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Nowadays, the presence of specific genetic aberrations is
progressively used for classification and treatment stratification,
because acute leukemias with the same oncogenetic aberration
generally form a clinically and diagnostically homogenous disease
entity with comparable prognosis. Many oncogenetic aberrations
in acute leukemias result in a fusion gene, which is transcribed into
fusion transcripts and translated into fusion proteins, which are
assumed to play a critical role in the oncogenetic process. Fusion
gene aberrations are detected by karyotyping, FISH, or RT-PCR
analysis. However, these molecular genetic techniques are labo-
rious and time consuming, which is in contrast to flow cytometric
techniques. Therefore we developed a flow cytometric
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immunobead assay for detection of fusion proteins in lysates of
leukemia cell samples by use of a bead-bound catching antibody
against one side of the fusion protein and fluorochrome-conju-
gated detection antibody. So far, we have been able to design such
fusion protein immunobead assays for BCR-ABL, PML-RARA, TEL-
AML1, E2A-PBX1, MLL-AF4, AML1-ETO and CBFB-MYH11. The
immunobead assay for detection of fusion proteins can be per-
formed within 3 to 4 hours in a routine diagnostic setting, without
the need of special equipment other than a flow cytometer. The
novel immunobead assay will enable fast and easy classification of
acute leukemia patients that express fusion proteins. Such patients
can be included at an early stage in the right treatment protocols,
much faster than by use of current molecular techniques. The
immunobead assay can be run in parallel to routine immuno-
phenotyping and is particularly attractive for clinical settings
without direct access to molecular diagnostics.

� 2010 Published by Elsevier Ltd.
Introduction

Nowadays, the diagnosis and classification of hematological malignancies is no longer based only on
cytological and histomorphological characteristics or the immunophenotype of the malignant cells.
Progressively, also the presence of specific genetic aberrations is used for classification and treatment
stratification, because malignancies with the same oncogenetic aberration generally form a clinically
and diagnostically homogeneous disease entity with comparable prognosis [1–3].

In leukemias, many chromosome aberrations result in an aberrant fusion gene, caused by the
incorrect coupling of the upstream part of one gene to the downstream part of another gene and vice
versa (reciprocal fusion gene). In most leukemias, such fusion genes are transcribed into fusion tran-
scripts, which are translated into fusion proteins which (at least in part) have been shown to play
a critical role in the pathogenesis of the leukemias. The first chromosome aberration discovered in
leukemia patients was the so-called Philadelphia (Ph) chromosome, which was shown to result from
the (9;22) translocation, inwhich the BCR gene is aberrantly coupled to the ABL1 gene [4,5]. The t(9;22)
is found in virtually all patients with chronic myeloid leukemia (CML) and in a fraction of the patients
with B-cell precursor acute lymphoblastic leukemia (BCP-ALL), particularly in adults [6].

In BCP-ALL, also other fusion genes have been discovered such as t(1;19) with the E2A-PBX1 fusion
gene, t(4;11) with the MLL-AF4 fusion gene, and t(12;21) with the TEL-AML1 fusion gene. In patients
with acute myeloid leukemia (AML), several types of fusion gene aberrations have been found; the
most frequently occurring aberrations are t(8;21) with the AML1-ETO gene and inv(16) or t(16;16) with
the CBFB-MYH11 gene [2,7]. The t(15;17) with the PML-RARA fusion gene is found in virtually all (>95%)
patients with acute promyelocytic leukemia (APL) [8].

The occurrence and relative frequency of fusion gene aberrations not only depends on the type of
leukemia, but also on the age of the patient. Particularly in BCP-ALL, large differences in relative
frequencies are found between different age groups (Fig. 1) [9]. For example,MLL fusion genes, such as
MLL-AF4, occur at high frequency in infant ALL (w80%), whereas the BCR-ABL fusion gene is rare at
young age (<2%) and its frequency rapidly increases with age (Fig. 1) [9].

Most chromosome aberrations have prognostic value for treatment outcome. TEL-AML1 in child-
hood BCP-ALL and AML1-ETO or CBFB-MYH11 in AML are associated with a good prognosis. In contrast,
most MLL gene aberrations as well as the BCR-ABL1 fusion gene in BCP-ALL are associated with poor
prognosis, and the afflicted patients are being treated on high-risk protocols [2,9].

