that link vertices in community
or cluster i to vertices in cluster j. The trace of this matrix trace(e) =

∑

i eii
represents the fraction of edges in the network that connect vertices in the same
cluster. The sum of rows (or columns) ai =

∑

j eij represents the fraction of
edges that connect to vertices in cluster i. The modularity Q is then defined
as:

Q =
∑

i

(eii − a2
i ) = trace(e)− ‖e2‖, (4.7)

where ‖x‖ is the sum of the elements in matrix x and ‖e2‖ refers to the expected
fraction of edges that connect vertices in the same cluster with edges given at
random in the network.

ARI. The Adjusted Rand Index (ARI) is the corrected-for-chance version of
the rand index [63]. The adjusted rand index measures the similarity between
two partitions. Let us assume that two partitions X and Y are obtained from
a given set of n elements S = {O1, . . . , On}, given by X = {x1, . . . , xr} and
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Y = {y1, . . . , ys}, we define the following: a, as the number of pairs of elements
in S that are in the same set in X and in the same set in Y ; b, as the number
of pairs of elements in S that are in different sets in X and in different sets in
Y ; c, as the number of pairs of elements in S that are in the same set in X
and in different sets in Y ; d, as the number of pairs of elements in S that are
in different sets in X and in the same set in Y .

The ARI R is defined as:

R =
2(ab− cd)

((a+ b)(b + d) + (a+ c)(c+ b))
. (4.8)

The ARI implementation can be referred to the Matlab code 1.

Normalized mutual information (NMI). NMI is another external cluster-
ing validation measure, which relies on the reference labels. NMI is defined in
(4.2).

Both MSV and modularity are internal evaluation measures that do not rely
on the benchmark categories but the data structure itself. These internal
validation measures sometimes are used to select the number of clusters [69].
As a result, in this Chapter, we adopt them to evaluate the clustering results
with varied cluster numbers.

4.3.5 Other hybrid clustering algorithms

In addition to the three proposed hybrid clustering algorithms, we also apply
six hybrid clustering algorithms for comparison.

• Strehl’s clustering ensemble algorithm (SA) [127]: as introduced in
Chapter 2. The code is provided by the author 2.

• EAC-AL: Fred & Jain [44] introduce evidence accumulation clustering
(EAC) that maps the individual data partitions as a clustering ensemble
by constructing a co-association matrix. The final data partition is
obtained by applying average linkage (AL) based hierarchical clustering
algorithm on the co-association matrix.

• AdacVote [5]: as introduced in Chapter 2.

• QMI: Topchy, Jain & Punch [133] phrase the combination of partitions as
a categorical clustering problem. Their method adopts a category utility

1http://www.kernel-methods.net/matlab_tools.html
2http://www.lans.ece.utexas.edu/ strehl/soft.html
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function proposed by Mirkin [96] that evaluates the quality of a “median
partition” as a summary of the ensemble.

• AKFCM: The averagely combined kernel is treated as a new individual
data source and the partitions are obtained by standard clustering
algorithms in the kernel spaces.

• WLCDM: The weighted linear combination of distance matrices method
proposed by Janssens et al. [70] is actually a simplified version of
AKFCM: it is achieved by equally-weighted linear combination of a text
based kernel and a citation based kernel. In this way, WLCDM is equal to
the concatenation of the different normalized feature vectors from various
single views [69].

The first four algorithms belong to the category of clustering ensemble, whereas
the next two algorithms are kernel-fusion clustering methods. Regarding our
weighted hybrid clustering, the developing of ANMI based weighting scheme is
based on ClusterPack Matlab Toolbox 3.

4.4 Experimental result

In this part, at first, we analyze our clustering result on WoS journal database.
Then we discuss the clustering under various number of clusters and the
computational complexity of different clustering schemes.

4.4.1 Evaluation of clustering results

We applied all algorithms to combine the ten sub-models to cluster the
journal data into 22 partitions. The ten sub-models were also clustered
individually as single sources and the performance was compared with the
hybrid clustering. To determine statistical significance, we used the bootstrap t-
test [39]. The bootstrap sampling was repeated 30 times and for each repetition,
approximately 80% of the journals were sampled. After bootstrapping, the
duplicated samples were normalized as one sample for clustering. To evaluate
the performance, we applied both ARI and NMI using the standard ESI
categorizations. The MSV and the standard deviations (STD) of the 30
bootstrapped samples are shown in Table 4.2.

3http://www.lans.ece.utexas.edu/ strehl/soft.html
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Table 4.2: Comparison of different clustering methods by NMI and ARI

Method NMI ARI Method NMI ARI
TFIDF 0.5080±0.008 0.2676±0.017 WLCDM 0.5161±0.008 0.2885±0.012
IDF 0.5478±0.009 0.3071±0.019 AKFCM 0.5175±0.006 0.2841±0.012
TF 0.5124±0.009 0.2816±0.022 WKFCM 0.5495±0.006 0.3246±0.023
LSI-TFIDF 0.5242±0.006 0.2925±0.02 QMI 0.5477±0.012 0.3069±0.024
BV-Text 0.5399±0.009 0.3213±0.023 AdacVote 0.4851±0.027 0.2824±0.056
CRC 0.4532±0.016 0.1604±0.032 SA 0.4722±0.025 0.1697±0.07
COC 0.4672±0.016 0.1786±0.032 WSA 0.5532±0.016 0.3057±0.026
BGC 0.4191±0.012 0.1256±0.025 EAC-AL 0.5562±0.006 0.3387±0.019
LSI-CRC 0.4378±0.009 0.2221±0.018 WEAC-AL 0.5757±0.008 0.3710±0.014
BV-CRC 0.5544±0.008 0.3350±0.02

Table 4.3: Comparison of different weighted clustering performance by t-test.

Compared clustering methods p-value
WSA vs. SA 2.22e-12
WKFCM vs. AKFCM 1.84e-8
WEAC-AL vs. EAC-AL 5.8e-03
WEAC-AL vs. BV-CRC 3.5e-03

Weighted hybrid clustering performs better than its non-weighted counter-
part

As shown in Table 4.2, all the weighted methods outperformed their non-
weighted counterparts. For the EAC-AL algorithm, the weighted version
improved the ARI value by 9.54% and the NMI value by 3.51%. For the
kernel-fusion clustering, the weighted algorithm increased the ARI index by
14.23 % and the NMI index by 5.99%. The weighted combination in WSA
also improved the ARI value of SA method by more than 50 % and the NMI
index by 18.32 %. The improvement of the weighted methods was shown to be
statistically significant and the p-values obtained from the bootstrapped t-test
are presented in Table 4.3. The reason why our weighted hybrid clustering
algorithms perform better might be due to the fact that they emphasize the
consensus pattern among multi-view data through mutual information based
weighting schemes, which causes the removal of individual noise to some degree.
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Weighted hybrid clustering performs better than the best individual sub-
model

We also compared the performance of individual sub-models with the hybrid re-
sults. As shown in Table 4.2, WEAC-AL gained improvement by heterogeneous
data fusion and led to better performance than the best individual sub-model
(BV-CRC). Compared to other hybrid clustering algorithms listed in previous
section, WEAC-AL outperformed them as well.

Comparison of the lexical data and the citation data

When using the base algorithm on a single sub-model, the lexical data generally
performed better than the citation data. This was probably because the
sparse structures in the citation data could be more thoroughly analyzed using
the graph cut algorithms than using the kernel clustering methods (we will
handle this issue in Chapter 5). However, the main objective of this study is
to show the validity of the weighted hybrid clustering scheme. To keep the
problem simple and concise, we do not distinguish the heterogeneities of data
structure. Combining different structures with different clustering algorithms
is an interesting and novel problem, and it will be presented in our forthcoming
publication.

The investigation of individual sub-models also substantiated the validity of our
proposed weighting scheme: the sub-models with higher clustering performance
were assigned with larger weights. For example, the sub-model IDF with the
largest weight performed the second best individually; the sub-model (BV-
CRC) with the second largest weight performed the best individually.

Comparison of kernel-fusion clustering with clustering ensemble

Our experiment compared 6 clustering ensemble and 4 kernel-fusion clustering
methods on the same large-scale journal database. As shown in Table
4.2, the clustering ensemble methods generally showed better clustering
performance. This was probably because the clustering ensemble relies more
on the “agreement” among various partitions to find the optimal consensus
partition. In our experiment, ten sub-models were combined and most of them
were highly relevant, so the combination of sufficient and correlated partitions
was helpful in finding the optimal consensus partition. In our related work [91],
the notion of “sufficient number” was also shown to be important for clustering
ensemble. In contrast, kernel-fusion clustering algorithms were less affected by
the number of sub-models.
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Table 4.4: Clustering performance of different weighted clustering schemes.

Weighted hybrid clustering method NMI ARI
MSV-based SA 0.5309 0.2866
ANMI-based SA (WSA) 0.5532 0.3057
MSV-based KFCM 0.5447 0.3067
ANMI-based KFCM (WKFCM) 0.5495 0.3246
MSV-based EAC-AL 0.5491 0.3414
ANMI-based EAC-AL (WEAC-AL) 0.5757 0.3710

Comparison of ANMI-based and MSV-based weighting schemes

Alternatively, we could also base our weighting scheme on the MSV criterion
to leverage different sub-models in hybrid clustering. To compare the effects of
MSV and ANMI in weight calculation, we applied the MSV-based weighting
scheme to create three analogous hybrid clustering methods. The comparison of
the two weighting schemes is shown in Table 4.4. As illustrated, the weighting
scheme by ANMI works better than that based on MSV.

The failure of MSV based weighting schemes may be due to the fact that
MSV value relies on the data structure property of each view alone so that the
different MSV values from various views might not be comparable. Whereas
ANMI is based on the mutual information of various views, so the different
ANMI values from various views are comparable, thus leading to a better
weighting scheme.

4.4.2 Clustering by various number of clusters

So far, the presented results were all obtained for the number of clusters equal to
the number of standard ESI categorizations. How to determine the appropriate
cluster number from multiple data sources still remains an open issue. As
known, in single data clustering, the optimal cluster number can be explored by
comparing indices for various cluster numbers. In our approach, we compared
the MSV and modularity indices from 2 clusters to 30 clusters. As depicted
in Figure 4.3, the indices of the proposed algorithm are almost all higher than
those of the non-weighted methods. Moreover, they are also generally better
than the best individual data (BV-CRC).
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Figure 4.3: Internal validations of weighted hybrid clustering methods on
different cluster numbers. The two figures on the top compare the weighted
clustering ensemble methods. The figures in the middle evaluate the weighted
kernel fusion clustering method of WSA. The figures on the bottom investigate
the WEAC-AL clustering methods. The figures on the left represent the MSV
indices. The figures on the right side represent the modularity (MOD) indices.
The MSV is calculated on the TF-IDF sub-model and the MOD is verified on
the CRC sub-model.
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Figure 4.4: Comparison of the running time of different hybrid clustering
methods. The running time is measured when clustering all the journals to
22 partitions.

4.4.3 Computational complexity on different weighting schemes

We also compared the computational time of the ANMI-based hybrid clustering
algorithms with the un-weighted and the MSV-based weighted algorithms. The
experiment was carried out on a CentOS 5.2 Linux system with a 2.4G Hz
CPU and 16 G Bytes memory. As illustrated in Figure 4.4, the ANMI-based
weighting scheme is more efficient than the MSV-based weighting scheme.
Moreover, the ANMI-based weighting method performs as efficiently as the
un-weighted version.

4.5 Mapping of the journal sets

To visualize the clustering result of journal sets, the structural mapping of
the 22 categorizations obtained using the WEAC-AL method is presented in
Figure 4.5.

Network Structure of the 22 Journal Clusters. For each cluster, the three most
important terms are shown. The network is visualized by Pajek [9]. The edges
represent cross-citation links and darker color represents more links between
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Figure 4.5: Network structure of the 22 journal clusters.

the paired clusters. The circle size represents the number of journals in each
cluster.

To better understand the structure of clustering, we applied a modified Google
PageRank algorithm [73] to analyze the journals within each cluster. The
algorithm is also applied to rank a journal within each cluster according to the
number of papers it published and the number of cross-citations it received.
The algorithm is defined as,

PRi =
1− α
n

+ α
∑

j

PRj
aji/Pi
∑

k
ajk
Pk

, (4.9)

where PRi is the PageRank of the journal i, α is a scalar between 0 and 1
(we set α = 0.9 in our implementation), n is the number of journals in the
cluster, aji is the number of citations from journal j to journal i, and Pi is the
number of papers published by the journal i. The self-citations among all the
journals were removed before the algorithm was applied. Using the algorithm,
as (4.9), we investigated the five most highly ranked journals in each cluster and
presented them in Table 4.5. Moreover, for the journals presented in Table 4.5,
we re-investigated the titles, abstracts and keywords that have been indexed in
the text mining process, the indexed terms were sorted by their frequencies and
for each cluster, the thirty most frequent terms were used to label the obtained
clusters. The textual labels of each journal cluster are shown in Table 4.6.
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Table 4.5: The five most important journals of each cluster ranked by the
modified PageRank algorithm.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

