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Samenvatting

De afmetingen van technische producten zijn vaak van enorm groot belang om hun
correcte werking te garanderen. Maattoleranties geven aan hoe sterk de werkelijke
afmetingen mogen afwijken van de vooropgestelde afmetingen. Dimensionele
kwaliteitscontrole verzekert dat de afmetingen van het product voldoen aan deze
toleranties. Voor enkelvoudige en niet-complexe producten volstaan eenvoudige
meetinstrumenten zoals schuifmaten en schroefmicrometers, terwijl voor meer
complexe producten en seriemetingen vaak coordinatenmeetmachines (CMM’s)
worden gebruikt.

Omdat meetinstrumenten ook meetfouten vertonen zal een meetresultaat nooit
volledig correct zijn. Dit betekent dat er altijd een meetonzekerheid is die mee in
rekening moet gebracht worden bij het controleren van een product ten opzichte
van zijn toleranties. Als de meetonzekerheid wordt verwaarloosd kan dit leiden
tot het onterecht goed- of afkeuren van producten, met soms ernstige gevolgen.
Betrouwbare meetonzekerheden zijn absoluut noodzakelijk voor het eenduidig
keuren van toleranties.

Het bepalen van meetonzekerheden voor codrdinatenmeetmachines is moeilijk
vanwege het grote aantal invloedsfactoren op de meetonzekerheid (zoals CMM-
hardwarefouten, temperatuur, meetstrategie etc.). Daarom kunnen conventionele
onzekerheidsberekeningsmethodes, gebaseerd op analytische voortplanting van
standaard onzekerheden, niet worden toegepast. Onzekerheidsberekeningsmethodes
gebaseerd op Monte-Carlosimulaties zijn een goed alternatief voor de conventionele
methodes. Deze methodes kunnen veel beter omgaan met de complexiteit van
CMM-metingen.

Dit proefschrift beschrijft vier bijdragen tot het bepalen van meetonzekerheden
met Monte-Carlomethodes bij het meten van vormelementen met CMM’s:

e Bij het bepalen van meetonzekerheden van vormelementen gemeten met
CMM’s wordt de invloed van vormfouten vaak verwaarloosd omdat de
vormfouten op voorhand niet gekend zijn en daarom moeilijk in rekening
te brengen zijn. Vormfouten van vormelementen, zoals bv. cirkels, lijnen,
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vlakken en cilinders, kunnen nochtans een belangrijke invloed hebben op
de meetonzekerheid, zeker wanneer deze vormelementen met een beperkt
aantal meetpunten worden gemeten. Het verwaarlozen van de invloed van
vormfouten resulteert in minder betrouwbare, mogelijks foute waarden voor
de meetonzekerheid, wat kan leiden tot het onterecht goed- of afkeuren van
producten. Dit proefschrift ontwikkelt een methode om de invloed van
vormfouten op de meetonzekerheid te bepalen.

De meetonzekerheid van een CMM varieert over het meetvolume. Dit is
vooral te wijten aan de bewegingsfouten van de CMM in combinatie met de
Abbe-afstanden tot de meetschalen. Dit proefschrift beschrijft een methode
om de bewegingsfouten van de CMM te modelleren. De methode
is gebaseerd op het kinematische model van de CMM en gesimuleerde
bewegingsfouten voor de verschillende assen. In tegenstelling tot andere
methodes is bij deze benadering geen kalibratie van het model noodzakelijk.
De enige noodzakelijke input voor deze methode zijn de posities van de
meetschalen en een geldige ISO 10360-2 specificatie van de CMM.

Dit proefschrift presenteert ook een onzekerheidsberekeningsmethode
die de invloed van vormfouten en hardwarefouten van de CMM
combineert voor de bepaling van meetonzekerheden bij het
meten van vormelementen. Deze methode is gebaseerd op een Monte-
Carlomethode bestaande uit twee stappen: een eerste stap om de onzekerheid
op de gemeten vormfout te bepalen, een tweede stap om de onzekerheid op
de andere parameters van het vormelement te bepalen.

Gemeten vormelementen worden vaak gebruikt om werkstukassenstelsels te
bepalen of andere vormelementen te construeren (bv. een geconstrueerd punt
als intersectie van twee gemeten lijnen). Dit betekent dat er ook onzekerheden
zijn voor de werkstukassenstelsels en de geconstrueerde vormelementen.
Ook gemeten waarden voor vorm- een plaatstoleranties (loodrechtheid,
evenwijdigheid, coaxialiteit etc.) zullen een geassocieerde meetonzekerheid
hebben. Onzekerheidsberekeningssoftware voor CMM’s moet deze afgeleide
onzekerheden mee in rekening brengen. Dit proefschrift implementeert een
onzekerheidsberekeningssoftware die de invloed van vormfouten en
CMM hardwarefouten op de meetonzekerheid van vormelementen
en afgeleide parameters in rekening brengt.



Abstract

The dimensions of technical products are often of major importance for their
proper functioning. Dimensional tolerances define how much the true dimensions
may deviate from the aimed dimensions. Dimensional quality control ensures
that the dimensional properties of the product comply with the tolerances. For
single and non-complex products instruments like vernier calipers and micrometer
screw gauges can be used, while for more complex inspection tasks and series
measurements usually coordinate measuring machines (CMMSs) are used.

Because measurement devices also show measurement errors, a measurement result
will never be exact. This means there will always be a measurement uncertainty
that should be taken into account while evaluating conformance of products
to tolerances. If measurement uncertainty is neglected, this can result in false
rejection or false acceptance of products, with possibly far-reaching consequences.
Reliable measurement uncertainties are indispensable for unambiguous evaluation
of tolerances.

Measurement uncertainty determination for coordinate measuring machines is
difficult because of the many uncertainty contributors (CMM hardware errors,
temperature, measurement strategy etc.) that are involved. Therefore conventional
uncertainty calculation methods, based on analytical propagation of standard
uncertainties, can not be applied. Measurement uncertainty determination based
on Monte Carlo simulations is a valuable alternative to conventional uncertainty
calculation methods. These methods can cope much better with the complexity of
CMM measurements.

This thesis describes four contributions to the determination of measurement
uncertainties for feature measurements on CMMs by means of Monte Carlo methods:

e When considering measurement uncertainties for feature measurements on
CMMs, the influence of feature form deviations is often neglected because
feature form deviations are not known in advance and hence difficult to model
or to account for. Form deviations of features, like e.g. circles, lines, planes and
cylinders, can have an important influence on the measurement uncertainty,
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particularly if only a limited set of points is sampled. Neglecting the influence
of form deviations results in less reliable or wrong uncertainty statements,
that may lead biased acceptance or rejection of parts. This thesis describes a
method to determine the influence of feature form deviations on
the measurement uncertainty.

The measurement accuracy of a CMM varies over the measurement volume.
This is mainly related to the geometric errors of the CMM in combination
with the Abbe-offsets to the scales. This thesis presents a method to model
the geometric errors of a CMM. It is based on the kinematic model of
the CMM and simulated motion errors of the different axes. In contrast to
other approaches the proposed method does not need an error mapping of
the CMM. The only input needed for this method are the scale positions and
a valid ISO 10360-2 specification of a CMM.

This thesis also elaborates an uncertainty determination method
to combine the influence of feature form deviations and CMM
hardware errors on the measurement uncertainty for feature
measurements. This method relies on a two-step Monte Carlo method:
a first step to determine the form deviation uncertainty, a second step to
determine the uncertainties of the other feature parameters.

Measured features are often used to construct part coordinate systems or other
features (e.g. a constructed point as intersection of two measured lines). This
means there will also be uncertainties associated with part coordinate systems
and constructed features. Similarly there will also be uncertainties related
to measured geometrical tolerance values (perpendicularity, parallelism,
coaxiality etc.). Uncertainty evaluation software for CMMs should take into
account these derived uncertainties. This thesis describes the implementation
of an uncertainty evaluation software that takes into account the
influence of feature form deviations and CMM hardware errors on
measurement uncertainties of features and derived parameters.



Nomenclature

Abbreviations, acronyms

ASME
BMS
CAD
CAQ
CMM
CMS
CT
CTE
CVE
UES
DMIS
EDM
FFT
FPS
GUM
I1SO
LCL
LSL
LSQ
MC
MCM
MCS
MI
MPE
MZ
NIST
NMI
NPL

American Society of Mechanical Engineers
Bounding Measurements Set

Computer Aided Design

Computer Aided Quality control

Coordinate Measuring Machine

Coordinate Measuring System

Computed Tomography

Coefficient of Thermal Expansion
Computer-aided Verification and Evaluation
Uncertainty Evaluating Software

Dimensional Measuring Interface Standard
Electrical Discharge Machining

Fast Fourier Transform

Full Parametric Simulation

Guide to the Expression of Uncertainty in Measurement
International Organization for Standardization
Lower Confidence Limit

Lower Specification Limit

Least Squares

Minimum Circumscribed

Monte Carlo Method

Machine Coordinate System

Maximum Inscribed

Maximum Permissible Error

Minimum Zone

National Institute of Standards and Technology
National Metrology Institute

National Physical Laboratory
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NOMENCLATURE

OVCMM
ooP
PCS
PDF
PMA
PTB
SBC

SI

UCL
UES
UPR
UPL
USL
VDI

VIM

VCMM

Symbols

Offline Virtual CMM
Object Oriented Programming
Part Coordinate System
Probability Density Function
Production engineering, Machine design and Automation
Physikalisch-Technische Bundesanstalt
Simulation By Constraints
International System of units
(Fr.: Systéme International d’unités)
Upper Confidence Limit
Uncertainty Evaluation Software
Undulations Per Revolution
Undulations Per Length
Upper Specification Limit
Association of German Engineers
(Ger.: Verein Deutscher Ingenieure)
International Vocabulary of Metrology
(Fr.: Vocabulaire International de Métrologie)
Virtual CMM

General symbols

meas

X
U, Ue

true

X

Position of a feature

Orientation of a feature

Size (diameter) of a feature

Form deviation value of a feature

Number of Monte Carlo runs

Number of points used to construct a virtual feature
Number of sampling points

Array containing the probing point locations

X | Measured, true and error value of parameter x
Standard uncertainty, combined standard uncertainty
Expanded uncertainty

Coverage factor

Measurand

Measurement result, estimate of the measurand
Measurement result, with expanded uncertainty, U
Input quantity

Estimate for input quantity X;

kth observation of input quantity X;

err




NOMENCLATURE

As, Aey Ay Cutoff wavelengths
fe Cutoff frequency
P Level of confidence

Modelling form deviations

U
—~
~—

Function describing feature form deviation

Array containing form deviation profile of a feature

it" Chebyshev polynomial

Parameter determining the slope of a linear form deviation
Parameter determining the curving of a linear form deviation
a; Amplitude of the i*" harmonic component of a Fourier series
Maximum harmonic order of the Fourier series

) | Weighting function

Weighting array

Interpolation error

it" point of the circular profile

it" point of the nominal circular profile

it" scaled deviation vector

Q%lﬂg_

Szaves i =

Modelling CMM hardware errors

{i} Frame (or coordinate system) 4
b

erz Straightness error motion of z in z direction
eyz Straightness error motion of z in y direction
ezz Positioning error of z

eaz Tilt error motion of z around x (pitch)

ebz Tilt error motion of z around y (yaw)

ecz Roll error motion of z

920z | z-origin of the z-scale, expressed in frame {2}
2y0z | y-origin of the z-scale, expressed in frame {2}
220z | z-origin of the z-scale, expressed in frame {2}

Zenc Position value read from the z-scale

e() Function describing geometric error of an axis

e Array containing geometric error of an axis

s Parameter determining the slope of a modelled geometric error

c Parameter determining the curving of a modelled geometric error

a; Amplitude of the i*" harmonic component of a Fourier series

o Homogeneous Transformation matrix between frame {b} and {a}
«P"7 | Coordinates of the ith point of feature f with respect to frame {a}
aps? | 2-coordinate of the ith point of feature f with respect to frame {a}



NOMENCLATURE

€tot

e’mal‘
t

v
mpe]

eT‘T‘Z

0,
op ™
0,
op P

Maximum harmonic order of the Fourier series

Largest value of the geometric error over the range of the axis
Maximum possible value for the geometric error per travel length
Total travel of the axis

Performance indicator for a virtual CMM

Maximum permissible error for a given length

Measured error on a given length

Position of the probe head mounting point in frame {0} (MCS)
Position of the probe tip in frame {0} (MCS)

Specific terminology

Actual measured value Value measured in real life.
Actual true value True value of the measurand in real life, which

is usually unknown.

Simulated measured value | Value measured in simulation.

Simulated true value True value of measurand in simulation, which
is known.
Profile points Set of points representing the profile / contour

of a feature.

Buffer points Sampled (measured) points of a feature that

are stored for later usage.

Actual CMM CMM used in real life.
Virtual CMM CMM used in simulation.
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Chapter 1

Introduction

This chapter situates the topic of the thesis within a larger framework. It describes
the most important goals of the work with the prerequisite limiting constraints,
the means at the researcher’s disposal and it defines the scope of the research.

1.1 Dimensional quality control

Dimensional quality control is an important part of the production process in
manufacturing industry. It is indispensable for the accuracy assertion of the products.
Parts are designed and produced to fulfil a certain function. In order to be sure
that the part will eventually be able to fulfil this function, the designer assigns
tolerances to the part. Tolerances indicate how much a property may deviate from
its nominal value. They are necessary because it is impossible to make a part that
matches exactly the nominal specifications. The tolerances need to be sufficiently
narrow to guarantee a proper functioning of the part, nevertheless they need to be
sufficiently broad to allow a cost-effective production. The narrower the tolerances,
the more expensive the product.

Dimensions of a part are often of major importance. Dimensional quality control
ensures that the dimensional properties of the product comply with the tolerances.
In addition to dimensional quality control, products often undergo other tests
to check for a.o. surface and material properties. Frequently only a sample of a
complete production batch is inspected; sometimes every part needs to be checked.
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1.2 Coordinate measuring systems

For single inspection tasks of non-complex products, commonly used (1D) inspection
instruments, like e.g. vernier calipers, screw micrometers and height measuring
devices, are often most suited. For more complex inspection tasks, like e.g. positional
tolerances or repetitive measurements, conventional coordinate measuring machines
(CMMs) are very useful. During the last decades CMMs have become indispensable
in the production environment. Besides conventional coordinate measuring machines
there are many other coordinate measuring systems (CMSs) which are more and
more used for coordinate metrology.

1.2.1 Conventional coordinate measuring machines

A conventional CMM has, just like many manufacturing machines, a Cartesian
X-Y-Z-configuration. At the end of the Z-axis a probing system is mounted. The
probing system, which can be moved in 3D-space, detects points on the surface of
the workpiece. These points are used to reconstruct features like e.g. circles, lines,
planes, cylinders, ... The parameters of the features and the relationships between
the features allow to evaluate the tolerances. Figure 1.1 illustrates the different
CMM components, the CMM structure and the probing system are discussed in
the next paragraphs.

'CMM
structure

Probing
system controller

Remote
control -

=

Figure 1.1: A conventional coordinate measuring machine (Coord3 MC 16 CMM
at the Department of Mechanical Engineering of K.U.Leuven) and its components.
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CMM structure

There is a wide variety in measuring ranges and axes configurations for
conventional CMMs. Figure 1.2 shows the most common CMM configurations.
Every configuration has specific advantages and disadvantages regarding accuracy,
accessibility and cost. The hardware of conventional CMM:s is discussed in more

details in Chapter 4.
ﬁ

— j-".“

Moving bridge CMM Fixed bridge CMM Cantilever CMM
| 1
"1 — >
7
£ ol %
2 | —
Gantry CMM Horizontal arm CMM Column CMM (optical)

Figure 1.2: Common CMM configurations. Adapted from [1].

Probing system

There are a large number of different probing systems for CMMs. Probing systems
can be classified in two large groups: contact probing systems and non-contact
probing systems. Contact probing systems are often called tactile probing systems
and since most non-contact probing systems use optical methods for point detection,
they are often referred to as optical probing systems. Non-contact probing systems do
not have to make (mechanical) contact with the workpiece in order to probe points.
As a result they measure much faster, furthermore they will not deform a flexible
workpiece while probing. Contact probing systems have mostly the advantage of
being more accurate and reliable. Figure 1.3 shows a further classification of these
two groups of probing systems.

The most popular contact probing system for CMMs is definitely the touch-trigger
probe. When the probe approaches the workpiece surface, the probe tip touches
the surface and the stylus will deflect. This is detected by the probe sensor which
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triggers the machine to read out the position of the axes. Taking into account
the diameter of the probing tip, the position of the point on the surface can be
determined. Many ways have been developed to detect the deflection of the probe [2].
Most commercial touch-trigger probing systems make use of an electrical switch or
strain gauges.

Some probing systems do not only detect deflection (i.e. contact) of the stylus but
also measure the amount of deflection of the probe tip. These measuring probes are
usually more accurate than touch-trigger probes. Since the deflection of the probe
tip is known, this information can be used as a feedback for the CMM. This makes
it possible to scan a path while the probe tip is continuously in contact with the
workpiece. Probes used in scanning mode can be less accurate due to accelerations
and stick-slip, but will be able to measure a larger number of points in a shorter
time [3, 4]. During the last decade several contact micro-probes, used for measuring
very small features and dimensions, have been developed [2, 5].

When looking at the non-contact probing systems, 2D probing systems are of most
interest. Vision probes are mostly used on special dedicated CMMs (see Figure 1.2).
Also laser line scanners have become very popular in recent years. Because they
can measure more than ten thousand points a second they can easily digitise the
complete surface of a workpiece. This makes them very suited for measuring free
form surfaces like e.g. car bodies and mould products. The accuracy of laser line
scanners is not yet competitive with contact probing systems [6].

1.2.2 Other types of coordinate measuring systems

Although this section is outside the direct scope of this thesis, it is important to
realise that a lot of other types of coordinate measuring systems exist. In industry
these systems are more and more used as an alternative for a conventional CMM.
Most of these systems are portable and are therefore often called portable or mobile
CMMs. Figure 1.4 gives an overview of the most important non-conventional
CMMs [7]. They are divided into two categories: systems for discrete point
measurements and systems for scanning point measurements. The latter are suited
for surface digitisation.

The only CMS, besides the conventional CMM, based on serial kinematics is the
measuring arm. Several systems for discrete point measurements are based on two
angular measurements and one optical length measurement. A third category can
be considered as systems relying on multiple optical angular measurements.

Coordinate measuring systems for scanning measurements can be divided into
four categories: (1D) point scanning, (2D) laser line scanning, (3D) fringe
projection systems and (3D+) computed tomography. Many CMSs for discrete
point measurements can be equipped with a laser line scanner to perform scanning
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Figure 1.3: A classification of probing systems for CMMs. Adapted from [1].

measurements. Fringe projection systems can be used as a stand-alone CMS for
surface digitisation but their limited measuring range can also be extended by
combining them with photogrammetry [9]. Computed tomography (CT) is an
emerging but very promising technology for coordinate metrology [10]. CT can be
used to measure features inside parts, which can not be reached with conventional
probing systems.

Because of their working principles, non-conventional CMMs often have very non-
uniform measurement uncertainties. E.g. laser trackers will have low uncertainties
in radial direction, due to the laser interferometer measurement. Perpendicular to
this direction the uncertainty will be much higher due to the limited resolution of
the angular encoders. This is important to keep in mind while measuring.

In recent years several of these CMSs have become very popular. However it is very
unlikely that they will replace conventional CMMs. The growth of this type of CMSs
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Figure 1.4: A classification of common coordinate measuring systems. Adapted
from [8].

rather opened a new application domain for coordinate metrology. Measurements
that where impossible or difficult some years ago are now possible as a result of
these upcoming technologies. This can also be concluded from the results of recent
projects performed by K.U.Leuven, Groep T and De Nayer Instituut [7, 11].

1.3 Measurement uncertainty

When performing a measurement of any kind, one can be sure of one fact: the
measurement result will never be exact. Even with the best measuring equipment,
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used under the best circumstances, there will always be a measurement error. The
measurement error can be defined as follows:

Definition 1.1 Measurement ERROR =
MFEASURED quantity value - TRUE quantity value

This definition is very suited for theoretic purposes and for reasoning about
measurement errors but poses problems when trying to quantify the measurement
error. Since the true value of the measurand (= quantity intended to be measured)
is never known it is impossible to define the measurement error. To overcome this
issue, ISO-VIM uses a twofold definition [12]:

Definition 1.2 Measurement ERROR =
MEASURED quantity value - REFERENCE quantity value

The reference quantity value can be:

e the true quantity value. In this case the measurement error can not be known,
as the true value is never and will never be identifiable.

e a reference standard with a measured quantity value having a negligible
measurement uncertainty, or a conventional quantity value. In this case the
measurement error is known, although its value will not be completely correct.

This means that the measurement error is only known when performing calibration
measurements. Generally the measurement error is unknown. This does not mean
that no quantitative indication of the quality of the measurement result can be
given. Although the measurement error is unknown, it is often possible to specify
the measurement uncertainty. The following two definitions give an understandable
definition for measurement uncertainty [13]:

Definition 1.3 The MEASUREMENT UNCERTAINTY is an estimate char-
acterising the range of values within which the true value of a measurand lies.
(VIM:1984)

Definition 1.4 The MEASUREMENT UNCERTAINTY is a measure of the
possible error in the estimated value of the measurand as provided by the result of
a measurement.

Again both definitions are very useful for reasoning about measurement uncertainty
but they focus also on unknowable quantities like ‘error’ and ‘true value’. Therefore
ISO-VIM currently adopts following definition [12]:
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Definition 1.5 The MEASUREMENT UNCERTAINTY is a non-negative pa-
rameter characterising the dispersion of the quantity values being attributed to a
measurand, based on the information used.

Avoiding the use of unknowable quantities resulted in a very vague definition.
Definitions 1.3 and 1.4 of measurement uncertainty are more comprehensible and
furthermore also consistent with the current VIM definition. Therefore it is the
author’s opinion that using definition 1.5 is superfluous in most circumstances.

It is absolutely necessary to specify the measurement uncertainty of a measurement
in order to have a quantitative indication of the quality of the measurement. In
ISO-GUM (paragraph 0.1) this is stated very clearly [13]:

“When reporting the result of a measurement of a physical quantity,
it is obligatory that some quantitative indication of the quality of the
result be given so that those who use it can assess its reliability. Without
such an indication, measurement results cannot be compared, either
among themselves or with reference values given in a specification or
standard.”

Also the ISO 9000 standards family imposes to specify the measurement uncertainty.
Before getting into more detail about methods to determine measurement
uncertainties, two important metrological concepts that require the determination
of measurement uncertainties are discussed in the following sections:

e The concept of ‘accept or reject’ decisions (ISO 14253-1).

e The concept of traceability.

1.4 Accept or reject (1SO 14253-1)

Workpiece specifications are usually given as an upper (USL) and lower (LSL)
specification limit. These limits should not be exeeded by the true value of the
measurand. When neglecting the influence of measurement uncertainty, proving
conformance or non-conformance with specification is very straightforward. When
the measured value lies within the specification (or tolerance) limits there
is conformance with specification. When the measured value lies outside the
specification limits there is non-conformance with specification. The range of
possible measurement results is divided in a conformance and non-conformance
zone.

In practice however, there will always be a measurement uncertainty that needs to
be taken into account. As a consequence the sharp edge between conformance and
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non-conformance zone will disappear and a zone of uncertainty will appear. This is
illustrated in Figure 1.5.

design

Specification zone

——
® ——
—e——
———
Uncertainty Conf Uncertainty
range onformance range
verification
®  measurement result @ acceptance () uncertain
F—— measurement uncertainty @ rejection @ uncertain

Figure 1.5: Proving (non-)conformance with specification, ISO 14253-1.

The complete statement of the result of measurement can be expressed as follows
(see Section 1.6):

Yy =y+xU (1.1)

Where y represents the measurement result, U the expanded uncertainty and 3’
the result of measurement as complete statement!.

Conformance with specification is proved when the result of measurement, complete
statement, y’, falls completely within the specification zone [14]:

LSL<y—U and y+U<USL

Non-conformance with specification is proved when the result of measurement,
complete statement, y’, falls completely outside the specification zone:
y+U<LSL or USL<y—-U

Neither conformance nor non-conformance with specification can be proved when
the result of measurement, complete statement, 3’, includes one of the specification

1In Eq. 1.1 and Figure 1.5 it is supposed that the uncertainty range is symmetric to the
measured value, i.e. the measured value lies in the middle of the uncertainty range. This is not a
prerequisite, equations represented in this section are, mutatis mutandis, also valid for asymmetric
uncertainty ranges.
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limits:

y—U<LSL<y+U or y—U<USL<y+U

This situation occurs when y falls within one of the uncertainty ranges:

LSL-U<y<LSL+U or USL-U<y<USL+U

It is clear that the width of this uncertainty zone depends on the magnitude of
the measurement uncertainty. This means that it is impossible to accept or reject
without specification of the measurement uncertainty. The conformance zone reduces
with increasing measurement uncertainty. This is illustrated in Figure 1.6. Under
certain circumstances (very narrow specification zones in combination with high
measurement uncertainties) it is possible that the conformance zone completely
disappears. Under these circumstances it is impossible to prove conformance
according to ISO 14253-12.

out of
specification

out of
specification

Specification zone

increasing
measurement
uncertainty

Non

Uncertainty Uncertainty Non
conformance Conformance

range range conformance

Figure 1.6: Influence of increasing measurement uncertainty on (non-)conformance
zone, ISO 14253-1.

The measurement uncertainty always works against the party that wants to proof
conformance or non-conformance. A lower measurement uncertainty will benefit
the party that is trying to provide the proof.

Remark 1.1 To avoid the problems related to the uncertainty zone, where neither
conformance or non-conformance decisions can be taken, the ‘1/10 rule of thumb’
1s often used. This rule states that the measurement uncertainty should not exceed
one tenth of the width of the specification zone. If this is the case, the measurement
uncertainty can be neglected. This rule however suffers from several shortcomings:

e Most important, it allows both false rejection and false acceptance.

2Customer and supplier may agree on other rules to prove conformance.
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e It makes it impossible to measure narrow tolerances, because these mea-
surements will not comply with the ‘1/10 rule’ Therefore this rule is often
weakened to the ‘1/5 rule’, allowing even more false rejection and false
acceptance.

o When the measurement uncertainty is large compared to the width of the
specification zone, it is more difficult to prove conformance according to
IS0 14253. Sometimes it is even impossible to prove conformance because
the conformance zone completely disappeared. However, it will always be
possible to prove non-conformance when the product is sufficiently far out of
specification (this unfortunately occurs often in practice when the specification
zone is very narrow). According to ISO 14253 it is possible to prove non-
conformance even when the measurement uncertainty is larger than the width
of the specification zone. According to the ‘1/10 rule’ it is impossible to make
decisions once the measurement uncertainty exceeds one tenth of the width of
the specification zone.

It is the author’s opinion that the use of this ‘1/10 rule of thumb’ should be strongly
discouraged in favour of the ISO 14253 approach.

Remark 1.2 ISO 14253 intentionally uses the term specification limit instead of
tolerance limit. This is because ISO 14253 applies for checking specifications of
workpieces (defined by tolerance limits) as well as for checking specifications of
measuring equipment itself (often defined by maximum permissible errors, MPE).

Although this approach is very logic, it often poses problems when it is applied to
measuring equipment. Often the wrong uncertainty is taken into account. When a
vernier calliper is used to check the specification of a workpiece, the most important
uncertainty contributor to take into account is the one of the vernier calliper
(e.g. U, = 0.07 mm), together with influences of temperature, workpiece, handling
etc. However, when evaluating the specification (MPE) of the vernier calliper, by
measuring e.g. a gauge block, the situation is different. In this case the gauge
block is testing the vernier calliper, so the uncertainty of the gauge block (e.g.
U, = 0.0003 mm ) should be taken into account (together with temperature, handling
etc.) and not the one of the vernier calliper.

1.5 Metrological traceability

Another important metrology concept, that also relies on measurement uncertainty,
is metrological traceability. According to ISO-VIM, traceability is defined as

3Instead of ‘metrological traceability’ often the abbreviated term ‘traceability’ is used. To
avoid confusion with other uses of the term ‘traceability’, the word ‘metrological’ should not be
omitted. [12]
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follows [12]:

Definition 1.6 The METROLOGICAL TRACEABILITY is the property of a
measurement result whereby the result can be related to a reference through a
documented unbroken chain of calibrations, each contributing to the measurement
uncertainty.

This unbroken chain of calibrations is the metrological calibration chain. To establish
this metrological calibration chain a calibration hierarchy is needed:

Definition 1.7 The CALIBRATION HIERARCHY is a sequence of calibrations
from a reference to the final measuring system, where the outcome of each calibration
depends on the outcome of the previous calibration.

An illustration of metrological traceability through a calibration hierarchy for
dimensional measurements is given in Figure 1.7. The measuring equipment (e.g.
screw micrometer) is the first step in the traceability chain. Measuring equipment
is often calibrated with working standards by the user. Working standards are
calibrated with secondary standards by accredited calibration laboratories. These
secondary standards are calibrated with primary standards by national metrology
institutes (NMI). Primary standards are directly linked to SI-units. Since each
calibration depends on the outcome of another calibration, measurement /calibration
uncertainty will only rise when going down in the calibration hierarchy.

3
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Figure 1.7: Illustration of metrological traceability through a calibration hierarchy.

Remark 1.3 It is a common misconception that traceable measurements are also
accurate. This is false, a measurement with a very high measurement uncertainty
can be perfectly traceable.
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1.6 GUM method

The two previous sections illustrated the importance of measurement uncertainty.
This section will describe how measurement uncertainty is usually determined
according to the ‘Guide to the expression of uncertainty in measurement’, referred
to as ISO-GUM [13].

1.6.1 Measurement function

In many cases, the measurand Y is not measured directly, but is determined from
input quantities X; by a measurement function:

Y = f(X1,Xo, ..., Xn) (1.2)

An estimate of the measurand Y, denoted by y, can be obtained from Eq. 1.2 by
using input estimates x; for input quantities X;. So the result of the measurement
is given by:

y=f(z1,22,...,2n) (1.3)

1.6.2 Combined standard uncertainty

The combined standard uncertainty u.(y) is the estimated standard deviation
associated with measurement result y. This standard deviation can be derived from
the estimated standard deviations associated with the input estimates xz;, termed
standard uncertainties and denoted by wu(x;):

B = D5 g ) (1.4
N 2 N-1 N
_ Z(gj) )+ Y L) (1.5)
i=1 v i=1 j=i+1 °

Eq. 1.5 is based on the first-order Taylor series approximation of Eq. 1.3 and is also
called the ‘rule of propagation of uncertainty’®. The partial derivatives 0f/Ox; are
equal to 0f/0X; evaluated for X; = z;. These partial derivatives are also called
sensitivity coefficients. u(z;, z;) denotes the estimated covariance associated with

4This rule is often referred to as ‘general law of error propagation’. Since the inputs are
uncertainties it is more appropriate to call it ‘law of propagation of uncertainty’.
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z; and x;, so u(x;, x;) equals u?(z;). When all input quantities are independent,
Eq. 1.5 simplifies to:

20 =3 (2 e (16)

1.6.3 Type A and B evaluation of standard uncertainty

In order to calculate the combined standard uncertainty from Eq. 1.5 or 1.6 the
standard uncertainties of all input estimates x; need to be known. ISO-GUM defines
two types of standard uncertainty evaluation:

o Type A: evaluated from a series of repeated observations.

e Type B: evaluated from available knowledge.