When it became clear that the fusion gene products contribute to the malignant transformation
process, several pharmaceutical research programs focused on the development of drugs to block the
fusion proteins in their function. For example, the BCR-ABL fusion protein induces increased signaling
activation via the ABL tyrosine kinase domain, which appears to result in higher proliferation and



Fig. 1. Relative distribution of different types of chromosome aberrations in BCP-ALL patients in different age groups. The MLL gene
aberrationsdominate in infantALL (w80%), t(12;21)with theTEL-AML1 fusiongenedominates in childhoodALL,whereas t(9;22)with the
BCR-ABL fusion gene progressively increases from 2% in young children to 60–70% in older patients (see Szczepañski et al. in Ref. [9]).
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survival of the leukemia cells [10]. A decade ago, the first specific tyrosine kinase inhibitor (TKI),
imatinib, was identified, which blocks the signaling function of the ABL tyrosine kinase domain [11,12].
In the meantime, several different TKI’s have been developed, which differ in their blocking mecha-
nisms [13]. Another example for targeted therapy is the use of retinoid differentiating agents such as
all-trans retinoid acid (ATRA) in APL patients with the PML-RARA fusion gene [14,15]. ATRA binds to one
of the RARA domains, thereby blocking the PML-RARA fusion protein in its aberrant function of
inhibiting the maturation of APL cells. The introduction of TKIs in CML and of ATRA in APL has
dramatically improved the clinical outcome in both diseases.

Consequently, both for reasons of prognostic classification and for reasons of specifically targeted
treatment options, it has become increasingly important to have a fast and simple, though accurate
assay for the detection of fusion genes.

Detection of chromosome aberrations with fusion genes

To date, the various types of oncogenetic aberrations are detected at the chromosome level bymeans
of karyotyping and fluorescence in situ hybridization (FISH), or at the mRNA/transcript level by RT-PCR
analysis [7,16,17]. Theavailabilityof thesediagnostic techniques is generally restricted to large references
centers,whichhave theappropriate laboratory facilities (suchas culture roomsandPCR facilities) aswell
as well-trained technicians. Furthermore, the (molecular) genetic techniques are time consuming: 1–2
days for FISH and PCR techniques and even 1–2 weeks for karyotyping [7,16,17]. Nevertheless, it is
important to provide a fast and reliable diagnosis to support efficient clinicalmanagement and to assign
patients to the appropriate treatment protocols quickly after leukemia diagnosis.

Detection of fusion proteins

Antibody-based techniques for the detection of normal and aberrant proteins are much faster than
molecular genetic techniques, generally give different and extra information, and can be performed
more easily without special laboratory facilities. Furthermore, fusion proteins, by definition, have
a new tumor-specific fusion epitope, i.e. the coupling site of the two protein fragments, each of which
originally derived from a different gene. Therefore, we tried hard to design specific antibodies against
fusion epitopes of several fusion proteins, particularly against the fusion epitopes of the different BCR-



Fig. 2. Principle of flow cytometric BCR-ABL immunobead assay. Fusion of the upstream part of the BCR gene to the downstream part
of the ABL gene leads to the generation of an oncogenic BCR-ABL protein. Upon release of the fusion proteins by lysis of the leukemic
cells, they are recognized by both an anti-BCR antibody coupled to a bead and a PE-labeled anti-ABL antibody. The beads are
evaluated on a flow cytometer, which can detect the PE fluorescence signal. If only normal BCR and ABL proteins are present, no PE
fluorescence signal will be detected on the beads.
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ABL fusion proteins. This turned out to be far more difficult than anticipated. We succeeded in
developing polyclonal rabbit antisera against two BCR-ABL fusion epitopes [18–20] and a murine
monoclonal antibody was designed against a single BCR-ABL fusion epitope [21]. However, all obtained
antibodies worked solely under denaturing conditions, such asWestern blotting, and none of themwas
suited for intracellular staining in microscopy or flow cytometry.

Consequently, we decided to develop another antibody-based technique, which does not target the
fusion epitope itself but the two parts of the fusion protein via a catching antibody against one part of the
fusion protein and a labelled detection antibody against the other part of the fusion protein [22]. Initially,
a “dipstick” approach was used, in which the catching antibody was linked to a membrane [23]. This
approach worked reliably, but was too slow and too time-consuming for routine diagnostic applications.
Therefore, wemodified this technique and created a faster and easier flowcytometric technique, wherein
the catching antibody is coupled to a bead and the detection antibody is conjugatedwith a fluorochrome
(Fig. 2) [24].Weanticipated that such immunobeadassaywouldbeable todetect a fusionprotein in lysates
of leukemic cells, provided that correct antibodies were available. However, virtually all commercially
available antibodies against various domains of the classical fusion proteins appeared not to be suited for
application in the immunobead assay, particularly because of non-specific binding to other proteins
(cross-reactivity) and because of insufficient affinity. Therefore, we decided to design new antibodies for
the immunobead-based detection of the most common fusion proteins in BCP-ALL, AML and CML.