1. Tech High Educ 1. Pub Histo 1. Acous R L 1. Austra Compu J

2. Strojarstvo 2. Histo Euro Idea 2. J App Mech Asme 2. J Res Prac Infor T.

3. Verter Econ 3. Pub Culture 3. Zamm Ange Math 3. Technome

4. Urban Educ 4. R. Du Lou Rev 4. App Energy 4. IEEE Multimedia

5. Thero Lingu 5. Antiquity 5. AIAA J 5. J Quaity Tech

Cluster 5 Cluster 6 Cluster 7 Cluster 8

1. P London Math Soc 1. Physc Rev A 1. Plat Surf finishing 1. Poly Inter

2. Grap Combin 2. Astrono Astrophy 2. J App Physics 2. Indi J Chem Sec

3. P Japan Ac S A-math 3. A Rev Nucl Parti Sci 3. Plastic Rub Comp 3. Poly Eng & Sci

4. Algeb Geom Topo 4. Astroph J 4. App Phys L 4. Afinidad

5. Stat Meth Med Res 5. Jetp L 5. J Phase Equili 5.Studies Surf SCI & C.

Cluster 9 Cluster 10 Cluster 11 Cluster 12

1. J Plant Grow Regul 1. Neotro Entomo 1. Physic Earth Plant 1. J corpo Finance

2. A J Enol & Viticul 2. Environ Entomo 2. IEEE T Geosci & Rem 2. Finance a Uver

3. Agronomie 3. Nauti 3. Phys & Chem Earth 3. A J Agricu & Reso E

4. J Range Manage 4. Ameghi 4. Aquatic Geochem 4. A Occupa Hygiene

5. A Rev Phytop 5. Wilson J Ornith 5. Spe Drilling & Compl 5. Manage Learn

Cluster 13 Cluster 14 cluster 15 Clsuter 16

1. Popul & Environ 1. J A Board Fami Med 1. Brain & Langua 1. Work & Stress

2. Geogra Zeitschrift 2. Arthroscopy 2. Behav Res Methods 2. Telemedi J & E-health

3. Politis Viertelj 3. Archi Environ Health 3. Clinic Linguis & Phon 3. Med Hygiene

4. A Rev Pub Admin 4. Birth Perina Care 4. J Nerolinguis 4. Fami Soc J Contem H

5. Washing Quarte 5. I J Geri Psychi 5. Behavior & Brain Sci 5. Zeits Entwich Padag P

Cluster 17 Cluster 18 Cluster 19 Cluster 20

1. Neuromole Med 1. J Food Sci & Tech 1. Math Biosci 1. R Med Microbio

2. Behaviou Brain Res 2. Archiv Fur Gefluge 2. Lab Animal 2. A Virology

3. Archives Itali Biolo 3. App Environ M 3. Methods Enzymology 3. A Agricul & Environ M

4. Brain 4. Worlds Poultry Sci J 4. Meth Compan Meth E 4. Avian Pathology

5. I J Neuroscience 5. Arch Latin Oamer N 5. Maydica

Cluster 21 Cluster 22

1. Pathology 1. J Aero Med Clea E L.

2. Grae A Clin & Exper O 2. Obster & Gynecology

3. Pathologe 3. Clin J A S Nephrology

4. A j Neuroradiology 4. J D Maladies Vascul

5. Skull Surgery 5. Nutr Metab & Cardi D

According to Tables 4.5 and Table 4.6, we obtained the following structure.
In the natural and applied sciences, we have found nine clusters, particularly,
cluster #3 through #11. On the basis of the most important journals and
terms, we have labeled them engineering (ENGN), computer science (COMP),
mathematics (MATH), astronomy, astrophysics, physics of particles and fields
(ASTR), physics (PHYS), chemistry (CHEM), agriculture, environmental
science (AGRI), biology (BIOL) and geosciences (GEOS). The interpretation
of the most characteristic terms of the nine life-science and medical clusters is
somewhat more complicated. In particular, we have a biomedical, a clinical
and psychological group. The latter one has some overlap with the third
group, the social sciences and humanities clusters. Although the overlap
of the most important terms within the life-science and medical clusters is
considerable, the terms provide an excellent description for at least some of
the medical clusters. Thus cluster #16 (PSYC) stands for psychology, #17
(NEUR) for the neuroscience and #15 (COGN) for cognitive science. While
NEUR represents the medical and clinical of neuro- and behavioural sciences,
COGN comprises cognitive psychology and neuroscience and PSYC rather
psychology and psychiatry which is traditionally considered part of the social



MAPPING OF THE JOURNAL SETS 107

Table 4.6: The textual labels of the journal clusters.

Cluster 30 best terms Subject

1 teacher, detal, student, dentin, teeth,school,patient, educ, cari, orhodont SCO1

implant, resin,dentur,enamel,tooth,mandibular,classroom,maxillari,polit,children

social bond teach dentist discours cement librari incisor endodont learner

2 music archaeolog polit ethic moral religi literari christian essai god HUMA

philosoph religion church philosophi artist war centuri poetri historian hi roman

text narr poem aesthet social theologi fiction argu kant spiritu

3 crack turbul finit flame heat shear concret combust vibrat beam ENGN

reynold temperatur veloc elast steel thermal vortex wilei fuel acoust

convect coal load plate flow equat lamin fatigu jet buckl

4 algorithm fuzzi wireless robot queri semant ltd qo packet traffic xml CSCI

user graph network multicast fault wilei machin cdma web server

bit servic cach bandwidth scheme architectur watermark sensor simul circuit

5 algebra theorem finit graph asymptot polynomi infin equat inc manifold let MATH

algorithm semigroup ltd singular cohomolog inequ conjectur convex omega lambda

infinit ellipt eigenvalu abelian automorph hilbert bound hyperbol epsilon sigma

6 galaxi star quantum optic neutrino quark stellar brane luminos magnet ASTR

laser redshift galact beam solar cosmolog photon superconduct qcd spin

ngc atom meson neutron nucleon rai boson temperatur ion hadron

7 alloi film temperatur dope crystal magnet si anneal dielectr diffract PHYS

microstructur gan quantum silicon epitaxi steel metal ceram sinter atom

nanotub fabric oxid nm layer spin thermal ion electron coat

8 catalyst polym ligand acid crystal bond ion atom nmr hydrogen CHEM

solvent adsorpt wilei angstrom copolym oxid ltd poli temperatur molecul

polymer electrochem metal chiral film spectroscopi aqueou electrod anion

9 soil plant cultivar leaf crop seedl seed arabidopsi shoot wheat AGRI

gene speci flower rice weed biomass ha tillag germin fruit

irrig maiz forest protein acid fertil manur water pollen root

10 speci habitat forest predat fish larva prei nov egg lake BIOC

genu femal taxa bird plant forag male larval biomass season

river breed parasitoid nest phylogenet abund mate fisheri soil beetl

11 sediment basin soil ocean ltd seismic rock fault water sea magma GEOS

tecton earthquak mantl isotop river crustal aerosol volcan subduct groundwat

lake magmat atmospher climat wind cloud crust metamorph temperatur ozon

12 firm price market tax wage busi polici capit organiz economi ECON

trade worker employe invest monetari earn investor financi auction asset

brand inc corpor compani stock welfar incom job employ retail bank

13 polit polici social ltd court parti democraci democrat urban reform forest SOC2

elector women vote discours war sociolog land tourism geographi market

welfar crime voter labour elect poverti econom economi govern citi

14 patient pain knee arthroplasti hip injuri fractur tendon athlet clinic CLI1

muscl ligament femor women ankl bone exercis cruciat arthroscop rehabilit

surgeri flexion tibial hospit shoulder score dementia radiograph cancer nurs

15 speech phonolog semant lexic word task children sentenc auditori memori COGN

cognit perceptu verb cue languag stimuli stimulu ltd speaker patient vowel

neuropsycholog erp aphasia verbal noun hear distractor syllabl stutter listen

16 patient schizophrenia adolesc children nurs women health disord depress symptom PSYC

psychiatr clinic anxieti mental student suicid social smoke abus ptsd

emot hospit interview cognit psycholog child physician ltd questionnair sexual

17 neuron rat patient receptor brain cortex mice seizur epilepsi hippocamp NEUR

synapt cell axon gaba hippocampu cortic protein ltd cerebr stroke dopamin

nmda sleep astrocyt spinal inc motor nerv diseas gene glutam eeg

18 protein acid milk diet gene ferment cell cow chees intak BIOC

enzym meat starch fat dietari coli ltd strain broiler ph dna

food carcass fed bacteria fatti rat antioxid dairi mutant yeast

19 cell protein gene receptor mice rat tumor kinas patient bind BIOS

transcript mrna cancer apoptosi dna mutat il phosphoryl mutant inhibitor

inhibit ca2 peptid insulin acid enzym mous tissu beta vitro

20 infect viru hiv vaccin patient dog protein cell antibodi viral MBIO

gene pcr clinic hors mice strain antigen immun hcv parasit

diseas rna malaria cd4 tuberculosi assai serotyp influenza virus pneumonia

21 patient tumor surgeri carcinoma cancer postop lesion surgic clinic resect CLI2

liver cell laparoscop diseas hepat endoscop arteri therapi ct gastric pancreat

flap tissu preoper biopsi histolog mri malign tumour bone corneal

22 patient cancer clinic arteri coronari renal diseas therapi transplant tumor CLI3

diabet blood cell ventricular hypertens surgeri cardiac asthma hospit myocardi

pulmonari lung children stent dose women prostat serum aortic graft
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sciences. Cluster #14, #21 and #22 represent different subfields of clinical
and experimental medicine, and are therefore labeled (CLI1 through CLI3).
CLI1 represents issues like health care, physiotherapy, sport science and pain
therapy while CLI2 and CLI3 share many terms (cf. Table 4.6), but have
somewhat different focus as can be seen on the basis of the most important
journals (cf. Table 4.5). Finally, clusters #18 (BIOC), #19 (BIOS) and
#20 (MBIO) stand for biochemistry, biosciences and microbiology, respectively
(see [47]). It should be noted that links and overlaps among the life-science
clusters are rather strong. The last group is formed by the social sciences and
humanities (four clusters in total). Cluster #12 (ECON) is labeled as economics
and business, cluster #2 (HUMA) represents the humanities and clusters #1
(SOC1) and #13 (SOC2) two different subfields on the social sciences. While
SOC1 stands for educational sciences, cultural sciences and linguistics, SOC2
represents sociology, geography, urban studies, political science and law.

The 22 clusters are more or less strongly interlinked (cf. Figure 4.5). The strong
links between clusters #6 and #7, #7 and #8 or the ”chain“ leading from
#18 to #21 via #19 and #22 might just serve as an example. Therefore we
have combined those clusters which are strongly interlinked to larger structures.
These ”mega-clusters“ are presented in Figure 4.6. The first mega-cluster
is formed by the social sciences clusters (SOC1, SOC2, ECON and HUMA).
The second one comprises MATH and COMP and the third one is formed
by the natural and engineering sciences (without mathematics and computer
science). Biology, agricultural, environmental and geosciences (BIOL, AGRI,
GEOS) form the fourth mega-structure. The fifth and sixth one are formed by
the biomedical clusters and the neuroscience clusters, respectively. The large
neuroscience cluster (#15 - #17) acts as a bridge connecting the life-science
mega-cluster with the social sciences and humanities, whereas the agricultural-
environmental mega-cluster connects the life sciences with the natural and
applied sciences (cf. Figure 4.6).

4.6 Discussion

4.6.1 The analysis of mutual information based weighted
hybrid clustering

In this scheme, the view that shares larger mutual information with other
views is assigned a larger weight. To certain extent, mutual information can
measure the consensus pattern shared by different views. Accordingly, in our
weighting scheme, the view containing the most consensus pattern plays the
most important roles during the joint clustering. Hence, the hybrid strategy



DISCUSSION 109

SOC, ENCO, HUMAN
MATH, COMP

ENGN,ASTR,PHYS,CHEM AGRI,GEOS,BIOL

CLI,BIOC,BIOS,MIO

NEUR,PSYCH,COGN

Figure 4.6: Subgroups of the WoS journal network by weighted hybrid
clustering

emphasizes the consensus pattern (not the complementary information) among
multiple views, which can reduce the noise from each view respectively, thus
leading to a robust clustering result. (The effect of this multi-view clustering
analysis is similar to that of the multi-view learning demo as presented in the
Figure 1.3).

4.6.2 comparison of various weighting schemes

W.r.t weighting schemes for multi-view data, the only difficulty, of course, is
how best to select the weighting factor λ. The value of the weighting factor can
be set using cross-validation over several choices for its value [109]. Janssens
employs Silhouette Value per Clustering (SVC) for each data type to estimate
the relative quality of each data source; and he applies this estimation as an
educated guess for weights of text mining data and bibliometric data [69],

λ =
SV Ct

SV Ct + SV Cbc
, (4.10)

where λ denotes the weighting factor of text mining data, SV Ct refers to
the SVC value of text mining data and SV Cbc refers to the SVC value
of bibliometric data. When using a large number of kernels, however, this
weighting strategy is no longer practical because of the intensive computation
of the SVC on each view. Hence, more appropriate approach for weighting the
different kernels is required.
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Rather than requiring that weights be assigned a prior, Lanckriet and
coworkers train a Support Vector Machine (SVM) and learn the kernel
weights simultaneously, using a technique known as Semidefinite Programming
(SDP) [84, 85]. Yu et al. have also carried out similar work to seek an
automatic weighting scheme [145]. But the heavy computation of these multiple
kernel learning based strategies seems not suitable for large-scale databases.
Thus it triggers our ANMI based weighting scheme whose implementation is
more efficient than above weighting strategies when handling large-scale data.
However, the scalable issue still remains: our ANMI based weighting scheme
will become inefficient as the number of views is increased, because the partition
of each view data is involved in our ANMI based weighting scheme.

4.6.3 Comparison of various multi-view clustering schemes

In this Subsection, we mainly provide a comparison between multilinear based
multi-view clustering methods and clustering ensemble methods. Multilinear
based multi-view clustering methods refer to the clustering strategies proposed
in Chapter 2 and Chapter 3.

First, clustering ensemble strategy focuses on the integration of multi-view
data on the partition level. Therefore the computation of the clustering
ensemble (only the clustering labels, instead of the original data, are involved)
mainly depends on the partitioning step of each single-view data. Furthermore,
its clustering performance is closely related to the number of views (each
partitioning corresponds to one view) [91]. The more the number of views,
the better its clustering performance.

While multilinear based multi-view clustering strategy focuses on the integra-
tion of multi-view data on the similarity matrix level. Its computation relies
on the relevant multilinear operations, such as tensor decomposition. The
clustering performance does not depend on the number of views.

Next, compared with the partition level of multi-view data, the similarity
matrix level contains much more information. Thus more information is
utilized. This difference may lead to better clustering performance of
multilinear based multi-view clustering strategy. (see Table 2.1, 2.3, 2.5, 3.2,
3.5).

Third, the original clustering ensemble strategy takes each view equally (in
this research, we extend some clustering ensemble methods to their weighted
version) while the multilinear based multi-view clustering strategy can leverage
the effect of multiple views automatically.
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4.7 Summary

We proposed an ANMI-based weighting scheme for hybrid clustering and
applied this scheme to a real application to obtain the structural mapping
of a large-scale journal database. The main contributions are concluded as
follows.

We presented an open framework of hybrid clustering to combine heterogeneous
lexical and citation data for journal sets analysis from the scientometric point
of view. We exploited two main approaches in this framework as clustering
ensemble and kernel-fusion clustering. The performance of all approaches has
been cross compared and evaluated using multiple statistical and information
based indices.

The analysis of lexical and citation information in this research was carried
out at more refined granularities. The lexical information was represented
in five independent data sources by the different weighting schemes of text
mining. The citation information was also investigated with five different views,
resulting in five independent citation data sources. These lexical and citation
data sources were combined in hybrid clustering as refined representations of
journals. On the basis of the ANMI, we proposed an efficient weighting scheme
for hybrid clustering. Three clustering algorithms were extended using the
weighting scheme and they were systematically compared with the concerned
algorithms using multiple evaluations.