Type A evaluation of standard uncertainty

If an input quantity X; is estimated from n independent repeated observations,
the arithmetic mean X; is used as an estimate for z;. The associated standard
uncertainty is calculated as the experimental standard deviation of the mean:

= Vi S =)
v vn

u(z;) = s

Type B evaluation of standard uncertainty

It is not always possible to have a set of independent observations for each input
quantity. In this case, the standard uncertainties u(z;) are determined by scientific
judgement based on all available information on the possible variability of input
quantity X;. This information includes previous measurement data, manufacturer’s
specifications, calibration data, experience, ...

Remark 1.4 Type A evaluation of uncertainties is often linked to random errors
and type B to systematic errors. This is an important misconception. Uncertainties
due to random errors can be evaluated as type B and uncertainties due to systematic
errors can be evaluated as type A.

Notice also that the terms random and systematic error are very dependent on the
field of view as well as temporal and spatial constraints. This is the reason why
usage of the terms ‘random’ and ‘systematic’ errors is discouraged by ISO-GUM.
According to GUM known systematic errors should be compensated.
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Remark 1.5 Type B evaluation can have the same or even better reliability then
type A evaluation, certainly when the number of observations for type A evaluation
is low.

Expanded uncertainty

The expanded uncertainty is used when one wants to define an interval that covers
a large fraction of the distribution of the values that could be reasonably attributed
to the measurand. The expanded uncertainty is defined as the standard uncertainty
multiplied by a coverage factor k:

U=k ucy)

The result of a measurement is then expressed as Y = y + U. When the probability
distribution characterised by y and w.(y) is approximately normal and the number
of degrees of freedom is sufficiently large, one can assume that taking k& = 2
corresponds to an interval with a level of confidence p of about 95 %, and that
taking k = 3 corresponds to an interval with a level of confidence of about 99,7 %.

1.7 Measurement uncertainty for CMM measure-
ments

1.7.1 Uncertainty contributors for CMM measurements

To evaluate the measurement uncertainty of CMM measurements, a lot of
uncertainty contributors need to be taken into account. There are several ways to
classify all uncertainty contributors. One possible classification is given in Figure 1.8.

Following five classes can be identified:

Hardware This category contains the errors related to the hardware components
of the CMM like probe errors, CMM geometric errors including scale errors.

Environment Environmental conditions will have an important influence on the
measurement uncertainty. Temperature is here of extreme importance. Not
only temperature deviations (from 20°C) but also temperature gradients,
in time and space, will influence the measurement uncertainty [15]. Other
environmental influences like vibrations, non-constant air supply (in case of air
bearings) and lighting conditions (in case of optical probing systems [16, 17])
can also influence the measurement uncertainty.
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Figure 1.8: Uncertainty contributors for CMM measurements.

Workpiece The workpiece itself also has an important influence on the
measurement uncertainty. A common source of measurement uncertainty are
form deviations, but also surface imperfections like roughness and local defects
(e.g. burrs and scratches) can be important. Sometimes also deformations
due to probing forces or clamping play a role.

Probing strategy The probing strategy determines the number of measurement
points and their location. Furthermore, the measuring sequence and settings
like measurement velocity can be important. The more complex the probing
system that is used, the more parameters will influence the measurement
uncertainty.

Evaluation Strategy The evaluation strategy covers: the type of fitting criteria
(least squares, minimum zone, ...), the algorithm accuracy, the possible
filters used, the alignment strategy, the selected reference surfaces, the used
compensations etc.

1.7.2 Task-specific measurement uncertainties

The multiplicity of uncertainty contributors and their strong interaction make that
measurement uncertainties will depend a lot on the specific measurement task.
That is why uncertainties that take all (or most of) the uncertainty contributors
and their interactions into account, are often called task-specific uncertainties.
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Chapter 2 illustrates that it is very difficult to apply the conventional GUM
approach to calculate task-specific measurement uncertainties. It also discusses
the current state-of-the-art alternatives to calculate task-specific measurement
uncertainties. The following examples will show the importance of task-specific
measurement uncertainties for CMMs.

Interaction of form deviations and sampling strategy: circular features

The best known example of form deviations interacting with sampling strategy is the
measurement of a 3-lobed circular form deviation with six equally distributed points.
If the measurement points are taken in the tops and valleys of the 3-lobed contour,
the complete out-of-roundness of the circle can be identified from the measurement,
however if the start point is rotated with 30 ° none of the out-of-roundness of the
circle will appear in the measurement (Figure 1.9(a)).

(a) (b)

Figure 1.9: Measuring a circle with 3-lobed form deviation.

Contrary to popular belief, this is not only of importance for the roundness
and diameter uncertainty but also for position uncertainty. This is illustrated in
Figure 1.9(b) for a four points measurement of a 3-lobed circle (i.e. circle with a
3-lobed form deviation).

Interaction of form deviations, sampling strategy and evaluation strategy

Measurement point distribution in combination with feature form deviations can
have an important influence on the measurement uncertainty. Figure 1.10 represents
a cut plate with a large opening that is somewhat curved (exaggerated in the figure).
Suppose this plate is measured twice: once with only 6 points (Figure 1.10(a)) and
once scanned (e.g. with a laser scanner) resulting in a very large set of measurement
points (Figure 1.10(b)).

When the orientation of the least squares planes is considered, there will be a
large difference in orientation for the two measuring methods (the difference in
orientation is somewhat exaggerated in Figure 1.10(b)). Since there are more points
on the left side of the plane, the orientation of the least squares plane will be
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Figure 1.10: Measuring a curved plate.

determined mainly by the orientation of this part of the plane. If the minimum
zone fitting criterion is used instead of least squares, the difference in orientation of
the associated planes will be much smaller. This illustrates how also the evaluation
strategy can influence the measurement uncertainty.

Interaction of temperature with sampling strategy and clamping

Although most accurate CMM measurements are done in a temperature controlled
room, temperature will still have an influence on the measurement uncertainty.
Consider the workpiece of Figure 1.11. The most narrow tolerance applies to the
distance between the first and last step of the shaft (450 mm). This should be
kept in mind when measuring the part. Instead of measuring all steps sequentially
one should measure the first and last step immediately after each other. This will
reduce the influence of thermal effects (of machine and workpiece) significantly.

960

450 #0.025
(60) 230,40 .30, 65 .30, 65 .30, 40 ,30.30

Figure 1.11: Measuring a stepped axis.
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For measurements that take quite some time it can be important where the
workpiece is clamped. The error due to thermal expansion (or shrinkage) of the
workpiece can be reduced by 50% just by clamping the workpiece of Figure 1.11 in
the middle instead of at the side.

Measurements that are ill conditioned: measuring a circle segment

A well known example of ill conditioned measurements is the measurement of a
circle segment [18]. The measurement of a small circle segment will always result
in very high measurement uncertainties on both diameter and position. A small
measurement error will have a large influence on the measurement results. This
is illustrated in Figure 1.12 where both circles seem to fit to the measured points
quite well.

Figure 1.12: Measuring a circle segment.

Measurements that are ill conditioned: measuring coaxiality

Figure 1.13(a) shows another example of an ill conditioned measurement. The
coaxiality tolerance is given with respect to datum A, which is a very short cylinder.
This means that a small measurement error can result in a large error on orientation
of the datum axis. It is very likely that the measured coaxiality value is dominated
by the measurement error on the datum axis. This kind of measurements will result
in high measurement uncertainties.

Figure 1.13(b) shows the same part but now the datum feature and the toleranced
feature are interchanged. Since the datum feature is much larger in this case, the
errors on the orientation of the datum axis will be much smaller. As a consequence
the measurement uncertainty on the coaxiality value will also be much smaller.

Some people argue that Figure 1.13(a) is rather an example of a badly designed part
than it is an example of a part that will result in high measurement uncertainties.
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It is true that the represented part also suffers from an ill conditioned design, but
this does not necessarily mean that it is a bad design. It regularly occurs that these
types of tolerances are inevitable. The designs in Figure 1.13(a) and 1.13(b) are
completely different, and should thus also fulfil another function.

001 0.01

50
0

(a) (b)

Figure 1.13: Measuring a coaxiality tolerance.

1.7.3 Influence of form deviations on measurement uncertainty

Feature form deviations (shortly form deviations) are deviations from the perfect
form of the feature. A circle will never be perfectly round, a line never perfectly
straight and a plane never perfectly flat, whatever manufacturing process is used.
The type of form deviation is usually related to the manufacturing process that is
used, therefore it is also called the manufacturing signature. Chapter 3 discusses
typical form deviations for several types of features. That chapter also illustrates that
form deviations are often the most important source of measurement uncertainty.

People who tried to determine task-specific measurement uncertainties for CMMs
focussed until now almost only on CMM hardware uncertainties (see Chapter 2).
To obtain reliable uncertainty statements, all uncertainty contributors should be
incorporated, including feature form deviations.

1.8 Goals and scope of the research

The goal of this research can be formulated as follows:
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Determine for each CMM measurement result a measurement uncer-
tainty in order to make unambiguous evaluation of tolerances possible
and dimensional quality control more reliable.

Some additional requirements will be taken into account:

e The research should focus on the integration of the influence of feature form
deviations in the uncertainty statement. This has not been addressed before
and is very important for reliable uncertainty statements.

e The uncertainty determination should be possible in an automated way with
as little user input as possible.

e The developed method should be implemented as a software package for a
conventional CMM but needs to be extendable to other types of CMMs (e.g.
measuring arm, laser tracker, ...).

1.9 Means at researcher’s disposal

The dimensional metrology room of the department of mechanical engineering at
K.U.Leuven houses two conventional computer controlled coordinate measuring
machines:

e a Mitutoyo FN-905 moving bridge CMM (see Figure 1.14) with a
specification of Ul = 4.2 + 5*L/1000 pm. The CMM is equipped with
an articulating probe head.

e a Coord3 MC 16 moving bridge CMM (see Figure 1.1), retrofitted with a
Metris-LK controller. It has an ISO 10360-2 specification of MPEg = 4+ (5 +
5*L/1000 pm). The CMM is equipped with an articulating probe head. It
uses the Metris Camio software with DMIS (Dimensional Measuring Interface
Standard) as its native programming language [19]. The software has also
extensive capabilities to communicate with third party software. This makes
this software very suited for research.

Both machines have been used during the research, but the implementation of the
software is done with the Coord3 machine.

Most computer analyses during the research are done with Matlab®. The uncertainty
evaluation software is also developed with Matlab® but could be easily translated
to other programming languages because of the object oriented implementation.
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Figure 1.14: Mitutoyo FN-905 CMM at the Department of Mechanical Engineering
of K.U.Leuven.

1.10 Conclusion

This introductory chapter clarifies the importance of knowing the uncertainties of
measurement results in order to make unambiguous evaluations of specifications
possible. The conventional GUM recipe, based on analytical error propagation,
is the best known method for uncertainty evaluations. However, because of some
drawbacks of this basic GUM method and the complexity of CMM measurements,
this method is not really suited for uncertainty evaluations of CMM measurements.
This will be explained in the next chapter.

The large number of uncertainty contributors for CMM measurements implies that
uncertainty statements for CMMs are very task-specific. Almost every CMM
measurement will have another measurement uncertainty. In order to obtain
reliable measurement uncertainties every uncertainty contributor should be taken
into account. The influence of feature form deviations is often neglected but has
nevertheless an important influence on the measurement uncertainty.

The final aim of this research is to determine a measurement uncertainty for each
CMM measurement in order to make unambiguous evaluation of tolerances possible
and dimensional quality control more reliable.



Chapter 2

Evaluation of CMM
measurement uncertainty

The multiplicity of uncertainty contributors and their strong interactions make
uncertainty evaluations for CMM measurements very complicated. This chapter
illustrates that the conventional GUM approach for the calculation of uncertainty
is not suited for CMM measurement. In addition, the advantages and drawbacks
of the state-of-the-art alternatives for measurement uncertainty evaluation are
discussed. Finally this chapter tries to indicate how current uncertainty evaluation
software could be improved to obtain complete and reliable uncertainty statements
for CMM measurements.

2.1 Pitfalls of the GUM

As already mentioned in Chapter 1, the standard recipe for determination of
measurement uncertainties is described in the Guide to the expression of uncertainty
in measurement or shortly GUM. This document is meant as a guideline for
uncertainty evaluation of all kinds of measurements. Notwithstanding its general
validity there are not many people using the GUM for uncertainty evaluation of
their measurement results. Many people are not even using any kind of uncertainty
evaluation at all.

The use of the conventional GUM procedure should be promoted more. It uses a
very straightforward approach that gives reliable uncertainties for most kinds of
measurements. However, there are some important pitfalls related to the use of the

23
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conventional GUM procedure that should be avoided. These issues should be kept
in mind when using the GUM:

1. Assumption of independence: In order to avoid the complex covariance terms
of Eq. 1.5 it is often assumed that all uncertainty contributors are independent.
This is done because it simplifies the calculation but also because it is often
impossible to obtain the covariances of all input quantities. In order to take
into account all covariances, the complete covariance matrix should be known.
Sometimes it is justified to make these simplifications but it can also lead to
large underestimations (in case of positive correlations) or overestimations
(in case of negative correlations) of the measurement uncertainty. Important
covariances should not be neglected.

2. Propagation of standard deviations: The conventional GUM uses standard
deviations as a measure for uncertainty. The uncertainties of all input
quantities are expressed as standard deviations, the uncertainty of the output
quantity is also a standard deviation. One could use the expanded uncertainty
with coverage factor k to obtain an uncertainty interval. Usually one would
like to choose a value of k that corresponds to a certain level of confidence p
(e.g. 95 % or 99 %). This is only possible under very specific circumstances
because this requires information about the output distribution. People often
wrongly assume that a coverage factor of k = 2 will correspond to a 95 % level
of confidence. This will only be true if the measurement result has a normal
distribution. Assuming a normal distribution when the true distribution has
a high skewness or curtosis can lead to completely wrong coverage intervals.

If the measurement result follows a Poisson distribution (non-negative and
heavily skewed for small values of ), which occurs in many engineering
problems, calculating the expanded uncertainty will often lead to infeasible
intervals with a negative LCL. On the other side, the UCL will be highly
underestimated.

3. First order Taylor approzimation: The conventional GUM-method is based
on the first order Taylor approximation of the measurement function. As long
as this linear approximation is acceptable in the interval of interest (interval
around the measurement result) this leads to correct uncertainty statements.
If the linear approximation is insufficient, the calculated measurement
uncertainty will be incorrect. The following measurement function will
always lead to (almost) zero uncertainty if the estimate x is (almost) zero,
independent of the value of a and the input uncertainty u(z):

y=f(z)=ax® = u(y) = 2az.u(x)

Although it is possible to use higher order Taylor approximations, this is
seldom done in practice.
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4. Analytical relationship: The conventional GUM-method assumes that the
measurand can be written as an analytical function of a set of input quantities
with associated uncertainties. If this analytical relationship is not available,
the sensitivity coefficients can not be determined. As an alternative, sensitivity
coefficients could be determined experimentally but this is a time consuming
process and only possible for a limited set of problems.

The complexity of the measurement process of CMMs, with all the
different uncertainty contributors, makes it impossible to define an analytical
relationship between all uncertainty contributors and the measurand. Besides
that, most CMM measurement results are obtained by using iterative fitting
algorithms that do not provide an analytical relationship.

5. Systematic errors: The GUM-method also assumes that all known systematic
effects are identified and compensated. The uncertainties due to imperfect
compensation of known systematic effects are taken into account as an
additional uncertainty contributor. This is a very good way to deal with
systematic effects. However, in practice it is often very hard to compensate
for all known systematic effects. Temperature deviations (from 20 °C) of the
part have an important systematic effect on the measurement uncertaintyl.
However during most CMM measurements there is no compensation for
temperature deviations of the part.

Despite the issues mentioned above, the conventional GUM-method will provide
correct uncertainty statements for many measurements in practice. The simplifica-
tions made by using the conventional GUM are of minor importance and will not
affect the calculated uncertainties. But in some situations it is inappropriate (e.g.
first order approximation not valid) or impossible (e.g. no analytical relationship)
to use the conventional GUM-method.

The lack of an analytical relationship between the input quantities and the
measurement result is the most important reason why the conventional GUM-
method can not be applied to CMM measurements. A valuable alternative to the
conventional GUM-method is the use of Monte Carlo simulations to determine
measurement uncertainties. Recently a supplement that is dealing with Monte
Carlo simulations for measurement uncertainty evaluation, has been added to the
GUM standard [21]. Section 2.4 explains these Monte Carlo methods and also
discusses state of the art CMM uncertainty evaluation methods, that also use
Monte Carlo simulations.

1ISO/TR. 16015 prescribes how to deal with systematic errors and uncertainty of length
measurements due to thermal influences [20]. Under certain circumstances measured lengths
can be reported without compensating for systematic errors due to thermal influences; in these
situations the correction value should nevertheless be provided together with the measured length.
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2.2 Performance evaluation tests

Although uncertainties are almost never specified for CMM measurements, it is
still possible to make statements about the accuracy of a CMM. This can be
done by performance evaluation tests. These tests make use of a calibrated test-
artefact that is measured according to a specified measurement strategy and specified
environmental conditions. The measured deviations from the calibrated values can
be used as a performance indicator of the CMM, although it can not be considered
as a measurement uncertainty. Performance evaluation tests can be specified by
the user or they can be taken from international standards.

2.2.1 1S0O 10360: Acceptance and reverification tests for coordi-
nate measuring machines (CMM)

The ISO 10360 standard describes several performance evaluation tests for
conventional CMMs. The most frequently used part of this standard is ISO 10360-
2:20012 [22]. This standard describes two performance tests, one to evaluate probing
performance and one to evaluate size measuring performance:

Probing test A calibrated sphere is measured with 25 points according to a given
sampling pattern. Orientation of the stylus can be chosen by the user. A
Gaussian associated sphere is fitted through all 25 points. For each of the
25 points the radial distance R is calculated. The range of these distances
defines the probing error P:

P= Rmax - Rmin

Size test A set of five material standards of size (step gauge or gauge blocks) is
measured under seven different orientations on the CMM. Each measurement
is repeated three times. The shortest material of size should be smaller than
30 mm, the longest should be longer than 66% of the largest spatial diagonal
of the measuring volume of the CMM. For each of the 105 measurements, the
error on size F is calculated. All errors are plotted on a graph as a function
of the measured length.

The probing error, P, and the error on size, F/, should not exceed a given maximum
permissible error (MPE). MPEp is specified as a single value, while MPEg is
usually expressed in the following way:

MPEg = +(A + L/K)

2Recently ISO 10360-2 has been updated. The probing test has been moved to an updated
version of ISO 10360-5. This means that ISO 10360-2:2009 now only contains the size test.
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with
A a positive constant expressed in pm;
K a dimensionless constant;
L the measured size in mm.

In case of acceptance tests, these values are stated by the manufacturer of the
CMM. In case of reverification tests, they are defined by the user. The latter could
be useful when the CMM is installed in a non-conditioned environment and a lower
accuracy is allowed. The result of a ISO 10360-2 test is fail or pass, it should never
be the purpose of this test to define the MPE values.

Table 2.1 gives an overview of all current standards in the ISO 10360 series, part 8
till part 11 are not yet published.

ISO 10360-1:2000  Vocabulary

ISO 10360-2:2009 CMMs used for measuring linear dimensions

ISO 10360-3:2000 CMMs with the axis of a rotary table as the fourth axis

ISO 10360-4:2000 CMDMs used in scanning measuring mode

ISO 10360-5:2010 CMDMs using single and multiple stylus contacting probing systems
ISO 10360-6:2001 Estimation of errors in computing Gaussian associated features
ISO 10360-7:2011 CMDMs with imaging probing systems

ISO/DIS 10360-8 CMMs with optical distance sensors

ISO/DIS 10360-9 CMMs with multiple probing systems

ISO/CD 10360-10  Laser trackers for measuring point-to-point distances
ISO/WD 10360-11 Computed tomography

Table 2.1: Overview of ISO 10360 (August 2011).

2.2.2 Acceptance and reverification tests for other coordinate
measuring systems

The use of ISO 10360, as a standardized way for describing and checking CMM
performance, is widely adopted by industry. This makes it a lot easier to compare
CMMs of different manufacturers. Unfortunately the use of ISO 10360 is currently
restricted to conventional (Cartesian) CMMs.

Many problems arise when one tries to apply an unmodified version of ISO 10360-2
to other types of coordinate measuring systems. Many non-Cartesian CMSs have
measurement uncertainties that are very dependent on the measurement direction
and the location in the measurement volume. Furthermore, establishing reference
lengths longer than 66 % of the measurement range is impossible for most non-
Cartesian CMSs. E.g. a laser tracker has a low measurement uncertainty in the
radial direction but the measurement uncertainties in directions perpendicular
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to the radial direction can be very high, due to the limited resolution of the
angular encoders. Laser trackers have ranges of 100 m and more. It is very hard
to establish a reference length of this size. Part 10 of ISO 10360, that is currently
under development, describes acceptance and reverification tests for laser trackers.
Part 11, also under development, covers computed tomography.

Until now only finalised national standards for performance evaluation of other
coordinate measuring systems exist. The most important national standards for
CMSs, other than Cartesian CMMs, are summarised in Table 2.2.

Type of CMS Standard Title
Articulated arms VDI 2617-9 Accuracy of coordinate measuring machines
- Characteristics and their reverification -
Acceptance and reverification tests for artic-
ulated arm coordinate measuring machines
ASME B89.4.22 Methods for performance evaluation of artic-
ulated arm coordinate measuring machines
Laser trackers VDI 2617-10 Accuracy of coordinate measuring machines
- Characteristics and their checking - Accep-
tance and reverification tests of lasertrackers
ASME B89.4.19 Performance evaluation of laser-based spheri-
cal coordinate measurement systems
Computed VDI 2617-13 Accuracy of coordinate measuring machines -
tomography Characteristics and their testing; Guideline
for the application of DIN EN ISO 10360
for coordinate measuring machines with CT-
sensors
Fringe projection VDI 2634 Optical 3D measuring systems
systems

Table 2.2: National standards on performance evaluation tests for other coordinate
measuring systems, apart from conventional CMMs.

Recently the ISO 10360 series has been extended with some standards on probing
systems for CMMs, different from conventional tactile probing systems. As can
be seen in Table 2.1, ISO 10360 now also covers imaging probing systems (part 7)
and optical distance sensors (part 8). Part 9 discusses performance tests for CMMs
with multiple probing systems.

Unfortunately laser line scanners, that are becoming more and more popular for
conventional and non-conventional CMMs, are currently not covered by ISO 10360.
Part 8 focusses on 1D optical distance sensors (like e.g. laser focussing sensors).
The test described in Part 8 could, mutatis mutandis, be adapted to serve as a
performance test for laser line scanners. Unfortunately all optical probing systems
are influenced by a lot of uncertainty contributors and many of them will not be
revealed by the current performance tests described in ISO 10360. Recently quite
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some research has been done on performance tests for optical probing systems on
CMMs at K.U.Leuven and other labs [6, 23, 24].

Creating standards describing performance tests for all types of CMSs is a great
challenge for the coming years. When these new standards can get widely adopted,
it will enable the user to verify the stated performance of a CMS and compare
performances of different CMSs. One should however always be careful when
comparing performance statements, even when these statements are according to
international standards. Measurement conditions (like e.g. temperature range of
the room, measuring speed, ...) are seldom imposed by the standard, so they
can be determined by the manufacturer or the user. When determined by the
manufacturer, they are regularly too strict for the normal working environment of
the CMS.

2.2.3 Difference with measurement uncertainty

Performance evaluation tests are very important and useful. However, unlike
what many people think, they give absolutely no uncertainty statement for a
CMM measurement. One could argue that a performance specification of a CMS
can be considered as a task-specific measurement uncertainty for workpieces
that are similar to the test artefact used during the performance test. In this
perspective, the ISO 10360-2 statement about error on size can be considered as an
uncertainty statement for a similar length measurement if the probe configuration,
the environmental conditions, measurement strategy, the surface quality, etc. are
all (approximately) the same as during the performance test. These conditions are
seldom fulfilled in practice. It will for example be impossible to use the MPEg
value, provided by the ISO 10360-2 specification, to calculate the uncertainty when
measuring the characteristics of a circle. It will also be impossible to use it to
calculate the uncertainty on an angle measurement.

A CMM expert can get a rough idea about the measurement uncertainty for several
measurement tasks. For many other measurement tasks this will be far more difficult
or even impossible (cf. Section 1.7.2). Obtaining reliable uncertainty statements,
based on only performance specifications and expert knowledge is very hard, due to
the task specificness of the measurement uncertainty for CMMs. Every measurement
task will have a different measurement uncertainty. Performance specifications are
defined for one specific measurement task under very specific circumstances and the
results can not just be “extrapolated” to other measurement tasks. Performance
evaluation tests should be used for benchmarking, not for uncertainty statements.
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2.3 Methods for uncertainty evaluation of CMM

measurements

Since the conventional GUM approach is not suited for CMM measurements and
results of performance tests can not be used as uncertainty statements, other
methods should be used to determine measurement uncertainties for CMMs.
Regularly used methods are:

Use of multiple measurements strategies without calibrated workpieces or
standards (ISO/TS 15530-2 - deleted): In case of multiple measurement
strategies, the measurement under consideration is performed multiple times.
This allows to determine the repeatability /reproducibility of the measurement.
The repeatability and reproducibility of a measurement are lower limits
for the measurement uncertainty. Measurement repeatability is determined
under constant measurement conditions while measurement reproducibility
is determined under changing measurement conditions®. The repeatability
and reproducibility are independent of the true value, which is an advantage
of this method since the true value will not be known. At the same time it is
a disadvantage because systematic errors with respect to the true value are
not taken into consideratio and hence no upper limit for the measurement
uncertainty is provided. This method allows to determine a lower limit for
the measurement uncertainty but does not provide an upper limit. Since
measurement repeatability and reproducibility do not account for systematic
errors, it will be difficult to prove full traceability by this type of methods.
This is probably also one of the reasons why this standardisation project is
deleted. This method is nevertheless useful when no other ways to determine
measurement uncertainties are available.

Use of multiple measurements strategies with calibrated workpieces or
standards (ISO/TS 15530-3 [25]): A similar experimental approach as
described above is used. The measurement is also performed multiple times,
but in this case a calibrated workpiece or standard is used as test object. The
calibrated workpiece used during the uncertainty evaluation should be very
similar to the workpiece used during the actual measurement. The errors
measured during the uncertainty evaluation with the calibrated workpiece
are used to determine measurement uncertainties for actual measurements.
The variations in measurement conditions during the uncertainty evaluation
should be similar to the variation in measurement conditions during the
actual measurement. Since this method makes use of calibrated workpieces it
also accounts for systematic measurement errors, which makes it also easy to
prove traceability. This is a very reliable method to determine measurement
uncertainty, but it is usually very expensive and time consuming [26].

3For complete definitions of repeatability / reproducibility / accuracy, see ISO-VIM [12].
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o Use of computer simulation (ISO/TS 15530-4 [27]): When computer
simulation is applied, the actual measurement will be simulated multiple times.
The simulation is based on a mathematical model of the measurement process
and takes into account all important influence quantities. During simulation,
these influence quantities are varied within their assumed ranges. This will
result in variations on the simulated measurement results. The spread on
the simulated measurement results is used to determine the measurement
uncertainty. Since this is a non-experimental approach, it is much faster
and cheaper. The main difficulty is to find a mathematical model that
incorporates all influence quantities. It is important to know which influences
are incorporated during the simulations. This method is discussed in more
details in the next section. Software to calculate measurement uncertainties
is called uncertainty evaluation software (UES).

o Use of expert judgement: Use of expert judgement is probably the most popular
method to determine measurement uncertainties. Measurement uncertainties
are calculated based on the knowledge and experience of a CMM expert.
Regarding the complexity of CMM measurements, expert judgement will
not always be reliable and is only recommended when no other methods are
applicable.

2.4 Monte Carlo methods for measurement uncer-
tainty determination

2.4.1 Monte Carlo methods as alternative to the conventional
GUM approach

The use of computer simulation for determination of measurement uncertainties is
becoming a valuable alternative for the conventional GUM framework. Recently
a supplement to the GUM has been published. This supplement describes
the propagation of probability distributions through a mathematical model
of measurement as a basis for evaluating measurement uncertainty, and its
implementation by a Monte Carlo method [21]. Tt is said that this alternative
approach is of particular value when:

e The linearisation of the model provides an inadequate representation

e The probability function of the output quantity departs appreciably from
a Gaussian distribution or a scaled and shifted t-distribution, e.g. due to
marked asymmetry (skewness) or curtosis.
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If the approach described in this document is applied correctly, it can get around
all pitfalls described in Section 2.1. In case the method is applied for measurements
that also allow a valid application of the conventional GUM uncertainty framework,
the calculated standard uncertainties will be the same.

Conventional method
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Figure 2.1: Determination of measurement uncertainties through propagation of
standard uncertainties u(x) (a) and propagation of distributions (b).

Figure 2.1 illustrates schematically the difference between the conventional
GUM uncertainty framework (a) and the use of Monte Carlo methods to
calculate measurement uncertainties (b). In the conventional GUM framework
the measurement uncertainty is calculated through propagation of standard
uncertainties. The result is also a standard uncertainty. When using propagation
of probability density functions the resulting probability functions can seldom be
calculated analytically. Instead Monte Carlo methods can be used. Monte Carlo
methods propagate distributions by performing random sampling from probability
distributions of input quantities. The resulting output distribution can be used
to determine standard uncertainties as well as lower (LCL) and upper confidence
limits (UCL).

It is also possible to combine the use of Monte Carlo methods with the conventional
GUM approach. The conventional GUM method will often be used to determine
the standard uncertainties for the input distributions.
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2.4.2 State of the art

Monte Carlo methods have already been successfully applied to determine
uncertainties for machine tool error mappings and for calibration measurements on
CMMs [28, 29, 30]. They are also popular for tolerance analysis. Several authors
have also used Monte Carlo methods to build UES for CMM measurements. The
most important contributions are summarized below.

Virtual CMM

The idea of using Monte Carlo simulations to determine CMM measurement
uncertainties was first introduced by researchers from PTB in Germany [31]. They
called their concept Virtual CMM (VCCM) and described it as follows: “The
virtual CMM performs a point by point simulation of measurements, emulating the
measurement strategy and the physical behavior of the CMM with the dominating
uncertainty contributions disturbing the measurement”.