Immunobead assay for the detection of BCR-ABL fusion proteins

The t(9;22) with the BCR-ABL fusion gene can present in several variants, because multiple different
breakpoint cluster regions (bcr’s) occur in the BCR gene (Fig. 3A). The first identified bcr was the so-
called “major bcr” (M-bcr), which is predominantly involved in CML patients and results in the BCR-ABL



Fig. 3. Structure of the BCR and ABL genes with breakpoint regions and corresponding fusion gene transcripts. A. The ABL gene
contains one large breakpoint region (w200 kb), whereas three breakpoint regions have been found in the BCR gene: m-bcr, M-bcr,
and m-bcr, which are associated with the p190, p210, and p230 BCR-ABL fusion proteins, respectively.[4-6, 25-27] In addition,
several rare breakpoints have been reported (see arrows), including the v-bcr breakpoint. [26, 28, 30] B. The three well-defined
breakpoint regions in the BCR gene can produce at least eight different fusion transcripts, because of alternative splicing in the ABL
gene (splicing to exon 2 or exon 3) and, because the M-bcr consists of two intronic regions (intron 13 and intron 14) [26].
Additional BCR-ABL fusion transcripts have been described, but they are extremely rare or, to date, have been reported only once
[26,28,30].
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p210 fusion protein. Later, the so-called “minor bcr” (m-bcr) was identified, occurring mostly in adult
BCP-ALL patients and resulting in the BCR-ABL p190 fusion protein (Table 1) [4–7]. In addition to these
two common breakpoints, several less frequent breakpoint variants have been found, such as m-bcr, v-
bcr, etc. (Fig. 3A) [25–28]. The different breakpoints result in different fusion transcripts and,



Table 1
Most frequent chromosome aberrations with fusion genes in leukemia.

Chromosome
aberration

Fusion genes BCP-ALL AML CML

Children Adults Children Adults

� 60 y >60 y

t(1;19)(q23;p13) E2A-PBX1 3–5% 2–4% – – – –

11q23 aberrations MLL fusions 4–5%a 5–6% 8–10% w10% w10% –

t(4;11)(q21;q23) MLL-AF4 3-4%a 4–8% <1% <1% <1% –

t(9;22)(q34;q11) BCR-ABL p190 2–4% 10–25%b <1% <1% <1% <5%
BCR-ABL p210 1–2% 5–15%b <1% <1% <1% �95%

t(12;21)(p13;q22) TEL-AML1 20–25% <2% – – – –

t(15;17)(q22;q21) PML-RARA – – 8–10%c 5–15%c 2–6%c –

t(8;21)(q22;q22) AML1-ETO – – 10–14% 6–8% 2–3% –

inv(16)(p13;q22) CBFB-MYH11 – – 5–7% 5–6% 3–4% –

TOTAL 30–35% 35–45% 30–35% 25–30% 15–20% >98%

a In infants (<1 year) with ALL, the frequency ofMLL gene aberrations and t(4;11) is approximately 80% and 40%, respectively
(see also Fig. 1 and Table 3).

b In the group of elderly BCP-ALL patients, the percentage of BCR-ABL positivity increases to 60–70% (Fig. 1).
c In Southern Europe (ES, PT, FR and IT), the relative frequency of t(15;17) with the PML-RARA fusion gene is much higher (up

to 25–30% of AML).
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consequently, in different fusion proteins (Fig. 3B). The traditional PCR-based diagnostics use primers
which mainly detect the M-bcr and m-bcr variants, implying that the transcripts of other BCR-ABL
fusion gene variants might well be missed [7,17,27].

To ensure the recognition of all variants of the BCR-ABL fusion proteins, we designed the anti-BCR
antibody against a unique epitope upstream of all BCR gene breakpoints, i.e. in BCR-exon-1. Analo-
gously, the anti-ABL antibody recognized an epitope downstream of the large ABL breakpoint region,
i.e. in the ABL-SH2 domain. By using these two antibodies against “outer” epitopes, the BCR-ABL
immunobead assay was expected to recognize all types of BCR-ABL fusion proteins, independent of the
breakpoint position [29,30].