To thoroughly investigate the journal clustering result, we visualized the
structural network of journals on the basis of citation information. We also
ranked the journals of each partition using a modified PageRank algorithm.
Furthermore, we provided multiple textual labels for each cluster on the basis
of text mining results. The obtained journal network integrates lexical and
citation information and it can be employed as a good reference for journal
categorization. The proposed method is also efficient to be applied in large-
scale data to detect new trends in different scientific fields. The proposed
weighted hybrid clustering framework can also be applied to retrieve multi-
aspect information, which is useful to a wide range of applications pertaining
to heterogeneous data fusion (i.e., bioinformatics research and Web mining).

In this Chapter, we focus on hybrid clustering in vector spaces, that is, both text
and citation data are modeled in vector spaces. According to our experimental
analysis, it seems the computation of this hybrid clustering strategy is still
intensive as the data set becomes larger. Consequently, in Chapter 5, we will
investigate hybrid clustering in graph spaces, with the aim of achieving efficient
implementation against scalable data.





Chapter 5

Scientific mapping by hybrid
clustering in graph spaces

5.1 Introduction

The objective of this research is an accurate unsupervised clustering of science
or technology fields, towards the detection of new emerging fields. The idea
of combining citation information with textual content is not new for it has
already been pursued to obtain improved performance in information retrieval
[23], bibliometric mapping of science [16, 17, 50, 72, 100, 126], clustering
[97, 138], and classification issues [22, 74]. Sometimes textual information
can indeed indicate similarities invisible through citation links, and vice verse.
On the other hand, based on text alone, true document similarity might be
obscured by differences in vocabulary use, or spurious similarities might be
introduced as a result of textual pre-processing like stemming, or because of
polysemous words or words with little semantic value. For instance, documents
about music information retrieval might erroneously be linked to patent-
related research based on common terms used in both contexts, such as title,
record, creative and business. Consequently, the combination of textual data
and citation data is thought as a promising method to deal with scientific
publication. Some hybrid clustering has been carried out, such as Janssens
et al. [71, 72] put forward two hybrid clustering strategies based on a convex
combination of distance matrices method (WLCDM) and Fisher’s inverse χ2

method respectively. Most of the applied hybrid methods are based on vector
space model.
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Due to the growth of information and the availability of huge databases during
the last decades, handling the amount of data has become a real challenge to
information science. Hybrid clustering in vector spaces is usually limited to
tackle scalable data. Furthermore, the number of clusters is often considered
to be known or is estimated based on a variety of measures. Therefore a
non-parameter or no-hypothesis clustering is needed. In addition, clustering
methods often return a one level cluster structure which does not always reflect
the nature of data structure correctly because real data is pretty complicated.
Hence, multi-level of cluster structure or hierarchical cluster structure should
be preferred.

With widely-available large-scale networks in various fields, community de-
tection is gaining increasing attention from a variety of disciplines including
physics, economics, epidemiology, business marketing and bioinformatics. The
extracted communities can be utilized for further analysis such as visualization,
viral marketing, determining the causal factors of group formation, detecting
group evolution or stable clusters, relational learning and building ontology for
semantic web [131]. However, in the last few years, there has been a concerted
interdisciplinary effort to develop mathematical tools and computer algorithms
to detect community structure in large networks. Such a problem is often
computationally intractable and therefore requires approximation methods in
order to find reasonably good partitions in a reasonably fast way. The rapidity
of the algorithm has become a crucial factor due to the increasing size of the
networks to be analyzed. A large variety of methods have been developed in
order to address this problem [42].

In particular, the recent method called “Louvain method”, which is based on
approximate modularity optimization, outperforms the alternative methods
in terms of computation time, while having an excellent accuracy [14]. The
Louvain method has been employed in the analysis of scientific knowledge.
Lambiotte and Panzarasa [83] discussed the community detection of a scientific
collaboration network by Louvain method. Rafols and Leydesdorff [88]
investigated the clustering of Louvain method of the 2006 edition of the
Journal Citation Report (JCR) and compared the results with those of other
three classification schemes. In former research, we have used this method to
cluster the subjects structure of the WoS based on ISI classification based on
citation link data [149]. However, graph partitioning methods usually focus on
link structure and ignore attribute similarities. Therefore, we put forward a
hybrid strategy based on network (graph) model to deal with the clustering
problems mentioned before. Our strategy is able to facilitate clustering tasks
by several ways: combining citation links and textual information, being the
self optimizing and providing a hierarchical analysis.

In a related approach, He et al. [59] implemented the combination of hyperlink
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structure and textural similarity to cluster the Webpages. Here we use the
cross-citation link and the text based k-Nearest Neighbor (KNN) relationship
and modularity optimization based on Louvain method.

The rest of this Chapter is organized as follows. At first, the database of WoS
is introduced in Section 5.2. Then, community detection based on modularity
optimization is presented in Section 5.3. Next, we study the hybrid strategy of
community detection in Section 5.4. The experimental results are demonstrated
in Section 5.5. Conclusion can be found in Section 5.6.

Scientists studying community detection and those studying data clustering are
apparently looking at the same coin [116], thus, we employ the term of both
community detection and clustering in this research alternatively.

5.2 Data sources and methodology

The raw dataset contains more than 6,000,000 publications (articles, letters,
notes, and reviews) indexed by the WoS database of Thomson Reuters for the
period 2002-2006. At first, these publications are aggregate to journal level in
order to easily handle the scientific mapping of this large scale data. In pre-
processing, the ambiguities of journal names, author names and bibliographic
data are resolved. We only keep the journals with both at least 50 papers and
more than 30 citations. After pre-processing, we obtain 8,305 journals as the
data set adopted in this research (the detail can be referred to Chapter 4).

5.2.1 Text mining analysis

In the first step, we analyzed text mining data according to Chapter 4. All
textual content was encoded in vector space model using the TF-IDF weighting
scheme [7]. The paper-by-term vectors are then aggregated to journal-by-term
vectors as the representations of the lexical data. Text-based similarities were
calculated as the cosine of the angle between the vector representations of two
journals [120].

According to [94], there are two ways to transform a given set of data points
with pairwise similarities into a graph: (1) ε− neighborhood method which
reduces the pairwise similarities smaller than a threshold ε; (2) k− nearest
neighbor method which lets the pairwise similarity between node i and j exist
only if i is among the KNN of j. Because the threshold ε is hard to determine
and there is no guarantee that the graph is still connected as some similarities
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below the threshold are deleted. Consequently, we adopt the strategy of KNN
to build the text based graph.

5.2.2 Citation analysis

In the second step, we analyzed the cross-citations links among the selected
journals. The citation data is generated by information extraction from the
WoS database. Citations among individual papers were aggregated to the
journal level. We ignored the direction of citation links by symmetrizing the
cross-citation matrix. When we analyzed the cross-citation links among the
selected journals, a problem arises: some journals own huge cross-citations
while some journals share tiny cross-citations. For instance, the largest number
of cross-citations is 37162; the smallest number of cross-citations is 1 and the
mean number is 10. This heavily uneven distribution is caused by the various
number of papers within each journal. That uneven paper distribution leads to
the detection of wrong communities by modularity based methods. Therefore
we normalize the cross-citation matrix before using it as an adjacency matrix
for community detection in the following way [149],

Aij =
Cij

√

(
∑

uCiu)
√

(
∑

uCuj)
, (5.1)

where C is the raw cross-citation matrix; Cij is the raw cross-citations between
journal i and journal j and Aij is the normalized cross-citations between
journal i and journal j. Though the representation of citations actually forms a
sparse graph, we can regard it as journal-by-citation vectors as well, where the
similarities of journals are measured by the cosine value of journal-by-citation
vectors.

5.3 Community detection by modularity optimiza-
tion

5.3.1 Modularity

Modularity is a benefit function used in the analysis of networks or graphs.
Its most common use is as a basis for optimization methods for detecting
community structure in networks (graphs) [107]. In this research, all graphs
are regarded as weighted graphs and modularity is defined as [105]
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Q =
1

2m

∑

ij

[

Aij −
didj
2m

]

δ(ci, cj), (5.2)

where Aij represents the weight of the edge between vertex i and vertex j;
di =

∑

jAij is the sum of the weights of the edges attached to vertex i; ci is
the community to which vertex i belongs to; the δ function δ(u, v) is 1 if u = v

and 0 otherwise and m =
1
2
∑

ij Aij . The value of the modularity lies in the

range [-1,1]. It is positive if the number of edges within groups exceeds the
number expected on the basis of chance. The fast approximation algorithm
for optimizing modularity on large graphs was proposed by Clauset et al. [29].
That method consists in recurrently merging communities that optimize the
production of modularity as denoted in the below,

△Q =







Aij
2m
−
didj

(2m)2
if i, j are connected,

0 otherwise.
(5.3)

5.3.2 Louvain method [14]

Based on modularity optimization, the Louvain method incorporates a multi-
level organization and consists of two phases repeated iteratively. First, the
algorithm looks for “small” communities by optimizing modularity in a greedy,
local way. Second, the algorithm aggregates nodes of the same community
and builds a new network whose nodes are the communities. These phases are
repeated iteratively until a maximum of modularity is attained and an optimal
partitioning of the network into communities is found. The choice of this
method for community detection is motivated by its excellent accuracy and its
rapidity which allows us to study networks of unprecedented size (for instance,
the analysis of a typical network of 2 million nodes only takes 2 minutes). The
Louvain method has also been shown to be very accurate by focusing on ad-hoc
networks with known community structure.

Moreover, due to its hierarchical structure, which is reminiscent of renormal-
ization methods, it allows to look at communities at varied partition levels.
The output of the program therefore gives several partitions. The partition
found after the first step typically consists of many communities of small
sizes. At subsequent steps, larger and larger communities are found due
to the aggregation mechanism. This process naturally leads to hierarchical
decomposition of the network [42]. Then the Louvain method can be regarded
as a hierarchical partitioning method from the perspective of graph spaces.
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Part of the algorithm’s efficiency results from the fact that the gain in
modularity △Q obtained by moving an isolated node i into a community C
can easily be computed by

△Q =
1
2

[
∑

in+2di,in
2m

− (
∑

tot+di
2m

)2]

−[
∑

in

2m
− (
∑

tot

2m
)2 − (

di
2m

)2],

(5.4)

where
∑

in is the sum of the weights of the links inside C;
∑

tot is the sum of
the weights of the links incident to nodes in C; ki is the sum of the weight of
the links incident to node i; ki,in is the sum of the weights of the links from i
to nodes in C and m is the sum of the weights of all the links in the network.
A similar expression is used in order to evaluate the change of modularity
when i is removed from its community. In practice, one therefore evaluates the
change of modularity by removing i from its community and then by moving
it into a neighboring community. Louvain method has been applied to identify
language communities in a Belgian mobile phone network of 2 million customers
by analyzing a web graph of 118 million nodes and more than one billion links
[81].

5.3.3 Finding communities at different resolutions

In order to uncover communites of different characteristic sizes, a tuning
resolution parameter t is introduced to define a new quality function about
the optimal partitions of a network [83]:

Qt = (1− t) +
1

2m

∑

i,j

[tAij −
didj
2m

]δ(ci, cj), (5.5)

where t is a resolution parameter. When t = 1, the above function is equivalent
to modularity as defined in (5.2).

The introduction of the resolution parameter t is able to circumvent the problem
of resolution limit which modularity suffers from in its original formulation
as in (5.2). Resolution limit by modularity optimization means that some
communities smaller than certain threshold size could not be detected due to
the size of network and the extent of interconnectedness of its communities
[43]. Communities smaller than the threshold tend to be merged into larger
communities, thereby missing important structures [116]. When t is decreased,
some smaller communities could be detected and in the limit cases t = 0, the
optimal partition is made of N single nodes. On the other hand, when t is
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increased, the optimal partitions are made of larger and larger communities.
In particular, the optimal partitions of the limit cases t = ∞ are made of one
community containing the whole network respectively.

5.3.4 Matrix formulation of modularity maximization

An alternative formulation of the modularity, useful particularly in spectral
optimization algorithms, is as follows [106]. Define Uir to be 1 if vertex i
belongs to group r and zero otherwise, then

δ(ci, cj) =
∑

r

UirUjr, (5.6)

and hence

Q =
1

2m

∑

ij

∑

r

[Aij −
didj
2m

]UirUjr =
1

2m
trace(UTBU), (5.7)

where U is the (non-square) matrix having elements Uir and B is the so-called
modularity matrix, which has elements

Bij = Aij −
didj
2m
. (5.8)

Relaxing U to be continuous, it can be inferred that the optimal U is composed
of the top k eigenvectors of the modularity matrix [106].

In fact, unlike Laplacian matrix in spectral clustering, the modularity matrix B
is not guaranteed to be positive semi-definite. However, the modularity matrix
can be regularized to guarantee that it is positive semi-definite [106]. Once U is
obtained, the final partitioning could be obtained by k-means, as implemented
in standard spectral partitioning.

Although this spectral analysis of modularity optimization is well formulated
in term of linear algebra, this approach is neither appropriate nor realistic for
community detection in most application contexts because one typically does
not know the number of communities in advacne. Furthermore, this strategy
needs extra regularization work and is incapable of providing the hierarchical
partition structure as Louvain method.

5.4 Hybrid clustering by modularity optimization

Thanks to the merits of Louvain method, taking each journal as a vertex, we
can directly carry out the clustering analysis of the database by cross-citation
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data. Since the text data of WoS is available, we attempt to utilize the
textual information which is supposed to complement the citation data. By
combining these two types of information, it is expected to obtain a robust
cluster structure. However, the question remains of how to deal with these two
heterogeneous data in graph spaces.

5.4.1 Hybrid clustering by graph integration

A simple strategy for integrating the two heterogeneous graphs is to average
their adjacency matrices as presented in (5.9). Because of the different
measurements of these adjacency matrices, they should be normalized during
the combination. Here we just normalize each adjacency matrix as the following,

Ā =
1

2
(

A(T )

‖ A(T ) ‖2
+

A(C)

‖ A(C) ‖2
). (5.9)

Correspondingly,

m̄ =
1

2
(m(T ) +m(C)), d̄j =

1

2
(d

(T )
j + d

(C)
j ). (5.10)

With Ā, this hybrid strategy boils down to classic community detection in a
single graph. Based on the integrated graph, we can obtain the modularity
gain as the following,

△Q̄ =
Āij
2m̄
−
d̄id̄j

(2m̄)2
. (5.11)

In fact, how to normalize the multiple graphs in a proper way poses a challenge
for this hybrid strategy because it is of difficulty to make different graph spaces
with various statistic property compare with one another. Consequently, we
continue seeking the hybrid partitioning strategy of multiple graphs ahead.