As illustrated in Figure 2.2, the VCMM can be considered as an extension to the
normal CMM measurement process. The thick black line represents the regular
measurement process, the gray line the VCMM extension. For every single probed
point, the VCMM generates multiple (n) simulated probed points. Through every
set of simulated points a feature is fitted, using the same algorithms as for the real
probed points. The probability density functions (PDFs) of the simulated feature
parameters can be used to determine the measurement uncertainty.

In order to simulate realistic CMM behaviour, all uncertainty contributors need
to be measured or estimated. Probe errors can be determined by measuring a
reference sphere. When multiple probes are used, this is done for all of them.
Geometric errors are determined by measuring a calibrated ball plate. The ball
plate measurement can be used to determine all 21 parametric errors components
(see Chapter 4) and to compensate for the errors through software correction.
Remaining geometric uncertainties (due to ball plate calibration uncertainty, drift,
limitations of the method, ...) can be used as input for the VCMM. Some other
uncertainty contributors that are difficult to measure, like e.g. temperature influence,
are either estimated or neglected [32].

Instead of using ball plate measurements also other techniques (a.o. laser
interferometer measurements) could be used to determine the geometric errors of
the CMM and related uncertainties. Because CMM uncertainties (of the current
CMM state) can be modelled very accurately in this way, this approach leads to
very accurate uncertainty estimates since it has the ability to model the ‘sweet
and bad spots’ [sic] of the actual CMM [33]. Nevertheless this approach has also
some important disadvantages. These methods are usually very time consuming
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and will fail when the error state of the CMM changes (due to thermal influences
or temporal drift) which makes them less robust.

CMM manufacturer Zeiss offers an optional module to their Calypso CMM software,
called OVCMM (Offline Virtual Coordinate Measuring Machine) to calculate
measurement uncertainties. This module is based on the VCMM engine of PTB.

@ (1) (3)
CMM Evaluation Software (4)

(8)

Statistics

L.l

(5a)

VCMM - Simulator

Ef@ﬂf

<

Probing Geometry Environment

Figure 2.2: The Virtual CMM (VCMM) concept [34]: the actual CMM (1),
actual measured points (2), CMM software calculating associated features (3),
measurement report (4), probing point locations as input for the UES (5), CMM
simulator (5a), simulated measured points (6), simulated associated features (7),
PDFs of feature parameters (8).

Simulation by constraints

Phillips et al. called the methods that use complete parametric error specification of
the CMM (like Virtual CMM) full parametric simulation (FPS) [33]. The authors
suggested a generalization of FPS in order to make it easier to implement and more
robust. They call their approach, developed at NIST, simulation by constraints
(SBC) [33].

When using SBC, one starts with building a very large set of virtual CMMs, each
having a different (random) error state. Every virtual CMM is characterized by
21 parametric errors. In theory this set could be infinite. In practice one will not
simulate positioning errors larger than 1 mm if the actual CMM shows no errors
larger than 10 pm. This very large set of virtual CMMs, that covers the complete
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state space of the CMM, is afterwards bounded by a bounding measurements set
(BMS). The BMS contains a set of actual measurements of a reference length
(e.g. a step gage). Every measurement of the bounding measurements set is also
measured by all virtual CMMs. Every CMM state that shows the same errors as
the complete BMS (taking into account the repeatability and the uncertainty of the
reference length) is retained, all other CMM states are rejected. The success ratio
will, of course, be very low (between 10~* and 10~7). In order to be more time
efficient they implemented gradient search techniques to find good virtual states
more quickly. The BMS defines a bounded region in state space that contains all
‘good CMM states’. Each of the states could be the true state because each of the
virtual states shows the same errors as the true state of the CMM.

§

Virtual states from SBC

I O - Virtual states from FPS

° True state of the CMM

o Estimated CMM state

Figure 2.3: Schematic illustration of the simulation by constraints concept [33].

Figure 2.3 illustrates this visually for a 2 dimensional state space. The figure shows
that the bounded region by the BMS contains the true state of the CMM but also
contains the possible states of the CMM that would result from FPS. Moreover,
if a very extended BMS is used, the obtained region will be the same as the one
with FPS. That is why the authors call their method a generalization of FPS. To
determine measurement uncertainties, the resulting subset of virtual CMMs can be
used in a similar way as described above for Virtual CMM.

Expert CMM

In the Expert CMM project another UES, similar to VCMM, was developed [35].
Balsamo et al. focussed with their implementation mainly on modularity and
generality. They also proposed a two-step implementation: (1) Calculating
the uncertainty of the point coordinates due to hardware, environment, ...
(2) propagating the point uncertainty through the part program, which defines the
measurement strategy, to get the final uncertainty of the feature parameters. It
also seems that the results of this project where integrated in a patent [36]. The
patent is assigned to CMM manufacturer Brown & Sharp DEA.
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PUNDITCMM

PUNDITCMM is a commercial UES for CMM measurements. The hardware
uncertainty contribution is based on the SBC approach of NIST [26]. A demo
version of the software is available at the Department of Mechanical Engineering at
K.U.Leuven. The software is meant for offline utilisation and is not connected to
any type of conventional CMM software. It has the ability to import the CAD-file
of a workpiece and has a build-in database of common CMMs. The measurement
uncertainty is also determined by means of Monte Carlo simulation. An interesting
feature of this software is the ability to add form deviations to the nominal feature
(Figure 2.4). This allows the user to investigate the influence of form deviation on
the measurement uncertainty for a given measurement strategy. The uncertainties
are calculated based on the distribution of the simulated measurement results.

Shape of Selected Teim Type | Order af Theta | Order of 2| Tums | Amplitude |
7 Systematic 2 1} 1} 0
? Undefined
Quadrature Sum |0 Left click on the selected term to edit the amplitude
Drefinition of Selected Tem
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Figure 2.4: Ability to model form deviations in the PUNDITCMM software.

The PUNDITCMM software allows to investigate the influence of feature form
deviations in combination with CMM hardware errors and the sampling strategy
on the measurement result. However, the software does not really integrate the
influence of feature form deviations because it is based on “what if” scenarios:
e.g. “What will be the uncertainties if a circle with a diameter of 50 mm and a
3-lobed roundness deviation of 0.075 mm is measured with 4 equidistant sampling
points?” The user can model a feature with a specific, user defined, form deviation
(Figure 2.4). Thereafter the measurement uncertainty is determined for a given
sampling strategy applied to the modelled feature. This is a very useful tool, but
it does not allow to transfer the uncertainties to real CMM measurements, since
the true value of the form deviation and its true shape (elliptic, 3-lobed, etc) are
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assumed to be known (given), while they generally are unknown. This is the most
important obstruction for modelling the influence of feature form deviation on CMM
measurement uncertainties: other uncertainty contributors, like e.g. uncertainties
due to CMM hardware, can be assessed in advance, but the influence of feature
form deviations will depend on the unknown magnitude and shape of the true form
deviation of the feature to be measured.

2.5 Improving current uncertainty evaluation soft-
ware

The examples in the previous section showed that using Monte Carlo simulations
for CMM measurement uncertainty evaluation has already been investigated since
more than 10 years. Although some research results are incorporated in commercial
software (Pundit CMM and OVCMM extension for ZEISS Calypso software) those
software are not yet broadly adopted in industry*. According to the author, the
most important reasons for this are:

1. Missing uncertainty contributors: It is impossible to incorporate all uncertainty
contributors. Therefore it is important to document which uncertainty
contributors are included and which are not. This is also emphasized by
ISO 15530-4 [27]. Current implementations of UES focus mainly on hardware
uncertainties. Two important uncertainty contributors for discrete tactile
measurements, that are missing in current UES, are feature form deviations
and temperature influences. Until now, the influence of feature form deviations
was never fully integrated in UES for CMMs.

2. No online determination of uncertainties: Both commercial UES (OVCMM
and PUNDITCMM) are offline software packages. This means that
uncertainties are calculated before or after the actual CMM measurement.
This means extra workload and is unwanted for most users. Offline software
has the advantage of being independent from conventional CMM software.
Furthermore there will be no risk that an error or crash of the UES will
influence the conventional CMM software. Monte Carlo simulations can also
take a lot of time, which poses problems for online operation. The latter issue
has become less important with increasing computer power.

Although good reasons can be found for offline operation of UES, not many
users are willing to spend much extra time for uncertainty evaluation. If an
uncertainty estimate needs to be provided for every measurement result, the
most seamless solution is to perform the uncertainty determination online.

4 An inquiry by the author (end 2009) showed that Rolls-Royce was the only European company
that used the Pundit software. According to people from PTB the OVCMM module from Zeiss
was only installed at some NMIs.
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3. Lack of interest from manufacturers and industry: Almost everyone is
convinced that providing measurement uncertainty is of great importance,
but almost no one is willing to spend effort on it. People should get convinced
that they can earn money by taking measurement uncertainties serious.

CMM manufacturers will not be eager to provide software that informs the
user about measurement uncertainty. Calculated measurement uncertainties
will be often higher than the ISO 10360 specification of the CMM. However,
most CMM users will not like a third possibility besides fail and pass. Having
parts where no decision can be made seems to make quality control more
complicated.

2.6 Conclusion

This chapter started with a discussion about the pitfalls of the conventional
GUM approach. This showed that the conventional GUM framework is not suited
for evaluation of CMM measurement uncertainties. Results of acceptance and
reverification tests can be used for verification and benchmarking but not for
uncertainty evaluations, contrary to many people’s opinion. Valid methods for
uncertainty evaluations of CMM measurements include multiple measurement
strategies, the use of calibrated workpieces, expert judgement and computer
simulation.

The use of computer simulation has a good potential and is already investigated by
several authors. There even exists commercially available uncertainty evaluation
software, but this software is not yet adopted by industry. Current software
neglects some important uncertainty contributors, like the influence of feature
form deviations, and can not be used online. This thesis proposes an uncertainty
evaluation software, based on Monte Carlo simulations, that incorporates
uncertainty contributors due to feature form deviations and that can run online
during CMM measurement.



Chapter 3

Integrating feature form
deviations in uncertainty
modelling

In Chapter 1 and Chapter 2 it has already been indicated that form deviations
have an important influence on the measurement uncertainty for CMMs, and
that current uncertainty evaluation software (UES) is not able to take this
uncertainty contributor into account. This chapter starts with a case study
to illustrate that feature form deviations of the workpiece are often the most
important uncertainty contributor, more important than hardware uncertainties
of the measuring equipment. Afterwards it is clarified which surface irregularities
are categorized as form deviations. After discussing previous work on this topic
this chapter elaborates a method to quantify the influence of form deviations on
the measurement uncertainty. At first hardware uncertainties are neglected. The
next chapter shows how this method can be extended to incorporate hardware
uncertainties. Finally some results will illustrate how this method can be useful in
practice.

3.1 Case study

Some examples in Section 1.7.2 already showed that feature form deviations can have
an important influence on the measurement uncertainty. This case study is meant
to illustrate that form deviation can (often) be the most important uncertainty
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contributor. In these situations the current UES will highly underestimate the
measurement uncertainty.
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Figure 3.1: Test part for case study.

Figure 3.1 shows the drawing of the test part of this case study. The part is
manufactured in aluminium on a Maho MH5000W three axes milling machine. Due
to clamping on the machine, the central hole C3 of the part shows a 2-lobed form
deviation of about 0.1 mm (this means that the roundness is out of specification
according to the drawing of Figure 3.1). The form deviations of the 2 outer holes
are much smaller.

After machining, the position, diameter and roundness of the central hole are
measured several times on the Coord3 MC16 CMM (cf. Section 1.9). The least
squares fitting criterion was used to determine the associated features. Each time the
part is relocated to a different position and orientation on the CMM, to incorporate
the influence of scale and geometric errors of the CMM. At each position the circle
is measured twice with NV equidistant sampling points: once with a fixed starting
point at starting angle 65 = 45° to the x-axis of the part coordinate system and
once with a random starting point. The alignment procedure is the same in both
situations. Table 3.1 gives the results of these measurements for N = 4, at three
different positions on the CMM. It can be seen that the variation of the measured
feature parameters is much larger when the starting angle 6, is random. This is
due to the interaction of feature form deviations and sampling strategy.

When more points are measured, the influence of form deviations diminishes.
To illustrate: Figure 3.2 plots the measurement results obtained at 35 different
positions on the CMM for N = 4 to N = 15 equidistant measuring points.
The dispersion of the measurement results for fixed starting angle is mainly due
to hardware influences of the measuring equipment (no influence of measuring
strategy, minimal temperature deviation). The dispersion of the measurements
with varying starting angle also incorporates the influence of the form deviation of
the measured circle and is significantly larger. These dispersions are an indication
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CMM position 1 CMM position 2 CMM position 3 max. A
- Qs = 45° Qs = 45° Qs = 45°
9] Startng x =75.029 x = 75.027 x = 75.027 Ax =0.002
= Point y=0.018 y=0.018 y =0.019 Ay = 0.001
o] dia = 79.856 dia = 79.854 dia = 79.857 | Adia = 0.003
rnds = 0.009 rnds = 0.010 rnds = 0.009 | Arnds = 0.001
£ Os = 6° Qs = 36° Qs = 105°
] x =75.013 x =75.024 x =75.017 Ax =0.011
@ y = 0.008 y = 0.009 y=0.014 Ay = 0.006
. dia = 79.890 dia = 79.867 dia = 79.877 | Adia = 0.023
o} rnds = 0.096 rnds = 0.014 rnds = 0.065 | Arnds = 0.082

Table 3.1: Influence of the starting angle (65) on the measured circle parameters in
case of equidistant sampling with N = 4: roundness plot (blue), sampled points
(red), fitted least squares circle (green), dimensions in mm, dia = diameter, rnds =

roundness.
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Figure 3.2: Influence of the number of sampling points N (abscissae) and the
sampling point location (fixed starting point vs. random starting point) on the
dispersion of the measured circle parameters: z-position, y-position, diameter and

roundness (ordinates).
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for the measurement uncertainties. It can be seen that the form deviation does
not only influence roundness and diameter uncertainty, but also has an important
influence on position uncertainty. Even for N = 10 the dispersion of the results is
about twice as large when the starting angle is random.

Many CMMs may have much lower hardware uncertainties than the one used in
this case study'. With a more accurate CMM the dispersion of the fixed angle
measurements can be even smaller. In these cases the relative influence of the form
deviation will be even more important. If the true form deviation is smaller, the
uncertainty due to the form deviation will also be lower. In case of a ‘perfectly’
round circle (e.g. ring gauge) there would be no difference in dispersion between
both sampling strategies?. Unfortunately most workpieces do have form deviations,
the influence of which can not be neglected.

If the measurement uncertainty would be determined with currently available
(correctly calibrated) UES the calculated measurement uncertainty would
approximately cover the dispersion range of the measurements with fixed starting
angle (blue dots in Figure 3.2). The calculated measurement uncertainty will not
cover the errors from the measurements with varying starting angle since the UES
does not incorporate the influence of form deviation. For the same reason the
calculated uncertainty interval of the x-position for a 4-points measurement at
45 ° will not overlap with the uncertainty interval of the x-position for a 5-points
measurement (although they should overlap) and none of both uncertainty ranges
will cover the true value (x = 75.018). This true value was determined by the
average of multiple measurement, at multiple locations, with many points (> 100)
and by using the least squares fitting criterion.

It is clear that the influence of the feature form deviations needs to be taken into
account in order to obtain reliable evaluations of the measurement uncertainty.
Measurement uncertainty strongly depends on the magnitude of the true form
deviation, yet this is completely unknown before the measurement. Therefore,
integrating this influence is quite difficult with conventional uncertainty evaluation
methods.

I Measured geometric errors of the used CMM are given in Appendix B.

2The effect of probe pre-travel variation will still remain. Because of this and some other minor
influences the dispersion for sampling with random starting angle will always be somewhat larger
than the dispersion for a fixed starting angle, even in case of a ring gauge measurement.
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3.2 Form deviation, waviness and roughness

3.2.1 Definition and classification

Before discussing the influence of form deviations on measurement uncertainty, it
should first be clearly defined what is meant by form deviation. Most workpieces
are composed of geometrical features like planes, cylinders, circles and lines. These
actual geometrical features will differ from the nominal geometrical features due to
imperfections during machining. Geometrical deviations consist of [37]:

e Size deviation ¢ Waviness

¢ Locational deviations ¢ Roughness

¢ Orientational deviations e Surface discontinuities
e Form deviations o Edge deviations

Form deviation, waviness, roughness and surface discontinuities all represent
deviations from the perfect profile or perfect surface of the feature. Surface
discontinuities, like e.g. cracks or pores, are usually not taken into account when
assessing deviations of size, location, orientation, form, waviness and roughness [37].

Current standards do not define very clear boundaries between form deviation,
waviness and roughness. Surface irregularities are usually classified based on the
origin of the deviation. According to ISO 4287 the regions of form deviation,
waviness and roughness are defined by the cutoff wavelengths s , A and A\; (see
Table 3.2) [38], but the values of these wavelengths are not defined by ‘hard and fast’
mathematical rules [39]. A; and A, can be chosen based on ISO standards [40, 41],
but the selection of Ay is not standardised. This makes it hard to define a clear
boundary between form and waviness. The VDI/VDE 2601 standard mentions a
more stringent classification based on the ratio between width and depth of the
deviations [42]. Although this definition is more clear, there is still an overlap
between waviness and roughness (see Table 3.2). Sometimes the terms micro and
macro deviations are used instead of form deviation, waviness and roughness.
Macro deviations can be measured with measuring devices that are also used for
size, orientation and location, over the entire feature length. Micro deviations
are measured on a representative part of the surface with special equipment like
roughness measuring devices. This is a very interesting classification, but also in
this case the boundaries are never very clear because they will depend on the kind
of measuring equipment that is used.
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Geometrical  ISO 4287 VDI/VDE 2601 Micro
deviation Macro
Form wavelengths > Ay ratio width:depth of deviation =~ Macro

> 1000:1 deviations
Waviness Ae < wavelengths < Ay ratio width:depth of deviation 1

between 1000:1 and 100:1
Roughness As < wavelengths < A, ratio width:depth of deviation =~ Micro
between 150:1 and 5:1 deviations

Table 3.2: Classification of form, waviness and roughness according to ISO 4287
(with cutoff wavelengths A; , A\ and A¢) and VDI/VDE 2601.

3.2.2 Dominating effect of form deviations

When assessing roundness, straightness, flatness or cylindricity according to
ISO 1101 [43], it is clear that these values will be influenced by form, waviness as
well as roughness. In case of CMM measurements, the influence of the roughness
will partially be filtered out by the probe tip. The amount of (mechanical) filtering
will be determined by the diameter of the probe tip. In most practical situations
the roundness, straightness, flatness and cylindricity values will be dominated by
the effect of form.

To illustrate the dominating effect of form, Figure 3.3(a) shows the roundness
deviation of a circular part manufactured by turning (full red line). The figure
on the left plots the deviation from the least squares circle against the angular
position along the circle, clearly showing the 3-lobed form deviation due to the
clamping of the workpiece. The amplitude spectrum on the right, obtained by
taking the Fourier transform of the roundness deviation, also shows a large peak at
3 UPR (undulations per revolution). The second order term (2 UPR) accounts for
the non-uniform magnitude of the three lobes. The dotted blue line in the plot of
the roundness deviation is a reconstruction of the original profile in which higher
order harmonics (above 15 UPR) have been removed. The roundness value of the
reconstructed profile (0.071 mm) equals 93% of the original profile (0.076 mm).
Neglecting roughness and waviness seems to have little influence on the roundness
value.

This hypothesis does not only hold for workpieces with very regular form deviations.
Figure 3.3(b) illustrates the same for a less regular form deviation. In this case
the roundness value of the reconstructed profile (0.013 mm) equals 87% of the
original value (0.015 mm). It is important to know that in most applications the
roundness value is dominated by lower order harmonics. This knowledge can be
used for modelling form deviations .

To further illustrate the dominance of lower order harmonics, a random test set of
30 circular features from different technical workpieces is analysed. Analogous to
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(a) 3-lobed circular form deviation
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Figure 3.3: Frequency analysis of measured circular form deviations (full red line:
original profile, dotted blue line: low pass (15 UPR) filtered profile).

the two examples above, the roundness value is calculated twice: once based on the
original deviations and once based on the filtered data (low pass filter of 15 UPR).
For each of these profiles the ratio of both values is calculated. The histogram of all
ratios is given in Figure 3.4. For 25 of the 30 circular profiles the difference between
measured and filtered profile is smaller than 5%. None of the deviations was larger
than 15 %. This supports the hypothesis that profile deviations are dominated by
lower order harmonics (longer wavelengths).

Although no systematic analysis has been carried out on lines, planes and cylinders,
it can be assumed that this hypothesis also holds for other types of features.
Of course examples can be found in practice where the form deviation value is
dominated by waviness or roughness, but those will be exceptions.
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Figure 3.4: Histogram of ratios between filtered (low pass of 15 UPR) and original
roundness values for 30 random circular features.

3.3 Former research on the influence of form devia-
tions

One of the earliest contributions describing the influence of feature form deviations
on the uncertainty of CMM measurements is by Wirtz [44]. This publication
clearly illustrates the influence of a circular form deviation on diameter and
position uncertainty. Also the relation between the measurement uncertainty and
the harmonic content of the form deviation is mentioned. A very extensive study
concerning the influence of feature form deviations on measurement uncertainty has
been carried out by Weckenmann et al. [45, 46]. They expressed the uncertainties
relative to the true form deviations, because relative uncertainties are independent
of the magnitude of the true form deviation, as long as no hardware uncertainties
of the measuring equipment are taken into account. These studies were mainly
focussed on typical form deviations for circular features. Choi et al. investigated
the influence of the form error distribution function and the number of sampling
points on the measurement uncertainty [47]. Baldwin et al. proposed a software
to evaluate task-specific measurement uncertainties for CMMs that also allows to
evaluate the influence of feature form deviations based on ‘what if’ scenarios [26].
This software (PUNDITCMM) has already been discussed in Section 2.4.2.

Instead of focussing on calculating measurement uncertainties for conventional
uniform sampling strategies, other authors focussed on optimised sampling strategies
to reduce measurement uncertainties. This can be done by either using a priori
defined sampling patterns or by using adaptive sampling patterns [48, 49].
Summerhays et al. provide an extensive literature review on this topic [48]. They
also analysed a large set of holes, produced by different machining techniques, in
order to model form deviations. They compared two ways to do this modelling;:
based on a combination of Fourier series and Chebyshev polynomials, and based on
eigenshapes of the deviations obtained by principal component analysis. Based on
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these models, optimised sampling strategies are defined. The effectiveness of this
approach seemed to be very dependent on how well these models describe the true
deviation. Building accurate models usually requires a large set of representative
dense sampled form deviations, which makes such strategies only applicable for
measurements of series.

3.4 Error simulation method

This section introduces an error simulation method which allows to determine the
influence of form deviations on the measurement errors. The method is based on
Monte Carlo simulations and is schematically shown in Figure 3.5. The method is
illustrated for circles, but is also valid and has also been implemented for other
features like lines, planes and cylinders. In order to focus on form deviations, CMM
hardware and environmental influences are initially neglected. Chapter 4 explains
how this method can be extended to incorporate CMM hardware uncertainties.

Sampling strategy Evaluation strategy

( Error Coverage
Form distributions: intervals:
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Measured —> [*"Prces Pyl
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Figure 3.5: Scheme of Monte Carlo method to simulate influence of form deviations
on measurement errors (illustrated for a circle measurement).

The method consists of four main modules (rectangular boxes in Figure 3.5):

1. Profile simulator: simulates a profile® with a form deviation based on a given
position (p), orientation (o), size (s) and form deviation value (f). Profile
simulation for circles and other features is explained in Section 3.5.

3The word ‘profile’ is used in this thesis for circles, lines, planes as well as cylinders and
represents a dense set of points (x,y,z) that describe the surface or contour of the feature, including
the form deviation and possibly also waviness and roughness.
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2. Sampling: simulates the sampling of measurement points on the given profile.
Points are taken based on a user defined sampling strategy (equidistant, partial
circle measurement etc.). Section 3.6 discusses the sampling of features.

3. Feature fitting: fits an associated feature through a set of points. This is
done twice, once for the sampled points (coming from the sampling module)
and once for the complete original profile (coming straight from the profile
simulator and defined by a large (> 100) set of points). This results in two
associated features: a measured (i.e. sampled) associated feature and a true
associated feature (Section 3.7).

4. Error calculation: parameters of the measured associated feature are compared
with the parameters of the true associated feature and the errors on position
(¢""p), orientation (¢""0), size (°""s) and form deviation (¢" f) are calculated
(Section 3.8).

Since no CMM hardware errors are added, the calculated errors are only due to
the effect of limited sampling. If all points of the original profile are sampled, all
errors will be zero. These four steps are repeated multiple times in order to obtain
error distributions for the different feature parameters (see Figure 3.5). These error
distributions can be used to calculate upper (UCL) and lower confidence limits
(LCL) for the errors of the different feature parameters. These confidence limits
define the coverage interval for a given parameter: e.g. [*"spcL, " sycr] represents
the coverage interval for size (see Figure 3.5). Usually 95% is chosen as level of
confidence.

The shape and width of the error distributions obtained by the error simulation
are determined by the sampling strategy, the evaluation strategy and the profiles
that are simulated by the profile simulator. E.g. using 3-lobed profiles will result in
other distributions than irregularly shaped profiles. In order to produce realistic
error distributions, the profiles that are simulated should also be realistic.

3.5 Profile simulator

The profile simulator simulates profiles based on a form database. Figure 3.6
depicts two ways to build this form database (illustrated for circular profiles). The
first one is based on measured profiles. The second is based on simulation. Both
methods are explained in Section 3.5.1 and 3.5.2 for different types of features.
Section 3.5.3 describes how the form databases are used to generate profiles with a
given magnitude of form deviation.
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Figure 3.6: Two possible strategies to build the form database (illustrated for
circular profiles).

3.5.1 Form databases based on measured form deviations

A pragmatic solution to generate realistic profiles is to do this based on real
measured profiles. If enough real profiles are gathered, these profiles can be used
to build a form database. The data can be obtained from CMM measurements,
but also from a roundness or profile measuring device because only form deviation
information is needed. If reference profiles are measured by a CMM, it is preferred
to use uniform sampling densities and enough sampling points. Measurement errors
should be small compared to the measured form deviations. Usually deviations from
a least squares substitute element are used, but deviations from other associated
features (like e.g. minimum zone elements) can also be used. The deviations can be
represented as arrays, n X 1 arrays for circles and lines, n x m arrays for planes and
cylinders. If measurement points are not belonging to a uniform sampling pattern
(e.g. in case of point clouds obtained by laser line scanning) or if the number of
sampled points is not equal to the number of points to be stored in the form
deviation arrays, the measured profiles need to be resampled. This is done by linear
interpolation of neighbouring points.

Since the interest lies in the influence of form deviation on measurement uncertainty,
roughness and local defects which distort the results, are to be avoided. Therefore
every profile is filtered. Section 3.2.2 already showed that the roundness deviation
is dominated by low order harmonics. Therefore low pass filters will be used to
preserve the deviations due to form and to remove deviations due to roughness
and local defects. Several filtering techniques in space and frequency domain
have been considered. These techniques are well established for digital signal
processing and image processing applications. Eventually filtering with a Gaussian
weighting function seemed to be most suited. This technique is nowadays the
most common filtering technique for surface texture and roundness measurements.
Another important advantage is that it can be applied to all types of features, 1D
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features? (circles and lines) as well as 2D features (planes and cylinders).

Filtering of 1D features

For lines the deviation can be expressed as a function of the distance along the
line and for circles as a function of the angle. This makes that form deviation of
lines and circles can be treated similar with respect to filtering.

According to ISO 11562 the Gaussian weighting function for circular and line
profiles, with cutoff wavelength ., looks as follows [50]:

1 (== 2 /ln2
w(gy) = a)\ e (az\c) s o = 7 (31)

The filtered profile d(x) can be obtained by a convolution of the original profile
p(zx), with z the distance along the line, and the weighting function w(x):

d(z) = p(x) * w(z)

The amplitude transmission characteristic can be obtained from the Fourier
transform of w(z):
ay —m(23e)?

H()\):a—oze A

Figure 3.7 shows the weighting function w(z) and its transmission characteristic.

When the filter is applied to a discrete measured profile the weighting function also
needs to be a discrete form that approximates the Gaussian weighting function.
The width of the filtering window is determined by the sampling distance of the
measured profile and the cutoff wavelength. A well known drawback of discrete
convolution is that some points (corresponding to the half-width of the filter) in
the beginning and at the end of the measured profile are lost. For surface texture
measurements this is solved by measuring over a somewhat larger distance. If the
filtered signal is used to represent the form deviation any loss of information on the
borders is unwanted. An alternative to prevent length reduction of the measured
profile is to make use of padding values. These are additional values that are added
in the beginning and at the end of the data set. Lines can be padded with the
border value of respectively the first and last measured point. Since measured
profiles of circles are periodic, the end of the profile can be padded periodically
with values of the beginning and vice verca.

4The term 1D feature is used to describe circles and lines since these are considered as 1D
manifolds in mathematics. Planes and cylinders, but also spheres and cones, are 2D manifolds.
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Figure 3.7: Profile filtering with weighting function: (a) Gaussian weighting function,
(b) transmission characteristic of a Gaussian weighting function.

Considering the cutoff wavelength A., it is important to choose a value that
removes the roughness and keeps the form deviation. It is difficult to define clear
borderlines between roughness, waviness and form deviation, as already mentioned
in Section 3.2. For interpretation of the results it should be clear how the filtering
is performed since the used filter values can have an important influence on the
calculated uncertainties. In case of circle measurements it is common practice to
use cutoff frequencies (f., expressed as UPR, undulations per revolution) instead
of cutoff wavelengths (expressed in mm) [51]. ISO/TS 12181-2 specifies some
default values for cutoff frequencies; the smallest value equals 15 UPR. For several
reasons, among others understandability, it was found desirable to use also a cutoff
frequency instead of cutoff wavelengths for lines, although this is not common
practice for (line) profile measurements. This cutoff frequency (f.) can be expressed
as undulations per length (UPL). 1 UPL corresponds with one period of a sine
wave over the complete length of the line. 15 UPL seemed to be a good value that
in most situations keeps almost the complete form deviations and removes the
influence of roughness. Figure 3.8 illustrates the filter for a measured circle and a
measured line.

Figure 3.8(a) also shows the drawback of using filtering. The original profile clearly
shows the deviations due to reversal errors of the milling machine. In the filtered
profile these deviation are partially flattened. In a certain sense this profile can
be seen as an exception since most other investigated profiles showed almost no
difference between original and filtered profile. This supports the hypothesis that
roundness values are mainly dominated by lower order harmonics. In this work,
most raw profiles are measured by a CMM equipped with a touch trigger probe
with a sphere tip of 4 mm diameter. This means that the ‘raw’ profile has already
been filtered mechanically. When one wants to include the effects of specific local
deviations like reversal errors, it is advisable not to use filtering on the raw profiles,
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(a) filtered circular deviation (b) filtered linear deviation

Figure 3.8: Profile filtering with Gaussian weighting function: (a) applied to a circle
(f. = 15 UPR) (b) applied to a line (f. = 15 UPL).

or to use higher cutoff frequencies.