Initial testing of BCR-ABL positive cell lines and patient materials showed good results when the
anti-BCR antibody was used as catching antibody (bound to the bead) and the anti-ABL antibody as
detection antibody, conjugated with phycoerythrin (PE). However, when we used lysates from mature
myeloid cells, the fluorescent signals in the BCR-ABL immunobead assay were clearly weaker than
expected [29]. Additional experiments showed that the lower signals were caused by protein
degradation via protease activity from the granules in more mature myeloid cells, such as gran-
ulocytes as well as CML cells. Upon lysis of these myeloid cells, sufficiently high levels of proteases
were released to digest the proteins in the cell lysate, including the BCR-ABL fusion proteins. Multiple
experiments with several types of protease inhibitors showed that it was critically important to add
a mixture of different types of protease inhibitors to the various incubation steps of the immunobead
assay. This modification of the assay reduced the protein degradation substantially. However, delayed
processing of CML samples might still result in some protein degradation. Therefore, it is advised to
perform the BCR-ABL immunobead assay, particularly in cells from chronic phase CML, within 24–
36 h after sampling [29].

The EuroFlow Consortium evaluated a series of 145 patient samples including 19 CML, 78 BCP-ALL,
18 T-lineage ALL, 27 AML as well as 72 healthy donors. The results from the BCR-ABL immunobead
assay were completely concordant (100%) with the RQ-PCR analysis of BCR-ABL transcripts (Fig. 4) [29].
Importantly, the BCR-ABL immunobead assay detected the fusion proteins of all types of BCR break-
points: p190, p210, p225, and p230 [29,30].

Dilution experiments were performed for sensitivity testing. Three different BCR-ABL positive
cell lines were diluted into blood mononuclear cells (MNC) or into white blood cells (WBC, i.e.
including granulocytes). These dilution experiments showed good sensitivities of at least 1%
(Fig. 5) [29].
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Immunobead assay for the detection of PML-RARA fusion proteins

Since the first description of APL, the life-threatening bleeding problems have been identified as the
most notoriousmanifestation of the disease, requiring instant treatment [14,15,31].Manyhematologists
consider the correct diagnosis in a patient with APL as a medical emergency, because of the
A
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Fig. 6. Structure of the PML and RARA genes with the breakpoint regions and the corresponding fusion gene transcripts. A. The PML
gene contains three well-defined small bcr’s: bcr1 in intron 6, bcr2 in the downstream part of exon 6, and bcr3 in intron 3. In the
RARA gene, the breakpoints cluster in intron 2 (w15 kb). B. The three bcr’s in the PML gene result in three different PML-RARA fusion
transcripts.
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consequences of the disseminated coagulopathy, which remains the major cause of death in APL
patients. Consequently, a positive diagnosis of APL is of utmost importance for patient care. Although the
clinical and cytomorphological picture of APL seems relatively clear, the leukemic cells in a subset of
patients (5–10%)donothave the typicalAPLmorphology [32]. Consequently, it is strongly recommended
tomake a fast and accurate diagnosis of the PML-RARA aberration. Because of the risk of early death due
to bleeding, it is recommended that the APL diagnosis be excluded in each patientwith newly diagnosed
AML [14]. Such diagnosis should preferable be provided within hours, not within days!

The vast majority (97%) of APL patients have the (15;17) or a variant translocation, resulting in the
PML-RARA fusion gene [8]. The breakpoints in the RARA gene are all located in intron 2, whereas
virtually all PML gene breakpoints cluster in three bcr’s: intron 6 (bcr1; w55% of cases), exon 6 (bcr2;
w5% of cases), or intron 3 (bcr3; w40% of cases), resulting in three major types of PML-RARA fusion
transcripts (Fig. 6) [7,17].

For the PML-RARA immunobead assay, the anti-RARA antibody was designed against protein
sequences downstream of the RARA breakpoint and used as catching antibody, linked to the bead. The
anti-PML antibody was designed against an exposed amino acid sequence, which was not homologous
to other proteins and located upstream of all three bcr’s; the anti-PML antibody was PE conjugated and
used as detection antibody (Fig. 6). This PML-RARA immunobead assay showed good results in PML-
RARA positive cell lines as well as in a small series of APL patients (E. Dekking et al, manuscript in
preparation).