5.4.2 Hybrid clustering by graph coupling

Inspired by the research work in Webpage clustering [59], we are able to
integrate the cross-citation with text in the following way. The link structure
is determined by cross-citation, that is, if there is a cross-citation relationship
between two journals, there will be a link, while the edge strength is determined
by the textual similarity. Consequently, a coupled graph is generated and the
Louvain method can be implemented on it to obtain the final partitioning
result.
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Given AT , the adjacency matrix of the text network and AC , the adjacency
matrix of the citation network, the adjacency matrix of the coupled graph Ã
is obtained in the following way,

Ã =
A(T ) ⊗A(C)

‖ A(T ) ⊗A(C) ‖2
, (5.12)

where,

(A(T ) ⊗A(C))ij =

{

A
(T )
ij if A

(C)
ij 6= 0

0 if A
(C)
ij = 0

. (5.13)

In the empirical test on the coupled graph, we found that some edges with
weak strength (weak textual similarity) have negative impact on the final
partitioning. This kind of edge can be understood as although two journals
are cross-cited (relevant) but they share less textual terms (unsimiliar). In a
common sense, if two journals are cross-cited each other but share less textual
terms, they should not be clustered into the same category. Therefore, to
neglect their negative impact in the partitioning, we even go further to use the
KNN constraint to filter out these edges. By this means, we strengthen the
effect of those journal vertices which are cross-cited and share more textual
similarity.

As compared to hybrid clustering in vector spaces [71, 72], our hybrid strategy
is completely distinct, in particular:

• Out strategy does not require any previous setting, such as the number
of clusters;

• Integration schemes are different; we use the cross-citation link structure
to couple the textual similarity, plus the KNN constraint to neglect the
un-useful edges;

• Partition schemes are diverse; in the vector space model, we can use k-
means or Ward’s linkage method while in the graph space model, the
modularity optimization based on the Louvain method is employed;

• Final cluster structures are varied; in the vector space model, usually one
level clustering result is provided. Whereas, in our strategy, the optimal
hierarchical structure is offered which would more fit in with the practical
tasks.

In addition, we grasp the core information of the textual and citation data
while neglecting large data without sufficient information, thus our strategy is
applicable to large-scale applications.
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5.5 Experimental results

5.5.1 Fixing the community resolution (the number of clusters
as 22) for comparison with standard ESI category

Experimental setting

In order to compare our hybrid clustering strategy (graph coupling) with other
alternative clustering strategies in this research, we fix the cluster number
the same as the number of standard ESI fields (used by Thomson Reuters).
Otherwise, it is impossible to compare various clustering results with different
cluster numbers.

In this case, with Louvain method, we need adjust the resolution parameter
t as in (5.5) to seek the expected cluster structure with cluster number as
22. As we set the resolution parameter t as 0.4, such a cluster structure is
obtained. In addition, unlike the partitioning by k-means which is sensitive
to the initialization, the clustering result of our strategy is unique because of
the partitioning property of Louvain method. The implementation of Louvain
method is available 1.

Three vector space model based clustering solutions are compared: clustering
on TF-IDF data, clustering on cross-citation data and hybrid strategy of
WLCDM [70]. The final partitioning of these three clustering strategies is
implemented by Ward’s linkage method [68].

In graph spaces, clustering strategies of both spectral modularity optimization
and Louvain method are implemented on TF-IDF data (we apply the top 100
nearest neighbour constraint), cross-citation data, graph integration and graph
coupling respectively.

Two external evaluation measures are adopted to gauge the clustering
performance against ESI fields as benchmark category. One is ARI [63], and
the other one is NMI [127]. Both are trying to measure the overlap between
clustering results and benchmark category. The larger the evaluation values,
the better clustering performance.

Comparison of clustering performance among the clustering strategies

The clustering performance of the relevant clustering strategies based on NMI
and ARI evaluation is shown in Table 5.1. The clustering results based on

1http://sites.google.com/site/findcommunities/
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Table 5.1: The clustering evaluation with fixed number of clusters (22).
Spectral: spectral modularity optimization; LM: Louvain method.

Models Methods NMI ARI
TFIDF 0.5080 0.2676

Vector spaces CRC 0.4532 0.1604
WLCDM 0.5161 0.2885
TFIDF 0.5429 0.2945

Graph spaces (Spectral) CRC 0.5645 0.3515
Graph integration 0.5517 0.2939
Graph coupling 0.5590 0.3100
TFIDF 0.5309 0.29

Graph spaces (LM) CRC 0.5640 0.3209
Graph integration 0.5418 0.3013
Graph coupling 0.5768 0.3407

Ward’s linkage and Louvain method are unique. While w.r.t the clustering
results by spectral modularity optimization, we take the average values by
repeating 50 times.

Comparison of different clustering models. As can be seen in Table 5.1,
clearly, the clustering performance by graph model is beyond that by vector
space model, both on spectral modularity optimization and on Louvain method.
For instace, the NMI value of cross-citation data is increased from 0.4532 by
partitioning in vector spaces (Ward’s linkage) to 0.5645 by spectral partitioning
(0.5640 by Louvain method).

The reason why the vector space model does not work well on our data might
be two-fold: (1) the high-dimension of TFIDF feature leads to the failure of
the related clustering algorithms which are successful in low-dimension vector
spaces; (2) the natural feature of cross-citation data is link structure, instead of
vector structure, and in consequence, clustering in vector spaces may undermine
its original structure information.

Regarding the two graph spaces based clustering models, as shown, the
spectral modularity optimization achieves the almost the same clustering
performance as the Louvain method. However, Louvain method is able to
provide a flexible clustering analysis framework (the optimal cluster number
and the hierarchical partition structure) as demonstrated in Subsection 5.5.2.
Furthermore, the efficiency of Louvain method is remarkable as presented
in Table 5.3, for instance, the partitioning of graph coupling with spectral
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Table 5.2: The comparison of link strength of text graph and citation graph

Link strength text graph citation graph
Minimum 7.1e -8 2.2e-7
Mean 8.5e -7 6e -6
Maximum 2.495e -6 1.704e -4

modularity optimization consumes 949 seconds while the partitioning of graph
coupling with Louvain method only needs 12 seconds.

Comparison of different hybrid clustering strategies. Table 5.1 also
provides the comparison between the two hybrid strategies of graph integration
and graph coupling. It is obvious that the strategy of graph coupling is winner,
in particular, based on Louvain method. For instance, ARI value is improved
from 0.3013 by graph integration to 0.3407 by graph coupling.

The failure of graph integration may be due to the lack of proper normalization
scheme before integrating the two heterogeneous graphs (text and citation).
Table 5.2 gives the comparison of the link strength of these two graphs after
normalization. Although the different graphs are normalized by (5.9) before
integration, the link strengths of them still seem incomparable. As shown, it is
clear that the link strength in citation graph is much higher than that of text
graph. For instance, the mean link strength of text graph is 8.5e -7 while the
mean link strength of citation graph is 6e -6. Consequently, when these two
graphs are integrated, the citation graph dominates the structure information
of the integrated graph and to some degree, the link strength of text graph can
only be regarded as noise.

On the other hand, graph coupling is able to circumvent this comparable
integration problem by coupling link structure of one graph with the link
strength of the other graph. Consequently, this hybrid strategy proved to
be the best clustering method according to both NMI and ARI evaluation. For
example, as presented in Table 5.1, regarding graph coupling with Louvain
method, the NMI value is increased from 0.5418 by graph integration to 0.5768
by graph coupling.

Comparison of computation time among the clustering strategies

Table 5.3 provides the comparison of the computational time of the related
algorithms. The experiment was carried out on a CentOS 5.2 Linux system
with a 2.4G Hz CPU and 16 G Bytes memory. As shown, the clustering
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Table 5.3: The comparison of running time by different clustering schemes

Models Methods Time (seconds)
TFIDF 624

Vector spaces CRC 631
WLCDM 760
TFIDF 591

Graph spaces (spectral) CRC 770
Graph integration 712
Graph coupling 949
TFIDF 8

Graph spaces (LM) CRC 9
Graph integration 12
Graph coupling 12

solutions by Louvain method in the graph model are distinctly (by almost
two orders of magnitude) faster than their counterparts in the vector spaces.
The heavy computation of spectral modularity optimization is caused both
by the EVD of modularity matrix, the elements of which are full connected.
Meanwhile, Louvain method is a kind of hierarchical partitioning, thus leading
to a much efficient partitioning. In fact, we attempted to implement the
above partitioning directly by the k-means clustering method (the typical
clustering strategy in vector space model) for comparison with above clustering
strategies mentioned. However, we found the partitioning of k-means clustering
is incomparable to the relevant schemes (k-means clustering requires more than
432,000 seconds to partition the TFIDF text data). The high dimension of the
feature vector (669,860 terms in text feature) is probably a major cause of the
clustering failure of vector space model based clustering strategies on large-
scale data. Although some dimension reduction strategies, like LSI, can boost
the computation of the vector space model based clustering, they still require
some extra heavy computation, such as, the SVD of the original large data.
Therefore, as the volume of the data increases, the computation problem of
these strategies still remains.

As a whole, the excellent performance of the hybrid strategy of graph coupling
by Louvain method is based on two facts: (1) the heterogeneous information
from different graph spaces is fused in an appropriate way (without normalizing
the multiple heterogeneous data before integration); (2) the partitioning
efficiency of the Louvain method in terms of computation time as presented
in Table 5.3.
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Furthermore, during the implementation of these algorithms, the comparison
of memory consumption also indicates the similar trend, demonstrating the
efficiency of Louvain method. Due to the page limitation, we omit the detail
of that comparison.

5.5.2 The hierarchical clustering structure optimized by the
Louvain method

Based on the above results, we decided to implement the optimal clustering
by graph coupling, that is, both the optimal cluster number and the optimal
hierarchical structure are automatically found during the partitioning process.
No input parameters are thus needed for this optimum partitioning, only except
the adjacency matrix of this coupled graph, which is generated by combining
the cross-citation link structure with textual similarity. The partitioning
strategy of the Louvain method is able to find the optimal cluster number
by maximizing the modularity. In this case, the resolution parameter t
in (5.5) is set as 1. When a local maximum modularity is reached, the
number of clusters and its related clustering structure are recorded. Because
of the aggregating optimal mechanism, the different cluster structure has a
hierarchical relationship. Thus we can obtain a graph structure with various
partitioning levels.

We have stopped at two levels of partitions obtained by the hierarchical strategy.
At the higher level, we got 9 clusters for the coupled graph while in the lower
level, we obtained 45 clusters. The cognitive analysis of the higher level of 9
clusters is denoted below.

Since the optimal cluster number (9 or 45) differs from the number of ESI fields
(22), we can not gauge the clustering performance against the two evaluations
of the previous subsection. However, we still can take the ESI as a reference
standard to determine if our clustering results are meaningful by finding any
concordance between them. As shown in Figure 5.1, the concordance between
our clustering solution (9 clusters) and the ESI scheme is visualized by gray-
scaled cells representing the Jaccard index [66] for each cluster and field pair.
The darkest cells represent the best-matching pairs of fields and clusters. It is
clear that each of our 9 clusters corresponds to one ESI field or several relevant
ESI fields. For instance, cluster #7 corresponds to the Clinical Medicine, # 6
corresponds to the fields of Economic & Business and Social Sciences, and #3
corresponds to Computer Science, Engineering and Mathematics.

To better understand the structure of clustering, we applied a modified Google
PageRank algorithm [73] to analyze the journals within each cluster. Using
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Figure 5.1: The concordance between 9 clusters obtained by our strategy and
the 22 ESI categories. The first level of the hierarchical cluster structure. [Data
source: Thomson Reuters, Web of Science]

Table 5.4: The five most important journals of the 9 clusters, the first level of
the hierarchical clustering structure.

Cluster 1 Cluster 2 Cluster 3

1.Nat Rev cancer 1. Annu Rev Psycho 1. J Roy Stat Soc S.B

2. Caner cell 2. Psycho Meth 2. Fund comp math

3. CA-cancer J Clin 3. Psych B. 3. Biostat

4. Annu Rev Med 4. Psych Rev 4. J Amer Math Soc

5. B. B. Rev cancer 5. Behav Brai Sci 5. Anna Math

Cluster 4 Cluster 5 Cluster 6

1. Rev Mod Phys 1. Nat Rev molec cell bio 1. Quart J econ

2. Nat material 2. Nat Rev genetics 2. J econ liter

3. Chem Rev 3. Deve cell 3. J finance

4. Annu Rev Astron & Astrop 4. Nat Rev neruos 4. J finance econ

5. Mate sci & eng Rep 5. Annu Rev Bioche & 5. J poli econ

Cluster 7 Cluster 8 Cluster 9

1. Prog retin & eye res 1. Nat Rev immu 1. Annu Rev Ecolog evo & Sys

2. Invest ophth & visua sci 2. Annu Rev Immu 2. Ocean & Marin Bio

3. Surv ophth 3. Nat immu 3. Syst Bio

4. Molec vision 4. Nat Medi 4. A Muse Novi

5. Archi ophth 5. J Exp Med 5. Annu Rev Entom
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Table 5.5: The 30 best TF-IDF terms describing the 9 hybrid citation-textual
clusters, the first level of the hierarchical clustering structure.