Filtering of 2D features

The 2D Gaussian weighting function is represented as follows [52]:

wiag) = D] (32)

a? Xz Aey

and has following amplitude transmission characteristic [53]:
H(M\y) = ¢ "[R4 (5507

Acz and Ay are the cutoff wavelength in the two orthogonal directions. Figure 3.9
shows the weighting function w(x,y) and its transmission characteristic.

In order to apply the filter to measured planes and cylinders a coordinate
transformation of the measurement points will be necessary in order to make
the deviation direction correspond to the z-direction, while the position in the
plane or cylinder are represented by x and y. For planes this can be obtained by a
rotation, for cylinders a transformation to cylindrical coordinates is performed.

The filtered profile d(z, y) is now also obtained by convolution of the original profile
p(z,y) with the weighting function w(z, y):

d(z,y) = p(z,y) * w(z,y)

Again a discrete and truncated version of the Gaussian filter is used, and just as for
circles and lines, padding values will be needed to prevent data loss. Cylinders will
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Figure 3.9: Surface filtering with weighting function: (a) 2D Gaussian weighting
function, (b) transmission characteristic of a 2D Gaussian weighting function.

be padded periodically in radial direction and padded by border values in length
direction. Planes are padded in both directions by border values.

Similar to lines and circles cutoff frequencies are used instead of cutoff wavelengths.
For planes a default cutoff frequency of 15 UPL is used in both directions.
For cylinders the default cutoff frequencies in radial and length directions are
respectively 15 UPR and 15 UPL. Other values can be used as cutoff frequencies if
necessary.

Figure 3.10 shows the results of the filter when it is applied to a laser line scanned
plane. It clearly shows the noise removal capabilities of the filter, while preserving
form deviation information.

(a) unfiltered planar deviation (b) filtered planar deviation

Figure 3.10: Profile filtering with Gaussian weighting function applied to a plane
(few = fey = 15 UPL).
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Scaling of the profiles

The measured (and possibly filtered) profile is characterized by a shape and a
specific magnitude of form deviation. The profile simulator needs to simulate
profiles with different shapes and different magnitudes of form deviation, that can
be specified by the user. Therefore every form deviation is rescaled to a standard
dimensionless form deviation of 1. This can be done easily by dividing each array
with deviations by its range (= magnitude of the form deviation):

d

de max(d) — min(d) (3:3)

Once these deviations are standardized, only the information about the shape of
the form deviation is left. They are stored in what is called a form database. With
these standardized deviations, profiles with a form deviation of whatever magnitude
can be generated, simply by multiplying the form deviations with a given value
of form deviation magnitude. This means that the data of one measured profile
with a certain form deviation magnitude (and feature size) is used to generate form
deviations of varying magnitudes. This approach assumes that the shape of the
form deviation is not correlated with the magnitude of the form deviation or size
of the feature (diameter of circle, length of a line etc.). Probably this assumption
is a simplification of reality.

Since the profiles used to construct the form database are measured with a CMM
or a roundness or profile measuring device, they will inevitably also be influenced
by measuring hardware errors. For profiles with large form deviations, the relative
influence will be negligible. For very small form deviations one should make sure
that the measured profile is not distorted by hardware errors of the measuring
device.

One can use the constructed form database in several ways. All filtered and rescaled
profiles can be collected in one large database. Alternatively they can be stored in
sub-databases according to the used manufacturing process, since the manufacturing
process will have an important influence on the shape of the form deviations. Each
process will leave a so-called manufacturing signature. One could use sub-databases
for features produced by turning, milling, electrical discharge machining or other
manufacturing processes. In case of series production, even a sub-database for one
type of product could be built.

3.5.2 Form databases based on simulated form deviations

Building a form database based on measured profiles will be quite time consuming
if one wants to collect a large amount of measured profiles. As an alternative, one
could simulate standardized deviations that will be stored in the database. Although
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the deviations are simulated, they should represent realistic form deviations; just
generating random noise will not result in realistic deviations. Circles, lines, planes
and cylinders all have their typical types of form deviation. The generation of
simulated profiles for these features will be discussed below.

Simulation of circular form deviations

For circles it is known that they often have important second, third and fourth order
harmonics in their roundness deviations. A typical second order form deviation is
visible in Table 3.1 on page 41, and a measured third order deviation is represented
in Figure 7.4(a) on page 131. A combination of second and third order deviation
is illustrated in Figure 7.4(b). Second order harmonics represent 2-lobed (elliptic)
deviations and can be due to different scaling factors for x- and y-scales or squareness
errors of the CNC machine tool, two sided clamping of the workpiece during
machining of the circular feature etc. Third order harmonics represent 3-lobed
deviations and can be related to clamping in a three-jaw chuck, straightness errors
of the machine slides etc. Fourth order harmonics represent 4-lobed deviations
and can be addressed to clamping in a four-jaw chuck, straightness errors of the
machine slides, backlash at reversal of slide movement etc.

In literature sometimes one principal harmonic order is selected and all other
orders are neglected, resulting in purely sinusoidal deviations, which are not a good
representation of reality [45, 49]; see for instance Figure 7.4(b) on page 131 that
clearly combines a second and third order deviation. As an alternative one can
add, besides the principal component, also some random harmonics. The roundness
deviation d(z) is built up as a Fourier series:

d(z) = Z ancos(nx + ¢,,) for x € [0,2n| (3.4)

with

N
a1 =0 and Zanzl

n=2

To obtain a deviation array, Eq. 3.4 should be evaluated for a discrete set of
equidistant points from the interval [0, 27r[. The values of the coefficients a,, should
be determined in such way that realistic form deviations are obtained. The first
order component is never taken into account for circles because this will cause a
shift of the centre point of the circle: roundness deviations from a least squares
circle will never contain a first order component (this can also be seen in Figure 3.3.
As a consequence a; is always 0. The amplitude a,, of the principal harmonic order
component (second, third or fourth order depending on type of form deviation) is
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chosen as a value between 0 and 1. All other amplitudes are distributed randomly
but in such a way that all amplitudes sum up to 1. A Dirichlet distribution can
be used to do this. When the principal harmonic order component equals 1, this
results in a perfect sinusoidal deviation. The smaller the value of the principal
component the more ‘randomness’ will be added. The value that was choosen as
maximum harmonic order N is 15 because analysis of real roundness deviations
showed that the roundness deviation is dominated by harmonics lower than 15
UPR (Section 3.2.2). Values for phase shifts ¢,, are chosen randomly between 0
and 2m. This is a simplification of reality because it does not take into account
the possible correlation between the phases of different orders. Due to the random
distribution of amplitudes and phases, the simulated roundness value will never be
exactly the same. Therefore every simulated profile is also rescaled to a standard
dimensionless roundness deviation of 1 (cf. Eq. 3.3 on page 54).

After rescaling, the profiles are stored in the form database. In case of simulated
profiles as many form deviation profiles as wanted can be added. Alternatively,
profiles could also be simulated in real time by the profile simulator, without storing
them in a database. However, calculating them in advance and storing them in a
form database saves time during the Monte Carlo simulation.

Figure 3.11 shows different examples of simulated roundness profiles. Each example
also shows the value used for the principal harmonic order. In Figure 3.11(d)
and 3.11(e) two principal harmonic orders were defined. Combining third or fourth
order principal harmonics with a second order results in ‘asymmetric’ 3- and 4-lobed
deviations. As much principal harmonics as wanted can be defined, as long as their
sum does not exceed 1. For Figure 3.11(f) no principal order was specified, which
means that all orders (up to 15 UPR) were determined randomly.

Simulation of linear form deviations

Because lines are also 1D features and since they are treated similar to circles when
building measured form databases (Section 3.5.1), it would also be interesting to
treat both 1D features similar with respect to simulated profiles. To do this, linear
form deviations would need to be simulated by means of Fourier series. A typical
linear form deviation is the bending or curving of a line (as in Figure 3.12(a)).
Although it is perfectly possible to describe a curved profile by means of Fourier
series it is much more difficult to simulate it based on Fourier series, since this
involves high order harmonics and strong correlation between the phases of the
different harmonics (which means they can not be chosen random as in the case of
circles).

Therefore it is difficult to treat linear form deviations completely similar to circular
form deviations. An interesting way to describe linear deviations, that has also
been used by other authors, is to make use of Chebyshev polynomials [54, 48].
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(d) a2 =0.4, a3 =0.3 (e) a2 = 0.3, a4 = 0.4 (f) all random

Figure 3.11: Examples of simulated circular form deviations.

Chebyshev polynomials of the first kind can be generated recursively:

To(z) =1 Ti(z)==x To(z) = 22T, -1 (x) — Th—a(x)

The first 5 Chebyshev polynomials of the first kind are as follows:

To(l') =1

Ti(z) =2

To(z) =222 -1

T3(z) = 423 — 3z
Ty(x) = 8z* — 822 +1

Chebyshev polynomials are usually used on the [—1,1] interval. On this interval
Chebyshev series can be used to approximate any continuous function, similar to
Fourier series. When using Chebyshev series to simulate a linear form deviation,
T>(z) can be used to represent the curvature component of the form deviation.
However when the form deviation would be generated by randomly assigning
values to the coefficients of the Chebyshev series this results in unrealistic form
deviations (very large deviations at the beginning and the end of the [—1, 1] interval).
Eventually the best solution seemed to take only T;(z) and T>(x) into account and
to combine these two terms with a Fourier series. Alternatively one could state
that a linear and quadratic term are added to a Fourier series. Mathematically this
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can be expressed as follows:

N
d(z) = sz + c(22® — 1) + Z ancos(nmx + ¢,) for x € [—1,1] (3.5)

n=1

with

N
ste+ Y an=1
n=1

To obtain a deviation array, Eq. 3.5 should be evaluated for a discrete set of
equidistant points from the interval [—1, 1]. Coefficient s represents the amount
of slope and coefficient ¢ the amount of curvature. For linear form deviations s
will always be zero, but Eq. 3.5 will also be used further on to generate planar
and cylindrical form deviations, where s will not be zero. Preliminary analysis
showed that for most real form deviations the curvature component is dominant [55].
Therefore the curvature is usually taken as principal component for the simulated
linear form deviations. The curvature can be convex or concave, this is determined
by the sign of coefficient c. Since in most practical situations both situations can
occur, coefficient ¢ is usually multiplied by a random sign (-1 or +1). The remaining
amplitude coefficients are, just as for circles, determined randomly but in such a
way that they sum up to 1. The default value for maximum harmonic order N is
taken as 15, since these orders seem to be dominating the straightness value [55].
Again every generated profile is rescaled to a standard dimensionless value of 1
before being stored in the form database.

Some examples of simulated linear form deviations are shown in Figure 3.12.
Figure 3.12(c) shows that combining a curvature component with the first order
harmonic can generate an ‘asymmetric’ curvature. For Figure 3.12(d) no principal
order was specified, which means that all terms (up to a15, 15 UPL) were determined
randomly. Notice that Eq. 3.5 also can be used for generating circular form
deviations, when coefficients s, ¢ and a; are taken zero.

Simulation of planar form deviations

Since form deviations for circles and lines are modelled as Fourier series (extended
with a curvature component in case of linear form deviation) it would be logical to
look for 2D Fourier series or to series of 2D polynomials to model form deviations
for planes. These 2D series have proven to be very useful for analysis purposes by
means of decompositions (e.g. Zernike polynomial decomposition is used to analyse
optical aberrations [56]). But when using these kinds of functions to model form
deviations by (semi-)random synthesis, it is very difficult to obtain realistic form
deviations.



PROFILE SIMULATOR 59

(¢) ¢=0.6,a1 =0.3 (d) all random

Figure 3.12: Examples of simulated linear form deviations.

Eventually a method was found to simulate planar form deviations based on
simulated form deviations for lines. Four such form deviations for lines are generated.
These four form deviations represent the borders of the plane. The form deviations
inside the plane are calculated as a weighted sum of the border values. The weighting
functions for the different borders all have value 1 at the respective border side
and decrease linearly to reach 0 at the opposite border. Mathematically this looks
as follows:

d(u,v) = di(u)wr (v) + da(u)w2(v) + ds(v)ws(u) + da(v)ws(u) (3.6)
with

wi(v) =1-v, wa(v)=v, ws(u)=1-u, wi(u)=u

The planar form deviation, expressed in u — v parameters, is represented by d(u,v).
The linear form deviation d; corresponds to border v =0, dy tov =1, d3 tou =0
and dy to u = 1. Figure 3.13 illustrates the different weighting functions graphically
in the u — v space. The total weight will sum up to 2. This does not matter since
the outcome will be rescaled to a standard dimensionless form deviation of 1, just
as for circles and lines.

It makes sense to take form deviations of the border lines as basis for planar
form deviations because measured lines are often part of a plane for actual CMM



60 INTEGRATING FEATURE FORM DEVIATIONS IN UNCERTAINTY MODELLING

Figure 3.13: Graphical illustration of weighting functions used to build planar form
deviations.

measurements. Since the linear form deviations for the borders all have magnitude
1, the magnitude of the form deviation along the u-direction of the plane will be
equal to the magnitude of the form deviation along the v-direction. In practice the
form deviation of a plane is often concentrated in one of the two directions. To
account for this, the ratio r is introduced. This user-determined ratio can be used
to rescale the deviation along the v and v-direction. Eq. 3.6 will adapt to:

d(u,v) = r[di (w)wi (v) + da(u)wa(v)]

+ (1 —7)[ds(v)ws(u) + dg(v)wg(u)] (3.7)

The simplicity of this method is considered as one of its major advantages. It
can reuse the profile simulation method for lines. Once the four line profiles are
obtained as n x 1 arrays the result can be calculated as a sum of outer products of
vectors, corrected with ratio r:

d=rlwy ®di + wi® do] + (1 —7) [ds @ wio + dy @ wo1]

where wp; represents a vector with n values increasing linearly from 0 to 1, and
wy represents a vector with values decreasing linearly from 1 to O.

Figure 3.14 shows some examples of simulated form deviations. Typical form
deviations like single curved and double curved form deviations can be obtained.
Therefore, to create the linear form deviations, the right combination of parameters
needs to be chosen. The summarizing parameters are shown in the figure captions.
Table 3.3 explains how these summarizing parameters are used to simulate the four
linear form deviations. The example with the twisted form deviation (Figure 3.14(e))
shows why the slope component s in Eq. 3.5 is necessary.

Simulation of cylindrical form deviations

Almost completely analogous to the way how planar form deviations can be built
based on four linear form deviations, cylindrical form deviations can be built based
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(a) u-curved, ¢ = 0.95, r = 0.95 (b) v-curved, c = —0.8, r = 0.2

(¢) uv-curved, c = —0.9, r = 0.7 (d) saddle-curved, ¢ = —0.9, r = 0.5

(e) twist,s = —0.95, r = 0.8 (f) random, r = 0.5

Figure 3.14: Examples of simulated planar form deviations.
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(a) 2-lobed, a =0.9,7=0.9 (b) 3-lobed, a =0.9, r =0.8  (c) 4-lobed,a =0.9, r =0.7

's

(d) taper, s =0.9, r =0.1 (e) bent, c = —0.9, r = 0.2 (f) barrel, c = 0.9, r = 0.3

;‘ m (

(g) hourglass, ¢ =0.9, r =0.1 (h) random, » = 0.6 (i) user-defined

Figure 3.15: Examples of simulated cylindrical form deviations.
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Summarizing ratio d1 do ds da
parameters

(a) ucurved r=095 ¢=0.95 c=0.95 random random
c¢=10.95,r=0.95

(b) veurved r=0.2 random random c=-038 c=-038
c=-08,r=02

(¢) uvcurved r=0.7 c=-09 c=-09 c=-09 c=-09
c=-09,r=07

(d) saddlecurved r=20.5 c=-09 c=-09 c=09 c=09
c=-09,r=05

(e) twist r=20.8 s=-095 s=0095 random random
s=—0.95r=0.38

f) random r=20.5 random random random random
r=0.5

Table 3.3: Parameters used to simulate the linear form deviations for building the
planar form deviations of Figure 3.14.

on two circular form deviations and two linear form deviations. The circular form
deviations will correspond to the circumference on both ends of the cylinder, while
the linear form deviations will be used for the axial direction of the cylinder. The
values for different positions on the surface of the cylinder are, just as for planes,
determined as a weighted sum of the four simulated 1D form deviations. The
mathematical function describing the process also looks very similar to its planar
counterpart (Eq. 3.6):

d(0,2) = di1(0)w1(2) + d2(0)ws(2) + d3(2)ws(0) + da(2)w4(6) (3.8)

The cylindrical form deviation d(f, z) is expressed in cylindrical coordinates. The
linear form deviation d; corresponds to the circumference for z = 0, ds for z =1,
while d3 corresponds to a surface line in axial direction for 8 = 0 and d4 for 8 = .
The shape of the weighting functions w3 and wy is slightly different as before:

wi(z) =1—2, ws(z2) =z,

[ 1-06/mn for6e|0,n] [ o/m for 0 € [0, 7]
w3(9)—{ 0/m—1 er@G[ﬂ,Qﬂ] ’ w4(9)—{ 2—-0/m fngE[ﬂ,Zw]

Figure 3.16 illustrates the different weighting functions graphically. The total weight
will again sum up to 2. Weighting functions w3 and w4 have this triangular shape
because the weight for # = 0 needs to be the same as the weight for § = 27 since it
describes the same position on the cylinder.
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1 2m 1 2m 1 |/2Tr 1 ] 2m 1 2m

Figure 3.16: Graphical illustration of weighting functions used to build cylindrical
form deviations.

Again the ratio r is introduced to determine the relative importance of the angular
versus the axial component of the form deviation. This changes Eq. 3.8 into:

(0, z) = r[d1(0)w:(z) + d2(0)w2(2)]

+ (1 —7) [d3(2)ws(0) + da(z)wy(6)] (3.9)

Just as for planes this can be implemented as a sum of vector outer products.

Figure 3.15 gives some examples of simulated cylindrical form deviations. Most
typical form deviations can be obtained by the right combination of parameters.
The summarizing parameters are shown in the figure captions. Table 3.4 shows the
parameters that are used for the two circular form deviations and the two linear
form deviations.

Since circular form deviations are generated with random phase, the lower circular
form deviation dy is rotated with respect to the top circular form deviation ds
as can be seen in Figures 3.15(a) to 3.15(c). For real measured form deviations
this rotation will seldom be observed, although some manufacturing processes, like
drilling, show spiral shaped form deviations [54]. Taking the phase of the principal
component (¢; with ¢ = 2, 3 or 4 for d; and ds) equal will allow to simulate a
non-twisted 2-lobed, 3-lobed or 4-lobed cylinder. Taking the curvature parameter
¢ of the same sign for d3 and d4 results in a barrel shape (both negative) or a
hourglass shape (both positive). Taking both curvature parameters of the opposite
sign results in bending. Instead of using predefined shapes it is also possible to
specify all parameters separately as done for Figure 3.15(i). The slope component
for the linear form deviation is necessary to model taper (Figure 3.15(d)).

Concluding remarks on simulated form deviations

The methods described in this section showed how feature form deviations for
circles, lines, planes and cylinders can be simulated. An important advantage of
the proposed method is its simplicity: all form deviations can be built with the
linear form deviation simulator. Circles can be simulated as linear form deviations
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Summarizing ratio d1 da ds dy
parameters

(a) lobe2 r=20.9 a2 = 0.9 a2 = 0.9 random random
a=0.9,r=09

(b) lobe3 r=0.8 az =0.9 asz =0.9 random random
a=0.9,r=038

(c) lobe4 r=0.7 as = 0.9 as = 0.9 random random
a=09,r=0.7

(d) taper r=0.1 random random s=0.9 s=0.9
s=09,r=0.1

(e) bent r=0.2 random random c=-0.9 c=0.9
c=-09,r=02

(f) barrel r=0.3 random random c=-0.9 c=-0.9
c=09,r=0.3

(g) hourglass r=20.1 random random c=0.9 c=0.9
c=09r=0.1

(h) random r=0.6 random random random random
r=0.6

(i) user-defined r=0.6 as =0.9 as = 0.9 c=0.8 c=-0.8

Table 3.4: Parameters used to simulate the circular and linear form deviations for
building the cylindrical form deviations of Figure 3.15.

without a curvature (¢) and first order harmonics (a;) component. Form deviations
for planes and cylinders can be built as a weighted sum of linear and circular form
deviations.

Most typical form deviations can be simulated, although there are also shapes
of form deviations that will be difficult to simulate (e.g. reversal errors). Surface
discontinuities are not considered as part of the form deviation (see Section 3.2)
and should not be simulated either. It should be emphasized that it is not the
main objective to model all form deviations as realistically as possible. The level of
detail should be sufficient to provide reliable uncertainty statements. If completely
unrealistic simulated form deviations would produce reliable uncertainty statements
it would be no problem to use these. Proving that the calculated uncertainties,
obtained from simulated form deviations, are reliable asks for sufficient measurement
data. In Section 3.10 this is carried out for two sets of 30 circles measurements:
calculated errors based on measured profiles are compared to errors obtained from
simulated profiles.
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3.5.3 Profile simulation based on form database

Once the form databases for the different features are built, based on measured
form deviations or on simulated form deviations, they can be used to simulate
feature profiles based on given feature parameters. Below this process is illustrated
for a circle.

In case of a circle, the position, orientation, diameters and roundness value of the
circle are given by the user. A random form deviation d is taken from the form
database or from one of the sub-databases. The standardized deviation array d is
multiplied with the given roundness value f and added to a perfect circle with given
position p, orientation o, and diameter s. The length n of the form deviation array
determines the number of points of the profile. The ith point C; of the circular
profile can be calculated as follows:

where N; represents the nominal point on the profile

2
N, =p+ ; (sin(6;)ny + cos(6;)nz) with 6; = z% for i=1...n

and D; contains the scaled deviation vector

D; = fd; (sin(6;)ng + cos(6;)ns)

d; is the value of d(x) (Eq. 3.4) for #,. n; and ny are determined in such way
that they form an orthogonal set of unit vectors with orientation vector o. The
orientation vector o is the vector normal to the projection plane of the circle:

o=mn; Xng with ||m]|=]n|| =1

The number of points n should be limited because it will influence the calculation
time of the next steps significantly. Nevertheless enough points are needed for
realistic representations of surfaces. Taking a number of profile points n between
100 and 500 seems to give satisfying results for circular profiles. For other features
the profile generation procedure is very similar. The detailed implementation can
be found in the source files.

3.6 Sampling module

Once a profile is generated, points can be sampled from this profile according to a
given sampling strategy (cf. overview scheme on page 47). These sampling point
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locations are represented by array I, containing a set of numbers between 0 and 1.
For circles this array can be obtained by dividing the probing angles by 27. An
equidistant sampling pattern of m points for a circle can be denoted as follows:

I=[0

1 2 m—1 }
m m m

Based on the sampling pattern I the probed points P; can be obtained from the
profile array C of a circle:

P,=C; with j=|Ln|+1 for i=1...m

|l n] represents the floor rounded value (i.e. largest preceding integer) of the ith
element of array ! multiplied by n. Since the number of points of the true profile
n is limited the actual probing positions will generally be between two points of
the true profile, that is why calculated index values of the true profile are rounded
to the closest lower integer. Alternatively interpolation between the surrounding
points of the true profile can be used. When using interpolation one should be
careful because linearly interpolated points will no longer lie on the true circle
profile. For a circle of diameter s without form deviation, the maximum error §
made by linear interpolation is equal to the height of the circle sector described by
two subsequent points of the profile:

SHEE)

For a circle with a diameter of 100 mm almost 500 points are necessary to make
the interpolation error § smaller than 1 gm. For n = 200 the interpolation error
is 6.2 um. To avoid these interpolation errors the closest trailing point on the
true profile is used. It would be more exact to use the closest point or a kind of
circular interpolation. Experiments showed that taking the closest trailing point
had almost no effect on the results, as long as the number of points composing the
true circle profile is sufficiently large (> 100). Therefore it was decided to stay with
this approach in order to save calculation time.

The implementation for sampling lines, planes and cylinders is analogue to circles.
For 2-D features (planes and cylinders) the size of the array [, representing the
probing locations, is m x 2, with m the number of sampling points. For lines, planes
and for the height direction of cylinders it is no problem to use linear interpolation.
In order to avoid interpolation errors linear interpolation should also be avoided
for the circumference direction of cylinders.
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3.7 Feature fitting module

After virtual probing of the profile, the probed points can be used to fit an associated
feature (cf. overview scheme on page 47). The kind of fitting algorithm is subjected
to the choice of the user. Several fitting criteria can be used. Table 3.5 shows which
fitting criteria can be applied for the different feature types [37].

Fitting criterion Circle Line Plane Cylinder
Least Squares (LSQ) ° ° . .
Minimum Zone (MZ) . . . .
Maximum Inscribed (MI) . .
Minimum Circumscribed (MC) ° .

Table 3.5: Applicable fitting criteria to different types of features.

In order to be able to compare the wirtually measured values (limited number
of sampling points) with the ¢rue values (all points) the same fitting algorithm
should be applied to the points representing the true profile, as already illustrated
in the scheme of Figure 3.5 on page 47. Since the number of sampled points is
usually much lower than the number of points representing the true profile, overall
calculation time during the Monte Carlo simulation is dominated by the calculation
of the true associated feature.

That is also the reason why all examples in the thesis are illustrated for the LSQ
fitting criterion. LSQ fitting algorithms for circles, lines, planes and cylinders are
well developed, fast and always have a unique solution. Other fitting criteria, like
e.g. MZ, MC and MI, are usually much slower and have bad convergence. In practice
almost always the LSQ fitting criterion is used (although it often would be better to
use more functional fitting criteria). Despite the fact that the LSQ fitting criterion
is very suited for its time efficiency, calculation times are often still too large to be
used in an online Monte Carlo method. An efficient way to improve calculation
time of the fitting algorithms is to adapt the convergence parameters. Usually
convergence criteria do not need to be as stringent for uncertainty calculation as
for other purposes. It is for instance no problem to have an error of 0.1 pm on the
calculated parameters of the LSQ feature if the measurement uncertainties of the
parameters are several micrometers.

3.8 Error calculation module

Once the measured and true associated feature parameters are known, these can
be used to calculate the errors. This results in an error on position, orientation,
size and form deviation (cf. overview scheme on page 47). The error of a given



THE NUMBER OF MONTE CARLO ITERATIONS, M 69

parameter Y is simply calculated as follows:

err meas,, _ true

X = X X

These error values are stored and the whole process shown in Figure 3.5 is repeated,
starting with the profile generation. This is repeated until the preferred number of
Monte Carlo iterations M is reached. M needs to be sufficiently high in order to
obtain representative error distributions (cf. right side of Figure 3.5). However, an
increasing number of iterations will raise the calculation time. Once the number of
iterations is reached, coverage intervals for the measurement errors of the parameters
can be determined from the distribution functions. Usually a (probabilistically
symmetric®) coverage interval with a 95% level of confidence used. All uncertainty
results in this text are calculated for a confidence level of 95% unless otherwise
specified.

For errors on size and form deviation the error calculated after each iteration is one
single value. For position and orientation this is an error vector (z,y, z) or (i, j, k).
To obtain a single error value for position, the distance error can be calculated:

errd — \/errpr + errpr + errpZQ

err

The angle error ¢"a can also be derived from the orientation error vector " 0.

Instead of just calculating the error, also a relative error can be calculated.
Appendix A explains why it can be useful to express the measured error of a
given parameter x relative to to the measured form deviation ™¢%° f. This relative
error is calculated as follows:

meas

_ true
reler'r‘x _ X X (310)

measf

3.9 The number of Monte Carlo iterations, M

Due to the stochastic nature of a Monte Carlo method (MCM), calculated
uncertainties (expressed as coverage intervals) will never be exactly the same when
calculations are repeated. This means that there is an uncertainty on the calculated
measurement uncertainty. The larger the number of Monte Carlo iterations M, the

more repeatable the calculated coverage intervals will be. How many iterations are
needed: 102, 103, 1067

5A coverage interval is not unique for a given confidence level. For probabilistically symmetric
coverage intervals the probability that the quantity is smaller than the smallest value of the
interval is equal to the probability that the quantity is larger than the largest value of the
interval. Alternatively the shortest coverage interval can be used. For symmetric probability
density functions both coverage intervals are the same.
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In this perspective it is interesting to look at the distribution of the sample standard
deviation. Since the sample standard deviation is a random variable on itself one
can determine its standard deviation. The standard deviation og of the sample
standard deviation S of a normal parent population (with standard deviation o) is
determined as follows [57]:

os=+v1—-c420 with ¢4 = 2 lrffz)l
T2

with n the number of samples and I' representing the Gamma function.

For large n the factor /1 — ¢42 is close to 4/1/(2n). This means that for n = 200,
os almost equals 5% of o. This equation could be used to select the number of
Monte Carlo iterations if one could assume normal output distributions. In practice
output distributions will often be non-normal. Because of this reason the number
of Monte Carlo iterations M is often determined experimentally by calculating the
measurement uncertainty multiple times. If the standard deviation of the width
of the coverage interval does not exceed 5% of the average width of the coverage
interval, the number of Monte Carlo iterations is considered to be sufficient. This
number will strongly depend on the type of measurand and other parameters
(like the used form database, confidence level of coverage interval, etc.). In most
situations taking a value of M between 200 and 500 gives satisfactory results.

An interesting alternative to calculate the uncertainty on the measurement
uncertainty is the use of resampling methods, like jacknife and bootstrap
methods [58, 59]. These methods are often used in statistics and have the advantage
that the uncertainties on the statistics (in this case the percentiles) can be calculated
on the same set of sample data (M simulated measurement errors in this case)
used to calculate the statistics. This means that the measurement uncertainty just
has to be calculated once. Since the time that these resampling methods take is
neglectable compared to the time that the error simulation takes, one can easily
calculate the uncertainty for every calculated measurement uncertainty.

Remark 3.1 The supplement to the GUM regarding Monte Carlo methods also
gives some directions for the choice of the number of Monte Carlo iterations M [21].
It is mentioned that the value of M should at least be 10* times greater than 1/(1—p),
with p the coverage probability. This means that for a 95% coverage probability the
value of M should be larger than 200 x 103. This number is unreasonably large
for uncertainty calculations with some level of complexity like the one used in this
research. It is also mentioned in the document that for some applications (like e.g.
finite element calculations) only a limited number of Monte Carlo iterations can be
performed; in these situations the probability distribution of the output value will
be less reliable.
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Another directive in that document suggests to determine M adaptively. It states
that the uncertainty result can be considered as been stabilized if twice its related
standard deviation is smaller than the least significant digit of the uncertainty
value. This means that if the width of the uncertainty interval equals 89 pm the
standard deviation on the width of this coverage interval (when calculated multiple
times) should be smaller than 0.5 pm. In the author’s opinion it makes no sense to
calculate the width of a coverage interval up to sub-micrometer accuracy if the width
of the interval is larger than 10 um. Expressing the desired calculation accuracy
relative to the width of the uncertainty interval seems a very natural choice but is
surprisingly not mentioned in this GUM supplement.