Subsequently, the EuroFlow Consortium tested the prototype PML-RARA immunobead assay in 162
acute leukemias, including 46 APL, 66 other AML, 34 BCP-ALL, and 16 T-lineage ALL. The results of the
PML-RARA immunobead assay and of the PCR analysis of PML-RARA transcripts were fully concordant.
Importantly, the PML-RARA fusion proteins of all three bcr types were detectable by the immunobead
assay (E. Dekking et al, manuscript in preparation).



Table 2
Development of immunobead assays for detection of fusion proteins.

Leukemia Fusion protein Diagnostic evaluation

CML and BCP-ALL BCR-ABL RUO kit tested and approved (now commercially available)a

BCP-ALL TEL-AML All three immunobeads work in "singleplex" format;
the BCP-ALL multiplex tube is close to completion

E2A-PBX2
MLL-AF4

AML AML-ETO Prototype AML “Core-binding-factor” tube is completed
and shows good performancea

CBFB-MYH11

AML/APL PML-RARA Prototype kit has been tested and approved
(will become commercially available early 2011)a

a The BCR-ABL RUO kit is available via BD Biosciences (San José, CA). Also the AML “Core-binding-factor” kit and the PML-RARA
kit will become available via BD Biosciences.
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Immunobead assays for other fusion proteins

In the development of fusion protein assays, we gave priority to the BCR-ABL and PML-RARA
immunobeads, because of their diagnostic, prognostic, and therapeutic importance. In addition,
antibodies have been designed and selected for the other five most frequently occurring fusion
proteins: TEL-AML1, E2A-PBX1, and MLL-AF4 in BCP-ALL as well as AML1-ETO and CBFB-MYH11 in
AML.

All immunobead assays show good to very good results in the “singleplex“ format, in which all
incubation and lysis conditions have been optimized for the involved fusion protein. In this context, it
should be noted that some fusion proteins are mainly located in the cytoplasm, whereas others are
mainly located in the nucleus. This implies that in some cases release of nuclear fusion protein is
required by lysing not only the cell membrane but also the nuclear membrane. This needs a more
intensive lysis procedure, which might not be suited for each fusion protein.

One of the typical advantages of immunobead assays is the possibility of multiplexing, whereby the
combined immunobeads differ in size, color, or other characteristics. In line with this possibility, we
planned to designmultiplex immunobead assays for detecting the different types of fusion proteins per
disease category, for example BCP-ALL and AML. Consequently, we worked on the composition of
a BCP-ALL multiplex tube for TEL-AML1, E2A-PBX1, and MLL-AF4, and a multiplex AML Core Binding
Table 3
Frequency of various types of MLL fusion genes in acute leukemias.a

MLL translocation ALL AML All acute leukemias

Infants Children Adults Children Adults

MLLþb w80% 4–5% 5–6% 8–10% w10% w10%

MLL-AF4c w52% w46% w85% <1% <1% w42%

MLL-AF9 w13% w16% w2% w32% w29% w16%

MLL-ENL w22% w21% w9% w3% w8% w11%

MLL-AF10 w3% w5% <1% w23% w5% w7%

MLL-AF6 <1% w3% <1% w7% w13% w5%

MLL-ELL <1% <1% <1% w12% w10% w4%

Other MLL w9% w8% w1% w22% w34% w15%

a Frequencies are derived from Jansen et al., 2007; and Meyer et al., 2009 (Ref. [33,34]).
b Overall frequency of MLL gene translocation (MLLþ) per age group and per disease group.
c Relative frequency of each type of MLL fusion gene within the group of MLLþ leukemias.
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Factor tube for the detection of AML1-ETO and CBFB-MYH11. In the design of these two multiplex
tubes, the incubation and lysis conditions of the singleplex tubes needed adaptations to allow the
reliable detection of all relevant fusion proteins. The BCP-ALL multiplex tube and the AML Core Binding
Factor tube should be used in addition to the earlier designed BCR-ABL and the PML-RARA tube,
respectively.

The multiplex AML Core Binding Factor tube is indeed capable of detecting the two core-binding-
factor fusion proteins AML1-ETO and CBFB-MYH11. The first results of the AML Core Binding Factor
tube in more than 60 acute leukemia patients were excellent: full concordance was found between the
multiplex immunobead assay and the PCR analyses for AML1-ETO and CBFB-MYH11 transcripts
(Table 2) (E. Dekking et al, manuscript in preparation).

The multiplex BCP-ALL tube is meant to detect three different types of fusion proteins of cyto-
plasmic or nuclear origin, implying that the incubation and lysis conditions needed to be adapted to
guarantee efficient detection of all fusion proteins. The preliminary results of the BCP-ALL multiplex
assay look promising. However, a large-scale EuroFlow study on a variety of patient samples still needs
to be performed (Table 2).