Cluster Best 30 terms

1 patient tumor cancer clinic cell arteri diseas therapi surgeri carcinoma renal diabet

coronari lesion transplant pain postop surgic gene blood dose bone breast prostat

women liver resect hospit rat protein

2 patient children schizophrenia student health adolesc nurs women disord depress symptom clinic

cognit school teacher mental psychiatr social educ anxieti hospit smoke emot suicid

psycholog interview child questionnair abus sleep

3 algorithm algebra graph fuzzi finit wireless theorem antenna wilei queri polynomi semant

nonlinear robot asymptot qo equat packet infin bandwidth xml network user scheme

multicast manifold fault server nois bit

4 film temperatur alloi crystal atom ion polym quantum catalyst galaxi dope magnet

metal oxid hydrogen diffract optic particl thermal wilei bond beam spin spectroscopi

spectroscopi rai angstrom electron si spectra

5 protein gene cell receptor rat neuron mice kinas bind mutant transcript acid

mrna dna ca2 phosphoryl mutat enzym inhibit peptid inhibitor apoptosi membran beta

genom brain mous insulin muscl rna

6 polit firm polici market price social busi tax wage economi capit organiz

war trade welfar reform court parti democraci labour corpor invest women discours

democrat countri employe pavement econom compani

7 corneal retin ey patient glaucoma acuiti iop iol macular cataract intraocular lasik

ocular surgeri cornea retina len choroid postop myopia vitrectomi astigmat refract phacoemulsif

rpe ophthalmolog cnv retinopathi vitreou keratoplasti

8 infect cell patient il hiv viru vaccin mice protein gene antibodi immun

antigen cd4 ifn cow diseas dog clinic cytokin receptor cd8 viral milk

pcr lymphocyt calv serum hla hcv macrophag

9 soil speci plant forest sediment habitat water lake basin ocean river biomass

season sea fish leaf cultivar seedl rock seismic seed predat temperatur fault

climat larva veget isotop ecosystem rainfal

the algorithm, we investigated the five most highly ranked journals in each
cluster and presented them in Table 5.4. Moreover, for the journals presented
in Table 5.4, we re-investigated the titles, abstracts and keywords that have
been indexed in the text mining process. The indexed terms were sorted by
their frequencies and for each cluster, the thirty most frequent terms were used
to label the obtained clusters. The best TF-IDF terms of each journal cluster
are denoted in Table 5.5.

For the lower level partitioning with 45 clusters, the best 15 representative
terms in each cluster are shown in Table 5.7. The top three journals of each
cluster are listed in Table 5.6 (Cluster #13 only has two journals). Its cluster
structure is visualized in Figure 5.3 analogously to Figure 5.2. We illustrate
the hierarchical structure between the two partitions in Figure 5.4, which
provides different resolutions of the scientific mapping. The clusters of different
partitioning level are annotated by the number of journals within this cluster
and its related subjects. For instance, cluster #1 stands for clinical medicine
and neuroscience, and has the following substructure: 9 subfields including
obstetrics, dental dermatology, cancer, medicine, surgery, audio, neurology and
bone.
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1, tumor, cancer, clinic, cell,

2, children, schizophrenia, student, health,

3, algebra, graph, fuzzi, finit,

4, temperatur, ltd, alloi, crystal,

5, gene, cell, receptor, rat,
6, firm, polici, market, price,

7, retin, ey, patient, glaucoma,

8, cell, patient, il, hiv,

9, speci, plant, forest, sediment,

Figure 5.2: Network structure of the 9 journal clusters, the first level of the
hierarchical clustering structure. [Data source: Thomson Reuters, Web of
Science]

5.6 Summary

In this study we have presented a new hybrid clustering strategy based on graph
model, which proved efficient and extremely fast. It is able to automatically
provide optimum partitions at several hierarchical levels without any previous
input. By combining textual and citation information, the strategy provided
more robust cluster structures than hybrid clustering strategies based on vector
space model. Even for given number of clusters, the new method outperformed
analogous cluster algorithms based on the vector space model.



130 SCIENTIFIC MAPPING BY HYBRID CLUSTERING IN GRAPH SPACES

1, health, smoke, women, hospit,

2, women, fetal, gestat, patient,
3, polym, acid, crystal, ltd,

4, skin, psoriasi, cutan, dermat,

5, busi, organiz, employe, compani,

6, retin, ey, patient, glaucoma,

7, athenian, plato, socrat, greek,

8, dental, dentin, teeth, cari,

9, tumor, cancer, carcinoma, cell,

10, teacher, school, educ, teach,

11, patient, disord, depress, psychiatr,

12, receptor, neuron, cell, mice,13, philosoph, descart, slovak, hegel,

14, suprem, law, legal, feder,

15, star, stellar, luminos, redshift,

16, coronari, arteri, diabet, renal,

17, hiv, viru, vaccin, patient,
18, laparoscop, liver, tumor, hepat,

19, patient, care, caregiv, health,

20, firm, tax, wage, market,

21, crack, turbul, finit, heat,

22, aerosol, wind, tropospher, ocean,

23, opera, beethoven, schubert, josquin,

24, adolesc, emot, psycholog, social,

25, flap, hear, nasal, surgeri,

26, fuzzi, wireless, antenna, queri,

27, theorem, finit, graph, asymptot,

28, rock, fault, basin, earthquak,

29, dog, milk, calv, hors,

30, lake, sea, phytoplankton, sediment,

31, librarian, citat, journal, web,

32, moral, epistem, truth, philosophi,

33, alloi, temperatur, quantum, dope,

34, forest, habitat, predat, plant,

35, gene, cell, mutant, bind,

36, psychoanalysi, freud, analyst, unconsci,

37, semant, speech, lexic, fmri,

38, social, polici, war, democraci,

39, epilepsi, pain, seizur, stroke,

40, archaeologist, excav, neolith, prehistor,

41, acid, ltd, starch, meat,

42, il, patient, mice, ifn,

43, knee, bone, fractur, hip,

44, plant, cultivar, crop, leaf,

45, christian, jesu, god, biblic,

Figure 5.3: Network structure of the 45 journal clusters, the second level of
the hierarchical clustering structure. [Data source: Thomson Reuters, Web of
Science]

The self-optimization scheme of the Louvain method provided an optimum two-
level hierarchical cluster structure. The cognitive analysis based on the textual
component provided information for labelling and term annotation; the ranked
journals and the visualization of the cluster structure also verified the validity
of the new strategy.

The hybrid strategy is expect to provide a powerful tool to scientometrics
and informetrics, as it can handle large-scale data, carry out the immediate
partitioning, automatically optimize the cluster and provide a hierarchical
system in practically one process and in an very short time. Because of the
close relationship between bibliometric analysis and Web mining, our hybrid
partitioning strategy can be directly extended to detect the communities in
Webpages and Web social networks.

The key point of our strategy is to utilize the complementary property of
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1190 journals, Clinic, Bio, Neros

1000 journals, Psycho &Social scicnce

841 journals, Computer Sci, Mathematic

Engineering

1390 journals, Chemistry, Material, Physics

946 journals, Bio, Argic, Mbio, Pharm

1358 journals, Economic & Social science

43 journals, Clinic
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1116 journals, Plant, Environ, Geos

WoS journal database

1

19

10

11

24

36

22

34

28
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40
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196, Pub health

46, Obstetrics

36, Dermatology

50, Dental

229, Cancer

425, Medicine

125, NMR & Surg

39, Audiology

130, Neurology

196, Bone

126, Education

109, Psychiatry

33, Nursing

367, Psychology

12, Psycho analysis

157, Cognitive

439, Computer Sci

402, Math. Engin.

562, Chemical

42, Astron

282, Engineering

504, Material Psyci

425, Neros

438, Cell genetic

81, Food

143, Administra

19, Philology

2, Filo

90, LAw

228, Economic

12, Music

37, Library

768, Polit &Socio

49, Ethics & Philos

20, Christian

43, Vision science

148, Microbio

137, Veteri &Animal

126, Immunology

43, Climate

248, Geoscience

126, Ocean

393, Ecology

22, Archaeology

284, Environ

Figure 5.4: The hierarchical structure of the whole WoS journal database. Each
cluster is annotated by both the number of journals it owns and the subject
information. [Data source: Thomson Reuters, Web of Science]
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Table 5.6: The three most important journals of the 45 clusters, the second
level of our hierarchical clustering structure.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1. Milkb Quar 1. Twin Res 1. Chem R 1.J Inv Derm S P 1. Admi Sci Q

2. A R P Healt 2. I J Obst & G 2. P Ploy S 2. A J Clin Derm 2. Mis Quar

3. A J Epide 3. Hum Repr 3. Acc Chem R 3. J Inve D 3. Aca Mana J

Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

1. P. R. eye R 1. Class Antiq 1. Crit R Ora B M 1. N R cancer 1. R Educ R

2. Inv Ophth & V 2. T A Philo Asso 2. J Dent R 2. Cancer cell 2. A Educ R J

3. Sur Ophth 3. A J Philo 3. Dent Mater 3. Ca-cancer J C 3. Educa Eval P A

Cluster 11 Cluster 12 Cluster 13 Cluster 14 Cluster 15

1. A G Pysychi 1. N R Neros 1. Filoso Casopis 1. Yale Law J 1. A R Astr. & A

2. Molec Psychi 2. Physi R 2. Filozo 2. Univ Chica L 2. Astrop J S

3. Bio Psychi 3. A R Neros 3. Stanf Law R 3. Astroph J

Cluster 16 Cluster 17 Cluster 18 Cluster 19 Cluster 20

1. A R Med 1. N R Microb 1. Gastroe 1. Geronto 1. Quart J Econ

2. N E J Med 2. Clin Microb R 2. Anna Surg 2. A J Criti Care 2. J Econ L

3. Circul 3. Lanc Infec D 3. Hepato 3. Nurs Res 3. J Finace

Cluster 21 Cluster 22 Cluster 23 Cluster 24 Cluster 25

1. A R flu Mecha 1. J Hydrom 1. J A Musico S 1. A R Psych 1. Audio Neuro

2. P E Comb SCi 2. Clima Dynam 2. Musi Theo S 2. Psych Meth 2. Ear & Hear

3. J Mecha Phys S 3. J Clima 3. Music Anal 3. Psycho Bull 3. Laryngp

Cluster 26 Cluster 27 Cluster 28 Cluster 29 Cluster 30

1. A Comp Surv 1. J R Stat S S B 1. R Minerl & G 1. Veter Res 1. Oce. & M. B

2. J Acm 2. BioStat 2. Earth Sci Rev 2. J Feli Med & S 2. Fish & Fisher

3. J Machi learn R 3. J A Mat Sco S B 3. A R Earth & P S 3. J Dairy SCi 3. P Oceanog

Cluster 31 Cluster 32 Cluster 33 Cluster 34 Cluster 35

1. L & I Sci R 1. Ethics 1. R Mode Physi 1. A R Ecolo E 1. N R Molec cell

2. P Libra & Acad 2. Philos & P A 2. N Mater 2. Syst Bio 2. N R genetics

3. Colle & Res L 3. J Philos 3. Mater S & E R R 3. A Muse Novi 3. Devel cell

Cluster 36 Cluster 37 Cluster 38 Cluster 39 Cluster 40

1. Psychoa Dial 1. Psycho R 1. A Polit S R 1. Lanc Neuro 1. J Anthr Archae

2. Psychoa quart 2. Behav & B S 2. A R Soc 2. Brain 2. A Antiq

3. J A Psycho Asso 3. Tre Cogn S 3. A Soci R 3. Anna Neuro 3. J Archa M & T

Cluster 41 Cluster 42 Cluster 43 Cluster 44 Cluster 45

1. C R food S & N 1. N R Immu 1. Exerc & S S R 1. Global Chan B 1. J Ear Chris S

2. I J food Microb 2. A R Immu 2. J bone Min R 2. Criti R P S 2. J Bib L

3. A J Gra & W 3. N Immu 3. Bone 3. Adva Envir R 3. N Testa S

multi-view data: the integration of the citation links of one view with the
textual similarity of the other view. Nevertheless, the drawbacks of strategy
are apparent: only limited to two views and only applicable to such a multi-view
scenario: text content and citation links. We will tackle the hybrid clustering
issue of integrating more views in the graph spaces in later research.
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Table 5.7: The 15 best TFIDF terms describing the 45 hybrid citation-textual
clusters, the second level of the hierarchical clustering structure.

Cluster Best 15 terms

1 health;smoke;women;hospit;children;physician;alcohol;cancer;care;clinic;risk;medic;adolesc

2 pregnanc;women;fetal;gestat;patient;ivf;preterm;vagin;matern;uterin;cesarean;endometriosi

3 catalyst;polym;acid;crystal;ligand;wilei;nmr;ion;angstrom;bond;adsorpt;hydrogen;solvent;atom

4 skin;psoriasi;cutan;dermat;lesion;keratinocyt;dermatolog;melanoma;hair;clinic;acn;wound;cell;atop

5 firm;busi;organiz;employe;compani;market;custom;brand;retail;supplier;corpor;advertis;strateg

6 corneal;retin;ey;patient;glaucoma;acuiti;iop;iol;macular;cataract;intraocular;lasik;ocular;surgeri;cornea

7 roman;athenian;plato;socrat;greek;ovid;cicero;homer;poem;aristotl;poet;horac;herodotu;catullu;euripid

8 periodont;dental;dentin;teeth;cari;patient;implant;mandibular;enamel;gingiv;orthodont;tooth

9 tumor;cancer;carcinoma;cell;prostat;breast;tumour;gene;chemotherapi;p53;malign;apoptosi

10 student;teacher;school;educ;teach;classroom;curriculum;learn;learner;faculti;instruct;skill

11 patient;disord;depress;psychiatr;suicid;antipsychot;symptom;sleep;bipolar;mental;antidepress

12 rat;receptor;neuron;cell;mice;protein;mrna;ca2;brain;gene;insulin;kinas;muscl;inhibit;patient

13 philosophi;philosoph;descart;slovak;hegel;ethic;moral;masaryk;kant;husserl;cogito;frege

14 court;suprem;law;legal;feder;doctrin;litig;wto;crimin;judici;justic;lawyer;statut;claus;amend

15 galaxi;star;stellar;luminos;redshift;galact;ngc;solar;telescop;dwarf;supernova;accret;quasar

16 coronari;arteri;diabet;renal;transplant;clinic;ventricular;diseas;hypertens;cardiac;therapi

17 infect;hiv;viru;vaccin;patient;protein;viral;cell;gene;hcv;antibodi;mice;strain;pcr;malaria

18 laparoscop;liver;tumor;hepat;resect;pancreat;gastric;surgeri;cancer;pylori;endoscop;postop;surgic;ct

19 nurs;patient;care;caregiv;health;student;hospit;educ;clinic;women;staff;midwiv;midwiferi

20 price;firm;tax;wage;market;pavement;polici;trade;economi;monetari;capit;earn;invest;forecast;traffic

21 crack;turbul;finit;heat;flame;shear;vibrat;concret;beam;reynold;veloc;acoust;elast;vortex;temperatur

22 cloud;aerosol;wind;tropospher;ocean;atmospher;stratospher;radar;convect;ozon;rainfal;sst

23 music;opera;beethoven;schubert;josquin;symphoni;bach;tonal;song;motet;handel;brahm;sonata

24 children;adolesc;emot;psycholog;social;child;anxieti;student;women;cognit;school;sexual;violenc