3.10 Results of the error simulation method

The error simulation method illustrated in Figure 3.5 and described in the previous
sections can be used to determine upper and lower confidence limits for the errors
due to limited sampling. This section illustrates the method for circular profiles.

Figure 3.17(a) shows the confidence limits of the measurement error, as a function
of the number of equidistant sampling points, for a circle with a circular form
deviation of 0.1 mm. Remember that the errors are only due to the interaction of
sampling strategy and feature form deviation. CMM hardware errors are not taken
into account. If the true form deviation of the circle would be zero, all simulated
errors would also be zero. Only the magnitude of the roundness is determined by
the user, not the shape and not the phase. For every Monte Carlo run another
shape is taken from the form database. The user can determine the content of the
database that is used in order to account for a known manufacturing signature: e.g.
only third order principal harmonics for rings clamped in a three-jaw chuck.

Results of Figure 3.17(a) were calculated for two types of form databases, based
on measured profiles:

MEAS1 A form database containing 30 filtered and rescaled circular profiles from
a series production of turned workpieces. All workpieces had a kind of 3-lobed
form deviation.

MEAS2 A form database containing 30 rescaled circular profiles from several
varying production techniques.

Notice that, for database MEAS1, the lower confidence limit for position is larger
than 0.03 mm for four equidistant measurement points, and much larger than for
five or more points. This means that in case of 3-lobed deviations the error on
position, for 4-points measurements, will be at least 30% of the true roundness
(0.1 mm). Similarly the possible errors on diameter and position with MEAS2 are
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Figure 3.17: Upper and lower confidence limits (95%) of simulated errors on the
parameters of the LSQ circle for two types of measured form databases (a) and for
two types of simulated form databases (b).

much larger for four points than for other numbers of sampling points. It is also
clear that the confidence limits from database MEAS2 bound the confidence limits
of MEAST (except for 6-points measurements on roundness).

Instead of using measured form databases, one could also use simulated form
databases, as described in Section 3.5. Figure 3.17(b) is created in the same way
as Figure 3.17(a) but two databases built by simulated form deviations are used
instead:

SIM1 A form database containing 3-lobed form deviations generated by using
a perfect third order harmonic deviation (ag = 1). The shape of all form
deviations is in this case the same, only the phase will vary.

SIM2 A form database containing 3-lobed form deviations generated by using
a third order harmonic deviation (a3 = 0.5) combined with other orders of

random magnitudes.
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It is clear, from the results in Figure 3.17(b), that the confidence limits for the errors,
while using a perfect 3-lobed sinusoidal deviation (SIM1), do not agree with the
confidence limits for measured 3-lobed form deviations (MEASI in Figure 3.17(a)).
This type of model should therefore not be used to model realistic form deviations.
When a third order harmonic deviation is combined with other random orders
(SIM2) the agreement with the results obtained from measured 3-lobed deviations is
much better (compare SIM2 and MEAS1). When using simulated form deviations,
one should make sure that the modelled deviations are realistic. Notice that, in
Figure 3.17(a) as well as Figure 3.17(b), the errors for diameter and position are
becoming zero once the number of sampling points is larger than 15, corresponding
to the limiting frequency content for the measured as well as the simulated profiles
(15 UPR)°.

This section showed that simulations allow to calculate the confidence limits of
the measurement errors for a given (assumed) value of true roundness and a given
measurement strategy (number of equidistant sampling points). Such simulations
can then be used to define the confidence limits for other values of true roundness,
because the measurement errors are directly proportional to the true roundness
value as long as hardware and environmental uncertainty contributors can be
neglected. The measurement errors will not only be directly proportional to the true
roundness value but also to the measured roundness value. Appendix A shows that
this knowledge can be used to determine measurement uncertainties for all feature
parameters based on the measured form deviation value. The described approach is
a new and theoretical interesting but is only valid if other uncertainty contributors
can be neglected. This implies that measurement uncertainties calculated according
to this approach will be underestimated in case of actual measurements. Chapter 5
describes how the error simulation method of this chapter can be used to determine
measurement uncertainties that combine the influence of feature form deviation
and CMM hardware uncertainties.

3.11 Conclusions

This chapter started with a case study to illustrate that the influence of form
deviations on the measurement result can be more important than all other
influences. The case shows that the form deviation may have a very large influence
on the measured position, diameter and form deviation. If the measurement points

SWhen the filtering of the measured profiles database is performed by using a Gaussian
weighting function as described in Section 3.5.1 the errors will not become completely zero once
the number of sampling points exceeds the filtering frequency, since frequencies larger than the
limiting frequency are not completely removed. In this example a filtering technique based on
the Fourier transform was used. This filtering technique works well for circles but not for other
features. For reasons of uniformity Gaussian filtering is eventually used for all kinds of measured
features.
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are always taken at the same location, measurement results are quite reproducible.
However, if the measurement points are taken at varying locations, the form
deviation largely influences the outcome and the dispersion of the measurement
results becomes twice as large as if the number of sampling points is smaller than
10. Also for a larger number of sampling points the influence of form deviation can
not be neglected. For high accuracy CMMs the relative influence of form deviations
on the measurement uncertainty will become even more important.

It is difficult to define what should be considered as form deviation. Current
standards do not define hard boundaries between form, waviness and roughness. It
is clear that local defects should not be considered as part of the form deviation. A
study on circular form deviations showed that the form deviation value is mostly
dominated by the lower order harmonics. It can be assumed that lower order terms
will also be dominant for linear, planar and cylindrical form deviations.

The objective of this research is to develop an uncertainty evaluation software that
integrates the influence of form deviation. This chapter was mainly devoted to the
error simulation method that simulates errors due to limited sampling on profiles
with a form deviation. CMM hardware errors were neglected in this chapter. An
important part of the error simulation method is the profile simulator which allows
to generate profiles based on measured form deviations or based on simulated form
deviations. Gaussian filtering was used to filter measured profiles in order to remove
effects of measurement noise and roughness. It was shown that form deviations for
circles, lines, planes as well as cylinders can all be simulated based on the method
to simulate linear form deviations. Measured and simulated form deviations are
rescaled to a standard dimensionless form deviation value of 1, and stored in a
form database. This form database is used to simulate feature profiles based on
given position, orientation, size and form deviation values.

The generated feature profiles are sampled according to a given sampling strategy
(e.g. six equidistant points) and the sampled points are used to create a measured
associated feature. Through comparison with the associated feature of the true
(unsampled) profile, errors on position, orientation, size and form deviation are
calculated. The process is repeated multiples times in order to obtain error
distributions for each of these feature parameters. The number of Monte Carlo
simulations will determine the calculation time. The optimal number will dependent
on the measured parameters, the level of confidence, used form database, etc. Taking
between 200 and 500 iterations is sufficient under most circumstances. The chapter
ended with some examples of error simulations for circles.

The next chapter will propose a method to model hardware errors of a CMM.
Chapter 5 will explain how the error simulation method of this chapter can be
extended to incorporate the modelled CMM hardware errors of Chapter 4 and
how this updated error simulation method can be used to calculate task-specific
measurement uncertainties.



Chapter 4

Modelling CMM hardware
errors

In the error simulation method, presented in the previous chapter, CMM hardware
errors were neglected. In order to obtain full task-specific measurement uncertainties,
also the influence of CMM hardware uncertainties needs to be taken into account.
This chapter presents a method to model geometric errors and probing errors of the
CMM. The next chapter shows how the error simulation method can be extended
to incorporate these hardware uncertainties.

4.1 Hardware uncertainty contributors

Although they are not the only measurement uncertainty contributors, CMM
hardware errors are often regarded as a very important source of measurement
uncertainty. For a conventional CMM, hardware errors can be divided into two
main categories:

Geometric errors Due to mechanical imperfections of guideways and carriages
of a Cartesian CMM, linear motions along the axes will not be perfectly
straight. These error motions are called geometric errors of the CMM.

Probing system and probe head errors Apart from the CMM geometric
errors, the probing system, possibly mounted on an indexable probing head,
will usually have a notable influence on the measurement uncertainty. The
influence of probing errors will depend much on the type of probing system
that is used.

75
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It should be clear that CMM hardware uncertainties can never be treated
without considering environmental influences, as already indicated in Section 1.7.1.
Environmental conditions (like temperature and vibrations) will have an important
influence on hardware uncertainties [60]. The next two sections will describe the
terminology regarding geometric errors and probing system configuration.

4.1.1 Geometric errors

For a conventional CMM, three linear motions are used to cover a Cartesian space.
Every linear motion involves six elements of deviation [61]:

o One positional deviation in the direction of motion (positioning error).

o Two linear deviations of the moving component (straightness errors).

e Three angular deviations of the moving component (pitch, roll and yaw
eITors).

EXZ: Straightness error motion of the z-axis in « direction
EYZ: Straightness error motion of the z-axis in y direction
EZZ: Positioning error of the z-axis

EAZ: Tilt error motion of the z-axis around x (pitch)
EBZ: Tilt error motion of the z-axis around y (yaw)

ECZ: Roll error motion of the z-axis

Figure 4.1: Error components for a straight line motion along the z-axis. Adapted
from [61].
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In this thesis the conventions according to ISO 230-1 are used!; these are illustrated
in Figure 4.1 for a motion along the z-axis. Besides the 6 errors of motion for each
axis, usually three additional squareness errors are defined because the three axes
are not perfectly perpendicular to each other. This means that the geometric errors
of a CMM can be described by 21 (3 x 6 + 3) parametric errors, if the rigid body
assumption is valid [62].

4.1.2 Probing system configuration

Figure 4.2 shows the different components of a probing system as they are referred
to in this thesis. Notice that not all probing systems will contain an articulating
system (also called articulated probe head). The figure is illustrated with a tactile
probe but the probe can also be optical (e.g. a laser line scanner); in that case
there will of course be no stylus or stylus extension.

Ram

Articulating system

Probe extension

(Articulating)

Probe probing system

Stylus extension

Stylus (shaft + tip)

[ W W ) W} W} W ) W)

Figure 4.2: Different components of a probing system.

4.2 Measuring geometric errors

When simulating CMM geometric errors, these errors should be realistic. Usually
measured geometric errors are not random; mostly a typical pattern can be
recognised in the geometric errors. In order to get acquainted with different
geometric errors of a CMM and to get an idea of the relative importance of
the different geometric errors, the parametric errors of the z-motion of the Coord3
MC16 CMM were measured by means of a laser interferometer (Renishaw ML10).

Taccording to ISO 230-1 the different deviations are denoted by capital letters; further in this
text lower case is used for reasons of readability (e.g. exx instead of EXX).
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Figure 4.3 shows the results for the positioning error exx and pitch error ebx.
The measurements were carried out as close as possible (y = 963,z = —691 in
machine coordinates) to the z-scale, that is glued to the granite table. Under these
measurement conditions the positioning error exx is (almost) not influenced by the
yaw error ecx and pitch error ebz.

The measurement showed a considerable positional deviation of about 14 pm over
the travel of the z-axis (1500 mm). This is large for a CMM in a temperature
controlled environment. It should be noticed that the temperature, in the metrology
room where the measurements took place, may deviate up to 1 °C, because of
people entering the room and imperfect temperature control. Since the CMM is
not equipped with thermal compensation, this affects the positioning error. Taking
into account the expansion coefficient of granite (6 x 1075 K1) learns that the
deviation can not be completely attributed to a temperature difference from 20°C.
It is very likely that a large part of the error can be removed by recalibrating the
CMM. However it will never be possible to remove the (linear) error completely
since (even small) temperature changes and drift of the machine will still cause
positional errors. A considerable amount of drift can be observed during the quite
limited time of measurement (+ 10 min); target position 0 has an error of 0 pm
for the first measurement and an error of + 1 pm for the last measurement.

It is remarkable that also the pitch error ebx has a ‘mainly linear’ behaviour. The
maximum observed pitch error over the measured range equals about (14 pm/m).
The monotonically raising pitch error is caused by bending of the granite table
which also serves as guideway for the z-motion (see Figure 1.1).

The bending of the granite table can also be observed from the straightness
measurement ezx depicted in Figure 4.4. Here is no linear component present since
for straigthness measurements the start point and end point are set at zero by
definition.

The results of the other parametric errors of the z-motion are given in Appenix B.
This appendix contains also the results of a second measurement executed at the
same height (z-value) but as far away from the x-scale as possible. The roll error
motion eax was not measured since this one can not be measured with a laser
interferometer. Roll error motions can be measured by means of electronic levels.
Squareness errors were also not measured.
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Figure 4.3: Measurement of positioning error (exz) and pitch error (ebz) along

x-axis.
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Figure 4.4: Measurement of straightness error (ezx) along z-axis.
4.3 Modelling geometric errors

4.3.1 Kinematic model of CMM-measurement

Most conventional CMMs can be modelled as a kinematic chain of 4 rigid bodies
connected by 3 prismatic joints. To each of the four rigid bodies a frame can be
assigned. The kinematic chain of the Coord3 CMM is depicted in Figure 4.5; the
frames are assigned as follows:

o Frame {0} is connected to the fixed CMM structure (granite table), and
corresponds to the machine coordinate system (MCS).

o Frame {1} is connected to the z-carriage (portal structure).

o Frame {2} is connected to the y-carriage (saddle).

o Frame {3} is connected to the z-ram.

The motion of the frames relative to each other, through the prismatic joints,
can be described by homogeneous transformation matrices. In case of error-free
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Figure 4.5: The kinematic chain of the Coord3 MC16 CMM.

prismatic joints, the homogeneous transformation matrix describing the pose of
frame {1} with respect to frame {0}, expressed in frame {0}, is as follows:

1 0 0] gz0x + Tene
0 1 0 0z
I = 0¥ (4.1)
0 0 1 020x
0 0 0 ‘ 1

This homogeneous transformation matrix is describing a simple translation.
Zene represents the value read from the z-scale (linear encoder of the x-scale).
(0z0z, oy0zx, 920z) corresponds to the beginning (home position) of the z-scale,
expressed in frame {0}. This means that the origin of frame {1} is connected
to the reference point of the scale reading unit mounted on the z-carriage. If
the coordinates (1x,1y,12) of a point with respect to frame {1} are known, the
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coordinates (0, oy, 0z) with respect to frame {0} are calculated as:

ox 1T
oY 1Y
=T (4.2)
0% 1%
1 1

If the error motions of the z-carriage are taken into account, Eq. 4.1 extends to:

1 —ecx ebr | 920 + Tepe + exx
ecx 1 —eax 0x + eyx
—ebr  eax 1 020x + ezx

0 0 0 | 1

It should be noticed that the error motions exz (x is used as wildcard character) of
Eq. 4.3 are no single values but that they depend on the position of the z-axis (cf.
Figure 4.3 and 4.4); this means that they are function of ze,.. Instead of exx(xep.)
the short notation exx is used. The short notation is also used to refer to the y-
and z-error motions.

The motion of the y-carriage, frame {2}, with respect to the z-carriage can be
described by a completely analogue transformation matrix:

1 —ecy eby 120y + exy
27 _ ecy 1 —eay | 1Y0Y + Yene + €yy
! —eby eay 1 120y + ezy

0 0 0 | 1

Yene Tepresents the value read from the y-scale. (120y, 190y, 120y) corresponds to
the beginning (home position) of the y-scale expressed in frame {1}. The origin of
frame {2} is connected to the reference point of the scale reading unit mounted
on the y-carriage. The transformation matrix describing the motion of the z-ram
frame {3} with respect to the y-carriage, frame {2} is again completely analogue:

1 —ecz ebz 220z + exz
3P _ ecz 1 —eaz 2y0z + eyz
2 —ebz  eaz 1 220z + Zene + €22
0 0 0 | 1

(2202, 290z, 2202z) corresponds to the position of the reference point of the scale
reading unit for the z-scale, expressed in frame {2}. This scale reading unit is
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mounted on the y-carriage.? The origin of frame {3} is connected to the beginning
(home position) of the z-scale.

Frame {3} is not suited to be used as reference frame since its position has no
practical value. It is better to use the end of the z-ram as reference frame (frame
{m} in Figure 4.5). This position is called the probe head mounting point, because
that is the position where the probe head is mounted. Since this is a position on the
z-ram, the transformation matrix describing the pose of frame {m} with respect
to frame {3} represents a simple translation:

1 0 0] 320m
0 1 0]3y0m
mp — 5 (4.4)
0 0 1]|320m
000 1

(320m, 3y0m, 320m) corresponds to the position the probe head mounting point,
expressed in frame {3}.

Based on J'T, 3T, 2T and T, the homogeneous transformation matrix describing
the pose of frame {m} with respect to frame {0} can be calculated:

§T =TT Ty

Calculating this set of matrix multiplications, and neglecting second order effects
(exx - exx = 0) gives following extensive matrix:

g 611R 0p0,m
0T =
01 x3 1
with
1 —ecz —ecy —ecx  ebz + eby + ebx
o R= ecr + ecy + ecz 1 —eaz — eay — eax
—ebr — eby — ebz  eax + eay + eaz 1

2For the z- and y- axes the scale reading units are connected to the moving z- and y-carriages
while the scales stay fixed. For the z-axis the scale is mounted on the moving ram and the
scale reading unit stays fixed on the y-carriage. This subtle difference does not matter for the
description of the kinematic model.
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and

Tene + 202 + 20y + 202 + 20m + exx + exy + exz
—ecz y0m + ebx 20y + ebz z0m — ecx(y0y + Yenc)
—(ecy + ecx)(yOm + y0z) + (eby + ebx)(20m + zenc + 202)

Yene + Y0z + y0y + y0z 4+ yOm + eyx + eyy + eyz
op" = +ecz z0m + ecx 0y — eax 20y — eaz 20m (4.5)
+(ecz + ecy)(z0m + 202) — (eay + eaz)(20m + zene + 202)

Zene + 20z + 20y + 202 4+ 20m + ezx + ezy + ezz
—ebz x0m + eaz yOm — ebz 20y + eaz(y0y + Yenc)
| —(ebx + eby)(x0m + x0z) + (eax + eay)(x0m + yOm + y0z) |

o' R represents the total angular errors of the z-ram expressed with respect to
frame {0}. It can be calculated as the sum of the angular errors of all separate
axes. op>™ represents the position of the probe head mounting point®. Errors on
this position depend on the positioning and straightness errors of the different axes,
but also on the angular error motions of these axes. These latter errors are the so
called ‘Abbe-errors’ and depend on the position of the probe head mounting point
with respect to the different scales. The closer to the scales, the smaller the effect
of these errors [63].

The position of the probe head mounting point is usually not the position of interest
when using the CMM. For tactile sensors the center of the stylus tip is determined
as reference, for optical sensors usually the center point of the field of view is
determined as reference point. The position of this reference point is important to
calculate the effect of the angular errors. The position of the probe tip, with respect
to the probe head mounting point can be expressed by following homogeneous
transformation matrix:

1 0 0]y
P 0 10 mYp
m 0 0 1] 2

0 0 O ‘ 1

b T does not include errors due to the probing system. The modelling of probing
errors is discussed in Section 4.4. To calculate the effect of CMM geometric errors
on the probe reference point (x,,yp, ), only its nominal position is needed. The
transformation matrix describing the complete kinematic chain of the CMM is
then calculated as:

PP =mTPT =
01><3 1

PR | op”P 1

3In Eq. 4.5 the parameters 0% are no longer accompanied by the leading subscripts (as in
Eq. 4.3 to 4.4) for reasons of readability.
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with

and

mTp — mYp(ecx + ecy + ecz) + mzp(ebx + eby + ebz)
opo"p = Opo’m 4+ | myp + mzplecr + ecy + ecz) — mzp(eaz + eay + eaz) (4.6)
m2p — mTp(ebr + eby + ebz) + myp(eax + eay + eaz)

One could wonder why squareness errors are not included in all equations above; the
equations only show 18 instead of 21 error components. In the model presented above
it is assumed that squareness errors are included in the straightness errors. When
measuring geometric errors, one usually considers straightness errors and squareness
errors as two different error components because they are usually measured in
different setups. In that case the straightness errors in the beginning and at the end
of the axis are always zero (see Figure 4.4). However, the squareness error can be
added to the straightness error by adding the squareness value (expressed as pm/m)
as a linear component to the straightness error. This approach was followed in the
present work.

Need for scale positions

Vector op”™(Eq. 4.5) is quite complicated because the real positions of the scales
(x0%) are taken into account. If the scales are treated as coincident with the axes
of the MCS (frame {0}) all 0% values are zero, and Eq. 4.5 simplifies to:

Tene + €XT + €xyY + €X2 — Yene €CT + Zenc(ebx + eby)
op”™ = Yene + eYyT + eyy + eyz — zenc(eax + eay) (4.7)

Zeme T €2X + €2Y + €22 + Yepc AT

This equation looks more like results obtained by other authors [64, 65, 66]. Eq. 4.7
shows that the only angular error that creates an error in z-position of the probe
head mounting point corresponds to the roll errors of the x-axis. Yet, more angular
errors will influence the total error on x- and y-position.

One could wonder why the position of the scales is usually not taken into account
when modelling CMM geometric errors. Most articles describing geometric errors
deal with compensating geometric errors of a CMM, or other machine tools. It is
the purpose to compensate the systematic errors as good as possible and not to
model the remaining errors after compensation. To illustrate that the position of
the scales does not matter for error compensation, Figure 4.6 shows a simplified
example for the compensation of an error motion of one axis (z-axis).
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Figure 4.6: Two axes configurations that describe the same error motion.

Figure 4.6 shows an axis that is bent, resulting in a yaw error ecz. The positioning
error of the axis is represented by exx. The z-errors can be calculated as follows:

Ty = exx + ecry

If the positioning errors are considered to be zero, the errors will rise with increasing
y-value, as illustrated in Figure 4.6. The measured geometric errors can be used to
compensate for the error motions. The geometric errors exx, ecx could be measured
with a laser interferometer that is positioned as close as possible to the z-guideway
(y = 0). However, if the laser interferometer is positioned further away from the
z-guideway (y = y1) positive positioning errors will be measured by the laser
interferometer. This measured positioning error exz’ can not be considered as a
scale error since it is the consequence of the straightness error of the z-guideway.
The measured yaw error ecz’ will stay the same. It can be considered as a virtual
guideway with following geometric errors:

erzs’ = exx + ecxy,

ecx’ = ecx

The z-errors induced by this virtual guideway are the same as the one of the actual
guideway:

Ty = exax’ +ecx'(y —y1) = exx + ecxy

This example shows that the position of the axes in the CMM model is not
important for the compensation of systematic error motions. It does not matter
whether or not the measured positional and linear deviations are also influenced
by angular errors of the guideway. As long as the geometric errors do not change
the calculated compensations will be the same. However, in order to determine the
measurement uncertainty (after calibration of the CMM) the position of the axis
is really important. If there are uncompensated yaw-errors in the example above,
they will hardly influence measurements close to the z-scale (y &~ 0) while they
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can have an important influence for measurements further away from the x-scale
(y>0).

If one wants the CMM model to reflect the ‘Abbe-errors’ [67] correctly, the position
of the scales should be integrated in the CMM model. Measurement positions further
from the scales will have higher measurement uncertainties than positions close to
the scales. This should be integrated in the uncertainty calculations. Therefore it
is important that the positions of the scales are modelled correctly.

When geometric errors are simulated (see next section), positioning errors are
considered as caused by the scales while straightness and angular error motions are
considered as caused by the straightness of the guideways. If the position of the
simulated axes does not correspond with the actual position of the scales, errors
due to ‘Abbe-offsets’ are not reflected correctly by the simulated geometric errors.
For this reason it is very important to integrate the positions of the scales in the
kinematic model of the CMM.

4.3.2 Simulating geometric error components

Equations 4.5 and 4.6 can be used to simulate errors on the position of the probe
head mounting point and the probe tip position. In order to do so, information about
the configuration of the CMM (position of the scales) is needed and information
about the geometric errors of the CMM. Information about the configuration of the
CMM can be easily obtained (see further in Section 4.3.3). Obtaining information
about the geometric errors of the CMM is not so obvious. Measuring the geometric
errors of a CMM can be done in several ways: e.g. by laser interferometer and
electronic levels or by means of multilateration techniques [68]. Regardless of
the used method, measuring all 21 geometric errors is very time consuming. But
knowing the true geometric errors is not essential for uncertainty modelling :

e If the measured geometric errors are known, they should be compensated.
This can be done by changing the compensation table of the CMM or by
compensating the measurement result (based on the available kinematic
model of the CMM). The concept that known systematic errors should be
compensated, and not included in the measurement uncertainty, is one of the
basic principles of the GUM [13].

e Measured geometric errors can seldom be considered as invariable. In a limited
time period, geometric errors often stay quite constant, but when geometric
errors are remeasured after a longer period, they can look very different due
to drift of the machine. Section 4.2 showed that this drift can already be
significant for a very small time slot (+ 10 min).
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e For measurement uncertainty determination it is important that the obtained
measurement uncertainties are reliable. The actual values of the the true
geometric errors are not known and do not matter, as long as the calculated
measurement uncertainties are reliable. The actual values of the true geometric
errors are needed for calibration, but not for measurement uncertainty
determination.

The central idea of the proposed approach is that it is impossible and unnecessary
to know the true geometric errors of a CMM for uncertainty calculations. This is in
contrast to the approach used in current implementations of uncertainty evaluation
software for CMMs (see Section 2.4.2). Although it is unnecessary to know the true
geometric errors, this does not mean that it is unnecessary to be able to simulate
realistic geometric errors. Realistic geometric errors will be necessary to simulate
realistic measurement errors in order to obtain reliable measurement uncertainties.

Before starting to model geometric errors, one should first have a look at some
measured geometric errors. Remember that the geometric errors are no single value
but that they depend on the position of the related axes: exx on x-position, exy on
y-position and exz on z-position. Section 4.2 shows that the measured positioning
and angular errors can be considered as mainly linear with some added curvature.
No extensive study of geometric errors of CMMs was carried out during this research.
However based on in-house experience on other machine tools and examples from
literature [3, 65, 28] the hypothesis that geometric errors are dominated by linear
and curvature components seems to be valid. Simulated geometric errors should
have similar properties as measured geometric errors. Simulating these kinds of error
profiles shows similarities with simulating linear form deviations (Section 3.5.2).
This is not surprising since several geometric errors are also due to straightness
deviation of the guideways. Therefore it was decided to use Eq. 3.5, which was
applied in Chapter 3 to model linear form deviations (d(z)), also for modelling
geometric errors (e(z)):

N
e(z) = sz +c(222 — 1) + Z ancos(nmr + ¢p,) for x € [—1,1] (4.8)

n=1

with
N
s+c+2an:1
n=1

The values of parameters s and ¢ will determine the importance of respectively the
linear and curvature component of the geometric error. N determines the maximum
harmonic order, expressed in undulations per length (UPL). The simulation of
geometric errors by means of Fourier series has already been applied in Monte
Carlo simulations for machine tools and CMMs [29, 30].
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The values for a,, can be specified by the user but are usually determined randomly.
A geometric error will be represented by a vector e. It describes a geometric
error (e.g. exx) over the length of the respective axis. For simulated linear form
deviations, this simulated error vector is rescaled to a (dimensionless) range of
1. In contrast, to simulate geometric errors the maximum absolute value of the
error vector e is rescaled to 1. Additionally, and also different from the situation
for linear form deviations, the first value is put at zero because geometric errors
are zero by definition at the origin of the scale. This zeroing is implemented by
subtracting the first value from the complete error vector; the scaling by dividing
the vector by its maximum absolute value:

e+ e—e(l)

. e
e ¢
max(|e|)

The advantage of having this rescaled error vector is that it can be rescaled to a
error vector of whatever magnitude, just by multiplying it by a given error value
etot- This will be the largest value of the geometric error over the total range of
the axis:

€ < €iot €

A realistic value for e;,; should be chosen. In reality the geometric error will be
strongly dependent on the length. The longer the travel of the axis, the larger the
error can be. Therefore it would be logical to choose these values proportional
to the length of the axis. One can choose these values based on the ISO 10360
specification of the CMM. E.g. a CMM with a specification of 5 pm + 5 pm/m will
not show positioning errors of 20 pm/m. Based on the performance specification
one can roughly estimate the maximum possible value for the geometric error
€maz that represents the maximum error value per travel length.? Once e,qq is
known, e;,; can be determined by multiplying e, with the total travel ¢ of the
axis (in meter). Not every simulated geometric error component needs to have the
maximum value, errors will often be smaller. The sign of the errors can also be
positive or negative. That is why eso is determined by additionally multiplying
€maz With a random value, ranging between —1 and 1:

etot = rand(—1,1)t emax
Figure 4.7 shows the simulated positioning and straightness errors for one virtual

CMM. Figure 4.8 shows the angular errors. Table 4.1 shows the parameter settings
that were used to generate the geometric errors.

Yemaze is expressed in pm/m for positional and linear deviation and is expressed in pm/m2 for
angular deviations.



MODELLING CMM HARDWARE ERRORS

90

[ww] z
0 00¢- 00— 009- 008-
9-
-
\l\l\ [
0
Z
14
(zZz3) sixe-7 Joia Buuonisod
[ww] A
000T 008 009 ooy 00¢ 0
9-
P
-
0
4
14

(AZ3) uonoalIp Z Ul A JO uonow Jo.ld ssauyybrens
[wuw] x
0002 00ST 000T 005 0

(XZ3) uonoalip 7 ul X 40 uonow Jo.ld ssauybrens

[wr] Joug

[wr] Joug

[wr] Jou3

[ww] z
0 00z- 00v- 009- 008-

(ZA3) uondallp A Ul Z Jo uonow Jo.ld ssauybrens

[ww] A
000T 008 009 ooy 00¢ 0
9-
-
-
0
4
14
(AAT) sIxe—A Joild Buiuonisod
[ww] x
0002 00ST 000T 00S 0
9-
-
-
0
4
14

(XA3) uondaIIp A Ul X JO uonow Joud ssauybrens

[wnl] Jou13

[wn] 1oz

[wr] 1oz

0

[ww] z
00z- 00v- 009-

008-

(ZX3) uondalip X Ul Z Jo uonow Jo.ld ssauybrens

000T

[ww] A
008 009 [0]0]74 002

(AX3) uonoaIIP X Ul A JO UOOW J0113 Ssaulybrens

0002

[wuw] x
00ST 000T 005

(XX3) sixe-x 10113 Buluonisod

[wr] Joug

[wr] Jou3

[wr] Jou3

ing and straightness errors for a virtual CMM.