Future immunobead assay: multiplex MLL tube

We are in the process of extending our efforts toward a multiplex MLL tube, which can detect fusion
proteins derived from the most frequently occurring MLL gene translocations.

The MLL gene on chromosome 11q23 can translocate to many different partner genes [1]. Thus far,
at least 64 differentMLL partner genes have been identified in acute leukemia patients [33,34]. Despite
this exceptionally high number of different partner genes, only six different partner genes are found in
w85% of acute leukemias with an MLL fusion gene: AF4, AF9, ENL, AF10, AF6 and ELL [34]. The relative
distribution of these six partner genes differs between ALL and AML and among different age groups
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(Table 3) [33,34]. Also, the prognosis of these MLL gene aberrations ranges from mainly poor for most
MLL gene aberrations to fairly good for, for instance, MLL-AF9 in AML. Therefore, it is important to
identify the particular MLL gene aberration in an acute leukemia patient. Moreover, in infant ALL the
presence of MLL gene rearrangements is the most important prognostic factor associated with treat-
ment failure [35]. Therefore, we now aim at the development of a multiplex MLL tube which can
identify six different MLL fusion proteins in a single step (Fig. 7). We realize that the design and
development of this MLL multiplex tube will be a challenge, but we believe that that such tool will be
important for optimal patient care.

Conclusions

The flow cytometric immunobead assay for the detection of fusion proteins in lysates of leukemic
cells has several advantages over the currently used molecular and genetic techniques:

– easy and reliable technique for fusion protein detection;
– independent of breakpoint position in the involved genes (if antibodies were designed correctly
against “outer” epitopes);

– results within 3–4 h;
– multiplex possibilities by using differential labeling of the beads (e.g., different color ordifferent size);
– no need for special laboratory facilities, other than a routine flow cytometer;
– can be run in parallel to standard flow cytometric immunophenotyping.

When using the immunobead assay, two caveats should be considered. The first relates to the
effects of protein degradation via protease activity, which need to be prevented by the careful
performance of the (pre)incubation and lysis steps with protease inhibitors. The second concerns the
sensitivity of the immunobead assay, which varies between 1% and 10% and, therefore, does not reach
the sensitivity of PCR techniques, but matches that of FISH and cytogenetics.

Overall, we conclude that the flow cytometric immunobead assay for the detection of fusion
proteins contributes to a fast and easy diagnosis and classification of leukemias. The above-
mentioned advantages make the immunobead assay a technically attractive alternative to molecular
genetic diagnostics, particularly in diagnostic centers that do not have direct access to molecular
laboratory facilities.

The presented progress in the detection of genetic aberrations at the protein level is based on
combined efforts of academia and industry. The combination of university (Erasmus MC), spin-off
companies (e.g., Dynomics), industry (BD Biosciences), and a clinical-diagnostic network (EuroFlow)
provided the complete pathway from invention and development to production and clinical testing of
an innovative diagnostic product.
Practice point

1. The flow cytometric detection of leukemia-specific products of fusion genes is an enormous
step in the diagnosis of leukemia patients.

2. The antibody-based immunobead assay allows the easy, rapid and reliable detection of fusion
proteins in lieu of time-consuming molecular techniques.

3. Given that BCR-ABL proteins are now detected within 4 hours post sample receipt, offers the
opportunity to establish BCR-ABL status in parallel to the immunophenotype of the leukemic
blasts and in time to determine patient eligibility for treatment trials.

4. The 1% sensitivity level of the BCR-ABL immunobead assay, though not suitable for minimal
residual disease monitoring, is sufficient to detect BCR-ABLþ leukemias at diagnosis.



Research agenda

1. To date, only the BCR-ABL immunobead assay has become commercially available.
Commercial kits for other fusion proteins are either nearing completion (e.g., PML-RARA) or
are in development.

2. Multiplexing of immunobeads for a variety of related fusion proteins, either related by disease
(TEL-AML1 plus E2A-PBX1 plus MLL-AF4) or related by transcript (e.g., core-binding-factor
tube), if successful, would further speed up the molecular diagnosis of a leukemia patient.

3. Problems with protease-mediated degradation of fusion proteins, particularly in the presence
of maturemyeloid cells, will need to be addressed further. Especially in bonemarrow samples
with low levels of leukemic blasts. This problem is preferably addressed by inclusion of
a control bead, which detects an ubiquously expressed protein.
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