25 flap;hear;nasal;surgeri;cochlear;postop;ear;surgic;nerv;implant;cleft;laryng;endoscop;neck;sinu

26 algorithm;fuzzi;wireless;antenna;queri;semant;robot;qo;packet;graph;xml;user;bandwidth

27 algebra;theorem;finit;graph;asymptot;infin;equat;polynomi;manifold;let;nonlinear;banach

28 seismic;rock;fault;basin;earthquak;magma;sediment;tecton;mantl;crustal;volcan;subduct;magmat

29 cow;dog;milk;calv;hors;diet;broiler;cattl;herd;pig;dairi;breed;carcass;heifer;lamb

30 fish;lake;sea;phytoplankton;sediment;speci;fisheri;habitat;river;ocean;spawn;estuari;benthic;larva

31 librari;citat;journal;web;metadata;catalog;bibliometr;literaci;academ;book;user;librarianship

32 philosoph;moral;epistem;truth;philosophi;metaphys;kant;argument;semant;argu;epistemolog

33 film;alloi;temperatur;quantum;dope;magnet;crystal;optic;si;beam;atom;laser;spin;anneal;ion

34 speci;forest;habitat;predat;plant;soil;seedl;prei;bird;tree;larva;egg;genu;femal;forag

35 protein;gene;cell;mutant;bind;dna;transcript;kinas;receptor;mutat;enzym;genom;phosphoryl

36 psychoanalysi;freud;analyst;unconsci;countertransfer;psychoanalyst;psychic;dream;analysand

37 phonolog;semant;speech;lexic;fmri;word;task;verb;sentenc;languag;children;cognit;memori

38 polit;social;polici;war;democraci;democrat;parti;women;discours;religi;reform;crime;sociolog

39 epilepsi;pain;seizur;stroke;aneurysm;clinic;cerebr;migrain;headach;brain;spinal;lesion;arteri

40 archaeologist;excav;neolith;prehistor;potteri;settlement;maya;ritual;palaeolith;burial;bronz

41 chees;acid;starch;meat;milk;flour;ferment;wine;antioxid;protein;juic;cook;food;monocytogen

42 cell;il;patient;mice;ifn;cytokin;cd4;immun;receptor;cd8;antigen;gene;hla;antibodi;protein

43 knee;bone;fractur;hip;arthroplasti;tendon;femor;ligament;injuri;pain;muscl;bmd;athlet;flexion

44 soil;plant;cultivar;crop;leaf;water;wheat;sludg;shoot;seedl;irrig;seed;biomass;sediment;ha

45 gospel;christian;jesu;god;biblic;hebrew;psalm;testament;theologi;luke;paul;church;bibl;divin





Chapter 6

Multi-view text mining for
gene retrieval

6.1 Introduction

6.1.1 The importance of text mining in biomedical world

Text mining helps biologist to automatically collect structured biomedical
knowledge from large volumes of biological literature. During the past ten
years, there was a surge of interest in automatic exploration of the biomedical
literature, ranging from the modest approach of annotating and extracting
keywords from text [79] to more ambitious attempts such as Natural Language
Processing (NLP) [13], and text mining based network construction and
inference [86]. One of the main objectives of text mining is to structure the
knowledge contained in the biological literature in order to extract biological
entities and relations between them. In particular, these efforts effectively
help biologists to identify the most likely disease candidate genes for further
experimental validation [146]. It is often the case that text mining data
is combined with other biological data within an elaborated workflow. For
instance, text mining can serve as prior information for typical clinical decision
support algorithms such as Bayesian networks [4]. It is also possible to unify
heterogeneous data sources such as clinical data with text mining based data
sources [49].

135
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6.1.2 Multi-view text mining

In general, a successful text mining approach relies much on an appropriate
mining model, and the efficiency of biomedical knowledge discovery varies
greatly between different models. Which text mining model is superior depends
on the problem under consideration. This makes multi-view models more suited
since they are more flexible to answer various biological applications. In our
early work, we propose a multi-view text mining model based on the use of
several controlled vocabularies [146]. We now propose to also consider the use of
several term scoring (weighting) schemes, and the mining of distinct document
corpus as additional views. More precisely, we define distinct document corpus
by distributing the journals based on their biomedical subjects, or by grouping
the papers based on their publication year. The different views are redundant
but also complementary. Therefore the integration of multiple views is expected
to allow for a more accurate definition of our current knowledge in genetics and
medicine. Another motivation behind our work is to provide a vertical search
engine, in order to get insight into specific biomedical fields. In contrast to
general search engines that attempt to index large portions of the World Wide
Web or whole databases, vertical search engines typically attempt to index
only the documents that are relevant to a pre-defined topic [10]. In our case,
this segment can be defined by selecting one or several biomedical subjects,
vocabularies, or time periods.

6.1.3 Related work

The concept of multi-view document analysis was originally proposed by Bickel
and Scheffer who describe a web document clustering strategy that combines
intrinsic view of web pages (text based similarity) and extrinsic view (citation
link based similarity) [12]. More recently, Gaulton et al. have adopted three
different ontologies on eight text sources and built the CAESAR system that
annotates human disease genes and identifies potentially novel disease genes
[46]. Lately, Névéol et al. have combined three different models (dictionary
lookup, post-processing rules and NLP rules) to identify Medical Subject
Headings (MeSH) main heading/subheading pairs from medical text [104].
Much effort has been put into the automatic extraction of disease gene relations
from free text [28] [103]. To improve the performance of mapping biomedical
sentences into an ontology, Kim et al. proposed an integrated information
retrieval technique that combines a simple language model with document
frequencies and a distance measure, and followed by clustering [75]. In 2005,
we implemented a framework called TXTGate that combines literature indices
of selected public biological resources in a flexible text-mining system designed
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towards the analysis of gene sets [49]. More recently, we have used multi-view
text mining data for gene prioritization and clustering [146]. Our work shares
the same flavor, however we extend multi-view to broad concepts and emphasize
vertical search from certain specific perspective. When compared to our former
multi-view text mining work, our research brings three novel items: extension
of the multi-view concept to a broad and flexible framework, implementation of
vertical text mining from multiple perspectives, and a tensor based data fusion
method. In the current study, we extend the multi-view concept to the use of
several weighting schemes in addition to the use of several vocabularies. We
also propose a vertical search engine by restricting the text mining analysis to
a subset of the original document corpus. The subset can be defined either by
biomedical subjects or by publication time periods, and only the relevant papers
are then indexed. We have implemented this scheme into a freely available
computational framework that can be used to investigate genes or gene sets
through similarity analysis and clustering.

6.2 Materials and methods

6.2.1 Document corpus

One of the most important resources for biological text mining applications is
MEDLINE database. MEDLINE contains more than 18 millions publications
that cover many aspects of biology, chemistry and medicine. There is almost
no limit to the types of information that may be recovered through careful and
exhaustive mining. There are more than 10,000 biomedical related journals,
accumulating over 700,000 new publications each year. In the current study, we
use the MEDLINE repository as of April 2010. Each publication is represented
by its title and its abstract (when available). The full article is never retrieved.
The mapping between genes and publications from Entrez GeneRIF was used
to index the MEDLINE repository. The GeneRIF data was also collected in
April 2010, and consists of 290,000 associations between 13,633 human genes
and 322,639 MEDLINE publications (from 3,276 journals).

Among the 3,276 journals that are relevant to human genes, the top 30 journals
with the number of papers are listed in Table 6.1.

6.2.2 Indexing

In the first step, documents are indexed and a document-by-term matrix is
computed. The indexing process is performed using the Java Lucene package
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Titles and abstracts

in MEDLINE

Text profile Similarity matrix Hierarchical clustering

Text source
Multiple views

Term weighting Subjects Time period Vocabulary

Gene search engine

Figure 6.1: Conceptual overview of our text mining system. The whole corpus
is indexed with several vocabularies, weighting schemes, biomedical subjects
and publication time periods (multiple views). Sets of genes can then be
investigated on-line: the text profiles of the genes are retrieved. Furthermore,
similarity matrices can be computed and hierarchical clustering is performed.

[58], and more details can be found in our earlier work [146]. In the second step,
we averagely combine the document-by-term vectors to obtain gene-by-term
vectors according to the GeneRIF mapping. Each feature of the gene vector
then corresponds to the score of a term from a fixed vocabulary (ontology).
The multiple views adopted in this research refer to different weighting schemes,
controlled vocabularies, and biomedical subjects.

Weighting schemes

A weight is a statistical measure used to evaluate how important a term is to
a document in a corpus [119]. The importance increases proportionally to the
number of times this term appears in the document but is offset by its frequency
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Table 6.1: The top 30 journals related to human gene within the MEDLINE
database by 2009

The No. Paper’s Number Journal Name
1 23121 The Journal of biological chemistry
2 6735 Proceedings of the National Academy of Sciences
3 6174 Biochemical and biophysical research communications
4 3762 Molecular and cellular biology
5 3741 Genomics
6 3723 Blood
7 3624 Oncogene
8 3491 Journal of immunology
9 2848 Cancer research
10 2774 FEBS letters
11 2726 Biochemistry
12 2596 Human molecular genetics
13 2375 American journal of human genetics
14 2373 The EMBO journal
15 2261 Nature
16 2153 The Biochemical journal
17 2004 Biochimica et biophysica acta
18 1998 The Journal of clinical endocrinology and metabolism
19 1833 Nature genetics
20 1742 Cell
21 1719 Science
22 1689 Journal of virology
23 1648 Human mutation
24 1633 Human genetics
25 1602 Clinical cancer research
26 1583 Nucleic acids research
27 1552 The Journal of cell biology
28 1551 Gene
29 1493 Journal of medical genetics
30 1484 International journal of cancer

within the whole corpus. In the current study, we used three different weighting
schemes: TF, IDF, and TFIDF. TFIDF is often used in information retrieval
and text mining, but IDF is also found to work well in biomedical related
text mining [146]. Since it is hard to estimate beforehand which scheme is
universally superior, both are made available. In addition, TF is also proposed
but mainly for comparative studies since it was shown to give less meaningful
results [90].

Controlled vocabularies

We have selected four vocabularies from four bio-ontologies as follows.

The Gene Ontology (GO) GO [14] provides consistent descriptions of
genes and gene-product attributes in the form of three structured controlled
vocabularies that each provide a specific angle of view (biological processes,
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cellular components and molecular functions). GO is built and maintained
with the explicit goal of applications in text mining and semantic matching in
mind [9]. Hence, it is an ideal source as domain-specific views in our approach.
We extract all the terms in GO (due to the version released in December, 2008)
as the controlled vocabulary of GO.

Medical Subject Headings (MeSH) MeSH is a controlled vocabulary
produced by National Library of Medicine (NLM) for indexing, cataloging,
and searching biomedical and health-related information and documents. The
descriptors or subject headings of MeSH are arranged in a hierarchy. MeSH
covers a broad range of topics and its current version consists of 16 top level
categories. Though most of the articles in MEDLINE are already manually
annotated with MeSH terms, our text mining process does not rely on these
annotations but indexes the MEDLINE repository automatically with the
MeSH descriptors (version 2008).

Online Mendelian Inheritance in Man’s Morbid Map (OMIM) OMIM
[15] is a database that catalogues all the known diseases with genetic
components. It contains available links between diseases and relevant genes
in the human genome and provides references for further research and tools for
genomic analysis of a catalogued gene. OMIM is composed of two mappings:
the OMIM Gene Map, which presents the cytogenetic locations of genes that
are described in OMIM; the OMIM Morbid Map, which is an alphabetical list
of diseases described in OMIM and their corresponding cytogenetic locations.
Our approach retrieves the disease descriptions from the OMIM Morbid Map
(version due to December, 2008) as the CV.

National Cancer Institute Dictionary (NCI) The NCI Thesaurus is a
public domain description logic-based terminology produced by the National
Cancer Institute, distributed as a component of the NCI Center for Bioinformat-
ics caCORE distribution [53]. It is deep and complex compared to most broad
clinical vocabularies, implementing rich semantic inter-relationships between
the nodes of its taxonomies. The semantic relationships in the Thesaurus are
intended to facilitate translational research and to support the bioinformatics
infrastructure of the Institute. Topics described in the ontology include
diseases, drugs, chemicals, diagnoses, genes, treatments, anatomy, organisms,
and proteins. The NCI Thesaurus evolved from the NCI Metathesaurus, which
is based on the National Library of Medicine Unified Medical Language System
(UMLS) Metathesaurus. The NCI Metathesaurus has been operational since
1999. A public version is available at http://ncimeta.nci.nih.gov.

Three of them (GO, MeSH, OMIM) have proved their merit in our earlier work
[147]. In addition, we have also selected an ontology from the National Cancer
Institute (NCI) to cover more specifically cancerous diseases. The ontological
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Table 6.2: The 114 biomedical subjects associated with human gene based on
the PubMed journal categories

Acquired Immunod. Syndro Communicable Diseases Histocytochemistry Occupational Med

Aerospace Medicine Complementary Therapies Histology Ophthalmology

Allergy and Immunology Critical Care History of Medicine Optometry

Anatomy Dentistry Hospitals Orthodontics

Anesthesiology Dermatology Internal Medicine Orthopedics

Anthropology Diagnostic Imaging Jurisprudence Otolaryngology

Anti-Bacterial Agents Drug Therapy Laboratory Tech. and Pro. Parasitology

Antineoplastic Agents Education Medical Informatics Pathology

Audiology Embryology Medicine Pediatrics

Bacteriology Emergency Medicine Mental Disorders Perinatology

Behavioral Sci. Endocrinology Metabolism Pharmacology

Biochemistry Environmental Health Microbiology Pharmacy

Biology Epidemiology Military Medicine Physical Medicine

Biomedical Engineering Ethics Molecular Biology Physiology

Biophysics Gastroenterology Nanotechnology Psychiatry

Biotechnology General Surgery Neoplasms Psychology

Botany Genetics Nephrology Psychopharmaco

Brain Genetics, Medical Neurology Psychophysiology

Cardiology Geriatrics Neurosurgery Public Health

Cell Biology Gynecology Nuclear Medicine Pulmonary Med

Chemistry Health Services Nursing Radiology

Chemistry Tech. Anal. Health Services Research Nutritional Sciences Radiotherapy

Chemistry, Clinical Hematology Obstetrics Rehabilitation

Reproductive Medicine Rheumatology Science

Sexually Transmitted Dise Sexually Transmitted Dise Social Med

Social Sciences Speech-Language Pathology Sports Medicine

Statistics as Topic Substance-Related Disorders Technology

Teratology Therapeutics Toxicology

Transplantation Traumatology Tropical Medicine

Urology Vascular Diseases Veterinary Medicine

Virology Women’s Health

terms are first extracted, stored as bag-of-words, and then preprocessed
for text mining. This pre-processing includes transformation to lower case,
segmentation of long phrases, and stemming. After preprocessing, these
vocabularies are fed into a Java program based on the Apache Java Lucene
API to index the titles and abstracts of MEDLINE publications relevant to
human genes.