0on

lated positi

imu

S

Figure 4.7



91

MODELLING GEOMETRIC ERRORS

[ww] z
0 002- 00v— 009- 008-
ml
0
S
(z03) sixe—z uonow Joua ||oY
[ww] A
000T 008 009 ooy 00¢ 0
m|
0
S
(AD3) A Jo uonow Joud meA
[ww] x
0002 00ST 000T 00S 0
ml
0
S

(XD3) X JO UonoW Jo11e MeA

[wywn] Jou3

[wywnr] Jo13

[wywnr] 1013

[ww] z
0 002- 00v— 009— 008-
ml
0
S
(Z93) A punoue 7 Jo uonow Joua il
[ww] A
000T 008 009 ooy 00¢ 0
ml
g’ 0
S
(Ag3) sixe-A uonow Jowa [0y
[ww] x
000¢ 00ST 000T 00S 0
ml
0
S

(Xg3) X J0 uonow Jo.ad yaud

[wywr] so113

[wywr] o113

[wywr] Jou3

[ww] z

0 002- 00v— 009— 008-
m|
0
S
(Zv3) X punoJe Z Jo uonow Joud il
[ww] A
000T 008 009 ooy 00c 0
nh1|
0
S
(AV3) A Jo uonow Jous youd
[ww] x
0002 00ST 000T 00S 0
m|
0
S

(Xv3) SIXe—x uopow Joua (|oy

[wywn] Jou3

[wywnr] Jou3

[wywnr] Jou3

Figure 4.8: Simulated angular errors for a virtual CMM.
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s c N t emax s ¢c N t emax
excx 08 01 7 16m 7pm/m | eax 0.6 7 16m 10 pm/m?
eyr 05 04 7 16m 7pum/m | ebz 0.6 7 1.6m 10 pm/m?
ezx 05 04 7 16m T7pm/m | ez 0.6 7 16m 10 pm/m?
ecy 05 04 7 10m 7pm/m | eay 0.6 7 1.0m 10 pm/m?
eyy 08 01 7 10m 7pm/m | eby 0.6 7 1.0m 10 pm/m?
ezcy 05 04 7 10m T7um/m |ecy 0.6 7 1.0m 10 pm/m?
ezz 05 04 7 08m 7pm/m | eaz 0.6 7 08m 10 pm/m?
eyz 05 04 7 08m T7pm/m | ebz 0.6 7 0.8m 10 pm/m?
ezz 08 01 7 08m 7um/m | ecz 0.6 7 08m 10 pm/m?

Table 4.1: Parameters used to simulate the geometric errors of Figure 4.7 and 4.8.

All geometric errors are generated independently from each other, so there will be
no correlation between different geometric errors. This is a simplification of reality
because:

o Several errors are mainly due to thermal deviations, which makes these errors
positively correlated. If the temperature of the axes is too high, all axes
will usually have positive positioning errors. The proposed method could be
adapted to account for this shortcoming.

e Straightness errors are normally strongly linked with pitch and yaw errors.
These angular errors are usually caused by the straightness deviation of the
axis. Roll and yaw errors often approximate the derivatives of the straightness
profiles. This connection is not taken into account by the proposed method.

4.3.3 Calculating error states of virtual CMMs

Once all geometric errors are simulated, Eq. 4.5 can be used to calculate the
resulting errors on the probe head mounting point in the measurement space of the
CMM. The representation of all errors in the measurement space of the CMM is
called the error state. To calculate this error state, information about the position
of the axes is needed. Table 4.2 shows the values of the axes position parameters
used to calculate the error state for the Coord3 MC16 CMM.

020z  -120 mm 0y0x 1400 mm 020z -950 mm
120y 0 mm 1y0y  -1410 mm 120y 1085 mm
220z 95 mm 2y0z -30 mm 220z 265 mm
3x0m 25 mm | 3yOm 40 mm | 320m  -400 mm

Table 4.2: Axes position parameters used to simulate the error state.
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The leading subscripts in Table 4.2 are used to indicate that the axes positions are
expressed relative to the preceding frame; for reasons of readability these subscripts
were not used further on. From equation (4.5) the relationship between the nominal
(error free) position of probe head mounting point, expressed in the MCS, and the
values read from the scales Tepe, Yene, Zene can be derived:

0Tm = Tene + 20T + on + 20z 4+ z0m
0Ym = Yenc + yox + yOy + yOZ + yOm (49)
0Ym = Zene + 202 + 20y 4+ 202 4+ 20m

It is assumed that the home position of the scales (ene, Yene, Zene = 0) corresponds
to the nominal home position of the probe head mounting point expressed in the
MCS (0Zm; 0Ym, 02m = 0). This means that the sum of all axes translations should
be zero:

20z + 20y + 20z + 20m = 0
y0z + y0y 4+ y0z + y0m =0
20z 4+ 20y + 202 + 20m =0

The values of Table 4.2 meet this requirement. If these axes position parameters are
known and the 18 geometric errors are simulated, Eq. 4.5 can be used to calculate
the errors on the position of the probe head. If the effect of geometric errors on
the center of the probing tip needs to be known, Eq. 4.6 should be used. Figure 4.9
shows the calculated state spaces for the axes position parameters of Table 4.2 and
the geometric errors represented in Figure 4.7 and 4.8.

These figures represent the x, y, and z-errors of a virtual CMM with the same
measurement volume and the same configuration of its axes as the Coord3 CMM.
The ‘intersection’-planes dividing the measurement volume into eight sub-volumes
do not have a specific meaning. They are used for better visualisation of the errors.
All errors are zero for (oZm, 0Ym,02m) = (0,0,0) since all geometric errors are zero
(by default) at the home position of the axis. The bottom-right figure, representing
the 3D-error state, indicates the total distance error that is calculated as follows:

errd — \/errx2 + erryZ + errZZ

Therefore this error will always be positive. This distance error is only included for
visualisation purposes and to have a measure for the total error. This error will
not be used further on.

Although the positions close to the origin show small errors, and positions further
from the origin mostly show larger errors, this does not mean that the CMM will
measure more accurately in zones that show small errors. The error gradients are
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important for the error on the measurement result, not the magnitude of the error.
This can be explained most easily with an example: suppose that a small circle is
measured in a zone with large errors but with small spatial gradients in the error.
If only CMM geometric errors are taken into account, this will lead to very small
errors on diameter and roundness because the errors on the separate measured
points are (almost) all the same. There will be an error on the position of the
circle when its position is expressed in the MCS but this error is not important.
If a second circle is measured close to the first one, this circle will show the same
error on position (expressed in the MCS) which means that there will be (almost)
no error on the distance between the two circles. If a third circle is measured far
away from the first one, in a zone with low errors and low spatial gradients, it will
show very small errors on diameter, roundness as well as position (expressed in the
MCS). The measurement error on the distance between circle 1 and circle 3 will be
large, as might be expected for a large distance measurement.

4.3.4 Selecting representative virtual CMMs

Although the error states, calculated in the previous section, represent the x,
y, and z-errors of a virtual CMM with the same measurement volume and the
same configuration as an actual CMM, it is not guaranteed that the error will be
representative for the actual CMM. The simulated errors should not be the same
as the errors of the actual CMM but should be representative for this CMM. This
means in the first place that their magnitude should be approximately the same.
The chosen magnitude of the geometric errors will determine the magnitude of
the errors at the probe mounting point (and probe tip center). One could check
if the magnitude of the errors of the actual CMM corresponds to the magnitude
of the simulated errors by comparing an actually measured reference artefact (e.g.
gauge block) with a simulated measurement of that object. Yet performing actual
measurements can take a lot of time.

It is not necessary to make use of actual measurements if one uses the ISO 10360
performance specification for length measurements. If there is a valid ISO 10360
specification, one knows that every length measurement (according to ISO 10360)
will have an error lower than the given limit. This information can be used to check
if measurements of the virtual CMM fall within these limits. Every virtual CMM
will by subjected to a virtual ISO 10360-2 test. This test is used to check if the
virtual CMM is representative for the true CMM.

Details about ISO 10360-2 were already discussed in Section 2.2. A set of five
material standards of size (step gauge or gauge blocks) needs to be measured
in seven different orientations on the CMM, and each measurement is repeated
three times. The shortest material of size should be smaller than 30 mm, the
longest should be longer than 66% of the largest spatial diagonal of the measuring
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volume of the CMM. For each of the 105 measurements, the error on size E is
calculated. All errors are plotted on a graph as a function of the measured length.
Figure 4.10 shows the graph of such a simulated measurement for the virtual
CMM represented in Figure 4.9. Measurements labelled as d1, d2, d3 and d4
represent measurement errors along the four diagonals; measurement labelled x, y
and z represent measurement errors along the respective axes. Every length is only
measured one time instead of three times, since no random geometric errors or
probing errors are included. Performing the same measurement three times would
yield three times the same result. This means that only 35 virtual measurements
are done rather than the 105 (35 x 3) measurements required by ISO 10360-2.
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Figure 4.10: ISO 10360-2 test for the virtual CMM of Figure 4.9.

The results in Figure 4.10 show that not all virtual measurements fall within the
MPE-limits of the actual CMM (5 pm + 5 pm/m). But the errors are also not
extremely large compared to the MPE. Other virtual CMMs, created with the
same parameters showed errors that were all lower than the specified MPE. This
means that the chosen parameters for the simulated geometric errors e, , are
satisfying. In order to measure how well the simulated CMM corresponds to the
performance specification of the actual CMM, a performance indicator v for each
virtual CMM is calculated:

U:min(

where ¢""[ represents the virtually measured error on a given length and "P¢]
represents the maximum permissible error for that length. If the performance
indicator v is lower than 1, the virtual CMM has not passed the ISO 10360 test
and is considered as unsuited for simulation purposes. If the value of v is higher

mpe]

) for all 35 measured lengths

errl
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than 2, which means that no measured error is larger than half its MPE, the errors
are considered as too small. In this case the virtual CMM is not representative for
the actual CMM, because its errors are too low.

If virtual CMMs are used for error simulation in a Monte Carlo method, multiple
virtual CMMs will be needed. It is impossible to choose the parameters for the
geometric errors in such way that all simulated CMMs have values of v between 1
and 2, because the generated geometric errors have a large degree of randomness. If
too much (e.g. more than 50%) virtual CMMs fail because their errors are too low
or too high, the parameters for the generation of the geometric errors are probably
wrongly selected and should be adapted.

4.4 Modelling probing system errors

4.4.1 Modelling the nominal position of the probe tip

Figure 4.11: Represenation of an articulating system with two angles (Renishaw
PH10M), adapted from [69].

In order to complete the kinematic model of the CMM, the position of the probe tip
with respect to the probe head mounting point is needed (see Eq. 4.6). Therefore
the dimensions and the configuration of the probing system have to be known.
Figure 4.11 shows a drawing of the articulating probe head, equipped with probe
and stylus, used on the Coord3 CMM. The nominal position of the probe tip with
respect to frame {m} (;Tp, mYp, m?p) can be easily expressed as a function of the
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A and B angles (04,05) of the articulating probe head system:

mLp rLp
m :nR mP™" r
- P Y (4.10)
m~&p 01><3 1 r&p
1 1
with
cos(f4)cos(fp) —sin(fp) —sin(f4)cos(fp)
T R= cos(0a)sin(fp) cos(fp) —sin(64)sin(fp)
sin(64) 0 cos(04)
and
mTr
mpm’r = mYr
mz’r‘

(+Zps +Yp, r2p) Tepresents the position of the center of the stylus tip, expressed
in frame {r}. The origin of frame {r} corresponds to the center of rotation of
the articulating probe head. This frame is connected to the last linkage of the
articulating probe head (linkage where probe is mounted); this means that the
position of the probe tip with respect to frame {r} does not change with changing
A or B angle. | R is a rotation matrix representing the A and B rotation of the
articulating probe head. This matrix is valid for the mounting configuration of the
PH10M probe head on the Coord3 CMM (65 corresponding to a rotation around
the positive z-axis, 84 to a rotation around negative y-axis when 85 = 0). For other
mounting configurations, matrix |, R will look slightly different. ,,p™" represents
the position of the center point of the articulating probe head, with respect to the
probe head mounting point. This is the intersection of the A-axis and B-axis and is
usually only offset in negative z-direction with respect to the probe head mounting
point:

(mxm mYr, mzr) = (07 0, _ZT)

For straight styli the nominal center position of the stylus tip (,zp, rYp, r2p) is
usually only offset in negative z-direction over a length [,:

(rxpv rYps rzp) = (07 0, _lp)

In this specific situation Eq. 4.10 results in:

mTp sin(64) cos(0p)l,
mYp | = | sin(fa)sin(fp)l, (4.11)

mZp —l, —cos(0a)l,



MODELLING PROBING SYSTEM ERRORS 99

These calculated nominal positions of the center of the stylus tip can be used in
Eq. 4.6 to calculate the errors on the center point of the probe tip due to the
geometric errors of the CMM. Knowing the nominal position will be sufficient.
Information about the position of the probe tip is needed to know the actual
Abbe-distances to the different axes. E.g. the errors on probe position due to the
roll of the z-axis (ecz) can be neglected for 4 = 0, but can not be neglected for
04 > 0. The errors of the articulating probe head will hardly influence the effect of
geometric errors on the position of the probe tip. Errors of the probe and probe
head can be modelled separately and added to the probe tip errors caused by
geometric errors.

4.4.2 Modelling errors of the articulating probe head

The angles 84 and 65 of most articulating systems cannot be changed continuously
but will be changed in discrete steps of fixed angles (7.5° for the PH10M). These
angular positions are not sufficiently accurate to determine the position of the probe
tip. However, the repeatability of the different angular positions is very good. This
means that the relative position of the probe tip can be calibrated before the start of
the measurement. This is also the used procedure in practice. All necessary probing
system configurations are calibrated in advance. Once calibrated, all available
probe configurations can be used with a very good repeatability. Although the
repeatability of the articulating system is very good, the introduced errors can
not be neglected, certainly when probe or stylus extensions (see Figure 4.2) are
used. The influence of angular deviations from the nominal positions on the probe
position can be obtained from Eq. 4.11. The angular errors 704 and ¢ "fpg are
considered as the only relevant errors for the articulating probe head. This is a
simplification of reality, since the real rotations around the A-axis as well as the
B-axis exhibit three linear and three angular errors.

In order to quantify the errors of the articulating probe head, the manufacturer’s
specifications are used. Repeatability values for the angles 4 and 6 are not
specified. Instead the repeatability of the probe tip is specified for a given probe
and stylus length. For a length [, of 62 mm the specified repeatability of the
probe tip is 0.5 pm (20) for the used probe head [69]. From these specifications an
approzimating value for the standard deviations of the angular errors €78 4 and
€@ can be obtained:

5/2-1073
a(“"04) = o(“"0p) = arctan <O5/620> =0.83"

These values are used to model probe position errors due to the articulating probe
head. These errors stay the same as long as the probe orientation is not changed;
so in that case they can be considered as a kind of systematic errors. Errors of the
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articulating probe head will have no influence on the hardware uncertainties if only
one probe configuration is used during the measurement.

4.4.3 Modelling errors of the probe

Besides geometric errors and errors of the articulating probe head, there are also the
errors of the probe itself that will have an influence on the hardware uncertainties.
Multiple probes, and probe configurations, can be used on one CMM. For modelling
probe errors in detail, a dedicated model for every type of probe is needed. Modelling
probe errors can be very difficult due to the large number of parameters and settings
that will influence the probe errors: measurement speed, contact force, stylus length,
probe tip diameter ... Modelling uncertainties of optical probing systems, like vision
probes or laser line scanners, becomes even more complicated because the errors will
strongly depend on environmental conditions (lighting) and surface properties of
the measured objects (reflection, translucency) [70, 6]. Because of these difficulties,
a pragmatic solution was chosen. The probe errors are modelled as random errors
defined by given standard deviations for three orthogonal directions:

(67’7” (GT‘T’ (C’I”T’

[U T.%‘p),(f ryp)va rzp)]

These values are determined by the user and can be derived from actual tests
or from specifications (e.g. ISO 10360 specification MPEp for the probing error).
Considering probe errors as purely random errors does not comply with the real
behaviour of most probing system: e.g. switching touch-trigger probes exhibit
systematic errors due to the varying pre-travel distance, laser line scanners have
important systematic errors as a function of scanning depth [71, 6]. Although it is
possible to model the probe error as a combination of a systematic and random
component it was decided to model the probe error as a purely random error to
reduce the complexity.

4.5 Conclusions

This chapter discussed the modelling of CMM hardware errors. The measurement
accuracy of the CMM will vary over the measurement volume, mainly because of
the varying Abbe-offset to the scales. In order to model this behaviour accurately,
the position of the scales needs to be incorporated in the kinematic model of the
CMM. Based on the kinematic model and the 21 geometric error components, the
error state of the complete CMM volume can be determined. It is impossible and
unnecessary to know the true non-compensated geometric error components, but
one should be able to model realistic geometric error components.



CONCLUSIONS 101

The method used to model these geometric error components is similar to the one
used to model linear form deviations in Chapter 3. Based on the kinematic model
of the CMM and simulated geometric error components, virtual CMMs can be
built. In order to check if a virtual CMM exhibits errors that are representative for
the actual CMM, a virtual ISO 10360-2 test is performed. Besides the modelling
of CMM geometric errors, this chapter also describes the modelling of probe and
probe head errors.

The next chapter describes how the modelled hardware errors can be included in
the error simulation method of the previous chapter.






Chapter 5

Determining task-specific
measurement uncertainties

This chapter shows how the error simulation method of Chapter 3 can be extended to
incorporate the modelled hardware errors of Chapter 4 and how this updated error
simulation method can be used to calculate task-specific measurement uncertainties.

5.1 Error calculation method extended with hardware
uncertainties

The methods to simulate the CMM geometric errors and probing system errors,
described in Section 4.3 and 4.4, can be used to integrate CMM hardware
uncertainties into the error simulation method. This is realised by extending
the sampling module of the error simulation method (see Figure 3.5 on page 47).
Instead of just sampling the points and sending the sampled points directly to the
feature fitting module, hardware errors are added to the sampled points. These
hardware errors consist of CMM geometric errors and probing system errors. An
updated schematic presentation can be found in Figure 5.1.

The hardware uncertainty database consists of a set of virtual CMMs equipped
with virtual probing systems. These virtual CMMs are generated in advance,
according to the methods of Section 4.3 and 4.4, and show possible behaviour of
the actual CMM. The coordinates of the points that are sampled from the true
simulated profile will be expressed in the MCS. Simulated measurement errors due
to geometric errors, errors of the articulating probe head and probe errors will be
added to the sampled points.
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Figure 5.1: Scheme of Monte Carlo method to simulate influence of form deviations
and hardware uncertainties on measurement errors.

Every Monte Carlo run, another virtual CMM is selected. Enough virtual CMMs
are needed, but the number of virtual CMMs Neyv does not necessarily need to
be the same as the number of Monte Carlo runs M. However, it is important that
each separate Monte Carlo run (denoted by index number i) is connected to a
predefined virtual CMM (denoted by index number icyv ). This is important if the
measurement uncertainty on distances between features and geometrical tolerances
needs to be determined (see Chapter 6). Suppose the uncertainty of the distance
between two measured circles needs to be evaluated. When the error simulation
method is used for both circles this will result in M virtual measurements for circle
1 and circle 2. One can also calculate M virtual distances and M virtual errors on
the distances. A virtual error on distance will only be representative if both circles
are measured by the same virtual CMM.

In Figure 5.1 the input of the error calculation method stays the same as in
Figure 3.5: actual position, orientation, size and form deviation of the feature. In
order to add the correct CMM geometric errors, it is important that the position
and orientation of the feature are expressed in the MCS. The output of the error
calculation method are distributions of errors on position, orientation, size and
form deviation. From these distributions, upper and lower confidence limits for
measurement errors can be defined.

5.2 Uncertainty calculation method

The method described in the previous section allows to simulate the measurement
errors on feature parameters. It takes into account sampling strategy, hardware
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errors and the influence of form deviations. To determine these errors, the true
parameters of the feature need to be known. Usually only the measured parameters
are known. Using measured values as input for the error calculation method
will hardly affect the result, if the form deviation of the feature is negligible.
Unfortunately the form deviation is seldom negligible. The true form deviation
influences the measurement errors but is not known in advance.

In Appendix A it was suggested to express the simulated errors relative to the
measured form deviation. Measurement uncertainties seem to be proportional to
the measured roundness as long as hardware uncertainties are neglected. When
hardware errors are taken into account, measurement uncertainties will no longer
be proportional to the form deviation. Hardware errors will be more important for
small form deviations than for large form deviations. This is shown in Figure 5.2.
This figure shows the confidence limits of simulated measurement values for a
circle with diameter 500 mm measured with 10 points in the middle of the CMM
volume. If only the form deviation is taken into account the confidence limits of
the measurement values are linearly proportional to the true roundness value. If
hardware errors are taken into account the situation is different. For very small
form deviations the hardware errors become the major uncertainty contributor. For
large form deviations (and a limited number of used sampling points) the hardware
errors are only minor contributors.

0.03
0.025 F == == == Form deviation . "/‘
1 == == Form deviation + hardware P \,
— KR
E oo02r o e
E '
E RV
g R
@ 0.015 P s -
< N N Rl
g . . - ”~
g oo} 7 . Y
B RN -
5 R \d - s
2 - - -’ -
8 0005} -, -~
= P -
="
o]
~0.005 . . . . )
0 0.005 0.01 0.015 0.02 0.025

True roundness value [mm]

Figure 5.2: Confidence limits of simulated measured roundness values for a circle
measurement. Form deviation: no hardware uncertainties are taken into account.
Form deviation + hardware: hardware uncertainties are taken into account.
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By expanding the previous error simulation method it is possible to obtain reliable
uncertainty statements when the true form deviation is unknown. It will be
necessary to determine first the form deviation uncertainty. Once the form deviation
uncertainty is known, the range of possible form deviations (defined by the form
deviation uncertainty) can be used to determine the uncertainties on the other
feature parameters, like position, orientation or size. Section 5.2.1 explains how the
confidence limits of the true form deviation can be obtained based on the actual
measured form deviation. Section 5.2.2 explains how these confidence limits can be
used to determine the measurement uncertainties of all feature parameters.

5.2.1 Form deviation uncertainty by likelihood criterion

A way has to be found to determine the LCL and UCL for the form deviation based
on the actual measured form deviation. The error simulation method can be used
to simulate measurement errors for features where the true parameters are known.
For actual measurements only the measured parameters are known. The actual
measured form deviation can not be used as input for the error simulation because
the measured form deviation can highly underestimate the true form deviation
while the true form deviation influences the magnitude of the simulated errors. A
solution to this problem can be found if the error simulation method is ran three
times with three chosen (instead of measured) form deviation values.

Three values for the true form deviations ("¢ f) are chosen: fumin, fmed and fmax
(see abscissa of Figure 5.3), where fuin and fiax are very rough estimates of the
minimum and maximum possible form deviation, and fieq is the average of the
aforementioned two. This will result in three coverage intervals for the parameter
errors. The coverage intervals for measured form deviations can be determined by
adding the chosen true form deviation to the calculated confidence limits of the
form deviation errors:

[meaLSfLCL7 meachUCL] — [truef + errfLCL’ truef + errfUCL] (5]_)

evaluated for the three chosen form deviation values:

truef = fmina fmed and fmax

The three calculated coverage intervals for measured form deviation are drawn in
red in Figure 5.3. The next steps can be further illustrated graphically. Second
order polynomial interpolation between the three lower limits and three upper
limits allows to determine coverage intervals (of measured form deviations) for every
value of true form deviation between fiin and fiax. The interpolated confidence
limits in Figure 5.3 show which measured form deviations can be expected for a
given magnitude of true form deviation. These limits will depend on the type of
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Figure 5.3: Determination of lower and upper confidence limits for form deviations,
based on the actually measured form deviation.

form deviations included in the form deviation database, the applied sampling
strategy, and the CMM hardware uncertainties included in the CMM hardware
database. The true form deviation is not known, but since the actually measured
form deviation (™ f) is known (see ordinate on Figure 5.3), the range of true form
deviations that allow this measurement result can be determined. In other words:
the likelihood of the true form deviation is determined, given the actually measured
form deviation. The LCL and UCL for the true form deviation [*"° fr,cr, *™ fuc]
can be determined by calculating the intersection point with the upper and lower
limits of the coverage intervals for the measured form deviations (Figure 5.3).
These upper and lower confidence limits of the true form deviation (**"° f,cr, and
true £,01,) define the form deviation uncertainty.

One could also use more than three chosen values for true form deviation. However,
tests showed that this does not improve calculated coverage intervals significantly.
To limit calculation time it was decided to use only three chosen values for true
form deviation by default.

It could happen that in Figure 5.3 the horizontal line determined by ™S f does not
intersect with the interpolated upper and lower confidence limits over the interval
[fmin; fmax]. This means that the actually measured form deviation is too low or
too high. According to the simulations it is then very unlikely that the true form
deviation belongs to the interval [fmin, fmax]- This results in a warning to the user
and fuin or respectively fuax is taken as value for both confidence limits. It can
also be that only an intersection with one of the interpolated confidence limits
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Figure 5.4: Determination of lower and upper confidence limits for size (e.g.
diameter) based on confidence limits for form deviation.

(LCL or UCL) can be found. In this case the missing value for "¢ f o1, or "€ fycr,
is also set as fuin or respectively fiiax.

5.2.2 Uncertainty of other parameters, based on form deviation
uncertainty

Once the form deviation uncertainty is known, this can be used to determine
the measurement uncertainties of the other feature parameters. Two methods to
calculate the other measurement uncertainties have been developed: one that is
based on the simulation results for the form deviation uncertainty, that needs no
additional Monte Carlo simulation and one that still needs a final Monte Carlo
simulation step.

Uncertainty of other parameters, based on simulation results for form deviation
uncertainty

The LCL and UCL for true form deviation, calculated in the previous paragraph,
can be used to determine LCL and UCL for the other parameters. First, the
coverage intervals for position, orientation and size errors are retrieved for the
three Monte Carlo simulations performed in the previous step (Section 5.2.1) for
Sfmin, fmed and fmax. The ouput of these simulations are not only the coverage
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intervals for the form deviation (red bars on Figure 5.3), but also for size, position
and orientation. This is illustrated in Figure 5.4 for the true size of a hole (i.e.
true diameter): the coverage intervals on true size for fuin, fmea and fmax are
represented by the red bars. The confidence limits are calculated as follows:

[true meas

SLCL, trueSUCL] _ [ s — errSUCL’ meas g _ errSLCL] (52)

Second order interpolation between the three lower limits and three upper limits
allows to determine coverage intervals (for true size) at every value of true form
deviation. Then the lowest and highest limit is searched by calculating the coverage
intervals over the interval [%U€ fiqp, ' fycp]. The lowest and highest possible
value are the LCL and UCL for true size: "“®sy,cr, and ""sycr. The calculations
of the coverage intervals for position and orientation are similar.

One could wonder why it is necessary to evaluate the coverage intervals over the
complete interval [ frcp,, "™ fucL] since the width of the uncertainty interval
for size will always be the largest for *° fycr,. However, this is not always the
case; under certain circumstances (e.g. in case of maximum inscribed or minimum
circumscribed associated features) it is sometimes possible that upper or lower
confidence limit for size, obtained for "¢ f; o1, will be outside the coverage interval
obtained for ¥ fycr,.

Uncertainty of other parameters, based on additional Monte Carlo simulations

The previous method has the advantage that the uncertainty for the other
parameters can be calculated immediately after the calculation of the form
deviation uncertainty. No further simulation is necessary. However, there are
also two important drawbacks to this approach:

o The actual confidence level for the calculated uncertainties for size (and
position and orientation) will be higher than the confidence level for the form
deviation. Suppose that the confidence level for form deviation is 95%, and
that "° fycr, determines the upper confidence limit for size (as in Figure 5.4).
The likelihood that the actual form deviation is larger than '€ fycp, is only
2.5%. It is for this value of form deviation that the 95% coverage interval
for size (and other parameters) is determined. This means that the provided
uncertainty for size (position and orientation) is calculated for the ‘worst
case’ form deviation. Therefore the coverage interval of these parameters is
(largely) overestimated.

e In order to provide also uncertainties for inter-feature distances and
geometrical tolerances like perpendicularity, concentricity, etc. the simulated
errors should be stored. This means that all three sets of simulated errors
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(for fumin, fmed and fimax) need to be stored. It would be easier if only one
set of errors for each feature needs to be stored. This will be explained in
Chapter 6.

A solution to both drawbacks mentioned above is to do one additional Monte
Carlo simulation in which the value for (true) form deviation is sampled from a
distribution. This form deviation distribution is determined based on the calculated
upper and lower confidence limits for form deviation [tr“e fLoL, Bue fucr]. Since it
will be difficult to obtain information about the distribution of the actual form
deviation, a straightforward solution is to treat it as a rectangular distribution
(Figure 5.5(a)). This does not take into account that there is a probability of 5% that
the true form deviation is outside the [*™"® fcr,, "™ fucL] interval. Alternatively one
could use a normal distribution with a mean equal to the average of the UCL and
LCL and a standard deviation equal to a quarter of the width of the uncertainty
interval (Figure 5.5(b)). In this case it is assumed that values close to the middle
of the uncertainty interval are most likely. There is no reason to assume this. A
third possibility is to use a kind of flattened normal distribution (Figure 5.5(c)).
This type of distribution can be obtained as a convolution of a rectangular and
normal distribution. Probably this is the most correct solution, however for the
ease of implementation and the small difference in final results with the rectangular

distribution, the rectangular distribution was chosen.

> T T >

truefLcL truefucL truefLoL truefucL truefLCL truefucL

() (b) (c)

Figure 5.5: Distribution assigned to the true form deviation used to determine
uncertainties of other feature parameters: (a) rectangular (b) normal (c) flattened
normal.

Once a distribution is assigned to the uncertainty interval of the form deviation,
one can use this distribution to sample random form deviation values during a new
full Monte Carlo simulation. The same number of Monte Carlo runs as before can
be taken. The uncertainty intervals are then obtained directly from the simulated
error distributions. The uncertainty interval for size can be obtained by means
of Eq. 5.2. Uncertainties intervals for position and orientation are calculated in a
complete analogue way.

This alternative method to calculate the measurement uncertainty for feature
parameters other than form deviation, will take somewhat more time but will result
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in more correct uncertainty intervals. Besides, there will be less data to store and it
will be easier to calculate uncertainties for inter-feature distances and geometrical
tolerances.

5.3 Conclusions

This chapter described how the hardware errors of the previous chapter can be
integrated in the error simulation method from Chapter 3. Simulated hardware
errors of a virtual CMM will be added to the sampled points.

The error simulation method can be used to determine the measurement
uncertainties of feature parameters. First the form deviation uncertainty is
calculated based on the measured feature parameters. Three Monte Carlo
simulations are executed for three different values of assumed roundness. These
results can be used to determine the form deviation uncertainty based on the
likelihood criterion.

Once the form deviation uncertainty is known it can then be used to calculate
the uncertainties of the other feature parameters. The uncertainty of the other
feature parameters can be calculated from the simulation results that are used
to determine the form deviation uncertainty. Alternatively an additional Monte
Carlo simulation can be used. For this simulation the value for (simulated true)
form deviation is sampled from a distribution. This form deviation distribution
is determined based on the calculated upper and lower confidence limits for form
deviation [truefLCI” truerCL].






Chapter 6

Derived uncertainties, software
layout and implementation

Chapter 3 and 4 explained how task-specific measurement uncertainties that
incorporate the influence of feature form deviations and CMM hardware, can
be calculated for CMM measurements. However, the uncertainty output of the
described methods is not always useful in practice. The uncertainty results for the
position and orientation parameters of the feature are expressed in the machine
coordinate system (MCS). In practice measurement results are usually expressed
in the part coordinate system (PCS). Besides, the orientation of one single feature
is often of minor interest; the orientation of one feature with respect to another is
usually more relevant, like e.g. in case of perpendicularity, parallelism and angularity
tolerances. This chapter explains how uncertainties on part coordinate systems
and uncertainties on measurements of geometrical tolerances can be calculated
from the results obtained by the uncertainty calculation method described in the
previous chapters. Furthermore this chapter describes the object oriented software
layout of the developed uncertainty evaluation software (UES), and the interface
to the available commercial measurement software.

6.1 Uncertainty on part coordinate systems

6.1.1 Datum, datum features and part coordinate systems

For geometrical product specifications (GPS) the use of datums in tolerancing is a
very important concept. According to ISO 5459 the definition of a datum is [72]:

113
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Definition 6.1 A theoretically exact geometric reference (such as azes, planes,
straight lines, etc.) to which toleranced features are related. Datums may by based
on one or more datum features of a part.

A group of two or more datums can also be used as a composed datum, this is called
a datum system. Datums and datum systems are used for establishing geometric
relationships of related features. The quality of relevant datum features must be
adequate for functional requirements [72]. The example of the introductory chapter,
depicted in Figure 1.13, already illustrated that the choice of the datum feature has
an important influence on the measurement results and measurement uncertainties.
Interchanging datum and toleranced feature will never yield the same results. Every
kind of feature can be used as a datum feature.

Measurement results are seldom reported in the machine coordinate system (MCS);
usually a part coordinate system (PCS) is defined. The part coordinate system is
defined by a set of features from the workpiece. The part coordinate system is also
called the datum reference frame! in the DMIS standard [19]. According to DMIS,
the part coordinate system is defined by multiple datums, a datum can be defined
by one or more datum features.

For the construction of a measured datum reference frame, several features can be
used. A datum reference frame has three positional degrees of freedom and three
orientational degrees of freedom. These six degrees of freedom should be ‘locked’
by the features that compose the datum reference frame, only then the datum
reference frame will be fully constrained.

6.1.2 Datum matrix

A fully constrained datum reference frame can be represented by a homogeneous
transformation matrix, that describes the transformation from the PCS (frame
{d}) to the MCS (frame {0}):

R | op?
01><3 1

The three columns of ¢ R contain the coordinates of the x, y and z-unit vectors
along the axes of the PCS expressed in the MCS. (p°? represents the origin of the
PCS expressed in the MCS.

Since it is the purpose to express the measurements, that are stored in machine
coordinates, in part coordinates, the inverse transformation matrix will be needed.

In this thesis also the short term ‘datum’ will be used to refer to a part coordinate system. A
datum has to be seen as a reference. This reference can be a single feature, multiple features or a
datum reference frame.
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This matrix is called the datum matrix:

0 di1 3R ap™’
oT={T ' =
0143 1

In order to build this datum matrix based on measured features, two feature
orientations and three feature position parameters are needed:

e The first feature orientation is used for the orientation of the primary axis of
the datum.

e The second feature orientation is used for the alignment of the secondary
axis of the datum.

o A feature position is needed constrain the z-origin of the datum.
e A feature position is needed constrain the y-origin of the datum.

e A feature position is needed constrain the z-origin of the datum.

After orienting the first axis, one rotational degree of freedom is left. This is locked
by the second feature orientation. While the first feature orientation will be exactly
the same as the orientation of the primary axis of the PCS, this is not the case for
the second feature orientation. Measured orientation vectors are never perfectly
perpendicular, that is why the secondary axis of the PCS will correspond to the
projection of the second feature orientation vector into a plane with the primary
axis as its normal. The third axis of the PCS has to be perpendicular to the primary
and secondary axis and its sense is defined by the ‘right hand rule’. One feature
can determine one or more of the coordinates of the origin of the PCS. E.g. in the
developed software, one can use following command to construct a datum (labeled
Datuml) from a measured plane, line and circle:

addDatum(‘Datuml’, ‘Planel’, ‘ZDIR’, ‘ZP0S’, ‘Linel’, ‘XDIR’,
‘Circlel’, ‘XP0S’, ‘YP0S’)

The primary axis is the z-axis which is determined by the orientation of Planel
The secondary axis is the x-axis which is determined by the orientation of Linel.
The position of Circlel determines the z- and y-origin of the PCS, while the
z-origin corresponds to the position of Planel.

Once the datum matrix is built, this can be used to express positions (op) and
orientations oo, that were measured in the MCS, with respect to this datum:

ap =R op + 4p™°
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d0 = SR()O

Feature parameters like size (s) and form deviation (f) are independent from the
used coordinate system and do not need to undergo a transformation.

6.1.3 Determining uncertainty on part coordinate systems

Reporting the measured features with respect to a given (i.e. measured) PCS is
relatively straightforward, but expressing the measurement uncertainties on the
parameters of these features with respect to the measured PCS is more complicated.
The uncertainty of the measured parameters expressed in a measured PCS will
depend on the uncertainty of the PCS. Since the PCS is constructed from measured
features that have a certain measurement uncertainty, the PCS itself will also have
an uncertainty. If the same datum is measured twice, the datum matrix will not be
the same due to the uncertainty. The measurement uncertainty of the datum matrix
depends on the measurement uncertainty of the underlying features. The higher
the measurement uncertainty of the datum features, the higher the uncertainty of
the datum matrix. Figure 6.1 illustrates possible causes of this uncertainty.

4 O 4 Ofy

X X ® X
a) b) c)

Figure 6.1: Orientation uncertainty of a line influencing datum uncertainty.

Figure 6.1a shows that an error free measurement of a line along the long edge
will lead to an error free alignment of the part. The datum matrix will be error
free. Figure 6.1b shows that a measurement error along the edge results in an
error on the alignment. For the same absolute measurement error the resulting
alignment error will be smaller if the distance between the measured points is
larger. The resulting measurement uncertainty on the PCS will not only depend on
the sampling strategy but also on the form deviation of the line, as illustrated in
Figure 6.1c. Since sampling strategy and form deviations have an influence on the
orientation uncertainty of the measured line, they will also influence the datum
uncertainty. The higher the uncertainty on the PCS, the higher the uncertainty on
the position of the circle expressed in the measured PCS.

How can we take into account the uncertainty on the PCS? To calculate the
feature uncertainties, M (the number of Monte Carlo trials) simulated features are
created, for every actual measured feature. These simulated features are sampled
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according to the applied sampling strategy and this results M simulated measured
features. The simulated errors are used to calculate the uncertainties of the feature
parameters, as explained in the previous chapters.

If all these virtual features (true and measured) are stored, they can also be used to
create simulated true datums and simulated measured datums. For every actually
measured feature, M true features and M measured features are simulated. For
every actually measured datum, M true datums and M measured datums are
created based on, respectively, the simulated true features and simulated measured
features.

6.1.4 Uncertainty of parameters expressed in part coordinate
systems

Since the uncertainty on feature parameters depends on the PCS in which they
are expressed, the error calculation can only be done after every simulated true
feature and simulated measured feature parameter is expressed in the corresponding
simulated true datum and simulated measured datum. The errors for position and
orientation can be calculated as follows:

errdp _ meas [SROP + dpd,O} _ true [(C)lROp + dpd,O}

errdo _ meas [2R00] _ true BROO]

Uncertainties for size and form deviations do not depend on the used datum.

This error calculation will be done M times, whereafter confidence limits for the
errors can be determined, which can be used to determine the measurement
uncertainties. This way of working allows that the position and orientation
uncertainty for a given feature will be higher when it is expressed relative to
a datum that is based on datum features with a higher measurement uncertainty.

6.2 Constructed feature uncertainty

When executing a measurement program, it regularly occurs that features need to
be constructed from one or more measured features: e.g. the intersection point? of
two measured lines, the intersection line of two measured planes, the connecting
line of two measured circles, the symmetry line of two measured lines ... The
position, orientation and size of the measured (constructing) features can be used
to calculate the parameters of the constructed feature.

2A point is also considered as a feature, although it has only a position and no orientation,
size or form deviation.
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Due to the measurement uncertainties of the measured (constructing) features,
the constructed feature will also have a measurement uncertainty. It is impossible
to obtain the measurement uncertainty for the constructed feature based on the
calculated values of the measurement uncertainties of the constructing features.

The measurement uncertainty on constructed features can be calculated similar
to the datum matrix uncertainty. Based on the simulated true features, simulated
constructed true features can be calculated. Based on the simulated measured
features, simulated constructed measured features can be calculated. Thereafter,
simulated errors can be calculated for every parameter of the constructed feature,
these simulated errors can be used to calculate the measurement uncertainty.

6.3 Uncertainty on measurement of geometrical tole-
rances

Geometrical tolerances are often used on technical drawings. Table 6.1 shows
the geometrical tolerances defined by ISO 1101. These geometrical tolerances are
divided into 4 different categories: form, orientation, location and run-out. The
last three categories need a datum and are therefore also called related geometrical
tolerances while form tolerances are called unrelated geometrical tolerances [37].

6.3.1 Unrelated geometrical tolerances

The form deviations used in the uncertainty calculation method, presented in the
previous chapters, are calculated based on the least squares (LSQ) fitting criterion.
According to ISO 1101 straightness, roundness, flatness and cylindricity values
are defined by the minimum zone (MZ) criterion. If one wants to know the form
tolerance value and the corresponding uncertainty according to the MZ criterion
one can always recalculate form deviation values with the stored profile of the
virtual features and with the stored sampled points (buffer points) of the virtual
features, resulting in respectively "“¢f and "% f:

errf — mean _ truef

This means that for every processed measured feature not only all simulated true
parameters and simulated measured parameters, but that also all M simulated
true profiles and all M simulated sets of probing points need to be stored. This
is a reason why the number of points representing the true profile should not be
too large. Within this research, free form profile tolerances (that do not apply to
circles, lines, planes or cylinders) are not considered.
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Tolerances Characteristics Symbol Datum needed
Straightness — no
Flatness o no
Roundness O no
Form
Cylindricity Jel no
Profile any line ) no
Profile any surface o no
Parallelism // yes
Perpendicularity 1 yes
Orientation Angularity / yes
Profile any line ) yes
Profile any surface o yes
Position - yes or no
Concentricity (for centre points) © yes
) Coaxiality (for axes) © yes
Location
Symmetry = yes
Profile any line ) yes
Profile any surface o yes
Circular run-out / yes
Run-out
Total run-out 1/ yes

Table 6.1: Geometrical tolerances defined by ISO 1101 [43].
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6.3.2 Related geometrical tolerances

Related geometrical tolerances are tolerances that need a datum, as there are
orientation, location and run-out tolerances. All of these tolerances are influenced
by the form deviation of the toleranced feature. This means that just as for form
tolerances, the buffer points of the simulated measurements will be needed. Buffer
points are the separate feature points that are measured (sampled). The uncertainty
for the related geometrical tolerances can, just as for unrelated geometrical
tolerances, be obtained from the M simulated tolerance errors ¢"t. To calculate
these ""t, the tolerance value is calculated M times based on the M stored sets of
true simulated data from toleranced feature and datum and M times the measured
simulated data:

erTy — measy truet

6.4 Software layout

The uncertainty calculation methods described in this thesis were implemented in
object oriented Matlab®. Important advantages of object oriented programming
(OOP) are understandability, maintainability and reusability:

o Understandability: Software objects often model real life objects, which makes
the program structure very clear. Examples of classes in the developed
software are CMM, Circle, Line, Plane, Cylndr that model the behaviour of
their ‘real life’ counterparts.

o Maintainability: The modular design of OOP makes that the software can
easily be maintained, extended and modified.

e Re-usability: Parts of the code can easily be reused because of the modular
design and properties like inheritance.

Figure 6.2 shows a reduced class diagram of the developed software. Of every class
one or more instances can be created. Of every class only the most important

attributes and methods are shown. The different classes are shortly discussed in
Appendix C.

6.5 Algorithm libraries

Some algorithms are not really suited to be integrated as methods in the different
classes, therefore they are collected in algorithm libraries that can be called by the
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Control

+featTable: array
+cmmTable: array
+envTable: array
+currentDatum: obj
+currentSensor: obj

Settings
+sim: struct
+cmm: struct
+sens: struct
+feat: struct
+env: struct

+buildCMM() +change()
+buildEnv ()
+uncFeat ()
+outputFeat()
+constructFeat()
+newDatum()
+setDatum()
+newSensor()
+setSensor()
CMM s VirtEnv
+id: int -
+range: array VirtForm
+cte: array +circle: struct Datum
+geomErr: struct +line: struct - -
+state: struct +plane: struct +id: int VirtDatum
+pos: struct +cylndr: struct +label: string (<> :
+sensors: struct > +bzildFormDev() > +assFeat: Feat +pose: array
+createGeomErr() +LoadFormbev () +pose: array
+createErrState() +giveFormDev () >
+measurePoint () +plot()
+plotGeomErr()
+plotStateErr()
0 Tol
—___Feat | [ it VirtTol
Sensor +id: int +label: string J<fmm——
+id: int +label: string +tolFeat: Feat : Y
+label: string +type: string +datumFeat: Feat
+range: array :%(iegﬁg(.iaz;rmg
+cte: array . -
+geomErr: struct :p;; Szgczt VirtFeat
. : u
+state: struct +gir' Struct Tt struct
+pos: struct rsize: struct jes{tpos: struct
+createGeomErr() +fdev: struct +dir: struct
+createErrState() - +size: struct

+measurePoint()

+fdev: struct

I

|

Point Circle Line Plane CyIndr
+createVirtCircle() | [+createVirtLine() | |+createVirtPlane() | |+createVirtCylndr()
+plotCircle() +plotLine() +plotPlane() +plotCylndr()

Figure 6.2: Reduced class diagram of the developed software.

Geomet ricAlg|

fitPoint
fitCircle
fitLine
fitPlane
fitCylndr

Featu reConstructI ToleranceAlg
constPoint tolPos
constCircle tolParlel
constLine tolPerp
constPlane tolAng
constCylndr tolConcen

Figure 6.3: Algorithm libraries of the developed software.
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different classes. The different algorithm libraries, illustrated in Figure 6.3, are the
following:

o Geometric algorithm library (GeometricAlg): This library contains functions
to fit associated features through a set of points according to a given fitting
criterion. Only the least squares fitting criterion has been implemented, using
the algorithms from the Least Squares Geometric Elements (LSGE) library
for Matlab. The LSGE library was developed by NPL Centre for Mathematics
and Scientific Computing.

o Feature construction algorithm library (FeatConstAlg): This library has
been kept very limited. Only algorithms necessary to prove the validity of
the developed software (Chapter 7) were implemented, like e.g. line-line
intersection.

o Tolerance algorithm library (ToleranceAlg): To calculate measured tolerance
values, the tolerance algorithm database is used. Not all types of tolerances
are implemented at this stage.

6.6 Interface to the CMM measurement software

In order to illustrate the practical applicability of the developed uncertainty
calculation method, it is necessary to make a CMM measurement software
communicate with the developed uncertainty calculation software (UES). Although
the available CMM measurement software (Camio®, version 6.0) has possibilities
to call external programs, these possibilities are not sufficiently extensive to realise
a smooth integration between both applications.

An ad hoc solution is used to establish communication between Camio and the UES.
Commands that need to be send to the UES are written to the file iCMMinput.txt.
This file is read by the UES running in the background. The commands are executed
and results are written in DMIS language to the file iCMMoutput.dmi, which is
again read by Camio. Figure 6.4 illustrates this graphically.

If a feature needs to be added to the UES software, the buffer points of the measured
feature also need to be transferred. This data will not be written to iCMMinput.txt

but to a separate file: camioBuffer.txt. This latter file is deleted once the feature
is added to the UES.

Within Camio, two developed subroutines are used to communicate with the UES:
e iCMMaddFeat.dmi: This subroutine, that accepts the label of a feature

as its argument, can be called from any DMIS-program. It writes the
buffer points of that feature to the file camioBuffer.txt, and adds the
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UES

read
—

iCMMinput.txt
camioBuffer.txt

iCMMoutput.dmi

Figure 6.4: Communication between measurement software and UES by means of
input and output files.

iCMMaddFeat Add a measured feature to feature list of UES.
iCMMaddDatum Construct a datum with given features from feature list.

iCMMaddTol Define tolerance for a given feature.

iCMMcalcUnc Calculate uncertainty of added feature, datum, tolerance.

iCMMresults Give (uncertainty) of added feature, datum, tolerance.

iCMMclear Clear all added features, datums, tolerances and the associated
results. Allows to clean up without restarting.

iCMMstart Start or restart UES. Creates all virtual CMMs and loads the form
error databases. Feature list of UES will be empty.

iCMMset Allows to change settings of the UES: e.g. Turn on/off inclusion

of form deviation uncertainties / hardware uncertainties. Change
confidence level from 95% to 99%.
iCMMsetSensor Define sensor configuration to be used for uncertainty calculations.

Table 6.2: Overview of commands accepted by UES.

command iCMMaddFeat to the file iCMMinput.txt. When the UES receives
this command it reads in the buffer points and feature information from
camioBuffer.txt.

e iCMMaddCommand.dmi: Adds the command, that is passed as an argument
to the file iCMMinput.txt. For an overview of the possible commands: see
Table 6.2. Once the command is executed, the answer from the UES, stored
in the file iCMMoutput.dmi, is imported into Camio.

6.7 Conclusions

Knowing the uncertainty of parameters expressed in the machine coordinate system
(MCS) will usually not be sufficient to determine measurement uncertainties of
actual CMM measurements. Measurement results will usually be reported relative
to a given part coordinate system (PCS), also called datum. Since a PCS is
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constructed based on measured features, there is also a measurement uncertainty
associated with the PCS itself. This chapter explained how the uncertainty on the
PCS can be calculated and taken into account when reporting feature uncertainties
relative to a given datum.

Sometimes features need to be constructed based on one or more other features.
Again there will also be an uncertainty associated to the constructed feature. The
calculation of this uncertainty is similar to the calculation of datum uncertainty.
Based on M simulated constructed true features and M simulated constructed
measured features M simulated errors can be calculated for every parameter of
the constructed feature. These errors can be used to calculate the measurement
uncertainty.

In a similar way the uncertainty of geometrical tolerances can be calculated. Besides
the parameters of the measured and true simulated feature, also the profile points
and buffer points of every simulated feature will need to be stored for the calculation
of uncertainties related to geometrical tolerances.

Further the object oriented software layout of the developed UES and the interfacing
with the CMM measurement software are discussed.



Chapter 7

Verification of results

The goal of this chapter is to illustrate the validity of the developed uncertainty
evaluation software (UES). A first test is worked out to see if the integrated hardware
error model is valid. This is done by means of gauge blocks. Form deviations of
calibrated reference artefacts like gauge blocks are sufficiently small, so that they
will not influence the measurement uncertainty. In practice however, most features
that need to be measured with a CMM, exhibit form deviations. Two additional
tests show that calculated measurement uncertainties are only reliable when these
form deviations are taken into account. For these tests own made artefacts with
form deviations are used.

7.1 Test 1: Set of gauge blocks

An easy way to verify errors of a CMM is to measure a set of gauge blocks. A gauge
block has a reference length with a very low calibration uncertainty!. The calculated
errors, obtained by subtracting the reference value from the value measured with
the CMM, can be compared with the calculated measurement uncertainties. The
reference value should be situated within the calculated uncertainty interval for
the measurement.

125
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(a) (b)

Figure 7.1: Gauge blocks measurement on the CMM.

7.1.1 Test set-up

One measurement is not sufficient to prove the validity of the integrated hardware
error model. Multiple measurements of gauge blocks with different lengths are
necessary. They also need to be measured under different orientations and on
different locations in the CMM measurement volume. An adapted version of the
procedure described in ISO 10360-2 is used [22]: two reference lengths, a short one
(8: 100 mm) and a longer one (L: 500 mm), are measured under 7 different locations
or orientations. For every measurement the error is compared with the calculated
measurement uncertainty. Figure 7.2 illustrates the different measurement positions
and orientations that are used:

e x1: measurement along the z-direction, very close to the x-scale.

e x2: measurement along the z-direction, with a large Abbe-offset in y-direction
to the z-scale.

e y1: measurement along the y-direction, very close to the y-scale.

e y2: measurement along the y-direction, with a large Abbe-offset in z-direction
to the y-scale.

e z1: measurement along the z-direction.
e d1: measurement along a diagonal parallel to the x-y-plane.

e d2: measurement along a space diagonal.

LCalibration uncertainties lower than 0.1 pm (k = 2) can be obtained for lengths up to 300 mm
(based on information from the federal public service economy, national metrology service).
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Figure 7.2: Measurement positions and orientations used for the test.

Every gauge block is aligned (i.e. a PCS is defined) before its length is measured.
The z-axis is aligned width the calibrated direction of the gauge block. The length
is defined as the z-distance between two points, one at each end of the gauge block.
Since point features can not have a form deviation, the influence of form deviation
on the measurement uncertainty will not be included in the results. Although
a PCS is defined, the uncertainty of the PCS is not taken into account for the
measurement uncertainty calculation. Because a gauge block has accurately finished
faces, the uncertainty on the PCS will have little influence on the measurement
results if the alignment is done carefully. This means that calculated measurement
uncertainties will only be influenced by the simulated CMM hardware errors, which
are described in Chapter 4. This test allows to check the validity of the CMM
hardware error modelling (geometric errors and probe errors).

7.1.2 Test results

The results of the measurements and the calculated uncertainties are given in
Table 7.1. The upper and lower confidence limits (UCL and LCL) are given relative
to the measured values. It is clear from the results that all calculated uncertainties
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LCL Meas. UCL  Result

x1 S -0.0017 100.0005 0.0017 v
L -0.0040 499.9988 0.0042 v
x2 S -0.0028 99.9976  0.0026 v
L -0.0049 499.9958 0.0051 v
yi S -0.0018 99.9998  0.0019 v
L -0.0044 499.9998 0.0045 v
y2 S -0.0027 99.9986  0.0033 v
L -0.0073 500.0022 0.0081 v
z1 S -0.0016 99.9986  0.0017 v
L -0.0034 500.0019 0.0035 v
d1 S -0.0023 100.0013 0.0025 v
L -0.0058 500.0039 0.0059 v
42 S -0.0025 99.9981 0.0024 v
L -0.0063 499.9974 0.0064 v

Table 7.1: Measurement results and calculated uncertainties (95% confidence level)
for gauge block measurements.

cover the true value?. It can also be seen that the calculated uncertainties take
into account the effect of size (the uncertainties for the longer gauge block are
systematically higher) and the effect of Abbe-errors (the measurements with larger
Abbe-offsets result in higher uncertainties). These results confirm that the methods
to model hardware uncertainties, that are described in this thesis, result in reliable
uncertainty statements. The settings used to model the geometric errors of the
virtual CMMs are taken from Table 4.1 on page 92. A normally distributed random
error was used for the probing error (with ¢ = 0.5 pm). 1000 virtual CMMs
were used and 1000 Monte Carlo runs were executed before calculating the 95%
confidence limits.

7.2 Test 2: Circle with form deviation

Form deviations of a gauge block do not influence the measurement uncertainties
because the magnitude of the form deviations is negligible. However, in practice
form deviations will have an important influence on the measurement uncertainty.

2If the measured value and calculated uncertainty are compared to the nominal value of the
gauge block, also the calibrated deviation from the nominal value and the calibration uncertainty
of the gauge block should be taken into account when deciding whether or not the calculated
uncertainty covers the true value. The calibrated deviation for the 100 mm gauge block equals
-0.22 pym, U = 0.12 pm (k = 2). The calibrated deviation for the 500 mm gauge block equals
-1.10 pm, U = 1.2 pm (k = 2). These deviations and calibration uncertainties were taken into
account when evaluating the calculated uncertainties.
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This test shows whether or not the developed UES reflects the influence of form
deviation correctly for the measurement of a circle with a 3-lobed form deviation.

7.2.1 Test set-up

(0] ?6,2 Oloos

(a) (b)
Figure 7.3: Drawing and picture of the part used in the test.

In this test the dimensions and the concentricity tolerance of the part represented
in Figure 7.3 are measured. Only one measurement location is used; the part is
placed in the middle of the CMM-volume with its face pointing in z-direction. The
inner (C1) and outer (C2) circle of the part are measured twice: once with only four
equidistant sampling points for each circle (N = 4) and once with 10 equidistant
sampling points for each circle (N = 10). For each measurement the uncertainties
are calculated twice: once taking into account only the influence of CMM hardware
errors (HW) and once when taking into account also the influence of feature
form deviations (HW-+FD). The form deviation database used during uncertainty
calculation contains simulated 3-lobed form deviations (az = 0.2,a3 = 0.7). The
part was also measured at several places on the CMM, with 50 points for each
circle. The average of these measurement values is considered as an approximation
of the true value.

7.2.2 Test results
Measurements with four equidistant points (N = 4)

The results of the measurements and the calculated uncertainties are given in
Table 7.2. For N = 4 the calculated uncertainties are much higher when besides
CMM hardware errors also feature form deviations are taken into account. It can
be seen that the error of 32 pm (0.101 - 0.069 = 0.032) on the concentricity value
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LCL Meas. UCL True Result

N =4 Cl dia HW -0.0020 69.969 0.0022  69.969 v
HW+FD -0.0122 69.969 0.0102 69.969 v

form HW  -0.0022 0.009 -0.0000 0.070 X
HW+FD  0.0304 0.009 0.4276 0.070 v

C2 dia HW -0.0027 96.176 0.0023 96.175 v
HW-+FD -0.0109 96.176 0.0094  96.175 v

form HW  -0.0029 0.005 -0.0000 0.017 X
HW-+FD 0.0173 0.005 0.4264 0.017 X

conc HW  -0.0022 0.101  0.0021 0.069 X
HW+FD -0.1010 0.101  0.0236 0.069 v

N=10 C1 dia HW -0.0015 69.968 0.0015  69.969 v
HW+FD -0.0020 69.968 0.0022  69.969 v

form HW  -0.0046 0.064 -0.0013 0.070 X
HW-+FD  0.0001 0.064 0.0160 0.070 v

C2 dia HW -0.0015 96.174 0.0018 96.175 v
HW+FD -0.0017 96.174 0.0016 96.175 v

form HW  -0.0049 0.014 -0.0015 0.017 X
HW+FD -0.0022 0.014 0.0038 0.017 v

conc HW -0.0011 0.070 0.0012 0.069 v
HW+FD -0.0017 0.070  0.0016 0.069 v

Table 7.2: Measurement results and calculated uncertainties (95% confidence level)
for the measurements of the circular test part (dia = LSQ diameter, form =
roundness, conc = concentricity).

is not at all covered by the calculated coverage interval ([-0.0022, 0.0021]), when
only hardware errors are taken into account during uncertainty calculation. Based
on the measurement result and the concentricity tolerance on the drawing, this
part will be wrongly rejected. However, if also uncertainties due to form deviations
are included, the calculated uncertainty does cover the true value. The part will
also not be rejected based on this result; the result is uncertain (i.e. no accept or
reject decision can be taken) and a more accurate measurement will be necessary to
prove conformance or non-conformance. It might look strange that the calculated
coverage interval for the concentricity value also includes zero (0.101 - 0.101 = 0).
This can be explained as follows: it is possible that the measured circles do have
a significant form deviation that is not revealed by the four-points measurement
(this is also reflected in the form deviation uncertainty). For a circle with a high
form deviation (this can be the toleranced circle or datum circle) it is possible that
perfectly concentric circles result in a measured concentricity value of 0.101. This
is the reason why zero is included in the coverage interval.

The true concentricity value equals 69 pm. Not many people, including dimensional
metrology specialists, would expect a 32 pm large error for a concentricity



TEST 2: CIRCLE WITH FORM DEVIATION 131

measurement on such a part. This error is mainly caused by the 3-lobed form
deviation of the datum circle (C1) which is represented in Figure 7.4(a). Four-points
measurements of 3-lobed form deviations will always result in large position errors
of the associated circle (see also Figure 1.9 on page 17). This uncertainty, related
to the datum feature, is correctly taken into account by the UES. This example
illustrates that form deviations need to be taken into account to obtain reliable
uncertainty statements.

90 35.054

90 48.104
60 :

60

270 270
() (b)
Figure 7.4: Roundness plots of the inner (C1) and outer (C2) circle.

In case of N = 4, calculated uncertainties are very high if form deviation uncertainty
is taken into account. This is because the form deviation value can not be reliably
assessed with four points, resulting in high form deviation uncertainties. High form
deviation uncertainties will result in high uncertainties on other feature parameters.
The LCL of the calculated uncertainty (HW+FD) for C2 is too high; the UES
predicted an underestimation of the form deviation of at least 0.017 mm while the
true underestimation was only 0.012 mm. This underestimation is related to the
fact that the 3-lobed form deviation of C2 is very asymmetric (see Figure 7.4(b))
while the used form deviation database contains more ‘regular’ shaped 3-lobed
form deviations.

Measurements with ten equidistant points (N = 10)

When more measurement points are taken it can be seen that the calculated
uncertainties become much lower (for HW+FD) while still covering the true values
for all feature parameters. In this case the calculated uncertainties that take only
hardware errors into account (HW) also cover most of the true values, except for
the form deviation value. Some readers might conclude from these results that it
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is unnecessary to take into account form deviation influences as long as enough
(e.g. more than 10) points are measured and form deviations are measured with
dedicated equipment like roundness measuring devices since differences between the
two calculated coverage intervals are not that large. However, the next section will
illustrate that in case of partial circle measurements, the influence of feature form
deviations will be very important for the measurement uncertainty, independent of
the number of measurement points.

Partial circle measurements

The same test part can also be used to illustrate the influence of partial circle
measurements on the measurement uncertainty. In Appendix A it was already
shown that partial circle measurements in combination with feature form deviations
results in high measurement uncertainties.

LCL Meas. UCL True Result

N=25 C1 dia HW -0.0020 69.974 0.0021  69.969 X
HW+FD -0.0697 69.974 0.0740 69.969 v

form HW  -0.0056 0.060 -0.0027 0.070 X
HW+FD -0.0051 0.060 0.0277 0.070 v

C2 dia HW -0.0023 96.165 0.0024 96.175 X
HW+FD -0.0144 96.165 0.0146  96.175 v

form HW -0.0054 0.010 -0.0026 0.017 X
HW+FD -0.0031 0.010 0.0040 0.017 X

conc HW -0.0017 0.091 0.0015 0.069 X
HW+FD -0.0420 0.091 0.0209 0.069 v

Table 7.3: Measurement results and calculated uncertainties (95% confidence level)
for the partial measurements of the circular test part.