Biomedical subjects

The National Library of Medicine (NLM) assigns MeSH terms to each journals
to describe their main focus. Not all journals are associated to MeSH terms, and
we therefore only keep the journals with at least one term (52 journals discarded
over 3,276 journals in total). There are in total, 114 distinct MeSH terms used
to define the journal’s scope, and there are sometimes several terms per journal.
The distribution of the 114 MeSH terms is heavily biased. For instance, the
term with the largest number of publications is ‘Molecular biology’, with 33,164
publications. At the other end of the spectrum, ‘Optometry’ is only linked to a
single paper. More details about these MeSH terms can be found in Table 6.2.
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Table 6.3: The various publishing time periods with the number of papers and
the number of occurring genes

The publication period Number of papers Number of occurring genes
1950-1990 10,026 1
1991-2000 52,508 42
2001-2005 91,973 241
2006-2010 79,880 235

Publication year

For the current MEDLINE, the publication year ranges from 1950 to 2010.
Notice that 5,537 papers have been removed since their publication year is
missing. The yearly paper distribution (human gene related) is shown in Figure
1.8 of Chapter 1. As expected, the number of papers that are linked to human
gene is increasing since the sequencing of the human genome. We have roughly
divided the papers into four categories according to the publication year: 1950-
1990, 1991-2000, 2001-2005, and 2006-2010 (see also Table 6.3).

6.2.3 Web application

The Web application was developed using the Google Web Toolkit Version
2.01. A conceptual overview of our system is illustrated in Figure 6.1. It can
be fed with a set of genes and returns the text profiles of these genes as well
as the similarity matrix and the associated clustering results. These results
can be downloaded for further analysis. For each query gene of the input gene
set, a text profile is retrieved. This profile contains the annotation terms and
the corresponding scores. It is possible to display the top 10 terms that are
annotated to the genes (terms with the highest scores). It is also possible to
visualize the profile as a tag cloud (or term cloud), for which the font size
of a term is proportional to its score. To compare gene profiles, we compute
the cosine similarity between the two corresponding gene-by-term vectors. We
offer the possibility to cluster on-line the gene set by means of hierarchical
clustering. The clustering is performed in Java (own implementation) using the
average link [68] and the aforementioned similarity measure. The hierarchical
structure can also be visualized to allow for an exploratory clustering strategy.
For convenience, the clustering can only be achieved with 100 genes or less.

1http://code.google.com/webtoolkit/
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6.2.4 Hybrid clustering approach

Clustering is helpful to identify the functional relationship between genes
[60]. In this study, we apply a clustering strategy in order to assess whether
combining multi-views leads to an increased performance. Hybrid clustering
refers to joint clustering that integrates multi-view data, and is expected to
boost the clustering performance. The hybrid clustering strategy we adopted
is tensor based MC-OI-MLSVD method as introduced in Chapter 2.

6.2.5 Biomedical validation data

We validate our approach with the human disease benchmark data set of
Endeavour [145], from which we selected 14 diseases and the 264 associated
genes. The 14 diseases are presented in Table 6.4. To compare different views,
the cosine similarities between all gene-by-term vectors are computed for each
views, which leads to the generation of one similarity matrix per view. The
cosine similarity is then computed between these two matrices and used as
an estimate of the global similarity of the two underlying views [129]. Given
two similarity matrices Si and Sj , and their corresponding vectorizations are
vec(Si) and vec(Sj), where vec(S) means all columns of S are stacked each
other, the cosine similarity cross two views is computed as,

cos(θi,j) = vec(Si)× vec(Sj)/(‖vec(Si)‖2 × ‖vec(Sj)‖2) (6.1)

where cos(θi,j) = cos(θj,i) and it ranges from 0 (two views are completely
different) and 1 (two views are identical).

Regarding clustering evaluation, the gene data sets used in our experiments are
provided with disease labels, therefore the clustering performance is evaluated
by comparing the automatic partitions with the labels using ARI [63] and NMI
[127]. We set the cluster number K to 14 since there are 14 diseases.

6.3 Results

This section presents a similarity analysis performed on the individual views,
a benchmark of the method based on clustering, and introduces our web tool.
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Table 6.4: Genetic diseases in disease data and the number of genes relevant to
each disease. The numbers in parentheses are the removed overlapping genes
in each disease

Number Disease Number of genes
1 breast cancer 24(5)
2 cardoomuopathy 22(5)
3 cataract 20(1)
4 charcot marie tooth disease 14(4)
5 colorectal cancer 21(6)
6 diabetes 26(3)
7 emolytic anemia 13(1)
8 epilepsy 15(1)
9 lymphoma 31(4)
10 mental retardation 24(4)
11 muscular dystophy 24(6)
12 neuropathy 18(3)
13 obesity 13(1)
14 retinitis pigmentosa 30(2)

6.3.1 The similarities among multiple views

Each view provides text information from a certain perspective. In this section,
before combining multiple views, we measure the similarities or the differences
among these views.

Similarities among vocabularies

To compare the different vocabularies, we set the weighting scheme to IDF,
and the whole corpus was indexed. The global similarities among the four
vocabularies are shown in Table 6.5. The largest similarity exists between
GO and NCI (0.8966) while the smallest similarity between MeSH and OMIM
(0.7565). Altogether, the results indicate that although there are differences
among the vocabularies, these are not huge. Similar results are obtained with
TFIDF (data not shown).



RESULTS 145

Table 6.5: The cosine similarity between the four vocabularies. The largest non-
self similarity is shown in bold; and the smallest non-self similarity is shown in
italics.

Vocabulary GO MeSH OMIM NCI

GO 1 0.7925 0.8499 0.8966
MeSH 0.7925 1 0.7565 0.8111
OMIM 0.8499 0.7565 1 0.8192
NCI 0.8966 0.8111 0.8192 1

Table 6.6: The cosine similarity between the three weighting schemes. The
largest non-self similarity is shown in bold; and the smallest non-self similarity
is shown in italics.

Weighting scheme TF IDF TFIDF

TF 1 0.7326 0.8715
IDF 0.7326 1 0.8524
TFIDF 0.8715 0.8524 1

Similarities among weighting schemes

To analyze multiple weighting schemes, we used MeSH as the vocabulary,
and the whole corpus was indexed. The global similarities among the three
weighting schemes are presented in Table 6.6. The largest similarity exists
between TF and TFIDF (0.8715); and the smallest similarity between TF and
IDF (0.7326). Similar results are obtained with different vocabularies (data
not shown).

Similarities between biomedical subjects

In order to compare the different biomedical subjects, we used MeSH as the
vocabulary; we set the weighting scheme to IDF; and we selected all publication
time periods. Among the 114 biomedical subjects, we selected the six that
are associated with the largest number of papers. The global similarities
among these six subjects are shown in Table 6.7. The largest similarity
exists between Molecular Biology and Cell biology (0.7919); and the smallest
similarity between Allergy & Immunology and Genetic medical (0.2212). As
can be observed from the Table 6.7, the use of different subjects gives more
different results than the use of different vocabularies or weighting schemes.
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Table 6.7: The cosine similarity of multi-view subjects. Except the self-
similarity, the largest similarity is shown in bold while the smallest similarity
is shown in italics.

Medical subject Aller. & Immuno. Cell bio Genetic med Molecular bio Neroplasms Sci

Aller. & Immuno. 1 0.3527 0.2212 0.3032 0.3958 0.3657

Cell biology 0.3527 1 0.5080 0.7919 0.7471 0.5574

Genetic medical 0.2212 0.5080 1 0.7766 0.4634 0.4967

Molecular Biology 0.3032 0.7919 0.7766 1 0.6900 0.5843

Neroplasms 0.3958 0.7471 0.4634 0.6900 1 0.5613

Science 0.3657 0.5574 0.4967 0.5843 0.5613 1

Table 6.8: The 26 genes associated with diabetes.

GYS1 NEUROD1 AQP2 HNF4A IRS2 AVP PDX1
CTLA4 IRS1 INSR PLAGL1 PPARG MAPK8IP1 TCF1
FOXP3 SPINK1 SLC2A2 INS CAPN10 IAPP
GPD2 SLC2A4 AVPR2 GCK TCF2 RRAD

It also motivates vertical searches that are able to provide precise and unique
information.

Influence of the biological question

We have also performed the analysis on a set of diabetes related genes to
investigate the differences among the multiples views. The 26 genes associated
with diabetes are selected for this test as presented in Table 6.8. In this
experiment, we provide a text profile for this group of genes by averaging the
text profiles of each gene. The detail of multi-view text mining profiles can be
observed in Table 6.9, Table 6.10, Table 6.11 and Table 6.12. We can see that,
for diabetes, there is less overlap among the multiple views in general, and
in particular for vocabularies and biomedical subjects. This analysis indicates
that different results can be obtained with different biological questions.

6.3.2 Multi-views clustering by MC-OI-MLSVD

In this section, we compare the clustering results when applied on a single view
and when applied on multiple views.
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Table 6.9: The text profile of diabetes related genes by multi-view vocabularies
(IDF weighting scheme, all publication time periods and all biomedical
subjects).

GO MeSH OMIM NCI
mbf cod liver oil menier bangladesh
hexos transport parot antidiuresi atcc
glucokinas activ etodolac tropic calcif pancreat etanercept
glycolipid bind menier pck1 smad4 protein
densa oletf yemenit 20q12
cyclopentenon f18 leprechaun ibuprofen
garp bottl pdx1 neural network
glycerophosph pouchiti leiomyomata conjunctiva
glucos bind insulin antibodi por croatia
basilar erythrocyt deform hyperinsulinem hypoglycemia sulindac

Table 6.10: The text profile of diabetes related genes by multi-view weighting
schemes (MeSH vocabulary, all publication time periods and all biomedical
subjects).

TF IDF TDIDF
rho cod liver oil parot
curv parot pox
activ etodolac adrenomedullin
adrenomedullin menier cyp27a1
invas oletf vitiligo
abl f18 liposarcoma
insulin bottl altitud
vitiligo pouchiti lactas
multipl sclerosi insulin antibodi thymoma
obes erythrocyt deform ophthalmopathi



148 MULTI-VIEW TEXT MINING FOR GENE RETRIEVAL

Table 6.11: The text profile of diabetes related genes by multi-view publication
time periods (MeSH vocabulary, IDF weighting scheme and all biomedical
subjects).

1980-2000 2001-2005 2006-2010
oxytocin hyperamylasemia cod liver oil
tempera parot menier
hypothyroid etodolac bottl
thyrotropin menier pouchiti
vasopressin oletf insulin antibodi
ppar gamma f18 erythrocyt deform
dimens insulin antibodi basilar arteri
overweight rapa macrosomia
charact salivari duct multipl trauma
dosag cholestyramin glycyrrhetin acid

Table 6.12: The text profile of diabetes related genes by multi-view biomedical
subjects (MeSH vocabulary, IDF weighting scheme and all publication time
periods).

Allergy & Immun Cell bio Genetic med Molecular bio Neroplasms Sci

filari smad4 protein bodi size pox etodolac trachoma

hypoparathyroid osteonecrosi indel amber f18 glycogen syn

flagellin raptor minisatellit smad4 protein ibuprofen proinsulin

uveiti gata4 aquaporin 2 sulfid sulfid relaxin

cd1d vitiligo bcg sulindac sulindac tryptas

anergi proinsulin dietari fat caveolin 2 caveolin 2 vasopressin

granuloma asc panic disord hydatidiform mole biliari tract longev

sea anabol arginin vasopressin theca bodi size arrestin

heart transplant ht29 tempera beta caroten coup ppar gamma

th1 cell tuber sclerosi lipodystrophi osteonecrosi bcg rna splice

Clustering using multiple vocabularies

Using the four different vocabularies, we build four different gene-by-term
matrices. Therefore, four normalized similarity matrices are generated in
total. We then applied our multi-view clustering method (MC-MI-MLSVD)
to combine the multiple views and compare to the use of any single view. The
clustering results with IDF weighting scheme are presented in Table 6.13. It can
be observed that the best single-view performance is obtained by using MeSH
vocabulary (NMI 0.7012, ARI 0.5157). However, the integration of multiple
views (NMI 0.7290, ARI 0.5393), MeSH and OMIM vocabulary in this case, is
significantly superior to the use of MeSH or OMIM vocabulary alone. These
results demonstrate that the integration of multiple vocabularies is able to
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Table 6.13: Clustering results for multiple vocabularies with IDF weighting
scheme. The mean values and standard deviations are observed from 50
repetitions. The best values are shown in bold. “Combined” refers to the
integration of MeSH and OMIM.

Vocabularies NMI P-value ARI P-value
Combined 0.7290± 0.02 —– 0.5393±0.05 —–
GO 0.5537± 0.01 4.4e-39 0.3575±0.03 1.34e-23
MeSH 0.7012±0.02 1.14e-7 0.5157±0.05 0.0316
OMIM 0.6893±0.02 7.01e-12 0.4868±0.05 8.42e-6
NCI 0.5109±0.01 2.97e-46 0.2844±0.02 3.10e-34

Table 6.14: Clustering results for multiple weighting schemes with MeSH
vocabulary. The mean values and standard deviations are observed from 50
repetitions. The best values are shown in bold. “Combined” refers to the
integration of TFIDF and IDF data.

Weighting scheme NMI P-value ARI P-value
Combined 0.7001±0.02 —– 0.5236±0.05 —–
TFIDF 0.6868±0.02 0.0017 0.5021±0.04 0.0466
TF 0.4963±0.02 4.52e-49 0.2882±0.02 1.14e-35
IDF 0.6872±0.01 2.85e-4 0.5039±0.04 0.0232

enhance the clustering performance. Similar results are obtained with TFIDF
weighting scheme (data not shown).