Table 7.3 gives the measurement results for the inner circle (C1), the outer circle
(C2) and the concentricity value if this circle is measured with 25 points (N = 25)
over 180 degrees. It is clear from the results that measurement errors are significantly
larger, although 25 measurement points were used. It is also clear that the calculated
uncertainties do not cover the true values if only HW errors are taken into account.
Based on this measurement result and the concentricity tolerance on the drawing
the part will be wrongly rejected, although 25 measurement points were used.
However, when also form deviation influence is taken into account, it is clear that
the value of the concentricity tolerance is included in the uncertainty interval
and that no accept or reject decision can be taken based on this measurement
result. The true values are always covered by the calculated uncertainty except for
the form deviation of C2, which is slightly underestimated. The large errors and
uncertainties originate from the fact that the associated circle of half the circular
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profile will be different from the associated circle of the complete profile with form
deviation, even if an infinite number of probing points is used.

In practice this circle would never be measured over 180 degrees if the complete
circle is accessible over 360 degrees. In case of diameter measurements of larger
cylindrical parts, it often occurs that only half the circle is measured. This example is
used to illustrate the influence of partial feature measurements on the measurement
uncertainty.

7.3 Test 3: Plate with holes

The next test part is again an actual workpiece. It is the same part as the one used
in 3.1 to illustrate that form deviations can be the most important uncertainty
contributor. The drawing of the part and a picture of the actual part are given in
Figure 7.5.

7.3.1 Test set-up

For this test the diameter of the central circle (C3) and the distances L1 (distance
form left circle to central circle) and L2 (distance between left and right circle) are
measured. Again the circles are measured with two different numbers of sampling
points, N = 4 and N = 10. Uncertainties are also reported twice: once when
taking into account only the influence of CMM hardware errors (HW) and once
when taking into account the influence of CMM hardware errors and feature
form deviation (HW-+FD). The form deviation database used during uncertainty
calculation contains simulated 2-lobed, 3-lobed and 4-lobed form deviations. Again,
the part was also measured at several places on the CMM, with 360 points for each
circle. The average of these measurement values is considered an approximation of
the true value.

7.3.2 Test results

The results of the measurements and the calculated uncertainties are given in
Table 7.4. It is clear from the results that the true values are not always covered by
the calculated coverage intervals if the influence of form deviation is not taken into
account. Calculated coverage intervals that also take into account the influence of
feature form deviations (HW+FD) do always cover the true value. It is interesting
to have a closer look at the uncertainties for L1 and L2 (for N = 10). Because L2 is
larger than L1, a higher uncertainty for L2 is expected. The calculated uncertainty
for L2 is indeed higher when only hardware influence is taken into account (HW).
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Figure 7.5: Drawing and picture of the used test part.

LCL Meas. UCL True Result

N=4 C3 dia HW  -0.0023 79.900 0.0022 79.874 X
HW+FD -0.3084 79.900 0.3383 79.874 v

L1 HW  -0.0025 75.032  0.0020 75.018 X

HW+FD -0.1581 75.032  0.1454 75.018 4

L2 HW -0.0029 199.989 0.0029 200.001 X

HW+FD -0.1618 199.989 0.1782  200.001 v

N=10 C3 dia HW -0.0018 79.880 0.0016 79.874 X
HW+FD -0.0076 79.880  0.0065 79.874 v

L1 HW -0.0017 75.014  0.0015 75.018 X

HW+FD -0.0044 75.014  0.0046 75.018 v

L2 HW -0.0024 200.001 0.0023 200.001 v

HW-+FD -0.0024 200.001 0.0028 200.001 4

Table 7.4: Measurement results and calculated uncertainties (95% confidence level)
for the measurements of the test part.
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However if form deviation influence is taken into account as well, the uncertainty
for L1 is significantly higher, because of the large true form deviation of C3 (true
value: 0.112 mm). A large form deviation results in a higher position uncertainty
which results in a higher distance uncertainty. The form deviations of C1 and C2
are much smaller (true values: 0.006 mm and 0.009 mm), which results in a lower
uncertainty on L2.

Part coordinate system uncertainty

This test part can also be used to illustrate the influence of part coordinate system
(PCS) uncertainty. The uncertainties on distances L1 and L2, on diameters and
on form deviations are independent of the PCS. For the position of a circle in the
PCS, the uncertainty of the PCS itself should be taken into account. To illustrate
this, the position of circle C2 is measured in the PCS.

The PCS is defined as follows: the z-axis is defined by the orientation of the top
plane. The xz-axis is defined by the bottom edge, the origin is defined by the
intersection of the bottom edge and the left edge. The uncertainty of the PCS
will be determined by the uncertainties of the measured and constructed features
(plane, line and point) that are used to construct the PCS. The PCS is defined
twice: once when the complete bottom edge is measured with three points (PCS1)
and once when the bottom edge is only measured over half its length with three
points (PCS2). The difference between PCS1 and PCS2 is illustrated in Figure 7.6.
The top plane was measured with seven points for PCS1 and PCS2.

Table 7.5 gives the position of C2, measured with 10 equidistant points, expressed
in the PCS, together with the calculated uncertainties (HW-+FD). It can be seen
that the y-position uncertainty for C2, expressed in PCS1 is much lower than in
PCS2, because the alignment strategy for PCS1 is more robust. It is also clear that
y-position uncertainty deteriorates significantly for PCS2 while it has much less
influence on the x-position. This is what is expected for this kind of alignment.
It shows that the task-specificness of the measurement uncertainty is taken into
account. It should also be noticed that z-position uncertainty for PCS1 is more
than twice as high as the y-position uncertainty. This is because of the larger
form deviation of the left edge which results in an orientation uncertainty that
leads to a higher x-position uncertainty of the origin (defined as intersection of left
and bottom edge). Since positions measured in a PCS are often used to evaluate
tolerances, PCS uncertainty should definitely be taken into account.

The PCS uncertainty will also depend on the number of points that is used to
measure the features that compose the PCS. The more measurement points that
are used, the lower the PCS uncertainty will be. Therefore it is advisable to take
enough measurement points, certainly for features that are used to construct the
PCS. A good rule of thumb is to take at least five times the minimum number of
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Figure 7.6: Difference in measurement strategy between PCS1, PCS2 and PCS3.

LCL Meas. UCL

N=10 (C2 x PCS1 -0.0115 228.864 0.0109
PCS2 -0.0270 228.867 0.0248
PCS3  -0.0058 228.866 0.0056

vy PCS1 -0.0054 53.990 0.0053
PCS2 -0.0509 53.982 0.0555
PCS3  -0.0018 53.989  0.0022

7 PCS1  -0.0297 -5.000 0.0300
PCS2  -0.0297 -5.000  0.0300
PCS3  -0.0247 -5.000  0.0252

dia PCS1 -0.0014 20.026  0.0013
PCS2 -0.0014 20.026  0.0013
PCS3  -0.0014 20.026  0.0013

form PCS1 -0.0021 0.007 0.0026
PCS2 -0.0021 0.007  0.0026
PCS3  -0.0021 0.007  0.0026

Table 7.5: Measurement results and calculated uncertainties (95% confidence level)
for the position, diameter and form deviation of circle C2 expressed in PCS1, PCS2
and PCS3.
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points needed to construct the feature (for lines 5 x 2 = 10, for planes 5 x 3 = 15)3.
To illustrate the influence of the number of points on the PCS uncertainty, a third
PCS (PCS3) was constructed, taking into account this rule of thumb; i.e. the plane
was measured with 15 points and both lines were measured with 10 points (see
Figure 7.6(c)). The results in Table 7.5 illustrate that the PCS uncertainty is
reduced significantly compared to PCS1; the uncertainties on x- and y-position of
circle C2 are much lower. The uncertainty on z-position is still higher than the
uncertainty on y-position because of the larger form deviation of the left edge.
The difference in z-position uncertainty is less significant. This is mainly because
the software can not yet handle incomplete features. The software assumes that
a complete plane needs to be measured, while the user can only measure points
outside the holes. This can result in overestimated measurement uncertainties.

7.4 Conclusions

In this chapter three tests that illustrate the validity of the developed UES are
described. The first test used gauge blocks to check the validity of the hardware
error modelling of the UES and illustrated that different measurement positions
and orientations of the part on the machine will result in different coverage intervals
for the measurement uncertainty. Measurements along the diagonal of the machine
and measurements far from the scales (large Abbe-distances) have the highest
measurement uncertainty. All the calculated uncertainty intervals during this test
covered the calibrated length of the gauge blocks.

The second test described the measurement of two concentric circles with 3-lobed
form deviations and the influence of this form deviation on the uncertainty of the
measured concentricity value. The results of the test showed that the measurement
uncertainties are underestimated if the influence of feature form deviation is not
taken into account. If the influence of feature form deviation is taken into account the
calculated coverage intervals cover the true value. Additional tests also illustrated
that measurement errors for partial circle measurements can be very high, also due
to the form deviation of the feature. Uncertainties for these kinds of measurements
were also calculated correctly by the UES.

The third test described diameter, distance and position measurements of a
workpiece with circular features. One of the circles has an important form deviation.
The UES showed that the uncertainty for a distance that involves the position of the
circle with the large form deviation is significantly higher than the uncertainty for
another distance not including this particular circle. The calculated uncertainties
(that take into account the influence of form deviation) cover the true value.

3Thanks to W. Knapp for mentioning this rule of thumb and for the suggestion to include it
in the test.
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This test part was also used to illustrate the influence of PCS uncertainty on
measurement results expressed in a PCS. This influence can be significant and
should definitely be taken into account.



Chapter 8

General conclusions

This thesis describes a small part of the wonderful world of dimensional metrology.
This chapter presents the conclusions on the main contributions of the conducted
research. It also gives some suggestions for future research.

8.1 Context of the research

Dimensional quality control is an important part of the production process in
the manufacturing industry. Parts are designed and produced to fulfil a certain
function. To be sure that the part will eventually be able to fulfil this function, the
designer assigns tolerances to the part. Particularly tolerances on the dimensions of
a part are often of major importance. Dimensional quality control ensures that the
dimensional properties of the product comply with the tolerances. Nowadays very
accurate coordinate measuring systems are available to perform dimensional quality
control. Among the broad range of coordinate measuring systems that exists today,
conventional cartesian coordinate measuring machines (CMMs) with tactile probes
are still the most used for accurate series measurements.

For unambiguous evaluation of conformance to tolerances, measurement results
should always be provided together with an uncertainty value. The conventional
GUM ‘recipe’ of analytical uncertainty propagation is the best known method for
uncertainty evaluations. However, because of some drawbacks of the conventional
GUM method and the complexity of CMM measurements, this conventional GUM
method is not really suited for uncertainty evaluations of CMM measurements.

Uncertainty calculations for CMM measurements are extremely difficult because
they do not only depend on the accuracy of the CMM, but also on many other
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error sources like measurement strategy, environment, workpiece, etc. The large
number of uncertainty contributors for CMM measurements implies that uncertainty
statements for CMMs will be very task-specific. Almost every CMM measurement
will have another measurement uncertainty. In order to obtain reliable measurement
uncertainties, every important uncertainty contributor should be taken into account.
The influence of feature form deviations is often neglected while it has an important
influence on the measurement uncertainty. In many situations it is even the most
important uncertainty contributor.

As uncertainty statement to be provided with the measurement result people
often use the performance specification of the CMM. It should be emphasised that
results of CMM performance specification tests can be used for benchmarking of
coordinate measuring systems but not for uncertainty evaluations. Performance
specifications are an indication for the instrument uncertainty (of the CMM) and
not a measure for the measurement uncertainty of a specific CMM measurement.
Valid methods for uncertainty evaluations of CMM measurements include multiple
measurement strategies, the use of calibrated workpieces, expert judgement and
computer simulation. The use of computer simulation has much potential and is
already investigated by several authors. There even exists commercially available
uncertainty evaluation software, but this software is not yet adopted by industry.
Current software neglects some important uncertainty contributors, like the
influence of feature form deviations, and can not be used online.

The goal of this research was formulated as follows:

Determine for each CMM measurement result a measurement uncer-
tainty in order to make unambiguous evaluation of tolerances possible
and dimensional quality control more reliable.

8.2 Main contributions

This section summarises the four most important contributions of the research.

8.2.1 Integrating feature form deviations in uncertainty determi-
nation

The influence of feature form deviations in combination with limited point sampling
in coordinate measurement is often overlooked when considering uncertainties for
feature measurements. However the influence of feature form deviations can be very
important, in several situations even more important than all other influences. This
was illustrated in the introductory section of Chapter 3. Among the few uncertainty
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evaluation software (UES) that exist, there is no software that really integrates the
influence of feature form deviations, although integration of feature form deviations
is necessary to obtain reliable uncertainty statements.

This thesis proposes a methodology to integrate the influence of feature
form deviations in uncertainty calculations by Monte Carlo simulations.
The developed Monte Carlo method relies on an error simulation module that
simulates errors due to limited sampling of profiles with a form deviation. An
important part of the error simulation method is the profile simulator which allows
to generate profiles based on measured form deviations or based on simulated form
deviations. This thesis demonstrates that form deviations for circles, lines, planes
as well as cylinders can all be simulated based on the method to simulate linear
form deviations.

The generated feature profiles are sampled according to a given sampling strategy
and the sampled points are used to create a measured associated feature. Through
comparison with the true associated feature of the (unsampled) profile, errors on
position, orientation, size and form deviation are calculated. The process is repeated
multiple times in order to obtain error distributions. Examples developed in this
thesis illustrate the importance of form deviations on the measurement uncertainty
in case of limited sampling and also show the usefulness of Monte Carlo simulations.

8.2.2 Simplified method to simulate realistic CMM hardware
errors

The measurement accuracy of the CMM does vary over the measurement volume.
This is mainly due to the geometric errors of the individual axes of the CMM
in combination with Abbe-offsets to the scales. In order to model this behaviour
accurately, the position of the scales needs to be incorporated in the kinematic
model of the CMM.

Most methods that are used in current uncertainty evaluation software try to
determine the true error state of the CMM and use this information for the
uncertainty calculation. However including known CMM hardware errors in the
uncertainty calculation method does not make much sense because of two reasons.
Firstly, if the true errors are known, the measurement results should be compensated
for these errors instead of including the errors in the measurement uncertainty.
Secondly, the measured errors are the errors at that specific moment. After a few
days, hours or even minutes, the errors can be different due to thermal influences
on the CMM. Measuring the true error state of a CMM is also very time consuming.
It is impossible and unnecessary to know the true non-compensated geometric error
components, but one should be able to model realistic geometric error components.

This thesis presents a method to model geometric errors of a CMM
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which takes into account the Abbe-offsets to the scales. The method is
based on the kinematic model of the CMM and 21 simulated geometric error
components. The kinematic model and the simulated geometric error components
can be used to build so-called virtual CMMs. In order to check whether a virtual
CMM exhibits errors that are representative for the actual CMM, a virtual
ISO 10360-2 test is performed. The only input that is needed for the developed
method are the scale positions of the actual CMM and its (valid) ISO 10360-2
specification.

A test that described the measurement of two gauge blocks of different lengths at
several locations and orientations on the CMM showed that uncertainties calculated
based on error simulations by the developed method are very reliable.

8.2.3 Uncertainty determination of feature measurements based
on measured form deviation and CMM hardware errors

Based on the previous two contributions, an error simulation method has been
worked out that integrates the influence of feature form deviations and CMM
hardware errors. Simulated hardware errors of a virtual CMM will be added to
the sampled points from simulated profiles. This allows to simulate measurement
errors on feature parameters. It takes into account points sampling strategy, CMM
hardware errors and the influence of feature form deviations. To determine the
errors, the true parameters of the feature need to be known, but in practice only the
measured parameters are known. Particularly, the true form deviation influences
the measurement errors but is not known in advance.

This thesis shows how the influence of feature form deviations and CMM
hardware errors can be combined in an uncertainty determination
method for feature measurements. This method relies on a new two-step
Monte Carlo approach: a first step to determine the form deviation uncertainty, a
second step to determine the uncertainties of the other feature parameters. The form
deviation uncertainty can be obtained by simulating errors for different possible
magnitudes of form deviation. Based on these results, the likelihood of the true form
deviation is determined, which provides the form deviation uncertainty (step 1).
The range of possible form deviations (defined by the form deviation uncertainty)
is used to determine the uncertainties on the other feature parameters (step 2).

From two case studies describing measurements of parts with significant form
deviations, it became clear that calculated uncertainties are only reliable if the
influence of form deviation is taken into account. For a limited set of probing points
the true errors were often highly underestimated by the calculated uncertainties
if only CMM hardware uncertainties were taken into account (i.e. if influence of
feature form deviation was neglected). Influence of form deviation becomes even
more important for partial feature measurements, as also illustrated in this thesis.
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8.2.4 Development of an uncertainty evaluation software that
integrates the influence of form deviations and CMM
hardware errors

The standard input and output of the method (i.e. coordinates and uncertainties
on coordinates) derived from the previous contribution is given in machine
coordinates. This is necessary to correctly implement the influence of CMM
hardware uncertainty. However, knowing the uncertainty of parameters expressed
in the machine coordinate system (MCS) will usually not be sufficient to determine
measurement uncertainties of actual CMM measurements. Measurement results
will usually be reported relative to a given part coordinate system (PCS). Since
a PCS is constructed based on measured features, there is also a measurement
uncertainty associated with the PCS itself. Chapter 6 of this thesis explains how the
uncertainty on the PCS can be calculated and taken into account when reporting
feature uncertainties relative to a given datum. Sometimes features need to be
constructed based on one or more other (measured) features. Again there will also
be an uncertainty associated to the constructed feature. The calculation of this
uncertainty is similar to the calculation of PCS uncertainty. Also the uncertainty
of measured geometrical tolerances, based on multiple features (perpendicularity,
parallelism, coaxiality, ...) can be calculated similarly.

This research resulted in an uncertainty evaluation software that is able
to perform online uncertainty calculations and that takes into account
the influence of feature form deviations as well as CMM hardware errors.
Also derived uncertainties, like part coordinate system uncertainty and uncertainties
on measured geometrical tolerances based on multiple features are integrated in
the calculated uncertainties. The software was implemented in object oriented
Matlab® code and was integrated with Camio® measurement software running on
a retrofitted Coord3® CMM.

8.3 Suggestions for future research

The developed uncertainty evaluation software (UES) is able to calculate reliable
uncertainty statements under most circumstances, as shown by the tests in
Chapter 7. Nevertheless, certain uncertainty contributors are not yet modelled or
can be modelled more accurately:

e Thermal influences

Systematic (uncompensated) temperature deviations (from 20°C) of the
CMM are taken into account by the modelled positional deviations of the axis
as long as the CMM still complies with its specification. However, thermal
fluctuations in time are not taken into account. The UES assumes that
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hardware errors are static, that they do not change in time. In practice,
errors due to thermal influences on the CMM can be significant. Temperature
deviations of the CMM can be due to environmental temperature deviations or
to heat dissipation of the CMM components. The influence of thermal effects
can be minimized by minimizing measurement time, e.g. using automated
measurements. For measurements that require more time, influence of thermal
effects should be integrated in the uncertainty calculations. This could be
implemented by making use of ‘virtual environments’, that simulate possible
temperature variations.

Probing errors

Probing errors are modelled as purely random deviations. This is a
simplification of reality. Actual probe errors will also have important
systematic components. Better probe error modelling would be advantageous
for the reliability of the calculated uncertainties.

Random CMM errors

Geometric errors of the CMM are considered to be purely systematic. In
reality each of the 18 geometric errors will also have a more or less random
component. These random errors could be modelled relatively easily in a way
analogue to the one used for the systematic errors. This approach will take
into account the fact that a random geometric error (e.g. a random yaw error)
will have more influence for larger Abbe-distances. Modelling reversal errors
of the CMM, that can also be important, will be more difficult because the
direction of motion of the axes needs to be taken into account.

Improvement of form deviation modelling

The way simulated form deviations are taken from the database could be
improved. Now the form deviations are taken randomly from a large set of
standardised form deviations defined by the user. This can be e.g. a set of
only 3-lobed deviations or a set that contains 2-lobed, 3-lobed and 4-lobed
form deviations. The method could be improved further by selecting form
deviations based on information from the actual measurement; if a significant
amount of points (e.g. 15) is measured it could be detected whether the shape
is rather 2-lobed, 3-lobed, 4-lobed or a combination of those [73]. Based on
this information, the method could automatically select the form deviations
from a specific database.

Ezxtension to incomplete features

Currently the UES implicitly assumes that the user always wants to measure
complete features, i.e. if the user measured a circle segment over 90°, the
software assumes that the user is interested in the parameters of the complete
circle, and that he was only able to measure over 90°. If form deviation
uncertainty is included, this will result in very high uncertainties. However,
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it could be that the user measured the radius of a 90° rounding. In that
case there is no complete circle available, and only the radius of that circle
segment needs to be known. The same problem holds for plane measurements.
If a plane with an opening (due to e.g. a hole or a pocket) is measured, no
measurement points can be taken in the region of the opening, although the
software assumes that a complete plane (without opening) was measured.
This can result in overestimated uncertainty values.

This research focusses on conventional CMMs, but many methods could also
be transferred to other coordinate measurement systems. E.g. the way to model
hardware errors of the CMM could, mutatis mutandis, also be applied to articulating
arms and other non-conventional coordinate measuring systems [74]. Detailed
uncertainty modelling for optical coordinate measuring systems (such as fringe
projection systems or laser line scanners [75]) will be more difficult.

The uncertainty evaluation software developed during this research is implemented
as a stand-alone software package. It is recommendable that the error simulation
and uncertainty calculation algorithms of the developed UES are integrated in
currently available CMM software. These software have all algorithms for feature
fitting, feature construction and geometrical tolerance evaluation available. In this
way exactly the same algorithms can be used to calculate the measurement results
and measurement uncertainties.

Most facilitators are available for an adoption of developed uncertainty evaluation
software by the CMM industry. The methods have been worked out and tested
and computing power (for Monte Carlo simulations) is no longer a constraint. The
usage of uncertainty evaluation software could prevent many false acceptances and
rejections of parts and could save a significant amount of money. To encourage
industry to adopt uncertainty evaluation methods, well defined standards and
regulations about this topic are still necessary.






Appendix A

Measurement errors expressed
relatively to the measured
form deviation

Section 3.10 showed that the developed error simulation method allows to calculate
the confidence limits of the measurement errors for a given (assumed) value of
true roundness and a given measurement strategy (number of equidistant sampling
points). Such simulations can then be used to define the confidence limits for
other values of true roundness, because the errors are directly proportional to the
true roundness value. For a true roundness value of 0.2 mm, all errors (and as a
consequence also the confidence limits) of Figure 3.17(a) and Figure 3.17(b) will
be two times larger, as the latter are based on a roundness value 0.1 mm. For a
true roundness value of 0.01 mm, they will be ten times smaller. As long as CMM
hardware and environmental uncertainty contributors are neglected, the diameter
and the position of the circle will not influence the errors. This means that one can
also express all uncertainties relative to the true roundness [45, 76].

Even if results are expressed relative to the true roundness, their practical use is
limited. When measuring a circle with a limited set of points, only the measured
roundness value is known, which is often a significant underestimation of the true
roundness value. To solve this issue one could try to express the uncertainties relative
to the measured roundness value instead of relative to the true roundness value.
Since we are using computer simulations, the solution to this is quite straightforward.
Instead of just calculating the errors with the error calculation module (step 4 in
Figure 3.5), the calculated errors can be divided by the (simulated) “measured”
roundness as described by Eq. 3.10. This is done for every Monte Carlo run. Errors
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will then be expressed relatively to the “measured” roundness value. This concept
was proposed by the author at the CAT2007 conference [76].
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Figure A.1: Confidence limits (95%) of errors on the parameters of the LSQ circle,
expressed relative to the measured roundness. Evaluated for two types of measured
form databases. Equidistant sampling over 360° (a) and 180° (b) of the profile.

Figure A.1(a) shows the results of Figure 3.17(a), which are now expressed relatively
to the measured roundness values. For very small numbers of sampling points,
the measured roundness values are often very close to zero. As a consequence the
relative uncertainties will be very high and are out of the scales of the figure. These
results can be used in practice for CMM measurements as follows. Suppose a circle
is measured with eight points and the type of manufacturing signature is unknown
(MEAS2): the maximum possible error (95% confidence level) on diameter and
position (Euclidean distance) will then be about 20% of the measured roundness
value. Again, the errors for diameter and position are zero once the number of
points exceeds the used filtering frequency (15 UPR).

In practice points are not always taken over the complete profile. Due to accessibility
restrictions, circular profiles are sometimes only measured over 180°, although one
would like to know the exact parameters of the full circle. Measuring arc segments
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instead of complete circles will always increase the measurement uncertainty. The
influence of feature form deviations will in these situations be very important as
illustrated in Figure A.1(b).

This figure shows the confidence limits for the errors, expressed relative to the
measured roundness. The errors are calculated by comparing measured values
(sampled over 180°) with the true value of the complete 360° circular profile. The
relative errors are of course much larger than in case of 360° sampling. Not only will
the errors (numerator) be larger, also the measured roundness (denominator) will
be much smaller. The errors are plotted for n = 4 to n = 50 to show that the errors
are not converging to zero. This is because only half the circular profile is sampled,
even if this is done with an infinite number of sampling points. Because results
are expressed relatively to the measured form deviation, they can also be used in
practice. The relative uncertainties on diameter and position will be about 100% for
MEAS1 and about 300% for MEAS2, even for a large number of sampling points.
E.g. if a circle is sampled over 180° with 30 points and the measured roundness
value equals 10 pm, one can expect errors on position and roundness up to 30 pm.

This example illustrates very well the power of Monte Carlo simulations for
uncertainty calculations. Estimating the diameter and position uncertainty for
a circle that is only sampled over 180° is very difficult / impossible based on
expert knowledge. Every CMM expert will know that sampling circle segments
is unfavourable for measurement uncertainty but they will not be able to define
accurately the uncertainty related to the measurement. Even estimating the order
of magnitude of the uncertainty will be difficult. Monte Carlo simulations are very
useful under these circumstances, as shown by the latter example.

Because this method expresses the confidence limits relative to the measured
roundness, it has the important advantage that the confidence limits are not
dependent on true roundness, diameter or position, as long as CMM hardware
uncertainties can be neglected. This is the major drawback of this approach, it can
not account for hardware uncertainties. Once hardware uncertainties are taken into
account uncertainties expressed relative to the measured roundness will no longer
be independent of true size and form deviation. In practice CMM hardware will also
have an influence on the measurement uncertainty. The results described in this
section can then be considered as a lower limit of the measurement uncertainty. In
order to model the influence of CMM hardware uncertainties, the error simulation
method described in Chapter 3 must be adapted.






Appendix B

Measured geometric errors of
Coord3 MC 16

This appendix shows the results of the geometric error measurements performed on
the z-axis of the Coord3 MC 16 CMM (cf. Section 1.9). The positioning error exz,
the straightness errors eyz, straightness error ezx, pitch error ebr and yaw error
ecx were measured. A calibrated Renishaw ML10 laser interferometer, equipped
with a EC10 compensation unit, was used to perform the measurements. The
specification of the laser interferometer for linear measurements is 0.025 pm =+
1.1 pm/m (k = 2).
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Figure B.1: Measurement of positioning error (exx) along x-axis.
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Figure B.2: Measurement of straightness error (eyx) along x-axis.
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Figure B.3: Measurement of straightness error (ezz) along z-axis.
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Appendix C

Class descriptions

Control class (Control) This is the main class. All input of data and output
of results is done by calling methods of this class. Instances of the CMM
class, the different feature classes, the datum class and the tolerance class are
created by methods of the control class and are stored in attributes of this
class. This class also contains the methods that initiate the error simulation
and uncertainty calculation procedures.

Settings class (Settings) The settings class has a set of structure attributes
that contain parameter settings necessary for the UES: number of Monte
Carlo runs, measurement volume of the CMM, performance specification of
the CMM, ...

Feature class (Feat) Since all kinds of features have similar parameters (like
position, orientation, size and form deviation) the feature class is used as a
parent class that only contains attributes, no methods. These attributes are
inherited by the classes of the different features.

Circle class (Circle) The circle class is a child of the feature class. Its
attributes are inherited from the feature class. The methods of the circle
class are used to create and measure virtual circles.

Line class (Line) The line class is a child of the feature class. Its attributes
are inherited from the feature class. The methods of the line class are
used to create and measure virtual lines.

Plane class (Plane) The plane class is a child of the feature class. Its
attributes are inherited from the feature class. The methods of the plane
class are used to create and measure virtual planes.
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Cylinder class (Cylndr) The cylinder a class is child of the feature class.
Its attributes are inherited from the feature class. The methods of the
feature class are used to create and measure virtual cylinders.

Point class (Point) The point class is a child of the feature class. Its
attributes are inherited from the feature class. The point class can be
used when an intersection point of two features needs to be calculated.

Virtual feature class (VirtFeat) The virtual feature class has some
structure attributes that contain all information of the created virtual
profiles: points of the true virtual profiles, virtual sampled points, true
and measured virtual position, orientation, size and form deviation. The
feature class contains information about the actual measured feature.
The virtual feature class contains information about the associated
virtual features. The virtual feature class is a composition with the
feature class.

Virtual form deviation class (VirtForm) The structure attributes of the vir-
tual form deviation class contain virtual form deviation profiles for the
different kind of features (form databases discussed in Section 3.5).

Virtual CMM class (CMM) Every created instance of the CMM class represents
one virtual CMM. It contains several methods to construct the virtual
geometric errors and the error state of the CMM. Once the virtual CMM
is built, it can be called to return the probe tip position error at a given
position in the measurement volume of the virtual CMM. This can be used
to simulate the sampling of a feature.

Virtual sensor class (Sensor) The virtual sensor class is a composition
with the CMM class. More than one virtual sensor can be associated
with a virtual CMM. The virtual sensor class models the hardware errors
of the articulating probe head and the used sensor.

Datum class (Datum) An instance of the datum class is created for every used
reference datum frame during the measurement. It contains methods to
calculate the datum matrix from the composing datum features and to create
the virtual datums for the corresponding virtual features.

Virtual datum class (VirtDatum) The virtual datum class has a structure
attribute that contains all information of the created virtual datum.

Tolerance class (Tol) An instance of the tolerance class is created for every
defined tolerance. It contains al relevant information for the tolerance: type
of tolerance, toleranced feature, datum feature, tolerance limits, measured
tolerance value, ... It uses the algorithms from the tolerance algorithm
database to calculate the tolerance values for the actual features and all
associated virtual features.
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Virtual tolerance class (VirtTol) The virtual datum class has a struc-
ture attribute that contains all information of the created virtual

tolerance.

Virtual environment class The virtual environment class has never been
integrated. Although it is still shown in the class diagram because it illustrates
that it could be used to integrate the influence of temperature deviations /
fluctuations on the calculated measurement uncertainty.
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