Clustering using multiple weighting schemes

In this study, we have implemented three weighting schemes: TF, IDF and
TFIDF, which allows us to get three gene-by-term matrices. We expect that
integrating this type of multiple views will enhance the clustering performance.
The clustering results with MeSH vocabulary are presented in Table 6.14. The
best performance for single view is obtained by TFIDF (NMI 0.7001, ARI
0.5236), just slightly ahead of IDF (NMI 0.6872, ARI 0.5039). However, the
hybrid clustering using multiple views is still significantly superior, showing
that the integration of multiple weighting schemes, TFIDF and IDF in our
case, can boost the clustering performance as well. Similar results are obtained
with other vocabularies (data not shown).
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Table 6.15: The number of overlaping terms between the four vocabularies.
The total number of terms for each vocabulary is denoted between brackets.

GO (37,069) MesH (29,709) OMIM (5,021) NCI (27,247)

GO (37,069) — 9,952 1,431 5,409
MesH (29,709) 9,952 — 3,191 6,399
OMIM (5, 021) 1,431 3,191 – 1,071
NCI (27,347) 5,409 6,399 1,071 –

6.4 Discussion

We have developed a literature based gene retrieval system that is able to
provide multi-view observations as well as vertical search. The aim of our
system is to aid the clinical analysis and biomedical research. We illustrate
its usefulness through a clustering validation that proved the efficiency of the
multi-view strategy. With respect to vertical search, our search engine is able
to help the users who want very specific knowledge (corresponding to one of
the several branches of the whole biomedical world). Biomedical research is a
fast developing field, it is therefore divided into more and more tiny specialized
fields. Hence, such a system that proposes precise searches is really more and
more required.

Based on the similarity analysis of multi-view text mining, as can be seen in
Table 6.5 (multi-view vocabularies), Table 6.6 (multi-view weighting schemes)
and Table 6.7 (multi-view biomedical subjects), the views appear different but
redundant. This redundancy was expected because the multiple vocabularies
we used share common terms as denoted in Table 6.15. The largest overlap
is observed between MesH and OMIM, with 3,191 common terms, which
represents 64% of OMIM. In addition, the multiple weighting schemes (TF,
IDF and TFIDF) we used also share part of their formulas. However, beside
this redundancy, we can observe that the integration of multiple views is almost
always leading to a better representation of the data.

Regarding clustering of multi-view data, the tensor based hybrid clustering
method is able to make the best of the data. As long as the multi-view data
has complementray information and that the noise level is kept under control,
the combination with the tensor based strategy is always able to improve the
clustering performance.

The idea of multi-view text mining is not restricted to the several views
mentioned in this study. For example, according to the citation impact factor



SUMMARY 151

of the related journals and their citations, the papers in MEDLINE could be
classified into different categories, which thus would correspond to other types
of views for text mining. One research avenue to explore in the future, we can
use gene-by-concept vector by latent semantic analysis [60], which is expected
to identify the implicit relationship among genes.

6.5 Summary

In this study, we have developed a Web based system that can be used to profile
a gene set from a text-mining point of view. On the one hand, the information
from multiple views can be combined to provide rich and complementary
information. On the other hand, information from a specific view offers a
vertical observation with a specific focus. The system can be utilized to identify
the relationships between genes to aid the clinic diagnosis straightforwardly or
to provide text prior information for further analysis. We have benchmarked
the overall approaches with a set of disease genes. The results demonstrate
the power of combining multiple views when performing clustering due to the
synergic effect of the fusion. However, we also observed that better results
can be obtained for a specific biological question when using a single highly
relevant view. In the further research, we plan to apply our system to enhance
candidate gene prioritization. Meanwhile, we are also planning an extension
of the approach to other biomedical entities, such as diseases or biological
pathways.

The web application of our multi-view text mining strategy is named Text
Prior, which is available: http://aulne8.esat.kuleuven.be/TextPrior/.





Chapter 7

General conclusions and
perspectives

7.1 Conclusions

The common sense that collecting evidence from multiple perspectives is able
to facilitate discovering the latent patterns hidden in objects motivates our
research to integrate multi-view data for joint learning. Two main topics
associated with multi-view data are covered in this Thesis: clustering algorithm
and text mining application.

7.1.1 Multi-view clustering algorithms

Clustering is a challenging task because the cluster structure inherent within
the data is hard to define and consequently the cluster pattern is not easy to
detect. Hence, statistic models sometimes can not reflect the nature of data in
a proper way. On the other hand, evidence collected from multiple perspectives,
as long as they complement each other enough, seems helpful to understand
the nature of data, thus making the cluster structure more clear to observe and
analyze. As a result, based on various theoretical analysis, we have proposed
several multi-view clustering methods to facilitate the clustering tasks.

153
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Multi-view partitioning via tensor methods

Tensor is a natural model for multi-view data from either vector spaces or graph
spaces. Two basic strategies are presented: optimization integration (MC-OI)
and matrix integration (MC-MI). A joint optimal subspace of multi-view data
can be obtained by some tensor methods, for example, MLSVD and HOOI.
Among our tensor based algorithms, MC-OI-MLSVD as well as MC-OI-HOOI,
provide a joint matrix compression of multi-view data while MC-MI-HOOI
offers a multilinear analysis of multi-view data. In particular, weights of multi-
view data obtained by MC-MI-HOOI reflect the linear relationship of multiple
views.

Simultaneous partitioning and joint dimension reduction of multiple graphs

Since tensor decomposition sometimes is still stuck by heavy computation,
we keep on simplifying weighted multi-view clustering by simultaneous trace
maximization. An algorithm named MC-STM is put forward, which analyzes
the multilinear relationship of multi-view data just by trace operation and EVD
while the multilinear relationship captured by MC-STM is almost the same as
MC-MI-HOOI. In addition, a joint dimension reduction scheme by MLSVD is
employed to reduce the abundant data which is very rich in multi-view data.

Mutual information based weighted hybrid clustering

According to the empirical observations that the ANMI value of each single-
view data generally corresponds to their clustering performance, we developed
a strategy to measure the contribution of each single-view by calculating
the mutual information among their partitions. The weighting scheme is
subsequently embedded into the multi-view clustering strategies of kernel fusion
and clustering ensemble.

Network analysis in graph spaces

Multi-view data can also be modeled as a sparse multiplex network (same
nodes with different links). Hence we carry out the multi-view clustering from
a network analysis point of view. Taking into account the complementary
properties of two heterogeneous data, that is, both the sparse link structure
of citation data and the rich semantic meaning of text data, we present
a modularity maximization based hybrid clustering scheme. Our hybrid
clustering scheme is able to implement data fusion and hierarchical partitioning
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simultaneously. This scheme is particularly devised to handle large-scale data
in scientific publication analysis or Web mining.

As compared to traditional single-view clustering, the merits of multi-view
clustering are obvious:

• Advanced clustering performance. If the multi-view data complements
each other well, multi-view clustering is able to improve clustering
performance, by discovering more complete cluster patterns.

• Robust clustering results. Multi-view clustering generally leads to
robust partitioning. For instance, by collecting evidence from multiple
perspectives, it is able to lower the partitioning risks which happen to
single-view data, and reduce the side-effect by noise, outliers, different
samplings and random initializations.

• Novel clustering patterns. Multi-view clustering enables us to discover
the partterns which could hardly be discovered by any single-view data.

Thanks to the above advantages of multi-view clustering, it has a wide variety
of potential applications:

• Scientific publication analysis: multi-view data refers to text data,
description data (titles, authors and journals) and citation data;

• Web mining: multi-view data refers to text data, hyperlink data, image
data and even click data;

• Community detection in social networks: multi-view data refers to
exchange relationship by E-mail, organization relationship and collabo-
ration relationship;

• Biomedical information processing: for example, genes can be represented
in the expression vector space (corresponding to the genetic activity) and
also in the term vector space (corresponding to the text information) [52];

• Multimedia information retrieval: For instance, in a video retrieval
system, broadcast news videos can be represented as different models,
such as text and image, which are independent but complement each
other [139]. Thus multi-view clustering can be used to integrate the
various information to facilitate the video retrieval.
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7.1.2 Multi-view text mining applications

We applied multi-view text mining to both bibliometric and bioinformatics
applications.

Scientific mapping

The complex nature of mapping various aspects of knowledge motivates the
approaches that incorporate different viewpoints on the same data collection.
By text mining and information extraction, we obtain multi-view text mining
data as well as generate multi-view bibliometric data. Textual and bibliometric
data provide different perceptions of similarity between documents or groups
of documents.

We proposed various schemes to integrate textual and bibliometric methods, in
particular, the mutual information based weighted hybrid clustering scheme in
vector spaces as well as network analysis based graph coupling scheme in graph
spaces. Our hypothesis was confirmed that such multi-view analysis leads to
better comprehension of the cluster structure. Such hybrid methodologies with
multi-view text mining are valuable tools to facilitate endeavors in mapping
fields of science and technology and in research evaluation. The mapping of
scientific fields is helpful to understand the structure and evolution of various
research areas and of their relationships with other fields.

Text Prior for clinical diagnosis

We solidified our effort in multi-view text mining as Text Prior software. Text
Prior provides a gene search engine in terms of data fusion by integrating
multi-view text mining or vertical search by a specific biomedical perspective.
Term annotation, gene relationship and clustering structure are offered. The
retrieval results can be downloaded for direct analysis or for further research,
such as integration with gene expression data. The software is freely accessible
online and it will play a useful role for clinician and bioinformaticians in their
research.
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7.2 Future direction

7.2.1 Multi-view learning by tensor analysis

Dynamic tensor analysis. In this research, tensor analysis is limited to 3
dimensional arrays, and it would be easy to extend to 4 dimensions by adding
the time dimension. Dynamic tensor analysis can detect evolving patterns in
time series, for instance, the dynamic multi-view clustering.

Computation of large-scale tensor decomposition. Although tensor
decomposition has appeared in many machine learning or data mining tasks,
most work is still limited to the algorithm analysis as well as the applications
on small-size databases. The heavy computation of tensor decomposition has
become a bottleneck for further applications. Efficient implementation of tensor
decomposition seems crucial to meet the practical requirement.

Meanwhile, real data structure (like matrices and vectors) in many data
mining tasks is very sparse, which aspect we can utilize to speed up tensor
decomposition. The basic idea is to transform tensor operations to operations
amid sparse matrices and sparse vectors. Kolda et al. have carried out some
similar work [78, 122].

Currently, scalable computation is also a promising topic in the field of tensor
decomposition and application. Based on some successful scalable matrix
decomposition applications, the Power method and Krylov method can be
directly extended to implement tensor decomposition [54, 121]. Besides, the
“tensor train” concept by [111] provides a powerful solution to scalable tensor
decomposition.

Joint dimension reduction of multi-view data. Tensor decomposition
is a powerful tool for dimension reduction and it has been applied to
signal processing and computer vision [33, 137]. As introduced in Chapter
3, tensor decomposition, in particular MLSVD, is able to sharply reduce
the dimensionalites of multi-view data while the inherent patterns are still
preserved. Thus we will keep on working to unleash the dimension reduction
potential of tensor decomposition in later work. For instance, we will apply
this joint dimension reduction scheme to other multi-view learning tasks; and
we will handle multi-view data by hierarchical Tucker compression [65].
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7.2.2 Transfer learning on multi-view text mining

Transfer learning aims at transferring knowledge from source tasks to target
tasks, where the training data from source domains and the test data from a
target domain may follow different distributions or are represented by different
features [114]. For example, the abilities acquired while learning to walk
presumably apply when one learns to run, and knowledge gained while learning
to recognize cars could apply when recognizing trucks. Researchers have
applied techniques of transfer learning to problems in text classification, spam
filtering, and urban combat simulation [114]. W.r.t. multi-view text mining
data, we can apply transfer learning to unleash the power of multi-view text
mining, transferring the knowledge or pattern learned from one view to aid the
analysis of the other view. Moreover, transfer learning can be implemented
between the gene patterns learned from text mining and expression data
resulting from expensive experiments.

7.2.3 Incomplete data and multi-look clustering

In contrast to multi-view learning, multi-look learning also refers to learning
from different representations of the same type of data. As opposed to learning
from multiple views where it is assumed that the exact same instances have
multiple representations, we only assume the availability of samples of the same
learning task in different domains [45]. In fact, multi-look data is more common
in real application.

One example is the task of medical diagnostic, in which case the outlooks are
medical tests, such as blood samples and medical imagery. The different tests
need not be from the same patient. Taking the multiple outlooks into account
allows us to learn from the input of all tests without having all test results for
each patient in all outlooks. Since not all tests are done on all patients, the
outlooks perspective enables a better nonrestrictive use of data for the learning
of the medical classification task [45].

The problem of incomplete data, i.e., data with missing or unknown values in
multi-way arrays is ubiquitous in biomedical signal processing, network traffic
analysis, bibliometrics, social network analysis, chemometrics, computer vision,
communication networks, etc. [1]. In multi-view formulation, incomplete data
means the representations of some instances in one view are available but
in other view unavailable. Incomplete data poses a challenge to multi-view
learning. However, it can be formulated as a multi-look learning problem.
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7.2.4 Detection of gene outliers by collecting multi-view
evidence

Outlier detection refers to the problem of finding patterns in data that do not
conform to expected normal behavior [26]. These anomalous patterns are often
referred to as outliers, anomalies, discordant observations, exceptions, faults,
defects, noise, errors, damages, novelty or contaminants in various application
domains [26]. Outlier detection is applicable in a variety of domains, such as
intrusion detection, fraud detection, fault detection, system health monitoring,
event detection in sensor networks, and detecting eco-system disturbances [80].

In public health data, outlier detection techniques are widely used to detect
anomalous patterns in patient medical records which could be symptoms of a
new disease [26]. On the other hand, some irrelevant gene outliers need to be
detected when the clinicians want to analyze a set of genes associated with a
certain disease.

Although some successful outliers detection methods and applications have
appeared, some challenges still remain [26], for instance, the boundary between
normal and outlying instances is often fuzzy. Meanwhile, more evidence
collected from multiple perspectives is helpful to detect noise and the actual
outliers. Consequently, instead of using only one kind of information which
might contain the incomplete information, we will carry out outliers detection
with multi-view data.





Appendix A

List of algorithms

No. Name Chapter No. (Page No.)
1 MC-OI-MLSVD 2 (40)
2 MC-OI-HOOI 2 (41)
3 MC-MI-HOOI 2 (43)
4 MC-STM 3 (64)
5 MC-STM-MLSVD 3 (68)
6 Multi-view modularity maximization clustering 3 (69)
7 Multi-view k-means clustering 3 (70)
8 WKFCM 4 (96)
9 WSA 4 (96)
10 WEAC-AL 4 (96)
11 Hybrid clustering by graph integration 5 (120)
12 Hybrid clustering by graph coupling 5 (121)
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